
Bright Cluster Manager 9.1

Administrator Manual
Revision: 0fcda3a

Date: Tue May 20 2025

©2021 Bright Computing, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced
in any form unless permitted by contract or by written permission of Bright Computing, Inc.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXlm is a registered
trademark of Flexera Software, Inc. PBS Professional, PBS Pro, and Green Provisioning are trademarks
of Altair Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. Bright Computing, Inc. shall
not be liable for technical or editorial errors or omissions which may occur in this document. Bright
Computing, Inc. shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to Bright Computing, Inc.
The Bright Cluster Manager product principally consists of free software that is licensed by the Linux
authors free of charge. Bright Computing, Inc. shall have no liability nor will Bright Computing, Inc.
provide any warranty for the Bright Cluster Manager to the extent that is permitted by law. Unless
confirmed in writing, the Linux authors and/or third parties provide the program as is without any
warranty, either expressed or implied, including, but not limited to, marketability or suitability for a
specific purpose. The user of the Bright Cluster Manager product shall accept the full risk for the qual-
ity or performance of the product. Should the product malfunction, the costs for repair, service, or
correction will be borne by the user of the Bright Cluster Manager product. No copyright owner or
third party who has modified or distributed the program as permitted in this license shall be held liable
for damages, including general or specific damages, damages caused by side effects or consequential
damages, resulting from the use of the program or the un-usability of the program (including, but not
limited to, loss of data, incorrect processing of data, losses that must be borne by you or others, or the
inability of the program to work together with any other program), even if a copyright owner or third
party had been advised about the possibility of such damages unless such copyright owner or third
party has signed a writing to the contrary.

Table of Contents

Table of Contents . i
0.1 Quickstart . xvii
0.2 About This Manual . xvii
0.3 About The Manuals In General . xvii
0.4 Getting Administrator-Level Support . xviii
0.5 Getting Professional Services . xviii

1 Introduction 1
1.1 Bright Cluster Manager Functions And Aims . 1
1.2 The Scope Of The Administrator Manual (This Manual) . 1

1.2.1 Installation . 1
1.2.2 Configuration, Management, And Monitoring Via Bright Cluster Manager Tools

And Applications . 2
1.3 Outside The Direct Scope Of The Administrator Manual 3

2 Cluster Management With Bright Cluster Manager 5
2.1 Concepts . 5

2.1.1 Devices . 5
2.1.2 Software Images . 6
2.1.3 Node Categories . 7
2.1.4 Node Groups . 7
2.1.5 Roles . 8
2.1.6 Configuration Overlay . 8

2.2 Modules Environment . 9
2.2.1 Adding And Removing Modules . 9
2.2.2 Using Local And Shared Modules . 9
2.2.3 Setting Up A Default Environment For All Users . 10
2.2.4 Creating A Modules Environment Module . 11
2.2.5 Lua Modules Environment (LMod) . 11

2.3 Authentication . 12
2.3.1 Changing Administrative Passwords On The Cluster 12
2.3.2 Logins Using ssh . 13
2.3.3 Certificates . 14
2.3.4 Profiles . 15

2.4 Bright View GUI . 15
2.4.1 Installing The Cluster Management GUI Service . 15
2.4.2 Navigating The Cluster With Bright View . 16

2.5 Cluster Management Shell . 18
2.5.1 Invoking cmsh . 19
2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh 23
2.5.3 Working With Objects . 27

ii Table of Contents

2.5.4 Accessing Cluster Settings . 38
2.5.5 Advanced cmsh Features . 38

2.6 Cluster Management Daemon . 50
2.6.1 Controlling The Cluster Management Daemon . 50
2.6.2 Configuring The Cluster Management Daemon . 51
2.6.3 CMDaemon Versions . 52
2.6.4 Configuring The Cluster Management Daemon Logging Facilities 52
2.6.5 Configuration File Modification, And The FrozenFile Directive 53
2.6.6 Configuration File Conflicts Between The Standard Distribution And Bright Clus-

ter Manager For Generated And Non-Generated Files 54
2.6.7 CMDaemon Lite . 54

3 Configuring The Cluster 59
3.1 Main Cluster Configuration Settings . 59

3.1.1 Cluster Configuration: Various Name-Related Settings 60
3.1.2 Cluster Configuration: Some Network-Related Settings 61
3.1.3 Miscellaneous Settings . 63
3.1.4 Limiting The Maximum Number Of Open Files . 65

3.2 Network Settings . 66
3.2.1 Configuring Networks . 67
3.2.2 Adding Networks . 70
3.2.3 Changing Network Parameters . 70
3.2.4 Tools For Viewing Cluster Connections . 82

3.3 Configuring Bridge Interfaces . 85
3.4 Configuring VLAN interfaces . 86

3.4.1 Configuring A VLAN Interface Using cmsh . 86
3.4.2 Configuring A VLAN Interface Using Bright View 87

3.5 Configuring Bonded Interfaces . 87
3.5.1 Adding A Bonded Interface . 87
3.5.2 Single Bonded Interface On A Regular Node . 88
3.5.3 Multiple Bonded Interface On A Regular Node . 89
3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes 89
3.5.5 Tagged VLAN On Top Of a Bonded Interface . 89
3.5.6 Association Of MAC Address With A Bonded Interface 90
3.5.7 Further Notes On Bonding . 90

3.6 Configuring InfiniBand And Omni-Path Interfaces . 91
3.6.1 Installing Software Packages . 92
3.6.2 Subnet Managers . 92
3.6.3 InfiniBand Network Settings . 93
3.6.4 Verifying Connectivity . 94

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 95
3.7.1 BMC Network Settings . 95
3.7.2 BMC Authentication . 97
3.7.3 Interfaces Settings . 98
3.7.4 Identification With A BMC . 99

3.8 Configuring Switches And PDUs . 99
3.8.1 Configuring With The Manufacturer’s Configuration Interface 99

Table of Contents iii

3.8.2 Configuring SNMP . 100
3.8.3 Uplink Ports . 102
3.8.4 The showport MAC Address to Port Matching Tool 103
3.8.5 Disabling Port Detection . 104
3.8.6 The switchoverview Command . 104

3.9 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 105
3.9.1 Disk Layouts . 105
3.9.2 Disk Layout Assertions . 105
3.9.3 Changing Disk Layouts . 105
3.9.4 Changing A Disk Layout From Disked To Diskless 105

3.10 Configuring NFS Volume Exports And Mounts . 107
3.10.1 Exporting A Filesystem Using Bright View And cmsh 108
3.10.2 Mounting A Filesystem Using Bright View And cmsh 111
3.10.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS 114
3.10.4 Mounting The Root Filesystem For A Diskless Node Over NFS 116
3.10.5 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers . 118

3.11 Managing And Configuring Services . 119
3.11.1 Why Use The Cluster Manager For Services? . 119
3.11.2 Managing And Configuring Services—Examples 120

3.12 Managing And Configuring A Rack . 124
3.12.1 Racks . 124
3.12.2 Assigning Devices To A Rack . 126
3.12.3 Assigning Devices To A Chassis . 127

3.13 Configuring GPU Settings . 130
3.13.1 GPUs And GPU Units . 130
3.13.2 Configuring GPU Settings . 130

3.14 Configuring Custom Scripts . 137
3.14.1 custompowerscript . 137
3.14.2 custompingscript . 137
3.14.3 customremoteconsolescript . 138

3.15 Cluster Configuration Without Execution By CMDaemon 138
3.15.1 Cluster Configuration: The Bigger Picture . 138
3.15.2 Making Nodes Function Differently By Image . 139
3.15.3 Making All Nodes Function Differently From Normal Cluster Behavior With

FrozenFile . 142
3.15.4 Adding Functionality To Nodes Via An initialize Or finalize Script 142
3.15.5 Examples Of Configuring Nodes With Or Without CMDaemon 143

3.16 Saving A Backup Of Configuration Files With versionconfigfiles 144

4 Power Management 145
4.1 Configuring Power Parameters . 145

4.1.1 PDU-Based Power Control . 146
4.1.2 IPMI-Based Power Control . 147
4.1.3 Combining PDU- and IPMI-Based Power Control 148
4.1.4 Custom Power Control . 148
4.1.5 Hewlett Packard iLO-Based Power Control . 149
4.1.6 Dell drac-based Power Control . 150

iv Table of Contents

4.1.7 Redfish-Based and CIMC-Based Power Control . 150
4.2 Power Operations . 150

4.2.1 Power Operations Overview . 150
4.2.2 Power Operations With Bright View . 151
4.2.3 Power Operations Through cmsh . 151

4.3 Monitoring Power . 155
4.4 Switch Configuration To Survive Power Downs . 155

5 Node Provisioning 157
5.1 Before The Kernel Loads . 157

5.1.1 PXE Booting . 157
5.1.2 iPXE Booting From A Disk Drive . 161
5.1.3 iPXE Booting Using InfiniBand . 161
5.1.4 Using PXE To Boot From The Drive . 161
5.1.5 Network Booting Without PXE On The ARMv8 Architecture 162
5.1.6 Network Booting Protocol . 162
5.1.7 The Boot Role . 162

5.2 Provisioning Nodes . 163
5.2.1 Provisioning Nodes: Configuration Settings . 163
5.2.2 Provisioning Nodes: Role Setup With cmsh . 164
5.2.3 Provisioning Nodes: Role Setup With Bright View 165
5.2.4 Provisioning Nodes: Housekeeping . 167

5.3 The Kernel Image, Ramdisk And Kernel Modules . 171
5.3.1 Booting To A “Good State” Software Image . 171
5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes 172
5.3.3 InfiniBand Provisioning . 173
5.3.4 Omni-Path Provisioning . 175
5.3.5 VLAN Provisioning . 176

5.4 Node-Installer . 177
5.4.1 Requesting A Node Certificate . 178
5.4.2 Deciding Or Selecting Node Configuration . 180
5.4.3 Starting Up All Network Interfaces . 190
5.4.4 Determining Install-mode Type And Execution Mode 192
5.4.5 Running Initialize Scripts . 197
5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems 197
5.4.7 Synchronizing The Local Drive With The Software Image 198
5.4.8 Writing Network Configuration Files . 202
5.4.9 Creating A Local /etc/fstab File . 202
5.4.10 Booting From The Local Hard Drive . 203
5.4.11 Running Finalize Scripts . 205
5.4.12 Unloading Specific Drivers . 206
5.4.13 Switching To The Local init Process . 206

5.5 Node States . 206
5.5.1 Node States Icons In Bright View . 206
5.5.2 Node States Shown In cmsh . 206
5.5.3 Node States Indicating Regular Start Up . 207
5.5.4 Node States That May Indicate Problems . 208

Table of Contents v

5.6 Updating Running Nodes . 210
5.6.1 Updating Running Nodes: Configuration With excludelistupdate 210
5.6.2 Updating Running Nodes: With cmsh Using imageupdate 218
5.6.3 Updating Running Nodes: With Bright View Using the Update node Option . . . 218
5.6.4 Updating Running Nodes: Considerations . 218

5.7 Adding New Nodes . 219
5.7.1 Adding New Nodes With cmsh And Bright View Add Functions 219
5.7.2 Adding New Nodes With The Node Creation Wizard 219

5.8 Troubleshooting The Node Boot Process . 220
5.8.1 Node Fails To PXE Boot . 221
5.8.2 Node-installer Logging . 224
5.8.3 Provisioning Logging . 225
5.8.4 Ramdisk Fails During Loading Or Sometime Later 225
5.8.5 Ramdisk Cannot Start Network . 225
5.8.6 Node-Installer Cannot Create Disk Layout . 226
5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface 229

6 User Management 235
6.1 Managing Users And Groups With Bright View . 235
6.2 Managing Users And Groups With cmsh . 237

6.2.1 Adding A User . 237
6.2.2 Saving The Modified State . 238
6.2.3 Editing Properties Of Users And Groups . 239
6.2.4 Reverting To The Unmodified State . 242
6.2.5 Removing A User . 243

6.3 Using An External LDAP Server . 243
6.3.1 External LDAP Server Replication . 245
6.3.2 High Availability . 247

6.4 Tokens And Profiles . 248
6.4.1 Modifying Profiles . 249
6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By Bright Clus-

ter Manager’s Internal LDAP . 249
6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External

LDAP . 253
6.4.4 Logging The Actions Of CMDaemon Users . 254

7 Workload Management 255
7.1 Workload Managers Choices . 255
7.2 Forcing Jobs To Run In A Workload Management System 256

7.2.1 Disallowing User Logins To Regular Nodes Via cmsh 256
7.2.2 Disallowing User Logins To Regular Nodes Via Bright View 257
7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes . 258
7.2.4 High Availability By Workload Managers . 258

7.3 Installation Of Workload Managers . 259
7.3.1 Running cm-wlm-setup In CLI Mode . 259
7.3.2 Running cm-wlm-setup In Ncurses Mode . 262

vi Table of Contents

7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Con-
tainerized Jobs . 264

7.3.4 Prolog And Epilog Scripts . 267
7.4 Enabling, Disabling, And Monitoring Workload Managers 270

7.4.1 Enabling And Disabling A WLM With Bright View 271
7.4.2 Enabling And Disabling A Workload Manager With cmsh 273
7.4.3 Monitoring The Workload Manager Services . 277

7.5 Configuring And Running Individual Workload Managers 280
7.5.1 Configuring And Running Slurm . 281
7.5.2 Installing, Configuring, And Running UGE . 290
7.5.3 Configuring And Running PBS . 296
7.5.4 Installing, Configuring, And Running LSF . 302

7.6 Using Bright View With Workload Management . 308
7.6.1 Jobs Display And Handling In Bright View . 308
7.6.2 Queues Display And Handling In Bright View . 309

7.7 Using cmsh With Workload Management . 310
7.7.1 The jobs Submode In cmsh . 312
7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode 316
7.7.3 Nodes Drainage Status And Handling In cmsh . 318

7.8 Examples Of Workload Management Assignment . 320
7.8.1 Setting Up A New Category And A New Queue For It 320
7.8.2 Setting Up A Prejob Check . 324

7.9 Power Saving With cm-scale . 325
7.10 Cgroups . 325

7.10.1 Cgroups Settings For Workload Managers . 325
7.11 Custom Node Parameters . 330

8 Bright Cluster Manager Auto Scaler 333
8.1 Introduction . 333

8.1.1 Use Cases . 333
8.1.2 Resource Constraints . 334
8.1.3 Setup . 337
8.1.4 Comparison With cm-scale-cluster . 346

8.2 Configuration . 347
8.2.1 The ScaleServer Role . 347
8.2.2 Resource Providers . 348
8.2.3 Time Quanta Optimization . 351
8.2.4 Fairsharing Priority Calculation And Node Management 353
8.2.5 Engines . 353
8.2.6 Trackers . 355

8.3 Examples Of cm-scale Use . 361
8.3.1 Simple Static Node Provider Usage Example . 361
8.3.2 Simple Dynamic Node Provider Usage Example . 364

8.4 Further cm-scale Configuration And Examples . 370
8.4.1 Dynamic Nodes Re-purposing . 370
8.4.2 Pending Reasons . 370
8.4.3 Locations . 372

Table of Contents vii

8.4.4 Azure Storage Accounts Assignment . 373
8.4.5 Mapping HPC Jobs To Particular Nodes . 374
8.4.6 How To Exclude Unused Nodes From Being Stopped 375
8.4.7 Prolog And Epilog Scripts With Auto Scaler . 376
8.4.8 Queue Node Placeholders . 376

9 Containerization 379
9.1 Docker Engine . 379

9.1.1 Docker Setup . 380
9.1.2 Integration With Workload Managers . 381
9.1.3 DockerHost Role . 382
9.1.4 Iptables . 384
9.1.5 Storage Backends . 384
9.1.6 Docker Monitoring . 387
9.1.7 Docker Setup For NVIDIA . 388

9.2 Docker Registries . 389
9.2.1 Docker And Harbor Registries: Introduction . 389
9.2.2 Docker And Harbor Registries: Setup And Configuration 390

9.3 Kubernetes . 392
9.3.1 Reference Architecture . 393
9.3.2 Kubernetes Setup . 393
9.3.3 Using GPUs With Kubernetes: NVIDIA GPUs . 399
9.3.4 Using GPUs With Kubernetes: AMD GPUs . 403
9.3.5 Kubernetes Configuration Overlays . 407
9.3.6 Removing A Kubernetes Cluster . 407
9.3.7 Kubernetes Cluster Configuration Options . 408
9.3.8 EtcdCluster . 411
9.3.9 Kubernetes Roles . 412
9.3.10 Security Model . 423
9.3.11 Addition Of New Kubernetes Users And Kubernetes Role Bindings Configuration 424
9.3.12 List Of Resources Defined For Users . 427
9.3.13 Pod Security Policies . 429
9.3.14 Providing Access To External Users . 433
9.3.15 Networking Model . 435
9.3.16 Kubernetes Monitoring . 435
9.3.17 Setup Of A Storage Class For Ceph . 435
9.3.18 Integration With Harbor . 437

9.4 Kubernetes Apps . 438
9.4.1 Providing Custom Docker Images . 440

9.5 Kubernetes On Edge . 440
9.5.1 Flags For Edge Installation . 440

9.6 Singularity . 441
9.6.1 Use Cases . 441
9.6.2 Package cm-singularity . 441
9.6.3 MPI Integration . 442

9.7 OpenShift Container Platform Integration With Bright Cluster Manager 443
9.7.1 Prerequisites . 443

viii Table of Contents

9.7.2 Installation . 443
9.7.3 Adding New Compute Nodes . 445
9.7.4 Validation . 446
9.7.5 Uninstall . 446

10 Ceph Installation 447
10.1 Ceph Introduction . 447

10.1.1 Ceph Object And Block Storage . 447
10.1.2 Ceph Storage Backends . 448
10.1.3 Ceph Software Considerations Before Use . 449
10.1.4 Hardware For Ceph Use . 449

10.2 Ceph Installation With cm-ceph-setup . 450
10.2.1 Ceph Installation: The Configuration Stage . 451
10.2.2 Ceph Installation: The Deployment Stage . 454

10.3 Installation Of Ceph From Bright View . 456
10.3.1 Bright View Ceph Install: Main Details Screen . 456
10.3.2 Bright View Ceph Install: Nodes Selection Screen 457
10.3.3 Bright View Ceph Install: Summary Screen . 459
10.3.4 Bright View Ceph Install: Deployment Screen . 459

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup 460
10.4.1 Checking On Ceph And Ceph-related Files From The Shell 460
10.4.2 Ceph Management With Bright View And cmsh . 463

11 BeeGFS 469
11.1 BeeGFS Introduction . 469

11.1.1 BeeGFS Concepts . 469
11.1.2 BeeGFS Installation Notes And Options . 469

11.2 Deployment And Uninstallation Of BeeGFS With cm-beegfs-setup 469
11.2.1 Deployment Of BeeGFS . 470
11.2.2 Uninstalling BeeGFS . 474

11.3 Managing The Deployed BeeGFS Instance . 474
11.3.1 Setup . 475
11.3.2 BeeGFS Objects . 475
11.3.3 Usage . 489

12 Post-Installation Software Management 491
12.1 Bright Cluster Manager Packages And Their Naming Convention 491

12.1.1 The packages Command . 493
12.2 Managing Packages On The Head Node . 494

12.2.1 Managing RPM Or .deb Packages On The Head Node 494
12.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm

Packages . 497
12.3 Kernel Management On A Head Node Or Image . 497

12.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node . . 497
12.3.2 Excluding Kernels And Other Packages From Updates 498
12.3.3 Updating A Kernel In A Software Image . 500
12.3.4 Setting Kernel Options For Software Images . 501

Table of Contents ix

12.3.5 Kernel Driver Modules . 501
12.4 Managing A Package In A Software Image And Running It On Nodes 503

12.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which
The Packages Are Deployed . 503

12.4.2 Installing From Head Into The Image: Updating The Node 505
12.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root,

yum --installroot Or chroot . 505
12.4.4 Managing A Package In The Node-Installer Image 506

12.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 507
12.5.1 Managing The Software Directly On An Image . 507
12.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image . . . 508

12.6 Creating A Custom Software Image . 511
12.6.1 Creating A Base Distribution Archive From A Base Host 511
12.6.2 Creating The Software Image With cm-create-image 513
12.6.3 Configuring Local Repositories For Linux Distributions, And For The Bright Clus-

ter Manager Package Repository, For A Software Image 515
12.6.4 Creating A Custom Image From The Local Repository 518

12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 518
12.7.1 The cm-image Tool . 519
12.7.2 Multidistro Examples: Provisioning From CentOS 7 Head Node To Ubuntu 18.04

Regular Nodes . 521
12.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8

Architecture Regular Nodes . 522

13 Monitoring: Monitoring Cluster Devices 527
13.1 A Basic Monitoring Example And Action . 527

13.1.1 Synopsis Of Basic Monitoring Example . 527
13.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces 528
13.1.3 Using The Monitoring Basic Example . 529

13.2 Monitoring Concepts And Definitions . 532
13.2.1 Measurables . 532
13.2.2 Enummetrics . 535
13.2.3 Metrics . 535
13.2.4 Health Check . 537
13.2.5 Trigger . 538
13.2.6 Action . 538
13.2.7 Severity . 539
13.2.8 AlertLevel . 540
13.2.9 Flapping . 540
13.2.10 Data Producer . 540
13.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Bright View 543

13.3 Monitoring Visualization With Bright View . 544
13.3.1 The Monitoring Window . 545

13.4 Monitoring Configuration With Bright View . 546
13.4.1 Monitoring Configuration: Data Producers . 547
13.4.2 Monitoring Configuration: Measurables . 549
13.4.3 Monitoring Configuration: Consolidators . 551

x Table of Contents

13.4.4 Monitoring Configuration: Actions . 554
13.4.5 Monitoring Configuration: Triggers . 556
13.4.6 Monitoring Configuration: Health status . 559
13.4.7 Monitoring Configuration: All Health Checks . 560
13.4.8 Monitoring Configuration: Standalone Monitored Entities 561

13.5 The monitoring Mode Of cmsh . 561
13.5.1 The action Submode . 562
13.5.2 The consolidator Submode . 564
13.5.3 The measurable Submode . 566
13.5.4 The setup Submode . 570
13.5.5 The standalone Submode . 576
13.5.6 The trigger Submode . 576

13.6 Obtaining Monitoring Data Values . 579
13.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics,

healthchecks And enummetrics Commands . 579
13.6.2 On-Demand Metric Sampling And Health Checks 580
13.6.3 The Latest Data And Counter Values—The latest*data And

latestmetriccounters Commands . 583
13.6.4 Data Values Over A Period—The dumpmonitoringdata Command 585
13.6.5 Monitoring Data Health Overview–The healthoverview Command 593
13.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command 594
13.6.7 Dropping Monitoring Data With The monitoringdrop Command 595
13.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And

monitoringresume Commands . 596
13.6.9 Monitoring Pickup Intervals . 597

13.7 Offloaded Monitoring . 599
13.7.1 Why Offloaded Monitoring? . 599
13.7.2 Implementing Offloaded Monitoring . 600
13.7.3 Background Details . 600

13.8 The User Portal . 604
13.8.1 Accessing The User Portal . 604
13.8.2 Setting A Common Username/Password For The User Portal 604
13.8.3 User Portal Access . 605
13.8.4 User Portal Home Page . 605

13.9 Cloud Job Tagging . 606
13.10Event Viewer . 607

13.10.1 Viewing Events In Bright View . 607
13.10.2 Viewing Events In cmsh . 608
13.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States 609
13.10.4 InfoMessages . 610

14 Monitoring: Job Monitoring 613
14.1 Job Metrics Introduction . 613
14.2 Job Metrics With Cgroups . 613
14.3 Job Information Retention . 614
14.4 Job Metrics Sampling Configuration . 615

14.4.1 The Job Metrics Collection Processing Mechanism 616

Table of Contents xi

14.5 Job Monitoring In cmsh . 617

15 Monitoring: Job Accounting 621
15.1 Introduction . 621
15.2 Labeled Entities . 621

15.2.1 Dataproducers For Labeled Entities . 621
15.2.2 PromQL And Labeled Entities . 622
15.2.3 Job IDs And Labeled Entities . 622
15.2.4 Measurables And Labeled Entities . 622

15.3 PromQL Queries . 623
15.3.1 The Default PromQL Queries... 623
15.3.2 ...And A Short Description Of Them . 624
15.3.3 Modifying The Default PromQL Query Properties 627
15.3.4 An Example PromQL Query, Properties, And Disassembly 627
15.3.5 Aside: Getting Raw Values For A Prometheus Class Metric 628
15.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued) 629

15.4 Parameterized PromQL Queries . 631
15.5 Job Accounting In Bright View . 632

15.5.1 Management And Use Of The Accounting Panel . 632
15.6 PromQL Query Modes And Specification In Bright View 635
15.7 Access Control For Workload Accounting And Reporting 637

15.7.1 Defining Project Managers Using Internal User Management 638
15.7.2 Defining Project Managers Using External User Management 638

15.8 Drilldown Queries For Workload Accounting And Reporting 639

16 Monitoring: Job Chargeback 641
16.1 Introduction . 641

16.1.1 The Word “Chargeback” . 641
16.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring

Measurements . 641
16.2 Job Chargeback Measurement . 642

16.2.1 Predefined Job Chargebacks . 642
16.2.2 Setting A Custom Job Chargeback . 643
16.2.3 The report And request Commands . 644

16.3 Job Chargeback Background Information . 648

17 Day-to-day Administration 649
17.1 Parallel Shells: pdsh And pexec . 649

17.1.1 pdsh In The OS Shell . 650
17.1.2 pexec In cmsh . 653
17.1.3 pexec In Bright View . 653
17.1.4 Using The -j|--join Option Of pexec In cmsh . 654
17.1.5 Other Parallel Commands . 655

17.2 Getting Support With Cluster Manager Issues, And Notifications For Release Updates . . 655
17.2.1 Support Via E-mail . 655
17.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose 656
17.2.3 Requesting Remote Support With request-remote-assistance 657

xii Table of Contents

17.2.4 Requesting Remote Support With A Shared Screen Utility 659
17.2.5 Getting Notified About Updates . 659

17.3 Backups . 660
17.3.1 Cluster Installation Backup . 660
17.3.2 Local Database And Data Backups And Restoration 661

17.4 Revision Control For Images . 662
17.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images 662
17.4.2 Btrfs Availability And Distribution Support . 663
17.4.3 Installing Btrfs To Work With Revision Control Of Images In Bright Cluster Manager663
17.4.4 Using cmsh For Revision Control Of Images . 665

17.5 BIOS Configuration And Updates . 668
17.5.1 BIOS Configuration Via CMDaemon And Redfish 668
17.5.2 Updating BIOS Versions . 674

17.6 Hardware Match Check With The hardware-profile Data Producer 675
17.7 Serial Over LAN Console Access . 676

17.7.1 Background Notes On Serial Console And SOL . 677
17.7.2 SOL Console Configuration With Bright View . 678
17.7.3 SOL Console Configuration And Access With cmsh 678
17.7.4 The conman Serial Console Logger And Viewer . 679

17.8 Managing Raw Monitoring Data . 683
17.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option 683
17.8.2 Estimating The Required Size Of The Storage Device 683
17.8.3 Moving Monitoring Data Elsewhere . 684
17.8.4 Reducing Monitoring Data By Reducing Samples 684
17.8.5 Deleting All Monitoring Data . 684

17.9 Node Replacement . 686
17.10Ansible . 686

17.10.1 Introduction . 686
17.10.2 A Simple Playbook Example . 687
17.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration Pur-

poses . 688
17.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related

Properties . 690

18 High Availability 699
18.0 Introduction . 699

18.0.1 Why Have High Availability? . 699
18.0.2 High Availability Is Possible On Head Nodes, And Also On Regular Nodes 699
18.0.3 High Availability Usually Uses Shared Storage . 699
18.0.4 Organization Of This Chapter . 699

18.1 HA Concepts . 700
18.1.1 Primary, Secondary, Active, Passive . 700
18.1.2 Monitoring The Active Head Node, Initiating Failover 700
18.1.3 Services In Bright Cluster Manager HA Setups . 700
18.1.4 Failover Network Topology . 701
18.1.5 Shared Storage . 703
18.1.6 Guaranteeing One Active Head At All Times . 704

Table of Contents xiii

18.1.7 Automatic Vs Manual Failover . 705
18.1.8 HA And Cloud Nodes . 706
18.1.9 HA Using Virtual Head Nodes . 706

18.2 HA Setup Procedure Using cmha-setup . 706
18.2.1 Preparation . 707
18.2.2 Failover Cloning (Replacing A Passive Head) . 709
18.2.3 Shared Storage Setup . 712
18.2.4 Automated Failover And Relevant Testing . 713

18.3 Running cmha-setup Without Ncurses, Using An XML Specification 714
18.3.1 Why Run It Without Ncurses? . 714
18.3.2 The Syntax Of cmha-setup Without Ncurses . 715
18.3.3 Example cmha-setup Run Without Ncurses . 715

18.4 Managing HA . 716
18.4.1 Changing An Existing Failover Configuration . 716
18.4.2 cmha Utility . 716
18.4.3 States . 720
18.4.4 Failover Action Decisions . 721
18.4.5 Keeping Head Nodes In Sync . 721
18.4.6 High Availability Parameters . 723
18.4.7 Viewing Failover Via Bright View . 725
18.4.8 Re-cloning A Head Node . 725

18.5 HA For Regular Nodes . 726
18.5.1 Why Have HA On Regular Nodes? . 726
18.5.2 Comparing Head And Regular Node HA . 726
18.5.3 Setting Up A Regular Node HA Service . 727
18.5.4 The Sequence Of Events When Making Another HA Regular Node Active 731

18.6 HA And Workload Manager Jobs . 731

19 The Jupyter Notebook Environment Integration 733
19.1 Introduction . 733
19.2 Jupyter Environment Installation . 734

19.2.1 Jupyter Setup . 735
19.2.2 Jupyter Architecture . 735
19.2.3 Verifying Jupyter Installation . 737
19.2.4 Login Configuration . 738
19.2.5 JupyterHub Screen After Login . 739

19.3 Jupyter Notebook Examples . 740
19.4 Jupyter Kernels . 741

19.4.1 Jupyter Enterprise Gateway Kernels . 742
19.5 Jupyter Kernel Creator Extension . 743

19.5.1 Running Jupyter Kernels With Kubernetes . 748
19.5.2 Running Jupyter Kernels With Workload Managers 748

19.6 Jupyter Kernel Creator Extension Customization . 749
19.6.1 Kernel Template Parameters Definition . 749
19.6.2 Kernel Template Parameters Usage . 752
19.6.3 Kernel Template Creation Example . 752
19.6.4 Extending Kubernetes Kernel Templates . 754

xiv Table of Contents

19.6.5 Extending Workload Managers Kernel Templates 756
19.7 Jupyter VNC Extension . 758
19.8 Jupyter WLM Magic Extension . 760
19.9 Jupyter Environment Removal . 763

A Generated Files 765
A.1 System Configuration Files Created Or Modified By CMDeamon On Head Nodes 765
A.2 System Configuration Files Created Or Modified By CMDaemon In Software Images: . . 767
A.3 Files Created On Regular Nodes By The Node-Installer . 768
A.4 Files Not Generated, But Installed In RHEL/CentOS . 769

B Bright Computing Public Key 775

C CMDaemon Configuration File Directives 777

D Disk Partitioning And RAID Configuration 807
D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema File 807
D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema File 814
D.3 Example: Default Node Partitioning . 817
D.4 Example: Hardware RAID Configuration . 819

D.4.1 RAID level 0 And RAID 10 Example . 819
D.5 Example: Software RAID . 820
D.6 Example: Software RAID With Swap . 821
D.7 Example: Logical Volume Manager . 822
D.8 Example: Logical Volume Manager With RAID 1 . 823
D.9 Example: Diskless . 825
D.10 Example: Semi-diskless . 826
D.11 Example: Preventing Accidental Data Loss . 826
D.12 Example: Using Custom Assertions . 827
D.13 Example: Software RAID1 With One Big Partition . 828
D.14 Example: Software RAID5 With One Big Partition . 830
D.15 Example: Software RAID1 With Standard Partitioning . 832
D.16 Example: Software RAID5 With Standard Partitioning . 835

E Example initialize And finalize Scripts 839
E.1 When Are They Used? . 839
E.2 Accessing From Bright View And cmsh . 839
E.3 Environment Variables Available To initialize And finalize Scripts 840
E.4 Using Environment Variables Stored In Multiple Variables 843
E.5 Storing A Configuration To A Filesystem . 844

E.5.1 Storing With Initialize Scripts . 844
E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes 844
E.5.3 Restricting The Script To Nodes Or Node Categories 847

F Workload Managers Quick Reference 849
F.1 Slurm . 849
F.2 Univa Grid Engine . 851
F.3 PBS Pro . 852

Table of Contents xv

G Metrics, Health Checks, Enummetrics, And Actions 853
G.1 Metrics And Their Parameters . 853

G.1.1 Regular Metrics . 853
G.1.2 NFS Metrics . 858
G.1.3 Monitoring System Metrics . 859
G.1.4 GPU Metrics . 860
G.1.5 Job Metrics . 861
G.1.6 Prometheus Metrics . 866
G.1.7 Parameters For Metrics . 869

G.2 Health Checks And Their Parameters . 871
G.2.1 Health Checks . 871
G.2.2 Parameters For Health Checks . 876

G.3 Enummetrics . 877
G.4 Actions And Their Parameters . 878

G.4.1 Actions . 878
G.4.2 Parameters For A Monitoring Action . 878

H Workload Manager Configuration Files Updated By CMDaemon 881
H.1 Slurm . 881
H.2 Univa Grid Engine (UGE) . 881
H.3 PBS Pro . 881
H.4 LSF . 882

I Changing The LDAP Password 883
I.1 Setting A New Password For The LDAP Server . 883
I.2 Setting The New Password In cmd.conf . 883
I.3 Checking LDAP Access . 884

J Tokens 885

K Understanding Consolidation 893
K.1 Introduction . 893
K.2 What Is Consolidation? . 893
K.3 Raw Data And Consolidation . 893
K.4 A Demonstration Of The Output . 894

L Node Execution Filters And Execution Multiplexers 897
L.1 Data Producers: Default Configuration For Running And Sampling 898

L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command . 898
L.1.2 Nodes That Data Producers Target By Default—The samplenow Command 898

L.2 Data Producers: Configuration For Running And Targeting 899
L.2.1 Custom Metrics From The fm.sh Custom Script . 899

L.3 Replacing A Resource With An Explicit Node Specification 901
L.4 Excessive Sampling . 902
L.5 Not Just For Nodes . 903
L.6 Lua Node Execution Filters . 903

xvi Table of Contents

M A Tree View Of cmsh 907
M.1 Modes . 907

N Kubernetes User Role Bindings Full YAML 911
N.1 Full YAML For The Default Role Bindings . 911
N.2 Full YAML For Secure Namespace . 912
N.3 Full YAML For Additional Namespaces . 917

Preface

Welcome to the Administrator Manual for the Bright Cluster Manager 9.1 cluster environment.

0.1 Quickstart
For readers who want to get a cluster up and running as quickly as possible with Bright Cluster Man-
ager, there is a quickstart installation guide in Chapter 1 of the Installation Manual.

0.2 About This Manual
The rest of this manual is aimed at helping system administrators configure, understand, and manage a
cluster running Bright Cluster Manager so as to get the best out of it.

The Administrator Manual covers administration topics which are specific to the Bright Cluster Man-
ager environment. Readers should already be familiar with basic Linux system administration, which
the manual does not generally cover. Aspects of system administration that require a more advanced
understanding of Linux concepts for clusters are explained appropriately.

This manual is not intended for users interested only in interacting with the cluster to run compute
jobs. The User Manual is intended to get such users up to speed with the user environment and workload
management system.

0.3 About The Manuals In General
Regularly updated versions of the Bright Cluster Manager 9.1 manuals are available on updated clus-
ters by default at /cm/shared/docs/cm. The latest updates are always online at http://support.
brightcomputing.com/manuals.

• The Administrator Manual describes the general administration of the cluster.

• The Installation Manual describes installation procedures.

• The User Manual describes the user environment and how to submit jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

• The Developer Manual has useful information for developers who would like to program with
Bright Cluster Manager.

• The Machine Learning Manual describes how to install and configure machine learning capabilities
with Bright Cluster Manager.

• The Edge Manual describes how to install and configure machine learning capabilities with Bright
Cluster Manager.

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

http://support.brightcomputing.com/manuals
http://support.brightcomputing.com/manuals

xviii Table of Contents

The manuals constantly evolve to keep up with the development of the Bright Cluster Manager envi-
ronment and the addition of new hardware and/or applications. The manuals also regularly incorporate
customer feedback. Administrator and user input is greatly valued at Bright Computing. So any com-
ments, suggestions or corrections will be very gratefully accepted at manuals@brightcomputing.com.

There is also a feedback form available via Bright View, via the Menu icon, , following the click-

path: →Help→Feedback Form

0.4 Getting Administrator-Level Support
If the reseller from whom Bright Cluster Manager was bought offers direct support, then the reseller
should be contacted.

Otherwise the primary means of support is via the website https://support.brightcomputing.
com. This allows the administrator to submit a support request via a web form, and opens up a trouble
ticket. It is a good idea to try to use a clear subject header, since that is used as part of a reference tag as
the ticket progresses. Also helpful is a good description of the issue. The followup communication for
this ticket typically goes via standard e-mail. Section 17.2 has more details on working with support.

0.5 Getting Professional Services
Bright Computing normally differentiates between

• professional services (customer asks Bright Computing to do something or asks Bright Computing
to provide some service), and

• support (customer has a specific question or problem that requires an answer or resolution).

Professional services can be provided after consulting with the reseller, or the Bright account manager.

manuals@brightcomputing.com
https://support.brightcomputing.com
https://support.brightcomputing.com

1
Introduction

1.1 Bright Cluster Manager Functions And Aims
Bright Cluster Manager contains tools and applications to facilitate the installation, administration, and
monitoring of a cluster. In addition, Bright Cluster Manager aims to provide users with an optimal
environment for developing and running applications that require extensive computational resources.

1.2 The Scope Of The Administrator Manual (This Manual)
The Administrator Manual covers installation, configuration, management, and monitoring of Bright
Cluster Manager, along with relevant background information to help understand the topics covered.

1.2.1 Installation
Installation can generally be divided into parts as follows, with some parts covered by the Administrator
Manual, some by the Installation Manual, and some by other manuals:

• Initial installation of Bright Cluster Manager: This is covered in the Installation Manual, which
gives a short introduction to the concept of a cluster along with details on installing Bright Cluster
Manager onto the head node. The Installation Manual is therefore the first manual an administrator
should usually turn to when getting to work with Bright Cluster Manager for the first time. The
Administrator Manual can be referred to as the main reference resource once the head node has had
Bright Cluster Manager installed on it.

• Provisioning installation: This is covered in the Administrator Manual. After the head node has
had Bright Cluster Manager installed on it, the other, regular, nodes can (network) boot off it and
provision themselves from it with a default image, without requiring a Linux distribution DVD
themselves. The network boot and provisioning process for the regular nodes is described in detail
in Chapter 5.

In brief, provisioning installs an operating system and files on a node. This kind of installation
to a regular node differs from a normal Linux installation in several ways. An important differ-
ence is that content that is put on the filesystem of the regular node is normally overwritten by
provisioning when the regular node reboots.

• Post-installation software installation: The installation of software to a cluster that is already
configured and running Bright Cluster Manager is described in detail in Chapter 12 of this manual.

• Third-party software installation: The installation of software that is not developed by Bright
Computing, but is supported as a part of Bright Cluster Manager. This is described in detail in the
Installation Manual.

• Cloudbursting, Edge, and Machine Learning: these are integrated by Bright Computing in vari-
ous ways. These have their own deployment procedures and have separate manuals.

© Bright Computing, Inc.

2 Introduction

1.2.2 Configuration, Management, And Monitoring Via Bright Cluster Manager Tools And
Applications

The administrator normally deals with the cluster software configuration via a front end to the Bright
Cluster Manager. This can be GUI-based (Bright View, section 2.4), or shell-based (cmsh, section 2.5).
Other tasks can be handled via special tools provided with Bright Cluster Manager, or the usual Linux
tools. The use of Bright Cluster Manager tools is usually recommended over standard Linux tools be-
cause cluster administration often has special issues, including that of scale.

The following topics are among those covered in this manual:

Chapter, Title Description

2 Cluster Management With
Bright Cluster Manager

Introduction to main concepts and tools of Bright Cluster Manager. Lays
down groundwork for the remaining chapters

3 Configuring The Cluster Further configuration and set up of the cluster after software installation
of Bright Cluster Manager on the head node.

4 Power Management How power management within the cluster works

5 Node Provisioning Node provisioning in detail

6 User Management Account management for users and groups

7 Workload Management Workload management implementation and use

8 The cm-scale Service A Bright Cluster Manager service to dynamically scale the cluster accord-
ing to need

9 Containerization Using Docker and Kubernetes with Bright Cluster Manager

10 Ceph Installation Installing Ceph scalable storage

11 BeeGFS Installation Installing BeeGFS high performance storage

12 Post-Installation Soft-
ware Management

Managing, updating, modifying Bright Cluster Manager software and im-
ages

13 Monitoring: Monitoring
Cluster Devices

Device monitoring and conditional action triggers

14 Monitoring: Job Monitor-
ing

Jobs resource consumption monitoring by the jobs

15 Monitoring: Job Account-
ing

Jobs resource consumption monitoring aggregated by user or similar
groupings

16 Monitoring: Job Charge-
back

Resource request monitoring, so that groups of users can be charged for
their use

17 Day-To-Day Administra-
tion

Miscellaneous administration

18 High Availability Background details and setup instructions to build a cluster with redun-
dant head nodes

19 The Jupyter Notebook
Environment Integration

Installing and using the Jupyter notebook environment

The appendices to this manual generally give supplementary details to the main text.
The following topics are also logically a part of Bright Cluster Manager administration, but they

have their own separate manuals. This is because they have, or are eventually expected to have, many
features:

• Cloudbursting (Cloudbursting Manual)

• Machine Learning (Machine Learning Manual)

© Bright Computing, Inc.

1.3 Outside The Direct Scope Of The Administrator Manual 3

• Edge deployment (Edge Manual)

• Developer topics (Developer Manual)

1.3 Outside The Direct Scope Of The Administrator Manual
The following supplementary resources can deal with issues related to this manual, but are outside its
direct scope:

• Use by the end user: This is covered very peripherally in this manual. The user normally interacts
with the cluster by logging into a custom Linux user environment to run jobs. Details on running
jobs from the perspective of the user are given in the User Manual.

• The knowledge base at http://kb.brightcomputing.com often supplements the Administrator
Manual with discussion of the following:

– Obscure, or complicated, configuration cases

– Procedures that are not really within the scope of Bright Cluster Manager itself, but that may
come up as part of related general Linux configuration.

• Further support options. If the issue is not described adequately in this manual, then section 17.2
describes how to get further support.

© Bright Computing, Inc.

http://kb.brightcomputing.com

2
Cluster Management With

Bright Cluster Manager
This chapter introduces cluster management with Bright Cluster Manager. A cluster running Bright
Cluster Manager exports a cluster management interface to the outside world, which can be used by
any application designed to communicate with the cluster.

Section 2.1 introduces a number of concepts which are key to cluster management using Bright Clus-
ter Manager.

Section 2.2 gives a short introduction on how the modules environment can be used by administra-
tors. The modules environment provides facilities to control aspects of a users’ interactive sessions and
also the environment used by compute jobs.

Section 2.3 introduces how authentication to the cluster management infrastructure works and how
it is used. Section 2.4 and section 2.5 introduce the cluster management GUI (Bright View) and cluster
management shell (cmsh) respectively. These are the primary applications that interact with the cluster
management daemon.

Section 2.6 describes the basics of the cluster management daemon, CMDaemon, running on all
nodes of the cluster.

2.1 Concepts
In this section some concepts central to cluster management with Bright Cluster Manager are intro-
duced.

2.1.1 Devices
A device in the Bright Cluster Manager cluster management infrastructure represents components of a
cluster. A device can be any of the following types:

• Head Node

• Physical Node

• Virtual Node

• Cloud Node

• GPU Unit

• Chassis

• Ethernet Switch

• InfiniBand Switch

© Bright Computing, Inc.

6 Cluster Management With Bright Cluster Manager

• Lite Node

• Myrinet Switch

• Power Distribution Unit

• Rack Sensor Kit

• Generic Device

A device can have a number of properties (e.g. rack position, hostname, switch port) which can be
set in order to configure the device. Using Bright Cluster Manager, operations (e.g. power on) may be
performed on a device. The property changes and operations that can be performed on a device depend
on the type of device. For example, it is possible to mount a new filesystem to a node, but not to an
Ethernet switch.

Every device that is managed by Bright Cluster Manager has a device state associated with it. The
table below describes the most important states for devices:

device statuses device is monitored by Bright? state tracking?

[UP] UP monitored tracked

[DOWN] DOWN monitored tracked

[CLOSED] (UP) UP mostly ignored tracked

[CLOSED] (DOWN) DOWN mostly ignored tracked

These, and other states are described in more detail in section 5.5.
[DOWN] and [CLOSED] (DOWN) states have an important difference. In the case of [DOWN],

the device is down, but is typically intended to be available, and thus typically indicates a failure. In
the case of [CLOSED] (DOWN), the device is down, but is intended to be unavailable, and typically
indicates that the administrator deliberately brought the device down, and would like the device to be
ignored.

2.1.2 Software Images
A software image is a blueprint for the contents of the local filesystems on a regular node. In practice, a
software image is a directory on the head node containing a full Linux filesystem.

The software image in a standard Bright Cluster Manager installation is based on the same parent
distribution that the head node uses. A different distribution can also be chosen after installation, from
the distributions listed in section 2.1 of the Installation Manual for the software image. That is, the head
node and the regular nodes can run different parent distributions. However, such a “mixed” cluster
can be harder to manage and it is easier for problems to arise in such mixtures. Such mixtures, while
supported, are therefore not recommended, and should only be administered by system administrators
that understand the differences between Linux distributions.

RHEL/CentOS/SL mixtures are completely compatible with each other on the head and regular
nodes. On the other hand, SLES may need some effort to work in a mixture with RHEL/CentOS/SL.

When a regular node boots, the node provisioning system (Chapter 5) sets up the node with a copy
of the software image, which by default is called default-image.

Once the node is fully booted, it is possible to instruct the node to re-synchronize its local filesystems
with the software image. This procedure can be used to distribute changes to the software image without
rebooting nodes (section 5.6.2).

It is also possible to “lock” a software image so that no node is able to pick up the image until the
software image is unlocked. (section 5.4.7).

Software images can be changed using regular Linux tools and commands (such as rpm and chroot).
More details on making changes to software images and doing image package management can be
found in Chapter 12.

© Bright Computing, Inc.

2.1 Concepts 7

2.1.3 Node Categories
The collection of settings in Bright Cluster Manager that can apply to a node is called the configuration
of the node. The administrator usually configures nodes using the Bright View (section 2.4) or cmsh
(section 2.5) front end tools, and the configurations are managed internally with a database.

A node category is a group of regular nodes that share the same configuration. Node categories allow
efficiency, allowing an administrator to:

• configure a large group of nodes at once. For example, to set up a group of nodes with a particular
disk layout.

• operate on a large group of nodes at once. For example, to carry out a reboot on an entire category.

A regular node is in exactly one category at all times, which is default by default. The default
category can be changed by accessing the base object of partition mode (page 76), and setting the
value of defaultcategory to another, existing, category.

Nodes are typically divided into node categories based on the hardware specifications of a node or
based on the task that a node is to perform. Whether or not a number of nodes should be placed in a
separate category depends mainly on whether the configuration—for example: monitoring setup, disk
layout, role assignment—for these nodes differs from the rest of the nodes.

A node inherits values from the category it is in. Each value is treated as the default property value
for a node, and can be overruled by specifying the node property value for a particular node.

One configuration property value of a node category is its software image (section 2.1.2). However,
there is no requirement for a one-to-one correspondence between node categories and software images.
Therefore multiple node categories may use the same software image, and conversely, one variable
image—it is variable because it can be changed by the node setting—may be used in the same node
category.

Software images can have their parameters overruled by the category settings. By default, however,
the category settings that can overrule the software image parameters are unset.

By default, all nodes are placed in the default category. Alternative categories can be created and
used at will, such as:

Example

Node Category Description

nodes-ib nodes with InfiniBand capabilities

nodes-highmem nodes with extra memory

login login nodes

storage storage nodes

2.1.4 Node Groups
A node group consists of nodes that have been grouped together for convenience. The group can consist
of any mix of all kinds of nodes, irrespective of whether they are head nodes or regular nodes, and
irrespective of what category they are in. A node may be in 0 or more node groups at one time. I.e.: a
node may belong to many node groups.

Node groups are used mainly for carrying out operations on an entire group of nodes at a time. Since
the nodes inside a node group do not necessarily share the same configuration, configuration changes
cannot be carried out using node groups.

Example

© Bright Computing, Inc.

8 Cluster Management With Bright Cluster Manager

Node Group Members

brokenhardware node087, node783, node917

headnodes mycluster-m1, mycluster-m2

rack5 node212..node254

top node084, node126, node168, node210

One important use for node groups is in the nodegroups property of the provisioning role configu-
ration (section 5.2.1), where a list of node groups that provisioning nodes provision is specified.

2.1.5 Roles
A role is a task that can be performed by a node. By assigning a certain role to a node, an administrator
activates the functionality that the role represents on this node. For example, a node can be turned into
provisioning node, or can be turned into a storage node, by assigning the corresponding roles to the
node.

Roles can be assigned to individual nodes or to node categories. When a role has been assigned to a
node category, it is implicitly assigned to all nodes inside the category.

A configuration overlay (section 2.1.6) is a group of roles that can be assigned to designated groups
of nodes within a cluster. This allows configuration of a large number of configuration parameters in
various combinations of nodes.

Some roles allow parameters to be set that influence the behavior of the role. For example, the
Slurm Client Role (which turns a node into a Slurm client) uses parameters to control how the node
is configured within Slurm in terms of queues and the number of GPUs.

When a role has been assigned to a node category with a certain set of parameters, it is possible to
override the parameters for a node inside the category. This can be done by assigning the role again to
the individual node with a different set of parameters. Roles that have been assigned to nodes override
roles that have been assigned to a node category.

Roles have a priority setting associated with them. Roles assigned at category level have a fixed
priority of 250, while roles assigned at node level have a fixed priority of 750. The configuration overlay
priority is variable, but is set to 500 by default. Thus, for example, roles assigned at the node level over-
ride roles assigned at the category level. Roles assigned at the node level also override roles assigned by
the default configuration overlay.

A role can be imported from another entity, such as a role, a category, or a configuration overlay.
Examples of role assignment are given in sections 5.2.2 and 5.2.3.

2.1.6 Configuration Overlay
A configuration overlay assigns roles (section 2.1.5) for groups of nodes. The number of roles can be
quite large, and priorities can be set for these.

Multiple configuration overlays can be set for a node. A priority can be set for each configuration
overlay, so that a configuration overlay with a higher priority is applied to its associated node instead of
a configuration overlay with a lower priority. The configuration overlay with the highest priority then
determines the actual assigned role.

A configuration overlay assigns a group of roles to an instance. This means that roles are assigned
to nodes according to the instance configuration, along with a priority. Whether the configuration over-
lay assignment is used, or whether the original role assignment is used, depends upon the configured
priorities.

Configuration overlays can take on priorities in the range 0-1000, except for 250 and 750, which are
forbidden. Setting a priority of -1 means that the configuration overlay is ignored.

The priorities of 250, 500, and 750 are also special, as indicated by the following table:

© Bright Computing, Inc.

2.2 Modules Environment 9

priority assigned to node from

-1 configuration overlay not assigned

250 category

500 configuration overlay with default priority

750 node

2.2 Modules Environment
The modules environment is the shell environment that is set up by a third-party software (section 7.1 of
the Installation Manual) called Environment Modules. The software allows users to modify their shell
environment using pre-defined modules. A module may, for example, configure the user’s shell to run a
certain version of an application.

Details of the modules environment from a user perspective are discussed in section 2.3 of the User
Manual. However some aspects of it are relevant for administrators and are therefore discussed here.

2.2.1 Adding And Removing Modules
Modules may be loaded and unloaded, and also be combined for greater flexibility.

Modules currently installed are listed with:

module list

The modules available for loading are listed with:

module avail

Loading and removing specific modules is done with module load and module remove, using this
format:

module load <module name 1> [<module name 2> ...]

For example, loading the shared module (section 2.2.2), the gcc compiler, the openmpi parallel li-
brary, and the openblas library, allows an MPI application myapp.c to be compiled with OpenBLAS
optimizations:

Example

module add shared
module add gcc/9.2.0
module add openmpi/gcc/64/1.10.7
module add openblas
module add openblas/dynamic/0.2.20
mpicc -o myapp myapp.c

The exact versions used can be selected using tab-completion. In most cases, specifying version
numbers explicitly is typically only necessary when multiple versions of an application are installed
and available. When there is no ambiguity, module names without a further path specification may be
used.

2.2.2 Using Local And Shared Modules
Applications and their associated modules are divided into local and shared groups. Local applications
are installed on the local filesystem, whereas shared applications reside on a shared (i.e. imported)
filesystem.

It is recommended that the shared module be loaded by default for ordinary users. Loading it gives
access to the modules belonging to shared applications, and allows the module avail command to show
these extra modules.

© Bright Computing, Inc.

https://modules.readthedocs.io/en/latest/

10 Cluster Management With Bright Cluster Manager

Loading the shared module automatically for root is not recommended on a cluster where shared
storage is not on the head node itself. This is because root logins could be obstructed if this storage is
not available, and if the root user relies on files in the shared storage.

On clusters without external shared storage, root can safely load the shared module automatically
at login. This can be done by running the following command as root:

module initadd shared

Other modules can also be set to load automatically by the user at login by using “module initadd”
with the full path specification. With the initadd option, individual users can customize their own
default modules environment.

Modules can be combined in meta-modules. By default, the default-environment meta-module ex-
ists, which allows the loading of several modules at once by a user. Cluster administrators are encour-
aged to customize the default-environment meta-module to set up a recommended environment for
their users. The default-environment meta-module is empty by default.

The administrator and users have the flexibility of deciding the modules that should be loaded in
undecided cases via module dependencies. Dependencies can be defined using the prereq and conflict
commands. The man page for modulefile gives details on configuring the loading of modules with
these commands.

2.2.3 Setting Up A Default Environment For All Users
How users can set up particular modules to load automatically for their own use with the module
initadd command is discussed in section 2.2.2.

How the administrator can set up particular modules to load automatically for all users by default
is discussed in this section (section 2.2.3). In this example it is assumed that all users have just the
following modules as a default:

Example

[fred@bright91 ~]$ module list
Currently Loaded Modulefiles:
1) shared

The slurm and gdb modules can then be set up by the administrator as a default for all users in the
following 2 ways:

1. Creating and defining part of a .profile to be executed for login shells. For example, a file
userdefaultmodules.sh created by the administrator:

[root@bright91 ~]# cat /etc/profile.d/userdefaultmodules.sh
module load shared
module load slurm
module load gdb

Whenever users now carry out a bash login, these modules are loaded.

2. Instead of placing the modules directly in a script under profile.d like in the preceding
item, a slightly more sophisticated way is to set the modules in the meta-module /cm/shared/
modulefiles/default-environment. For example:

[root@bright91 ~]# cat /cm/shared/modulefiles/default-environment
#%Module1.0##
default modulefile
##
proc ModulesHelp { } {

© Bright Computing, Inc.

/cm/shared/modulefiles/default-environment
/cm/shared/modulefiles/default-environment

2.2 Modules Environment 11

puts stderr "\tLoads default environment modules for this cluster"
}
module-whatis "adds default environment modules"

Add any modules here that should be added by when a user loads the 'default-enviro\
nment' module
module add shared slurm gdb

The script userdefaultmodules.sh script under profile.d then only needs to have the
default-environment module loaded in it:

[root@bright91 ~]# cat /etc/profile.d/userdefaultmodules.sh
module load -s default-environment

The -s option is used to load it silently, because otherwise a message is displayed on the terminal
informing the person logging in that the default-environment module has been loaded.

Now, whenever the administrator changes the default-environment module, users get these
changes too during login.

The lexicographical order of the scripts in the /etc/profile directory is important. For example,
naming the file defaultusermodules.sh instead of userdefaultmodules.sh means that the modules.sh
script is run after the file is run, instead of before, which would cause an error.

2.2.4 Creating A Modules Environment Module
All module files are located in the /cm/local/modulefiles and /cm/shared/modulefiles directories.
A module file is a Tcl or Lua script in which special commands are used to define functionality. The
modulefile(1) man page has more on this.

Cluster administrators can use the existing modules files as a guide to creating and installing their
own modules for module environments, and can copy and modify a file for their own software if there
is no environment provided for it already by Bright Cluster Manager.

2.2.5 Lua Modules Environment (LMod)
By default, Bright Cluster Manager uses traditional Tcl scripts for its module files, or TMod. Lua mod-
ules, or LMod, provide an alternative modules environment, where the files are typically written in Lua.
LMod can be used as a replacement for TMod.

Conceptually LMod works in the same way as TMod, but provides some extra features and com-
mands.

For LMod, the module files are typically written in Lua, but LMod is also capable of reading Tcl mod-
ule files. It is therefore not necessary to convert all existing Tcl modules manually to the Lua language.

On a Bright cluster, both LMod and TMod are installed by default. However only one of them is
active, depending on which one is enabled. Switching between LMod and TMod for a node can be done
by setting an environment variable, $ENABLE_LMOD in the cm-lmod-init.sh shell script.

Switching For The Head Node
For example, for the head node:

Example

[root@bright91 ~]# cat /etc/sysconfig/modules/lmod/cm-lmod-init.sh
export ENABLE_LMOD=1

In the preceding example, LMod is enabled, and TMod is disabled because $ENABLE_LMOD is set to 1.

Example

© Bright Computing, Inc.

/etc/profile
/cm/local/modulefiles
/cm/shared/modulefiles

12 Cluster Management With Bright Cluster Manager

[root@bright91 ~]# cat /etc/sysconfig/modules/lmod/cm-lmod-init.sh
export ENABLE_LMOD=0

In the preceding example, LMod is disabled, and TMod is enabled because $ENABLE_LMOD is set to 0.
A change in the file on the node is effective after having logged out, then logged into the shell again.

Switching For The Regular Nodes
A node image is a directory and contents of that directory. It is used as the tem-
plate for a regular node when the node is provisioned (Chapter 5). For a node im-
age with the name <image name>, the cm-lmod-init.sh file is located at /cm/images/<image
name>/etc/sysconfig/modules/lmod/cm-lmod-init.sh. For switching between LMod and TMod on
a regular node, the file is changed on the image, and the file on the image is then updated to the node.
The update from the image to the node is typically carried out with the imageupdate command in cmsh
(section 5.6.2) or the Update node command in Bright View (section 5.6.3).

2.3 Authentication
2.3.1 Changing Administrative Passwords On The Cluster
How to set up or change regular user passwords is not discussed here, but in Chapter 6 on user man-
agement.

Amongst the administrative passwords associated with the cluster are:

1. The root password of the head node: This allows a root login to the head node.

2. The root passwords of the software images: These allow a root login to a regular node running
with that image, and is stored in the image file.

3. The root password of the node-installer: This allows a root login to the node when the node-
installer, a stripped-down operating system, is running. The node-installer stage prepares the
node for the final operating system when the node is booting up. Section 5.4 discusses the node-
installer in more detail.

4. The root password of MySQL: This allows a root login to the MySQL server.

To avoid having to remember the disparate ways in which to change these 4 kinds of passwords,
the cm-change-passwd command runs a dialog prompting the administrator on which of them, if any,
should be changed, as in the following example:

[root@bright91 ~]# cm-change-passwd
With this utility you can easily change the following passwords:

* root password of head node
* root password of slave images
* root password of node-installer
* root password of mysql

Note: if this cluster has a high-availability setup with 2 head
nodes, be sure to run this script on both head nodes.

Change password for root on head node? [y/N]: y
Changing password for root on head node.
Changing password for user root.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

© Bright Computing, Inc.

2.3 Authentication 13

Change password for root in default-image [y/N]: y
Changing password for root in default-image.
Changing password for user root.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

Change password for root in node-installer? [y/N]: y
Changing password for root in node-installer.
Changing password for user root.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

Change password for MYSQL root user? [y/N]: y
Changing password for MYSQL root user.
Old password:
New password:
Re-enter new password:

For a high-availability—also called a failover—configuration, the passwords are copied over auto-
matically to the other head node when a change is made in the software image root password (case 2 on
page 12).

For the remaining password cases (head root password, MySQL root password, and node-installer
root password), the passwords are best “copied” over to the other head node by simply rerunning the
script on the other head node.

Also, in the case of the password for software images used by the regular nodes: the new password
that is set for a regular node only works on the node after the image on the node itself has been updated,
with, for example, the imageupdate command (section 5.6.2). Alternatively, the new password can be
made to work on the node by simply rebooting the node to pick up the new image.

The LDAP root password is a random string set during installation. Changing this is not done using
cm-change-password. It can be changed as explained in Appendix I.

If the administrator has stored the password to the cluster in the Bright View front-end, then the
password should be modified there too (figure 2.1).

2.3.2 Logins Using ssh
The standard system login root password of the head node, the software image, and the node-installer,
can be set using the cm-change-passwd command (section 2.3.1).

In contrast, ssh logins from the head node to the regular nodes are set by default to be passwordless:

• For non-root users, an ssh passwordless login works if the /home directory that contains the au-
thorized keys for these users is mounted. The /home directory is mounted by default on the head
node as well as on the regular node, so that by default a passwordless login works from the head
node to the regular nodes, as well as from the regular nodes to the head node.

• For the root user, an ssh passwordless login should always work from the head node to the regular
nodes since the authorized keys are stored in /root. Logins from the regular node to the head node
are configured by default to request a password, as a security consideration.

Users can be restricted from ssh logins

• on regular nodes using the usernodelogin (section 7.2.1) or User node login (section 7.2.2) set-
tings

© Bright Computing, Inc.

14 Cluster Management With Bright Cluster Manager

• on the head node by modifying the sshd configuration on the head node. For example, to allow
only root logins, the value of AllowUsers can be set in /etc/ssh/sshd_config to root. The man
page for sshd_config has details on this.

2.3.3 Certificates
PEM Certificates And CMDaemon Front-end Authentication
While nodes in a Bright Cluster Manager cluster accept ordinary ssh based logins , the cluster manager
accepts public key authentication using X509v3 certificates. Public key authentication using X509v3
certificates means in practice that the person authenticating to the cluster manager must present their
public certificate, and in addition must have access to the private key that corresponds to the certificate.

Bright Cluster Manager uses the PEM format for certificates. In this format, the certificate and private
key are stored as plain text in two separate PEM-encoded files, ending in .pem and .key.

Using cmsh and authenticating to the Bright Cluster Manager: By default, one administrator certifi-
cate is created for root for the cmsh front end to interact with the cluster manager. The certificate and
corresponding private key are thus found on a newly-installed Bright Cluster Manager cluster on the
head node at:

/root/.cm/admin.pem
/root/.cm/admin.key

The cmsh front end, when accessing the certificate and key pair as user root, uses this pair by default, so
that prompting for authentication is then not a security requirement. The logic that is followed to access
the certificate and key by default is explained in detail in item 2 on page 252.

Using Bright View and authenticating to the Bright Cluster Manager: When an administrator uses
the Bright View front end, a login to the cluster is carried out with username password authentication
(figure 2.1), unless the authentication has already been stored in the browser, or unless certificate-based
authentication is used.

• Certificate-based authentication can be carried out using a PKCS#12 certificate file. This can be
generated from the PEM format certificates. For example, for the root user, an openssl command
that can be used to generate the admin.pfx file is:

openssl pkcs12 -export -in ~/.cm/admin.pem -inkey ~/.cm/admin.key -out ~/.cm/admin.pfx

– In Chrome, the IMPORT wizard at chrome://settings/certificates can be used to save the
file into the browser.

– For Firefox, the equivalent clickpath is:
about:preferences#privacy→Certificates→View Certificates→Your Certificates→Import

The browser can then access the Bright View front end without a username/password combina-
tion.

If the administrator certificate and key are replaced, then any other certificates signed by the original
administrator certificate must be generated again using the replacement, because otherwise they will no
longer function.

Certificate generation in general, including the generation and use of non-administrator certificates,
is described in greater detail section 6.4.

© Bright Computing, Inc.

chrome://settings/certificates

2.4 Bright View GUI 15

Replacing A Temporary Or Evaluation License
In the preceding section, if a license is replaced, then regular user certificates need to be generated again.
Similarly, if a temporary or evaluation license is replaced, regular user certificates need to be generated
again. This is because the old user certificates are signed by a key that is no longer valid. The generation
of non-administrator certificates and how they function is described in section 6.4.

2.3.4 Profiles
Certificates that authenticate to CMDaemon contain a profile.

A profile determines which cluster management operations the certificate holder may perform. The
administrator certificate is created with the admin profile, which is a built-in profile that allows all cluster
management operations to be performed. In this sense it is similar to the root account on unix systems.
Other certificates may be created with different profiles giving certificate owners access to a pre-defined
subset of the cluster management functionality (section 6.4).

2.4 Bright View GUI
This section introduces the basics of the cluster management GUI (Bright View). Bright View is the web
application front end to cluster management in Bright Cluster Manager.

Bright View is supported to run on the latest 2 versions of Firefox, Google Chrome, Edge, and Safari.
“Latest 2 versions” means the latest two publicly released versions at the time of release of Bright Clus-
ter Manager. For example, at the time of writing of this section, January 2021, the latest 2 versions were:

Browser Versions

Chrome 86, 87

Edge 86, 87

Firefox 83, 84

Safari 13, 14

Bright View should run on more up-to-date versions of the browsers in the table without issues.
Bright View should run on other recent browsers without issues too, but this is not supported.

Browsers that run on mobile devices are also not supported.

2.4.1 Installing The Cluster Management GUI Service
The GUI interface is provided by default as a web service on port 8081 from the head node to the
browser. The URL takes the form:

https://<host name or IP address>:8081/bright-view

The Bright Cluster Manager package that provides the service is bright-view, and is installed by default
with Bright Cluster Manager. The service can be disabled by removing the package.

Bright Cluster Manager Bright View Login Window
Figure 2.1 shows the login dialog window for Bright View

© Bright Computing, Inc.

16 Cluster Management With Bright Cluster Manager

Figure 2.1: Bright View Login via https://<host name or IP address>:8081/bright-view

Bright Cluster Manager Bright View Default Display On Connection
Clicking on the Login button logs the administrator into the Bright View service on the cluster. By
default an overview window is displayed, corresponding to the path Cluster→Partition base (fig-
ure 2.2).

Figure 2.2: Cluster Overview

2.4.2 Navigating The Cluster With Bright View
Aspects of the cluster can be managed by administrators using Bright View (figure 2.2).

The resource tree, displayed on the left side of the window, consists of available cluster usage con-

© Bright Computing, Inc.

2.4 Bright View GUI 17

cepts such as Provisioning, Grouping, HPC, Cloud, and Containers. It also has a cluster-centric ap-
proach to miscellaneous system concepts such as hardware devices Devices, non-hardware resources
such as Identity Management, and Networking.

Selecting a resource opens a window that allows parameters related to the resource to be viewed and
managed.

As an example, the Cluster resource can be selected. This opens up the so-called Partition base
window, which is essentially a representation of the cluster instance.1

The options within the Partition base window are mapped out in figure 2.3 and summarily de-
scribed next.

Partition base

Rack View Refresh, Settings, Navigation, Measurable, 2D/3D

Run command

Join output
Single text view, Grouped view
Run/Clear
Command
Nodes

Version info
BCM VERSION, BUILD INDEX, BUILD HASH, DATABASE VERSION, HOSTNAME

Settings

NOTES
SIGN INSTALLER CERTIFICATES Sign installer certificates
DEFAULT CATEGORY Default category
EXTERNAL NETWORK External network, Management network, No zero conf
DEFAULT BURN CONFIGURATION Default burn configuration

EXTERNALLY VISIBLE IP Externally visible IP, Provisioning Node Auto Update Timeout
SEARCH DOMAINS Search domains, Relay Host
NAME SERVERS Name servers, Name servers from dhcp, Time servers
NODE BASENAME Node basename, Node digits
CLUSTER NAME Cluster name, Administrator e-mail, Name

Time zone, BMC Settings, SNMP Settings, ArchOS, Failover, Failover groups, Burn configs

Overview

Overview Uptime, Phase load

Workload NAME, WLM, RUNNING, QUEUED, COMPLETED,
AVERAGE DURATION,ESTIMATED DELAY

Disks MOUNTPOINT, USED, FREE

Nodes status NodesDown, NodesTotal, NodesUp

Occupation rate

License info LICENSEE
Licensee, Version, Edition, License type, Start time, End time
Licensed nodes, Node count, Burst nodes, Burst node count
License nodes with accelerators, Nodes with an accelerator
MAC address, Serial, License count message
Accounting and reporting, Edge sites

Figure 2.3: Cluster Overview Navigation

1The name Partition base is literally a footnote in Bright Cluster Manager history. It derives from the time that Bright
clusters were planned to run in separate partitions within the cluster hardware. The primary cluster was then to be the base
cluster, running in the base partition. The advent of Bright Cluster Manager cloud computing options in the form of the Cluster-
On-Demand option (Chapter 2 of the Cloudbursting Manual), and the Cluster Extension option (Chapter 3 of the Cloudbursting
Manual) means developing cluster partitions is no longer a priority.

© Bright Computing, Inc.

18 Cluster Management With Bright Cluster Manager

Overview
The Overview window (figure 2.2), page 16) shows the Occupation rate (page 856), node statuses, disks
overview, workload, and other helpful cluster overview details.

Settings
The Settings window has a number of global cluster properties and property groups. These are loosely
grouped as follows:

• Cluster name, Administrator e-mail, partition name

• Node basename, Node digits

• Name servers, Time servers

• Search domains, Relay Host

• Externally visible IP, Provisioning Node Auto Update Timeout

• Default burn configuration

• External network, Management network

• Default category: Sets the default category

• Sign installer certificates

• Notes

• Buttons for jumping to settings for: Time zone, BMC, SNMP, ArchOS, failover, failover groups,
burn configuration

License info
The License info window shows information to do with cluster licensing. A slightly obscure property
within this window is Version, which refers to the version type of the license. The license for Bright
Cluster Manager version 7.0 and above is of a type that is compatible with versions all the way up to
9.1. Bright Cluster Manager license versions from before 7.0 are not compatible. In practice it means
that an upgrade from before 7.0, to 7.0 or beyond, requires a license upgrade. Bright Computing must
be contacted to arrange the license upgrade.

Version info
The Version info window shows version information for important cluster software components, such
as the CMDaemon version, and the Bright Cluster Manager version.

Run command
The Run command option allows a specified command to be run on a selected node of the cluster.

Rack View
The Rack View option displays a view of the rack as defined by node allocations made by the adminis-
trator to racks and chassis.

2.5 Cluster Management Shell
This section introduces the basics of the cluster management shell, cmsh. This is the command-line
interface to cluster management in Bright Cluster Manager. Since cmsh and Bright View give access
to the same cluster management functionality, an administrator need not become familiar with both
interfaces. Administrators intending to manage a cluster with only Bright View may therefore safely
skip this section.

© Bright Computing, Inc.

2.5 Cluster Management Shell 19

The cmsh front end allows commands to be run with it, and can be used in batch mode. Although
cmsh commands often use constructs familiar to programmers, it is designed mainly for managing the
cluster efficiently rather than for trying to be a good or complete programming language. For program-
ming cluster management, the use of Python bindings (Chapter 1 of the Developer Manual) is generally
recommended instead of using cmsh in batch mode.

Usually cmsh is invoked from an interactive session (e.g. through ssh) on the head node, but it can
also be used to manage the cluster from outside.

2.5.1 Invoking cmsh
From the head node, cmsh can be invoked as follows:

Example

[root@mycluster ~]# cmsh
[mycluster]%

By default it connects to the IP address of the local management network interface, using the default
Bright Cluster Manager port. If it fails to connect as in the preceding example, but a connection takes
place using cmsh localhost, then the management interface is most probably not up. In that case,
bringing the management interface up allows cmsh to connect to CMDaemon.
Running cmsh without arguments starts an interactive cluster management session. To go back to the
unix shell, a user enters quit or ctrl-d:

[mycluster]% quit
[root@mycluster ~]#

Batch Mode And Piping In cmsh
The -c flag allows cmsh to be used in batch mode. Commands may be separated using semi-colons:

[root@mycluster ~]# cmsh -c "main showprofile; device status apc01"
admin
apc01 [UP]
[root@mycluster ~]#

Alternatively, commands can be piped to cmsh:

[root@mycluster ~]# echo device status | cmsh
device status
apc01 [UP]
mycluster [UP]
node001 [UP]
node002 [UP]
switch01 [UP]
[root@mycluster ~]#

Dotfiles And /etc/cmshrc File For cmsh
In a similar way to unix shells, cmsh sources dotfiles, if they exist, upon start-up in both batch and

interactive mode. In the following list of dotfiles, a setting in the file that is in the shorter path will
override a setting in the file with the longer path (i.e.: “shortest path overrides”):

• ∼/.cm/cmsh/.cmshrc

• ∼/.cm/.cmshrc

• ∼/.cmshrc
If there is no dotfile for the user, then, if it exists, the file /etc/cmshrc, which is accessible to all users, is
sourced, and its settings used.

If /etc/cmshrc exists, then its settings are used, but the values can be overridden by user dotfiles,
which is standard Unix behavior.

© Bright Computing, Inc.

/etc/cmshrc
/etc/cmshrc

20 Cluster Management With Bright Cluster Manager

Defining Command Aliases In cmsh
Sourcing settings is convenient when defining command aliases. Command aliases can be used to ab-
breviate longer commands. For example, putting the following in .cmshrc would allow lv to be used
as an alias for device list virtualnode:

Example

alias lv device list virtualnode

Besides defining aliases in dotfiles, aliases in cmsh can also be created with the alias command. The
preceding example can be run within cmsh to create the lv alias. Running the alias command within
cmsh lists the existing aliases.

Aliases can be exported from within cmsh together with other cmsh dot settings with the help of the
export command:

Example

[mycluster]% export > /root/mydotsettings

The dot settings can be taken into cmsh by running the run command from within cmsh:

Example

[mycluster]% run /root/mydotsettings

Built-in Aliases In cmsh
The following aliases are built-ins, and are not defined in any .cmshrc or cmshrc files:

[bright91]% alias
alias - goto -
alias .. exit
alias / home
alias ? help
alias ds device status
alias ls list

The meanings are:

• goto -: go to previous directory level of cmsh

• exit: go up a directory level, or leave cmsh if already at top level.

• home: go to the top level directory

• help: show help text for current level

• device status: show status of devices that can be accessed in device mode

Automatic Aliases In cmsh
A cmsh script is a file that has a sequence of cmsh commands that run within a cmsh session.

The directory .cm/cmsh/ can have placed in it a cmsh script with a .cmsh suffix and an arbitrary
prefix. The prefix then automatically becomes an alias in cmsh.

In the following example

• the file tablelist.cmsh provides the alias tablelist, to list devices using the | symbol as a de-
limiter, and

• the file dfh.cmsh provides the alias dfh to carry out the Linux shell command df -h

© Bright Computing, Inc.

2.5 Cluster Management Shell 21

Example

[root@mycluster ~]# cat /root/.cm/cmsh/tablelist.cmsh
list -d "|"
[root@mycluster ~]# cat /root/.cm/cmsh/dfh.cmsh
!df -h
[root@mycluster ~]# cmsh
[mycluster]% device
[mycluster->device]% alias | egrep '(tablelist|dfh)'
alias dfh run /root/.cm/cmsh/dfh.cmsh
alias tablelist run /root/.cm/cmsh/tablelist.cmsh
[mycluster->device]% list
Type Hostname (key) MAC Category Ip
---------------------- ---------------- ------------------ ---------------- ---------------
HeadNode mycluster FA:16:3E:B4:39:DB 10.141.255.254
PhysicalNode node001 FA:16:3E:D5:87:71 default 10.141.0.1
PhysicalNode node002 FA:16:3E:BE:05:FE default 10.141.0.2
[mycluster->device]% tablelist
Type	Hostname (key)	MAC	Category	Ip
HeadNode |mycluster |FA:16:3E:B4:39:DB | |10.141.255.254
PhysicalNode |node001 |FA:16:3E:D5:87:71 |default |10.141.0.1
PhysicalNode |node002 |FA:16:3E:BE:05:FE |default |10.141.0.2
[mycluster->device]% dfh
Filesystem Size Used Avail Use% Mounted on
devtmpfs 1.8G 0 1.8G 0% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 1.9G 33M 1.8G 2% /run
tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
/dev/vdb1 25G 17G 8.7G 66% /
tmpfs 374M 0 374M 0% /run/user/0

For Bright Cluster Manager 9.1 and higher, the cmsh session does not need restarting for the alias to
become active.

Default Arguments In cmsh Scripts
In a cmsh script, the parameters $1, $2 and so on can be used to pass arguments. If the argument being
passed is blank, then the values the parameters take also remain blank. However, if the parameter
format has a suffix of the form -<value>, then <value> is the default value that the parameter takes if the
argument being passed is blank.

Example

[root@mycluster ~]# cat .cm/cmsh/encrypt-node-disk.cmsh
home
device use ${1-node001}
set disksetup /root/my-encrypted-node-disk.xml
set revision ${2-test}
commit

The script can be run without an argument (a blank value for the argument), in which case it takes
on the default value of node001 for the parameter:

[root@mycluster ~]# cmsh
[mycluster]% encrypt-node-disk
[mycluster->device[node001]]%

© Bright Computing, Inc.

22 Cluster Management With Bright Cluster Manager

The script can be run with an argument (node002 here), in which case it takes on the passed value of
node002 for the parameter:

[root@mycluster ~]# cmsh
[mycluster]% encrypt-node-disk node002
[mycluster->device[node002]]%

Options Usage For cmsh
The options usage information for cmsh is obtainable with cmsh -h:

Usage:
cmsh [options] [hostname[:port]]
cmsh [options] -c <command>
cmsh [options] -f <filename>

Options:

--help|-h
Display this help

--noconnect|-u
Start unconnected

--controlflag|-z
ETX in non-interactive mode

--color <yes/no>
Define usage of colors

--spool <directory>
Alternative /var/spool/cmd

--tty|-t
Pretend a TTY is available

--noredirect|-r
Do not follow redirects

--norc|-n
Do not load cmshrc file on start-up

--noquitconfirmation|-Q
Do not ask for quit confirmation

--echo|-x
Echo all commands

--quit|-q
Exit immediately after error

--disablemultiline|-m
Disable multiline support

--hide-events
Hide all events by default

© Bright Computing, Inc.

2.5 Cluster Management Shell 23

--disable-events
Disable all events by default

Arguments:
hostname

The hostname or IP to connect to

command
A list of cmsh commands to execute

filename
A file which contains a list of cmsh commands to execute

Examples:
cmsh run in interactive mode
cmsh -c 'device status' run the device status command and exit
cmsh --hide-events -c 'device status' run the device status command and exit, without

showing any events that arrive during this time
cmsh -f some.file -q -x run and echo the commands from some.file, exit

Man Page For cmsh
There is also a man page for cmsh(8), which is a bit more extensive than the help text. It does not
however cover the modes and interactive behavior.

2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh
The top-level of cmsh is the level that cmsh is in when entered without any options.

To avoid overloading a user with commands, cluster management functionality has been grouped
and placed in separate cmsh mode levels. Mode levels and associated objects for a level make up a hierar-
chy available below the top-level.

There is an object-oriented terminology associated with managing via this hierarchy. To perform
cluster management functions, the administrator descends via cmsh into the appropriate mode and ob-
ject, and carries out actions relevant to the mode or object.

For example, within user mode, an object representing a user instance, fred, might be added or
removed. Within the object fred, the administrator can manage its properties. The properties can be
data such as a password fred123, or a home directory /home/fred.

Figure 2.4 shows the top-level commands available in cmsh. These commands are displayed when
help is typed in at the top-level of cmsh:

© Bright Computing, Inc.

24 Cluster Management With Bright Cluster Manager

alias Set aliases
category Enter category mode
ceph Enter ceph mode
cert Enter cert mode
cloud Enter cloud mode
cmjob Enter cmjob mode
color Manage console text color settings
configurationoverlay Enter configurationoverlay mode
connect Connect to cluster
delimiter Display/set delimiter
device Enter device mode
disconnect Disconnect from cluster
edgesite....................... Enter edgesite mode
etcd Enter etcd mode
events Manage events
exit Exit from current object or mode
export Display list of aliases current list formats
fspart Enter fspart mode
group Enter group mode
groupingsyntax Manage the default grouping syntax
help Display this help
hierarchy Enter hierarchy mode
history Display command history
keyvaluestore Enter keyvaluestore mode
kubernetes..................... Enter kubernetes mode
list List state for all modes
main Enter main mode
modified List modified objects
monitoring Enter monitoring mode
network Enter network mode
nodegroup Enter nodegroup mode
partition Enter partition mode
process Enter process mode
profile Enter profile mode
quit Quit shell
quitconfirmation Manage the status of quit confirmation
rack Enter rack mode
refresh Refresh all modes
run Execute cmsh commands from specified file
session Enter session mode
softwareimage Enter softwareimage mode
task Enter task mode
time Measure time of executing command
unalias Unset aliases
unnmanagednodeconfiguration ... Enter unmanagednodeconfiguration mode
user Enter user mode
watch Execute a command periodically, showing output
wlm Enter wlm mode

Figure 2.4: Top level commands in cmsh

All levels inside cmsh provide these top-level commands.
Passing a command as an argument to help gets details for it:

Example

© Bright Computing, Inc.

2.5 Cluster Management Shell 25

[myheadnode]% help run
Name: run - Execute all commands in the given file(s)

Usage: run [OPTIONS] <filename> [<filename2> ...]

Options: -x, --echo
Echo all commands

-q, --quit
Exit immediately after error

[myheadnode]%

In the general case, invoking help at any mode level or within an object, without an argument,
provides two lists:

• Firstly, under the title of Top: a list of top-level commands.

• Secondly, under the title of the level it was invoked at: a list of commands that may be used at that
level.

For example, entering session mode and then typing in help displays, firstly, output with a title of Top,
and secondly, output with a title of session (some output ellipsized):

Example

[myheadnode]% session
[myheadnode->session]% help
============================ Top =============================
alias Set aliases
category Enter category mode
ceph Enter ceph mode
...
========================== session ===========================
id Display current session id
killsession Kill a session
list Provide overview of active sessions
[myheadnode->session]%

Navigation Through Modes And Objects In cmsh
The major modes tree is shown in Appendix M.1.

The following notes can help the cluster administrator in navigating the cmsh shell:

• To enter a mode, a user enters the mode name at the cmsh prompt. The prompt changes to indicate
that cmsh is in the requested mode, and commands for that mode can then be run.

• To use an object within a mode, the use command is used with the object name. In other words,
a mode is entered, and an object within that mode is used. When an object is used, the prompt
changes to indicate that that object within the mode is now being used, and that commands are
applied for that particular object.

• To leave a mode, and go back up a level, the exit command is used. Similarly, if an object is in
use, the exit command exits the object. At the top level, exit has the same effect as the quit
command, that is, the user leaves cmsh and returns to the unix shell. The string .. is an alias for
exit.

• The home command, which is aliased to /, takes the user from any mode depth to the top level.

© Bright Computing, Inc.

26 Cluster Management With Bright Cluster Manager

• The path command at any mode depth displays a string that can be used as a path to the current
mode and object, in a form that is convenient for copying and pasting into cmsh. The string can be
used in various ways. For example, it can be useful to define an alias in .cmshrc (page 20).

In the following example, the path command is used to print out a string. This string makes it
easy to construct a bash shell command to run a list from the correct place within cmsh:

Example

[bright91->configurationoverlay[slurm-client]->roles[slurmclient]]% list
Name (key)

slurmclient
[bright91->configurationoverlay[slurm-client]->roles[slurmclient]]% path
home;configurationoverlay;use "slurm-client";roles;use slurmclient;

Pasting the string into a bash shell, using the cmsh command with the -c option, and appending
the list command to the string, replicates the session output of the list command:

[bright91 ~]# cmsh -c 'configurationoverlay;use "slurm-client";roles;use slurmclient; list'
Name (key)

slurmclient

The following example shows the path command can also be used inside the cmsh session itself
for convenience:

Example

[bright91]% device
[bright91->device]% list
Type Hostname (key) MAC Category Ip Network Status
---------------- --------------- ------------------ --------- -------------- ----------- ------
EthernetSwitch switch01 00:00:00:00:00:00 10.141.0.50 internalnet [UP]
HeadNode bright91 00:0C:29:5D:55:46 10.141.255.254 internalnet [UP]
PhysicalNode node001 00:0C:29:7A:41:78 default 10.141.0.1 internalnet [UP]
PhysicalNode node002 00:0C:29:CC:4F:79 default 10.141.0.2 internalnet [UP]
[bright91->device]% exit
[bright91]% device
[bright91->device]% use node001
[bright91->device[node001]]% path
home;device;use node001;
[bright91->device[node001]]% home
[bright91]% home;device;use node001 #copy-pasted from path output earlier
[bright91->device[node001]]%

A command can also be executed in a mode without staying within that mode. This is done by
specifying the mode before the command that is to be executed within that node. Most commands also
accept arguments after the command. Multiple commands can be executed in one line by separating
commands with semi-colons.

A cmsh input line has the following syntax:

© Bright Computing, Inc.

2.5 Cluster Management Shell 27

<mode> <cmd> <arg> . . . <arg>; . . . ; <mode> <cmd> <arg> . . . <arg>

where <mode> and <arg> are optional. 2

Example

[bright91->network]% device status bright91; list
bright91 [UP]
Name (key) Type Netmask bits Base address Domain name Ipv6
------------- --------- ------------- ------------- -------------------- ----
externalnet External 16 192.168.1.0 brightcomputing.com no
globalnet Global 0 0.0.0.0 cm.cluster
internalnet Internal 16 10.141.0.0 eth.cluster
[bright91->network]%

In the preceding example, while in network mode, the status command is executed in device mode
on the host name of the head node, making it display the status of the head node. The list command
on the same line after the semi-colon still runs in network mode, as expected, and not in device mode,
and so displays a list of networks.

Inserting a semi-colon makes a difference, in that the mode is actually entered, so that the list displays
a list of nodes (some output truncated here for convenience):

Example

[bright91->network]% device; status bright91; list
bright91 [UP]
Type Hostname (key) MAC Category Ip Network Status
------------- --------------- ------------------ --------- -------------- ----------- ------
HeadNode bright91 FA:16:3E:C8:06:D1 10.141.255.254 internalnet [UP]
PhysicalNode node001 FA:16:3E:A2:9C:87 default 10.141.0.1 internalnet [UP]
[bright91->device]%

2.5.3 Working With Objects
Modes in cmsh work with associated groupings of data called objects. For instance, device mode works
with device objects, and network mode works with network objects.

The commands used to deal with objects have similar behavior in all modes. Not all of the commands
exist in every mode, and not all of the commands function with an explicit object:

Command Description

use Use the specified object. I.e.: Make the specified object the current object

add Create the object and use it

assign Assign a new object

unassign Unassign an object

clear Clear the values of the object

clone Clone the object and use it

remove Remove the object

commit Commit local changes, done to an object, to CMDaemon

...continues

2 A more precise synopsis is:
[<mode>] <cmd> [<arg> ...] [; ... ; [<mode>] <cmd> [<arg> ...]]

© Bright Computing, Inc.

28 Cluster Management With Bright Cluster Manager

...continued

Command Description

refresh Undo local changes done to the object

list List all objects at current level

sort Sort the order of display for the list command

format Set formatting preferences for list output

foreach Execute a set of commands on several objects

show Display all properties of the object

swap Swap (exchange) the names of two objects

get Display specified property of the object

set Set a specified property of the object

clear Set default value for a specified property of the object.

append Append a value to a property of the object, for a multi-valued property

removefrom Remove a value from a specific property of the object, for a multi-valued property

modified List objects with uncommitted local changes

usedby List objects that depend on the object

validate Do a validation check on the properties of the object

exit Exit from the current object or mode level

Working with objects with these commands is demonstrated with several examples in this section.

Working With Objects: use, exit
Example

[mycluster->device]% use node001
[mycluster->device[node001]]% status
node001 [UP]
[mycluster->device[node001]]% exit
[mycluster->device]%

In the preceding example, use node001 issued from within device mode makes node001 the cur-
rent object. The prompt changes accordingly. The status command, without an argument, then returns
status information just for node001, because making an object the current object makes subsequent com-
mands within that mode level apply only to that object. Finally, the exit command exits the current
object level.

Working With Objects: add, commit, remove
The commands introduced in this section have many implicit concepts associated with them. So an
illustrative session is first presented as an example. What happens in the session is then explained in
order to familiarize the reader with the commands and associated concepts.

Example

[mycluster->device]% add physicalnode node100 10.141.0.100
[mycluster->device*[node100*]]% commit
[mycluster->device[node100]]% category add test-category
[mycluster->category*[test-category*]]% commit
[mycluster->category[test-category]]% remove test-category
[mycluster->category*]% commit
Successfully removed 1 Categories
Successfully committed 0 Categories

© Bright Computing, Inc.

2.5 Cluster Management Shell 29

[mycluster->category]% device remove node100
[mycluster->category]% device
[mycluster->device*]% commit
Successfully removed 1 Devices
Successfully committed 0 Devices
[mycluster->device]%

add: The add command creates an object within its associated mode, and in cmsh the prompt drops
into the object level just created. Thus, at the start in the preceding example, within device mode, a new
object, named node100, is added. For this particular object properties can also be set, such as the type
(physicalnode), and IP address (10.141.0.100). The node object level ([node100*]) is automatically
dropped into from device mode when the add command is executed. After execution, the state achieved
is that the object has been created with some properties. However, it is still in a temporary, modified
state, and not yet persistent.

Asterisk tags in the prompt are a useful reminder of a modified state, with each asterisk indicating
a tagged object that has an unsaved, modified property. In this case, the unsaved properties are the IP
address setting, the node name, and the node type.

The add command—syntax notes:

In most modes the add command takes only one argument, namely the name of the object that is
to be created. However, in device mode an extra object-type, in this case physicalnode, is also
required as argument, and an optional extra IP argument may also be specified. The response to
“help add” while in device mode gives details:

[myheadnode->device]% help add
Name:
add - Create a new device of the given type with specified hostname. The IP address may also be set.

Usage:
add <type> <hostname> [IP address]

Arguments:
type
chassis, genericdevice, gpuunit, litenode, cloudnode, physicalnode, headnode,
powerdistributionunit, racksensor, ethernetswitch, ibswitch, myrinetswitch

commit: The commit command is a further step that actually saves any changes made after executing
a command. In this case, in the second line, it saves the node100 object with its properties. The asterisk
tag disappears for the prompt if settings for that mode level and below have been saved.

Conveniently, the top level modes, such as the category mode, can be accessed directly from within
this level if the mode is stated before the command. So, stating the mode category before running the
add command allows the specified category test-category to be added. Again, the test-category
object level within category mode is automatically dropped into when the add command is executed.

The -w|--wait option to commit:

The commit command by default does not wait for a state change to complete. This means that the
prompt becomes available right away. This means that it is not obvious that the change has taken
place, which could be awkward if scripting with cmsh for cloning (discussed shortly) a software
image (section 2.1.2). The -w|--wait option to the commit command works around this issue
by waiting for any associated background task, such as the cloning of a software image, to be
completed before making the prompt available.

© Bright Computing, Inc.

30 Cluster Management With Bright Cluster Manager

remove: The remove command removes a specified object within its associated mode. On successful
execution, if the prompt is at the object level, then the prompt moves one level up. The removal is not
actually carried out fully yet; it is only a proposed removal. This is indicated by the asterisk tag, which
remains visible, until the commit command is executed, and the test-category removal is saved. The
remove command can also remove a object in a non-local mode, if the non-local mode is associated
with the command. This is illustrated in the example where, from within category mode, the device
mode is declared before running the remove command for node100. The proposed removal is configured
without being made permanent, but in this case no asterisk tag shows up in the category mode, because
the change is in device mode.. To drop into device mode, the mode command “device” is executed. An
asterisk tag then does appear, to remind the administrator that there is still an uncommitted change (the
node that is to be removed) for the mode. The commit command would remove the object whichever
mode it is in—the non-existence of the asterisk tag does not change the effectiveness of commit.

The -d|--data option to remove:

The remove command by default removes an object, and not the represented data. An example
is if, in softwareimage mode, a software image is removed with the remove (without options)
command. As far as the cluster manager is concerned, the image is removed after running commit.
However the data in the directory for that software image is not removed. The -d|--data option
to the remove command arranges removal of the data in the directory for the specified image, as
well as removal of its associated object.

The -a|--all option to remove:

The remove command by default does not remove software image revisions. The -a|--all option
to the remove command also removes all software image revisions.

Working With Objects: clone, modified, swap
Continuing on with the node object node100 that was created in the previous example, it can be cloned
to node101 as follows:

Example

[mycluster->device]% clone node100 node101
Warning: The Ethernet switch settings were not cloned, and have to be set manually
[mycluster->device*[node101*]]% exit
[mycluster->device*]% modified
State Type Name
------ ------------------------ -----------------------------------
+ Device node101
[mycluster->device*]% commit
[mycluster->device]%
[mycluster->device]% remove node100
[mycluster->device*]% commit
[mycluster->device]%

The modified command is used to check what objects have uncommitted changes, and the new
object node101 that is seen to be modified, is saved with a commit. The device node100 is then removed
by using the remove command. A commit executes the removal.

The modified command corresponds roughly to the functionality of the Unsaved entities icon in
figure 13.5.

The “+” entry in the State column in the output of the modified command in the preceding example
indicates the object is a newly added one, but not yet committed. Similarly, a “˜” entry indicates an ob-
ject that is to be removed on committing, while a blank entry indicates that the object has been modified
without an addition or removal involved.

© Bright Computing, Inc.

2.5 Cluster Management Shell 31

Cloning an object is a convenient method of duplicating a fully configured object. When duplicating
a device object, cmsh will attempt to automatically assign a new IP address using a number of heuristics.
In the preceding example, node101 is assigned IP address 10.141.0.101.

The attempt is a best-effort, and does not guarantee a sensibly-configured object. The cluster admin-
istrator should therefore inspect the result.

Sometimes an object may have been misnamed, or physically swapped. For example, node001 ex-
changed physically with node002 in the rack, or the hardware device eth0 is misnamed by the kernel
and should be eth1. In that case it can be convenient to simply swap their names via the cluster manager
front end rather than change the physical device or adjust kernel configurations. This is equivalent to
exchanging all the attributes from one name to the other.

For example, if the two interfaces on the head node need to have their names exchanged, it can be
done as follows:

[mycluster->device]% use mycluster
[mycluster->device[mycluster]]% interfaces
[mycluster->device[mycluster]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- --------------
physical eth0 [dhcp] 10.150.4.46 externalnet
physical eth1 [prov] 10.141.255.254 internalnet
[bright91->device[mycluster]->interfaces]% swap eth0 eth1; commit
[bright91->device[mycluster]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- --------------
physical eth0 [prov] 10.141.255.254 internalnet
physical eth1 [dhcp] 10.150.4.46 externalnet
[mycluster->device[mycluster]->interfaces]% exit; exit

Working With Objects: get, set, refresh
The get command is used to retrieve a specified property from an object, and set is used to set it:

Example

[mycluster->device]% use node101
[mycluster->device[node101]]% get category
test-category
[mycluster->device[node101]]% set category default
[mycluster->device*[node101*]]% get category
default
[mycluster->device*[node101*]]% modified
State Type Name
------ ------------------------ -------------------------------

Device node101
[mycluster->device*[node101*]]% refresh
[mycluster->device[node101]]% modified
No modified objects of type device
[mycluster->device[node101]]% get category
test-category
[mycluster->device[node101]]%

Here, the category property of the node101 object is retrieved by using the get command. The
property is then changed using the set command. Using get confirms that the value of the property
has changed, and the modified command reconfirms that node101 has local uncommitted changes.

The refresh command undoes the changes made, and corresponds roughly to the Revert button in
Bright View when viewing Unsaved entities (figure 13.5). The modified command then confirms that
no local changes exist. Finally the get command reconfirms that no local change took place.

© Bright Computing, Inc.

32 Cluster Management With Bright Cluster Manager

Among the possible values a property can take on are strings and booleans:

• A string can be set as a revision label for any object:

Example

[mycluster->device[node101]]% set revision "changed on 10th May"
[mycluster->device*[node101*]]% get revision
[mycluster->device*[node101*]]% changed on 10th May 2011

This can be useful when using shell scripts with an input text to label and track revisions when
sending commands to cmsh. How to send commands from the shell to cmsh is introduced in
section 2.5.1.

• For booleans, the values “yes”, “1”, “on” and “true” are equivalent to each other, as are their
opposites “no”, “0”, “off” and “false”. These values are case-insensitive.

Working With Objects: clear
Example

[mycluster->device]% set node101 mac 00:11:22:33:44:55
[mycluster->device*]% get node101 mac
00:11:22:33:44:55
[mycluster->device*]% clear node101 mac
[mycluster->device*]% get node101 mac
00:00:00:00:00:00
[mycluster->device*]%

The get and set commands are used to view and set the MAC address of node101 without running
the use command to make node101 the current object. The clear command then unsets the value of the
property. The result of clear depends on the type of the property it acts on. In the case of string prop-
erties, the empty string is assigned, whereas for MAC addresses the special value 00:00:00:00:00:00
is assigned.

Working With Objects: list, format, sort
The list command is used to list objects in a mode. The command has many options. The ones that are
valid for the current mode can be viewed by running help list. The -f|--format option is available
in all modes, and takes a format string as argument. The string specifies what properties are printed for
each object, and how many characters are used to display each property in the output line. In following
example a list of objects is requested for device mode, displaying the hostname, switchports and ip
properties for each device object.

Example

[bright91->device]% list -f hostname:14,switchports:15,ip
hostname (key) switchports ip
-------------- --------------- --------------------
apc01 10.142.254.1
bright91 switch01:46 10.142.255.254
node001 switch01:47 10.142.0.1
node002 switch01:45 10.142.0.2
switch01 10.142.253.1
[bright91->device]%

Running the list command with no argument uses the current format string for the mode.
Running the format command without arguments displays the current format string, and also dis-

plays all available properties including a description of each property. For example (output truncated):

© Bright Computing, Inc.

2.5 Cluster Management Shell 33

Example

[bright91->device]% format
Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]

Valid fields:

activation : Date on which node was defined
additionalhostnames : List of additional hostnames that should resolve to the interfaces IP address
allownetworkingrestart : Allow node to update ifcfg files and restart networking
banks : Number of banks
...

The print specification of the format command uses the delimiter “:” to separate the parameter and
the value for the width of the parameter column. For example, a width of 10 can be set with:

Example

[bright91->device]% format hostname:10
[bright91->device]% list
hostname (

apc01
bright91
node001
node002
switch01

A range of widths can be set, from a minimum to a maximum, using square brackets. A single
minimum width possible is chosen from the range that fits all the characters of the column. If the
number of characters in the column exceeds the maximum, then the maximum value is chosen. For
example:

Example

[bright91->device]% format hostname:[10-14]
[bright91->device]% list
hostname (key)

apc01
bright91
node001
node002
switch01

The parameters to be viewed can be chosen from a list of valid fields by running the format command
without any options, as shown earlier.

The format command can take as an argument a string that is made up of multiple parameters in a
comma-separated list. Each parameter takes a colon-delimited width specification.

Example

[bright91->device]% format hostname:[10-14],switchports:14,ip:20
[bright91->device]% list
hostname (key) switchports ip

© Bright Computing, Inc.

34 Cluster Management With Bright Cluster Manager

-------------- -------------- --------------------
apc01 10.142.254.1
bright91 switch01:46 10.142.255.254
node001 switch01:47 10.142.0.1
node002 switch01:45 10.142.0.2
switch01 10.142.253.1

The output of the format command without arguments shows the current list printing format string,
with spaces. This can be used with enclosing quotes (").

In general, the string used in the format command can be set with enclosing quotes ("), or alterna-
tively, with the spaces removed:

Example

[bright91->device]% format "hostname:[16-32], network:[14-32], status:[16-32]"

or

[bright91->device]% format hostname:[16-32],network:[14-32],status:[16-32]

The default parameter settings can be restored with the -r|--reset option:

Example

[bright91->device]% format -r
[bright91->device]% format | head -3
Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]
[bright91->device]%

The sort command sorts output in alphabetical order for specified parameters when the list com-
mand is run. The sort is done according to the precedence of the parameters passed to the sort com-
mand:

Example

[bright91->device]% sort type mac
[bright91->device]% list -f type:15,hostname:15,mac
type hostname (key) mac
--------------- --------------- --------------------
HeadNode bright91 08:0A:27:BA:B9:43
PhysicalNode node002 00:00:00:00:00:00
PhysicalNode log001 52:54:00:DE:E3:6B
[bright91->device]% sort type hostname
[bright91->device]% list -f type:15,hostname:15,mac
type hostname (key) mac
--------------- --------------- --------------------
HeadNode bright91 08:0A:27:BA:B9:43
PhysicalNode log001 52:54:00:DE:E3:6B
PhysicalNode node002 00:00:00:00:00:00

[bright91->device]% sort mac hostname
[bright91->device]% list -f type:15,hostname:15,mac
type hostname (key) mac
--------------- --------------- --------------------
PhysicalNode node002 00:00:00:00:00:00
HeadNode bright91 08:0A:27:BA:B9:43
PhysicalNode log001 52:54:00:DE:E3:6B

© Bright Computing, Inc.

2.5 Cluster Management Shell 35

The preceding sort commands can alternatively be specified with the -s|--sort option to the list
command:

[bright91->device]% list -f type:15,hostname:15,mac --sort type,mac
[bright91->device]% list -f type:15,hostname:15,mac --sort type,hostname
[bright91->device]% list -f type:15,hostname:15,mac --sort mac,hostname

Working With Objects: append, removefrom
When dealing with a property of an object that can take more than one value at a time—a list of values—
the append and removefrom commands can be used to respectively append to and remove elements from
the list. If more than one element is appended, they should be space-separated. The set command may
also be used to assign a new list at once, overwriting the existing list. In the following example values are
appended and removed from the powerdistributionunits properties of device node001. The power-
distributionunits properties represent the list of ports on power distribution units that a particular
device is connected to. This information is relevant when power operations are performed on a node.
Chapter 4 has more information on power settings and operations.

Example

[mycluster->device]% use node001
[mycluster->device[node001]]% get powerdistributionunits
apc01:1
[...device[node001]]% append powerdistributionunits apc01:5
[...device*[node001*]]% get powerdistributionunits
apc01:1 apc01:5
[...device*[node001*]]% append powerdistributionunits apc01:6
[...device*[node001*]]% get powerdistributionunits
apc01:1 apc01:5 apc01:6
[...device*[node001*]]% removefrom powerdistributionunits apc01:5
[...device*[node001*]]% get powerdistributionunits
apc01:1 apc01:6
[...device*[node001*]]% set powerdistributionunits apc01:1 apc01:02
[...device*[node001*]]% get powerdistributionunits
apc01:1 apc01:2

Working With Objects: usedby
Removing a specific object is only possible if other objects do not have references to it. To help the ad-
ministrator discover a list of objects that depend on (“use”) the specified object, the usedby command
may be used. In the following example, objects depending on device apc01 are requested. The usedby
property of powerdistributionunits indicates that device objects node001 and node002 contain refer-
ences to (“use”) the object apc01. In addition, the apc01 device is itself displayed as being in the up state,
indicating a dependency of apc01 on itself. If the device is to be removed, then the 2 references to it first
need to be removed, and the device also first has to be brought to the CLOSED state (page 208) by using
the close command.

Example

[mycluster->device]% usedby apc01
Device used by the following:
Type Name Parameter
---------------- ---------- ----------------------
Device apc01 Device is up
Device node001 powerDistributionUnits
Device node002 powerDistributionUnits
[mycluster->device]%

© Bright Computing, Inc.

36 Cluster Management With Bright Cluster Manager

Working With Objects: validate
Whenever committing changes to an object, the cluster management infrastructure checks the object to
be committed for consistency. If one or more consistency requirements are not met, then cmsh reports
the violations that must be resolved before the changes are committed. The validate command allows
an object to be checked for consistency without committing local changes.

Example

[mycluster->device]% use node001
[mycluster->device[node001]]% clear category
[mycluster->device*[node001*]]% commit
Code Field Message
----- ------------------------ ---------------------------
1 category The category should be set
[mycluster->device*[node001*]]% set category default
[mycluster->device*[node001*]]% validate
All good
[mycluster->device*[node001*]]% commit
[mycluster->device[node001]]%

Working With Objects: show
The show command is used to show the parameters and values of a specific object. For example for the
object node001, the attributes displayed are (some output ellipsized):

[mycluster->device[node001]]% show
Parameter Value
--------------------------------------- ------------------------------------
Activation Thu, 03 Aug 2017 15:57:42 CEST
BMC Settings <submode>
Block devices cleared on next boot
Category default
...
Data node no
Default gateway 10.141.255.254 (network: internalnet)
...
Software image default-image
Static routes <0 in submode>
...

Working With Objects: assign, unassign
The assign and unassign commands are analogous to add and remove. The difference between assign
and add from the system administrator point of view is that assign sets an object with settable properties
from a choice of existing names, whereas add sets an object with settable properties that include the name
that is to be given. This makes assign suited for cases where multiple versions of a specific object choice
cannot be used.

For example,

• If a node is to be configured to be run with particular Slurm settings, then the node can be assigned
an slurmclient role (section 2.1.5) with the assign command. The node cannot be assigned an-
other slurmclient role with other Slurm settings at the same time. Only the settings within the
assigned Slurm client role can be changed.

• If a node is to be configured to run with added interfaces eth3 and eth4, then the node can have
both physical interfaces added to it with the add command.

© Bright Computing, Inc.

2.5 Cluster Management Shell 37

The only place where the assign command is currently used within cmsh is within the roles sub-
mode, available under category mode, configurationoverlay mode, or device mode. Within roles,
assign is used for assigning roles objects to give properties associated with that role to the category,
configuration overlay, or device.

Working With Objects: import For Roles
The import command is an advanced command that works within a role. It is used to clone roles
between entities.

A node inherits all roles from the category and configuration overlay it is a part of.

Example

[root@bright91 ~]# cmsh
[bright91]% device roles node001
[bright91->device[node001]->roles]% list
Name (key)

[category:default] cgroupsupervisor
[category:default] slurmclient

If there is a small change to the default roles to be made, only for node001, in slurmclient, then the
role can be imported from a category or overlay. Importing the role duplicates the object and assigns the
duplicated value to node001.

This differs from simply assigning a slurmclient role to node001, because importing provides the
values from the category or overlay, whereas assigning provides unset values.

After running import, just as for assign, changes to the role made at node001 level stay at that node
level, and changes made to the category-level or overlay-level slurmclient role are not automatically
inherited by the node001 slurmclient role.

Example

[bright91->device[node001]->roles]% import<TAB><TAB>
cephmds cloudgateway elasticsearch
...and other available roles including slurmclient...
[bright91->device[node001]->roles]% import --overlay slurm-client slurmclient
[bright91->device*[node001*]->roles*]% list
Name (key)

[category:default] cgroupsupervisor
slurmclient
[bright91->device*[node001*]->roles*]% set slurmclient queues node1q
[bright91->device*[node001*]->roles*]% commit

The preceding shows that a list of possible roles is prompted for via tab-completion after having
typed import, and that the settings from the configuration overlay level are brought into node001 for
the slurmclient role. The slurmclient values at node level then override any of the overlay level or
category level settings, as suggested by the new list output. The Slurm client settings are then the same
for node001 as the settings at the overlay level. The only change made is that a special queue, node1q, is
configured just for node001.

The import command in roles mode can duplicate any role between any two entities. Options can
be use to import from a category (-c|--category), or a node (-n|--node), or an overlay (-o|--overlay),
as indicated by its help text (help import).

© Bright Computing, Inc.

38 Cluster Management With Bright Cluster Manager

2.5.4 Accessing Cluster Settings
The management infrastructure of Bright Cluster Manager is designed to allow cluster partitioning in
the future. A cluster partition can be viewed as a virtual cluster inside a real cluster. The cluster partition
behaves as a separate cluster while making use of the resources of the real cluster in which it is contained.
Although cluster partitioning is not yet possible in the current version of Bright Cluster Manager, its
design implications do decide how some global cluster properties are accessed through cmsh.

In cmsh there is a partition mode which will, in a future version, allow an administrator to create
and configure cluster partitions. Currently, there is only one fixed partition, called base. The base
partition represents the physical cluster as a whole and cannot be removed. A number of properties
global to the cluster exist inside the base partition. These properties are referenced and explained in
remaining parts of this manual.

Example

[root@myheadnode ~]# cmsh
[myheadnode]% partition use base
[myheadnode->partition[base]]% show
Parameter Value
--------------------------------------- --
Administrator e-mail
ArchOS <0 in submode>
BMC Settings <submode>
Burn configs <2 in submode>
Cluster name my-cluster
Default burn configuration default-destructive
Default category default
External network externalnet
Externally visible IP
Failover not defined
Failover groups <0 in submode>
Headnode my-headnode
Management network internalnet
Name base
Name servers 192.168.101.1
Name servers from dhcp 4.2.2.4
No zero conf no
Node basename node
Node digits 3
Notes <0 bytes>
Provisioning Node Auto Update Timeout 300
Relay Host
Revision
SNMP Settings
Search domains example.com
Sign installer certificates AUTO
Time servers 0.pool.ntp.org,1.pool.ntp.org,2.pool.ntp.org
Time zone America/Los_Angeles

2.5.5 Advanced cmsh Features
This section describes some advanced features of cmsh and may be skipped on first reading.

Command Line Editing
Command line editing and history features from the readline library are available. http://tiswww.
case.edu/php/chet/readline/rluserman.html provides a full list of key-bindings.

© Bright Computing, Inc.

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html

2.5 Cluster Management Shell 39

For users who are reasonably familiar with the bash shell running with readline, probably the most
useful and familiar features provided by readline within cmsh are:

• tab-completion of commands and arguments

• being able to select earlier commands from the command history using <ctrl>-r, or using the up-
and down-arrow keys

History And Timestamps
The history command within cmsh explicitly displays the cmsh command history as a list.

The --timestamps|-t option to the history command displays the command history with times-
tamps.

Example

[bright91->device[node001]]% history | tail -3
162 use node001
163 history
164 history | tail -3

[bright91->device[node001]]% history -t | tail -3
163 Thu Dec 3 15:15:18 2015 history
164 Thu Dec 3 15:15:43 2015 history | tail -3
165 Thu Dec 3 15:15:49 2015 history -t | tail -3

This history is saved in the file .cm/.cmshhistory in the cmsh user’s directory. The timestamps in
the file are in unix epoch time format, and can be converted to human-friendly format with the standard
date utility.

Example

[root@mycluster ~]# tail -2 .cm/.cmshhistory
1615412046
device list
[root@mycluster ~]# date -d @1615412046
Wed Mar 10 22:34:06 CET 2021

Mixing cmsh And Unix Shell Commands
It is often useful for an administrator to be able to execute unix shell commands while carrying out
cluster management tasks. The cluster manager shell, cmsh, therefore allows users to execute commands
in a subshell if the command is prefixed with a “!” character:

Example

[mycluster]% !hostname -f
mycluster.cm.cluster
[mycluster]%

Executing the ! command by itself will start an interactive login sub-shell. By exiting the sub-shell,
the user will return to the cmsh prompt.

Besides simply executing commands from within cmsh, the output of operating system shell com-
mands can also be used within cmsh. This is done by using the legacy-style “backtick syntax” available
in most unix shells.

Example

[mycluster]% device use `hostname`
[mycluster->device[mycluster]]% status
mycluster [UP]
[mycluster->device[mycluster]]%

© Bright Computing, Inc.

40 Cluster Management With Bright Cluster Manager

Output Redirection
Similar to unix shells, cmsh also supports output redirection to the shell through common operators such
as >, >>, and |.

Example

[mycluster]% device list > devices
[mycluster]% device status >> devices
[mycluster]% device list | grep node001
Type Hostname (key) MAC (key) Category
-------------- -------------- ------------------- ----------
PhysicalNode node001 00:E0:81:2E:F7:96 default

Input Redirection
Input redirection with cmsh is possible. As is usual, the input can be a string or a file. For example, for a
file runthis with some commands stored in it:

Example

[root@mycluster ~]# cat runthis
device
get node001 ip

the commands can be run with the redirection operator as:

Example

[root@mycluster ~]# cmsh < runthis
device
get node001 ip
10.141.0.1

Running the file with the -f option avoids echoing the commands

Example

[root@mycluster ~]# cmsh -f runthis
10.141.0.1

The ssh Command
The ssh command is run from within the device mode of cmsh. If an ssh session is launched from within
cmsh, then it clears the screen and is connected to the specified node. Exiting from the ssh session returns
the user back to the cmsh launch point.

Example

[bright91]% device ssh node001
<screen is cleared>
<some MOTD text and login information is displayed>
[root@node001 ~]# exit
Connection to node001 closed.
[bright91]% device use bright91
[bright91->device[bright91]]% #now let us connect to the head node from the head node object
[bright91->device[bright91]]% ssh
<screen is cleared>
<some MOTD text and login information is displayed>
[root@bright91 ~]# exit
logout
Connection to bright91 closed.
[bright91->device[bright91]]%

An alternative to running ssh within cmsh is to launch it in a subshell anywhere from within cmsh,
by using !ssh.

© Bright Computing, Inc.

2.5 Cluster Management Shell 41

The time Command
The time command within cmsh is a simplified version of the standard unix time command.

The time command takes as its argument a second command that is to be executed within cmsh.
On execution of the time command, the second command is executed. After execution of the time
command is complete, the time the second command took to execute is displayed.

Example

[bright91->device]% time ds node001
node001 [UP]
time: 0.108s

The watch Command
The watch command within cmsh is a simplified version of the standard unix watch command.

The watch command takes as its argument a second command that is to be executed within cmsh.
On execution of the watch command, the second command is executed every 2 seconds by default, and
the output of that second command is displayed.

The repeat interval of the watch command can be set with the --interval|-n option. A running
watch command can be interrupted with a <Ctrl>-c.

Example

[bright91->device]% watch newnodes
screen clears
Every 2.0s: newnodes Thu Dec 3 13:01:45 2015
No new nodes currently available.

Example

[bright91->device]% watch -n 3 status -n node001,node002
screen clears
Every 3.0s: status -n node001,node002 Thu Jun 30 17:53:21 2016
node001[UP]
node002[UP]

Looping Over Objects With foreach
It is frequently convenient to be able to execute a cmsh command on several objects at once. The foreach
command is available in a number of cmsh modes for this purpose. A foreach command takes a list of
space-separated object names (the keys of the object) and a list of commands that must be enclosed by
parentheses, i.e.: “(” and “)”. The foreach command will then iterate through the objects, executing the
list of commands on the iterated object each iteration.

Basic syntax for the foreach command: The basic foreach syntax is:

foreach <object1> <object2> · · · (<command1>; <command2> · · ·)

Example

[mycluster->device]% foreach node001 node002 (get hostname; status)
node001
node001 [UP]
node002
node002 [UP]
[mycluster->device]%

With the foreach command it is possible to perform set commands on groups of objects simulta-
neously, or to perform an operation on a group of objects. The range command (page 45) provides an
alternative to it in many cases.

© Bright Computing, Inc.

42 Cluster Management With Bright Cluster Manager

Advanced options for the foreach command: The foreach command advanced options can be viewed
from the help page:

[root@bright91 ~]# cmsh -c "device help foreach"

The options can be classed as: grouping options (list, type), adding options, conditional options, and
looping options.

• Grouping options:

– -n|--nodes, -g|--group, -c|--category, -r|--rack, -h|--chassis, -e|--overlay,
-l|--role, -m|--image, -u|--union, -i|--intersection

– -t|--type chassis|genericdevice|gpuunit|litenode|cloudnode|node|physicalnode|
headnode|powerdistributionunit|racksensor|ethernetswitch|ibswitch|
myrinetswitch|unmanagednode

There are two forms of grouping options shown in the preceding text. The first form uses a list
of the objects being grouped, while the second form uses the type of the objects being grouped.
These options become available according to the cmsh mode used.

In the device mode of cmsh, for example, the foreach command has many grouping options
available. If objects are specifed with a grouping option, then the specified objects can be looped
over.

For example, with the list form, the --category (-c) option takes a node category argument (or
several categories), while the --node (-n) option takes a node-list argument. Node-lists (specifica-
tion on page 44) can also use the following, more elaborate, syntax:
<node>,. . .,<node>,<node>..<node>

Example

[demo->device]% foreach -c default (status)
node001 [DOWN]
node002 [DOWN]
[demo->device]% foreach -g rack8 (status)
...
[demo->device]% foreach -n node001,node008..node016,node032 (status)
...
[demo->device]%

With the type form, using the -t|--type option, the literal value to this option must be one of
node, cloudnode, virtualnode, and so on.

If multiple grouping options are used, then the union operation takes place by default.

Both grouping option forms are often used in commands other than foreach for node selection.

• Adding options: -o|--clone, -a|--add
The --clone (-o) option allows the cloning (section 2.5.3) of objects in a loop. In the following
example, from device mode, node001 is used as the base object from which other nodes from
node022 up to node024 are cloned:

Example

[bright91->device]% foreach --clone node001 -n node022..node024 ()
[bright91->device*]% list | grep node
Type Hostname (key) Ip

© Bright Computing, Inc.

2.5 Cluster Management Shell 43

------------ -------------- -----------
PhysicalNode node001 10.141.0.1
PhysicalNode node022 10.141.0.22
PhysicalNode node023 10.141.0.23
PhysicalNode node024 10.141.0.24
[bright91->device*]% commit

To avoid possible confusion: the cloned objects are merely objects (placeholder schematics and
settings, with some different values for some of the settings, such as IP addresses, decided by
heuristics). So it is explicitly not the software disk image of node001 that is duplicated by object
cloning to the other nodes by this action at this time.

The --add (-a) option creates the device for a specified device type, if it does not exist. Valid types
are shown in the help output, and include physicalnode, headnode, ibswitch.

• Conditional options: -s|--status, -q|--quitonunknown
The --status (-s) option allows nodes to be filtered by the device status (section 2.1.1).

Example

[bright91->device]% foreach -n node001..node004 --status UP (get IP)
10.141.0.1
10.141.0.3

Since the --status option is also a grouping option, the union operation applies to it by default
too, when more than one grouping option is being run.

The --quitonunknown (-q) option allows the foreach loop to be exited when an unknown com-
mand is detected.

• Looping options: *, -v|--verbose
The wildcard character * with foreach implies all the objects that the list command lists for that
mode. It is used without grouping options:

Example

[myheadnode->device]% foreach * (get ip; status)
10.141.253.1
switch01 [DOWN]
10.141.255.254
myheadnode [UP]
10.141.0.1
node001 [CLOSED]
10.141.0.2
node002 [CLOSED]
[myheadnode->device]%

Another example that lists all the nodes per category, by running the listnodes command within
category mode:

Example

[bright91->category]% foreach * (get name; listnodes)
default
Type Hostname MAC Category Ip Network Status

© Bright Computing, Inc.

44 Cluster Management With Bright Cluster Manager

------------- --------- ------------------ --------- ---------- ------------ --------
PhysicalNode node001 FA:16:3E:79:4B:77 default 10.141.0.1 internalnet [UP]
PhysicalNode node002 FA:16:3E:41:9E:A8 default 10.141.0.2 internalnet [UP]
PhysicalNode node003 FA:16:3E:C0:1F:E1 default 10.141.0.3 internalnet [UP]

The --verbose (-v) option displays the loop headers during a running loop with time stamps,
which can help in debugging.

Node List Syntax
Node list specifications, as used in the foreach specification and elsewhere, can be of several types.
These types are best explained with node list specification examples:

• adhoc (with a comma, or a space):
example: node001,node003,node005,node006

• sequential (with two dots or square brackets):
example: node001..node004
or, equivalently: node00[1-4]
which is: node001,node002,node003,node004

• sequential extended expansion (only for square brackets):
example: node[001-002]s[001-005]
which is:
node001s001,node001s002,node001s003,node001s004,node001s005,\
node002s001,node002s002,node002s003,node002s004,node002s005

• rack-based:
This is intended to hint which rack a node is located in. Thus:

– example: r[1-2]n[01-03]
which is: r1n01,r1n02,r1n03,r2n01,r2n02,r2n03
This might hint at two racks, r1 and r2, with 3 nodes each.

– example: rack[1-2]node0[1-3]
which is: rack1node01,rack1node02,rack1node03,rack2node01,
rack2node02,rack2node03
Essentially the same as the previous one, but for nodes that were named more verbosely.

• sequential exclusion (negation):
example: node001..node005,-node002..node003
which is: node001,node004,node005

• sequential stride (every <stride> steps):
example: node00[1..7:2]
which is: node001,node003,node005,node007

• mixed list:
The square brackets and the two dots input specification cannot be used at the same time in one
argument. Other than this, specifications can be mixed:

– example: r1n001..r1n003,r2n003
which is: r1n001,r1n002,r1n003,r2n003

– example: r2n003,r[3-5]n0[01-03]
which is: r2n003,r3n001,r3n002,r3n003,r4n001,r4n002,r4n003,r5n001,r5n002,r5n003

© Bright Computing, Inc.

2.5 Cluster Management Shell 45

– example: node[001-100],-node[004-100:4]
which is: every node in the 100 nodes, except for every fourth node.

• path to file that contains a list of nodes:
example: ˆ/some/filepath/<file with list of nodes>
The caret sign is a special character in cmsh for node list specifications. It indicates the string that
follows is a file path that is to be read.

Setting grouping syntax with the groupingsyntax command: “Grouping syntax” here refers to usage
of dots and square brackets. In other words, it is syntax of how a grouping is marked so that it is accepted
as a list. The list that is specified in this manner can be for input or output purposes.

The groupingsyntax command sets the grouping syntax using the following options:

• bracket: the square brackets specification.

• dot: the two dots specification.

• auto: the default. Setting auto means that:

– either the dot or the bracket specification are accepted as input,

– the dot specification is used for output.

The chosen groupingsyntax option can be made persistent by adding it to the .cmshrc dotfiles, or
to /etc/cmshrc (section 2.5.1).

Example

[root@bright91 ~]# cat .cm/cmsh/.cmshrc
groupingsyntax auto

The range Command
The range command provides an interactive option to carry out basic foreach commands over a group-
ing of nodes. When the grouping option has been chosen, the cmsh prompt indicates the chosen range
within braces ({}).

Example

[bright91->device]% range -n node0[01-24]
[bright91->device{-n node001..024}]%

In the preceding example, commands applied at device level will be applied to the range of 24 node
objects.

Continuing the preceding session—if a category can be selected with the -c option. If the default
category just has three nodes, then output displayed could look like:

Example

[bright91->device{-n node001..024}]% range -c default
[bright91->device{-c default}]% ds
node001 [UP] state flapping
node002 [UP]
node003 [UP]

Values can be set at device mode level for the selected grouping.

Example

© Bright Computing, Inc.

46 Cluster Management With Bright Cluster Manager

[bright91->device{-c default}]% get revision

[bright91->device{-c default}]% set revision test
[bright91->device{-c default}]% get revision
test
test
test

Values can also be set within a submode. However, staying in the submode for a full interaction
is not possible. The settings must be done by entering the submode via a semi-colon (new command
statement continuation on same line) syntax, as follows:

Example

[bright91->device{-c default}]% roles; assign pbsproclient; commit

The range command can be regarded as a modal way to carry out an implicit foreach on the group-
ing object. Many administrators should find it easier than a foreach:

Example

[bright91->device{-c default}]% get ip
10.141.0.1
10.141.0.2
10.141.0.3
[bright91->device{-c default}]% ..
[bright91->device]% foreach -c default (get ip)
10.141.0.1
10.141.0.2
10.141.0.3

Commands can be run inside a range. However, running a pexec command inside a range is typi-
cally not the intention of the cluster administrator, even though it can be done:

Example

[bright91->device]% range -n node[001-100]
[bright91->device{-n node[001-100]}]% pexec -n node[001-100] hostname

The preceding starts 100 pexec commands, each running on each of the 100 nodes.
Further options to the range command can be seen with the help text for the command (output

truncated):

Example

[root@bright91 ~]# cmsh -c "device help range"
Name: range - Set a range of several devices to execute future commands on

Usage: range [OPTIONS] * (command)
range [OPTIONS] <device> [<device> ...] (command)

Options: --show Show the current range
--clear Clear the range

-v, --verbose Show header before each element
...

© Bright Computing, Inc.

2.5 Cluster Management Shell 47

The bookmark And goto Commands
Bookmarks: A bookmark in cmsh is a location in the cmsh hierarchy.

A bookmark can be

• set with the bookmark command

• reached using the goto command

A bookmark is set with arguments to the bookmark command within cmsh as follows:

• The user can set the current location as a bookmark:

– by using no argument. This is the same as setting no name for it

– by using an arbitrary argument. This is the same as setting an arbitrary name for it

• Apart from any user-defined bookmark names, cmsh automatically sets the special name: “-”. This
is always the previous location in the cmsh hierarchy that the user has just come from.

All bookmarks that have been set can be listed with the -l|--list option.

Reaching a bookmark: A bookmark can be reached with the goto command. The goto command can
take the following as arguments: a blank (no argument), any arbitrary bookmark name, or “-”. The
bookmark corresponding to the chosen argument is then reached.

The “-” bookmark does not need to be preceded by a goto.

Example

[mycluster]% device use node001
[mycluster->device[node001]]% bookmark
[mycluster->device[node001]]% bookmark -l
Name Bookmark
---------------- ------------------------

home;device;use node001;
- home;
[mycluster->device[node001]]% home
[mycluster]% goto
[mycluster->device[node001]]% goto -
[mycluster]% goto
[mycluster->device[node001]]% bookmark dn1
[mycluster->device[node001]]% goto -
[mycluster]% goto dn1
[mycluster->device[node001]]%

Saving bookmarks, and making them persistent: Bookmarks can be saved to a file, such as mysaved,
with the -s|--save option, as follows:

Example

[mycluster]% bookmark -s mysaved

Bookmarks can be made persistent by setting (.)cmshrc files (page 19) to load a previously-saved
bookmarks file whenever a new cmsh session is started. The bookmark command loads a saved book-
mark file using the -x|--load option.

Example

[root@bright91 ~]# cat .cm/cmsh/.cmshrc
bookmark -x mysaved

© Bright Computing, Inc.

48 Cluster Management With Bright Cluster Manager

Renaming Nodes With The rename Command
Nodes can be renamed globally from within partition mode, in the Node basename field associated
with the prefix of the node in Bright View (section 3.1.1) or in cmsh (section 2.5.4, and also page 77).

However, a more fine-grained batch renaming is also possible with the rename command, and typi-
cally avoids having to resort to scripting mechanisms. Using rename is best illustrated by examples:

The examples begin with using the default basename of node and default node digits (padded suffix
number length) of 3.

A simple rename that is a prefix change, can then be carried out as:

Example

[bright91->device]% rename node001..node003 test
Renamed: node001 to test1
Renamed: node002 to test2
Renamed: node003 to test3

The rename starts up its own numbering from 1, independent of the original numbering. The change
is committed using the commit command.

Zero-padding occurs if the number of nodes is sufficiently large to need it. For example, if 10 nodes
are renamed (some output elided):

Example

[bright91->device]% rename node[001-010] test
Renamed: node001 to test01
Renamed: node002 to test02
...
Renamed: node009 to test09
Renamed: node010 to test10

then 2 digits are used for each number suffix, in order to match the size of the last number.
String formatting can be used to specify the number of digits in the padded number field:

Example

[bright91->device]% rename node[001-003] test%04d
Renamed: node001 to test0001
Renamed: node002 to test0002
Renamed: node003 to test0003

The target names can conveniently be specified exactly. It requires an exact name mapping. That is,
it assumes the source list size and target list size match:

Example

[bright91->device]% rename node[001-005] test0[1,2,5-7]
Renamed: node001 to test01
Renamed: node002 to test02
Renamed: node003 to test05
Renamed: node004 to test06
Renamed: node005 to test07

The hostnames are sorted alphabetically before they are applied, with some exceptions based on the
listing method used.

A --dry-run option can be used to show how the devices will be renamed. Alternatively, the
refresh command can clear a proposed set of changes before a commit command commits the change,
although the refresh would also remove other pending changes.

Exact name mapping could be used to allocate individual servers to several people:

© Bright Computing, Inc.

2.5 Cluster Management Shell 49

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% rename node[001-004] alice,bob,charlie,dave
Renamed: node001 to alice
Renamed: node002 to bob
Renamed: node003 to charlie
Renamed: node004 to dave
[bright91->device]% commit

Skipping by a number of nodes is possible using a colon (:). An example might be to skip by two so
that twin servers can be segregated into left/right.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% rename node[001-100:2] left[001-050]
Renamed: node001 to left001
Renamed: node003 to left002
...
Renamed: node097 to left049
Renamed: node099 to left050
[bright91->device]% rename node[002-100:2] right[001-050]
Renamed: node002 to right001
Renamed: node004 to right002
...
Renamed: node098 to right049
Renamed: node100 to right050
[bright91->device]% commit

Using CMDaemon Environment Variables In Scripts
Within device mode, the environment command shows the CMDaemon environment variables (sec-
tion 3.3.2 of the Developer Manual) that can be passed to scripts for particular device.

Example

[mycluster->device]% environment node001
Key Value
-- --
CMD_ACTIVE_MASTER_IP 10.141.255.254
CMD_CATEGORY default
CMD_CLUSTERNAME mycluster
CMD_DEVICE_TYPE ComputeNode
CMD_ENVIRONMENT_CACHE_EPOCH_MILLISECONDS 1615465821582
CMD_ENVIRONMENT_CACHE_UPDATES 4
...

The environment variables can be prepared for use in Bash scripts with the -e|--export option:

Example

[mycluster->device]% environment -e node001
export CMD_ENVIRONMENT_CACHE_UPDATES=4
export CMD_CATEGORY=default
export CMD_SOFTWAREIMAGE=default-image

© Bright Computing, Inc.

50 Cluster Management With Bright Cluster Manager

export CMD_DEVICE_TYPE=ComputeNode
export CMD_ROLES=
export CMD_FSMOUNT__SLASH_home_FILESYSTEM=nfs
export CMD_NODEGROUPS=
...

2.6 Cluster Management Daemon
The cluster management daemon or CMDaemon is a server process that runs on all nodes of the clus-
ter (including the head node). The cluster management daemons work together to make the cluster
manageable. When applications such as cmsh and Bright View communicate with the cluster, they are
actually interacting with the cluster management daemon running on the head node. Cluster manage-
ment applications never communicate directly with cluster management daemons running on non-head
nodes.

The CMDaemon application starts running on any node automatically when it boots, and the ap-
plication continues running until the node shuts down. Should CMDaemon be stopped manually for
whatever reason, its cluster management functionality becomes unavailable, making it hard for admin-
istrators to manage the cluster. However, even with the daemon stopped, the cluster remains fully
usable for running computational jobs using a workload manager.

The only route of communication with the cluster management daemon is through TCP port 8081.
The cluster management daemon accepts only SSL connections, thereby ensuring all communications
are encrypted. Authentication is also handled in the SSL layer using client-side X509v3 certificates (sec-
tion 2.3).

On the head node, the cluster management daemon uses a MySQL database server to store all of its
internal data. Raw monitoring data, on the other hand, is stored as binary data outside of the MySQL
database (section 17.8).

2.6.1 Controlling The Cluster Management Daemon
It may be useful to shut down or restart the cluster management daemon. For instance, a restart may be
necessary to activate changes when the cluster management daemon configuration file is modified. The
cluster management daemon operation can be controlled through the following init script arguments to
service cmd. The cmdaemonctl command also works with some arguments:

service cmd Arguments Description

stop stop the cluster management daemon

start start the cluster management daemon

reload reload configuration of the cluster management daemon

force-reload force reload configuration of the cluster management daemon

restart restart the cluster management daemon

try-restart try to restart the cluster management daemon, but only if it is running

status report whether cluster management daemon is running

full-status∗ report detailed statistics about cluster management daemon

upgrade∗ update database schema after version upgrade (expert only)

debugon∗ enable debug logging (expert only)

debugoff∗ disable debug logging (expert only)

logconf∗ Reload log configuration

...continues

© Bright Computing, Inc.

2.6 Cluster Management Daemon 51

...continued

service cmd Arguments Description

* arguments that work with cmdeamonctl as well as with service cmd

Example

Restarting the cluster management daemon on the head node of a cluster:

[root@mycluster ~]# service cmd restart
Redirecting to /bin/systemctl restart cmd.service
[root@mycluster ~]#

Example

Viewing the resources used by CMDaemon, and some other useful information:

[root@bright91 etc]# service cmd full-status
CMDaemon version 2.1 is running (active)
Running locally

Current Time: Fri, 29 Jan 2021 01:48:28 CET
Startup Time: Thu, 28 Jan 2021 15:45:17 CET
Uptime: 10h 3m

CPU Usage: 66.8112u 50.5393s (0.3%)
Memory Usage: 172MB

Sessions Since Startup: 29
Active Sessions: 7

Number of occupied worker-threads: 7
Number of free worker-threads: 14

Connections handled: 2397
Requests processed: 6850
Total read: 1.98MB
Total written: 170MB

Average request rate: 11.4requests/m
Average bandwidth usage: 4KB/s

Example

Restarting the cluster management daemon on a sequence of regular nodes, node001 to node040, of a
cluster:

[root@mycluster ~]# pdsh -w node00[1-9],node0[1-3][0-9],node040 service cmd restart

This uses pdsh, the parallel shell command (section 17.1).

2.6.2 Configuring The Cluster Management Daemon
Many cluster configuration changes can be done by modifying the cluster management daemon config-
uration file. For the head node, the file is located at:

/cm/local/apps/cmd/etc/cmd.conf

© Bright Computing, Inc.

52 Cluster Management With Bright Cluster Manager

For regular nodes, it is located inside of the software image that the node uses.
Appendix C describes the supported configuration file directives and how they can be used. Nor-

mally there is no need to modify the default settings.
After modifying the configuration file, the cluster management daemon must be restarted to activate

the changes.

2.6.3 CMDaemon Versions
Updating CMDaemon
CMDaemon can be updated on the head node with a package manager command such as:

yum update cmdaemon

and on a regular node image with a command such as:

yum update --installroot=/cm/images/<software image> cmdaemon

Updating software on the cluster is covered in greater detail in Chapter12.

CMDaemon Version Extraction
For debugging an issue, knowing the version of CMDaemon that is in use on the cluster can be helpful.
The cmdaemonversions command runs within the device mode of cmsh. It lists the CMDaemon version
running on the nodes of the cluster

Example

[bright91->device]% cmdaemonversions
Hostname Version index Version hash
---------------- ------------- ------------
bright91 146,965 e6f593b676
node001 146,965 e6f593b676
node002 146,965 e6f593b676

A higher version index value indicates a more recent CMDaemon version.
The –-join option is a formatting option which gathers together versions with the same option:

[bright91->device]% cmdaemonversions --join
Version index Version hash Count Hostnames
------------- ------------ ------------ -------------------------
146,965 e6f593b676 3 bright91,node001..node002

2.6.4 Configuring The Cluster Management Daemon Logging Facilities
CMDaemon generates log messages in /var/log/cmdaemon from specific internal subsystems, such as
Workload Management, Service Management, Monitoring, Certs, and so on. By default, none of those
subsystems generate detailed (debug-level) messages, as that would make the log file grow rapidly.

CMDaemon Logging Configuration Global Debug Mode
A global debug mode can be enabled in CMDaemon using cmdaemonctl:

Example

[root@bright91 ~]# cmdaemonctl -h
cmdaemonctl [OPTIONS...] COMMAND ...

Query or send control commands to the cluster manager daemon.

-h --help Show this help

© Bright Computing, Inc.

2.6 Cluster Management Daemon 53

Commands:
debugon Turn on CMDaemon debug
debugoff Turn off CMDaemon debug

...

[root@bright91 ~]# cmdaemonctl debugon
CMDaemon debug level on

Stopping debug level logs from running for too long by executing cmdaemonctl debugoff is a good
idea, especially for production clusters. This is important in order to prevent swamping the cluster with
unfeasibly large logs.

CMDaemon Subsystem Logging Configuration Debug Mode
CMDaemon subsystems can generate debug logs separately per subsystem, including by severity level.
This can be done by modifying the logging configuration file at:

/cm/local/apps/cmd/etc/logging.cmd.conf

Within this file, a section with a title of #Available Subsystems lists the available subsystems that
can be monitored. These subsystems include MON (for monitoring), DB (for database), HA (for high avail-
ability), CERTS (for certificates), CEPH (for Ceph), and so on.

CMDaemon Subsystem Logging Configuration Severity Levels
The debug setting is one of several severity levels. Other severity levels are info, warning, error, and
all.

Further details on setting subsystem options are given within the logging.cmd.conf file.
For example, to set CMDaemon log output for Monitoring, at a severity level of warning, the file

contents for the section severity might look like:

Example

Severity {
warning: MON

}

CMDaemon Subsystem Logging Configuration Deployment
The new logging configuration can be reloaded from the file by restarting CMDaemon:

Example

[root@bright91 etc]# service cmd restart

or by reloading the logging configuration:

Example

[root@bright91 etc]# service cmd logconf

2.6.5 Configuration File Modification, And The FrozenFile Directive
As part of its tasks, the cluster management daemon modifies a number of system configuration files.
Some configuration files are completely replaced, while other configuration files only have some sections
modified. Appendix A lists all system configuration files that are modified.

• A file that has been generated entirely by the cluster management daemon contains a header:

This file was automatically generated by cmd. Do not edit manually!

© Bright Computing, Inc.

54 Cluster Management With Bright Cluster Manager

Such a file will be entirely overwritten, unless the FrozenFile configuration file directive (Ap-
pendix C, page 789) is used to keep it frozen.

• A file that has had only a section of it generated by the cluster management daemon contains a
header and ending sections in the following format:

This section of this file was automatically generated by cmd. Do not edit manually!
BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE
...
END AUTOGENERATED SECTION -- DO NOT REMOVE

Such a file has only the auto-generated sections entirely overwritten, unless the FrozenFile con-
figuration file directive is used to keep these sections frozen.

The FrozenFile configuration file directive in cmd.conf is set as suggested by this example:

Example

FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }

If the generated file or section of a file has a manually modified part, and when not using FrozenFile,
then during overwriting an event is generated, and the manually modified configuration file is backed
up to:

/var/spool/cmd/saved-config-files

Using FrozenFile can be regarded as a configuration technique (section 3.15.3), and one of various
possible configuration techniques (section 3.15.1).

2.6.6 Configuration File Conflicts Between The Standard Distribution And Bright Cluster
Manager For Generated And Non-Generated Files

While Bright Cluster Manager changes as little as possible of the standard distributions that it manages,
there can sometimes be unavoidable issues. In particular, sometimes a standard distribution utility or
service generates a configuration file that conflicts with what the configuration file generated by Bright
Cluster Manager carries out (Appendix A).

For example, the Red Hat security configuration tool system-config-securitylevel can conflict
with what shorewall (section 7.2 of the Installation Manual) does, while the Red Hat Authentication
Configuration Tool authconfig (used to modify the /etc/pam.d/system-auth file) can conflict with the
configuration settings set by Bright Cluster Manager for LDAP and PAM.

In such a case the configuration file generated by Bright Cluster Manager must be given precedence,
and the generation of a configuration file from the standard distribution should be avoided. Sometimes
using a fully or partially frozen configuration file (section 2.6.5) allows a workaround. Otherwise, the
functionality of the Bright Cluster Manager version usually allows the required configuration function
to be implemented.

Details on the configuration files installed and updated by the package management system, for files
that are “non-generated” (that is, not of the kind in section 2.6.5 or in the lists in Appendixes A.1, A.2
and A.3), are given in Appendix A.4.

2.6.7 CMDaemon Lite
Introduction
As an alternative to the regular CMDaemon, Bright Cluster Manager provides a lightweight CM-
Daemon, called CMDaemon Lite. This is intended as a minimal alternative to the regular CMDae-
mon for nodes that are not managed by CMDaemon. CMDaemon Lite is contained in the package
cm-lite-daemon.

© Bright Computing, Inc.

2.6 Cluster Management Daemon 55

It can be installed on a device where the administrator considers the option of installing a regular,
full-featured, CMDaemon to be overkill, but still wants an alternative so that some basic monitoring can
be done on the device.

CMDaemon Lite is a Python service, and can be run on a device such as a standalone desktop,
running Windows, Linux, or MacOS. It uses up one node license per node that it is run on. It requires
Python 3.6 or higher.

CMDaemon Lite with the standard number of metrics is about 25% lighter on memory resources,
and 50% lighter on CPU resources, than the regular CMDaemon.

Deployment
A zipped package can be picked up on the head node from the Bright Cluster Manager repositories
with:

Example

yum install cm-lite-daemon

This places a zip file at /cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip. This file should
be moved to and unzipped on the lite node. The lite node is the machine that is to run cm-lite-daemon.

[root@bright91 ~]# scp /cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip \
root@lite01:/opt/cm-lite-daemon.zip
[root@bright91 ~]# ssh root@lite01
[root@lite01 ~]# cd /opt
[root@lite01 opt]# unzip cm-lite-daemon.zip
[root@lite01 opt]# cd cm-lite-daemon
[root@lite01 cm-lite-daemon]# ls -1l --group-directories-first
total 44
drwxr-xr-x 7 root root 4096 Nov 11 13:22 cm_lite_daemon
drwxr-xr-x 2 root root 104 Nov 11 13:23 etc
drwxr-xr-x 2 root root 76 Oct 19 16:43 examples
drwxr-xr-x 2 root root 6 Oct 19 16:43 log
drwxr-xr-x 2 root root 78 Oct 19 16:43 service
-rwxr-xr-x 1 root root 4986 Oct 19 16:43 cm-lite-daemon
-rwxr-xr-x 1 root root 740 Oct 19 16:43 cm-lite-daemon_ctl
-rwxr-xr-x 1 root root 2469 Oct 19 16:43 connection_test
-rwxr-xr-x 1 root root 445 Oct 19 16:43 install-required-pip-packages
-rwxr-xr-x 1 root root 245 Oct 19 16:43 install-required-pip-packages.bat
-rwxr-xr-x 1 root root 5401 Oct 19 16:43 register_node
-rwxr-xr-x 1 root root 2808 Oct 19 16:43 request_certificate
-rwxr-xr-x 1 root root 3907 Oct 19 16:43 unregister_node

The lite node needs a certificate, and to be registered before cm-lite-daemon can run on it. The easi-
est way to do this is to use the register_node utility which is one of the unzipped files in the preceding
list. Running it:

• installs required Python packages

• requests a new certificate

• registers the lite node with the head node

• installs cm-lite-daemon as a service.

After register_node is run, CMDaemon running on the head node is able to see the certificate request.
Depending on the network that the CMDaemon Lite on the lite node is connected to, the certificate will
be automatically issued, just like it is for regular Bright nodes being installed. However if CMDaemon

© Bright Computing, Inc.

/cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip

56 Cluster Management With Bright Cluster Manager

Lite is connected via different network, then the certificate must be issued manually, which can be done
as follows:

Using cmsh the certificate request ID can be found:

Example

[bright91->cert]% listrequests
Request ID Client type Session ID Name
------------ ------------ ------------ ------------
1 Lite node

After finding the correct value for the Request ID, the certificate can then be issued. For a certificate
with a Request ID value of 1, it can be issued with, for example:

bright91->cert]% issuecertificate --days 10000 1

The days field can be used to set how long cm-lite-daemon is allowed to connect. Regular Bright
Cluster Manager node certificates have a lifetime of about 10,000 days (about 27 years).

On a Linux machine register_node starts cm-lite-daemon as a service, so that the following com-
mands work as expected:

[root@lite01 ~]# service cm-lite-daemon status
...
[root@lite01 ~]# service cm-lite-daemon start
...
[root@lite01 ~]# service cm-lite-daemon stop
...

On non-Linux operating systems, cm-lite-daemon must be started manually.
CMDaemon Lite can be tested by first running it in a foreground shell environment:

Example

[root@lite01 cm-lite-daemon]# ./cm-lite-daemon

The lite node should then show up as being in the UP state in Bright-View or cmsh.
Afterwards the cm-lite-daemon Python script can be registered to be autostarted. The administrator

should ensure that the running directory for this is set correctly.
The cm-lite-daemon service can alternatively simply be run as a foreground process when needed.

Even Lighter Than CMDaemon Lite: Configuring A Device As A Generic Node
To put things in perspective: so far the options described have been:
1. CMDaemon running on the device
2. CMDaemon Lite running on the device

A third option that can be considered, is to have
3. no CMDaemon at all running on the device and to register the device as a generic node with the reg-
ular CMDaemon on the head node. A generic node is a generic network device (page 80) that happens
to be a node.

This third option—the generic node option—then monitors the device for a basic state of UP/DOWN,
but nothing else. In contrast to the first two cases, a node license is not used up.

Even lighter than generic nodes: configuring a device as unmonitored: Devices can alternatively be
added to the BIND DNS entries of the zone file via the /var/named/*.include files (Appendix A.1).
This is a feature of the Linux operating system rather than a feature of Bright Cluster Manager, and so
—perhaps rather obviously—a Bright Cluster Manager node license is also not used up in this case.

© Bright Computing, Inc.

2.6 Cluster Management Daemon 57

After restarting the named service, the nodes are not seen on the head node, and the device is not
monitored in any way. The cluster does however know how to reach it, which in some cases may be all
that a cluster administrator wants.

For example, if a host 10.141.1.20 with hostname myotherhost01, is added to the internalnet network
within the domain name eth.cluster, then the session may be run as follows:

Example

[root@head ~]# vi /var/named/eth.cluster.zone.include
(appropriate DNS forward entry is added)
[root@head ~]# cat /var/named/eth.cluster.zone.include
myotherhost01 IN A 10.141.1.20
[root@head ~]# vi /var/named/141.10.in-addr.arpa.zone.include
(appropriate DNS reverse entry is added)
[root@head ~]# cat /var/named/141.10.in-addr.arpa.zone.include
20.1 IN PTR myotherhost01.eth.cluster.
[root@head ~]# service named restart

© Bright Computing, Inc.

3
Configuring The Cluster

After Bright Cluster Manager software has been installed on the head node, the cluster must be config-
ured. For convenience, the regular nodes on the cluster use a default software image stored on the head
node. The image is supplied to the regular nodes during a process called provisioning (Chapter 5), and
both the head node and the regular nodes can have their software modified to suit exact requirements
(Chapter 12). This chapter however goes through a number of basic cluster configuration aspects that
are required to get all the hardware up and running on the head and regular nodes.

Section 3.1 explains how some of the main cluster configuration settings can be changed.
Section 3.2 details how the internal and external network parameters of the cluster can be changed.
Section 3.3 describes the setting up of network bridge interfaces.
Section 3.4 describes VLAN configuration.
Section 3.5 describes the setting up of network bond interfaces.
Section 3.6 covers how InfiniBand and Omni-Path are set up.
Section 3.7 describes how Baseboard Management Controllers such as IPMI, iLO, DRAC, CIMC, and

Redfish are set up.
Section 3.8 describes how switches are set up.
Section 3.9 explains how disk layouts are configured, as well as how diskless nodes are set up.
Section 3.10 describes how NFS volumes are exported from an NFS server and mounted to nodes

using the integrated approach of Bright Cluster Manager.
Section 3.11 describes how services can be run from Bright Cluster Manager.
Section 3.12 describes how a rack can be configured and managed with Bright Cluster Manager.
Section 3.13 describes how GPUs can be configured with Bright Cluster Manager.
Section 3.14 describes how custom scripts can replace some of the default scripts in use.
Section 3.15 discusses configuration alternatives that are not based on CMDaemon.
Section 3.16 describes how the configuration files prior to a configuration change can be saved.
More elaborate aspects of cluster configuration such as power management, user management, pack-

age management, and workload management are covered in later chapters.

3.1 Main Cluster Configuration Settings
While both front ends—cmsh and Bright View—can be used to carry out cluster management (Chap-
ter 2), the Bright Manuals often describe configuration with an arbitrary front end rather than for both
front ends.

This is because the front ends are usually analogous enough to each other when carrying out a
configuration procedure, so that describing the procedure for the other front end in detail as well is
mostly wasteful. If the procedures differ significantly, then guidance is typically given on the differences.

Thus, for example, both cmsh and Bright View can be used for the global configuration of cluster
settings. For the cmsh front end, the configuration is done using partition mode. The analogue to
global configuration in the Bright View front end relies on the clickpath: Cluster→Settings.

© Bright Computing, Inc.

60 Configuring The Cluster

This section now continues with the Bright View description.
The clickpath: Cluster→Settings brings up Bright View’s cluster Settings window (figure 3.1):

Figure 3.1: Cluster Settings

The navigational overview (figure 2.3) indicates how the main cluster Settings window fits into the
organizational layout of Bright Cluster Manager.

The cluster Settings window allows changes to be made to many of the global cluster settings. Its
values can in some cases be overridden by more specific configuration levels, such as category-level or
node-level configuration. The main cluster settings in figure 3.1 are related to the cluster name-related
settings, cluster networking, and some miscellaneous global cluster settings.

3.1.1 Cluster Configuration: Various Name-Related Settings
In the Bright View Settings window, the following defaults can be viewed and modified for names
throughout the cluster.

• Cluster name: (default name: Bright 9.1-stable Cluster)

• External network: (default name: externalnet)

© Bright Computing, Inc.

3.1 Main Cluster Configuration Settings 61

• Internal network: (default name: internalnet)

• Default category: (default name: default)

• How the nodes of the cluster are named:

– Node name: the base prefix, also called basename (default prefix name: node)

– Node digits size: number of digits in suffix of node name (default size: 3)

The global node naming structure can be managed in Bright View via the clickpath
Cluster→Settings→NODE BASENAME. It can also be managed in cmsh via the parameters
nodebasename and nodedigits, under the partition mode (page 77) of cmsh.

More specific renaming of node names is possible using the rename command from device mode
of cmsh, (section 2.5.5, page 48).

3.1.2 Cluster Configuration: Some Network-Related Settings
These following network-related settings are also described in the context of external network settings
for the cluster object, in section 3.2.3, as well as in the quickstart in Chapter 1 of the Installation Manual.

Nameserver And Search Domains Used By Cluster
• If Bright View is used, then the settings window can be used to set the IP address of the nameserver

and the names of the search domains for the cluster.

By default, the nameserver is the internal (regular-nodes-facing) IP address of the head node.
Multiple nameservers can be added. If the value is set to 0.0.0.0, then the address supplied via
DHCP to the head node is used. Alternatively, a static value can be set. Static IP addresses must
be used for external addresses in the case of the cluster being configured with high availability.

• If cmsh is used instead of Bright View, then the changes to the nameserver and searchdomain
values can instead be carried out via partition mode (page 76).

Limit to the number of search domains: In older versions of the Linux operating system, the number
of names that can be set as search domains used by the cluster has a maximum limit of 6 by default,
with a total of 256 characters.

More recent versions of glibc—from glibc 2.26 onward—no longer set a limit.
Because using more than 6 search domains is unsupported by older glibcs, some administrators take

the risk of forcefully installing a newer glibc, overriding the official repository dependency restrictions.
This results in a system that is unsupported by the distribution, and is also unsupported by Bright
Cluster Manager.

Instead of trying to set more than the officially supported number of search domains, the use of
FQDNs is advised as a workaround.

Changing The Order In resolv.conf
For clusters, CMDaemon by default automatically writes the /etc/resolv.conf by using the following
sources, and in the following order:

1. Global network

2. Other networks

3. Category search domains

4. Partition search domains

© Bright Computing, Inc.

/etc/resolv.conf

62 Configuring The Cluster

Because older glibc versions only support 6 entries in /etc/resolv.conf, it is sometimes useful to
exclude or reorder the preceding sources.

For a network object, there are two fields that control the postion of the domain name in the file
/etc/resolv.conf:

Example

[bright91]% network use ibnet
[bright91->network[ibnet]]% show
...
Exclude from search domain no
Search domain index 0

If the Exclude from search domain field is set to yes, then the domain name for the network is not
used.

The Search domain index field specifies the position of the domain name. A value of 0 means
CMDaemon automatically determines its location.

The index of the category and partition search domains can also be changed by appending a number,
:<index>, to the domain name:

Example

[bright91]% partition
[bright91->partion[base]]% get searchdomains
brightcomputing.com:1
domain.test:6

If an index is set for one search domain, then setting indices for all search domains is recommended.
Search domains without indices are handled automatically by CMDaemon.

CMDaemon sorts all search domains according to index, and writes /etc/resolv.conf with the 6
that have the lowest index, with the lowest index first.

Externally Visible IP Address
The externally visible IP address are public (non-RFC 1918) IP addresses to the cluster. These can be set
to be visible on the external network.

• If using Bright View, the clickpath is:
Cluster→Settings→EXTERNALLY VISIBLE IP.

• For cmsh, the parameter externallyvisibleip can be set via partition mode.

Time server(s)
Time server hostnames can be specified for the NTP client on the head node.

• If using Bright View, the clickpath is via Cluster→Settings→NAME SERVERS.

• For cmsh, the parameter timeservers can be set via partition mode.

Time Zone
The time zone setting can be set at various grouping levels:

If applied to the entire cluster, and if it is applied in partition mode, then:

• In Bright View, the time zone parameters can be jumped to via the clickpath:
Cluster→Settings→JUMP TO→Time zone

• In cmsh, the time zone can be selected in partition mode, using the base object. Tab-completion
prompting after entering “set timezone” displays a list of several hundred possible time zones,
from which one can be chosen:

© Bright Computing, Inc.

/etc/resolv.conf
/etc/resolv.conf
/etc/resolv.conf

3.1 Main Cluster Configuration Settings 63

Example

[bright91]% partition use base
[bright91->partition[base]]% set timezone america/los_angeles
[bright91->partition*[base*]]% commit

A time zone setting can also be applied at the level of a node, category, edge site, and cloud region.
As is usual in the Bright Cluster Manager hierarchy, the value set for the larger grouping is the default
value used by the members of that group, while a value set specifically for the individual members of
that group overrides such a default.

3.1.3 Miscellaneous Settings
BMC (IPMI/iLO, DRAC, CIMC, Redfish) Settings
The BMC (Baseboard Management Controller) access settings can be configured in Bright View via the
clickpath:
Cluster→Settings→JUMP TO→BMC Settings

This opens up a window so that the BMC settings can be managed:

• User name: (default: bright)

• Password: (default: random string generated during head node installation)

• User ID: (default: 4)

• Power reset delay: During a reset, this is the time, in seconds, that the machine is off, before it
starts powering up again (default: 0)

• Extra arguments: (default: none)

• privilege: (default: administrator)

The defaults in the preceding are set when the BMC interfaces are configured during head node instal-
lation. If the BMC interfaces are not set then, then the defaults are also unset.

BMC configuration is discussed in more detail in section 3.7.

Administrator E-mail Setting
By default, the distribution which Bright Cluster Manager runs on sends e-mails for the administrator
to the root e-mail address. The administrator e-mail address can be changed within Bright Cluster
Manager so that these e-mails are received elsewhere.

• In Bright View, an e-mail address (or space-separated addresses) can be set in the Administrator
e-mail field via the clickpath Cluster→Settings→CLUSTER NAME (figure 3.1).

• In cmsh, the e-mail address (or space-separated addresses) can be set in partition mode, using
the base object as follows:

Example

[bright91]% partition use base
[bright91->partition[base]]% set administratore-mail alf@example.com beth@example.com
[bright91->partition*[base*]]% commit

The following critical states or errors cause e-mails to be sent to the e-mail address:

• By default, a month before the cluster license expires, a reminder e-mail is sent to the administrator
account by CMDaemon. A daily reminder is sent if the expiry is due within a week.

• A service on the head node that fails on its first ever boot.

• When an automatic failover fails on the head or regular node.

© Bright Computing, Inc.

64 Configuring The Cluster

SMTP Relay Host Mailserver Setting
The head node uses Postfix as its SMTP server. The default base distribution configuration is a minimal
Postfix installation, and so has no value set for the SMTP relay host. To set its value:

• in Bright View: the Relay Host field sets the SMTP relay host for the cluster resource

• in cmsh: the relayhost property can be set for the base object within partition mode:

Example

[root@bright91 ~]# cmsh
[bright91]% partition use base
[bright91-> partition[base]]% set relayhost mail.example.com
[bright91-> partition[base*]]% commit

Postfix on the regular nodes is configured to use the head node as a relay host and is normally left
untouched by the administrator.

If the regular node configuration for Postfix is changed in partition mode, then a node reboot de-
ploys the change for the node. Setting the AdvancedConfig (page 794) SmtpPartitionRelayHostInImages
to 0 disables the changing of the relay host on the regular node.

Further Postfix changes can be done directly to the configuration files as is done in the standard dis-
tribution. The changes must be done after the marked auto-generated sections, and should not conflict
with the auto-generated sections.

A convenient way to check mail is functioning is to run Bright Cluster Manager’s testemail com-
mand. The command is run from within the main mode of cmsh. It sends a test e-mail out using CM-
Daemon:

[root@bright91 ~]# mailq; ls -al /var/spool/mail/root
Mail queue is empty
-rw------- 1 root mail 0 Sep 8 11:11 /var/spool/mail/root
[root@bright91 ~]# cmsh -c "main; testemail"
Mail delivered to postfix
You have new mail in /var/spool/mail/root
[root@bright91 ~]# mailq; ls -al /var/spool/mail/root
Mail queue is empty
-rw------- 1 root mail 749 Sep 8 11:12 /var/spool/mail/root

The test e-mail destination is the administrator e-mail address discussed in the preceding section.

Failover Settings
To access the high availability (HA) feature of the cluster for head nodes, the administrator can click
on the Failover option in Bright View. This opens up a subwindow that can be used to configure
HA-related parameters (section 18.4.6).

Failover Groups Settings
To access the high availability feature of the cluster for groups of regular nodes, the administrator can
click on the Failover groups option in Bright View. This opens up a subwindow that can be used to
configure failover-groups-related parameters (section 18.5).

Burn Configs
Burning nodes is covered in Chapter 8 of the Installation Manual. Burn configuration settings for the
cluster can be accessed in Bright View via the following clickpaths:

• Cluster[Partition base]→Settings→Default burn configuration

This allows the Default burn configuration for a node burn run to be modified.

© Bright Computing, Inc.

3.1 Main Cluster Configuration Settings 65

• Cluster[Partition base]→Settings→Burn configs

This lists the possible burn configuration settings in a subwindow, and allows changes to some of
their properties of each item of the list.

3.1.4 Limiting The Maximum Number Of Open Files
Configuring The System Limit On Open Files: The /proc/sys/fs/file-max Setting
The maximum number of open files allowed on a running Linux operating system is determined by
/proc/sys/fs/file-max. To configure this setting so that it is persistent, the Linux operating system
uses a /etc/sysctl.conf file and *.conf files under /etc/sysctl.d/. Further information on these
files can be found via the man page, man(5) sysctl.conf. Bright Cluster Manager adheres to this
standard method, and places a settings file 90-cm-sysctl.conf in the directory /etc/sysctl.d.

By default, the value set for file-max by Bright Cluster Manager for versions 8.2 and beyond is
131072. A head node typically is not used to run applications that will exceed this value. However
cluster administrators with larger clusters or with custom needs can change the value according to
need.

Configuring The User Limit On Open Files: The nofile Setting
The maximum number of open files allowed for a user can be seen on running ulimit -n. The value is
defined by the nofile parameter of ulimit.

By default the value set by Bright Cluster Manager is 131072.
Ulimit limits are limits to restrict the resources used by users. If the pam_limits.so module is used

to apply ulimit limits, then the resource limits can be set via the /etc/security/limits.conf file and
*.conf files in the /etc/security/limits.d directory. Further information on these files can be found
via the man page, man(5) limits.conf.

Resource limits that can be set for user login sessions include the number of simultaneous login
sessions, the number of open files, and memory limits.

The maximum number of open files for a user is unlimited by default in an operating system that is
not managed by Bright Cluster Manager. However, it is set to 131072 by default for a system managed
by Bright Cluster Manager. The nofile value is defined by Bright Cluster Manager in:

• in /etc/security/limits.d/91-cm-limits.conf on the head node

• in /cm/images/<software image name>/etc/security/limits.d/91-cm-limits.conf in the soft-
ware image that the regular node picks up.

The values set in 91-cm-limits.conf are typically sufficient for a user session, unless the user runs
applications that are resource hungry and consume a lot of open files.

Deciding On Appropriate Ulimit, Limit, And System Limit Values
Decreasing the nofile value in /etc/security/limits.d/91-cm-limits.conf (but leaving the /proc/
sys/fs/file-max untouched), or increasing /proc/sys/fs/file-max (but leaving the nofile value of
131072 per session as is), may help the system stay under the maximum number of open files allowed.

In general, users should not be allowed to use the head node as a compilation server, or as a testbed,
before running their applications. This is because user errors can unintentionally cause the head node
to run out of resources and crash it.

Depending what is running on the server, and the load on it, the administrator may wish to increase
the resource limit values.

A very rough rule-of-thumb that may be useful as a first approximation to set file-max optimally is
suggested in the kernel source code. The suggestion is to simply multiply the system memory (in MB)
by 10 per MB, and make the resulting number the file-max value. For example, if the node has 128 GB
of memory, then 1280000 can be set as the file-max value.

© Bright Computing, Inc.

/proc/sys/fs/file-max
pam_limits.so
/etc/security/limits.conf
/etc/security/limits.d
/etc/security/limits.d/91-cm-limits.conf
/cm/images/
/etc/security/limits.d/91-cm-limits.conf
/etc/security/limits.d/91-cm-limits.conf
/proc/sys/fs/file-max
/proc/sys/fs/file-max
/proc/sys/fs/file-max

66 Configuring The Cluster

Fine-tuning to try and ensure that the operating system no longer runs out of file handles, and to try
and ensure the memory limits for handling the load are not exceeded, is best achieved via an empirical
trial-and-error approach.

3.2 Network Settings
A simplified quickstart guide to setting up the external head node network configuration on a vendor-
prepared cluster is given in Chapter 6 of the Installation Manual. This section (3.2) covers network con-
figuration more thoroughly.

After the cluster is set up with the correct license as explained in Chapter 4 of the Installation Manual,
the next configuration step is to define the networks that are present (sections 3.2.1 and 3.2.2).

During Bright Cluster Manager installation at least three default network objects were created:

internalnet: the primary internal cluster network, and the default management network. This is
used for booting non-head nodes and for all cluster management communication. In the absence
of other internal networks, internalnet is also used for storage and communication between
compute jobs. Changing the configuration of this network is described on page 76 under the
subheading “Changing Internal Network Parameters For The Cluster”.

externalnet: the network connecting the cluster to the outside world (typically a corporate or campus
network). Changing the configuration of this network is described on page 72 under the subhead-
ing “Changing External Network Parameters For The Cluster”. This is the only network for which
Bright Cluster Manager also supports IPv6.

globalnet: the special network used to set the domain name for nodes so that they can be resolved
whether they are cloud nodes or not. This network is described further on page 80 under the
subheading “Changing The Global Network Parameters For The Cluster”.

For a Type 1 cluster (section 3.3.9 of the Installation Manual) the internal and external networks are
illustrated conceptually by figure 3.2.

External

Head

n
o
d

e
0

0
1

n
o
d

e
0

0
2

n
o
d

e
0

0
3

n
o
d

e
0

0
4

n
o
d

e
0

0
5

n
o
d

e
0

0
6

Internal

Network

Network

= Network Interface

Figure 3.2: Network Settings Concepts

© Bright Computing, Inc.

3.2 Network Settings 67

The configuration of network settings is completed when, after having configured the general net-
work settings, specific IP addresses are then also assigned to the interfaces of devices connected to the
networks.

• Changing the configuration of the head node external interface is described on page 73 under the
subheading “The IP address of the cluster”.

• Changing the configuration of the internal network interfaces is described on page 78 under the
subheading “The IP addresses and other interface values of the internal network”.

– How to set a persistent identity for an interface—for example, to ensure that a particular
interface that has been assigned the name eth3 by the kernel keeps this name across reboots—
is covered in section 5.8.1, page 222.

• Changing the configuration of globalnet is described on page 80 under the subheading “Chang-
ing The Global Network Parameters For The Cluster”. IP addresses are not configured at the
globalnet network level itself.

3.2.1 Configuring Networks
The network mode in cmsh gives access to all network-related operations using the standard object
commands. Section 2.5.3 introduces cmsh modes and working with objects.

In Bright View, a network can be configured via the clickpath Networking→Networks, which opens
up the Networks subwindow (figure 3.3):

Figure 3.3: Networks

In the context of the OSI Reference Model, each network object represents a layer 3 (i.e. Network
Layer) IP network, and several layer 3 networks can be layered on a single layer 2 network (e.g. routes
on an Ethernet segment).

Selecting a network such as internalnet or externalnet in the resource tree displays, for example,
by double-clicking the row, opens up the Overview window of that network. The Overview window by
default lists the device names and device properties that are in the network. For example the internal
network typically has some nodes, switches, and other devices attached to it, each with their IP ad-
dresses and interface (figure 3.4).

© Bright Computing, Inc.

68 Configuring The Cluster

Figure 3.4: Network Overview

Selecting the Settings option opens a scrollable pane that allows a number of network properties to
be changed (figure 3.5).

Figure 3.5: Network Settings

© Bright Computing, Inc.

3.2 Network Settings 69

The properties of figure 3.5 are introduced in table 3.2.1.

Property Description

name Name of this network.

Domain Name DNS domain associated with the network.

Type Menu options to set the network type. Options are Internal, External,
Tunnel, Global, Cloud, or NetMap network.

MTU Maximum Transmission Unit. The maximum size of an IP packet transmit-
ted without fragmenting.

Node booting Enabling means nodes are set to boot from this network (useful in the
case of nodes on multiple networks). For an internal subnet called <sub-
net>, when node booting is set, CMDaemon adds a subnet configura-
tion /etc/dhcpd.<subnet>.conf on the head node, which is accessed from
/etc/dhcpd.conf.

• It can be set in Bright View via the Networking resource, selecting
a network, and then setting Node booting from within the network
settings.

• It can be set in cmsh via the network mode, selecting a network, and
then setting nodebooting.

Lock down dhcpd Enabling means new nodes are not offered a PXE DHCP IP address from
this network, i.e. DHCPD is “locked down”. A DHCP “deny unknown-
clients” option is set by this action, so no new DHCP leases are granted to
unknown clients for the network. Unknown clients are nodes for which
Bright Cluster Manager has no MAC addresses associated with the node.

• It can be set in Bright View via the Networking resource, selecting a
network, and then setting Lock down dhcpd from within the network
settings.

• It can be set in cmsh via the network mode, selecting a network, and
then setting lockdowndhcpd.

Management allowed Enabling means that the network has nodes managed by the head node.

Base address Base address of the network (also known as the network address).

Broadcast address Broadcast address of the network.

Dynamic range
start/end

Start/end IP addresses of the DHCP range temporarily used by nodes dur-
ing PXE boot on the internal network. These are addresses that do not con-
flict with the addresses assigned and used by nodes during normal use.

Netmask bits Prefix-length, or number of bits in netmask. The part after the “/” in CIDR
notation.

Gateway Default route IP address

Table 3.2.1: Network Configuration Settings

In basic networking concepts, a network is a range of IP addresses. The first address in the range is
the base address. The length of the range, i.e. the subnet, is determined by the netmask, which uses CIDR
notation. CIDR notation is the so-called / (“slash”) representation, in which, for example, a CIDR nota-
tion of 192.168.0.1/28 implies an IP address of 192.168.0.1 with a traditional netmask of 255.255.255.240

© Bright Computing, Inc.

/etc/dhcpd.conf

70 Configuring The Cluster

applied to the 192.168.0.0 network. The netmask 255.255.255.240 implies that bits 28–32 of the 32-bit
dotted-quad number 255.255.255.255 are unmasked, thereby implying a 4-bit-sized host range of 16 (i.e.
24) addresses.

The sipcalc utility installed on the head node is a useful tool for calculating or checking such IP
subnet values (man sipcalc or sipcalc -h for help on this utility):

Example

user@bright91:~$ sipcalc 192.168.0.1/28
-[ipv4 : 192.168.0.1/28] - 0

[CIDR]
Host address - 192.168.0.1
Host address (decimal) - 3232235521
Host address (hex) - C0A80001
Network address - 192.168.0.0
Network mask - 255.255.255.240
Network mask (bits) - 28
Network mask (hex) - FFFFFFF0
Broadcast address - 192.168.0.15
Cisco wildcard - 0.0.0.15
Addresses in network - 16
Network range - 192.168.0.0 - 192.168.0.15
Usable range - 192.168.0.1 - 192.168.0.14

Every network has an associated DNS domain which can be used to access a device through a par-
ticular network. For internalnet, the default DNS domain is set to eth.cluster, which means that
the hostname node001.eth.cluster can be used to access device node001 through the primary internal
network. If a dedicated storage network has been added with DNS domain storage.cluster, then
node001.storage.cluster can be used to reach node001 through the storage network. Internal DNS
zones are generated automatically based on the network definitions and the defined nodes on these
networks. For networks marked as external, no DNS zones are generated.

3.2.2 Adding Networks
Once a network has been added, it can be used in the configuration of network interfaces for devices.

In Bright View the Add button in the Networks subwindow (figure 3.3) can be used to add a new
network. After the new network has been added, the Settings pane (figure 3.5) can be used to further
configure the newly-added network.

In cmsh, a new network can be added from within network mode using the add or clone commands.
The default assignment of networks (internalnet to Management network and externalnet to

External network) can be changed using Bright View, via the Settings window of the cluster object
(figure 3.1).

In cmsh the assignment to Management network and External network can be set or modified from
the base object in partition mode:

Example

[root@bright91 ~]# cmsh
[bright91]% partition use base
[bright91->partition[base]]% set managementnetwork internalnet; commit
[bright91->partition[base]]% set externalnetwork externalnet; commit

3.2.3 Changing Network Parameters
After both internal and external networks are defined, it may be necessary to change network-related
parameters from their original or default installation settings.

© Bright Computing, Inc.

node001.storage.cluster

3.2 Network Settings 71

Changing The Head Or Regular Node Hostname
To reach the head node from inside the cluster, the alias master may be used at all times. Setting the
hostname of the head node itself to master is not recommended.

The name of a cluster is sometimes used as the hostname of the head node. The cluster name, the
head node hostname, and the regular node hostnames, all have their own separate names as a property
of their corresponding objects. The name can be changed in a similar manner for each.

For example, to change the hostname of the head node, the device object corresponding to the head
node must be modified.

• In Bright View, the click path for modifying the host name is Devices→Head
Nodes→Edit→Settings→Hostname→Save. That is, under the Devices resource, the Head
Nodes option is selected. The Edit button can then be used to edit the host. This opens up a
pane, and the Settings option can then be selected. The Hostname record can then be modified
(figure 3.6), and saved by clicking on the Save button. When setting a hostname, a domain is not
included.

After the change, as suggested by Bright View, the head node must be rebooted.

Figure 3.6: Head Node Settings

© Bright Computing, Inc.

72 Configuring The Cluster

• In cmsh, the hostname of the head node can also be changed, via device mode:

Example

[root@bright91 ~]# cmsh
[bright91]% device use bright91
[bright91->device[bright91]]% set hostname foobar
[foobar->device*[foobar*]]% commit
[foobar->device[foobar]]%
Tue Jan 22 17:35:29 2013 [warning] foobar: Reboot required: Hostname changed
[foobar->device[foobar]]% quit
[root@bright91 ~]# sleep 30; hostname -f foobar.cm.cluster
[root@bright91 ~]#

The prompt string shows the new hostname after a short time, when a new shell is started.

After the hostname has been set, as suggested by cmsh, the head node must be rebooted.

Adding Hostnames To The Internal Network
Additional hostnames, whether they belong to the cluster nodes or not, can be added as name/value
pairs to the /etc/hosts file(s) within the cluster. This should be done only outside the specially-marked
CMDaemon-managed section. It can be done to the file on the head node, or to the file on the software
image for the regular nodes, or to both, depending on where the resolution is required.

However, for hosts that are on the internal network of the cluster, such as regular nodes, it is easier
and wiser to avoid adding additional hostnames via /etc/hosts.

Instead, it is recommended to let Bright Cluster Manager manage host name resolution for devices on
the internalnet through its DNS server on the internalnet interface. The host names can be added to
the additionalhostnames object, from within interfaces submode for the head node. The interfaces
submode is accessible from the device mode. Thus, for the head node, with eth1 as the interface for
internalnet:

Example

[bright91]% device use bright91
[bright91->device[bright91]]% interfaces
[bright91->device[bright91]->interfaces]% use eth1
[bright91->device[bright91]->interfaces[eth1]]% set additionalhostnames test
[bright91->device*[bright91*]->interfaces*[eth1*]]% commit
[bright91->device[bright91]->interfaces[eth1]]%
Fri Oct 12 16:48:47 2012 [notice] bright91: Service named was restarted
[bright91->device[bright91]->interfaces[eth1]]% !ping test
PING test.cm.cluster (10.141.255.254) 56(84) bytes of data.
...

Multiple hostnames can be added as space-separated entries.
The named service automatically restarts within about 20 seconds after committal, implementing

the configuration changes. This kind of restart is a feature (section 3.11.1) of changes made to service
configurations by Bright View or cmsh.

Changing External Network Parameters For The Cluster
The external network parameters of the cluster: When a cluster interacts with an external network,
such as a company or a university network, its connection behavior is determined by the settings of
two objects: firstly, the external network settings of the Networks resource, and secondly, by the cluster
network settings.

© Bright Computing, Inc.

3.2 Network Settings 73

1. The external network object contains the network settings for all objects configured to connect to
the external network, for example, a head node. Network settings are configured in Bright View
under the Networking resource, then under the Networks subwindow, then within the Settings
option for a selected network. Figure 3.5 shows a settings window for when the internalnet item
has been selected, but in the current case the externalnet item must be selected instead. The
following parameters can then be configured:

• the IP network parameters of the cluster (but not the IP address of the cluster):

– Base address: the network address of the external network (the “IP address of the ex-
ternal network”). This is not to be confused with the IP address of the cluster, which is
described shortly after this.

– Broadcast address: the broadcast address of the external network. This is not to be
confused with the IP address of the internal network (page 69).

– Dynamic range start and Dynamic range end: Not used by the external network con-
figuration.

– Netmask bits: the netmask size, or prefix-length, of the external network, in bits.
– Gateway: the default route for the external network.

• the network name (what the external network itself is called), by default this is defined as
externalnet in the base partition on a newly installed Type 1 cluster,

• the Domain Name: the network domain (LAN domain, i.e. what domain machines on the
external network use as their domain),

• the External network checkbox: this is checked for a Type 1 cluster,

• and MTU size (the maximum value for a TCP/IP packet before it fragments on the external
network—the default value is 1500).

2. The cluster object contains other network settings used to connect to the outside. These are con-
figured in the Settings options of the cluster object resource in Bright View (figure 3.1):

• e-mail address(es) for the cluster administrator,

• any additional external name servers used by the cluster to resolve external host names. As an
aside: by default, only the head node name server is configured, and by default it only serves
hosts on the internal network via the internal interface. Enabling the PublicDNS directive
(Appendix C) allows the head node name server to resolve queries about internal hosts from
external hosts via any interface, including the external interface.

• the DNS search domain (what the cluster uses as its domain),

• and NTP time servers (used to synchronize the time on the cluster with standard time) and
time zone settings.

These settings can also be adjusted in cmsh in the base object under partition mode.

Changing the networking parameters of a cluster (apart from the IP address of the cluster) therefore
requires making changes in the settings of the two preceding objects.

The IP address of the cluster: The cluster object itself does not contain an IP address value. This is
because it is the cluster network topology type that determines whether a direct interface exists from
the cluster to the outside world. Thus, the IP address of the cluster in the Type 1, Type 2, and Type 3
configurations (section 3.3.9 of the Installation Manual) is defined by the cluster interface that faces the
outside world. For Type 1, this is the interface of the head node to the external network (figure 3.2). For
Type 2 and Type 3 interfaces the cluster IP address is effectively that of an upstream router, and thus not

© Bright Computing, Inc.

74 Configuring The Cluster

a part of Bright Cluster Manager configuration. Thus, logically, the IP address of the cluster is not a part
of the cluster object or external network object configuration.

For a Type 1 cluster, the head node IP address can be set in Bright Cluster Manager, separately from
the cluster object settings. This is then the IP address of the cluster according to the outside world.

Setting the network parameters of the cluster and the head node IP address: These values can be set
using Bright View or cmsh:

With Bright View: The cluster network object and associated settings are accessed as follows:

The external network object:
The external network object is accessed via the click path
Networking→Networks→externalnet→Edit→Settings
which reaches the window shown in figure 3.7:

Figure 3.7: Network Settings For External Network

© Bright Computing, Inc.

3.2 Network Settings 75

The cluster object:
The cluster object and associated settings are accessed as shown in figure 3.1

The head node IP address:
For a head node bright91, where the IP address is used by the interface eth0, the static IP address
can be set via the clickpath Devices→Head Nodes→Edit[bright91]→Settings→JUMP TO→
Interfaces→Edit[eth0]→IP (figure 3.8).

Figure 3.8: Setting The IP Address On A Head Node In Bright View

With cmsh: The preceding Bright View configuration can also be done in cmsh, using the network,
partition and device modes, as in the following example:

Example

© Bright Computing, Inc.

76 Configuring The Cluster

[bright91]% network use externalnet
[bright91->network[externalnet]]% set baseaddress 192.168.1.0
[bright91->network*[externalnet*]]% set netmaskbits 24
[bright91->network*[externalnet*]]% set gateway 192.168.1.1
[bright91->network*[externalnet*]]% commit
[bright91->network[externalnet]]% partition use base
[bright91->partition[base]]% set nameservers 192.168.1.1
[bright91->partition*[base*]]% set searchdomains x.com y.com
[bright91->partition*[base*]]% append timeservers ntp.x.com
[bright91->partition*[base*]]% commit
[bright91->partition[base]]% device use bright91
[bright91->device[bright91]]% interfaces
[bright91->device[bright91]->interfaces]% use eth1
[bright91->device[bright91]->interfaces[eth1]]% set ip 192.168.1.176
[bright91->device[bright91]->interfaces*[eth1*]]% commit
[bright91->device[bright91]->interfaces[eth1]]%

After changing the external network configurations, a reboot of the head node is necessary to
activate the changes.

Using DHCP to supply network values for the external interface: Connecting the cluster via DHCP
on the external network is not generally recommended for production clusters. This is because DHCP-
related issues can complicate networking troubleshooting compared with using static assignments.

For a Type 1 network, the cluster and head node can be made to use some of the DHCP-supplied
external network values as follows:

• In Bright View, the DHCP setting of figure 3.8 can be set to Enabled

• Alternatively, in cmsh, within interfaces mode for the head node interface, the value of the param-
eter DHCP can be set:

[bright91->device[bright91]->interfaces[eth0]]% set dhcp yes

The gateway address, the name server(s), and the external IP address of the head node are then obtained
via a DHCP lease. Time server configuration for externalnet is not picked up from the DHCP server,
having been set during installation (figure 3.9 in Chapter 3 of the Installation Manual). The time servers
can be changed using Bright View as in figure 3.1, or using cmsh in partition mode as in the preceding
example. The time zone can be changed similarly.

It is usually sensible to reboot after implementing these changes in order to test the changes are
working as expected.

Changing Internal Network Parameters For The Cluster
When a cluster interacts with the internal network that the regular nodes and other devices are on, its
connection behavior with the devices on that network is determined by settings in:

1. the internal network of the Networks resource (page 77)

2. the cluster network for the internal network (page 77)

3. the individual device network interface (page 78)

4. the node categories network-related items for the device (page 79), in the case of the device being
a regular node.

In more detail:

© Bright Computing, Inc.

3.2 Network Settings 77

1. The internal network object: has the network settings for all devices connecting to the internal
network, for example, a login node, a head node via its internalnet interface, or a managed switch on
the internal network. In Bright View, the settings can be configured under the Networking resource, then
under the Networks subwindow, then within the Settings option for the internalnet item (figure 3.5).
In cmsh the settings can be configured by changing the values in the internalnet object within cmsh’s
network mode. Parameters that can be changed include:

• the IP network parameters of the internal network (but not the internal IP address):

– “Base address”: the internal network address of the cluster (the “IP address of the internal
network”). This is not to be confused with the IP address of the internal network interface of
the head node. The default value is 10.141.0.0.

– “Netmask bits”: the netmask size, or prefix-length, of the internal network, in bits. The
default value is 16.

– Gateway: the default gateway route for the internal network. If unset, or 0.0.0.0 (the default),
then its value is decided by the DHCP server on the head node, and nodes are assigned a
default gateway route of 10.141.255.254, which corresponds to using the head node as a
default gateway route for the interface of the regular node. The effect of this parameter is
overridden by any default gateway route value set by the value of Default gateway in the
node category.

– “Dynamic range start” and “Dynamic range end”: These are the DHCP ranges for nodes.
DHCP is unset by default. When set, unidentified nodes can use the dynamic IP address
values assigned to the node by the node-installer. These values range by default from
10.141.128.0 to 10.141.143.255. Using this feature is not generally recommended, in order
to avoid the possibility of conflict with the static IP addresses of identified nodes.

– Node booting: This allows nodes to boot from the provisioning system controlled by CM-
Daemon. The parameter is normally set for the management network (that is the network
over which CMDaemon communicates to manage nodes) but booting can instead be carried
out over a separate physical non-management network. Booting over InfiniBand or Omni-
Path is possible (section 5.1.3).

– Lock down dhcpd, if set to yes, stops new nodes from booting via the network. New nodes are
those nodes which are detected but the cluster cannot identify based on CMDaemon records.
Details are given in Chapter 5 about booting, provisioning, and how a node is detected as
new.

• the “domain name” of the network. This is the LAN domain, which is the domain machines on
this network use as their domain. By default, set to a name based on the network interface type
used on the internal network, for example eth.cluster. In any case, the FQDN must be unique
for every node in the cluster.

• the network name, or what the internal network is called. By default, set to internalnet.

• The MTU size, or the maximum value for a TCP/IP packet before it fragments on this network. By
default, set to 1500.

2. The cluster object: has other network settings that the internal network in the cluster uses. These
particulars are configured in the Settings option of the cluster object resource in Bright View (fig-
ure 3.1). The cmsh equivalents can be configured from the base object in partition mode. Values that
can be set include:

• the “Management network”. This is the network over which CMDaemon manages the nodes. Man-
agement means that CMDaemon on the head node communicates with CMDaemons on the other

© Bright Computing, Inc.

78 Configuring The Cluster

nodes. The communication includes CMDaemon calls and monitoring data. By default, the man-
agement network is set to internalnet for Type 1 and Type 2 networks, and managementnet in
Type 3 networks. It is a partition-level cluster-wide setting by default. Partition-level settings can
be overridden by the category level setting, and node-level settings can override category level or
partition level settings.

• the “Node name” can be set to decide the prefix part of the node name. By default, set to node.

• the “Node digits” can be set to decide the possible size of numbers used for suffix part of the
node name. By default, set to 3.

• the “Default category”. This sets the category the nodes are in by default. By default, it is set to
default.

• the “Default software image”. This sets the image the nodes use by default, for new nodes that
are not in a category yet. By default, it is set to default-image.

• the “Name server”. This sets the name server used by the cluster. By default, it is set to the head
node. The default configuration uses the internal network interface and serves only internal hosts.
Internal hosts can override using this value at category level (page 79). By default external hosts
cannot use this service. To allow external hosts to use the service for resolving internal hosts, the
PublicDNS directive (Appendix C) must be set to True.

3. The internal IP addresses and other internal interface values: In Bright View, the
network for a node, such as a physical node node001, can be configured via a clickpath
Devices→Nodes[node001]→Interface. The subwindow that opens up then allows network config-
uration to be done for such nodes in a similar way to figure 3.8.

In cmsh the configuration can be done by changing properties from the interfaces submode that is
within the device mode for the node.

The items that can be set include:

• the Network device name: By default, this is set to BOOTIF for a node that boots from the same
interface as the one from which it is provisioned.

• the Network: By default, this is set to a value of internalnet.

• the IP address: By default, this is automatically assigned a static value, in the range 10.141.0.1
to 10.141.255.255, with the first node being given the first address. Using a static IP address
is recommended for reliability, since it allows nodes that lose connectivity to the head node to
continue operating. The static address can be changed manually, in case there is an IP address or
node ID conflict due to an earlier inappropriate manual intervention.

Administrators who want DHCP addressing on the internal network, despite the consequences,
can set it via a checkbox.

• onnetworkpriority: This sets the priority of DNS resolution queries for the interface on the net-
work. The range of values that it can take is from 0 to 4294967295. Resolution takes place via the
interface with the higher value.

The default priority value for a network interface is set according to its type. These defaults are:

© Bright Computing, Inc.

3.2 Network Settings 79

Type Value

Bridge 80

Bond 70

Physical 60

VLAN 50

Alias 40

Tunnel 30

Netmap 20

BMC 10

• Additional Hostname: In the case of nodes this is in addition to the default node name
set during provisioning. The node name set during provisioning takes a default form of
node<3 digit number>, as explained earlier on page 77 in the section describing the cluster object
settings.

For, example, a regular node that has an extra interface, eth1, can have its values set as follows:

Example

[bright91] device interfaces node001
[bright91->device[node001]->interfaces]% add physical eth1
[bright91->...->interfaces*[eth1*]]% set network externalnet
[bright91->...->interfaces*[eth1*]]% set additionalhostnames extra01
[bright91->...->interfaces*[eth1*]% set ip 10.141.1.1
[bright91->...->interfaces*[eth1*]]% commit
[bright91->...->interfaces[eth1]]% ..
[bright91->...->interfaces]% ..
[bright91->device[node001]]% reboot

4. Node category network values: are settings for the internal network that can be configured for node
categories. For example, for the default category called default this can be carried out:

• via Bright View, using the Settings option for Node categories. This is in the clickpath
Grouping→Node categories[default-image]→Settings

• or via the category mode in cmsh, for the default node category.

If there are individual node settings that have been configured in Bright View or cmsh, then the node
settings override the corresponding category settings for those particular nodes.

The category properties involved in internal networking that can be set include:

• Default gateway: The default gateway route for nodes in the node category. If unset, or 0.0.0.0
(the default), then the node default gateway route is decided by the internal network object Gateway
value. If the default gateway is set as a node category value, then nodes use the node category
value as their default gateway route instead.

• Management network: The management network is the network used by CMDaemon to manage
devices. The default setting is a property of the node object. It can be set as a category property.

• Name server, Time server, Search domain: The default setting for these on all nodes is set by
the node-installer to refer to the head node, and is not configurable at the node level using Bright
View or cmsh. The setting can however be set as a category property, either as a space-separated
list of entries or as a single entry, to override the default value.

© Bright Computing, Inc.

80 Configuring The Cluster

Application To Generic Network Devices: The preceding details for the internal network parameters
of the cluster, starting from page 76, are applicable to regular nodes, but they are often also applicable
to generic network devices (section 2.1.1). Benefits of adding a generic device to be managed by Bright
Cluster Manager include that:

• the name given to the device during addition is automatically placed in the internal DNS zone, so
that the device is accessible by name

• the device status is automatically monitored via an ICMP ping (Appendix G.2.1).

• the device can be made to work with the health check and metric framework. The scripts used in
the framework will however almost certainly have to be customized to work with the device

After changing network configurations, a reboot of the device is necessary to activate the changes.

Changing The Global Network Parameters For The Cluster
The global network globalnet is a unique network used to set up a common name space for all nodes
in a cluster in Bright Cluster Manager. It is required in Bright Cluster Manager because of the added
cloud extension functionality, described in the Cloudbursting Manual. Regular nodes and regular cloud
nodes are thus both named under the globalnet domain name, which is cm.cluster by default. So,
for example, if default host names for regular nodes (node001, node002, ...) and regular cloud nodes
(cnode001, cnode002, ...) are used, node addresses with the domain are:

• node001.cm.cluster for node001

• cnode001.cm.cluster for cnode001

The only parameter that can be sensibly changed on globalnet is the domain name, which is cm.cluster
by default.

Removing globalnet should not be done because it will cause various networking failures, even for
clusters deploying no cloud nodes.

Details on how resolution is carried out with the help of globalnet are given in section 8.6.1 of the
Cloudbursting Manual.

Setting Static Routes In The staticroutes Submode Of cmsh
To route via a specific gateway, the staticroutes submode can be used. This can be set for regular
nodes and head nodes via the device mode, and for node categories via the category mode.

On a newly-installed cluster with a type 1 network (section 3.3.9 of the Installation Manual), a node
by default routes packets using the head node as the default gateway.

If the administrator would like to configure a regular node to use another gateway to reach a printer
on another subnet, as illustrated by figure 3.9:

© Bright Computing, Inc.

3.2 Network Settings 81

External Network

Internal Network
10.141.0.0/16

Another internal network
192.168.0.0/24
(not managed by the cluster manager)

192.168.0.3

n
o
d
e
0

0
1

n
o
d
e
0

0
2

head node
(default route)

192.168.0.1

10.141.0.1

10.141.1.1

10.141.255.254
192.168.0.9

Fax

Printer

10.141.0.2
Gateway

Figure 3.9: Example Of A Static Route To A Printer On Another Subnet

then an example session for setting the static route is as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]%
[bright91->device[node001]]% staticroutes
[bright91->device[node001]->staticroutes]% list
Name (key) Gateway Destination
-------------------------------- ---------------- --------------
[bright91->device[node001]->staticroutes]% add printerroute
[bright91->...*[printerroute*]]% set gateway 10.141.1.1
[bright91->...*[printerroute*]]% set destination 192.168.0.3
[bright91->...*[printerroute*]]% set networkdevicename bootif
[bright91->...*[printerroute*]]% commit
[bright91->...[printerroute]]% show
Parameter Value
-------------------------------- -------------------------------
Destination 192.168.0.3/32
Gateway 10.141.1.1
Name printerroute
Network Device Name bootif
Revision
[bright91->device[node001]->staticroutes[printerroute]]% exit
[bright91->device[node001]->staticroutes]% list
Name (key) Gateway Destination
-------------------------------- ---------------- --------------
printerroute 10.141.1.1 192.168.0.3/32
[bright91->device[node001]->staticroutes]% exit; exit
[bright91->device]% reboot node001

© Bright Computing, Inc.

82 Configuring The Cluster

In the preceding example, the regular node node001, with IP address 10.141.0.1 can connect to a
host 192.168.0.3 outside the regular node subnet using a gateway with the IP addresses 10.141.1.1 and
192.168.0.1. The route is given the arbitrary name printerroute for administrator and CMDaemon
convenience, because the host to be reached in this case is a print server. The networkdevicename is
given the interface name bootif. If another device interface name is defined in CMDaemon, then that
can be used instead. If there is only one interface, then networkdevicename need not be set.

After a reboot of the node, the route that packets from the node follow can be seen with a traceroute
or similar. The ping utility with the -R option can often track up to 9 hops, and can be used to track the
route:

Example

[root@bright91 ~]# ssh node001 ping -c1 -R 192.168.0.3
PING 192.168.0.3 (192.168.0.3) 56(124) bytes of data.
64 bytes from 192.168.0.3: icmp_seq=1 ttl=62 time=1.41 ms
RR: 10.141.0.1

10.141.1.1
192.168.0.1
192.168.0.3
192.168.0.3
192.168.0.1
10.141.1.1
10.141.0.1

--- 192.168.0.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 1ms
rtt min/avg/max/mdev = 1.416/1.416/1.416/0.000 ms
[root@bright91->device[node001]->staticroutes]%

The routing is achieved by CMDaemon making sure that whenever the network interface is brought
up, the OS of the regular node runs a routing command to configure the routing tables. The command
executed for the given example is either:

route add -host 192.168.0.3 gw 10.141.1.1

or its modern iproute2 equivalent:

ip route add 192.168.0.3 via 10.141.1.1

If the device bootif is eth0—which is often the case—then the command is run from the network
interface configuration file: /etc/sysconfig/network-scripts/ifcfg-eth0 (or /etc/sysconfig/
network/ifcfg-eth0 in SUSE).

3.2.4 Tools For Viewing Cluster Connections
Viewing Node Routes With routes In cmsh
The cmsh routes command is a wrapper around the Linux route command, and is designed to run in
parallel over nodes. It is intended to get a fast route overview for one or more nodes, and display it for
easy comparison.

To get a full overview of the routes for all nodes, the command is run without any options:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% routes
Node Destination Gateway Netwask Interface

© Bright Computing, Inc.

/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0

3.2 Network Settings 83

---------- ---------------- ---------------- ---------------- ---------
bright91 0.0.0.0 192.168.200.254 0.0.0.0 eth1
bright91 10.141.0.0 0.0.0.0 255.255.0.0 eth0
bright91 169.254.0.0 0.0.0.0 255.255.0.0 eth1
bright91 169.254.169.254 192.168.200.254 255.255.255.255 eth1
bright91 192.168.200.0 0.0.0.0 255.255.255.0 eth1
node001 0.0.0.0 10.141.255.254 0.0.0.0 eth0
node001 10.141.0.0 0.0.0.0 255.255.0.0 eth0
node001 169.254.0.0 0.0.0.0 255.255.0.0 eth0

To select or filter the output, the grouping options of routes, or the text processing utility awk
can be used. Grouping options are options to select nodes, groups, categories, and so on, and are
described in the cluster management chapter, on page 42, while a handy link for awk one-liners is
http://tuxgraphics.org/~guido/scripts/awk-one-liner.html.

Selection or filtering makes it very easy to detect badly configured nodes. For example, for unex-
pected gateways, when the expected gateway is <expected-gateway>, the following command may be
used:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% routes --category default | awk 'if ($3 != "<expected-gateway>") print $0'
...

Viewing Connections In cmsh
The connections command can be run from within the device mode of cmsh It is a parallel wrapper to
view active TCP and UDP connections. That is, it runs as a simple command over multiple devices at
the same time.

Running connections without options displays a full overview of the currently active TCP and UDP
ports on all devices (output truncated):

Example

[bright91->device]% connections
Node Type Source Port Destination Port State
--------- -------- -------- ----- ------------ ----- ----------
bright91 TCP 0.0.0.0 22 0.0.0.0 0 Listening
bright91 TCP 0.0.0.0 25 0.0.0.0 0 Listening
bright91 TCP 0.0.0.0 111 0.0.0.0 0 Listening
bright91 TCP 0.0.0.0 636 0.0.0.0 0 Listening
...

Filtering with grep can then show which nodes are listening on which ports. For example, nodes
listening for DNS queries (port 53) can be found with:

Example

[bright91->device]% connections | head -2; connections | grep Listen | grep " 53"
Node Type Source Port Destination Port State
--------- -------- ------------------ -------- --------------- -------- -----------
bright91 TCP 10.141.255.254 53 0.0.0.0 0 Listening
bright91 TCP 127.0.0.1 53 0.0.0.0 0 Listening
bright91 TCP 192.168.200.162 53 0.0.0.0 0 Listening

© Bright Computing, Inc.

http://tuxgraphics.org/~guido/scripts/awk-one-liner.html

84 Configuring The Cluster

and shows that only the head node is listening on that port, providing DNS.
Some third party tools require a free port on all nodes for a service to listen on. Filtering and sorting

the output of the connections command allows the administrator to find all the existing used ports
across all nodes:

Example

[bright91->device]% connections | awk 'print $4' | sort -un
Port
22
25
53
67
68
69
...

Options to the connections command can be seen by running help connections. Options include
node grouping options (such as -n|--nodes, -c|--category, and -t|--type), and filtering out TCP6
and UDP6 connections (--no-tcp6, --no-udp6).

Viewing Connectivity in cmsh
The connectivity command can be run from within the device mode of cmsh. It runs ICMP pings
along each node route on a network of the cluster. By default the network is the management network.

By default the output displays if the connection is OK, the ping sequence ID (counting starts from
zero), and the latency between the source and destination:

Example

[bright91->device]% connectivity
Source Destination Result ID Latency
--------- ----------- ------------ ---- ------------
bright91 node001 Ok 0 0.4ms
bright91 node002 Ok 0 0.3ms
bright91 node003 Ok 0 0.4ms
bright91 bright91 Ok 0 0.1ms

Pings where the source and destination have identical names are carried out via identical interfaces.
Further options to the connectivity command can be seen by running help connectivity. Op-

tions include the ability to set ping timeouts and the cluster network on which to ping, as well as node
grouping options.

For larger clusters, the following type of connectivity check may be a helpful diagnostic:

Example

[bright91->device]% connectivity --statistics --count 100 --delay 0.01
Name Value
----------- --------
OK 400
Total 400
Count 2
Average 0.35ms
Minimum 0.35ms
Maximum 0.35ms
Uniformity 100.0%

The preceding shows how uniform nodes are in ping timings. A significant spread in uniformity can
indicate network problems.

© Bright Computing, Inc.

3.3 Configuring Bridge Interfaces 85

3.3 Configuring Bridge Interfaces
Bridge interfaces can be used to divide one physical network into two separate network segments at
layer 2 without creating separate IP subnets. A bridge thus connects the two networks together at layer
3 in a protocol-independent way.

The network device name given to the bridge interface is of the form br<number> . The following
example demonstrates how to set up a bridge interface in cmsh, where the name br0 is stored by the
parameter networkdevicename.

Example

[bright91->device[node001]->interfaces]% add bridge br0
[bright91->...->interfaces*[br0*]]% set network internalnet
[bright91->...->interfaces*[br0*]]% set ip 10.141.1.1
[bright91->...->interfaces*[br0*]]% show
Parameter Value
------------------------------ ------------------
Additional Hostnames
DHCP no
Forward Delay 0
IP 10.141.1.1
Interfaces
MAC 00:00:00:00:00:00
Network internalnet
Network device name br0
Revision
SpanningTreeProtocol no
Type bridge

A bridge interface is composed of one or more physical interfaces. The IP and network fields of the
member interfaces must be empty:

Example

[bright91->...->interfaces*[br0*]]% set interfaces eth1 eth2; exit
[bright91->...->interfaces*]% clear eth1 ip; clear eth1 network
[bright91->...->interfaces*]% clear eth2 ip; clear eth2 network
[bright91->...->interfaces*]% use br0; commit

The BOOTIF interface is also a valid interface option.
Currently, the following bridge properties can be set:

• SpanningTreeProtocol: sets the spanning tree protocol to be on or off. The default is off.

• Forward Delay: sets the delay for forwarding Ethernet frames, in seconds. The default is 0.

Additional properties, if required, can be set manually using the brctl command in the OS shell.
When listing interfaces in cmsh, if an interface is a member of a bond (or bridge) interface, then the

corresponding bond or bridge interface name is shown in parentheses after the member interface name:

Example

[headnode->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
bond bond0 [prov] 10.141.128.1 internalnet
bridge br0 10.141.128.2 internalnet

© Bright Computing, Inc.

86 Configuring The Cluster

physical eth0 10.141.0.1 internalnet
physical eth1 (bond0) 0.0.0.0
physical eth2 (bond0) 0.0.0.0
physical eth3 (br0) 0.0.0.0
physical eth4 (br0) 0.0.0.0

It is possible to create a bridge interface with no IP address configured, that is, with an IP address
of 0.0.0.0. This can be done for security reasons, or when the number of available IP addresses on
the network is scarce. As long as such a bridge interface has a network assigned to it, it is properly
configured on the nodes and functions as a bridge on the network.

3.4 Configuring VLAN interfaces
A VLAN (Virtual Local Area Network) is an independent logical LAN within a physical LAN network.
VLAN tagging is used to segregate VLANs from each other. VLAN tagging is the practice of inserting a
VLAN ID tag into a packet frame header, so that each packet can be associated with a VLAN.

The physical network then typically has sections that are VLAN-aware or VLAN-unaware. The
nodes and switches of the VLAN-aware section are configured by the administrator to decide which
traffic belongs to which VLAN.

A VLAN interface can be configured for an interface within Bright Cluster Manager using cmsh or
Bright View.

3.4.1 Configuring A VLAN Interface Using cmsh
In the following cmsh session, a regular node interface that faces a VLAN-aware switch is made VLAN-
aware, and assigned a new interface—an alias interface. It is also assigned a network, and an IP address
within that network:

Example

[root@bright91 ~]# cmsh
[bright91]% device interfaces node001
[bright91->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- -------------- ------------
physical BOOTIF [prov] 10.141.0.1 internalnet
[bright91->device[node001]->interfaces]% list -h | tail -4
Arguments:

type
alias, bmc, bond, bridge, netmap, physical, tunnel, vlan

[bright91->device[node001]->interfaces]% add vlan BOOTIF.1
[bright91->device*[node001*]->interfaces*[BOOTIF.1*]]% commit
[bright91->device[node001]->interfaces[BOOTIF.1]]% show

Parameter Value
------------------------- ------------------------
Additional Hostname
DHCP no
IP 0.0.0.0
MAC 00:00:00:00:00:00
Network
Network device name BOOTIF.1
Reorder HDR no
Revision
Type vlan

© Bright Computing, Inc.

3.5 Configuring Bonded Interfaces 87

[bright91->...[BOOTIF.1]]% set network internalnet
[bright91->...[BOOTIF.1*]]% set ip 10.141.2.1; commit

The Reorder HDR setting in a VLAN, if enabled, moves the ethernet header around to make it look
exactly like a real ethernet device. This setting controls the REORDER_HDR setting in the file at /etc/
sysconfig/network-scripts/ifcfg-<interface> on the node.

3.4.2 Configuring A VLAN Interface Using Bright View
Within Bright View a VLAN interface can be added for a node such as node001 via the clickpath:
Devices→Nodes→Edit[node001]→Settings→JUMP TO→Interfaces→+ADD[Network VLAN interface]
(figure 3.10).

Figure 3.10: Configuring A VLAN via Bright View

A Network VLAN Interface window opens up, allowing an IP address, network, and other options
to be configured for the VLAN interface.

3.5 Configuring Bonded Interfaces
3.5.1 Adding A Bonded Interface
The Linux bonding driver allows multiple physical network interfaces that have been configured previ-
ously (for example, as on page 79) to be bonded as a single logical bond interface. The behavior of such
interfaces is determined by their bonding mode. The modes provide facilities such as hot standby or
load balancing.

The driver is included by default on head nodes. To configure a non-head node to use a bonded
interface, a Linux kernel module called the bonding module must be included in the kernel modules
list of the software image of the node. A bonding interface can then be created, and its properties set as
follows:

Example

[bright91->device[node001]->interfaces]% add bond bond0

© Bright Computing, Inc.

/etc/sysconfig/network-scripts/
/etc/sysconfig/network-scripts/

88 Configuring The Cluster

[...->device*[node001*]->interfaces*[bond0*]]% set network internalnet
[...->device*[node001*]->interfaces*[bond0*]]% set ip 10.141.128.1
[...->device*[node001*]->interfaces*[bond0*]]% set mode 3
[...->device*[node001*]->interfaces*[bond0*]]% set interfaces eth1 eth2

Each bonded interface has a unique set of object properties, called bonding options, that specify how
the bonding device operates. The bonding options are a string containing one or more options formatted
as option=value pairs, with pairs separated from each other by a space character.

A bonded interface also always has a mode associated with it. By default it is set to 0, corresponding
to a balanced round-robin packet transmission.

The 7 bonding modes are:

• 0 – balance-rr

• 1 – active-backup

• 2 – balance-xor

• 3 – broadcast

• 4 – 802.3ad

• 5 – balance-tlb

• 6 – balance-alb

Technically, outside of Bright View or cmsh, the bonding mode is just another bonding option speci-
fied as part of the options string. However in Bright Cluster Manager the bonding mode value is set up
using the dedicated mode property of the bonded interface, for the sake of clarity. To avoid conflict with
the value of the mode property, trying to commit a bonding mode value as an option=value pair will
fail validation.

3.5.2 Single Bonded Interface On A Regular Node
A single bonded interface on a node can be configured and coexist in several ways on nodes with mul-
tiple network interfaces. Possibilities and restrictions are illustrated by the following:

• The bonded interface may be made up of two member interfaces, and a third interface outside of
the bond could be the boot interface. (The boot interface is the node interface used to PXE boot the
node before the kernel loads (section 5.1)).

• The boot interface could itself be a member of the bonded interface. If the boot interface is a
member of a bonded interface, then this is the first bonded interface when interfaces are listed as
in the example on page 85.

• The bonded interface could be set up as the provisioning interface. However, the provisioning
interface cannot itself be a member of a bonded interface. (The provisioning interface is the node’s
interface that picks up the image for the node after the initial ramdisk is running. Chapter 5 covers
this in more detail).

• A bonded interface can be set up as the provisioning interface, while having a member interface
which is used for PXE booting.

© Bright Computing, Inc.

3.5 Configuring Bonded Interfaces 89

3.5.3 Multiple Bonded Interface On A Regular Node
A node can also have multiple bonded interfaces configured. Possibilities and restrictions are illustrated
by the following:

• Any one of the configured bonded interfaces can be configured as the provisioning interface. How-
ever, as already mentioned in the case of single bond interfaces (section 3.5.2), a particular member
of a bonded interface cannot be made the provisioning interface.

• When a bonded interface is set as the provisioning interface, then during the node-installer phase
of boot, the node-installer brings up the necessary bonded interface along with all its member
interfaces so that node provisioning is done over the bonded interface.

3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes
It is also possible to configure bonded interfaces on head nodes.

For a single head node setup, this is analogous to setting up bonding on regular nodes.
For a high availability (HA) setup (chapter 18), bonding is possible for internalnet as well as for

externalnet, but it needs the following extra changes:

• For the bonded interface on internalnet, the shared internal IP alias interface name (the value of
networkdevicename, for example, eth0:0 in figure 18.1) for that IP address should be renamed to
the bonded alias interface name on internalnet (for example, bond0:0).

• For the bonded interface on externalnet, the shared external IP alias interface name (the value of
networkdevicename, for example, eth1:0 in figure 18.1) for that IP address should be renamed to
the bonded alias interface name on externalnet (for example, bond1:0).

• Additionally, when using a bonded interface name for the internal network, the value of the provi-
sioning network interface name (the value of provisioninginterface, for example, eth0) for the
head nodes, must be changed to the name of the bonded interface (for example, bond0 [prov]) on
the internal network. The provisioninginterface value setting is described further on page 200.

Example

[headnode1->device[headnode1]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ------------
alias bond0:0 10.141.255.252 internalnet
alias bond1:0 10.150.57.1 externalnet
bond bond0 [prov] 10.141.255.254 internalnet
bond bond1 10.150.57.3 externalnet
physical eth0 (bond0) 0.0.0.0
physical eth1 (bond0) 0.0.0.0
physical eth2 (bond1) 0.0.0.0
physical eth3 (bond1) 0.0.0.0

3.5.5 Tagged VLAN On Top Of a Bonded Interface
It is possible to set up a tagged VLAN interface on top of a bonded interface. There is no requirement for
the bonded interface to have an IP address configured in this case. The IP address can be set to 0.0.0.0,
however a network must be set.

Example

[headnode1->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ------------

© Bright Computing, Inc.

90 Configuring The Cluster

bond bond0 0.0.0.0 internalnet
physical eth0 [prov] 10.141.0.1 internalnet
physical eth1 (bond0) 0.0.0.0
physical eth2 (bond0) 0.0.0.0
vlan bond0.3 10.150.1.1 othernet

3.5.6 Association Of MAC Address With A Bonded Interface
The cluster manager has MAC settings for interfaces as well as for nodes.

When a node is provisioned via PXE booting (Chapter 5), the MAC on the NIC that is being booted
from is matched with the MAC property of the node. This is how the node is identified.

If a bonded interface is used, then depending on the bond mode, either interface may be used for
PXE booting. Each interface has its own MAC address, which means that if the interface MAC address
does not match the node MAC address, then the node loops in the node-installer waiting to be identified
as a new node (section 5.4.2).

To have the node-installer recognize any interface MAC in the bonded interface for a node, the fol-
lowing steps should be carried out.

• A GlobalConfig directive (page 795):

GlobalConfig={ "DeviceAnyMAC=1" }

should be set in cmd.conf on the head nodes.

• The MAC attribute should be set for each of the interfaces used by the bond interface. For example,
if node001 is using the component interfaces eth0 and eth1 for a bond interface called bond0, then
the MAC address for each of the component interfaces can be set

Example

[bright91]% device use node001; interfaces
[bright91->device[node001]->interfaces]% set eth0 mac <First interface MAC address>
[bright91->device*[node001*]->interfaces*]% set eth1 mac <Other interface MAC address>
[bright91->device*[node001*]->interfaces*]% commit

• The MAC property for the node should be set to an interface MAC address. It does not matter
which one is matched.

Example

[bright91]% device use node001
[bright91->device[node001]]% set mac <Any interface MAC address>; commit

After these steps have been carried out, what happens during boot is that the node-installer not only
also looks at the MAC address for the node, but it also looks at the MAC addresses on the interfaces,
and automatically updates the MAC property for the node to whichever NIC was used to PXE boot.

3.5.7 Further Notes On Bonding
If using bonding to provide failover services, then the kernel module option setting for media indepen-
dent interface monitoring, miimon, which is set to be off by default (set to 0), should be given a non-zero
value.

The miimon setting is the time period in milliseconds between checks of the interface carrier state. A
common value is miimon=100.

Its value is set in the bonding device configuration file.

© Bright Computing, Inc.

3.6 Configuring InfiniBand And Omni-Path Interfaces 91

• For RHEL and derivatives, and for SLES distributions, the file is in a network script along a file
path such as /etc/sysconfig/network-scripts/ifcfg-bond0.

The line within the stanza for the ifcfg-bond0 file might look like:

Example

BONDING_MODULE_OPTS="mode=active-backup miimon=100"

and can be set manually.

– For RHEL and derivatives, it can alternatively be configured with front-end tools such as the
nmcli tool, nmtui, or others.

Example

nmcli connection add type bond con-name bond0 ifname bond0 bond.options \
"mode=active-backup,miimon=100"

– For SLES, YaST can be used as a front-end tool (YaST→System→Network Settings).

• For Ubuntu, the interface definitions are in a file, either /etc/network/interfaces, or a file under
/etc/network/interfaces.d/.

The line to set the value of miimon follows a form such as:

bond-miimon 100

instead of

miimon=100

and can be set manually.

Alternatively, Canonical’s netplan (https://netplan.io) utility can be used to set the net-
work configuration files. The netplan YAML configuration key to set bond-miimon is
mii-monitor-interval.

When listing interfaces in cmsh, if an interface is a member of a bond or bridge interface, then the
corresponding bonded or bridge interface name is shown in parentheses after the member interface
name. Section 3.3, on configuring bridge interfaces, shows an example of such a listing from within
cmsh on page 85.

More on bonded interfaces (including a detailed description of bonding options and modes) can be
found at http://www.kernel.org/doc/Documentation/networking/bonding.txt.

3.6 Configuring InfiniBand And Omni-Path Interfaces
On clusters with an InfiniBand interconnect, the InfiniBand Host Channel Adapter (HCA) in each node
must be configured before it can be used. A similar requirement applies for Omni-Path and its fab-
ric controller. Bright Cluster Manager manages InfiniBand and Omni-Path configuration in the same
way. Therefore Omni-Path management is usually also implied whenever InfiniBand is discussed in the
Bright Cluster Manager manuals.

This section describes how to set up the InfiniBand service on the nodes for regular use. Setting up
InfiniBand for booting and provisioning purposes is described in Chapter 5, while setting up InfiniBand
for NFS is described in section 3.10.5.

© Bright Computing, Inc.

/etc/sysconfig/network-scripts/ifcfg-bond0
/etc/network/interfaces
/etc/network/interfaces.d/
https://netplan.io
https://netplan.io/reference#properties-for-device-type-bonds
http://www.kernel.org/doc/Documentation/networking/bonding.txt

92 Configuring The Cluster

3.6.1 Installing Software Packages
On a standard Bright Cluster Manager cluster, the OFED (OpenFabrics Enterprise Distribution) pack-
ages that are part of the Linux base distribution are used. These packages provide RDMA implemen-
tations allowing high bandwidth/low latency interconnects on OFED hardware. The implementations
can be used by InfiniBand hardware, and iWarp protocol hardware such as the hardware-accelerated
RDMA over ethernet provided by Intel.

By default, all relevant OFED packages are installed on the head node and software images. It
is possible to replace the distribution OFED with an OFED provided by the Bright Cluster Manager
repository or another custom version. The replacement can be for the entire cluster, or only for certain
software images. Administrators may choose to switch to a different OFED version if the HCAs used
are not supported by the distribution OFED version, or to increase performance by using an OFED
version that has been optimized for a particular HCA. Installing the Bright Cluster Manager OFED and
Omni-Path packages is covered in section 7.6 and section 7.7 respectively of the Installation Manual.

If the InfiniBand network is enabled during installation, then the rdma script runs during the init
stage of booting up for the enabled nodes. For SLES and Linux distributions based on versions prior to
Red Hat 6, the openibd script is used instead of the rdma script.

The rdma or openibd script takes care of loading the relevant InfiniBand HCA kernel modules. When
adding an InfiniBand network after installation, it may be necessary to use chkconfig manually to
configure the rdma or openibd script to be run at boot-time on the head node and inside the software
images.

3.6.2 Subnet Managers
Every InfiniBand subnet requires at least one subnet manager to be running. The subnet manager takes
care of routing, addressing and initialization on the InfiniBand fabric. Some InfiniBand switches include
subnet managers. However, on large InfiniBand networks or in the absence of a switch-hosted subnet
manager, a subnet manager needs to be started on at least one node inside of the cluster. When multiple
subnet managers are started on the same InfiniBand subnet, one instance will become the active subnet
manager whereas the other instances will remain in passive mode. It is recommended to run 2 subnet
managers on all InfiniBand subnets to provide redundancy in case of failure.

On a Linux machine that is not running Bright Cluster Manager, an administrator sets a subnet
manager service1 to start at boot-time with a command such as: “chkconfig opensm on”. However, for
clusters managed by Bright Cluster Manager, a subnet manager is best set up using CMDaemon. There
are two ways of setting CMDaemon to start up the subnet manager on a node at boot time:

1. by assigning a role.

In cmsh this can be done with:

[root@bright91 ~]# cmsh -c "device roles <node>; assign subnetmanager; commit"

where <node> is the name of a node on which it will run, for example: bright91, node001,
node002...

In Bright View, the subnet manager role is assigned by selecting a head node or regular node
from the Devices resource, and assigning it the “Subnet manager role”. The clickpath for this,
for a node node002 for example, is Devices→Nodesnode002→Settings→Roles→Add[Subnet
manager role].

2. by setting the service up. Services are covered more generally in section 3.11.

In cmsh this is done with:

Example
1usually opensm, but opensmd in SLES

© Bright Computing, Inc.

3.6 Configuring InfiniBand And Omni-Path Interfaces 93

[root@bright91 ~]# cmsh
[bright91]% device services node001
[bright91->device[node001]->services]% add opensm
[bright91->device[node001]->services*[opensm*]]% set autostart yes
[bright91->device[node001]->services*[opensm*]]% set monitored yes
[bright91->device[node001]->services*[opensm*]]% commit
[bright91->device[node001]->services[opensm]]%

In Bright View the subnet manager service is configured by selecting a head node or regular node
from the resources tree, and adding the service to it. The clickpath for this, for a node node002 for
example, is: Devices→Nodesnode002→Settings→Services[Service].

When the head node in a cluster is equipped with an InfiniBand HCA, it is a good candidate to run
as a subnet manager for smaller clusters.

On large clusters a dedicated node is recommended to run the subnet manager.

3.6.3 InfiniBand Network Settings
Although not strictly necessary, it is recommended that InfiniBand interfaces are assigned an IP address
(i.e. IP over IB). First, a network object in the cluster management infrastructure should be created. The
procedure for adding a network is described in section 3.2.2. The following settings are recommended
as defaults:

Property Value

Name ibnet

Domain name ib.cluster

Type internal

Base address 10.149.0.0

Netmask bits 16

MTU up to 4k in datagram mode

up to 64k in connected mode

By default, an InfiniBand interface is set to datagram mode, because it scales better than connected
mode. It can be configured to run in connected mode by setting the connectedmode property:

Example

[bright91->device[node001]->interfaces[ib0]]% set connectedmode yes

For nodes that are PXE booting or are getting provisioned over InfiniBand, the mode setting in the
node-installer script has to be changed accordingly.

Example

[root@bright91 ~]# echo datagram > /cm/node-installer/scripts/ipoib_mode

Once the network has been created all nodes must be assigned an InfiniBand interface on this net-
work. The easiest method of doing this is to create the interface for one node device and then to clone
that device several times.

For large clusters, a labor-saving way to do this is using the addinterface command (section 3.7.1)
as follows:

[root@bright91 ~]# echo "device
addinterface -n node001..node150 physical ib0 ibnet 10.149.0.1
commit" | cmsh -x

© Bright Computing, Inc.

94 Configuring The Cluster

When the head node is also equipped with an InfiniBand HCA, it is important that a corresponding
interface is added and configured in the cluster management infrastructure.

Example

Assigning an IP address on the InfiniBand network to the head node:

[bright91->device[bright91]->interfaces]% add physical ib0
[bright91->device[bright91]->interfaces*[ib0*]]% set network ibnet
[bright91->device[bright91]->interfaces*[ib0*]]% set ip 10.149.255.254
[bright91->device[bright91]->interfaces*[ib0*]]% commit

As with any change to the network setup, the head node needs to be restarted to make the above
change active.

3.6.4 Verifying Connectivity
After all nodes have been restarted, the easiest way to verify connectivity is to use the ping utility

Example

Pinging node015 while logged in to node014 through the InfiniBand interconnect:

[root@node014 ~]# ping node015.ib.cluster
PING node015.ib.cluster (10.149.0.15) 56(84) bytes of data.
64 bytes from node015.ib.cluster (10.149.0.15): icmp_seq=1 ttl=64
time=0.086 ms
...

If the ping utility reports that ping replies are being received, the InfiniBand is operational. The ping
utility is not intended to benchmark high speed interconnects. For this reason it is usually a good idea
to perform more elaborate testing to verify that bandwidth and latency are within the expected range.

The quickest way to stress-test the InfiniBand interconnect is to use the Intel MPI Benchmark (IMB),
which is installed by default in /cm/shared/apps/imb/current. The setup.sh script in this directory
can be used to create a template in a user’s home directory to start a run.

Example

Running the Intel MPI Benchmark using openmpi to evaluate performance of the InfiniBand inter-
connect between node001 and node002:

[root@bright91 ~]# su - cmsupport
[cmsupport@bright91 ~]$ cd /cm/shared/apps/imb/current/
[cmsupport@bright91 current]$./setup.sh
[cmsupport@bright91 current]$ cd ~/BenchMarks/imb/2017
[cmsupport@bright91 2017]$ module load openmpi/gcc
[cmsupport@bright91 2017]$ module initadd openmpi/gcc
[cmsupport@bright91 2017]$ make -f make_mpi2
[cmsupport@bright91 2017]$ mpirun -np 2 -machinefile ../nodes IMB-MPI1 PingPong
#---
Benchmarking PingPong
#processes = 2
#---

#bytes #repetitions t[usec] Mbytes/sec
0 1000 0.78 0.00
1 1000 1.08 0.88
2 1000 1.07 1.78

© Bright Computing, Inc.

/cm/shared/apps/imb/current

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 95

4 1000 1.08 3.53
8 1000 1.08 7.06

16 1000 1.16 13.16
32 1000 1.17 26.15
64 1000 1.17 52.12
128 1000 1.20 101.39
256 1000 1.37 177.62
512 1000 1.69 288.67
1024 1000 2.30 425.34
2048 1000 3.46 564.73
4096 1000 7.37 530.30
8192 1000 11.21 697.20
16384 1000 21.63 722.24
32768 1000 42.19 740.72
65536 640 70.09 891.69
131072 320 125.46 996.35
262144 160 238.04 1050.25
524288 80 500.76 998.48

1048576 40 1065.28 938.72
2097152 20 2033.13 983.71
4194304 10 3887.00 1029.07

All processes entering MPI_Finalize

To run on nodes other than node001 and node002, the ../nodes file must be modified to contain
different hostnames. To perform other benchmarks, the PingPong argument should be omitted.

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces
Bright Cluster Manager can initialize and configure the baseboard management controller (BMC) that
may be present on devices. This ability can be set during the installation on the head node (figure 3.16
of the Installation Manual), or it can be set after installation as described in this section. The IPMI, iLO,
DRAC, CIMC, or Redfish interface that is exposed by a BMC is treated in the cluster management in-
frastructure as a special type of network interface belonging to a device. In the most common setup a
dedicated network (i.e. IP subnet) is created for BMC communication. The 10.148.0.0/16 network is
used by default for BMC interfaces by Bright Cluster Manager.

3.7.1 BMC Network Settings
The first step in setting up a BMC is to add the BMC network as a network object in the cluster man-
agement infrastructure. The procedure for adding a network is described in section 3.2.2. The following
settings are recommended as defaults:

Property Value

Name bmcnet, ilonet, ipminet, dracnet, cimcnet, or rfnet

Domain name bmc.cluster, ilo.cluster, ipmi.cluster, drac.cluster,
cimc.cluster, or rf.cluster

Type Internal

Base address 10.148.0.0

Netmask bits 16

Broadcast address 10.148.255.255

Once the network has been created, all nodes must be assigned a BMC interface, of type bmc, on this

© Bright Computing, Inc.

96 Configuring The Cluster

network. The easiest method of doing this is to create the interface for one node device and then to clone
that device several times.

For larger clusters this can be laborious, and a simple bash loop can be used to do the job instead:

[bright91 ~]# for ((i=1; i<=150; i++)) do
echo "
device interfaces node$(printf '%03d' $i)
add bmc ipmi0
set network bmcnet
set ip 10.148.0.$i
commit"; done | cmsh -x # -x usefully echoes what is piped into cmsh

The preceding loop can conveniently be replaced with the addinterface command, run from within
the device mode of cmsh:

[bright91 ~]# echo "
device
addinterface -n node001..node150 bmc ipmi0 bmcnet 10.148.0.1
commit" | cmsh -x

The help text in cmsh gives more details on how to use addinterface.
Most administrators are likely to simply run it as an interactive session in cmsh, running the help

addinterface command for reference, and then supplying the options for the nodes and interface set-
tings in device mode. For example, as in the following session:

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% help addinterface
Name:

addinterface - Add a network interface to one or more nodes

Usage:
addinterface [OPTIONS] <type> <devicename> <network> <firstip>

Options:
...help text omitted...
Examples:

addinterface -n node001..node010 physical ib0 ibnet 10.149.0.1

[bright91->device]% addinterface -n node001..node150 bmc ipmi0 bmcnet 10.148.0.1
[bright91->device]% commit

In order to be able to communicate with the BMC interfaces, the head node also needs an interface
on the BMC network. Depending on how the BMC interfaces are physically connected to the head node,
the head node has to be assigned an IP address on the BMC network one way or another. There are two
possibilities for how the BMC interface is physically connected:

• When the BMC interface is connected to the primary internal network, the head node should be
assigned an alias interface configured with an IP address on the BMC network.

• When the BMC interface is connected to a dedicated physical network, the head node must also
be physically connected to this network. A physical interface must be added and configured with
an IP address on the BMC network.

Example

Assigning an IP address on the BMC network to the head node using an alias interface:

© Bright Computing, Inc.

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 97

[bright91->device[bright91]->interfaces]% add alias eth0:0
[bright91->device[bright91]->interfaces*[eth0:0*]]% set network bmcnet
[bright91->device[bright91]->interfaces*[eth0:0*]]% set ip 10.148.255.254
[bright91->device[bright91]->interfaces*[eth0:0*]]% commit
[bright91->device[bright91]->interfaces[eth0:0]]%
Mon Dec 6 05:45:05 bright91: Reboot required: Interfaces have been modified
[bright91->device[bright91]->interfaces[eth0:0]]% quit
[root@bright91 ~]# service network restart

As with any change to the network setup, the head node needs to be restarted to make the above
change active, although in this particular case restarting the network service would suffice.

BMC connectivity from the head node to the IP addresses of the configured interfaces on the regular
nodes can be tested with Bash one-liner such as:

Example

[root@bright91 ~]# for i in $(cmsh -c "device; foreach -t physicalnode (interfaces; \
use ilo0; get ip)"); do ping -c1 $i; done | grep -B1 packet
--- 10.148.0.1 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms
--- 10.148.0.2 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms
--- 10.148.0.3 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms
...

In the preceding example the packet loss demonstrates there is a connection problem between the head
node and the BMC subnet.

3.7.2 BMC Authentication
The node-installer described in Chapter 5 is responsible for the initialization and configuration of the
BMC interface of a device. In addition to a number of network-related settings, the node-installer also
configures BMC authentication credentials. By default BMC interfaces are configured with username
bright and a random password that is generated during the installation of the head node. The password
is stored by CMDaemon. It can be managed from cmsh from within the base object of partition mode,
in the bmcsettings submode. This means that by default, each BMC in the cluster has that username
and password set during node boot.

For example, the current values of the BMC username and password for the entire cluster can be
obtained and changed as follows:

Example

[bright91]% partition use base
[bright91->partition[base]]% bmcsettings
[bright91->partition[base]->bmcsettings]% get username
bright
[bright91->partition[base]->bmcsettings]% get password
Za4ohni1ohMa2zew
[bright91->partition[base]->bmcsettings]% set username bmcadmin
[bright91->partition*[base*]->bmcsettings*]% set password
enter new password: ******
retype new password: ******
[bright91->partition*[base*]->bmcsettings*]% commit

© Bright Computing, Inc.

98 Configuring The Cluster

In Bright View, selecting the cluster item in the resources pane, and then using the Settings option,
allows the BMC settings to be edited.

The BMC authentication credentials, and also some other BMC properties can be set cluster-wide,
category, or per node. As usual, category settings override cluster-wide settings, and node settings over-
ride category settings. The relevant properties are:

Property Description

BMC User ID User type. Normally set to 4 for administrator access.

BMC User Name User name used when sending a BMC command

BMC Password Password for specified user name when sending a BMC command

BMC Power reset delay Delay, in seconds, before powering up (default value: 0)

BMC extra arguments Extra arguments passed to BMC commands

BMC privilege Possible options are

• adminstrator

• callback

• OEMproprietary

• operator

• user

BMC configuration on a head node is done directly.
For regular nodes, Bright Cluster Manager stores the BMC configuration, and uses it:

• to configure the BMC interface from the node-installer

• to authenticate to the BMC interface after it has come up

BMC management operations, such as power cycling nodes and collecting hardware metrics, can then
be performed after the node has been provisioned again.

If BMC authentication fails, then an explanation for why can often be found in the node-installer log
at /var/log/node-installer.

3.7.3 Interfaces Settings
Interface Name
It is recommended that the network device name of a BMC interface start with ipmi, ilo, drac, cimc, or
rf, according to whether the BMC is running with IPMI, iLO, DRAC, CIMC, or Redfish. Numbers are
appended to the base name, resulting in, for example: ipmi0.

Obtaining The IP address
BMC interfaces can have their IP addresses configured statically, or obtained from a DHCP server.

Only a node with a static BMC IP address has BMC power management done by Bright Cluster
Manager. If the node has a DHCP-assigned BMC IP address, then it requires custom BMC power man-
agement (section 4.1.4) due to its dynamic nature.

Dell racadm Installation
If Dell was chosen as a hardware option when the Bright Cluster Manager ISO was created for installa-
tion, then the Dell OpenManage utilities are located under /opt/dell on the head node.

© Bright Computing, Inc.

/var/log/node-installer
/opt/dell

3.8 Configuring Switches And PDUs 99

If Dell is chosen as a hardware option when nodes are configured in the Bright Cluster Manager
installer, then the default software image that is used by the node has the Dell OpenManage utilities,
located on the head node at /cm/images/default-image/opt/dell.

The Dell OpenManage utilities contain the racadm binary, which can be used to issue power com-
mands (Chapter 4). Bright Cluster Manager runs commands similar to the following to issue the power
commands:

/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u <bmcusername> -p <bmcpassword>\
serveraction powerstatus
/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u <bmcusername> -p <bmcpassword>\
serveraction hardreset

The BMC username/password values can be obtained from cmsh as follows:

[root@bright91 ~]# cmsh
[bright91]% partition use base
[bright91->partition[base]]% bmcsettings
[bright91->partition[base]->bmcsettings]% get password
12345
[bright91->partition[base]->bmcsettings]% get username
tom
[bright91->partition[base]->bmcsettings]%

Sometimes the bright user does not have the right privilege to get the correct values. The racadm
commands then fail.

The bright user privilege can be raised using the following command:

/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u root -p <root password> set \
iDRAC.Users.4.Privilege 511

Here it is assumed that the BMC user has the username bright, a userID 4, and the privilege can be
set to 511.

3.7.4 Identification With A BMC
Sometimes it is useful to identify a node using BMC commands. This can be done by, for example,
blinking a light via a BMC command on the node:

Example

ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> chassis identify 1

The exact implementation may be vendor-dependent, and need not be an ipmitool command. Such
commands can be scripted and run from CMDaemon.

For testing without a BMC, the example script at /cm/local/examples/cmd/bmc_identify can be
used if the environment variable $CMD_HOSTNAME is set. The logical structure of the script can be used as
a basis for carrying out an identification task when a physical BMC is in place, by customizing the script
and then placing the script in a directory for use.

To have such a custom BMC script run from CMDaemon, the BMCIdentifyScript advanced config-
uration directive (page 787) can be used.

3.8 Configuring Switches And PDUs
3.8.1 Configuring With The Manufacturer’s Configuration Interface
Network switches and PDUs that will be used as part of the cluster should be configured with the
PDU/switch configuration interface described in the PDU/switch documentation supplied by the man-
ufacturer. Typically the interface is accessed by connecting via a web browser or telnet to an IP address
preset by the manufacturer.

© Bright Computing, Inc.

/cm/images/default-image/opt/dell
/cm/local/examples/cmd/bmc_identify

100 Configuring The Cluster

The IP address settings of the PDU/switch must match the settings of the device as stored by the
cluster manager.

• In Bright View, this is done via the clickpath Devices→Edit→<switchname> to select the switch.
If the switch does not already exist, then it can be added via the ADD button. The values in the
associated Settings window that comes up (figure 3.11) can then be filled in, and the IP address
can be set and saved.

• In cmsh this can be done in device mode, with a set command:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% set switch01 ip 10.141.253.2
[bright91->device*]% commit

3.8.2 Configuring SNMP
Configuring SNMP Community Strings
Moreover, in order to allow the cluster management software to communicate with the switch or PDU,
SNMP must be enabled and the SNMP community strings should be configured correctly. By default,
the SNMP community strings for switches and PDUs are set to public and private for respectively read
and write access. If different SNMP community strings have been configured in the switch or PDU, the
readstring and writestring properties of the corresponding switch device should be changed.

Example

[bright91]% device use switch01
[bright91->device[switch01]]% snmpsettings
[bright91->device[switch01]->snmpsettings]% get readstring
public
[bright91->device[switch01]->snmpsettings]% get writestring
private
[bright91->device[switch01]->snmpsettings]% set readstring public2
[bright91->device*[switch01*]->snmpsettings*]% set writestring private2
[bright91->device*[switch01*]->snmpsettings*]% commit

Alternatively, these properties can also be set in Bright View via the clickpath:

Devices→Switches→Edit→SNMP Settings

Configuring SNMP Settings
SNMP settings can be configured in cmsh via the snmpsettings submode, which is available under
partition mode as well as under device mode.

The submode allows the version to be set to v1, v2c, or v3.
Setting the version to the value file is also an option, but is not meant as an option for end users. It

is used in SNMP walk emulation for debugging non-standard switches.
The SNMPv3 settings that can be managed in Bright Cluster Manager are:

Example

[bright91]% device use switch01
[bright91->device[switch01]]% snmpsettings
[bright91->device[switch01]->snmpsettings]% show

© Bright Computing, Inc.

3.8 Configuring Switches And PDUs 101

Parameter Value
-------------------------------- --
Authentication key < not set >
Authentication protocol MD5
Context
Privacy key < not set >
Privacy protocol DES
Retries -1
Revision
Security level Authentication encrypted
Security name
Timeout 0s
VLAN Timeout 0s
version V3

The set command can be used, sometimes with tab-completion, to set the SNMP switch parameters.
For example, for the SNMPv3 parameters that are set to use cryptographic keys:

Example

[bright91->device*[switch01*]->snmpsettings*]% set authenticationprotocol <TAB><TAB>
md5 sha
[bright91->device[switch01]->snmpsettings]% set authenticationprotocol aes
[bright91->device*[switch01*]->snmpsettings*]% set privacyprotocol <TAB><TAB>
aes des
[bright91->device*[switch01*]->snmpsettings*]% set privacyprotocol aes
[bright91->device*[switch01*]->snmpsettings*]% commit
[bright91->device[switch01]->snmpsettings]%

SNMP Traps
Bright Cluster Manager can assign an SNMP trap manager role to a node. The snmptrapd daemon is
then configured and managed on the assigned node by CMDaemon.

Configuration options include enabling or disabling mailing of the messages, and setting the sender
and recipients for the mail. By default an undefined value for Server means that the SNMP server is
localhost.

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% roles
[bright91->device[node001]->roles]% assign snmptrap
[bright91->device[node001]->roles*[snmptrap*]]% show
Parameter Value
-------------------------------- --
Access public
Add services yes
All administrators no
Alternative script
Arguments
Event yes
Mail yes
Name snmptrap
Provisioning associations <0 internally used>
Recipients
Revision

© Bright Computing, Inc.

102 Configuring The Cluster

Sender
Server
Type SnmpTrapRole

3.8.3 Uplink Ports
Uplink ports are switch ports that are connected to other switches. CMDaemon must be told about any
switch ports that are uplink ports, or the traffic passing through an uplink port will lead to mistakes
in what CMDaemon knows about port and MAC correspondence. Uplink ports are thus ports that
CMDaemon is told to ignore.

To inform CMDaemon about what ports are uplink ports, Bright View or cmsh are used:

• In Bright View, the switch is selected, and uplinks can be added via the clickpath:

Devices→Switches→Edit→Uplinks

(figure 3.11). Clicking on the resulting + Add button brings up a dialog box that allows port num-
bers corresponding to uplink port numbers to be filled in. The state is saved with the Save button.

Figure 3.11: Notifying CMDaemon About Uplinks With Bright View

• In cmsh, the switch is accessed from the device mode. The uplink port numbers can be appended
one-by-one with the append command, or set in one go by using space-separated numbers.

© Bright Computing, Inc.

3.8 Configuring Switches And PDUs 103

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% set switch01 uplinks 15 16
[bright91->device*]% set switch02 uplinks 01
[bright91->device*]% commit
successfully committed 3 Devices

3.8.4 The showport MAC Address to Port Matching Tool
The showport command can be used in troubleshooting network topology issues, as well as checking
and setting up new nodes (section 5.4.2).

Basic Use Of showport
In the device mode of cmsh is the showport command, which works out which ports on which switch
are associated with a specified MAC address.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% showport 00:30:48:30:73:92
switch01:12

When running showport, CMDaemon on the head node queries all switches until a match is found.
If a switch is also specified using the “-s” option, then the query is carried out for that switch first.

Thus the preceding example can also be specified as:

[bright91->device]% showport -s switch01 00:30:49.00:73:92
switch01:12

If there is no port number returned for the specified switch, then the scan continues on other switches.

Mapping All Port Connections In The Cluster With showport
A list indicating the port connections and switches for all connected devices that are up can be generated
using this script:

Example

#!/bin/bash
for nodename in $(cmsh -c "device; foreach * (get hostname)")
do

macad=$(cmsh -c "device use $nodename; get mac")
echo -n "$macad $nodename "
cmsh -c "device showport $macad"

done

The script may take a while to finish its run. It gives an output like:

Example

00:00:00:00:00:00 switch01: No ethernet switch found connected to this mac address
00:30:49.00:73:92 bright91: switch01:12
00:26:6C:F2:AD:54 node001: switch01:1
00:00:00:00:00:00 node002: No ethernet switch found connected to this mac address

© Bright Computing, Inc.

104 Configuring The Cluster

3.8.5 Disabling Port Detection
An administrator may wish to disable node identification based on port detection. For example, in the
case of switches with buggy firmware, the administrator may feel more comfortable relying on MAC-
based identification. Disabling port detection can be carried out by clearing the switchports setting of
a node, a category, or a group. For example, in cmsh, for a node:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% clear switchports
[bright91->device*[node001*]]% commit
[bright91->device[node001]]%

Or, for example for the default category, with the help of the foreach command:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]]% foreach -c default (clear switchports); commit

3.8.6 The switchoverview Command
Also within devicemode, the switchoverview command gives an overview of MAC addresses detected
on the ports, and some related properties. The command works using SNMP queries. Output is similar
to the following (some lines ellipsized):

[bright91->device]% switchoverview dell-switch1
Device: dell-switch1
State : [UP]
Model : 24G Ethernet Switch

Port Assignment:

Port Status Assigned Uplink Speed Detected
------ ------ ---------------- ------ -------- --------------------------\
--
1 UP false 1 Gb/s -
2 UP false 1 Gb/s -
3 UP false 1 Gb/s 74:86:7A:AD:3F:2F, node3
4 UP false 1 Gb/s 74:86:7A:AD:43:E9, node4
...
11 UP false 1 Gb/s 74:86:7A:AD:44:D8, node11
12 UP false 1 Gb/s 74:86:7A:AD:6F:55, node12
...
23 UP false 1 Gb/s 74:86:7A:E9:3E:85, node23
24 UP false 1 Gb/s 74:86:7A:AD:56:DF, node24
49 UP false 10 Gb/s 74:86:7A:AD:68:FD, node1
50 UP false 10 Gb/s 74:86:7A:AD:41:A0, node2
53 UP node34 false 1 Gb/s 5C:F9:DD:F5:79.0D, node34
54 UP node35 false 1 Gb/s 5C:F9:DD:F5:45:AC, node35
...
179 UP false 1 Gb/s 24:B6:FD:F6:20:6F,\
24:B6:FD:FA:64:2F, 74:86:7A:DF:7E:4C, 90:B1:1C:3F:3D:A9,\
90:B1:1C:3F:51:D1, D0:67:E5:B7:64:0F, D0:67:E5:B7:61:20
180 UP false 100 Mb/s QDR-switch

© Bright Computing, Inc.

3.9 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 105

205 UP true 10 Gb/s -
206 DOWN false 10 Gb/s -
...
[bright91 ->device]%

3.9 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration
Configuring the disk layout for head and regular nodes is done as part of the initial setup (section
3.3.16 of the Installation Manual). For regular nodes, the disk layout can also be re-configured by Bright
Cluster Manager once the cluster is running. For a head node, however, the disk layout cannot be re-
configured after installation by Bright Cluster Manager, and head node disk layout reconfiguration must
then therefore be treated as a regular Linux system administration task, typically involving backups and
resizing partitions.

The remaining parts of this section on disk layouts therefore concern regular nodes, not head nodes.

3.9.1 Disk Layouts
A disk layout is specified using an XML schema (Appendix D.1). The disk layout typically specifies
the devices to be used, its partitioning scheme, and mount points. Possible disk layouts include the
following:

• Default layout (Appendix D.3)

• Hardware RAID setup (Appendix D.4)

• Software RAID setup (Appendix D.5)

• LVM setup (Appendix D.7)

• Diskless setup (Appendix D.9)

• Semi-diskless setup (Appendix D.10)

3.9.2 Disk Layout Assertions
Disk layouts can be set to assert

• that particular hardware be used, using XML element tags such as vendor or requiredSize (Ap-
pendix D.11)

• custom assertions using an XML assert element tag to run scripts placed in CDATA sections
(Appendix D.12)

3.9.3 Changing Disk Layouts
A disk layout applied to a category of nodes is inherited by default by the nodes in that category. A disk
layout that is then applied to an individual node within that category overrides the category setting.
This is an example of the standard behavior for categories, as mentioned in section 2.1.3.

By default, the cluster is configured with a standard layout specified in section D.3. The layouts can
be accessed from Bright View or cmsh, as is illustrated by the example in section 3.9.4, which covers
changing a node from disked to diskless mode:

3.9.4 Changing A Disk Layout From Disked To Diskless
The XML schema for a node configured for diskless operation is shown in Appendix D.9. This can often
be deployed as is, or it can be modified during deployment using Bright View or cmsh as follows:

© Bright Computing, Inc.

106 Configuring The Cluster

Changing A Disk Layout Using Bright View
To change a disk layout with Bright View, the current disk layout is accessed by selecting a node cate-
gory or a specific node from the resource tree. In the Settings pane, the Disk setup field can be edited.
Clicking on the Browse button shows several possible configurations that can be loaded up, and if de-
sired, edited to suit the situation (figure 3.12). To switch from the existing disk layout to a diskless one,

Figure 3.12: Changing A Disked Node To A Diskless Node With Bright View

the diskless XML configuration is loaded and saved to the node or node category.

Changing A Disk Layout Using cmsh
To edit an existing disk layout from within cmsh, the existing XML configuration is accessed by editing
the disksetup property in device mode for a particular node, or by editing the disksetup property in
category mode for a particular category. Editing is done using the set command, which opens up a
text editor:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% set disksetup

After editing and saving the XML configuration, the change is then committed to CMDaemon with
the commit command. It should be understood that a disk layout XML configuration is not stored in a
file on the filesystem, but in the CMDaemon database. The XML configurations that exist on a default
cluster at
/cm/images/default-image/cm/local/apps/cmd/etc/htdocs/disk-setup/
and
/cm/local/apps/cmd/etc/htdocs/disk-setup/
are merely default configurations.

If the disksetup setting for a device is deleted, using the clear command, then the category level
disksetup property is used by the device. This is in accordance with the usual behavior for node values
that override category values (section 2.1.5).

Instead of editing an existing disk layout, another XML configuration can also be assigned. A disk-
less configuration may be chosen and set as follows:

Example

[bright91->device[node001]]% set disksetup /cm/local/apps/cmd/\
etc/htdocs/disk-setup/slave-diskless.xml

© Bright Computing, Inc.

/cm/images/default-image/cm/local/apps/cmd/etc/htdocs/disk-setup/
/cm/local/apps/cmd/etc/htdocs/disk-setup/

3.10 Configuring NFS Volume Exports And Mounts 107

In these preceding Bright View and cmsh examples, after committing the change and rebooting the
node, the node then functions entirely from its RAM, without using its own disk.

However, RAM is usually a scarce resource, so administrators often wish to optimize diskless nodes
by freeing up the RAM on them from the OS that is using the RAM. Freeing up RAM can be accom-
plished by providing parts of the filesystem on the diskless node via NFS from the head node. That is,
mounting the regular node with filesystems exported via NFS from the head node. The details of how to
do this are a part of section 3.10, which covers the configuration of NFS exports and mounts in general.

3.10 Configuring NFS Volume Exports And Mounts
NFS allows unix NFS clients shared access to a filesystem on an NFS server. The accessed filesystem is
called an NFS volume by remote machines. The NFS server exports the filesystem to selected hosts or
networks, and the clients can then mount the exported volume locally.

An unformatted filesystem cannot be used. The drive must be partitioned beforehand with fdisk or
similar partitioning tools, and its filesystem formatted with mkfs or similar before it can be exported.

In Bright Cluster Manager, the head node is typically used to export an NFS volume to the regular
nodes, and the regular nodes then mount the volume locally.

• NFS can be made to work at higher speeds with remote direct memory access (RDMA), by bypass-
ing the CPU. If there is RDMA hardware present and if the rdma-core package is installed then
the RDMA service works automatically in RHEL 7 and 8.

The settings that determine client module loading are set in the file rdma.conf so that the service
auto-loads by default.

– For RHEL7 this file is /etc/rdma/rdma.conf

– For RHEL8 this file is /etc/rdma/modules/rdma.conf.

• An alternative to NFS over RDMA for very fast file systems is the massively parallel and free
(GPLv2) Lustre filesystem, running over InfiniBand.

If auto-mounting is used, then the configuration files for exporting should be set up on the NFS
server, and the mount configurations set up on the software images. The service “autofs” or the equiv-
alent can be set up using Bright View via the “Services” option (section 3.11) on the head and regular
nodes or node categories. With cmsh the procedure to configure auto-mounting on the head and regular
nodes could be:

Example

[root@bright91 ~]# cmsh
[bright91]% device use bright91
[bright91->device[bright91]]% services
[bright91->device[bright91]->services]% add autofs
[bright91->device*[bright91*]->services*[autofs*]]% show
Parameter Value
------------------------------ -------------------------------------
Autostart no
Belongs to role no
Monitored no
Revision
Run if ALWAYS
Service autofs
Sickness check interval 60
Sickness check script
Sickness check script timeout 10

© Bright Computing, Inc.

/etc/rdma/rdma.conf
/etc/rdma/modules/rdma.conf
https://whamcloud.com
https://whamcloud.com

108 Configuring The Cluster

Timeout -1
[bright91->device*[bright91*]->services*[autofs*]]% set autostart yes
[bright91->device*[bright91*]->services*[autofs*]]% commit
[bright91->device[bright91]->services[autofs]]% category use default
[bright91->category[default]]% services
[bright91->category[default]->services]% add autofs
[bright91->category*[default*]->services*[autofs*]]% set autostart yes
[bright91->category*[default*]->services*[autofs*]]% commit
[bright91->category[default]->services[autofs]]%

Filesystems imported to a regular node via an auto-mount operation must explicitly be excluded in
excludelistupdate by the administrator, as explained in section 5.6.1, page 214.

The rest of this section describes the configuration of NFS for static mounts, using Bright View or
cmsh.

Sections 3.10.1 and 3.10.2 explain how exporting and mounting of filesystems is done in general by
an administrator using Bright View and cmsh, and considers some mounting behavior that the adminis-
trator should be aware of.

Section 3.10.3 discusses how filesystems in general on a diskless node can be replaced via mounts of
NFS exports.

Section 3.10.4 discusses how the root (/) filesystem on a diskless node can be replaced via mounts of
NFS exports.

Section 3.10.5 discusses how OFED InfiniBand or iWarp drivers can be used to provide NFS over
RDMA.

3.10.1 Exporting A Filesystem Using Bright View And cmsh
Exporting A Filesystem Using Bright View
As an example, if an NFS volume exists at “bright91:/modeldata” it can be exported using Bright View
as follows:

The bright91 head node is selected via the clickpath Devices→Head
nodes[bright91]→Settings→Filesystem exports. This shows the list of exports (figure 3.13):

Figure 3.13: NFS Exports From A Head Node Viewed Using Bright View

Using the Add button, a new entry (figure 3.14) can be configured with values as shown:

© Bright Computing, Inc.

3.10 Configuring NFS Volume Exports And Mounts 109

Figure 3.14: Setting Up An NFS Export Using Bright View

For this example, the value for “Name” is set arbitrarily to “Fluid Model Data”, the value for Path
is set to /modeldata, and the value for Network is set from the selection menu to allowing access to
internalnet (by default 10.141.0.0/16 in CIDR notation).

By having the Write option disabled, read-only access is kept.
Saving this preceding configuration means the NFS server now provides NFS access to this filesys-

© Bright Computing, Inc.

110 Configuring The Cluster

tem for internalnet.
The network can be set to other network values using CIDR notation. It can also be set to particular

hosts such as just node001 and node002, by specifying a value of “node001 node002” instead. Other
settings and options are also possible and are given in detail in the man pages for exports(5).

Exporting A Filesystem Using cmsh
The equivalent to the preceding Bright View NFS export procedure can be done in cmsh by using the
fsexports submode on the head node (some output elided):

Example

[root@bright91 ~]# cmsh
[bright91]% device use bright91
[bright91->device[bright91]]% fsexports
[...->fsexports]% add "Fluid Model Data"
[...->fsexports*[Fluid Model Data*]]% set path /modeldata
[...[Fluid Model Data*]]% set hosts 10.141.0.0/16
[...[Fluid Model Data*]]% commit
[...->fsexports[Fluid Model Data]]% list | grep Fluid
Name (key) Path Hosts Write
------------------- ------------- --------------- ------
Fluid Model Data /modeldata 10.141.0.0/16 no

General Considerations On Exporting A Filesystem
Built-in exports: In versions of Bright Cluster Manager prior to version 9.0, all filesystem exports could
be removed from the fsexports submode, simply by using the remove command with the name of the
export.

From version 9.0 onward however, the following filesystem exports:

• /var/spool/burn

• /home

• /cm/shared

are treated as special built-ins.

Head node role and disableautomaticexports: Built-ins are exported automatically as part of the
headnode role, also introduced in Bright Cluster Manager 9.0, and cannot simply be removed.

To disable export of the built-in file systems, the disableautomaticexports command must be run
in the headnode role for that node:

Example

[root@bright91 ~]# cmsh
[bright91]% device use bright91
[bright91->device[bright91]]% roles
[bright91->device[bright91]->roles]% use headnode
[bright91->device[bright91]->roles[headnode]]% show
Parameter Value
-------------------------------- -----------------------
Name headnode
Revision
Type HeadNodeRole
Add services yes
Disable automatic exports no
Provisioning associations <2 internally used>
role use headnode
[bright91->device[bright91]->roles[headnode]]% set disableautomaticexports yes ; commit

© Bright Computing, Inc.

3.10 Configuring NFS Volume Exports And Mounts 111

Disabling exports that are not built-ins: Exports that are not built-ins can still simply be removed.
However, also from Bright Cluster Manager 9.0 onwards, they can also simply be disabled in the
fsexports submode. For example there is an export created by the cluster administrator for /opt, it
can be disabled as follows:

Example

[bright91->device[bright91]->fsexports]% list
Name (key) Path Network Disabled
---------------- ------- ... ----------- --------
opt /opt internalnet no
[bright91->device[bright91]->fsexports]% set opt disabled yes; commit

The reason for automating the export for nodes via a headnode role is that Bright Cluster Manager
9.0 onward has multidistro and multiarch capabilities (section 12.7), which would make manual man-
agement of exports harder for such nodes. The reason for the extra hurdle of disableautomaticexports
for built-ins is that that disabling these exports can result in an unbootable system.

3.10.2 Mounting A Filesystem Using Bright View And cmsh
Continuing on with the Fluid Model Data export example from the preceding section, the administra-
tor decides to mount the remote filesystem over the default category of nodes. Nodes can also mount
the remote filesystem individually, but that is usually not a common requirement in a cluster. The ad-
ministrator also decides not to re-use the exported name from the head node. That is, the remote mount
name modeldata is not used locally, even though NFS allows this and many administrators prefer to do
this. Instead, a local mount name of /modeldatagpu is used, perhaps because it avoids confusion about
which filesystem is local to a person who is logged in, and perhaps to emphasize the volume is being
mounted by nodes with GPUs.

Mounting A Filesystem Using Bright View
Thus, in Bright View, values for the remote mount point (bright91:/modeldata), the filesystem type
(nfs), and the local mount point (/modeldatagpu) can be set in category mode, while the remaining
options stay at their default values (figure 3.15):

© Bright Computing, Inc.

112 Configuring The Cluster

Figure 3.15: Setting Up NFS Mounts On A Node Category Using Bright View

Saving the configuration saves the values, creating the local mount point, and the volume can now
be accessed by nodes in that category.

Mounting A Filesystem Using cmsh
The equivalent to the preceding Bright View NFS mount procedure can be done in cmsh by using the
fsmounts submode, for example on the default category. The addmethod under the fsmounts submode
sets the mountpoint path, in this case /modeldatagpu (some output elided):

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% fsmounts
[bright91->category[default]->fsmounts]% add /modeldatagpu
[bright91->...*[/modeldatagpu*]]% set device bright91:/modeldata
[bright91->...*[/modeldatagpu*]]% set filesystem nfs
[bright91->category*[default*]->fsmounts*[/modeldatagpu*]]% commit
[bright91->category[default]->fsmounts[/modeldatagpu]]%
Device Mountpoint (key) Filesystem
--------------------- ------------------ ----------
...
bright91:/modeldata /modeldatagpu nfs
[bright91->category[default]->fsmounts[/modeldatagpu]]% show
Parameter Value
------------------- ---------------------

© Bright Computing, Inc.

3.10 Configuring NFS Volume Exports And Mounts 113

Device bright91:/modeldata
Dump no
Filesystem nfs
Filesystem Check NONE
Mount options defaults
Mountpoint /modeldatagpu

Values can be set for Mount options other than default. For example, the noac flag can be added as
follows:

[bright91->...[/modeldatagpu]]% set mountoptions defaults,noac; commit

Mounting a CIFS might use:

[bright91->...[/modeldatagpu]]% set mountoptions gid,users,file_mode=0666,dir_mode=0777,\
iocharset=iso8859-15,credentials=/path/to/credential
[bright91->...[/modeldatagpu*]]% commit

A _netdev mount option to make systemd wait until the network is up before it is mounted can be
added as follows:

[bright91->...[/modeldatagpu]]% append mountoptions ,_netdev; commit

General Considerations On Mounting A Filesystem
There may be a requirement to segregate the access of nodes. For example, in the case of the preceding,
because some nodes have no associated GPUs.

Besides the “Allowed hosts” options of NFS exports mentioned earlier in section 3.10.1, Bright Clus-
ter Manager offers two more methods to fine tune node access to mount points:

• Nodes can be placed in another category that does not have the mount point.

• Nodes can have the mount point set, not by category, but per device within the Nodes resource.
For this, the administrator must ensure that nodes that should have access have the mount point
explicitly set.

Other considerations on mounting are that:

• When adding a mount point object:

– The settings take effect right away by default on the nodes or node categories.

– If noauto is set as a mount option, then the option only takes effect on explicitly mounting
the filesystem.

– If “AutomaticMountAll=0” is set as a CMDaemon directive (Appendix C), then CMDaemon
changes for /etc/fstab are written to the file, but the mount -a command is not run by
CMDaemon. However, the administrator should be aware that since mount -a is run by the
distribution during booting, a node reboot implements the mount change.

• While a mount point object may have been removed, umount does not take place until reboot,
to prevent mount changes outside of the cluster manager. If a umount needs to be to done with-
out a reboot, then it should be done manually, for example, using the pdsh or pexec command
(section 17.1), to allow the administrator to take appropriate action if umounting goes wrong.

• When manipulating mount points, the administrator should be aware which mount points are
inherited by category, and which are set for the individual node.

© Bright Computing, Inc.

114 Configuring The Cluster

– In Bright View, for a node, inheritance by category is indicated in the clickpath
Devices→Nodes[node name]→Edit→Settings→Filesystem mounts, under the INHERITED
column, with the entry (Category).

– In cmsh, the category a mount belongs to is displayed in brackets. This is displayed from
within the fsmounts submode of the device mode for a specified node:

Example

[root@bright91 ~]# cmsh -c "device; fsmounts node001; list"

Device Mountpoint (key) Filesystem
------------------------ -------------------- ----------
[default] none /dev/pts devpts
[default] none /proc proc
[default] none /sys sysfs
[default] none /dev/shm tmpfs
[default] $localnfsserv+ /cm/shared nfs
[default] bright91:/home /home nfs
bright91:/cm/shared/exa+ /home/examples nfs
[root@bright91 ~]#

To remove a mount point defined at category level for a node, it must be removed from within the
category, and not from the specific node.

Mount Order Considerations
Care is sometimes needed in deciding the order in which mounts are carried out.

• For example, if both /usr/share/doc and a replacement directory subtree /usr/share/doc/
compat-gcc-34-3.4.6java are to be used, then the stacking order should be that /usr/share/doc
is mounted first. This order ensures that the replacement directory subtree overlays the first
mount. If, instead, the replacement directory were the first mount, then it would be overlaid,
inaccessible, and inactive.

• There may also be dependencies between the subtrees to consider, some of which may prevent
the start up of applications and services until they are resolved. In some cases, resolution may be
quite involved.

The order in which such mounts are mounted can be modified with the up and down commands
within the fsmounts submode of cmsh.

3.10.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS
NFS Vs tmpfs For Diskless Nodes
For diskless nodes (Appendix D.9), the software image (section 2.1.2) is typically installed from a pro-
visioning node by the node-installer during the provisioning stage, and held as a filesystem in RAM on
the diskless node with the tmpfs filesystem type.

It can be worthwhile to replace subtrees under the diskless node filesystem held in RAM with sub-
trees provided over NFS. This can be particularly worthwhile for less frequently accessed parts of the
diskless node filesystem. This is because, although providing the files over NFS is much slower than ac-
cessing it from RAM, it has the benefit of freeing up RAM for tasks and jobs that run on diskless nodes,
thereby increasing the cluster capacity.

An alternative “semi-diskless” way to free up RAM is to use a local disk on the node itself for sup-
plying the subtrees. This is outlined in Appendix D.10.

© Bright Computing, Inc.

/usr/share/doc
/usr/share/doc/compat-gcc-34-3.4.6java
/usr/share/doc/compat-gcc-34-3.4.6java
/usr/share/doc

3.10 Configuring NFS Volume Exports And Mounts 115

Moving A Filesystem Subtree Out Of tmpfs To NFS
To carry out subtree provisioning over NFS, the subtrees are exported and mounted using the methods
outlined in the previous examples in sections 3.10.1 and 3.10.2. For the diskless case, the exported
filesystem subtree is thus a particular path under /cm/images/<image>2 on the provisioning node, and
the subtree is mounted accordingly under / on the diskless node.

While there are no restrictions placed on the paths that may be mounted in Bright Cluster Manager
9.1, the administrator should be aware that mounting certain paths such as /bin is not possible.

When Bright View or cmsh are used to manage the NFS export and mount of the subtree filesystem,
then tmpfs on the diskless node is reduced in size due to the administrator explicitly excluding the
subtree from tmpfs during provisioning.

An example might be to export /cm/images/default-image from the head node, and mount the
directory available under it, usr/share/doc, at a mount point /usr/share/doc on the diskless node. In
cmsh, such an export can be done by creating an FS export object corresponding to the software image
object defaultimage with the following indicated properties (some prompt output elided):

Example

[root@bright91 ~]# cmsh
[bright91]% device use bright91; fsexports
[bright91->device[bright91]->fsexports]% add defaultimage
[bright91...defaultimage*]]% set path /cm/images/default-image
[bright91...defaultimage*]]% set hosts 10.141.0.0/16
[bright91...defaultimage*]]% commit
[bright91...defaultimage]]% list | grep defaultimage
Name (key) Path Hosts Write
---------------- ------------------------ ------------- -----
defaultimage /cm/images/default-image 10.141.0.0/16 no

As the output to list shows, the NFS export should be kept read-only, which is the default. Ap-
propriate parts of the export can then be mounted by a node or node category. The mount is defined
by setting the mount point, the nfs filesystem property, and the export device. For example, for a node
category (some output elided):

[br...defaultimage]]% category use default
[bright91->category[default]]% fsmounts
[bright91->category[default]->fsmounts]% add /usr/share/doc
[bright91->...*[/usr/share/doc*]]% set device bright91:/cm/images/default-image/user/share/doc
[bright91->...*[/usr/share/doc*]]% set filesystem nfs
[bright91->category*[default*]->fsmounts*[/usr/share/doc*]]% commit
[bright91->category[default]->fsmounts[/usr/share/doc]]% list
Device Mountpoint (key) Filesystem
--------------------- ------------------ ----------
...
bright91:/cm/images/usr/share/doc /usr/share/doc nfs
[bright91->category[default]->fsmounts[/usr/share/doc]]% show
Parameter Value
---------------- ---
Device bright91:/cm/images/default-image/usr/share/doc
Dump no
Filesystem nfs
Filesystem Check 0
Mount options defaults
Mountpoint /usr/share/doc

2by default <image> is default-image on a newly-installed cluster

© Bright Computing, Inc.

116 Configuring The Cluster

Other mount points can be also be added according to the judgment of the system administrator.
Some consideration of mount order may be needed, as discussed on page 114 under the subheading
“Mount Order Considerations”.

An Example Of Several NFS Subtree Mounts
The following mounts save about 500MB from tmpfs on a diskless node with CentOS 6, as can be worked
out from the following subtree sizes:

[root@bright91 ~]# cd /cm/images/default-image/
[root@bright91 default-image]# du -sh usr/share/locale usr/java usr/share/doc usr/src
262M usr/share/locale
78M usr/java
107M usr/share/doc
45M usr/src

The filesystem mounts can then be created using the techniques in this section. After doing that, the
result is then something like (some lines omitted):

[root@bright91 default-image]# cmsh
[bright91]% category use default; fsmounts
[bright91->category[default]->fsmounts]% list -f device:53,mountpoint:17
device mountpoint (key)
-- -----------------
... ...
master:/cm/shared /cm/shared
master:/home /home
bright91:/cm/images/default-image/usr/share/locale /usr/share/locale
bright91:/cm/images/default-image/usr/java /usr/java
bright91:/cm/images/default-image/usr/share/doc /usr/share/doc
bright91:/cm/images/default-image/usr/src /usr/src
[bright91->category[default]->fsmounts]%

Diskless nodes that have NFS subtree configuration carried out on them can be rebooted to start
them up with the new configuration.

3.10.4 Mounting The Root Filesystem For A Diskless Node Over NFS
Mounting the root filesystem over NFS is a special case of mounting filesystem subtrees for a diskless
node over NFS (section 3.10.3). The difference this time is that an initial root filesystem is deployed on
the node via NFS as part of the standard Linux boot procedure. Some tmpfs mounts are then overlaid
on top of parts of this filesystem.

The node being configured must have a disk setup that is diskless (section 3.9.4) for its node or node
category.

If configuring a node category, it can be configured as follows on a CentOS 6 or 7 system:
1. The full diskless disk setup is partitioned first:

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% set disksetup /cm/images/default-image/cm/local/apps/cmd/\
etc/htdocs/disk-setup/slave-diskless.xml
[bright91->category*[default*]]% commit #puts full OS in RAM

2. Then the default image is exported to the internal network:

[bright91->category[default]]% device use master; fsexports
[bright91->device[bright91]->fsexports]% add /cm/images/default-image
...*]->fsexports*[/cm/images/default-image*]]% set hosts internalnet

© Bright Computing, Inc.

3.10 Configuring NFS Volume Exports And Mounts 117

...*]->fsexports*[/cm/images/default-image*]]% set name default@internal

...*]->fsexports*[default@internal*]]% commit #exports default image
[bright91->device[bright91]->fsexports[default@internal]]% quit

3. The exported root filesystem is now mounted over the initial root filesystem:

[root@bright91 ~]# cmsh -c "category use default; fsmounts; add /; set\
device master:/cm/images/default-image; set mountoptions defaults,ro;\
set filesystem nfs; commit" #adds readonly root via nfs

The root filesystem should be read-only during normal use. However, when the main system starts
up after provisioning, a distribution start up script mounts the root filesystem as read-write. One way
to get it back to a read-only state again is to set a finalize script (section 3.15.4) that arranges for the drive
to remount itself as read-only after the system is fully up. The remount can be done with an rc.local
file, which runs after all the other rc start up scripts have run. A suitable finalize script is then:

#!/bin/bash
echo "mount -o remount,ro /" >> /localdisk/etc/rc.local

4. The filesystem for / however has plenty of parts that need to be writable too. These are now
mounted back in minimal subtrees into RAM. Keeping these mounts minimal means that the RAM
used by the node is minimal. These read/write subtrees can be specified in a file, with one line per
subtree:

[root@bright91 ~]# cat mountfiles #for centos 7
/var/cache
/var/log
/var/tmp
/var/spool
/tmp
/dev
/cm/local/apps/cmd/etc
/cm/local/apps/openldap/etc
/cm/local/apps/openpbs/var
/cm/local/apps/sge/var
/cm/local/apps/slurm/var
/cm/local/apps/pbspro/var
/cm/local/apps/pbspro-ce/var
/etc
/run
/var/lib #required by postfix and rpc-statd

The various workload manager /var directories for UGE/Slurm/PBS variants are only needed if
these workload managers are to be set up and used.

The subtrees can be mounted with a for loop:

[root@bright91 ~]# (echo "category use default; fsmounts"
for i in $(<mountfiles)
do

echo "add $i; set device tmpfs; set filesystem tmpfs; exit"
done
echo "commit") | cmsh

If there is further software in the root filesystem that needs write access, that too should be mounted
back into RAM.

The diskless nodes cannot be powered off with a simple poweroff or rebooted with a reboot. This
is because the parts of the filesystem required to carry out these actions are unmounted before they are

© Bright Computing, Inc.

118 Configuring The Cluster

called in the diskless configuration. The -f|--force option to these commands forces a poweroff or
reboot, but should only be used after first cleanly unmounting any writable shared filesystems, such as
/cm/shared and /home. This is because the forcing options interrupt I/O syncing when invoked, which
can result in a corrupted filesystem.

High Availability (Chapter 18) configured on the head nodes, with diskless nodes using a root filesys-
tem mounted over NFS, would not work in a simple configuration such as this because it will result in
stale NFS file handles over all the diskless nodes during a failover.

3.10.5 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers
If running NFS over RDMA, then at least NFS version 4.0 is recommended. NFS version 3 will also
work with RDMA, but uses IPoIB encapsulation instead of native verbs. NFS version 4.1 uses the RDMA
Connection Manager (librdmacm), instead of the InfiniBand Connection Manager (ib_cm) and is thereby
also able to provide pNFS.

The administrator can set the version of NFS used by the cluster by setting the value of Nfsvers in
the file /etc/nfsmount.conf on all the nodes, including the head node.

Drivers To Use For NFS over RDMA Must Be From The Parent Distribution
The use of the RDMA protocol (section 3.6) to provide NFS, by installing updated Bright Cluster Man-
ager OFED drivers (section 7.6 of the Installation Manual) is currently not supported. This is because
these drivers are packaged by Bright Computing from the vendor (Mellanox or Qlogic) releases, and the
vendor releases themselves do not support NFS over RDMA.

The option can be selected, but NFS will fall back to using the default NFS TCP/IP protocol.
When using NFS over RDMA, ibnet, the IP network used for InfiniBand, should be set. Section 3.6.3

explains how that can be done.

Exporting With Bright View And cmsh Using NFS Over RDMA
With the drivers installed, a volume export can be carried out using NFS over RDMA.

The procedure using Bright View is much the same as done in section 3.10.1 (“Exporting A Filesys-
tem Using Bright View”), except for that the ibnet network should be selected instead of the default
internalnet, and the “RDMA” option should be enabled.

The procedure using cmsh is much the same as done in section 3.10.1 (“Exporting A Filesystem Using
cmsh”), except that the ibnet network (normally with a recommended value of 10.149.0.0/16) should be
set, and the rdma option should be set.

Example

(based on the example in section 3.10.1)

...
[...->fsexports*[Fluid Model Data*]]% set path /modeldata
[...[Fluid Model Data*]]% set hosts ibnet
[...[Fluid Model Data*]]% set rdma yes
[...[Fluid Model Data*]]% commit
...

Mounting With Bright View And cmsh Using NFS Over RDMA
The mounting of the exported filesystems using NFS over RDMA can then be done.

The procedure using Bright View is largely like that in section 3.10.2, (“Mounting A Filesystem Using
Bright View”), except that the Device entry must point to master.ib.cluster so that it resolves to the
correct NFS server address for RDMA, and the checkbox for NFS over RDMA must be ticked.

The procedure using cmsh is similar to that in section 3.10.2, (“Mounting A Filesystem Using cmsh”),
except that device must be mounted to the ibnet, and the rdma option must be set, as shown:

Example

© Bright Computing, Inc.

/etc/nfsmount.conf

3.11 Managing And Configuring Services 119

(based on the example in section 3.10.2)

...
[bright91->category[default]->fsmounts]% add /modeldatagpu
[bright91->...*[/modeldatagpu*]]% set device bright91.ib.cluster:/modeldata
[bright91->...*[/modeldatagpu*]]% set filesystem nfs
[bright91->...*[/modeldatagpu*]]% set rdma yes
[bright91->category*[default*]->fsmounts*[/modeldatagpu*]]% commit
...

3.11 Managing And Configuring Services
3.11.1 Why Use The Cluster Manager For Services?
The unix services can be managed from the command line using the standard distribution tools:

chkconfig
and

service <service name> start|stop|status|...
where <service name> indicates a service such as mysqld, mariabd, nfs, postfix and so on.

Already installed services can also be brought under Bright Cluster Manager control, and started
and stopped with Bright View and cmsh tools.

An additional convenience that comes with the cluster manager tools is that some CMDaemon pa-
rameters useful for managing services in a cluster are very easily configured, whether on the head node,
a regular node, or for a node category. These parameters are:

• monitored: checks periodically if a service is running. Information is displayed and logged the
first time it starts or the first time it dies

• autostart: restarts a failed service that is being monitored.

– If autostart is set to on, and a service is stopped using Bright Cluster Manager, then no
attempts are made to restart the service. Attempted autostarts become possible again only
after Bright Cluster Manager starts the service again.

– If autostart is set to on, and if a service is removed using Bright Cluster Manager, then the
service is stopped before removal.

– If autostart is off, then a service that has not been stopped by CMDaemon still undergoes
an attempt to restart it, if

* CMDaemon is restarted

* its configuration files are updated by CMDaemon, for example in other modes, as in the
example on page 72.

• runif: (only honored for nodes used as part of a high availability configuration (chapter 18))
whether the service should run with a state of:

– active: run on the active node only

– passive: run on the passive only

– always: run both on the active and passive

– preferpassive: preferentially run on the passive if it is available. Valid only for head nodes.
Invalid for failover groups (section 18.5.3).

The details of a service configuration remain part of the configuration methods of the service soft-
ware itself.

© Bright Computing, Inc.

120 Configuring The Cluster

• Thus Bright Cluster Manager can run actions on typical services only at the generic service level
to which all the unix services conform. This means that CMDaemon can run actions such as
starting and stopping the service. If the restarting action is available in the script, then CM-
Daemon can also run that. An init script sample can be found within the file /usr/share/
doc/initscripts-<version>/sysvinitfiles in RHEL7 and derivatives.

• The operating system configuration of the service itself, including its persistence on reboot, re-
mains under control of the operating system, and is not handled by CMDaemon. So, stopping a
service within CMDaemon means that by default the service will still start up on reboot. Running
chkconfig from the command line can be used to configure the service to no longer start up on
reboot.

Bright Cluster Manager can be used to keep a service working across a failover event with an
appropriate runif setting and appropriate failover scripts such as the Prefailover script and the
Postfailover script (section 18.4.6). The details of how to do this will depend on the service.

3.11.2 Managing And Configuring Services—Examples
If, for example, the CUPS software is installed (“yum install cups”), then the CUPS service can be
managed in several ways:

Managing The Service From The Regular Shell, Outside Of CMDaemon
Standard unix commands from the bash prompt work, as shown by this session:

[root@bright91 ~]# chkconfig cups on
... symlinks created...
[root@bright91 ~]# service cups start
Redirecting to /bin/systemctl start cups.service

Managing The Service From cmsh
Starting the service in cmsh: The following session illustrates adding the CUPS service from within
device mode and the services submode. The device in this case is a regular node, node001, but a head
node can also be chosen. Monitoring and auto-starting are also set in the session (some lines elided):

[bright91]% device services node001
[bright91->device[node001]->services]% add cups
[bright91->device*[node001*]->services*[cups*]]% show
Parameter Value
------------------------------ ------------------------
Autostart no
Belongs to role no
Monitored no
...
Run if ALWAYS
Service cups
...
[bright91->device*[node001*]->services*[cups*]]% set monitored on
[bright91->device*[node001*]->services*[cups*]]% set autostart on
[bright91->device*[node001*]->services*[cups*]]% commit
[bright91->device[node001]->services[cups]]%
Apr 14 14:02:16 2017 [notice] node001: Service cups was started
[bright91->device[node001]->services[cups]]%

Other service options in cmsh: Within cmsh, the start, stop, restart, and reload options to the
service <service name> start|stop|restart|...

© Bright Computing, Inc.

/usr/share/doc/
/usr/share/doc/
/sysvinitfiles

3.11 Managing And Configuring Services 121

command can be used to manage the service at the services submode level. For example, continu-
ing with the preceding session, stopping the CUPS service can be done by running the cups service
command with the stop option as follows:

[bright91->device[node001]->services[cups]]% stop
Fri Apr 14 14:03:40 2017 [notice] node001: Service cups was stopped
Successfully stopped service cups on: node001
[bright91->device[node001]->services[cups]]%

The service is then in a STOPPED state according to the status command.

[bright91->device[node001]->services[cups]]% status
cups [STOPPED]

Details on how a state is used when monitoring a service are given in the section “Monitoring A
Service With cmsh And Bright View” on page 123.

Continuing from the preceding session, the CUPS service can also be added for a node category from
category mode:

[bright91->device[node001]->services[cups]]% category
[bright91->category]% services default
[bright91->category[default]->services]% add cups

As before, after adding the service, the monitoring and autostart parameters can be set for the service.
Also as before, the options to the service <service name> start|stop|restart|... command can
be used to manage the service at the services submode level. The settings apply to the entire node
category (some lines elided):

Example

[bright91->category*[default*]->services*[cups*]]% show
...
[bright91->category*[default*]->services*[cups*]]% set autostart yes
[bright91->category*[default*]->services*[cups*]]% set monitored yes
[bright91->category*[default*]->services*[cups*]]% commit
[bright91->category[default]->services[cups]]%
Fri Apr 14 14:06:27 2017 [notice] node002: Service cups was started
Fri Apr 14 14:06:27 2017 [notice] node005: Service cups was started
Fri Apr 14 14:06:27 2017 [notice] node004: Service cups was started
Fri Apr 14 14:06:27 2017 [notice] node003: Service cups was started
[bright91->category[default]->services[cups]]% status
node001.................. cups [STOPPED]
node002.................. cups [UP]
node003.................. cups [UP]
node004.................. cups [UP]
node005.................. cups [UP]

Managing The Service From Bright View
Using Bright View, a service can be managed from a Services option, accessible from the Settings
option of

• Head Nodes, for example via a clickpath of
Devices→Head Nodes[bright91]→Settings→Services

• Nodes, for example via a clickpath of
Devices→Nodes[node001]→Settings→Services

© Bright Computing, Inc.

122 Configuring The Cluster

• Node categories, for example via a clickpath of
Grouping→Node categories[default]→Settings→Services

Figure 3.16 shows the Services subwindow accessed from the default software image, which is an
item within the “Node Categories” subwindow. By default, there are no services set by the category
for nodes.

Figure 3.16: Operating System Service Configurations Subwindow In Bright View

The service <service name> start|stop|restart... command options start, stop, restart, and
so on, are displayed as selection options to the service action option.

The existence of the service itself can be managed using the Add, Remove, and, if the service already
exists, the Edit button. The change can be reverted with the Revert button.

Figure 3.17 shows CUPS being set up from an Add dialog in the services subwindow. The subwindow
is accessible via the + ADD button of figure 3.16.

© Bright Computing, Inc.

3.11 Managing And Configuring Services 123

Figure 3.17: Setting Up A Service Using Bright View

For a service in the services subwindow, clicking on the Status button in figure 3.16 displays a grid
of the state of services on a running node as either Up or Down.

Monitoring A Service With cmsh And Bright View
The service is in a DOWN state if it is not running, and in a FAILING state if it is unable to run after 10 auto-
starts in a row. Event messages are sent during these first 10 auto-starts. After the first 10 auto-starts, no
more event messages are sent, but autostart attempts continue.

In case an autostart attempt has not yet restarted the service, the reset option may be used to attempt
an immediate restart. The reset option is not a service option in the regular shell, but is used by
CMDaemon (within cmsh and Bright View) to clear a FAILING state of a service, reset the attempted
auto-starts count to zero, and attempt a restart of the service.

The monitoring system sets the ManagedServicesOk health check (Appendix G.2.1) to a state of FAIL
if any of the services it monitors is in the FAILING state. In cmsh, the statuses of the services are listed by
running the latesthealthdata command (section 13.6.3) from device mode.

Standard init.d script behavior is that the script return a non-zero exit code if the service is down,
and a zero exit code if the service is up. A non-zero exit code makes Bright Cluster Manager decide that
the service is down, and should be restarted.

However, some scripts return a non-zero exit code even if the service is up. These services therefore
have Bright Cluster Manager attempt to start them repetitively, even though they are actually running.

This behavior is normally best fixed by setting a zero exit code for when the service is up, and a
non-zero exit code for when the service is down.

© Bright Computing, Inc.

124 Configuring The Cluster

Removing A Service From CMDaemon Control Without Shutting It Down
Removing a service from Bright Cluster Manager control while autostart is set to on stops the service
on the nodes:

[bright91->category[default]->services]% add cups
[bright91->category*[default*]->services*[cups*]]% set monitored on
[bright91->category*[default*]->services*[cups*]]% set autostart on
[bright91->category*[default*]->services*[cups*]]% commit; exit
[bright91->category[default]->services]% remove cups; commit
Wed May 23 12:53:58 2012 [notice] node001: Service cups was stopped

In the preceding cmsh session, cups starts up when the autostart parameter is committed, if cups is
not already up.

The behavior of having the service stop on removal is implemented because it is usually what is
wanted.

However, sometimes the administrator would like to remove the service from CMDaemon control
without it shutting down. To do this, autostart must be set to off first.

[bright91->category[default]->services]% add cups
[bright91->category*[default*]->services*[cups*]]% set monitored on
[bright91->category*[default*]->services*[cups*]]% set autostart off
[bright91->category*[default*]->services*[cups*]]% commit; exit
Wed May 23 12:54:40 2012 [notice] node001: Service cups was started
[bright91->category[default]->services]% remove cups; commit
[bright91->category[default]->services]% !# no change: cups stays up

3.12 Managing And Configuring A Rack
3.12.1 Racks
A cluster may have local nodes grouped physically into racks. A rack is 42 units in height by default,
and nodes normally take up one unit.

Racks Overview
Racks overview in Bright View: The Racks overview pane can be opened up in Bright View via the
clickpath Datacenter Infrastructure→Racks (figure 3.18). Racks can then be added, removed, or

Figure 3.18: Racks Overview Pane Using Bright View

edited from that pane.
Within the Racks pane:

• a new rack item can be added with the + ADD button.

• an existing rack item can be edited with the Edit button, or by double-clicking on the item itself
in the pane.

© Bright Computing, Inc.

3.12 Managing And Configuring A Rack 125

These actions bring up the rack configuration pane (figure 3.19).

Racks overview in cmsh: The rack mode in cmsh allows racks defined in the cluster manager to be
listed:

[bright91->rack]% list
Name (key) Room x-Coordinate y-Coordinate Height
-------------- ------------- ------------- ------------- ------
rack2 skonk works 2 0 42
racknroll 1 0 42

Rack Configuration Settings
Rack configuration settings in Bright View: The Settings pane for editing a rack item selected from
the Racks pane is shown in figure 3.19.

Figure 3.19: Rack Configuration Settings Using Bright View

The rack item configuration settings are:

• Name: A unique name for the rack item. Names such as rack001, rack002 are a sensible choice

• Room: A unique name for the room the rack is in.

• Position: The x- and y-coordinates of the rack in a room. These coordinates are meant to be a
hint for the administrator about the positioning of the racks in the room, and as such are optional,
and can be arbitrary numbers. The Notes field can be used as a supplement or as an alternative
for hints.

© Bright Computing, Inc.

126 Configuring The Cluster

• Height: by default this is the standard rack size of 42U.

• Bottom of rack is position 1: Normally, a rack uses the number 1 to mark the top and 42 to
mark the bottom position for the places that a device can be positioned in a rack. However, some
manufacturers use 1 to mark the bottom instead. Ticking the checkbox records the numbering
layout accordingly for all racks, if the checkboxed rack is the first rack seen in Rackview.

Rack configuration settings in cmsh: In cmsh, tab-completion suggestions for the set command in
rack mode display the racks available for configuration. On selecting a particular rack (for example,
rack2 as in the following example), tab-completion suggestions then display the configuration settings
available for that rack:

Example

[bright91->rack]% set rack
rack1 rack2 rack3
[bright91->rack]% set rack2
height name revision width y-coordinate
inverted notes room x-coordinate

The configuration settings for a particular rack obviously match with the parameters associated with
and discussed in figure 3.19. The only slightly unobvious match is the Boolean parameter inverted in
cmsh, which simply corresponds directly to “Bottom of rack is position 1” in Bright View.

Setting the values can be done as in this example:

Example

[bright91->rack]% use rack2
[bright91->rack[rack2]]% set room "skonk works"
[bright91->rack*[rack2*]]% set x-coordinate 2
[bright91->rack*[rack2*]]% set y-coordinate 0
[bright91->rack*[rack2*]]% set inverted no
[bright91->rack*[rack2*]]% commit
[bright91->rack[rack2]]%

3.12.2 Assigning Devices To A Rack
Devices such as nodes, switches, and chassis, can be assigned to racks.

By default, no such devices are assigned to a rack.
Devices can be assigned to a particular rack and to a particular position within the rack as follows:

Assigning Devices To A Rack Using Bright View
Using Bright View, a device such as a node node001 can be assigned to a rack via the clickpath
Devices→Nodes[node001]→Settings→JUMP TO→Rack (figure 3.20):

© Bright Computing, Inc.

3.12 Managing And Configuring A Rack 127

Figure 3.20: Rack Assignment Using Bright View

Assigning Devices To A Rack Using cmsh
Using cmsh in device mode, node assignment to an existing rack rack2, of:

• node001 to position 1

• node002 to position 2

• node003 to position 3

can conveniently be done as follows:

root@bright91:~# for i in 1..3 ; do cmsh -c "device use node00$i; get hostname; set rack rack2; \
get rack; set deviceposition $i; get deviceposition; commit"; done

The Convention Of The Top Of The Device Being Its Position
Since rack manufacturers usually number their racks from top to bottom, the position of a device in
a rack (using the parameter Position in Bright View, and the parameter deviceposition in cmsh) is
always taken to be where the top of the device is located. This is the convention followed even for the
less usual case where the rack numbering is from bottom to top.

A position on a rack is 1U of space. Most devices have a height that fits in that 1U, so that the top of
the device is located at the same position as the bottom of the device, and no confusion is possible. The
administrator should however be aware that for any device that is greater than 1U in height such as, for
example, a blade enclosure chassis (section 3.12.3), the convention means that it is the position of the
top of the device that is where the device is considered to be. The position of the bottom of the device is
ignored.

3.12.3 Assigning Devices To A Chassis
A Chassis As A Physical Part Of A Cluster
In a cluster, several local nodes may be grouped together physically into a chassis. This is common for
clusters using blade systems. Clusters made up of blade systems use less space, less hardware, and less
electrical power than non-blade clusters with the same computing power. In blade systems, the blades
are the nodes, and the chassis is the blade enclosure.

© Bright Computing, Inc.

128 Configuring The Cluster

A blade enclosure chassis is typically 6 to 10U in size, and the node density for server blades is
typically 2 blades per unit with 2014 technology.

Chassis Configuration And Node Assignment
Basic chassis configuration and node assignment with Bright View: Adding and removing chassis
from a list of chassis in Bright View can be done via the clickpath Devices→Chassis. This opens up a
Chassis pane that provides an overview of the list of chassis.

Within the Chassis pane, each chassis can further have an individual subpane opened for it. Each
individual chassis configuration can be added, edited, or deleted via this chassis subpane (figure 3.21).

Figure 3.21: Bright View Chassis Subpane

The options that can be set within the subpane include the following:

• Hostname: a name that can be assigned to the chassis operating system

• Mac: the MAC address of the chassis

• Rack: the rack in which the chassis is placed

• Members: the Members menu option allows devices to be assigned to a chassis (figure 3.22). An
item within the Device set can be any item from the subsets of Node, Switch, Power Distribution
Unit, Generic Device, Rack Sensor, and Gpu Unit. These items can be filtered for viewing, de-
pending on whether they are Assigned (members of the chassis), Not Assigned (not members of
the chassis), or they can All be viewed (both Assigned and Not Assigned items).

• Layout: how the nodes in a chassis are laid out visually.

• Network: which network the chassis is attached to.

© Bright Computing, Inc.

3.12 Managing And Configuring A Rack 129

• Username, Password: the user name and password to access the chassis operating system

• Power control, Custom power script, Custom power script argument: power-related items for
the chassis.

• Userdefined1, Userdefined2: administrator-defined variables that can be used by CMDaemon.

Figure 3.22: Bright View Chassis Members Menu Options

Basic chassis configuration and node assignment with cmsh: The chassis mode in cmsh allows con-
figuration related to a particular chassis. Tab-completion suggestions for a selected chassis with the set
command show possible parameters that may be set:

Example

[bright91->device[chassis1]]% set
containerindex hostname partition tag
custompingscript ip password userdefined1
custompingscriptargument layout powercontrol userdefined2
custompowerscript mac powerdistributionunits userdefinedresources
custompowerscriptargument members rack username
defaultgateway model revision
deviceheight network slots
deviceposition notes switchports

Whether the suggested parameters are actually supported depends on the chassis hardware. For
example, if the chassis has no network interface of its own, then the ip and mac address settings may be
set, but cannot function.

The “positioning” parameters of the chassis within the rack can be set as follows with cmsh:

Example

[bright91->device[chassis1]]% set rack rack2
[bright91->device*[chassis1*]]% set deviceposition 1; set deviceheight 6
[bright91->device*[chassis1*]]% commit

The members of the chassis can be set as follows with cmsh:

© Bright Computing, Inc.

130 Configuring The Cluster

Example

[bright91->device[chassis1]]% append members bright91 node001..node005
[bright91->device*[chassis1*]]% commit

3.13 Configuring GPU Settings
3.13.1 GPUs And GPU Units
GPUs (Graphics Processing Units) are processors that are heavily optimized for executing certain types
of parallel processing tasks. GPUs were originally used for rendering graphics, and one GPU typically
has hundreds of cores. When used for general processing, they are sometimes called General Processing
GPUs, or GPGPUs. For convenience, the “GP” prefix for General Processing is not used in this manual.

A GPU is typically placed on a PCIe card. GPUs can be physically inside the node that uses them, or
they can be physically external to the node that uses them. As far as the operating system on the node
making use of the physically external GPUs is concerned, the GPUs are internal to the node.

If the GPUs are physically external to the node, then they are typically in a GPU unit. A GPU unit
is a chassis that hosts only GPUs. It is typically able to provide GPU access to several nodes, usually
via PCIe extender connections. This ability means that external GPUs typically require more configura-
tion than internal GPUs. GPU units are not covered in this manual because they are not very popular,
but there is an example configuration given at https://community.brightcomputing.com/question/
5e16000ef396761939c7ee42/answer for the Dell PowerEdge C410x.

Configuring GPU settings for GPUs—that is, for devices internal to a node—is covered next.

3.13.2 Configuring GPU Settings
The gpusettings Submode In cmsh
In cmsh, GPUs can be configured for a specified node via device mode.

Going into the gpusettings submode for that node then allows a type of GPU to be set, from the amd
or nvidia types, and a range to be specified for the GPU slots for that particular node:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% gpusettings
[bright91->device[node001]->gpusettings]% add nvidia 1-3 ; commit

The range can be specified as

• a single number, for a particular slot, for example: 3

• a range, for a range of slots, for example: 0-2

• all, for all GPU slots on that node, using:

all

or

*

GPUs can also be configured for a specified category via category mode. For example, using the
category default, then entering into the gpusettings submode allows a type (nvidia or amd) and a
range to be set for the range of GPUs:

Example

© Bright Computing, Inc.

https://community.brightcomputing.com/question/5e16000ef396761939c7ee42/answer
https://community.brightcomputing.com/question/5e16000ef396761939c7ee42/answer
https://community.brightcomputing.com/question/5e16000ef396761939c7ee42/answer
https://community.brightcomputing.com/question/5e16000ef396761939c7ee42/answer

3.13 Configuring GPU Settings 131

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% gpusettings
[bright91->category[default]->gpusettings]% list
GPU range (key) Power limit ECC mode Compute mode Clock speeds
---------------- ------------ ------------ ------------- -------------
[bright91->category[default]->gpusettings]% add nvidia 1-3 ; commit
[bright91->category[default]->gpusettings[nvidia:1-3]]% show
Parameter Value
------------------------------ ----------------------------------
Clock speeds
Clock sync boost mode
Compute mode
ECC mode
...

As usual, GPU settings for a node override those for a category (section 2.1.3).

GPU Settings With NVIDIA GPUs
The installation of the NVIDIA GPU software driver packages is covered in section 7.4.1 of the Installa-
tion Manual. It should be noted that the cuda-dcgm package must be installed to access NVIDIA GPU
metrics.

The present section is about configuring NVIDIA GPUs in Bright Cluster Manager. The driver itself
does not necessarily have to be in place for the configuration to be done, although the configuration only
becomes active when the driver is installed.

After a GPU type has been set, the following NVIDIA GPU settings may be specified, if supported,
from within the gpusettings submode:

• clockspeeds: The pair of clock speeds (frequency in MHz) to be set for this parameter can be
selected from the list of available speeds. The available speeds can be seen by running the status
command. The values are specified in the form: <number for GPU processor>,<number for memory>

• clocksyncboostmode: GPU boosting. Exceed the maximum core and memory clock speeds if it is
safe. Choices are:

– enabled

– disabled

• computemode: Contexts can be computed with the following values for this mode:

– Default: Multiple contexts are allowed

– Exclusive thread: Only one context is allowed per device, usable from one thread at a time

– Exclusive process: Only one context is allowed per device, usable from multiple threads at
a time. This mode option is valid for CUDA 4.0 and higher. Earlier CUDA versions ran only
in this mode.

– Prohibited: No contexts are allowed per device

• eccmode: Sets the ECC bit error check, with:

– enabled

– disabled

When ECC is enabled:

– Single bit errors are detected, using the EccSBitGPU metric (page 855), and corrected auto-
matically.

© Bright Computing, Inc.

132 Configuring The Cluster

– Double bit errors are also detected, using the EccDBitGPU metric (page 854), but cannot be
corrected.

• GPU range: range values can be set as follows:

– all: The GPU settings apply to all GPUs on the node.

– <number>: The GPU settings apply to an individual GPU, for example: 1

– <number range>: The GPU settings apply to a range of GPUs, for example: 1,3-5

• powerlimit: The administrator-defined upper power limit for the GPU. Only valid if powermode
is Supported.

– min: The minimum upper power limit that the hardware supports.

– max: The maximum upper power limit that the hardware supports.

– <number>: An arbitrary upper power limit, specified as a number between min and max

– default: Upper power limit based on the default hardware value.

If no value is specified for a GPU setting, then the hardware default is used.

GPU Settings With AMD GPUs
GPU settings for AMD Radeon GPUs are accessed via cmsh in the same way as NVIDIA GPU settings.
The AMD GPU setting parameters do differ from the NVIDIA ones.

The AMD GPUs supported are Radeon cards. A list of cards and operating systems com-
patible with the Linux driver used is at https://support.amd.com/en-us/kb-articles/Pages/
Radeon-Software-for-Linux-Release-Notes.aspx

AMD GPU driver installation is described in section 7.5 of the Installation Manual.
The Radeon Instinct MI25 shows the following settings in Ubuntu 16_06 running a Linux 4.4.0-72-

generic kernel:

Example

[bright91->device[node001]->gpusettings]% list
Type GPU range Info
---- --------- ------------------
AMD 0 PowerPlay: manual
[bright91->device[node001]->gpusettings]% use amd:0
[bright91->device[node001]->gpusettings[amd:0]]% show
Parameter Value
-------------------------------- -----------------------------
Activity threshold 1
Fan speed 255
GPU clock level 5
GPU range 0
Hysteresis down 0
Hysteresis up 0
Info PowerPlay: manual
Memory clock level 3
Minimum GPU clock 0
Minimum memory clock 0
Overdrive percentage 1
PowerPlay mode manual
Revision
Type AMD

© Bright Computing, Inc.

https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx
https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx

3.13 Configuring GPU Settings 133

The possible values here are:

• activitythreshold: Percent GPU usage at a clock level that is required before clock levels change.
From 0 to 100.

• fanspeed: Maximum fan speed. From 0 to 255

• gpuclocklevel: GPU clock level setting. From 0 to 7.

• gpurange: The slots used.

• hysteresisdown: Delay in milliseconds before a clock level decrease is carried out.

• hysteresisup: Delay in milliseconds before a clock level increase is carried out.

• info: A compact informative line about the GPU status.

• memoryclocklevel: Memory clock speed setting. From 0-3. Other cards can show other values.

• minimumgpuclock: Minimum clock frequency for GPU, in MHz. The kernel only allows certain
values. Supported values can be seen using the status command.

• minimummemoryclock: Minimum clock frequency for the memory, in MHz. The kernel only allows
certain values. Supported values can be seen using the status command.

• overdrivepercentage: Percent overclocking. From 0 to 20%

• powerplaymode: Decides how the performance level power setting should be implemented.

– high: keep performance high, regardless of GPU workload

– low: keep performance low, regardless of GPU workload

– auto: Switch clock rates according to GPU workload

– manual: Use the memory clock level and GPU clock values.

The status command displays supported clock frequencies (some values ellipsized):

Example

[bright91->device[node001]->gpusettings[amd:0]]% status
Index Name Property Value Supported
----- --------------------- ------------ ------------ -------------------------------------
0 Radeon Instinct MI25 Clock 1399Mhz 852Mhz, 991Mhz, ..., 1440Mhz, 1515Mhz
0 Radeon Instinct MI25 Memory 945Mhz 167Mhz, 500Mhz, 800Mhz, 945Mhz

The gpusettings Submode In Bright View
In Bright View the GPU settings can be accessed within the settings options for a device with a GPU.
For example, if a regular node, node001, has a GPU, then the clickpath would be:

Devices→Nodes[node001]→Edit→Settings→GPU Settings

which opens up the GPU Settings subpane for that node (figure 3.23). Similarly, GPU settings can
also be accessed within the Category resource, selecting a category item, and then selecting the GPU
Settings subpane.

© Bright Computing, Inc.

134 Configuring The Cluster

Figure 3.23: GPU Settings Subpane For A Node

GPU Configuration For HPC Workload Managers
Slurm: To configure NVIDIA GPUs for Slurm, changes are made in slurm.conf when cm-wlm-setup
configures GPUs in Slurm.

Changes made are kept in the AUTOGENERATED section and can be worked out by checking the dif-
ference between the slurm.conf.template file and the actual slurm.conf file. Changes made include
defining the GresTypes gpu and mps, and setting GPU plugins that allow Slurm generic resources to
work.

The configured gres options can be seen by running sbatch --gres=help:

Example

[fred@bright91 ~]$ sbatch --gres=help
Valid gres options are:
gpu[[:type]:count]
mps[[:type]:count]

This means that a GPU can be requested in a job script with the Slurm gres option:

#SBATCH --gres=gpu:1

Similarly, MPS resources (https://slurm.schedmd.com/gres.html#MPS_Management) can be requested
with:

#SBATCH --gres=mps:100

If adding new parameters manually, care must be taken to avoid duplication of parameters already
in the file, because slurmd is unlikely to work properly with duplicated parameters.

The Slurm client role can be configured at configuration overlay, category, or node level. If configur-
ing the Slurm client role for GPU gres resources manually, then each GPU can be configured within the
role:

Example

© Bright Computing, Inc.

https://slurm.schedmd.com/gres.html#MPS_Management

3.13 Configuring GPU Settings 135

[bright91->configurationoverlay]% list
Name (key) Priority All head nodes Nodes Categories Roles
----------------- ---------- -------------- ---------------- ---------------- ----------------
slurm-accounting 500 yes slurmaccounting
slurm-client 500 no default slurmclient
slurm-server 500 yes slurmserver
slurm-submit 500 yes bright91 default slurmsubmit
[bright91->configurationoverlay]% use slurm-client
[bright91->configurationoverlay[slurm-client]]% roles
[bright91->configurationoverlay[slurm-client]->roles]% use slurmclient
[bright91->configurationoverlay[slurm-client]->roles[slurmclient]]% genericresources
[bright91->configurationoverlay[slurm-client]->roles[slurmclient]->genericresources]%
[bright91->...->roles[slurmclient]->genericresources]% add gpu0
[bright91->...->roles*[slurmclient*]->genericresources*[gpu0*]]% set name gpu
[bright91->...->roles*[slurmclient*]->genericresources*[gpu0*]]% set file /dev/nvidia0
[bright91->...->roles*[slurmclient*]->genericresources*[gpu0*]]% commit
[bright91->...->roles[slurmclient]->genericresources[gpu0]]%

(Repeat similar settings for the other GPUs, gpu1...gpu7)
[bright91->...->roles[slurmclient]->genericresources]% list

Alias (key) Name Type Count File
----------- -------- -------- -------- ----------------
gpu0 gpu /dev/nvidia0
gpu1 gpu /dev/nvidia1
gpu2 gpu /dev/nvidia2
gpu3 gpu /dev/nvidia3
gpu4 gpu /dev/nvidia4
gpu5 gpu /dev/nvidia5
gpu6 gpu /dev/nvidia6
gpu7 gpu /dev/nvidia7

[bright91->configurationoverlay[slurm-client]->roles[slurmclient]->genericresources]%

By default, Slurm just allows a single job to be executed per node. To change this behavior, it is
necessary to allow oversubscription. For example, to allow 8 jobs per node:

Example

[bright91->wlm[slurm]]% jobqueue
[bright91->wlm[slurm]->jobqueue]% use defq
[bright91->wlm[slurm]->jobqueue[defq]]% set oversubscribe yes:8
[bright91->wlm[slurm]->jobqueue*[defq*]]% commit
[bright91->wlm[slurm]->jobqueue[defq]]%

PBS: Bright Cluster Manager version 9.0 onwards supports GPU configuration in PBS via the cm-wlm-setup
tool after installation (section 7.3.2).

UGE: GPU configuration is carried out as follows:

1. UGE cgroups parameter modifications for GPU devices (obsolete)
In Bright Cluster Manager 8.0, 8.1, and 8.2: The command qconf -mconf <hostname> is used to
add GPU device(s) to the cgroups_params parameter for the host.

For example, if node001 has access to 8 GPUs, then running the command qconf -mconf node001
on the head node may initially show a configuration such as:

hostname node001
cgroups_params cgroup_path=/sys/fs/cgroup cpuset=true \

© Bright Computing, Inc.

136 Configuring The Cluster

mount=false freezer=true freeze_pe_tasks=true \
killing=false forced_numa=false \
h_vmem_limit=false m_mem_free_hard=false \
m_mem_free_soft=false min_memory_limit=0

The GPU devices can then be appended to the end of the last line and saved, so that the last line
becomes:

Example

m_mem_free_soft=false min_memory_limit=0 devices=/dev/nvidia[0-7]

The parameter can be made persistent by setting the AdvancedConfig directive (page 794) to in-
clude the setting UGEDisableCgroupSettings=1 and restarting CMDaemon.

2. GPU devices configuration in UGEClient role (current)
In Bright Cluster Manager 9.0: setting the AdvancedConfig directive (page 794) to include the set-
ting UGEDisableCgroupSettings=1 is not needed. This is because the qconf -mconf configuration
method is not required.

Instead, Bright Cluster Manager 9.0 introduces specification of the GPU devices via the devices
parameter for the UGEClient role:

Example

[bright91->category[dgx]->roles[ugeclient]]% set gpus 8
[bright91->category*[dgx*]->roles*[ugeclient*]]% set gpudevices gpu0[device=/dev/nvidia0,cuda_id=0]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu1[device=/dev/nvidia1,cuda_id=1]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu2[device=/dev/nvidia2,cuda_id=2]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu3[device=/dev/nvidia3,cuda_id=3]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu4[device=/dev/nvidia4,cuda_id=4]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu5[device=/dev/nvidia5,cuda_id=5]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu6[device=/dev/nvidia6,cuda_id=6]
[bright91->category*[dgx*]->roles*[ugeclient*]]% append gpudevices gpu7[device=/dev/nvidia7,cuda_id=7]
[bright91->category*[dgx*]->roles*[ugeclient*]]% commit
[bright91->category[dgx]->roles[ugeclient]]%.

3. UGE port configuration for DCGM
The DCGM port should be set correctly.

In Bright Cluster Manager versions prior to 9.0, it can be changed from its default with the com-
mand qconf -mconf. The format for the setting is:

Example

execd_params UGE_DCGM_PORT=<port>

The default value for <port> is 5555.

In Bright Cluster Manager 9.0 onwards, setting the DCGM port for UGE is a configuration option
in the CMDaemon front ends.

© Bright Computing, Inc.

3.14 Configuring Custom Scripts 137

LSF: allows GPU devices to be autodetected. To allow it, the administrator should set the following
parameter in lsf.conf:

Example

LSF_GPU_AUTOCONFIG=Y

GPU resource enforcement can be configured for LSF as follows:

Example

[bright91->wlm[lsf]->cgroups]% append resourceenforce gpu
[bright91->wlm*[lsf*]->cgroups*]% commit
[bright91->wlm[lsf]->cgroups]%

3.14 Configuring Custom Scripts
Some scripts are used for custom purposes. These are used as replacements for certain default scripts,
for example, in the case of non-standard hardware where the default script does not do what is expected.
The custom scripts that can be set, along with their associated arguments are:

• custompowerscript and custompowerscriptargument

• custompingscript and custompingscriptargument

• customremoteconsolescript and customremoteconsolescriptargument

The environment variables of CMDaemon (section 3.3.1 of the Developer Manual) can be used in the
scripts. Successful scripts, as is the norm, return 0 on exit.

3.14.1 custompowerscript
The use of custom power scripts is described in section 4.1.4.

3.14.2 custompingscript
The following example script:

Example

#!/bin/bash
/bin/ping -c1 $CMD_IP

can be defined and set for the cases where the default built-in ping script, cannot be used.
By default, the node device states are detected by the built-in ping script (section 5.5) using ICMP

ping. This results in the statuses that can be seen on running the list command of cmsh in device mode.
An example output, formatted for convenience, is:

Example

[root@bright91]# cmsh -c "device; format hostname:15, status:15; list"
hostname (key) status
--------------- --------------
bright91 [UP]
node001 [UP]
node002 [UP]

If some device is added to the cluster that blocks such pings, then the built-in ping can be replaced
by the custom ping of the example, which relies on standard ICMP ping.

However, the replacement custom ping script need not actually use a variety of ping at all. It could
be a script running web commands to query a chassis controller, asking if all its devices are up. The
script simply has to provide an exit status compatible with expected ping behavior. Thus an exit status
of 0 means all the devices are indeed up.

© Bright Computing, Inc.

138 Configuring The Cluster

3.14.3 customremoteconsolescript
A custom remote console script can be used to run in the built-in remote console utility. This might be
used, for example, to allow the administrator remote console access through a proprietary KVM switch
client.

For example, a user may want to run a KVM console access script that is on the head node and with
an absolute path on the head node of /root/kvmaccesshack. The script is to run on the console, and
intended to be used for node node001, and takes the argument 1. This can then be set in cmsh as follows:

Example

[root@bright91]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% get customremoteconsolescript; get customremoteconsolescriptargument

[bright91->device[node001]]% set customremoteconsolescript /root/kvmaccesshack
[bright91->device[node001]]% set customremoteconsolescriptargument 1
[bright91->device[node001]]% rconsole

KVM console access session using the 1 argument option is displayed

In Bright View, the corresponding clickpaths to access these script settings are:
Devices→Nodes↓Edit→Settings→Custom remote console script

and
Devices→Nodes↓Edit→Settings→Custom remote console script argument

while the remote console can be launched via the clickpath:
Devices→Nodes↓Edit←Connect→Remote console

3.15 Cluster Configuration Without Execution By CMDaemon
3.15.1 Cluster Configuration: The Bigger Picture
The configurations carried out in this chapter so far are based almost entirely on configuring nodes, via
a CMDaemon front end (cmsh or Bright View), using CMDaemon to execute the change. Indeed, much
of this manual is about this too because it is the preferred technique. It is preferred:

• because it is intended by design to be the easiest way to do common cluster tasks,

• and also generally keeps administration overhead minimal in the long run since it is CMDaemon
rather than the system administrator that then takes care of tracking the cluster state.

There are however other cluster configuration techniques besides execution by CMDaemon. To get some
perspective on these, it should be noted that cluster configuration techniques are always fundamentally
about modifying a cluster so that it functions in a different way. The techniques can then for convenience
be separated out into modification techniques that rely on CMDaemon execution and techniques that
do not, as follows:

1. Configuring nodes with execution by CMDaemon: As explained, this is the preferred technique.
The remaining techniques listed here should therefore usually only be considered if the task cannot
be done with Bright View or cmsh.

2. Replacing the node image: The image on a node can be replaced by an entirely different one, so
that the node can function in another way. This is covered in section 3.15.2. It can be claimed that
since it is CMDaemon that selects the image, this technique should perhaps be classed as under
item 1. However, since the execution of the change is really carried out by the changed image
without CMDaemon running on the image, and because changing the entire image to implement
a change of functionality is rather extreme, this technique can be given a special mention outside
of CMDaemon execution.

© Bright Computing, Inc.

3.15 Cluster Configuration Without Execution By CMDaemon 139

3. Using a FrozenFile directive: Applied to a configuration file, this directive prevents CMDae-
mon from executing changes on that file for nodes. During updates, the frozen configuration may
therefore need to be changed manually. The prevention of CMDaemon acting on that file pre-
vents the standard cluster functionality that would run based on a fully CMDaemon-controlled
cluster configuration. The FrozenFile directive is introduced in section 2.6.5, and covered in the
configuration context in section 3.15.3.

4. Using an initialize or finalize script: This type of script is run during the initrd stage, much
before CMDaemon on the regular node starts up. It is run if the functionality provided by the
script is needed before CMDaemon starts up, or if the functionality that is needed cannot be made
available later on when CMDaemon is started on the regular nodes. CMDaemon does not execute
the functionality of the script itself, but the script is accessed and set on the initrd via a CMDaemon
front end (Appendix E.2), and executed during the initrd stage. It is often convenient to carry out
minor changes to configuration files inside a specific image in this way, as shown by the example
in Appendix E.5. The initialize and finalize scripts are introduced in section 3.15.4.

5. A shared directory: Nodes can be configured to access and execute a particular software stored
on a shared directory of the cluster. CMDaemon does not execute the functionality of the software
itself, but is able to mount and share directories, as covered in section 3.10.

Finally, outside the stricter scope of cluster configuration adjustment, but nonetheless a broader way to
modify how a cluster functions, and therefore mentioned here for more completeness, is:

6. Software management: the installation, maintenance, and removal of software packages. Stan-
dard post-installation software management based on repositories is covered in sections 12.2–12.6.
Third-party software management from outside the repositories, for software that is part of Bright
Cluster Manager is covered in Chapter 7 of the Installation Manual.

Third-party software that is not part of Bright Cluster Manager can be managed on the head node
as on any other Linux system, and is often placed under /opt or other recommended locations. If
required by the other nodes, then the software should typically be set up by the administrator so
that it can be accessed via a shared filesystem.

3.15.2 Making Nodes Function Differently By Image
Making All Nodes Function Differently By Image
To change the name of the image used for an entire cluster, for example after cloning the image and
modifying it (section 3.15.2), the following methods can be used:

• in Bright View, via Cluster→Settings→Cluster name

• or in cmsh from within the base object of partition mode

A system administrator more commonly sets the software image on a per-category or per-node basis
(section 3.15.2).

Making Some Nodes Function Differently By Image
For minor changes, adjustments can often be made to node settings via initialize and finalize scripts so
that nodes or node categories function differently (section 3.15.4).

For major changes on a category of nodes, it is usually more appropriate to have nodes function
differently from each other by simply carrying out image changes per node category with CMDaemon.
Carrying out image changes per node is also possible. As usual, node settings override category settings.

Modifying images via cloning primitives for a node or category: Setting a changed image for a cate-
gory can be done as follows with cmsh:

© Bright Computing, Inc.

/opt

140 Configuring The Cluster

1. The image on which the new one will be based is cloned. The cloning operation not only copies
all the settings of the original (apart from the name), but also the data of the image:

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage
[bright91->softwareimage]% clone default-image imagetwo
[bright91->softwareimage*[imagetwo*]]% commit
... [notice] bright91: Started to copy: /cm/images/default-image -> /cm/images/imagetwo
[bright91->softwareimage*[imagetwo*]]%
... [notice] bright91: Copied: /cm/images/default-image -> /cm/images/imagetwo
[bright91->softwareimage[imagetwo]]%

2. After cloning, the settings can be modified in the new object. For example, if the kernel needs to be
changed to suit nodes with different hardware, kernel modules settings are changed (section 5.3.2)
and committed. This creates a new image with a new ramdisk.

Other ways of modifying and committing the image for the nodes are also possible, as discussed
in sections 12.2–12.6.

3. The modified image that is to be used by the differently functioning nodes is placed in a new
category in order to have the nodes be able to choose the image. To create a new category easily, it
can simply be cloned. The image that the category uses is then set:

[bright91->softwareimage[imagetwo]]% category
[bright91->category]% clone default categorytwo
[bright91->category*[categorytwo*]]% set softwareimage imagetwo
[bright91->category*[categorytwo*]]% commit
[bright91->category[categorytwo]]%

4. • For just one node, or a few nodes, the node can be set from device mode to the new category
(which has the new image):

[bright91->category[categorytwo]]% device
[bright91->device]% use node099
[bright91->device[node099]]% set category categorytwo
[bright91->device*[node099*]]% commit; exit

• If there are many nodes, for example node100 sequentially up to node200, they can be set to
that category using a foreach loop like this:

Example

[bright91->device]% foreach -n node100..node200 (set category categorytwo)
[bright91->device*]% commit

5. Rebooting restarts the nodes that are assigned to the new category with the new image.

Modifying images via the cm/conf directory, for a category, node, or MAC address: The preceding 5-
step method is understandable, but not very elegant. For Bright Cluster Manager 8.2 onwards, there is a
more structured and efficient way to make some nodes function differently by image. It relies on adding
the files in the image, via a target path that is specified in special configuration locations in the image. It
can be configured per node, but also per category and MAC address.

© Bright Computing, Inc.

3.15 Cluster Configuration Without Execution By CMDaemon 141

• For a category, the specification takes the form:

/cm/images/<image>/cm/conf/category/<category>/<target>

Thus, if some file on the node is to be placed so that on a running node it is at /path/to/some.file,
and this needs to be configured for an image default-image, and a category default, then it
would be placed at this location on the head node:

Example

/cm/images/default-image/cm/conf/category/default/path/to/some.file

The file on the target node would be placed in the absolute directory /path/to/some.file

Multiple categories can be configured per image. Thus, for example, beside the default category,
an additional gpu category can exist:

Example

/cm/images/default-image/cm/conf/category/gpu/path/to/some.file

Also, multiple files can be specified per category per image. Thus, beside the file some.file, an
additional file some.other.file could be placed:

Example

/cm/images/default-image/cm/conf/category/gpu/path/to/some.file
/cm/images/default-image/cm/conf/category/gpu/path/to/some.other.file

• For a node, the configuration form is:

/cm/images/<image>/cm/conf/node/<node name>/<target>

An example for a node called node001 could then be:

Example

/cm/images/default-image/cm/conf/node/node001/path/to/some.file

• For a MAC address, the configuration form is:

/cm/images/<image>/cm/conf/node/<MAC address>/<target>

An example for a node with MAC address 00:aa:bb:cc:dd:ee could then be:

Example

/cm/images/default-image/cm/conf/node/00-aa-bb-cc-dd-ee/path/to/some.file

The copying of the specified files to the image is done just before the finalize stage of the node-
installer (section 5.4.11) during node provisioning.

A common theme in Bright Cluster Manager is that node-level configuration overrides category-
level configuration. In keeping with this behavior, a file configuration at category level could be applied
to the many nodes in a category. And, a file configuration copy at node level (for a node that is in the
category) overrides the category level value for just that particular node.

© Bright Computing, Inc.

/path/to/some.file

142 Configuring The Cluster

3.15.3 Making All Nodes Function Differently From Normal Cluster Behavior With
FrozenFile

Configuration changes carried out by Bright View or cmsh often generate, restore, or modify configura-
tion files (Appendix A).

However, sometimes an administrator may need to make a direct change (without using Bright View
or cmsh) to a configuration file to set up a special configuration that cannot otherwise be done.

The FrozenFile directive to CMDaemon (Appendix C, page 789) applied to such a configuration file
stops CMDaemon from altering the file. The frozen configuration file is generally applicable to all nodes
and is therefore a possible way of making all nodes function differently from their standard behavior.

Freezing files is however best avoided, if possible, in favor of a CMDaemon-based method of con-
figuring nodes, for the sake of administrative maintainability.

3.15.4 Adding Functionality To Nodes Via An initialize Or finalize Script
CMDaemon can normally be used to allocate different images per node or node category as explained
in section 3.15.2. However, some configuration files do not survive a reboot (Appendix A), sometimes
hardware issues can prevent a consistent end configuration, and sometimes drivers need to be initial-
ized before provisioning of an image can happen. In such cases, an initialize or finalize script
(sections 5.4.5, 5.4.11, and Appendix E.5) can be used to initialize or configure nodes or node categories.

These scripts are also useful because they can be used to implement minor changes across nodes:

Example

Supposing that some nodes with a particular network interface have a problem auto-negotiating
their network speed, and default to 100Mbps instead of the maximum speed of 1000Mbps.
Such nodes can be set to ignore auto-negotiation and be forced to use the 1000Mbps speed
by using the ETHTOOL_OPTS configuration parameter in their network interface configuration file:
/etc/sysconfig/network-scripts/ifcfg-eth0 (or /etc/sysconfig/network/ifcfg-eth0 in SUSE).

The ETHTOOL_OPTS parameter takes the options to the “ethtool -s <device>” command as options.
The value of <device> (for example eth0) is specified by the filename that is used by the configuration file
itself (for example /etc/sysconfig/network-scripts/ifcfg-eth0). The ethtool package is installed
by default with Bright Cluster Manager. Running the command:

ethtool -s autoneg off speed 1000 duplex full

turns out after some testing to be enough to reliably get the network card up and running at 1000Mbps
on the problem hardware.

However, since the network configuration file is overwritten by node-installer settings during reboot,
a way to bring persistence to the file setting is needed. One way to ensure persistence is to append
the configuration setting to the file with a finalize script, so that it gets tagged onto the end of the
configuration setting that the node-installer places for the file, just before the network interfaces are
taken down again in preparation for init.

The script may thus look something like this for a Red Hat system:

#!/bin/bash

node010..node014 get forced to 1000 duplex
if [[$CMD_HOSTNAME = node01[0-4]]]
then
echo 'ETHTOOL_OPTS="speed 1000 duplex full"'>>/localdisk/etc/sysconfig/network-scripts/ifcfg-eth0
fi

The method of enforcing an interface space just outlined is actually just for educational illustration,
and is not a recommended method.

© Bright Computing, Inc.

3.15 Cluster Configuration Without Execution By CMDaemon 143

In practice, the recommended way to enforce an interface speed is to simply set it in the CMDaemon
database. For example, for the boot interface of node001 it could be via the Bright View clickpath:

Devices→Nodes[node001]→Edit→Settings→Interfaces[BOOTIF]→Edit→Speed

3.15.5 Examples Of Configuring Nodes With Or Without CMDaemon
A node or node category can often have its software configured in CMDaemon via Bright View or cmsh:

Example

Configuring a software for nodes using Bright View or cmsh: If the software under consideration is
CUPS, then a node or node category can manage it from Bright View or cmsh as outlined in section 3.11.2.

A counterexample to this is:

Example

Configuring a software for nodes without using Bright View or cmsh3, using an image: Software im-
ages can be created with and without CUPS configured. Setting up nodes to load one of these two
images via a node category is an alternative way of letting nodes run CUPS.

Whether node configuration for a particular functionality is done with CMDaemon, or directly with
the software, depends on what an administrator prefers. In the preceding two examples, the first ex-
ample, that is the one with Bright View or cmsh setting the CUPS service, is likely to be preferred over
the second example, where an entire separate image must be maintained. A new category must also be
created in the second case.

Generally, sometimes configuring the node via Bright Cluster Manager, and not having to manage
images is better, sometimes configuring the software and making various images to be managed out of
it is better, and sometimes only one of these techniques is possible anyway.

Configuring Nodes Using Bright View Or cmsh: Category Settings
When configuring nodes using Bright View or cmsh, configuring particular nodes from a node category
to overrule the state of the rest of its category (as explained in section 2.1.3) is sensible for a small number
of nodes. For larger numbers it may not be organizationally practical to do this, and another category
can instead be created to handle nodes with the changes conveniently.

The CUPS service in the next two examples is carried out by implementing the changes via Bright
View or cmsh acting on CMDaemon.

Example

Setting a few nodes in a category: If only a few nodes in a category are to run CUPS, then it can be done
by enabling CUPs just for those few nodes, thereby overriding (section 2.1.3) the category settings.

Example

Setting many nodes to a category: If there are many nodes that are to be set to run CUPS, then a sepa-
rate, new category can be created (cloning it from the existing one is easiest) and those many nodes are
moved into that category, while the image is kept unchanged. The CUPS service setting is then set at
category level to the appropriate value for the new category.

In contrast to these two examples, the software image method used in section 3.15.2 to implement
a functionality such as CUPS would load up CUPS as configured in an image, and would not handle

3except to link nodes to their appropriate image via the associated category

© Bright Computing, Inc.

144 Configuring The Cluster

it via CMDaemon3. So, in section 3.15.2, software images prepared by the administrator are set for a
node category. Since, by design, images are only selected for a category, a node cannot override the
image used by the category other than by creating a new category, and using it with the new image. The
administrative overhead of this can be inconvenient.

Administrators would therefore normally prefer letting CMDaemon track software functionality
across nodes as in the last two examples, rather than having to deal with tracking software images man-
ually. Indeed, the roles assignment option (section 2.1.5) is just a special pre-configured functionality
toggle that allows CMDaemon to set categories or regular nodes to provide certain functions, typically
by enabling services.

3.16 Saving A Backup Of Configuration Files With versionconfigfiles

If versionconfigfiles is set to the value yes for a node or a category, then if configuration files changed
for that node or category due to CMDaemon, then the old configuration files are saved.

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% set versionconfigfiles yes; commit

This is useful, for example, if an administrator would like to know what the configuration was just
before it was changed.

If a configuration change takes place, then the old configuration files are automatically sent from the
node where they changed, to the active head node. The configuration files:

• are saved on the active head node under the directory /var/spool/cmd/config_file_versions, un-
der their node name.

• have a modification time that indicates the time of the change.

• are given a suffix in the form of the local unix epoch time.

Example

[root@bright91 ~]# cd /var/spool/cmd/
[root@bright91 cmd]# tree -a --charset=C config_file_versions/
config_file_versions/
|-- node001
|ÂăÂă |-- cm
|ÂăÂă |ÂăÂă `-- local
|ÂăÂă |ÂăÂă `-- modulefiles
|ÂăÂă |ÂăÂă `-- slurm
|ÂăÂă |ÂăÂă |-- .modulerc.lua.1970-01-01_01:00:00
|ÂăÂă |ÂăÂă `-- slurm
|ÂăÂă |ÂăÂă `-- 21.08.8.1970-01-01_01:00:00
...

[root@bright91 cmd]# cd config_file_versions/node001/cm/local/modulefiles/slurm/
[root@bright91 slurm]# ls -al .modulerc.lua.1970-01-01_01:00:00
-rw-r--r-- 1 root root 43 Mar 14 17:22 .modulerc.lua.1970-01-01_01:00:00
[root@bright91 slurm]#

© Bright Computing, Inc.

4
Power Management

Aspects of power management in Bright Cluster Manager include:

• managing the main power supply to nodes through the use of power distribution units, baseboard
management controllers, or CMDaemon

• monitoring power consumption over time

• setting power-saving options in workload managers

• ensuring the passive head node can safely take over from the active head during failover (Chap-
ter 18)

• allowing cluster burn tests to be carried out (Chapter 8 of the Installation Manual)

The ability to control power inside a cluster is therefore important for cluster administration, and
also creates opportunities for power savings. This chapter describes the Bright Cluster Manager power
management features.

In section 4.1 the configuration of the methods used for power operations is described.
Section 4.2 then describes the way the power operations commands themselves are used to allow the

administrator turn power on or off, reset the power, and retrieve the power status. It explains how these
operations can be applied to devices in various ways.

Section 4.3 briefly covers monitoring power.
The integration of power saving with workload management systems is covered in the chapter on

Workload Management (section 7.9).

4.1 Configuring Power Parameters
Several methods exist to control power to devices:

• Power Distribution Unit (PDU) based power control

• IPMI-based power control (for node devices only)

• Custom power control

• HP iLO-based power control (for node devices only)

• Dell DRAC-based power control (for node devices only)

• Cisco UCS CIMC-based power control (for node devices only)

• Redfish-based power control (for node devices only)

© Bright Computing, Inc.

146 Power Management

4.1.1 PDU-Based Power Control
For PDU-based power control, the power supply of a device is plugged into a port on a PDU. The
device can be a node, but also anything else with a power supply, such as a switch. The device can then
be turned on or off by changing the state of the PDU port.

To use PDU-based power control, the PDU itself must be a device in the cluster and be reachable
over the network.

The PowerDistributionUnits menu option, accessible via the clickpath Devices[device]→Settings
pane for each device plugged into the PDU, can then be used to configure the PDU ports that control the
device. Figure 4.1 shows the menu option in the Settings window for a head node device, bright91,
as accessed via the clickpath Devices→Head Nodes[bright91]→Settings.

Figure 4.1: Power Section In The Head Node Settings

If the menu option is clicked, then a subpane opens that allows each device plugged into the PDU to
have PDU ports added and removed. For the APC brand of PDUs, the Power control property in the
window of figure 4.1 should be set to apc, or the list of PDU ports is ignored by default. Overriding the
default is described in section 4.1.3.

Since nodes may have multiple power feeds, there may be multiple PDU ports defined for a single
device. The cluster management infrastructure takes care of operating all ports of a device in the correct
order when a power operation is done on the device.

It is also possible for multiple devices to share the same PDU port. This is the case for example when
twin nodes are used (i.e. two nodes sharing a single power supply). In this case, all power operations on
one device apply to all nodes sharing the same PDU port.

If the PDUs defined for a node are not manageable, then the node’s baseboard management con-
trollers (that is, IPMI/iLO and similar) are assumed to be inoperative and are therefore assigned an
unknown state. This means that dumb PDUs, which cannot be managed remotely, are best not assigned
to nodes in Bright Cluster Manager. Administrators wishing to use Bright Cluster Manager to record
that a dumb PDU is assigned to a node can deal with it as follows:

• in Bright View the Notes field or the Userdefined1/Userdefined2 fields can be used.

© Bright Computing, Inc.

4.1 Configuring Power Parameters 147

• in cmsh the equivalent is accessible when using the node from device mode, and running “set
notes”, “set userdefined1”, or “set userdefined2”.

For PDUs that are manageable:

• In cmsh, power-related options can be accessed from device mode, after selecting a device:

Example

[bright91]% device use node001
[bright91->device[node001]]% show | grep -i power
Custom power script argument
Ipmi/iLO power reset delay 0
Power control apc
PowerDistributionUnits apc01:6 apc01:7

The power status of a node can be accessed with:

Example

[bright91->device[node001]]% power status

If the node is up and has one or more PDUs assigned to it, then the power status is one of ON, OFF,
RESET, FAILED, or UNKNOWN:

Power Status Description

ON Power is on

OFF Power is off

RESET Shows during the short time the power is off

during a power reset. The reset is a hard power

off for PDUs, but can be a soft or hard reset for

other power control devices.

FAILED Power status script communication failure.

UNKNOWN Power status script timeout

4.1.2 IPMI-Based Power Control
IPMI-based power control relies on the baseboard management controller (BMC) inside a node.
It is therefore only available for node devices. Blades inside a blade chassis typically use IPMI
for power management. Section 3.7 describes setting up networking and authentication for
IPMI/iLO/DRAC/CIMC/Redfish interfaces.

To carry out IPMI-based power control operations, the Power control property in figure 4.1 must
be set to the IPMI interface through which power operations should be relayed. Normally this IPMI
interface is configured to be ipmi0. Any list of configured APC PDU ports displayed in the GUI is
ignored by default when the Power control property is not apc.

Example

Configuring power parameters settings for all the nodes using cmsh, with IPMI interfaces that are called
ipmi0:

© Bright Computing, Inc.

148 Power Management

[mycluster]% device
[...device]% foreach -t physicalnode (set powercontrol ipmi0; commit)

Example

Configuring power parameters settings for a node using cmsh with APC:

[mycluster]% device use node001
[...device[node001]]% set powerdistributionunits apc01:6 apc01:7 apc01:8
[...device*[node001*]]% get powerdistributionunits
apc01:6 apc01:7 apc01:8
[...device*[node001*]]% removefrom powerdistributionunits apc01:7
[...device*[node001*]]% get powerdistributionunits
apc01:6 apc01:8
[...device*[node001*]]% set powercontrol apc
[...device*[node001*]]% get powercontrol
apc
[...device*[node001*]]% commit

4.1.3 Combining PDU- and IPMI-Based Power Control
By default when nodes are configured for IPMI Based Power Control, any configured PDU ports are
ignored. However, it is sometimes useful to change this behavior.

For example, in the CMDaemon configuration file directives in /cm/local/apps/cmd/etc/cmd.conf
(introduced in section 2.6.2 and listed in Appendix C), the default value of PowerOffPDUOutlet is false.
It can be set to true on the head node, and CMDaemon restarted to activate it.

With PowerOffPDUOutlet set to true it means that CMDaemon, after receiving an IPMI-based power
off instruction for a node, and after powering off that node, also subsequently powers off the PDU port.
Powering off the PDU port shuts down the BMC, which saves some additional power—typically a few
watts per node. When multiple nodes share the same PDU port, the PDU port only powers off when all
nodes served by that particular PDU port are powered off.

When a node has to be started up again the power is restored to the node. It is important that the
node BIOS is configured to automatically power on the node when power is restored.

4.1.4 Custom Power Control
For a device which cannot be controlled through any of the standard existing power control options, it
is possible to set a custom power management script. This is then invoked by the cluster management
daemon on the head node whenever a power operation for the device is done.

Power operations are described further in section 4.2.

Using custompowerscript
To set a custom power management script for a device, the powercontrol attribute is set by the admin-
istrator to custom using either Bright View or cmsh, and the value of custompowerscript is specified
by the administrator. The value for custompowerscript is the full path to an executable custom power
management script on the head node(s) of a cluster.

A custom power script is invoked with the following mandatory arguments:

myscript <operation> <device>

where <device> is the name of the device on which the power operation is done, and <operation>
is one of the following:

ON
OFF
RESET
STATUS

© Bright Computing, Inc.

4.1 Configuring Power Parameters 149

On success a custom power script exits with exit code 0. On failure, the script exits with a non-zero
exit-code.

Using custompowerscriptargument
The mandatory argument values for <operation> and <device> are passed to a custom script for pro-
cessing. For example, in bash the positional variables $1 and $2 are typically used for a custom power
script. A custom power script can also be passed a further argument value by setting the value of
custompowerscriptargument for the node via cmsh or Bright View. This further argument value would
then be passed to the positional variable $3 in bash.

An example custom power script is located at /cm/local/examples/cmd/custompower. In it, setting
$3 to a positive integer delays the script via a sleep command by $3 seconds.

An example that is conceivably more useful than a “sleep $3” command is to have a “wakeonlan
$3” command instead. If the custompowerscriptargument value is set to the MAC address of the node,
that means the MAC value is passed on to $3. Using this technique, the power operation ON can then
carry out a Wake On LAN operation on the node from the head node.

Setting the custompowerscriptargument can be done like this for all nodes:

#!/bin/bash
for nodename in $(cmsh -c "device; foreach * (get hostname)")
do

macad=`cmsh -c "device use $nodename; get mac"`
cmsh -c "device use $nodename; set customscriptargument $macad; commit"

done

The preceding material usefully illustrates how custompowerscriptargument can be used to pass on
arbitrary parameters for execution to a custom script.

However, the goal of the task can be achieved in a simpler and quicker way using the environment
variables available in the cluster management daemon environment (section 3.3.1 of the Developer Man-
ual). This is explained next.

Using Environment Variables With custompowerscript
Simplification of the steps needed for custom scripts in CMDaemon is often possible because there are
values in the CMDaemon environment already available to the script. A line such as:

env > /tmp/env

added to the start of a custom script dumps the names and values of the environment variables to
/tmp/env for viewing.

One of the names is $CMD_MAC, and it holds the MAC address string of the node being considered.
So, it is not necessary to retrieve a MAC value for custompowerscriptargument with a bash script

as shown in the previous section, and then pass the argument via $3 such as done in the command
“wakeonlan $3”. Instead, custompowerscript can simply call “wakeonlan $CMD_MAC” directly in the
script when run as a power operation command from within CMDaemon.

4.1.5 Hewlett Packard iLO-Based Power Control
iLO Configuration During Installation
If “Hewlett Packard” is chosen as the node manufacturer during installation (section 3.3.11 of the In-
stallation Manual), and the nodes have an iLO management interface, then Hewlett-Packard’s iLO man-
agement package, hponcfg, is installed by default on the nodes and head nodes.

iLO Configuration After Installation
If “Hewlett Packard” has not been specified as the node manufacturer during installation then it can
be configured after installation as follows:

The hponcfg rpm package is normally obtained and upgraded for specific HP hardware from the
HP website. Using an example of hponcfg-3.1.1-0.noarch.rpm as the package downloaded from the

© Bright Computing, Inc.

/cm/local/examples/cmd/custompower

150 Power Management

HP website, and to be installed, the installation can then be done on the head node, the software image,
and in the node-installer as follows:

rpm -iv hponcfg-3.1.1-0.noarch.rpm
rpm --root /cm/images/default-image -iv hponcfg-3.1.1-0.noarch.rpm
rpm --root /cm/node-installer -iv hponcfg-3.1.1-0.noarch.rpm

To use iLO on a node, the iLO interface of the node is set up just like the IPMI interfaces as outlined
in section 4.1.2. That is, using “set powercontrol ilo0” instead of “set powercontrol ipmi0”. The
cluster manager treats HP iLO interfaces just like regular IPMI interfaces, except that the interface names
are ilo0, ilo1... instead of ipmi0, ipmi1...

For example, nodes in the default category can be brought under iLO power control as follows:

Example

[mycluster]% device foreach -c default (set powercontrol ilo0)
[mycluster]% device commit

4.1.6 Dell drac-based Power Control
Dell drac configuration is covered on page 98.

4.1.7 Redfish-Based and CIMC-Based Power Control
Section 3.7 describes setting up networking and authentication for Redfish/CIMC, as well as for
IPMI/iLO/DRAC interfaces.

4.2 Power Operations
4.2.1 Power Operations Overview
Main Power Operations
Power operations may be carried out on devices from either Bright View or cmsh. There are four main
power operations:

• Power On: power on a device

• Power Off: power off a device

• Power Reset: power off a device and power it on again after a brief delay

• Power Status: check power status of a device

Scheduling-related Power Operations
There are also scheduling-related power operations, which are currently (December 2018) only accessible
via cmsh. Scheduling-related power operations are power operations associated with managing and
viewing explicitly-scheduled execution.

Scheduled execution of power operations can be carried out explicitly via the --at, --after, -d,
and –parallel-delay options. The scheduling-related power operations to manage and view such
scheduled power operations are:

• power wait: Identifies the devices that have power operations that are in the waiting state, i.e.
waiting to be carried out, and also outputs the number of operations that are waiting to be carried
out.

• power cancel: Cancels an operation in the waiting state. The devices on which they should be
cancelled can be specified.

• power list: Lists the power operations on the device and the states of the operations. Possible
states for operations are:

© Bright Computing, Inc.

4.2 Power Operations 151

– waiting: waiting to be executed

– busy: are being executed

– canceled: have been canceled

– done: have been executed

It is possible that power operations without an explicitly-scheduled execution time setting show up very
briefly in the output of power list and power wait. However, the output displayed is almost always
about the explicitly-scheduled power operations.

4.2.2 Power Operations With Bright View
In Bright View, executing the main power operations can be carried out as follows:

• via the menu dropdown for a node. For example:

– for the head node, via the clickpath Devices→Head Nodes↓Power
– for a regular node via the clickpath Devices→Nodes↓Power

• via the menu dropdown for a category or group. For example, for the default category, via the
clickpath Grouping→Categories↓Power

• via the Actions button. The Actions button is available when specific device has been selected.
For example, for a head node bright91 the button can be seen via the clickpath Devices→Head
Nodes[bright91]→Settings, as illustrated in figure 4.1. Clicking on the button makes power
operation buttons available figure 4.2.

Figure 4.2: Actions Button, Accessing The Power Operations

4.2.3 Power Operations Through cmsh
Power operations on nodes can be carried out from within the device mode of cmsh, via the power
command options.

Powering On
Powering on can be carried out on a list of nodes (page 44). Powering on node001, and nodes from
node018 to node033 (output truncated):

Example

[mycluster]% device power -n node001,node018..node033 on
apc01:1 [ON] node001
apc02:8 [ON] node018

© Bright Computing, Inc.

152 Power Management

apc02:9 [ON] node019
...

When a power operation is carried out on multiple devices, CMDaemon ensures that a 1 second delay
occurs by default between successive devices. This helps avoid power surges on the infrastructure.

Delay Period Between Nodes
The delay period can be modified from within the device mode of cmsh, by using the -d|--delay option
of the power command. For example, the preceding power command can be run with a shorter, 10ms
delay with:

[mycluster]% device power -n node001,node018..node033 -d 0.01 on

A 0-second delay (-d 0) should not be set for larger number of nodes, unless the power surge that
this would cause has been taken into consideration.

Powering Up In Batches
Groups of nodes can be powered up “in batches”, according to power surge considerations. For exam-
ple, to power up 3 racks at a time (“in batches of 3”), the -p|--parallel option is used:

Example

[mycluster]% device power on -p 3 rack[01-12]

By default, there is a delay of 20s between batch commands. So, in the preceding example, there is
a 20s pause before the each batch of the next three racks is powered up. For batch operation a delay of
-d 0 is assumed, i.e. the nodes within in the rack are powered up without a built-in delay between the
nodes of the rack.

Thread Use During Powering Up
The default number of threads that are started up to handle powering up of all the nodes is 32. If the
hardware can cope with it, then it is possible to decrease startup time by increasing the default number of
threads used to handle powerup, by editing the PowerThreadPoolSize advanced configuration directive
in CMDaemon (page 788).

Powering Off Nodes
An example of powering off nodes is the following, where all nodes in the default category are powered
off, with a 100ms delay between nodes (some output elided):

Example

[mycluster]% device power off -c default -d 0.1
apc01:1 [OFF] node001
apc01:2 [OFF] node002
...
apc23:8 [OFF] node953

Getting The Power Status
The power status command lists the status for devices:

Example

[mycluster]% device power status -g mygroup
apc01:3 [ON] node003
apc01:4 [OFF] node004

© Bright Computing, Inc.

4.2 Power Operations 153

Getting The Power History
The power history command lists the last few power operations on nodes. By default it lists up to the
last 8.

Example

[mycluster]% device power history
Device Time Operation Success
-------- ------------------------ ------------ ------------
node001 Sat Sep 14 03:35:03 2019 shutdown yes
node001 Fri Sep 20 14:28:38 2019 on yes
node002 Sat Sep 14 03:35:03 2019 shutdown yes
node002 Fri Sep 20 14:28:38 2019 on yes
node003 Sat Sep 14 03:35:03 2019 shutdown yes
node003 Fri Sep 20 14:28:38 2019 on yes
node004 Sat Sep 14 03:35:03 2019 shutdown yes

The power Command Help Text
The help text for the power command is:

[bright91->device]% help power
Name:

power - Manipulate or retrieve power state of devices

Usage:

power [OPTIONS] status
power [OPTIONS] on
power [OPTIONS] off
power [OPTIONS] reset
power [OPTIONS] list
power [OPTIONS] history
power [OPTIONS] cancel
power [OPTIONS] wait <index>

Options:
-n, --nodes <node>

List of nodes, e.g. node001..node015,node020..node028,node030 or
^/some/file/containing/hostnames

-g, --group <group>
Include all nodes that belong to the node group, e.g. testnodes or test01,test03

-c, --category <category>
Include all nodes that belong to the category, e.g. default or default,gpu

-r, --rack <rack>
Include all nodes that are located in the given rack, e.g rack01 or
rack01..rack04

-h, --chassis <chassis>
Include all nodes that are located in the given chassis, e.g chassis01 or
chassis03..chassis05

© Bright Computing, Inc.

154 Power Management

-e, --overlay <overlay>
Include all nodes that are part of the given overlay, e.g overlay1 or
overlayA,overlayC

-m, --image <image>
Include all nodes that have the given image, e.g default-image or
default-image,gpu-image

-t, --type <type>
Type of devices, e.g node or virtualnode,cloudnode

-i, --intersection
Calculate the intersection of the above selections

-u, --union
Calculate the union of the above selections

-l, --role role
Filter all nodes that have the given role

-s, --status <status>
Only run command on nodes with specified status, e.g. UP, "CLOSED|DOWN",
"INST.*"

-b, --background
Run in background, output will come as events

-d, --delay <seconds>
Wait <seconds> between executing two sequential power commands. This option is
ignored for the status command

-f, --force
Force power command on devices which have been closed

-w, --overview
Group all power operation results into an overview

-p, --parallel <number>
Number of parallel option-items to be used per batch, default 0 (disabled)

--at <time>
Execute the operation at the provided time

--after <seconds>
Wait <seconds> before executing the operation

--parallel-delay <seconds>
Wait <seconds> between executing the next batch of parallel commands, default
20s

--parallel-dry-run
Only display the times at which operations will be executed, do not perform
any power operations

--retry-count <number>

© Bright Computing, Inc.

4.3 Monitoring Power 155

Number of times to retry operation if it failed the first time (default 0)

--retry-delay <seconds>
Delay between consecutive tries of a failed power operation (default 3s)

--port <pdu>:<port>
Do the power operation directly on a pdu port.

Examples:
power status Display power status for all devices or current device
power on node001 Power on node001
power on -n node00[1-2] Power on node001 and node002
power list List all pending power operations
power history List the last couple of power operations
power wait List all power operation that can be waited for
power wait 1 Wait for a power operation to be completed
power wait all Wait for all power operations to be completed
power wait last Wait for the last given power operation to be completed
power off --after 10m Power off the current node after 10 minutes
power off --at 23:55 Power off the current node today just before midnight
power cancel node001 Cancel all pending power operations for node001
power on -p 4 rack[01-80] Power on racks 1 to 80 in batches of 4. With a delay of 20s

between each batch. And a delay of 0s between nodes.
power on --port pdu1:1 Power on port 1 on pdu1
power on --port pdu1:[1-4] Power on port 1 through 4 on pdu1

4.3 Monitoring Power
Monitoring power consumption is important since electrical power is an important component of the
total cost of ownership for a cluster. The monitoring system of Bright Cluster Manager collects power-
related data from PDUs in the following metrics:

• PDUBankLoad: Phase load (in amperes) for one (specified) bank in a PDU

• PDULoad: Total phase load (in amperes) for one PDU

Chapter 13 on cluster monitoring has more on metrics and how they can be visualized.

4.4 Switch Configuration To Survive Power Downs
Besides the nodes and the BMC interfaces being configured for power control, it may be necessary to
check that switches can handle power on and off network operations properly. Interfaces typically ne-
gotiate the link speed down to reduce power while still supporting Wake On Lan and other features.
During such renegotiations the switch may lose connectivity to the node or BMC interface. This can hap-
pen if dynamic speed negotiation is disabled on the switch. Dynamic speed negotiation should therefore
be configured to be on on the switch in order to reduce the chance that a node does not provision from
a powered down state.

© Bright Computing, Inc.

5
Node Provisioning

This chapter covers node provisioning. Node provisioning is the process of how nodes obtain an image.
Typically, this happens during their stages of progress from power-up to becoming active in a cluster,
but node provisioning can also take place when updating a running node.

Section 5.1 describes the stages leading up to the loading of the kernel onto the node.
Section 5.2 covers configuration and behavior of the provisioning nodes that supply the software

images.
Section 5.3 describes the configuration and loading of the kernel, the ramdisk, and kernel modules.
Section 5.4 elaborates on how the node-installer identifies and places the software image on the node

in a 13-step process.
Section 5.5 explains node states during normal boot, as well node states that indicate boot problems.
Section 5.6 describes how running nodes can be updated, and modifications that can be done to the

update process.
Section 5.7 explains how to add new nodes to a cluster so that node provisioning will work for these

new nodes too. The Bright View and cmsh front ends for creating new node objects and properties in
CMDaemon are described.

Section 5.8 describes troubleshooting the node provisioning process.

5.1 Before The Kernel Loads
Immediately after powering up a node, and before it is able to load up the Linux kernel, a node starts
its boot process in several possible ways:

5.1.1 PXE Booting
By default, nodes boot from the network when using Bright Cluster Manager. This is called a network
boot. On the x86 architectures it is known as a PXE boot (often pronounced as “pixie boot”). It is recom-
mended as a BIOS setting for nodes. The head node runs a tftpd server that is managed by systemd.
The tftpd server supplies the boot loader from within the default software image (section 2.1.2) offered
to nodes.

The boot loader runs on the node and displays a menu (figure 5.1) based on loading a menu mod-
ule within a configuration file. The default configuration files offered to nodes are located under
/tftpboot/pxelinux.cfg/ on the head node. To implement changes in the files, CMDaemon may need
to be restarted, or the updateprovisioners command (page 167) can be run.

The default configuration files give instructions to the menu module of PXElinux. The instruction set
used is documented at http://www.syslinux.org/wiki/index.php/Comboot/menu.c32, and includes
the TIMEOUT, LABEL, MENU LABEL, DEFAULT, and MENU DEFAULT instructions.

The PXE TIMEOUT Instruction
During the display of the PXE boot menu, a selection can be made within a timeout period to boot the
node in a several ways. Among the options are some of the install mode options (section 5.4.4). If no

© Bright Computing, Inc.

http://www.syslinux.org/wiki/index.php/Comboot/menu.c32

158 Node Provisioning

Figure 5.1: PXE boot menu options

selection is made by the user within the timeout period, then the AUTO install mode option is chosen by
default.

In the PXE menu configuration files under pxelinux.cfg/, the default timeout of 5 seconds can be
adjusted by changing the value of the “TIMEOUT 50” line. This value is specified in deciseconds.

Example

TIMEOUT 300 # changed timeout from 50 (=5 seconds)

The PXE LABEL And MENU LABEL Instructions
LABEL: The menu configuration files under pxelinux.cfg/ contain several multiline LABEL state-
ments.

Each LABEL statement is associated with a kernel image that can be loaded from the PXE boot menu
along with appropriate kernel options.

Each LABEL statement also has a text immediately following the LABEL tag. Typically the text is a
description, such as linux, main, RESCUE, and so on. If the PXE menu module is not used, then tab com-
pletion prompting displays the list of possible text values at the PXE boot prompt so that the associated
kernel image and options can be chosen by user intervention.

MENU LABEL: By default, the PXE menu module is used, and by default, each LABEL statement also
contains a MENU LABEL instruction. Each MENU LABEL instruction also has a text immediately following
the MENU LABEL tag. Typically the text is a description, such as AUTO, RESCUE and so on (figure 5.1). Using
the PXE menu module means that the list of the MENU LABEL text values is displayed when the PXE boot

© Bright Computing, Inc.

5.1 Before The Kernel Loads 159

menu is displayed, so that the associated kernel image and options can conveniently be selected by user
intervention.

The PXE DEFAULT And MENU DEFAULT Instructions
DEFAULT: If the PXE menu module is not used and if no MENU instructions are used, and if there is
no user intervention, then setting the same text that follows a LABEL tag immediately after the DEFAULT
instruction, results in the associated kernel image and its options being run by default after the timeout.

By default, as already explained, the PXE menu module is used. In particular it uses the setting:
DEFAULT menu.c32 to enable the menu.

MENU DEFAULT: If the PXE menu module is used and if MENU instructions are used, and if there is no
user intervention, then setting a MENU DEFAULT tag as a line within the multiline LABEL statement results
in the kernel image and options associated with that LABEL statement being loaded by default after the
timeout.

The CMDaemon PXE Label Setting For Specific Nodes
The MENU DEFAULT value by default applies to every node using the software image that the PXE menu
configuration file under pxelinux.cfg/ is loaded from. To override its application on a per-node basis,
the value of PXE Label can be set for each node.

• Some simple examples of overriding the default MENU DEFAULT value are as follows:

For example, using cmsh:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% set pxelabel MEMTEST ; commit

Carrying it out for all nodes in the default category can be done, for example, with:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% foreach -c default (set pxelabel MEMTEST)
[bright91->device*]% commit

The value of pxelabel can be cleared with:

Example

[root@bright91 ~]# cmsh -c "device; foreach -c default (clear pxelabel); commit"

In Bright View, the PXE label can be set from the Settings window for a node (figure 5.2).

• A more complicated example of overriding the default MENU DEFAULT value now follows. Al-
though it helps in understanding how PXE labels can be used, it can normally be skipped because
the use case for it is unlikely, and the details are involved.

In this example, pxelabel is set by the administrator via Bright View or cmsh to localdrive.
This will then set the node to boot from the first local drive and not the node-installer. This is a
setting that is discouraged since it usually makes node management harder, but it can be used by

© Bright Computing, Inc.

pxelinux.cfg/

160 Node Provisioning

Figure 5.2: Bright View PXE Label option

administrators who do not wish to answer any prompt during node boot, and also want the node
drives to have no risk of being overwritten by the actions of the node-installer, and also want the
system to be up and running quite fully, even if not necessarily provisioned with the latest image
from the head node.

Here, the overwriting-avoidance method relies on the nodes being associated with a configuration
file under pxelinux.cfg at the time that the localdrive setting is done. However, nodes that are
unidentified, or are identified later on, will have their MENU DEFAULT value still set to a default
pxelabel value set in the files under /tftpboot/pxelinux.cfg/, which is the value linux by
default, and which is associated with a code block in that file with the label LABEL linux. To make
such (as yet) unidentified nodes boot to a localdrive setting instead, requires modifying the files
under /tftpboot/pxelinux.cfg/, so that the MENU DEFAULT line is associated with the code block
of LABEL localdrive rather than the code block of LABEL linux.

There are two methods other than using the preceding pxelabel method to deal with the risk of
overwriting. Unlike the pxelabel method however, these methods can interrupt node booting, so
that the node does not progress to being fully up until the administrator takes further action:

1. If it is acceptable that the administrator manually enters a confirmation as part of the boot
process when a possible overwrite risk is found, then the datanode method (section 5.4.4)
can be used.

2. If it is acceptable that the boot process halts on detecting a possible overwrite risk, then the
XML assertions method (Appendix D.11) is recommended.

Changing The Install Mode Or Default Image Offered To Nodes
The selections offered by the PXE menu are pre-configured by default so that the AUTO menu option by
default loads a kernel, runs the AUTO install mode, and eventually the default-image software image is
provisioned.

Normally administrators should not be changing the install mode, kernel, or kernel options in the
PXE menu configuration files under pxelinux.cfg/.

© Bright Computing, Inc.

/tftpboot/pxelinux.cfg/
/tftpboot/pxelinux.cfg/

5.1 Before The Kernel Loads 161

More on changing the install mode is given in section 5.4.4. More on changing software images,
image package management, kernels, and kernel options, is to be found in Chapter 12.

5.1.2 iPXE Booting From A Disk Drive
Also by default, on disked nodes, iPXE software is placed on the drive during node installation. If the
boot instructions from the BIOS for PXE booting fail, and if the BIOS instructions are that a boot attempt
should then be made from the hard drive, it means that a PXE network boot attempt is done again, as
instructed by the bootable hard drive. This can be a useful fallback option that works around certain
BIOS features or problems.

5.1.3 iPXE Booting Using InfiniBand
On clusters that have InfiniBand hardware, it is normally used for data transfer as a service after the
nodes have fully booted up (section 3.6). InfiniBand can also be used for PXE booting (described here)
and used for node provisioning (section 5.3.3). However these uses are not necessary, even if InfiniBand
is used for data transfer as a service later on, because booting and provisioning is available over Eth-
ernet by default. This section (about boot over InfiniBand) may therefore safely be skipped when first
configuring a cluster.

Booting over InfiniBand via PXE is enabled by carrying out these 3 steps:

1. Making the Bright Cluster Manager aware that nodes are to be booted over InfiniBand. Node
booting (section 3.2.3, page 77) can be set from cmsh or Bright View as follows:

(a) From cmsh’s network mode: If the InfiniBand network name is ibnet, then a cmsh command
that will set it is:
cmsh -c "network; set ibnet nodebooting yes; commit"

(b) From Bright View: The Settings window for the InfiniBand network, for ex-
ample ibnet, can be accessed from the Networking resource via the clickpath
Networking→Networks[ibnet]→Edit→Settings (this is similar to figure 3.5, but for
ibnet). The Node booting option for ibnet is then enabled and saved.

If the InfiniBand network does not yet exist, then it must be created (section 3.2.2). The recom-
mended default values used are described in section 3.6.3. The MAC address of the interface in
CMDaemon defaults to using the GUID of the interface.

The administrator should also be aware that the interface from which a node boots, (conveniently
labeled BOOTIF), must not be an interface that is already configured for that node in CMDaemon.
For example, if BOOTIF is the device ib0, then ib0 must not already be configured in CMDaemon.
Either BOOTIF or the ib0 configuration should be changed so that node installation can succeed. It
is recommended to set BOOTIF to eth0 if the ib0 device should exist.

2. Flashing iPXE onto the InfiniBand HCAs. (The ROM image is obtained from the HCA vendor).

3. Configuring the BIOS of the nodes to boot from the InfiniBand HCA. For PXE booting over Omni-
Path, older Omni-Path cards may need to have UEFI firmware installed on them, and the only
supported boot mode is then UEFI.

All MAC addresses become invalid for identification purposes when changing from booting over
Ethernet to booting over InfiniBand.

Administrators who enable iPXE booting almost always wish to provision over InfiniBand too. Con-
figuring provisioning over InfiniBand is described in section 5.3.3.

5.1.4 Using PXE To Boot From The Drive
Besides PXE booting from only the network, a node can also be configured via PXE to step over to using
its own drive to start booting and get to the stage of loading up its kernel entirely from its drive, just like
a normal standalone machine. This can be done by setting PXE LABEL to localdrive (page 157).

© Bright Computing, Inc.

162 Node Provisioning

5.1.5 Network Booting Without PXE On The ARMv8 Architecture
ARMv8 nodes use a network boot implementation that differs slightly from the x86 PXE boot implemen-
tation. The actual firmware that starts up on ARMv8 nodes depends on the environment the hardware
is in. Networking is then started by the firmware and the network requests what to boot. The head node
however then sends out a GRUB binary instead of an iPXE binary. The GRUB binary then runs on the
regular node, and fetches the kernel and initrd via TFTP. The node installer then runs on the nodes and
follows the same steps as in the x86 process.

5.1.6 Network Booting Protocol
The protocol used by network booting is set with the parameter bootloaderprotocol. It is set to HTTP
by default at category level:

Example

[bright91->category[default-centos7-x86_64]]% get bootloaderprotocol
HTTP

It can be modified at category or node level, to one of the values HTTP, HTTPS, or TFTP:

Example

[bright91->device[node001]]% get bootloaderprotocol
HTTP (default-centos7-x86_64)
[bright91->device[node001]]% set bootloaderprotocol<TAB><TAB>
http https tftp
[bright91->device[node001]]% set bootloaderprotocol tftp
[bright91->device*[node001*]]% commit
[bright91->device[node001]]% get bootloaderprotocol
TFTP

The HTTPS protocol for node booting should almost never be used, because it is rarely implemented
in hardware.

5.1.7 The Boot Role
The action of providing a boot image to a node via DHCP and TFTP is known as providing node booting.
Node provisioning (section 5.2), on the other hand, is about provisioning the node with the rest of the
node image.

Roles in general are introduced in section 2.1.5. The boot role is one such role that can be assigned to
a regular node. The boot role configures a regular node so that it can then provide node booting. The
role cannot be assigned or removed from the head node—the head node always has a boot role.

The boot role is assigned by administrators to regular nodes if there is a need to cope with the
scaling limitations of TFTP and DHCP. TFTP and DHCP services can be overwhelmed when there are
large numbers of nodes making use of them during boot. An example of the scaling limitations may be
observed, for example, when, during the powering up and network booting attempts of a large number
of regular nodes from the head node, it turns out that random different regular nodes are unable to boot,
typically due to network effects.

One implementation of boot role assignment might therefore be, for example, to have a several
groups of racks, with each rack in a subnet, and with one regular node in each subnet that is assigned
the boot role. The boot role regular nodes would thus take the DHCP and TFTP load off the head node
and onto themselves for all the nodes in their associated subnet, so that all nodes of the cluster are then
able to boot without networking issues.

© Bright Computing, Inc.

5.2 Provisioning Nodes 163

5.2 Provisioning Nodes
The action of transferring the software image to the nodes is called node provisioning, and is done by
special nodes called the provisioning nodes. More complex clusters can have several provisioning nodes
configured by the administrator, thereby distributing network traffic loads when many nodes are boot-
ing.

Creating provisioning nodes is done by assigning a provisioning role to a node or category of nodes.
Similar to how the head node always has a boot role (section 5.1.7), the head node also always has a
provisioning role.

5.2.1 Provisioning Nodes: Configuration Settings
The provisioning role has several parameters that can be set:

Property Description

allImages The following values decide what images the provisioning node
provides:

• onlocaldisk (the default): all images on the local disk, regard-
less of any other parameters set

• onlocaldiskexceptsharedimages: all images on the local
disk, except for shared images

• onsharedstorage: all images on the shared storage, regardless
of any other parameters set

• no: only images listed in the localimages or sharedimages
parameters, described next

localimages A list of software images on the local disk that the provisioning node
accesses and provides. The list is used only if allImages is “no”.

sharedimages A list of software images on the shared storage that the provisioning
node accesses and provides. The list is used only if allImages is
“no”

Provisioning slots The maximum number of nodes that can be provisioned in parallel
by the provisioning node. The optimum number depends on the in-
frastructure. The default value is 10, which is safe for typical cluster
setups. Setting it lower may sometimes be needed to prevent net-
work and disk overload.

nodegroups A list of node groups (section 2.1.4). If set, the provisioning node
only provisions nodes in the listed groups. Conversely, nodes in one
of these groups can only be provisioned by provisioning nodes that
have that group set. Nodes without a group, or nodes in a group not
listed in nodegroups, can only be provisioned by provisioning nodes
that have no nodegroups values set. By default, the nodegroups list
is unset in the provisioning nodes.
The nodegroups setting is typically used to set up a convenient hier-
archy of provisioning, for example based on grouping by rack and
by groups of racks.

A provisioning node keeps a copy of all the images it provisions on its local drive, in the same
directory as where the head node keeps such images. The local drive of a provisioning node must
therefore have enough space available for these images, which may require changes in its disk layout.

© Bright Computing, Inc.

164 Node Provisioning

5.2.2 Provisioning Nodes: Role Setup With cmsh
In the following cmsh example the administrator creates a new category called misc. The default cate-
gory default already exists in a newly installed cluster.

The administrator then assigns the role called provisioning, from the list of available assignable
roles, to nodes in the misc category. After the assign command has been typed in, but before entering
the command, tab-completion prompting can be used to list all the possible roles. Assignment creates
an association between the role and the category. When the assign command runs, the shell drops into
the level representing the provisioning role.

If the role called provisioning were already assigned, then the use provisioning command would
drop the shell into the provisioning role, without creating the association between the role and the
category.

As an aside from the topic of provisioning, from an organizational perspective, other assignable roles
include monitoring, storage, and failover.

Once the shell is within the role level, the role properties can be edited conveniently.
For example, the nodes in the misc category assigned the provisioning role can have

default-image set as the image that they provision to other nodes, and have 20 set as the maximum
number of other nodes to be provisioned simultaneously (some text is elided in the following example):

Example

[bright91]% category add misc
[bright91->category*[misc*]]% roles
[bright91->category*[misc*]->roles]% assign provisioning
[bright91...*]->roles*[provisioning*]]% set allimages no
[bright91...*]->roles*[provisioning*]]% set localimages default-image
[bright91...*]->roles*[provisioning*]]% set provisioningslots 20
[bright91...*]->roles*[provisioning*]]% show
Parameter Value
--------------------------------- ---------------------------------
All Images no
Include revisions of local images yes
Local images default-image
Name provisioning
Nodegroups
Provisioning associations <0 internally used>
Revision
Shared images
Type ProvisioningRole
Provisioning slots 20
[bright91->category*[misc*]->roles*[provisioning*]]% commit
[bright91->category[misc]->roles[provisioning]]%

Assigning a provisioning role can also be done for an individual node instead, if using a category
is deemed overkill:

Example

[bright91]% device use node001
[bright91->device[node001]]% roles
[bright91->device[node001]->roles]% assign provisioning
[bright91->device*[node001*]->roles*[provisioning*]]%
...

A role change configures a provisioning node, but does not directly update the provisioning node
with images. After carrying out a role change, Bright Cluster Manager runs the updateprovisioners

© Bright Computing, Inc.

5.2 Provisioning Nodes 165

command described in section 5.2.4 automatically, so that regular images are propagated to the pro-
visioners. The propagation can be done by provisioners themselves if they have up-to-date images.
CMDaemon tracks the provisioning nodes role changes, as well as which provisioning nodes have up-
to-date images available, so that provisioning node configurations and regular node images propagate
efficiently. Thus, for example, image update requests by provisioning nodes take priority over provi-
sioning update requests from regular nodes.

5.2.3 Provisioning Nodes: Role Setup With Bright View
The provisioning configuration outlined in cmsh mode in section 5.2.2 can be done via Bright View too,
as follows:

A misc category can be added via the clickpath
Grouping→Categories→Add→Settings→<name>
The node category should be given a name misc (figure 5.3), and saved:

Figure 5.3: Bright View: Adding A misc Category

The Roles window can then be opened from within the misc category. To add a role, the Add button
in the Roles window is clicked. A scrollable list of available roles is then displayed, (figure 5.4):

© Bright Computing, Inc.

166 Node Provisioning

Figure 5.4: Bright View: Setting A provisioning Role

After selecting a role, then navigating via the Back buttons to the Settings menu of figure 5.3, the
role can be saved using the Save button there.

The role has properties which can be edited (figure 5.5):

Figure 5.5: Bright View: Configuring A provisioning Role

© Bright Computing, Inc.

5.2 Provisioning Nodes 167

The Provisioning slots setting decides, for example, how many images can be supplied simulta-
neously from the provisioning node, while the Images and All images settings decide what images the
provisioning node supplies. As before, the setting can be saved using the Save button of figure 5.3.

The images offered by the provisioning role should not be confused with the software image setting
of the misc category itself, which is the image the provisioning node requests for itself from the category.

5.2.4 Provisioning Nodes: Housekeeping
The head node does housekeeping tasks for the entire provisioning system. Provisioning is done on
request for all non-head nodes on a first-come, first-serve basis. Since provisioning nodes themselves,
too, need to be provisioned, it means that to cold boot an entire cluster up quickest, the head node
should be booted and be up first, followed by provisioning nodes, and finally by all other non-head
nodes. Following this start-up sequence ensures that all provisioning services are available when the
other non-head nodes are started up.

Some aspects of provisioning housekeeping are discussed next:

Provisioning Node Selection
When a node requests provisioning, the head node allocates the task to a provisioning node. If there
are several provisioning nodes that can provide the image required, then the task is allocated to the
provisioning node with the lowest number of already-started provisioning tasks.

Limiting Provisioning Tasks With MaxNumberOfProvisioningThreads
Besides limiting how much simultaneous provisioning per provisioning node is allowed with
Provisioning Slots (section 5.2.1), the head node also limits how many simultaneous provisioning
tasks are allowed to run on the entire cluster. This is set using the MaxNumberOfProvisioningThreads
directive in the head node’s CMDaemon configuration file, /etc/cmd.conf, as described in Appendix C.

Provisioning Tasks Deferral and Failure
A provisioning request is deferred if the head node is not able to immediately allocate a provisioning
node for the task. Whenever an ongoing provisioning task has finished, the head node tries to re-allocate
deferred requests.

A provisioning request fails if an image is not transferred. 5 retry attempts at provisioning the image
are made in case a provisioning request fails.

A provisioning node that is carrying out requests, and which loses connectivity, has its provisioning
requests remain allocated to it for 180 seconds from the time that connectivity was lost. After this time
the provisioning requests fail.

Provisioning Role Change Notification With updateprovisioners
The updateprovisioners command can be accessed from the softwareimage mode in cmsh. It can
also be accessed from Bright View, via the clickpath Provisioning→Provisioning requests→Update
provisioning nodes.

In the examples in section 5.2.2, changes were made to provisioning role attributes for an individual
node as well as for a category of nodes. This automatically ran the updateprovisioners command.

The updateprovisioners command runs automatically if CMDaemon is involved during software
image changes or during a provisioning request. If on the other hand, the software image is changed
outside of the CMDaemon front ends (Bright View and cmsh), for example by an administrator adding
a file by copying it into place from the bash prompt, then updateprovisioners should be run manually
to update the provisioners.

In any case, if it is not run manually, it is scheduled to run every midnight by default.
When the default updateprovisioners is invoked manually, the provisioning system waits for all

running provisioning tasks to end, and then updates all images located on any provisioning nodes by
using the images on the head node. It also re-initializes its internal state with the updated provisioning
role properties, i.e. keeps track of what nodes are provisioning nodes.

© Bright Computing, Inc.

168 Node Provisioning

The default updateprovisioners command, run with no options, updates all images. If run from
cmsh with a specified image as an option, then the command only does the updates for that particular
image. A provisioning node undergoing an image update does not provision other nodes until the
update is completed.

Example

[bright91]% softwareimage updateprovisioners
Provisioning nodes will be updated in the background.

Sun Dec 12 13:45:09 2010 bright91: Starting update of software image(s)\
provisioning node(s). (user initiated).
[bright91]% softwareimage updateprovisioners [bright91]%
Sun Dec 12 13:45:41 2010 bright91: Updating image default-image on prov\
isioning node node001.
[bright91]%
Sun Dec 12 13:46:00 2010 bright91: Updating image default-image on prov\
isioning node node001 completed.
Sun Dec 12 13:46:00 2010 bright91: Provisioning node node001 was updated
Sun Dec 12 13:46:00 2010 bright91: Finished updating software image(s) \
on provisioning node(s).

Provisioning Role Draining And Undraining Nodes With drain, undrain
The drain and undrain commands to control provisioning nodes are accessible from within the
softwareimage mode of cmsh.

If a node is put into a drain state, then all currently active provisioning requests continue until they
are completed. However, the node is not assigned any further pending requests, until the node is put
back into an undrain state.

Example

[bright91->softwareimage]% drain -n master
Nodes drained
[bright91->softwareimage]% provisioningstatus
Provisioning subsystem status
Pending request: node001, node002
Provisioning node status:
+ bright91

Slots: 1 / 10
State: draining
Active nodes: node003
Up to date images: default-image

[bright91->softwareimage]% provisioningstatus
Provisioning subsystem status
Pending request: node001, node002
Provisioning node status:
+ bright91

Slots: 0 / 10
State: drained
Active nodes: none
Up to date images: default-image

To drain all nodes at once, the --role option can be used, with provisioning role as its value. All
pending requests then remain in the queue, until the nodes are undrained again.

Example

© Bright Computing, Inc.

5.2 Provisioning Nodes 169

[bright91->softwareimage]% drain --role provisioning
...Time passes. Pending

requests stay in the queue. Then
admin undrains it...

[bright91->softwareimage]% undrain --role provisioning

Provisioning Node Update Safeguards And provisioningnodeautoupdatetimeout
The updateprovisioners command is subject to safeguards that prevent it running too frequently. The
minimum period between provisioning updates can be adjusted with the parameter provisioning-
nodeautoupdatetimeout, which has a default value of 300s.

Exceeding the timeout does not by itself trigger an update to the provisioning node.
When the head node receives a provisioning request, it checks if the last update of the provisioning

nodes is more than the timeout period. If true, then an update is triggered to the provisioning node. The
update is disabled if the timeout is set to zero (false).

The parameter can be accessed and set within cmsh from partition mode:

Example

[root@bright91]# cmsh
[bright91]% partition use base
[bright91->partition[base]]% get provisioningnodeautoupdatetimeout
[bright91->partition[base]]% 300
[bright91->partition[base]]% set provisioningnodeautoupdatetimeout 0
[bright91->partition*[base*]]% commit

Within Bright View the parameter is accessible via the clickpath:
Cluster→Partition[base]→Provisioning Node Auto Update Timeout.

To prevent provisioning an image to the nodes, it can be locked (section 5.4.7). The provisioning
request is then deferred until the image is once more unlocked.

Synchronization Of Fspart Subdirectories To Provisioning Nodes
In Bright Cluster Manager, an fspart is a subdirectory, and it is a filesystem part that can be synced
during provisioning.

The list of fsparts can be listed with:

Example

[root@bright91]# cmsh
[bright91]% fspart
[bright91->fspart]% list
Path (key) Type Image
------------------------------ --------------- ------------------------
/cm/images/default-image image default-image
/cm/images/default-image/boot boot default-image:boot
/cm/node-installer node-installer
/cm/shared cm-shared
/tftpboot tftpboot
/var/spool/cmd/monitoring monitoring

The updateprovisioners command (page 167) is used to update image fsparts to all nodes with a
provisioning role.

The trigger command: is used to update non-image fsparts to off-premises nodes, such as cloud
directors and edge directors. The directors have a provisioning role for the nodes that they direct.

All of the non-image types can be updated with the --all option:

© Bright Computing, Inc.

170 Node Provisioning

Example

[bright91->fspart]% trigger --all

The command help trigger in fspart mode gives further details.

The info command: shows the architecture, OS, and the number of inotify watchers that track rsyncs
in the fspart subdirectory.

[bright91->fspart]% info
Path Architecture OS Inotify watchers
------------------------------ ---------------- ---------------- ----------------
/cm/images/default-image x86_64 rhel7 0
/cm/images/default-image/boot - - 0
/cm/node-installer x86_64 rhel7 0
/cm/shared x86_64 rhel7 0
/tftpboot - - 0
/var/spool/cmd/monitoring - - 0

[bright91->fspart]% info -s (!#with size, takes longer)
Path Architecture OS Inotify watchers Size
------------------------------ ---------------- ---------------- ---------------- ----------------
/cm/images/default-image x86_64 rhel7 0 4.2 GiB
/cm/images/default-image/boot - - 0 179 MiB
/cm/node-installer x86_64 rhel7 0 2.45 GiB
/cm/shared x86_64 rhel7 0 2.49 GiB
/tftpboot - - 0 3.3 MiB
/var/spool/cmd/monitoring - - 0 1.02 GiB

The locked, lock, and unlock commands:

• The locked command lists fsparts that are prevented from syncing.

Example

[bright91->fspart]% locked
No locked fsparts

• The lock command prevents a specific fspart from syncing.

Example

[bright91->fspart]% lock /var/spool/cmd/monitoring
[bright91->fspart]% locked
/var/spool/cmd/monitoring

• The unlock command unlocks a specific locked fspart again.

Example

[bright91->fspart]% unlock /var/spool/cmd/monitoring
[bright91->fspart]% locked
No locked fsparts

© Bright Computing, Inc.

5.3 The Kernel Image, Ramdisk And Kernel Modules 171

Access to excludelistsnippets: The properties of excludelistsnippets for a specific fspart can be
accessed from the excludelistsnippets submode:

Example

[bright91->fspart]% excludelistsnippets /tftpboot

[bright91->fspart[/tftpboot]->excludelistsnippets]% list
Name (key) Lines Disabled Mode sync Mode full Mode update Mode grab Mode grab new
------------ ------- ------------ ----------- ----------- -------------- ----------- --------------
Default 2 no yes yes yes no no

[bright91->fspart[/tftpboot]->excludelistsnippets]% show default
Parameter Value
-------------------------------- ---
Lines 2
Name Default
Revision
Exclude list # no need for rescue on nodes with a boot role,/rescue,/rescue/*
Disabled no
No new files no
Mode sync yes
Mode full yes
Mode update yes
Mode grab no
Mode grab new no

[bright91->fspart[/tftpboot]->excludelistsnippets]% get default excludelist
no need for rescue on nodes with a boot role
/rescue
/rescue/*

5.3 The Kernel Image, Ramdisk And Kernel Modules
A software image is a complete Linux filesystem that is to be installed on a non-head node. Chapter 12
describes images and their management in detail.

The head node holds the head copy of the software images. Whenever files in the head copy are
changed using CMDaemon, the changes automatically propagate to all provisioning nodes via the
updateprovisioners command (section 5.2.4).

5.3.1 Booting To A “Good State” Software Image
When nodes boot from the network in simple clusters, the head node supplies them with a known good
state during node start up. The known good state is maintained by the administrator and is defined
using a software image that is kept in a directory of the filesystem on the head node. Supplementary
filesystems such as /home are served via NFS from the head node by default.

For a diskless node the known good state is copied over from the head node, after which the node
becomes available to cluster users.

For a disked node, by default, the hard disk contents on specified local directories of the node are
checked against the known good state on the head node. Content that differs on the node is changed to
that of the known good state. After the changes are done, the node becomes available to cluster users.

Each software image contains a Linux kernel and a ramdisk. These are the first parts of the image
that are loaded onto a node during early boot. The kernel is loaded first. The ramdisk is loaded next,
and contains driver modules for the node’s network card and local storage. The rest of the image is
loaded after that, during the node-installer stage (section 5.4).

© Bright Computing, Inc.

172 Node Provisioning

5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes
Kernel modules can be managed in softwareimage mode (using an image), in category mode (using a
category), or in device mode (using a node), as indicated by the following cmsh tree view of a newly-
installed cluster with default values:

cmsh
|-- category[default]
| |-- kernelmodules
...
|-- device][node001]
| |-- kernelmodules
...
|-- softwareimage[default-image]
| |-- kernelmodules
...

As is usual in Bright Cluster Manager, if there are values specified at the lower levels in the hierarchy,
then their values override the values set higher up in the hierarchy. For example, modules specified at
node level override modules specified at category or software image level. Similarly modules specified
at the category level override whatever is specified at the software image level. The cluster administra-
tors should be aware that “override” for kernel modules appended to a kernel image means that any
kernel modules defined at a higher level are totally ignored—the modules from a lower level exclude the
modules at the higher level. A misconfiguration of kernel modules in the lower levels can thus prevent
the node from starting up.

Modules are normally just set at softwareimage level, using cmsh or Bright View.

Kernel Driver Modules With cmsh
In cmsh, the modules that are to go on the ramdisk can be placed using the kernelmodules submode of
the softwareimage mode. The order in which they are listed is the attempted load order.

Within the kernelmodules submode, the import command can be used to import the kernel modules
list from a software image, from a node, or from a category, replacing the original kernel modules list.

Whenever a change is made via the kernelmodules submode to the kernel module selection of a
software image, CMDaemon automatically runs the createramdisk command. The createramdisk
command regenerates the ramdisk inside the initrd image and sends the updated image to all provi-
sioning nodes, to the image directory, set by default to /cm/images/default-image/boot/. The original
initrd image is saved as a file with suffix “.orig” in that directory. An attempt is made to generate the
image for all software images that CMDaemon is aware of, regardless of category assignment, unless
the image is protected from modification by CMDaemon with a FrozenFile directive (Appendix C).

The createramdisk command can also be run manually from within the softwareimage mode.

Kernel Driver Modules With Bright View
In Bright View the selection of kernel modules for a particular image, is carried out
through the Software images resource, and then choosing the Kernel modules menu option
of that image. For example, for the image default-image, clickpath Provisioning→Software
images[default-image]→Edit→Settings→Kernel modules, leading to figure 5.6:

© Bright Computing, Inc.

5.3 The Kernel Image, Ramdisk And Kernel Modules 173

Figure 5.6: Bright View: Selecting Kernel Modules For Software Images

New kernel modules can be added using the Add button, existing kernel modules can be removed
using the Delete button, and kernel module parameters can be edited using the Edit button.

Manually Regenerating A Ramdisk
Regenerating a ramdisk manually via cmsh or Bright View is useful if the kernel or modules have
changed without using CMDaemon. For example, after running a YUM update which has modified
the kernel or modules of the nodes (section 12.3). In such a case, the distribution would normally up-
date the ramdisk on the machine, but this is not done for the extended ramdisk for nodes in Bright
Cluster Manager. Not regenerating the Bright Cluster Manager ramdisk for nodes after such an update
means the nodes may fail on rebooting during the loading of the ramdisk (section 5.8.4).

An example of regenerating the ramdisk is seen in section 5.8.5.

Implementation Of Kernel Driver Via Ramdisk Or Kernel Parameter
Sometimes, testing or setting a kernel driver as a kernel parameter may be more convenient. How to do
that is covered in section 12.3.4.

5.3.3 InfiniBand Provisioning
On clusters that have InfiniBand hardware, it is normally used for data transfer as a service after the
nodes have fully booted up (section 3.6). It can also be used for PXE booting (section 5.1.3) and for node
provisioning (described here), but these are not normally a requirement. This section (about InfiniBand
node provisioning) may therefore safely be skipped in almost all cases when first configuring a cluster.

During node start-up on a setup for which InfiniBand networking has been enabled, the init process
runs the rdma script. For SLES the openib script is used instead of the rdma script. The script loads
up InfiniBand modules into the kernel. When the cluster is finally fully up and running, the use of
InfiniBand is thus available for all processes that request it.

Provisioning nodes over InfiniBand is not implemented by default, because the init process, which
handles initialization scripts and daemons, takes place only after the node-provisioning stage launches.
InfiniBand modules are therefore not available for use during provisioning, which is why, for default
kernels, provisioning in Bright Cluster Manager is done via Ethernet.

Provisioning at the faster InfiniBand speeds rather than Ethernet speeds is however a requirement
for some clusters. To get the cluster to provision using InfiniBand requires both of the following two
configuration changes to be carried out:

© Bright Computing, Inc.

174 Node Provisioning

1. configuring InfiniBand drivers for the ramdisk image that the nodes first boot into, so that provi-
sioning via InfiniBand is possible during this pre-init stage

2. defining the provisioning interface of nodes that are to be provisioned with InfiniBand. It is as-
sumed that InfiniBand networking is already configured, as described in section 3.6.

The administrator should be aware that the interface from which a node boots, (conveniently la-
beled BOOTIF), must not be an interface that is already configured for that node in CMDaemon.
For example, if BOOTIF is the device ib0, then ib0 must not already be configured in CMDaemon.
Either BOOTIF or the ib0 configuration should be changed so that node installation can succeed.

How these two changes are carried out is described next:

InfiniBand Provisioning: Ramdisk Image Configuration
An easy way to see what modules must be added to the ramdisk for a particular HCA can be found by
running rdma (or openibd), and seeing what modules do load up on a fully booted regular node.

One way to do this is to run the following lines as root:

[root@bright91 ~]# { service rdma stop; lsmod | cut -f1 -d" "; }>/tmp/a
[root@bright91 ~]# { service rdma start; lsmod | cut -f1 -d" "; }>/tmp/b

The rdma service in the two lines should be replaced by openibd service instead when using SLES, or
distributions based on versions of Red Hat prior to version 6.

The first line stops the InfiniBand service, just in case it is running, in order to unload its modules,
and then lists the modules on the node.

The second line starts the service, so that the appropriate modules are loaded, and then lists the
modules on the node again. The output of the first step is stored in a file a, and the output from the
second step is stored in a file b.

Running diff on the output of these two steps then reveals the modules that get loaded. For rdma,
the output may display something like:

Example

[root@bright91 ~]# diff /tmp/a /tmp/b
1,3c1
< Unloading OpenIB kernel modules:
< Failed to unload ib_core
< [FAILED]

> Loading OpenIB kernel modules: [OK]
4a3,14
> ib_ipoib
> rdma_ucm
> ib_ucm
> ib_uverbs
> ib_umad
> rdma_cm
> ib_cm
> iw_cm
> ib_addr
> ib_sa
> ib_mad
> ib_core

As suggested by the output, the modules ib_ipoib, rdma_ucm and so on are the modules loaded
when rdma starts, and are therefore the modules that are needed for this particular HCA. Other HCAs
may cause different modules to be loaded.

© Bright Computing, Inc.

5.3 The Kernel Image, Ramdisk And Kernel Modules 175

For a default Red Hat from version 7 onwards, the rdma service can only be started; it cannot be
stopped. Finding the modules that load can therefore only be done once for the default configuration,
until the next reboot.

The InfiniBand modules that load are the ones that the initrd image needs, so that InfiniBand can be
used during the node provisioning stage. The administrator can therefore now create an initrd image
with the required InfiniBand modules.

Loading kernel modules into a ramdisk is covered in general in section 5.3.2. A typical Mellanox
HCA may have an initrd image created as follows (some text ellipsized in the following example):

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage use default-image
[bright91->softwareimage[default-image]]% kernelmodules
[bright91...age[default-image]->kernelmodules]% add mlx4_ib
[bright91...age*[default-image*]->kernelmodules*[mlx4_ib*]]% add ib_ipoib
[bright91...age*[default-image*]->kernelmodules*[ib_ipoib*]]% add ib_umad
[bright91...age*[default-image*]->kernelmodules*[ib_umad*]]% commit
[bright91->softwareimage[default-image]->kernelmodules[ib_umad]]%
Tue May 24 03:45:35 2011 bright91: Initial ramdisk for image default-im\
age was regenerated successfully.

If the modules are put in another image instead of default-image, then the default image that nodes
boot from should be set to the new image (section 3.15.2).

InfiniBand Provisioning: Network Configuration
It is assumed that the networking configuration for the final system for InfiniBand is configured follow-
ing the general guidelines of section 3.6. If it is not, that should be checked first to see if all is well with
the InfiniBand network.

The provisioning aspect is set by defining the provisioning interface. An example of how it may be
set up for 150 nodes with a working InfiniBand interface ib0 in cmsh is:

Example

[root@bright91~]# cmsh
[bright91]% device
[bright91->device]% foreach -n node001..node150 (set provisioninginterface ib0)
[bright91->device*]% commit

5.3.4 Omni-Path Provisioning
The Intel Omni-Path Architecture (OPA) can be set up for provisioning in a similar way to the InfiniBand
provisioning described in section 5.3.3.

Omni-Path Provisioning: Ramdisk Image Configuration
The hfi1 and ib_ipoib kernel modules must be added to the software image and the initrd image
regenerated:

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage use default-image
[bright91->softwareimage[default-image]]% kernelmodules
[bright91...age[default-image]->kernelmodules]% add hfi1
[bright91...age*[default-image*]->kernelmodules*[hfi1*]]% add ib_ipoib
[bright91...age*[default-image*]->kernelmodules*[ib_ipoib*]]% commit
[bright91->softwareimage[default-image]->kernelmodules[ib_ipoib]]%
Thu Jul 4 15:03:35 2019 bright91: Initial ramdisk for image default-im\
age was regenerated successfully.

© Bright Computing, Inc.

176 Node Provisioning

Omni-Path Provisioning: Network Configuration
For the Omni-Path interface on the node, the value of provisioninginterface is set to ib0, since it still
diverges very little from InfiniBand. So, in same way as for InfiniBand before:

Example

[root@bright91~]# cmsh
%[bright91]% device
[bright91->device]% foreach -n node001..node150 (set provisioninginterface ib0)
[bright91->device*]% commit

5.3.5 VLAN Provisioning
Nodes can be configured for provisioning over a VLAN interface, starting in Bright Cluster Manager
version 8.2.

This requires:

• A VLAN network and node interface. The VLAN network is typically specified by the network
switch. The interface that connects the node to the switch can be configured as a VLAN interface
as outlined in section 3.4.

• The 8021q (rtnl-link-vlan) driver to be available in the software image that is provisioned. In
recent distributions this driver is not part of the base kernel, and is instead available as a module.
The module should be loaded into the software image that is to be provisioned. For example, for
node001 that is missing the module in the software image, the module could be configured to run
on the node from the software image as follows:

Example

[root@bright91 ~]# ssh node001 "lsmod | grep 8021q"
[root@bright91 ~]# cmsh
[bright91]% softwareimage
[bright91]->softwareimage% use default-image
[bright91->softwareimage[default-image]]% kernelmodules
[bright91->softwareimage[default-image]->kernelmodules]% list | grep 8021q
[bright91->softwareimage[default-image]->kernelmodules]% add 8021q
[bright91->softwareimage*[default-image*]->kernelmodules*[8021q*]]% commit

[bright91->softwareimage[default-image]->kernelmodules[8021q]]% device use node001
[bright91->device[node001]]% reboot
...

some time after boot
[root@bright91 ~]# ssh node001 "lsmod | grep 8021q"
8021q 40960 0
garp 16384 1 8021q
mrp 20480 1 8021q

Rebooted nodes that use the modified software image then have the VLAN module available in
the running kernel.

• The BIOS of the node must have the VLANID value set within the BIOS network options. If the
BIOS does not support this setting, then PXE over VLAN cannot work. For a NIC that is missing
this in the BIOS, the NIC hardware provider may sometimes have a BIOS update that supports
this setting.

• The VLANID value should be set in the kernel parameters. Kernel parameters for a node can be
specified in cmsh with the kernelparameters setting of softwareimage mode (section 12.3.4). An
example where the VLANID is appended to some existing parameters could be:

© Bright Computing, Inc.

5.4 Node-Installer 177

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage use default-image
[bright91->softwareimage[default-image]]% append kernelparameters " VLANID=89"
[bright91->softwareimage*[default-image*]]% commit

5.4 Node-Installer
After the kernel has started up, and the ramdisk kernel modules are in place on the node, the node
launches the node-installer.

The node-installer is a software image (section 12.4.4) provided by the head node. It interacts with
CMDaemon on the head node and takes care of the rest of the boot process.

As an aside, the node-installer modifies some files (Appendix A.3) on the node it is installing to,
so that they differ from the otherwise-expected pre-init stage Linux system. Such modifications can be
prevented by a frozenFilesPerNode or frozenFilesPerCategory directive, as documented within the
node-installer.conf file, and explained in greater detail on page 790.

Once the node-installer has completed its tasks, the local drive of the node has a complete Linux
pre-init stage system. The node-installer ends by calling /sbin/init from the local drive and the boot
process then proceeds as a normal Linux boot.

The steps the node-installer goes through for each node are:

1. requesting a node certificate (section 5.4.1)

2. deciding or selecting node configuration (section 5.4.2)

3. starting up all network interfaces (section 5.4.3)

4. determining install-mode type and execution mode (section 5.4.4)

5. running initialize scripts (section 5.4.5)

6. checking partitions, mounting filesystems (section 5.4.6)

7. synchronizing the local drive with the correct software image (section 5.4.7)

8. writing network configuration files to the local drive (section 5.4.8)

9. creating an /etc/fstab file on the local drive (section 5.4.9)

10. installing GRUB bootloader if configured by Bright Cluster Manager (section 5.4.10), and initializ-
ing SELinux if it has been installed and configured (Chapter 9 of the Installation Manual)

11. running finalize scripts (section 5.4.11)

12. unloading specific drivers no longer needed (section 5.4.12)

13. switching the root device to the local drive and calling /sbin/init (section 5.4.13)

These 13 node-installer steps and related matters are described in detail in the corresponding sections
5.4.1–5.4.13.

© Bright Computing, Inc.

178 Node Provisioning

5.4.1 Requesting A Node Certificate
Each node communicates with the CMDaemon on the head node using a certificate. If no certificate is
found, it automatically requests one from CMDaemon running on the head node (figure 5.7).

Figure 5.7: Certificate Request

The certificate is stored on the head node in /cm/node-installer/certificates/ by MAC address.

Certificate Auto-signing
Certificate auto-signing means the cluster management daemon automatically signs a certificate signing
request (CSR) that has been requested by a node. Certificate auto-signing can be configured from within
partition mode of cmsh, with the signinstallercertificates parameter. It can take one of the fol-
lowing values:

• AUTO (the default)

• MANUAL

Example

[root@bright91 ~]# cmsh
[bright91]% partition
[bright91->partition[base]]% set signinstallercertificates auto

For untrusted networks, it may be wiser to approve certificate requests manually to prevent new nodes
being added automatically without getting noticed.

Disabling certificate auto-signing for all networks can be done by setting
signinstallercertificates to MANUAL.

Instead of disabling certificate autosigning for all networks, a finer tuning can be carried out for
individual networks. This requires that signinstallercertificates be set to AUTO in partition mode.
The allowautosign parameter in network mode can then be set for a particular network, and it can take
one of the following values:

• Always

© Bright Computing, Inc.

/cm/node-installer/certificates/

5.4 Node-Installer 179

• Automatic (the default)

• Never

• Secret

Example

[root@bright91 ~]# cmsh
[bright91]% network use internalnet
[bright91->network[internalnet]]% set allowautosign automatic[TAB][TAB]
always automatic never secret

If Always is set, then incoming CSRs from all types of networks are automatically auto-signed.
If Automatic is set, then only networks that are of type internal are automatically auto-signed.
If Never is set, then all incoming CSRs that come in for that network have to be manually approved.
The value Secret is required for the globalnet network, for edge sites. A node on an edge site uses

a shared secret that is passed along with the node request. The secret is set during edge site setup by
Bright Cluster Manager (section 2.1.1 of the Edge Manual).

Manual Approval Of A CSR
Approval of the CSR from a regular node (not an edge node): Manual approval of a CSR is typi-
cally done from within certs mode. A list of requests can be found, and from the list, the appropriate
unsigned request can be signed and issued. The following session illustrates the process:

[bright91->cert]% listrequests
Request ID Client type Session ID Autosign Name
------------ ------------ ------------ -------- ------------------
6 installer 42949672986 No fa-16-3e-22-cd-13
[bright91->cert]% issuecertificate 6
Issued 6

Approval of the CSR from an edge node: If the shared secret has not been set for the edge director—
that is, if it has not been stored locally on the edge director, or if it has not been passed on via the
installation medium— then the node-installer prompts for the secret the first time that it boots. If the
secret that is typed in matches the site secret, then a CSR from the edge director is handled by the head
node, and a signed certificate is issued.

The edge compute nodes pick up their secret from the director. If the director does not have the
secret, then the compute node’s node-installer prompts for the secret on first boot. Once the secret is
set, then edge compute node sends its CSR to the head node (via the edge director) and gets a signed
certificate automatically.

Section 2.3 has more information on certificate management in general.

Certificate Storage And Removal Implications
After receiving a valid certificate, the node-installer stores it in
/cm/node-installer/certificates/<node mac address>/ on the head node. This directory is NFS
exported to the nodes, but can only be accessed by the root user. The node-installer does not request a
new certificate if it finds a certificate in this directory, valid or invalid.

If an invalid certificate is received, the screen displays a communication error. Removing the node’s
corresponding certificate directory allows the node-installer to request a new certificate and proceed
further.

© Bright Computing, Inc.

180 Node Provisioning

5.4.2 Deciding Or Selecting Node Configuration
Once communication with the head node CMDaemon is established, the node-installer tries to identify
the node it is running on so that it can select a configuration from CMDaemon’s record for it, if any such
record exists. It correlates any node configuration the node is expected to have according to network
hardware detected. If there are issues during this correlation process then the administrator is prompted
to select a node configuration until all nodes finally have a configuration.

Possible Node Configuration Scenarios
The correlations process and corresponding scenarios are now covered in more detail:

It starts with the node-installer sending a query to CMDaemon to check if the MAC address used
for net booting the node is already associated with a node in the records of CMDaemon. In particular,
it checks the MAC address for a match against the existing node configuration properties, and decides
whether the node is known or new.

• the node is known if the query matches a node configuration. It means that node has been booted
before.

• the node is new if no configuration is found.

In both cases the node-installer then asks CMDaemon to find out if the node is connected to an
Ethernet switch, and if so, to which port. Setting up Ethernet switches for port detection is covered in
section 3.8.

If a port is detected for the node, the node-installer queries CMDaemon for a node configuration
associated with the detected Ethernet switch port. If a port is not detected for the node, then either
the hardware involved with port detection needs checking, or a node configuration must be selected
manually.

There are thus several scenarios:

1. The node is new, and an Ethernet switch port is detected. A node configuration associated with
the port is found. The node-installer suggests to the administrator that the new node should use
this configuration, and displays the configuration along with a confirmation dialog (figure 5.8).
This suggestion can be interrupted, and other node configurations can be selected manually in-
stead through a sub-dialog (figure 5.9). By default (in the main dialog), the original suggestion is
accepted after a timeout.

© Bright Computing, Inc.

5.4 Node-Installer 181

Figure 5.8: Scenarios: Configuration Found, Confirm Node Configuration

Figure 5.9: Scenarios: Node Selection Sub-Dialog

2. The node is new, and an Ethernet switch port is detected. A node configuration associated with
the port is not found. The node-installer then displays a dialog that allows the administrator to
either retry Ethernet switch port detection (figure 5.10) or to drop into a sub-dialog to manually
select a node configuration (figure 5.9). By default, port detection is retried after a timeout.

© Bright Computing, Inc.

182 Node Provisioning

Figure 5.10: Scenarios: Unknown Node, Ethernet Port Detected

3. The node is new, and an Ethernet switch port is not detected. The node-installer then displays a
dialog that allows the user to either retry Ethernet switch port detection (figure 5.11) or to drop
into a sub-dialog to manually select a node configuration (figure 5.9). By default, port detection is
retried after a timeout.

Figure 5.11: Scenarios: Unknown Node, No Ethernet Port Detected

4. The node is known, and an Ethernet switch port is detected. The configuration associated with the

© Bright Computing, Inc.

5.4 Node-Installer 183

port is the same as the configuration associated with the node’s MAC address. The node-installer
then displays the configuration as a suggestion along with a confirmation dialog (figure 5.8). The
suggestion can be interrupted, and other node configurations can be selected manually instead
through a sub-dialog (figure 5.9). By default (in the main dialog), the original suggestion is ac-
cepted after a timeout.

5. The node is known, and an Ethernet switch port is detected. However, the configuration associated
with the port is not the same as the configuration associated with the node’s MAC address. This is
called a port mismatch. This type of port mismatch situation occurs typically during a mistaken node
swap, when two nodes are taken out of the cluster and returned, but their positions are swapped
by mistake (or equivalently, they are returned to the correct place in the cluster, but the switch
ports they connect to are swapped by mistake). To prevent configuration mistakes, the node-
installer displays a port mismatch dialog (figure 5.12) allowing the user to retry, accept a node
configuration that is associated with the detected Ethernet port, or to manually select another
node configuration via a sub-dialog (figure 5.9). By default (in the main port mismatch dialog),
port detection is retried after a timeout.

Figure 5.12: Scenarios: Port Mismatch Dialog

6. The node is known, and an Ethernet switch port is not detected. However, the configuration
associated with the node’s MAC address does have an Ethernet port associated with it. This is
also considered a port mismatch. To prevent configuration mistakes, the node-installer displays a
port mismatch dialog similar to figure 5.12, allowing the user to retry or to drop into a sub-dialog
and manually select a node configuration that may work.

However, a more likely solution in most cases is to:

• either clear the switch port configuration in the cluster manager so that switch port detection
is not attempted. For example, for node001, this can be done by running this cmsh command
on the head node:
cmsh -c "device clear node001 switchports; commit"

• or enable switch port detection on the switch. This is usually quite straightforward, but may

© Bright Computing, Inc.

184 Node Provisioning

require going through the manuals or software application that the switch manufacturer has
provided.

By default (in the port mismatch dialog), port detection is retried after a timeout. This means
that if the administrator clears the switch port configuration or enables switch port detection, the
node-installer is able to continue automatically with a consistent configuration.

7. The node is known, and an Ethernet switch port is detected. However, the configuration associated
with the node’s MAC address has no Ethernet switch port associated with it. This is not considered
a port mismatch but an unset switch port configuration, and it typically occurs if switch port
configuration has not been carried out, whether by mistake or deliberately. The node-installer
displays the configuration as a suggestion along with a confirmation dialog (figure 5.13). The
suggestion can be interrupted, and other node configurations can be selected manually instead
using a sub-dialog. By default (in the main dialog) the configuration is accepted after a timeout.

Figure 5.13: Scenarios: Port Unset Dialog

A truth table summarizing the scenarios is helpful:

Scenario
Node
known?

Switch
port de-
tected?

Switch
port
config-
uration
found?

Switch port configuration conflicts with node configu-
ration?

1 No Yes Yes No

2 No Yes No No

3 No No No No

4 Yes Yes Yes No

5 Yes Yes Yes Yes (configurations differ)

6 Yes No Yes Yes (port expected by MAC configuration not found)

7 Yes Yes No No (port not expected by MAC configuration)

© Bright Computing, Inc.

5.4 Node-Installer 185

In these scenarios, whenever the user manually selects a node configuration in the prompt dialog,
an attempt to detect an Ethernet switch port is repeated. If a port mismatch still occurs, it is handled by
the system as if the user has not made a selection.

Summary Of Behavior During Hardware Changes
The logic of the scenarios means that an unpreconfigured node always boots to a dialog loop requiring
manual intervention during a first install (scenarios 2 and 3). For subsequent boots the behavior is:

• If the node MAC hardware has changed (scenarios 1, 2, 3):

– if the node is new and the detected port has a configuration, the node automatically boots to
that configuration (scenario 1).

– else manual intervention is needed (scenarios 2, 3)

• If the node MAC hardware has not changed (scenarios 4, 5, 6, 7):

– if there is no port mismatch, the node automatically boots to its last configuration (scenarios
4, 7).

– else manual intervention is needed (scenarios 5, 6).

The newnodes Command
newnodes basic use: New nodes that have not been configured yet can be detected using the newnodes
command from within the device mode of cmsh. A new node is detected when it reaches the node-
installer stage after booting, and contacts the head node.

Example

[bright91->device]% newnodes
The following nodes (in order of appearance) are waiting to be assigned:
MAC First appeared Detected on switch port
----------------- ----------------------------- -----------------------
00:0C:29:01:0F:F8 Mon, 14 Feb 2011 10:16:00 CET [no port detected]

At this point the node-installer is seen by the administrator to be looping, waiting for input on what
node name is to be assigned to the new node.

The nodes can be uniquely identified by their MAC address or switch port address.
The port and switch to which a particular MAC address is connected can be discovered by using

the showport command (section 3.8.4). After confirming that they are appropriate, the switchports
property for the specified device can be set to the port and switch values.

Example

[bright91->device]% showport 00:0C:29:01:0F:F8
switch01:8
[bright91->device]% set node003 switchports switch01:8
[bright91->device*]% commit

When the node name (node003 in the preceding example) is assigned, the node-installer stops loop-
ing and goes ahead with the installation to the node.

The preceding basic use of newnodes is useful for small numbers of nodes. For larger number of
nodes, the advanced options of newnodes may help carry out node-to-MAC assignment with less effort.

© Bright Computing, Inc.

186 Node Provisioning

newnodes advanced use—options: The list of MAC addresses discovered by a newnodes command
can be assigned in various ways to nodes specified by the administrator. Node objects should be created
in advance to allow the assignment to take place. The easiest way to set up node objects is to use the
--clone option of the foreach command (section 2.5.5).

The advanced options of newnodes are particularly useful for quickly assigning node names to spe-
cific physical nodes. All that is needed is to power the nodes up in the right order. For nodes with the
same hardware, the node that is powered up first reaches the stage where it tries to connect with the
node-installer first. So its MAC address is detected first, and arrives on the list generated by newnodes
first. If some time after the first node is powered up, the second node is powered up, then its MAC
address becomes the second MAC address on the list, and so on for the third, fourth, and further nodes.

When assigning node names to a physical node, on a cluster that has no such assignment already,
the first node that arrived on the list gets assigned the name node001, the second node that arrived on
the list gets assigned the name node002 and so on.

The advanced options are shown in device mode by running the help newnodes command. The
options can be introduced as being of three kinds: straightforward, grouping, and miscellaneous:

• The straightforward options:

-n|--nodes

-w|--write

-s|--save

Usually the most straightforward way to assign the nodes is to use the -n option, which accepts
a list of nodes, together with a -w or -s option. The -w (--write) option sets the order of nodes
to the corresponding order of listed MAC addresses, and is the same as setting an object in cmsh.
The -s (--save) option is the same as setting and committing an object in cmsh, so -s implies a -w
option is run at the same time.

So, for example, if 8 new nodes are discovered by the node-installer on a cluster with no nodes so
far, then:

Example

[bright91->device]% newnodes -w -n node001..node008

assigns (but does not commit) the sequence node001 to node008 the new MAC address according
to the sequence of MAC addresses displaying on the list.

• The grouping options:

-g|--group

-c|--category

-h|--chassis

-r|--rack

The “help newnodes” command in device mode shows assignment options other than -n for a
node range are possible. For example, the assignments can also be made for a group (-g), per
category (-c), per chassis (-h), and per rack (-r).

• The miscellaneous options:

-f|--force

-o|--offset

© Bright Computing, Inc.

5.4 Node-Installer 187

By default, the newnodes command fails when it attempts to set a node name that is already taken.
The -f (--force) option forces the new MAC address to be associated with the old node name.
When used with an assignment grouping, (node range, group, category, chassis, or rack) all the
nodes in the grouping lose their node-to-MAC assignments and get new assignments. The -f
option should therefore be used with care.

The -o (--offset) option takes a number <number> and skips <number> nodes in the list of de-
tected unknown nodes, before setting or saving values from the assignment grouping.

Examples of how to use the advanced options follow.

newnodes advanced use—range assignment behavior example: For example, supposing there is a
cluster with nodes assigned all the way up to node022. That is, CMDaemon knows what node is
assigned to what MAC address. For the discussion that follows, the three nodes node020, node021,
node022 can be imagined as being physically in a rack of their own. This is simply to help to visualize a
layout in the discussion and tables that follow and has no other significance. An additional 3 new, that
is unassigned, nodes are placed in the rack, and allowed to boot and get to the node-installer stage.

The newnodes command discovers the new MAC addresses of the new nodes when they reach their
node-installer stage, as before (the switch port column is omitted in the following text for convenience):

Example

[bright91->device]% newnodes
MAC First appeared
----------------- -----------------------------
00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET
00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET
00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET

The assignment of MAC to node address could be carried out as follows:

Example

[bright91->device]% newnodes -s -n node023..node025
MAC First appeared Hostname
-------------------- ----------------------------- --------
00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET node023
00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET node024
00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET node025

Once this is done, the node-installer is able to stop looping, and to go ahead and install the new
nodes with an image.

The physical layout in the rack may then look as indicated by this:

before after MAC

node020 node020

node021 node021

node022 node022

node023 ...A

node024 ...B

node025 ...C

Here, node023 is the node with the MAC address ending in A.
If instead of the previous newnodes command, an offset of 1 is used to skip assigning the first new

node:

© Bright Computing, Inc.

188 Node Provisioning

Example

[bright91->device]% newnodes -s -o 1 node024..node025

then the rack layout looks like:

before after MAC

node020 node020

node021 node021

node022 node022

unassigned ...A

node024 ...B

node025 ...C

Here, unassigned is where node023 of the previous example is physically located, that is, the node
with the MAC address ...A. The lack of assignment means there is actually no association of the name
node023 with that MAC address, due to the newnodes command having skipped over it with the -o
option.

If instead the assignment is done with:

Example

[bright91->device]% newnodes -s 1 node024..node026

then the node023 name is unassigned, and the name node024 is assigned instead to the node with the
MAC address ...A, so that the rack layout looks like:

before after MAC

node020 node020

node021 node021

node022 node022

node024 ...A

node025 ...B

node026 ...C

newnodes advanced use—assignment grouping example: Node range assignments are one way of
using newnodes. However assignments can also be made to a category, a rack, or a chassis. For example,
with Bright View assigning node names to a rack can be done from the Racks option of the node. For
example, to add a node001 to a rack1, the clickpath would be:
Devices→Settings[node001]→Rack[rack1].

In cmsh, the assignment of multiple node names to a rack can conveniently be done with a foreach
loop from within device mode:

Example

[bright91->device]% foreach -n node020..node029 (set rack rack02)
[bright91->device*]% commit
[bright91->device]% foreach -n node030..node039 (set rack rack03)
[bright91->device*]% commit

© Bright Computing, Inc.

5.4 Node-Installer 189

The assignment of node names with the physical node in the rack can then be arranged as follows: If
the nodes are identical hardware, and are powered up in numerical sequence, from node020 to node039,
with a few seconds in between, then the list that the basic newnodes command (without options) displays
is arranged in the same numerical sequence. Assigning the list in the rack order can then be done by
running:

Example

[bright91->device]% newnodes -s -r rack02..rack03

If it turns out that the boot order was done very randomly and incorrectly for all of rack02, and that
the assignment for rack02 needs to be done again, then a simple way to deal with it is to bring down the
nodes of rack02, then clear out all of the rack02 current MAC associations, and redo them according to
the correct boot order:

Example

[bright91->device]% foreach -r rack02 (clear mac) ; commit
[...removes MAC association with nodes from CMDaemon...]

[...now reboot nodes in rack02 in sequence (not with Bright Cluster Manager)i...]

[bright91->device]% newnodes

[...shows sequence as the nodes come up..]

[bright91->device]% newnodes -s -r rack02

[...assigns sequence in boot order...]

newnodes advanced use—assignment forcing example: The --force option can be used in the follow-
ing case: Supposing that node022 fails, and a new node hardware comes in to replace it. The new regular
node has a new MAC address. So, as explained by scenario 3 (section 5.4.2), if there is no switch port
assignment in operation for the nodes, then the node-installer loops around, waiting for intervention.1

This situation can be dealt with from the command line by:

• accepting the node configuration at the regular node console, via a sub-dialog

• accepting the node configuration via cmsh, without needing to be at the regular node console:

[bright91->device]% newnodes -s -f -n node022

Node Identification
The node identification resource can be accessed via the clickpath:

Devices→Nodes Identification.
The node identification resource is roughly the Bright View equivalent to the newnodes command of

cmsh. Like newnodes, the resource lists the MAC address of any unassigned node that the head node
detects, and shows the associated detected switch port for the node. Also, like newnodes, it can help
assign a node name to the node, assuming the node object exists. After assignment is done, the new
status should be saved.

1with switch port assignment in place, scenario 1 means the new node simply boots up by default and becomes the new
node022 without further intervention

© Bright Computing, Inc.

190 Node Provisioning

Figure 5.14: Node Identification Resource

The most useful way of using the node identification resource is for node assignment in large clus-
ters.

To do this, it is assumed that the node objects have already been created for the new nodes. The
creation of the node objects means that the node names exist, and so assignment to the node names
is able to take place. An easy way to create nodes, set their provisioning interface, and set their IP
addresses is described in the section on the node creation wizard (section 5.7.2). Node objects can also be
created by running cmsh’s foreach loop command on a node with a --clone option (section 2.5.5).

The nodes are also assumed to be set for net booting, typically set from a BIOS setting.
The physical nodes are then powered up in an arranged order. Because they are unknown new

nodes, the node-installer keeps looping after a timeout. The head node in the meantime detects the new
MAC addresses and switch ports in the sequence in which they first have come up and lists them in that
order.

By default, all these newly detected nodes are set to auto, which means their numbering goes up
sequentially from whatever number is assigned to the preceding node in the list. Thus, if there are 10
new unassigned nodes that are brought into the cluster, and the first node in the list is assigned to the
first available number, say node327; then clicking on assign automatically assigns the remaining nodes
to the next available numbers, say node328–node337.

After the assignment, the node-installer looping process on the new nodes notices that the nodes are
now known. The node-installer then breaks out of the loop, and installation goes ahead without any
intervention needed at the node console.

5.4.3 Starting Up All Network Interfaces
At the end of section 5.4.2, the node-installer knows which node it is running on, and has decided what
its node configuration is.

Starting Up All Provisioning Network Interfaces
It now gets on with setting up the IP addresses on the provisioning interfaces required for the node-
installer, while taking care of matters that come up on the way:

Avoiding duplicate IP addresses: The node-installer brings up all the network interfaces configured
for the node. Before starting each interface, the node-installer first checks if the IP address that is about
to be used is not already in use by another device. If it is, then a warning and retry dialog is displayed
until the IP address conflict is resolved.

Using BOOTIF to specify the boot interface: BOOTIF is a special name for one of the possible interfaces.
The node-installer automatically translates BOOTIF into the name of the device, such as eth0 or eth1,
used for network booting. This is useful for a machine with multiple network interfaces where it can be

© Bright Computing, Inc.

5.4 Node-Installer 191

unclear whether to specify, for example, eth0 or eth1 for the interface that was used for booting. Using
the name BOOTIF instead means that the underlying device, eth0 or eth1 in this example, does not need
to be specified in the first place.

Halting on missing kernel modules for the interface: For some interface types like VLAN and chan-
nel bonding, the node-installer halts if the required kernel modules are not loaded or are loaded with the
wrong module options. In this case the kernel modules configuration for the relevant software image
should be reviewed. Recreating the ramdisk and rebooting the node to get the interfaces up again may
be necessary, as described in section 5.8.5.

Bringing Up Non-Provisioning Network Interfaces
Provisioning interfaces are by default automatically brought up during the init stage, as the node is fully
booted up. The BMC and non-provisioning interfaces on the other hand have a different behavior:

Bringing Up And Initializing BMC Interfaces: If a BMC interface is present and powered up, then it
is expected to be running at least with layer 2 activity (ethernet). It can be initialized in the node config-
uration (section 3.7) with an IP address, netmask and user/password settings so that layer 3 (TCP/IP)
networking works for it. BMC networking runs independently of node networking.

Bringing up non-BMC, non-provisioning network interfaces: Non-provisioning interfaces are in-
active unless they are explicitly brought up. Bright Cluster Manager can configure how these non-
provisioning interfaces are brought up by using the bringupduringinstall parameter, which can take
the following values:

• yes: Brings the interface up during the pre-init stage

• no: Keeps the interface down during the pre-init stage. This is the default for non-provisioning
interfaces.

• yesandkeep: Brings the interface up during the pre-init stage, and keeps it up during the transition
to the init stage.

Bringing Up And Keeping Up Provisioning Network Interfaces
The preceding bringupduringinstall parameter is not generally supported for provisioning interfaces.
However the yesandkeep value does work for provisioning interfaces too, under some conditions:

• yesandkeep: Brings the interface up during the pre-init stage, and keeps it up during the transition
to the init stage, for the following provisioning devices:

– Ethernet device interfaces using a leased DHCP address

– InfiniBand device interfaces running with distribution OFED stacks

Restarting The Network Interfaces
At the end of this step (i.e. section 5.4.3) the network interfaces are up. When the node-installer has
completed the remainder of its 13 steps (sections 5.4.4–5.4.13), control is handed over to the local init
process running on the local drive. During this handover, the node-installer brings down all network
devices. These are then brought back up again by init by the distribution’s standard networking init
scripts, which run from the local drive and expect networking devices to be down to begin with.

© Bright Computing, Inc.

192 Node Provisioning

5.4.4 Determining Install-mode Type And Execution Mode
Stored install-mode values decide whether synchronization is to be applied fully to the local drive of the
node, only for some parts of its filesystem, not at all, or even whether to drop into a maintenance mode
instead.

Related to install-mode values are execution mode values (page 193) that determine whether to apply
the install-mode values to the next boot, to new nodes only, to individual nodes or to a category of nodes.

Related to execution mode values is the confirmation requirement toggle value (page 195) in case a
full installation is to take place.

These values are merely determined at this stage; nothing is executed yet.

Install-mode Values
The install-mode can have one of five values: AUTO, FULL, MAIN, NOSYNC, and SKIP. It should be un-
derstood that the term “install-mode” implies that these values operate only during the node-installer
phase.2

• If the install-mode is set to FULL, then the node-installer re-partitions, creates new filesystems and
synchronizes a full image onto the local drive according a partition layout. This process wipes out
all pre-boot drive content.

A partition layout (Appendix D) includes defined values for the partitions, sizes, and filesystem
types for the nodes being installed. An example of a partition layout is the default partition layout
(Appendix D.3).

• If the install-mode is set to AUTO, then the node-installer checks the partition layout of the local
drive against the node’s stored configuration. If these do not match because, for example, the node
is new, or if they are corrupted, then the node-installer recreates the partitions and filesystems by
carrying out a FULL install. If however the drive partitions and filesystems are healthy, the node-
installer only does an incremental software image synchronization. Synchronization tends to be
quick because the software image and the local drive usually do not differ much.

Synchronization also removes any extra local files that do not exist on the image, for the files and
directories considered. Section 5.4.7 gives details on how it is decided what files and directories
are considered.

• If the install-mode is set to MAIN, then the node-installer does not carry out a disk check, and goes
on to maintenance mode, allowing manual investigation of specific problems. The local drive is
untouched.

• If the install-mode is set to NOSYNC, and the partition layout check matches the stored XML config-
uration, then the node-installer skips synchronizing the image to the node, so that contents on the
local drive persist from the previous boot. An exception to this is the node certificate and key, that
is the files /cm/local/apps/cmd/etc/cert.{pem|key}. These are updated from the head node if
missing.

If however the partition layout does not match the stored configuration, a FULL image sync is
triggered. Thus, for example, a burn session (Chapter 8 of the Installation Manual), with the default
burn configuration which destroys the existing partition layout on a node, will trigger a FULL
image sync on reboot after the burn session.

The NOSYNC setting should therefore not be regarded as a way to protect data. Ways to preserve
data across node reboots are discussed in the section that discusses the FULL install confirmation
settings (page 195).

2For example, imageupdate (section 5.6.2), which is run by CMDaemon, ignores these settings, which is as expected. This
means that, for example, if imageupdate is run with NOSYNC set, then the head node image is still synchronized over as usual
to the regular node while the node is up. It is only during node boot, during the installer stage, that setting NOSYNC prevents
synchronization.

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/cert.

5.4 Node-Installer 193

NOSYNC is useful during mass planned node reboots when set with the nextinstallmode option
of device mode. This sets the nodes to use the OS on the hard drive, during the next boot only,
without an image sync:

Example

[bright91]% device foreach -n node001..node999 (set nextinstallmode nosync)
[bright91]% device commit

• If the install-mode is set to SKIP, then the node-installer does not carry out a check of the partitions
and filesystems, and it also does not carry out a software image synchronization. If a node runs
into problems with its drive content during a normal start up attempt, then this mode can perhaps
be used to attempt data recovery on the node.

Install-mode Logging
The decision that is made is normally logged to the node-installer file, /var/log/node-installer on
the head node.

Example

08:40:58 node001 node-installer: Installmode is: AUTO
08:40:58 node001 node-installer: Fetching disks setup.
08:40:58 node001 node-installer: Setting up environment for initialize scripts.
08:40:58 node001 node-installer: Initialize script for category default is empty.
08:40:59 node001 node-installer: Checking partitions and filesystems.
08:40:59 node001 node-installer: Updating device status: checking disks
08:40:59 node001 node-installer: Detecting device '/dev/sda': found
08:41:00 node001 node-installer: Number of partitions on sda is ok.
08:41:00 node001 node-installer: Size for /dev/sda1 is ok.
08:41:00 node001 node-installer: Checking if /dev/sda1 contains ext3 filesystem.
08:41:01 node001 node-installer: fsck.ext3 -a /dev/sda1
08:41:01 node001 node-installer: /dev/sda1: recovering journal
08:41:02 node001 node-installer: /dev/sda1: clean, 129522/1250928 files, 886932/5000000 blocks
08:41:02 node001 node-installer: Filesystem check on /dev/sda1 is ok.
08:41:02 node001 node-installer: Size for /dev/sda2 is wrong.
08:41:02 node001 node-installer: Partitions and/or filesystems are missing/corrupt. (Exit code\
18, signal 0)
08:41:03 node001 node-installer: Creating new disk layout.

In this case the node-installer detects that the size of /dev/sda2 on the disk no longer matches the
stored configuration, and triggers a full re-install. For further detail beyond that given by the node-
installer log, the disks script at /cm/node-installer/scripts/disks on the head node can be exam-
ined. The node-installer checks the disk by calling the disks script. Exit codes, such as the 18 reported
in the log example, are defined near the top of the disks script.

Install-mode’s Execution Modes
Execution of an install-mode setting is possible in several ways, both permanently or just temporarily
for the next boot. Execution can be set to apply to categories or individual nodes. The node-installer
looks for install-mode execution settings in this order:

1. The “New node installmode” property of the node’s category. This decides the install mode for a
node that is detected to be new.

It can be set for the default category using a clickpath such as:
Grouping→Node categories[default]→Edit→Settings→Install mode

or using cmsh with a one-liner such as:

© Bright Computing, Inc.

/var/log/node-installer
/dev/sda2
/cm/node-installer/scripts/disks

194 Node Provisioning

cmsh -c "category use default; set newnodeinstallmode FULL; commit"

By default, the “New node installmode” property is set to FULL.

2. The Install-mode setting as set by choosing a PXE menu option on the console of the node before
it loads the kernel and ramdisk (figure 5.15). This only affects the current boot. By default the PXE
menu install mode option is set to AUTO.

Figure 5.15: PXE Menu With Install-mode Set To AUTO

3. The “Next boot install-mode” property of the node configuration. This can be set for a node
such as node001 using a clickpath such as:
Devices→Nodes[node001]→Edit→Settings→Install mode

It can also be set using cmsh with a one-liner like:

cmsh -c "device use node001; set nextinstallmode FULL; commit"

The property is cleared when the node starts up again, after the node-installer finishes its installa-
tion tasks. So it is empty unless specifically set by the administrator during the current uptime for
the node.

4. The install-mode property can be set in the node configuration using Bright View via
Devices→Nodes[node001]→Edit→Settings→Install mode or using cmsh with a one-liner
such as:

cmsh -c "device use node001; set installmode FULL; commit"

© Bright Computing, Inc.

5.4 Node-Installer 195

By default, the install-mode property is auto-linked to the property set for install-mode for that
category of node. Since the property for that node’s category defaults to AUTO, the property for the
install-mode of the node configuration defaults to “AUTO (Category)”.

5. The install-mode property of the node’s category. This can be set using Bright View with a
clickpath such as:
Grouping→Node categories[default]→Edit→Settings→Install mode
or using cmsh with a one-liner such as:

cmsh -c "category use default; set installmode FULL; commit"

As already mentioned in a previous point, the install-mode is set by default to AUTO.

6. A dialog on the console of the node (figure 5.16) gives the user a last opportunity to overrule the
install-mode value as determined by the node-installer. By default, it is set to AUTO:

Figure 5.16: Install-mode Setting Option During Node-Installer Run

FULL Install Confirmation via datanode Setting
Related to execution mode values is the ability to carry out a FULL install only after explicit confirma-
tion, via the datanode property. This must be set in order to prompt for a confirmation, when a FULL
installation is about to take place. If it is set, then the node-installer only goes ahead with the FULL
install after the administrator has explicitly confirmed it.

The datanode property can be set in the node configuration of, for example, node001 with Bright
View via the clickpath:
Devices→Nodes[node001]→Edit→Settings→Data node[Yes]

Alternatively, the parameter datanode can be set using a cmsh one-liner as follows:

[root@bright91 ~]# cmsh -c "device use node001; set datanode yes; commit"

The property can also be set at a category or other levels.

© Bright Computing, Inc.

196 Node Provisioning

Why the FULL install confirmation is useful: The reason for such a setting is that a FULL installation
can be triggered by disk or partition changes, or by a change in the MAC address. If that happens, then:

• considering a drive, say, /dev/sda that fails, this means that any drive /dev/sdb would then nor-
mally become /dev/sda upon reboot. In that case an unwanted FULL install would not only be
triggered by an install-mode settings of FULL, but also by the install-mode settings of AUTO or
NOSYNC. Having the new, “accidental” /dev/sda have a FULL install is unlikely to be the inten-
tion, since it would probably contain useful data that the node-installer earlier left untouched.

• considering a node with a new MAC address, but with local storage containing useful data from
earlier. In this case, too, an unwanted FULL install would not only be triggered by an install-mode
setting of FULL, but also by the install-mode settings AUTO or NOSYNC.

Thus, in cases where nodes are used to store data, an explicit confirmation before overwriting lo-
cal storage contents is a good idea. However, by default, no confirmation is asked for when a FULL
installation is about to take place.

Carrying out the confirmation: When the confirmation is required, then it can be carried out by the
administrator as follows:

• From the node console. A remote console launched from Bright View or cmsh will also work if
SOL connectivity has been configured.

• From cmsh, within device mode, using the installerinteractions command (some output
elided):

Example

[bright91->device]% installerinteractions -w -n node001 --confirm
Hostname Action
--------- ---
node001 Requesting FULL Install (partition mismatch)
[bright91->device]%
...07:57:36 [notice] bright91: node001 [INSTALLER_CALLINGINIT]...
[bright91->device]%
...07:58:20 [notice] bright91: node001 [UP]

Besides confirmation, the installerinteractions command has options that include letting it:

– deny the installation, and put it into maintenance mode

– carry out a dry-run

– carry out its actions for node groupings such as: node lists, node categories, node groups,
chassis, racks, as are possible in the grouping options (page 42).

Further details on the command can be viewed by running help installerinteractions.

An alternative way to avoid overwriting node storage: Besides the method of FULL install confirma-
tion for datanode, there is a method based on XML assertions, that can also be used to prevent data loss
on nodes.

It uses XML assertions to confirm that the physical drive is recognized (Appendix D.11).

© Bright Computing, Inc.

5.4 Node-Installer 197

A way to overwrite a specified block device: A related method is that sometimes, for reasons of per-
formance or convenience, it may be desirable to clear data on particular block devices for a node, and
carry it out during the next boot only. This can done by setting the block device names to be cleared
as values to the parameter Block devices cleared on next boot. The values can be set in cmsh as
follows:

[bright91->device[node001]]% append blockdevicesclearedonnextboot /dev/sda /dev/sdb ; commit

The value of blockdevicesclearedonnextboot is automatically cleared after the node is rebooted.

5.4.5 Running Initialize Scripts
An initialize script is used when custom commands need to be executed before checking partitions and
mounting devices (section 3.15.4). For example, to initialize some not explicitly supported hardware, or
to do a RAID configuration lookup for a particular node. In such cases the custom commands are added
to an initialize script. How to edit an initialize script is described in Appendix E.2.

An initialize script can be added to both a node’s category and the node configuration. The node-
installer first runs an initialize script, if it exists, from the node’s category, and then an initialize
script, if it exists, from the node’s configuration.

The node-installer sets several environment variables which can be used by the initialize script.
Appendix E contains an example script documenting these variables.

Related to the initialize script is the finalize script (section 5.4.11). This may run after node
provisioning is done, but just before the init process on the node runs.

5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems
Behavior As Decided By The Install-Mode Value
In section 5.4.4 the node-installer determines the install-mode value, along with when to apply it to a
node.

AUTO: The install-mode value is typically set to default to AUTO. If AUTO applies to the current node,
it means the node-installer then checks the partitions of the local drive and its filesystems and recreates
them in case of errors. Partitions are checked by comparing the partition layout of the local drive(s)
against the drive layout as configured in the node’s category configuration and the node configuration.

After the node-installer checks the drive(s) and, if required, recreates the layout, it mounts all filesys-
tems to allow the drive contents to be synchronized with the contents of the software image.

FULL, MAIN, or SKIP: If install-mode values of FULL, MAIN, or SKIP apply to the current node instead,
then no partition checking or filesystem checking is done by the node-installer.

NOSYNC: If the install-mode value of NOSYNC applies, then if the partition and filesystem checks both
show no errors, the node starts up without getting an image synced to it from the provisioning node.
If the partition or the filesystem check show errors, then the node partition is rewritten, and a known
good image is synced across.

Behavior As Decided By XML Configuration Settings
The node-installer is capable of creating advanced drive layouts, including LVM setups, and hardware
and software RAID setups. Drive layout examples and relevant documentation are in Appendix D.

The XML description used to set the drive layouts can be deployed for a single device or to a category
of devices.

© Bright Computing, Inc.

198 Node Provisioning

Hardware RAID: Bright Cluster Manager supports hardware RAID levels 0, 1, 5, 10, and 50, and
supports the following options:

• stripe size:

Option

64kB

128kB

256kB

512kB

1024kB

• cache policy:
Option

Cached

Direct

• read policy:

Option Description

NORA No Read Ahead

RA Read Ahead

ADRA Adaptive Read

• write policy:
Option Description

WT Write Through

WB Write Back

5.4.7 Synchronizing The Local Drive With The Software Image
After having mounted the local filesystems, these can be synchronized with the contents of the software
image associated with the node (through its category). Synchronization is skipped if the install-mode
values of NOSYNC or SKIP are set, and takes place FULL or AUTO are set. Synchronization is delegated by
the node-installer to the CMDaemon provisioning system. The node-installer just sends a provisioning
request to CMDaemon on the head node.

For an install-mode of FULL, or for an install-mode of AUTO where the local filesystem is detected as
being corrupted, full provisioning is done. For an install-mode of AUTO where the local filesystem is
healthy and agrees with that of the software image, sync provisioning is done.

The lock, unlock, And islocked Commands For Software Images
The software image that is requested is available to nodes by default. Its availability can be altered and
checked with the following commands:

• lock: this locks an image so that the image cannot be provisioned until the image is unlocked.

• unlock: this unlocks a locked image, so that request for provisioning the image is no longer pre-
vented by a lock

• islocked: this lists the locked or unlocked states of images.

Locking an image is sometimes useful, for example, to make changes to an image when nodes are
booting:

© Bright Computing, Inc.

5.4 Node-Installer 199

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage list
Name (key) Path Kernel version Nodes
-------------------- -- ---------------------------- --------
default-image /cm/images/default-image 3.10.0-1062.12.1.el7.x86_64 3
[bright91]% softwareimage
[bright91->softwareimage]% lock default-image
[bright91->softwareimage]% islocked
Name Locked
-------------- --------
default-image yes
[bright91->softwareimage]% lock default-image
[bright91->softwareimage]% device
[bright91->device]% reboot node001

...the cluster administrator makes changes to the node image during a boot, as it waits for
the image to unlock...
[bright91->device]% softwareimage unlock default-image

For an unlocked image, on receiving the provisioning request, CMDaemon assigns the provisioning
task to one of the provisioning nodes. The node-installer is notified when image synchronization starts,
and also when the image synchronization task ends—whether it is completed successfully or not.

Exclude Lists: excludelistsyncinstall And excludelistfullinstall
What files are synchronized is decided by an exclude list. An exclude list is a property of the node cate-
gory, and is a list of directories and files that are excluded from consideration during synchronization.
The excluded list that is used is decided by the type of synchronization chosen: full or sync:

• A full type of synchronization rewrites the partition table of the node, then copies the filesystem
from a software image to the node, using a list to specify files and directories to exclude from
consideration when copying over the filesystem. The list of exclusions used is specified by the
excludelistfullinstall property.

The intention of full synchronization is to allow a complete working filesystem to be copied over
from a known good software image to the node. By default the excludelistfullinstall list con-
tains /proc/, /sys/, and lost+found/, which have no content in Bright Cluster Manager’s default
software image. The list can be modified to suit the requirements of a cluster, but it is recom-
mended to have the list adhere to the principle of allowing a complete working node filesystem to
be copied over from a known good software image.

• A sync type of synchronization uses the property excludelistsyncinstall to specify what files
and directories to exclude from consideration when copying parts of the filesystem from a known
good software image to the node. The excludelistsyncinstall property is in the form of a list
of exclusions, or more accurately in the form of two sub-lists.

The contents of the sub-lists specify the parts of the filesystem that should be retained or not
copied over from the software image during sync synchronization when the node is booting. The
intention behind this is to have the node boot up quickly, updating only the files from the image
to the node that need updating due to the reboot of the node, and otherwise keeping files that are
already on the node hard disk unchanged. The contents of the sub-lists are thus items such as the
node log files, or items such as the /proc and /sys pseudo-filesystems which are generated during
node boot.

The administrator should be aware that nothing on a node hard drive can be regarded as persistent
because a FULL sync takes place if any error is noticed during a partition or filesystem check.

© Bright Computing, Inc.

200 Node Provisioning

Anything already on the node that matches the content of these sub-lists is not overwritten by
image content during an excludelistsyncinstall sync. However, image content that is not on
the node is copied over to the node only for items matching the first sub-list. The remaining files
and directories on the node, that is, the ones that are not in the sub-lists, lose their original contents,
and are copied over from the software image.

A cmsh one-liner to get an exclude list for a category is:

cmsh -c "category use default; get excludelistfullinstall"

Similarly, to set the list:

cmsh -c "category use default; set excludelistfullinstall; commit"

where a text-editor opens up to allow changes to be made to the list. In Bright View the clickpath is:

Grouping→Node Categories→Edit→Node Category→Settings→Exclude list full install
Image synchronization is done using rsync, and the syntax of the items in the exclude lists conforms

to the “INCLUDE/EXCLUDE PATTERN RULES” section of the rsync(1) man page, which includes patterns
such as “**”, “?”, and “[[:alpha:]]”.

The excludelistfullinstall and excludelistsyncinstall properties decide how a node syn-
chronizes to an image during boot. For a node that is already fully up, the related excludelistupdate
property decides how a running node synchronizes to an image without a reboot event, and is discussed
in section 5.6.

Interface Used To Receive Image Data: provisioninginterface
For regular nodes with multiple interfaces, one interface may be faster than the others. If so,
it can be convenient to receive the image data via the fastest interface. Setting the value of
provisioninginterface, which is a property of the node configuration, allows this.

By default it is set to BOOTIF for regular nodes. Using BOOTIF is not recommended for node configu-
rations with multiple interfaces.

When listing the network interfaces in cmsh, the provisioning interface has a [prov] flag appended
to its name.

Example

[bright91->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
physical BOOTIF [prov] 10.141.0.1 internalnet
physical eth1 10.141.1.1 internalnet
physical eth2 10.141.2.1 internalnet

Head nodes and provisioninginterface: A head node in a single-head cluster does not use the
provisioninginterface setting.

Head nodes in a failover configuration (Chapter 18), however, do have a value set for
provisioninginterface, corresponding to the interface on the head that is being provisioned over
internalnet by the other head (eth0 in figure 18.1).

Transport Protocol Used For Image Data: provisioningtransport
The provisioningtransport property of the node sets whether the image data is sent encrypted or
unencrypted to the node from the provisioner. The property value is set via the device mode for the
receiving node to one of these values:

• rsyncdaemon, which sends the data unencrypted

© Bright Computing, Inc.

5.4 Node-Installer 201

• rsyncssh, which sends the data encrypted

The provisioningtransport value can be set for all nodes, including provisioning nodes, head nodes,
and cloud-director (section 3.2 of the Cloudbursting Manual) nodes. Because encryption severely in-
creases the load on the provisioning node, using rsyncssh is only suggested if the users on the net-
work cannot be trusted. By default, provisioningtransport is set to rsyncdaemon. If high availability
(Chapter 18) is set up with the head nodes exposed to the outside world on the external network, the
administrator should consider setting up rsyncssh for the head nodes.

The rsyncssh transport requires passwordless root access via ssh from the provisioner to the node
being provisioned. This is configured by default in the default Bright Cluster Manager nodes. How-
ever, if a new image is created with the --exclude options for cm-create-image as explained in (sec-
tion 12.6.2), the keys must be copied over from /root/.ssh/ on the existing nodes.

Tracking The Status Of Image Data Provisioning: provisioningstatus
The provisioningstatus command within the softwareimage mode of cmsh displays an updated state
of the provisioning system. As a one-liner, it can be run as:

bright91:~ # cmsh -c "softwareimage provisioningstatus"
Provisioning subsystem status: idle, accepting requests
Update of provisioning nodes requested: no
Maximum number of nodes provisioning: 10000
Nodes currently provisioning: 0
Nodes waiting to be provisioned: <none>
Provisioning node bright91:

Max number of provisioning nodes: 10
Nodes provisioning: 0
Nodes currently being provisioned: <none>

The provisioningstatus command has several options that allow the requests to be tracked. The -r
option displays the basic status information on provisioning requests, while the -a option displays all
status information on provisioning requests. Both of these options display the request IDs.

The Bright View equivalent to provisioningstatus is accessed via the clickpath:
Provisioning→Provisioning nodes
By default, it displays basic status information on provisioning requests.

Tracking The Provisioning Log Changes: synclog
For a closer look into the image file changes carried out during provisioning requests, the synclog
command from device mode can be used (lines elided in the following output):

Example

[bright91->device]% synclog node001
Tue, 11 Jan 2011 13:27:17 CET - Starting rsync daemon based provisioning. Mode is SYNC.

sending incremental file list
./
...
deleting var/lib/ntp/etc/localtime
var/lib/ntp/var/run/ntp/
...
sent 2258383 bytes received 6989 bytes 156232.55 bytes/sec
total size is 1797091769 speedup is 793.29

Tue, 11 Jan 2011 13:27:31 CET - Rsync completed.

© Bright Computing, Inc.

202 Node Provisioning

Statistical Analysis Of Provisioning Sessions: syncinfo
A provisioning session takes place between a provisioning image and a filesystem partition on a node.
Statistics can be presented for the sessions using the syncinfo command. The statistical information
presented is for number of files considered for transfer, the number of files that were actually transfered,
how long the transfer took, which image and node were involved, and so on. The syncinfo command
is run in device mode (output ellipsized and truncated):

Example

[head->device]% syncinfo
Node Path Provisioner Age Duration Total files Transfered files ...
------- ------------------------ ----------- ---- -------- ----------- ---------------- ...
node001 /cm/images/default-image head 34s 21s 171,504 328 ...
node002 /cm/images/default-image head 34s 22s 171,504 328 ...
...

The syncinfo command has options to run it per node, category, rack, and so on. Details on the
options can be seen by running the help command (help syncinfo).

Aborting Provisioning With cancelprovisioningrequest
The cancelprovisioningrequest command cancels provisioning.

Its usage is:

cancelprovisioningrequest [OPTIONS] [<requestid> ...]

To cancel all provisioning requests, it can be run as:

bright91:~ # cmsh -c "softwareimage cancelprovisioningrequest -a"

The provisioningstatus command of cmsh, can be used to find request IDs. Individual request IDs,
for example 10 and 13, can then be specified in the cancelprovisioningrequest command, as:

bright91:~ # cmsh -c "softwareimage cancelprovisioningrequest 10 13"

The help page for cancelprovisioningrequest shows how to run the command on node ranges,
groups, categories, racks, chassis, and so on.

The Bright View equivalents to the cmsh versions for managing provisioning requests can be accessed
via the clickpath Provisioning→Provisioning Requests

5.4.8 Writing Network Configuration Files
In the previous section, the local drive of the node is synchronized according to install-mode settings
with the software image from the provisioning node. The node-installer now sets up configuration files
for each configured network interface. These are files like:

/etc/sysconfig/network-scripts/ifcfg-eth0
for Red Hat, Scientific Linux, and CentOS, while SUSE would use:

/etc/sysconfig/network/ifcfg-eth0
These files are placed on the local drive.

When the node-installer finishes its remaining tasks (sections 5.4.9–5.4.13) it brings down all network
devices and hands over control to the local /sbin/init process. Eventually a local init script uses the
network configuration files to bring the interfaces back up.

5.4.9 Creating A Local /etc/fstab File
The /etc/fstab file on the local drive contains local partitions on which filesystems are mounted as
the init process runs. The actual drive layout is configured in the category configuration or the node
configuration, so the node-installer is able to generate and place a valid local /etc/fstab file. In addition

© Bright Computing, Inc.

/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0

5.4 Node-Installer 203

to all the mount points defined in the drive layout, several extra mount points can be added. These
extra mount points, such as NFS imports, /proc, /sys and /dev/shm, can be defined and managed in
the node’s category and in the specific configuration of the node configuration, using Bright View or
cmsh (section 3.10.2).

5.4.10 Booting From The Local Hard Drive
By default, a node-installer boots from the software image on the head node via the network.

The node-installer can, optionally, during image synchronization, install a local drive boot record on
the local hard drive if the installbootrecord property of the node configuration or node category is
set to on. Setting the local drive boot record means that the node tries to use a local hard drive boot
installer during the next boot. This is a step toward having it become a standalone node that does not
boot from the network. This step, and the other steps needed to allow booting from the local hard drive
are covered next.

Setting The Boot Record To Allow The Node To Be Standalone
The local drive boot record is installed in the MBR of the local drive, overwriting the default iPXE boot
record (section 5.1.2).

With a working custom software image, the boot record can be installed with cmsh commands for a
node node001 with:

cmsh -c "device use node001; set installbootrecord yes; commit"

or for a category default with:

cmsh -c "category use default; set installbootrecord yes; commit"

In Bright View, the equivalent is the Install boot record option. This can similarly be enabled and
saved in the Bright View node configuration or node category.

Setting the local drive boot record allows the next boot to be from the local hard drive, if the node is
set up right to boot from the local hard drive.

Booting from the local hard drive often requires some further changes, as explained next.

Managing Boot Sequence And Bootloader To Ensure The Node Can Be Standalone
For a local hard drive boot to work:

1. hard drive booting must be set to have a higher priority than network booting in the BIOS of the
node. Otherwise regular PXE booting is attempted, despite whatever value installbootrecord
has.

2. A working bootloader must be present.

By default, the node image for the cluster manager has nodes set to use a SYSLINUX bootloader.

If the administrator is not using the default software image, but is using a custom software image
(section 12.6.1), and if the image is based on a running node filessystem that has not been built
directly from a parent distribution, then the GRUB boot configuration may not be appropriate
for a standalone GRUB boot to work. This is because the parent distribution installers often use
special logic for setting up the GRUB boot configuration. Carrying out this same special logic for
all distributions using the custom software image creation tool cm-create-image (section 12.6.2)
is impractical.

Providing a custom working image from a standalone node that has been customized after direct
installation from the parent distribution, ensures the GRUB boot configuration layout of the cus-
tom image is as expected by the parent distribution. This then allows a standalone GRUB boot on
the node to run properly.

Nodes can be set to use a GRUB bootloader from within device mode, or from within category
mode, by changing the bootloader parameter within the mode. For example, for a node node001:

© Bright Computing, Inc.

/dev/shm

204 Node Provisioning

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% get bootloader
syslinux (default)
[bright91->device[node001]]% set bootloader grub
[bright91->device*[node001*]]% commit

or, for the default category:

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% get bootloader
syslinux
[bright91->category[default]]% set bootloader grub
[bright91->category*[default*]]% commit

Arranging for the two items in the preceding list ensures that the next boot is from GRUB on the
hard drive. However, the BOOTIF also needs to be changed for booting to be successful. How it can be
changed, and why it needs to be changed, is described next.

Changing BOOTIF To Ensure The Node Can Be Standalone
If the BIOS is set to boot from the hard drive, and if there is a working boot loader, and if the boot record
has been installed, then the node boots via the boot record on the hard drive.

BOOTIF is the default value for the network interface for a node that is configured as a Bright software
image. However, the BOOTIF interface is undefined during hard drive booting, because it depends on
the network provisioning setup, which is not running. This means that the networking interface would
fail during hard drive boot for a standard image. To remedy this, the interface should be set to a defined
network device name, such as eth0, or the modern equivalents such as en01 (section 5.8.1). The defined
network device name, as the kernel sees it, can be found by logging into the node and taking a look at
the output of ip link:

Example

[root@bright91 ~]# ssh node001 ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue...
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ...

In Bright Cluster Manager the provisioning interface is mandatory, even if it is not provisioning. So
it is set to the value of kernel-defined network device name instead of BOOTIF:

Example

[bright91]% device interfaces node001
[bright91->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
physical BOOTIF [prov] 10.141.0.1 internalnet
[bright91->device[node001]->interfaces]% set bootif networkdevicename eth0
[bright91->device*[node001*]->interfaces*]% commit
[bright91->device[node001]->interfaces]% list
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
physical eth0 [prov] 10.141.0.1 internalnet
Tue Mar 31 13:46:44 2020 [notice] bright91: node001 [UP], restart required (eth0)

© Bright Computing, Inc.

5.4 Node-Installer 205

In the preceding example, the kernel-defined network device name is assumed to be eth0. It should
be modified as required.

In addition, the new IP address is assumed to be on the same internal network. If the administrator
intends the node to be standalone on another network, then the network and the IP address can be set
to appropriate values.

When interface changes are carried out to make the node standalone, warnings show up saying that
a reboot is required. A reboot of the node should be done when the interface configuration is complete.

During reboot, the node then boots from the hard drive as a standalone, with a non-BOOTIF network
interface.

Bringing A Node That Boots From Its Hard Drive Back Into A Cluster
If the node is to be brought back into the cluster, then simply unsetting “Install boot record” and reboot-
ing the node does not restore its iPXE boot record and hence its ability to iPXE boot. To restore the iPXE
boot record, the node can be booted from the default image copy on the head node via a network boot
again. Typically this is done by manual intervention during node boot to select network booting from
the BIOS of the node.

Setting the value of provisioninginterface in cmsh for the node to BOOTIF is also recommended.
As suggested by the Bright Cluster Manager iPXE boot prompt, setting network booting to work

from the BIOS (regular “PXE” booting) is preferred to the relatively roundabout way of iPXE booting
from the disk.

SELinux Initialization For Hard Drive Boot And PXE Boot
If configured, SELinux (Chapter 9 of the Installation Manual) is initialized at this point. For a boot from
the hard drive, the initialization occurs if an SELinux filesystem has been saved to disk previously.
For a PXE boot, the initialization takes place if the SELinuxInitialize directive is set to true in the
node-installer.conf file.

5.4.11 Running Finalize Scripts
A finalize script is similar to an initialize script (section 5.4.5), only it runs a few stages later in the
node-provisioning process.

In the context of configuration (section 3.15.4) it is used when custom commands need to be executed
after the preceding mounting, provisioning, and housekeeping steps, but before handing over control
to the node’s local init process. For example, custom commands may be needed to:

• initialize some not explicitly supported hardware before init takes over

• supply a configuration file for the software image that cannot simply be added to the software
image and used by init because it needs node-specific settings

• load a slightly altered standard software image on particular nodes, typically with the change
depending on automatically detecting the hardware of the node it is being loaded onto. While this
could also be done by creating a full new software image and loading it on to the nodes according
to the hardware, it usually turns out to be better for simplicity’s sake (future maintainability) to
minimize the number of software images for the cluster.

The custom commands used to implement such changes are then added to the finalize script. How
to edit a finalize script is described in Appendix E.2.

A finalize script can be added to both a node’s category and the node configuration. The node-
installer first runs a finalize script, if it exists, from the node’s category, and then a finalize script, if
it exists, from the node’s configuration.

The node-installer sets several environment variables which can be used by the finalize script.
Appendix E contains an example script which documents these variables.

© Bright Computing, Inc.

206 Node Provisioning

5.4.12 Unloading Specific Drivers
Many kernel drivers are only required during the installation of the node. After installation they are not
needed and can degrade node performance.

Baseboard Management Controllers (BMCs, section 3.7) that use IPMI drivers are an egregious exam-
ple of this. The IPMI drivers are required to have the node-installer configure the IP address of any IPMI
cards. Once the node is configured, these drivers are no longer needed, but they continue to consume
significant CPU cycles and power if they stay loaded, which can affect job performance.

To solve this, the node-installer can be configured to unload a specified set of drivers just before
it hands over control to the local init process. This is done by editing the removeModulesBeforeInit
setting in the node-installer configuration file

/cm/node-installer/scripts/node-installer.conf,
For the node-installer.conf file in multidistro and multiarch (section 12.7) configurations, the

directory path /cm/node-installer takes the form:
/cm/node-installer-<distribution>-<architecture>

The values for <distribution> and <architecture> can take the values outlined on page 521.
By default, the IPMI drivers are placed in the removeModulesBeforeInit setting.
To pick up IPMI-related data values, IPMI access is then carried out over the network without the

drivers.

5.4.13 Switching To The Local init Process
At this point the node-installer is done. The node’s local drive now contains a complete Linux installa-
tion and is ready to be started. The node-installer hands over control to the local /sbin/init process,
which continues the boot process and starts all runlevel services. From here on the boot process contin-
ues as if the machine was started from the drive just like any other regular Linux machine.

5.5 Node States
During the boot process, several state change messages are sent to the head node CMDaemon or de-
tected by polling from the head node CMDaemon. The most important node states for a cluster after
boot up are introduced in section 2.1.1. These states are described again, along with some less common
ones to give a more complete picture of node states.

5.5.1 Node States Icons In Bright View
In the node icons used by Bright View:

• Nodes in the UP state are indicated by an up-arrow.

– If all health checks (section 13.2.4) for the node are successful, the up-arrow is green.

– If there is a health check that fails or if the node requires a reboot, the up-arrow is red.

• Nodes in the DOWN state are indicated by a blue down-arrow.

• There are some other states, including:

– Nodes in a CLOSED state are indicated by an X

– Nodes in a DOWN state that are installing are indicated by a underscored down-arrow icon: ↓_

5.5.2 Node States Shown In cmsh
In cmsh, the node state can be found using the status command from device mode for a node:

Example

[bright91->device]% status -n node001..node002
node001 [UP] restart-required, health check failed
node002 [DOWN] (hostname changed) restart-required

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf

5.5 Node States 207

Devices in general can have their states conveniently listed with the list -f (page 32) command:

Example

[bright91->device]% list -f "hostname:10, status:48"
hostname (status
---------- --
apc01 [UP]
bright91 [UP]
devhp [UP]
node001 [UP] restart-required, health check failed
node002 [DOWN] (hostname changed) restart-required

The reason for a red icon as shown in section 5.5.1 can be found within the parentheses. In this
example it is (hostname changed).

5.5.3 Node States Indicating Regular Start Up
During a successful boot process the node goes through the following states:

• BOOTING. This is the state while the kernel and initrd are being downloaded by the node during
network booting.

To allow the BOOTING state to be detected for a node:

– BOOTIF must be defined as an interface, or

– if there is no interface with the value BOOTIF, but a particular network device, such as eth0,
is the boot interface, then a special revision tag of bootif can be used for no more than one
interface:

Example

[bright91->device[node001]->interfaces[eth0]]% set revision bootif

• INSTALLING. This state is normally entered as soon as the node-installer has determined on which
node the node-installer is running. Within this state, information messages display indicating
what is being done while the node is in the INSTALLING state. Possible messages under the status
column for the node within cmsh and Bright View are normally, in sequence:

1. node-installer started

2. Optionally, the following two messages:

(a) waiting for user input

(b) installation was resumed

3. checking disks

4. recreating partitions and filesystems

5. mounting disks

6. One of these following two messages:

(a) waiting for FULL provisioning to start

(b) waiting for SYNC provisioning to start

7. provisioning started, waiting for completion

8. provisioning complete

9. initializing SELinux

Between steps 1 and 3 in the preceding, these optional messages can also show up:

© Bright Computing, Inc.

208 Node Provisioning

– If burn mode is entered or left:

running burn-in tests
burn-in test completed successfully

– If maintenance mode is entered:

entered maintenance mode

• INSTALLER_CALLINGINIT. This state is entered as soon as the node-installer has handed over con-
trol to the local init process. The associated message normally seen with it in cmsh and Bright
View is:

– switching to local root

• UP. This state is entered as soon as the CMDaemon of the node connects to the head node CMDae-
mon.

5.5.4 Node States That May Indicate Problems
Other node states are often associated with problems in the boot process:

• DOWN. This state is registered as soon as the CMDaemon on the regular node is no longer detected
by CMDaemon on the head node. In this state, the state of the regular node is still tracked, so that
CMDaemon is aware if the node state changes.

• CLOSED. This state is appended to the UP or DOWN state of the regular node by the administrator,
and causes most CMDaemon monitoring actions for the node to cease. The state of the node is
however still tracked by default, so that CMDaemon is aware if the node state changes.

The CLOSED state can be set from the device mode of cmsh using the close command. The help
text for the command gives details on how it can be applied to categories, groups and so on. The
-m option sets a message by the administrator for the closed node or nodes.

Example

root@headymcheadface ~]# cmsh
[headymcheadface]% device
[headymcheadface->device]% close -m "fan dead" -n node001,node009,node020
Mon May 2 16:32:01 [notice] headymcheadface: node001 ...[DOWN/CLOSED] (fan dead)
Mon May 2 16:32:01 [notice] headymcheadface: node009 ...[DOWN/CLOSED] (fan dead)
Mon May 2 16:32:01 [notice] headymcheadface: node020 ...[DOWN/CLOSED] (fan dead)

The CLOSED state can also be set from Bright View via the clickpath

Devices→Nodes→Edit↓Monitored state→Open/Close.

When the CLOSED state is set for a device, CMDaemon commands can still attempt to act upon it.
For example, in the device mode of cmsh:

– open: This is the converse to the close command. It has the same options, including the -m
option that logs a message. It also has the following extra options:

* --reset: Resets whatever the status is of the devicestatus check. However, this reset
by itself does not solve any underlying issue. The issue may still require a fix, despite the
status having been reset.
For example, the --reset option can be used to reset the restart-required flag (section 5.5.2).
However, the reason that set the restart-required flag is not solved by the reset. Restarts
are required for regular nodes if there have been changes in the following: network set-
tings, disk setup, software image, or category.

© Bright Computing, Inc.

5.5 Node States 209

* -f|--failbeforedown <count>: Specifies the number of failed pings before a device is
marked as down (default is 1).

– drain and undrain (Appendix G.4.1)

– For nodes that have power control3:

* power -f on

* power -f off

* power -f reset

In Bright View, the equivalents for a node node001 for example, are via the clickpaths:

– Devices→Nodes[node001]→Edit↓Monitored state→Open/Close

– Devices→Nodes[node001]→Edit↓Workload→Drain/Undrain

– Devices→Nodes[node001]→Edit↓Power→On/Off/Reset.

CMDaemon on the head node only maintains device monitoring logs for a device that is in the UP
state. If the device is in a state other than UP, then CMDaemon only tracks its state, and can display
the state if queried.

For example: if a node displays the state UP when queried about its state, and is given a ‘close’ com-
mand, it then goes into a CLOSED state. Querying the node state then displays the state UP/CLOSED.
It remains in that CLOSED state when the node is powered down. Querying the node state after
being powered down displays DOWN/CLOSED. Next, powering up the node from that state, and hav-
ing it go through the boot process, has the node displaying various CLOSED states during queries.
Typically the query responses show it transitioning from DOWN/CLOSED, to INSTALLING/CLOSED, to
INSTALLER_CALLINGINIT/CLOSED, and ending up displaying the UP/CLOSED state.

Thus, a node set to a CLOSED state remains in a CLOSED state regardless of whether the node is in
an UP or DOWN state. The only way out of a CLOSED state is for the administrator to tell the node to
open via the cmsh “open” option discussed earlier. The node, as far as CMDaemon is concerned,
then switches from the CLOSED state to the OPEN state. Whether the node listens or not does not
matter—the head node records it as being in an OPENING state for a short time, and during this
time the next OPEN state (UP/OPEN, DOWN/OPEN, etc) is agreed upon by the head node and the node.

When querying the state of a node, an OPEN tag is not displayed in the response, because it is the
“standard” state. For example, UP is displayed rather than UP/OPEN. In contrast, a CLOSED tag is
displayed when it is active, because it is a “special” state.

The CLOSED state is normally set to take a node that is unhealthy out of the cluster management
system. The node can then still be in the UP state, displaying UP/CLOSED. It can even continue
running workload jobs in this state, since workload managers run independent of CMDaemon.
So, if the workload manager is still running, the jobs themselves are still handled by the workload
manager, even if CMDaemon is no longer aware of the node state until the node is re-opened. For
this reason, draining a node is often done before closing a node, although it is not obligatory.

• OPENING. This transitional state is entered as soon as the CMDaemon of the node rescinds the
CLOSED state with an “open” command from cmsh. The state usually lasts no more than about
5 seconds, and never more than 30 seconds in the default configuration settings of Bright Cluster
Manager. The help text for the open command of cmsh gives details on its options.

• INSTALLER_FAILED. This state is entered from the INSTALLING state when the node-installer has
detected an unrecoverable problem during the boot process. For instance, it cannot find the
local drive, or a network interface cannot be started. This state can also be entered from the

3power control mechanisms such as PDUs, custom power scripts, and BMCs using IPMI/HP iLO/DRAC/CIMC/Redfish, are
described in Chapter 4

© Bright Computing, Inc.

210 Node Provisioning

INSTALLER_CALLINGINIT state when the node takes too long to enter the UP state. This could
indicate that handing over control to the local init process failed, or the local init process was
not able to start the CMDaemon on the node. Lastly, this state can be entered when the previous
state was INSTALLER_REBOOTING and the reboot takes too long.

• INSTALLER_UNREACHABLE. This state is entered from the INSTALLING state when the head node
CMDaemon can no longer ping the node. It could indicate the node has crashed while running
the node-installer.

• INSTALLER_REBOOTING. In some cases the node-installer has to reboot the node to load the correct
kernel. Before rebooting it sets this state. If the subsequent reboot takes too long, the head node
CMDaemon sets the state to INSTALLER_FAILED.

5.6 Updating Running Nodes
Changes made to the contents of the software image for nodes, kept on the head node, become a part of
any other provisioning nodes according to the housekeeping system on the head node (section 5.2.4).

Thus, when a regular node reboots, the latest image is installed from the provisioning system onto
the regular node via a provisioning request (section 5.4.7).

However, updating a running node with the latest software image changes is also possible with-
out rebooting it. Such an update can be requested using cmsh or Bright View, and is queued and
delegated to a provisioning node, just like a regular provisioning request. The properties that apply
to the regular provisioning an image also apply to such an update. For example, the value of the
provisioninginterface setting (section 5.4.7) on the node being updated determines which interface is
used to receive the image. In cmsh the request is submitted with the imageupdate option (section 5.6.2),
while in Bright View, it is submitted, for a node node001 for example, using the clickpath:

Devices→Nodes[node001]→Edit↓Software image→Update node (section 5.6.3). The
imageupdate command and “Update node” menu option use a configuration file called
excludelistupdate, which is, as its name suggests, a list of exclusions to the update.

The imageupdate command and “Update node” menu option update what is on a running node
from a stored image. The converse, that is, to update a stored image from what is on a running node,
can be also be carried out. This converse can be viewed as grabbing from a node, and synchronizing
what is grabbed, to an image. It can be done using grabimage (cmsh), or Synchronize image (Bright
View), and involves further exclude lists excludelistgrab or excludelistgrabnew. The grabimage
command and Synchronize option are covered in detail in section 12.5.2.

5.6.1 Updating Running Nodes: Configuration With excludelistupdate
The exclude list excludelistupdate used by the imageupdate command is defined as a property of the
node’s category. It has the same structure and rsync patterns syntax as that used by the exclude lists for
provisioning the nodes during installation (section 5.4.7).

Distinguishing Between The Intention Behind The Various Exclude Lists
The administrator should note that it is the excludelistupdate list that is being discussed here, in con-
trast with the excludelistsyncinstall/excludelistfullinstall lists which are discussed in section 5.4.7,
and also in contrast with the excludelistgrab/excludelistgrabnew lists of section 12.5.2.

So, for the imageupdate command the excludelistupdate list concerns an update to a run-
ning system, while for installation sync or full provisioning, the corresponding exclude lists
(excludelistsyncinstall and excludelistfullinstall) from section 5.4.7 are about an install during
node start-up. Because the copying intention during updates is to be speedy, the imageupdate command
synchronizes files rather than unnecessarily overwriting unchanged files. Thus, the excludelistupdate
exclusion list it uses is actually analogous to the excludelistsyncinstall exclusion list used in the sync
case of section 5.4.7, rather than being analogous to the excludelistfullinstall list.

© Bright Computing, Inc.

5.6 Updating Running Nodes 211

Similarly, the excludelistgrab/excludelistgrabnew lists of section 12.5.2 are about a grab from the
running node to the image.

• The excludelistgrab list here is intended for the case of synchronizing the existing image with
the running node, and is thus analogous to the excludelistsyncinstall exclusion list.

• The excludelistgrabnew list here is intended for the case of copying a full image from the running
node, and is thus analogous to the excludelistfullinstall list.

The following table summarizes this:

During: Exclude list used is: Copy intention:

update excludelistupdate sync, image to running node

install
excludelistfullinstall full, image to starting node

excludelistsyncinstall sync, image to starting node

grab
excludelistgrabnew full, running node to image

excludelistgrab sync, running node to image

The preceding table is rather terse. It may help to understand it if is expanded with some in-place
footnotes, where the footnotes indicate what actions can cause the use of the exclude lists:

During: Exclude list used is: Copy intention:

update
excludelistupdate sync, image to running node

eg: imageupdate

install excludelistfullinstall full, image to starting node

eg: node-provisioning eg: node provisioning

process during pre- with installmode FULL

init stage depending

on installmode decision excludelistsyncinstall sync, image to starting node

eg: node provisioning AUTO

with healthy partition

grab excludelistgrabnew full, running node to image

eg: grabimage (cmsh), grabimage -i/Grab to image

Synchronize image

(Bright View), and Grab to excludelistgrab sync, running node to image

image (Bright View) grabimage/Synchronize image

The Exclude List Logic For excludelistupdate
During an imageupdate command, the synchronization process uses the excludelistupdate list, which
is a list of files and directories. One of the cross checking actions that may run during the synchroniza-
tion is that the items on the list are excluded when copying parts of the filesystem from a known good
software image to the node. The detailed behavior is as follows:

The exludelistupdate list is in the form of two sublists. Both sublists are lists of paths, except that
the second sublist is prefixed with the text “no-new-files: ” (without the double quotes). For the node

© Bright Computing, Inc.

212 Node Provisioning

being updated, all of its files are looked at during an imageupdate synchronization run. During such a
run, the logic that is followed is:

• if an excluded path from excludelistupdate exists on the node, then nothing from that path is
copied over from the software image to the node

• if an excluded path from excludelistupdate does not exist on the node, then

– if the path is on the first, non-prefixed list, then the path is copied over from the software
image to the node.

– if the path is on the second, prefixed list, then the path is not copied over from the software
image to the node. That is, no new files are copied over, like the prefix text implies.

This is illustrated by figure 5.17.

© Bright Computing, Inc.

5.6 Updating Running Nodes 213

 COPY sublist 1
...
FOO
BAR
...

sublist 2
...
no new files: BAZ
...

 COPY

FOO FOO

BAR

BAZ

BAR

BAZ

BAR

FOO

No change

New file

No new file

excludelistupdate What happens to files on nodes

For files already on the node:

For files not already on the node:

R
esult

XX
X

Figure 5.17: Exclude list logic

The files and directories on the node that are not in the sub-lists lose their original contents, and are
copied over from the software image. So, content not covered by the sub-lists at that time is normally
not protected from deletion.

Thus, the provisioning system excludes paths described according to the excludelistupdate prop-
erty.

The provisioning system also excludes a statically-imported filesystem on a node if the filesystem
is a member of the following special list: NFS, Lustre, FUSE, CephFS, CIFS, PanFS, FhGFS, BeeGFS,
GlusterFS, or GPFS. If this exclusion were not done, then all data on these imported filesystems would

© Bright Computing, Inc.

214 Node Provisioning

be wiped, since they are not part of the software image. The automatic exclusion for these imported
filesystems does not rely on the excludelist values maintained by CMDaemon—instead, CMDaemon
carries out the check on-the-fly when provisioning starts.

Statically-imported filesystems that have their mounts managed by Bright Cluster Manager via the
fsmounts mode can be excluded from being mounted on the nodes in the first place, by removing them
from the listed mounts within the fsmounts mode.

Imported filesystems not on the special list can have their data wiped out during provisioning or
sync updates, if the statically-imported filesystems are placed in the image manually—that is, if the
filesystems are mounted manually into the image on the head node via /etc/fstab without using cmsh
or Bright View.

Filesystems mounted dynamically cannot have their appearance or disappearance detected reliably:
Any filesystem that may be imported via an auto-mount operation must therefore explicitly be excluded
by the administrator manually adding the filesystem to the exclude list. This is to prevent an incor-
rect execution of imageupdate. Neglecting to do this may wipe out the filesystem, if it happens to be
mounted in the middle of an imageupdate operation.

The fstab system is a statically mounting system, and not an auto-mounter: While fstab mounts
filesystems automatically, system administrators should not confuse that with auto-mounting. Auto-
mounting as provided by autofs is designed for the dynamic mounting of filesystems on demand by
regular users. The fstab table is designed for mounting as carried out by the system, as occurs during
boot, which is why it is regarded as a static, non-auto-mounting system.

Editing An Exclude List
A sample cmsh one-liner which opens up a text editor in a category so that the exclude list for updates
can be edited is:

cmsh -c "category use default; set excludelistupdate; commit"

Similarly, the exclude list for updates can also be edited in Bright View via the clickpath:
Grouping→Node categories→Edit→Settings→Exclude list update

Provisioning Modifications Via excludelistmanipulatescript
Sometimes the administrator has a need to slightly modify the execution of exclude lists during pro-
visioning. The excludelistmanipulatescript file takes as an input the exclude list inherited from a
category, modifies it in some way, and then produces a new exclude list. Conceptually it is a bit like how
an administrator might use sed if it worked without a pipe. As usual, setting it for node level overrides
the category level.

A script that manipulates the exclude lists of a node can be specified as follows within cmsh:

[bright91]% device use node001
[bright91->device[node001]]% set excludelistmanipulatescript
(a vi session will start. A script is edited and saved)
[bright91->device[node001*]]% commit

The script can be as simple as:

Example

#!/bin/bash

echo "- *"
echo 'no-new-files: - *'

© Bright Computing, Inc.

5.6 Updating Running Nodes 215

If provisioning a node from the head node, then the script modifies the node-provisioning exclude
lists—excludelistfullinstall, excludelistsyncinstall, and excludelistupdate—so that they ap-
pear to contain these items only:

- *
no-new-files: - *

The provisioning node then excludes everything during provisioning.
Careful editing and testing of the script is advised. Saving a script with just a single whitespace, for

example, usually has undesirable results.
A more useful script template is the following:

Example

#!/bin/bash

while read; do
echo "$REPLY"

done

echo "# This and next line added by category excludelistmanipulatescript."
echo "# The command line arguments were: $@"

The provisioning exclude lists are simply read in, then sent out again without any change, except
that the last two lines add comment lines to the exclude lists that are to be used.

Internally, the arguments taken by the excludelistmanipulatescript are the destination path and
the sync mode (one of install|update|full|grab|grabnew). This can be seen in the output of $@, if
running an imageupdate command to execute a dry run with the preceding example:

[bright91]% device use node001
[bright91->device[node001]]% get excludelistmanipulatescript
(the script is put in)
[bright91->device[node001*]]% commit; imageupdate
Performing dry run (use synclog command to review result, then pass -w to perform real update)...
Wed Apr 15 04:55:46 2015 [notice] bright91: Provisioning started: sendi\
ng bright91:/cm/images/default-image to node001:/, mode UPDATE, dry run\
= yes, no data changes!
[bright91->device[node001]]%
Wed Apr 15 04:55:51 2015 [notice] bright91: Provisioning completed: sen\
t bright91:/cm/images/default-image to node001:/, mode UPDATE, dry run \
= yes, no data changes!
imageupdate [COMPLETED]

An excerpt from the sync log, after running the synclog command, then shows output similar to
(some output elided):

...
- /cm/shared/*
- /cm/shared/
- /home/*
- /home/
- /cm/shared/apps/slurm/*
- /cm/shared/apps/slurm/
This and next line added by category excludelistmanipulatescript.
The command line arguments were: update /

© Bright Computing, Inc.

216 Node Provisioning

Rsync output:
sending incremental file list
cm/local/apps/cmd/scripts/healthchecks/configfiles/
...

Here, the sync mode is update and the destination path is “/”. Which of the exclude lists is being
modified can be determined by the excludelistmanipulatescript by parsing the sync mode.

The bash variable that accepts the exclude list text is set to a safely-marked form using curly braces.
This is done to avoid expansion surprises, due to wild card characters in the exclude lists. For example,
if $REPLY were used instead of ${REPLY}, and the script were to accept an exclude list line containing “-
/proc/*”, then it would give quite confusing output.

Other Exclude List Handling Options
The excludelistfailover and excludelistnormal files: are two further exclude list files that modify
standard provisioning behavior. These are discussed in section 18.4.8.

The excludelistsnippets tool: When synchronizing to a cloud director, or to an edge director, it is
sometimes useful to exclude unneeded files and paths from the synchronization, in order to speed it up.
The excludelistsmanipulatescript tool is powerful enough to do it, but it has some issues due to its
power. For example, it is a script, which means that is called whenever it is used, and so uses up some
extra resources. Also, it is a bit tricky to set up.

An easier way to manipulate exclude lists for the unneeded files and paths is via the
excludelistsnippets tool, described in section 4.4.1 of the Cloudbursting Manual. This tool allows
additional exclusion to be specified in a simpler way.

The provisioningassociations mode: Somewhat related to excludelistsnippets is the use of the
provisioningassociations mode. This is described in section 4.4.2 of the Cloudbursting Manual. This
mode is used to modify some properties of provisioned file systems.

Exclude List State At Node Level
Exclude lists at category level and node level: An exclude list can be set at node level, as well as at
category level. Roles and overlays can add implied exclude lists too.

At category level, an exclude list such as excludelistfullinstall can be set up explicitly with:

Example

[bright91->category[default]]% set excludelistfullinstall
...a text editor such as vi opens up and the list can be edited...
[bright91->category*[default*]]% commit

At node level, an exclude list can be set in the same way:

Example

[bright91->device[node001]]% set excludelistfullinstall
...a text editor such as vi opens up and the list can be edited...
[bright91->device*[node001*]]% commit

An exclude list that is not empty at node level overrules its corresponding category list. Exclude lists
brought in via roles are however simply included in the exclude list.

© Bright Computing, Inc.

5.6 Updating Running Nodes 217

The excludelist command: At node level it can be unclear what the resulting exclude list (“opera-
tional exclude list”) actually is. The exclude list state at node level can therefore be viewed using the
excludelist command options. The excludelist command becomes active if a software image has
been set at the node level.

• The list option to excludelist lists the source and destination paths:

Example

[bright91->device[node001]]% excludelist list
Source path (on the head node) Destination path (on the node)
-------------------------------- --------------------------------
/cm/images/default-image /

• The get option to the excludelist command has synchronization mode and destination subop-
tions for a node.

Earlier on (page 210), the intention behind the various exclude lists, according to the type of update
or synchronization, were distinguished.

The excludelist get command can have a destination path specified, and have the type of up-
date or synchronization specified according to those distinguishing concepts.

The output to the excludelist get command then shows the operational exclude list as seen by
a node for that path and for that update or synchronization.

Thus, for example:

– The full install operational exclude list for the path / on node node001, intended for a full
installation to a node that is starting up, can be found as follows:

Example

[bright91->device[node001]]% excludelist get full /
For details on the exclude patterns defined here please refer to
the FILTER RULES section of the rsync man page.
#
Files that match these patterns will not be installed onto the node.
- lost+found/
- /proc/*
- /sys/*
- /boot/efi

extra defaults
- /proc/*
- /sys/*

– Similarly, the sync install operational exclude list for the path / on node node001, intended
for a sync installation to a node that is starting up, can be found as follows:

[bright91->device[node001]]% excludelist get sync /

For details on the exclude patterns defined here please refer to
the FILTER RULES section of the rsync man page.
#
Files that exist on a node and match one of these patterns will not be
modified or deleted. Any files that match one of these patterns and that

© Bright Computing, Inc.

218 Node Provisioning

exist in the image but are absent on the node, will be copied to the node.
- /.autofsck
- /boot/grub*/grub.cfg
- /cm/local/apps/openldap/etc/certs/ldap.key
- /cm/local/apps/openldap/etc/certs/ldap.pem
- /data/*
- /home/*
...

– Other excludelist get options, besides full and sync, are:

* grab (a grab from a running node for a sync back to an existing image)

* grabnew (a grab from a running node for a full install to a new image)

* update (a sync update of a running node from an image).

All excludelist get options correspond to the intentions of the associated exclude list types
as distinguished on page 210.

5.6.2 Updating Running Nodes: With cmsh Using imageupdate
Using a defined excludelistupdate property (section 5.6.1), the imageupdate command of cmsh is used
to start an update on a running node:

Example

[bright91->device]% imageupdate -n node001
Performing dry run (use synclog command to review result, then pass -w to perform real update)...
Tue Jan 11 12:13:33 2011 bright91: Provisioning started on node node001
[bright91->device]% imageupdate -n node001: image update in progress ...
[bright91->device]%
Tue Jan 11 12:13:44 2011 bright91: Provisioning completed on node node001

By default the imageupdate command performs a dry run, which means no data on the node is
actually written. Before passing the “-w” switch, it is recommended to analyze the rsync output using
the synclog command (section 5.4.7).

If the user is now satisfied with the changes that are to be made, the imageupdate command is
invoked again with the “-w” switch to implement them:

Example

[bright91->device]% imageupdate -n node001 -w
Provisioning started on node node001
node001: image update in progress ...
[bright91->device]% Provisioning completed on node node001

5.6.3 Updating Running Nodes: With Bright View Using the Update node Option
In Bright View, an image update can be carried out by selecting the specific node or category, for example
node001, and updating it via the clickpath:
Devices→Nodes[node001]→Edit↓Software image→Update node

5.6.4 Updating Running Nodes: Considerations
An attempt to update the image on a running node can run into some issues:

• Updating an image via cmsh or Bright View automatically updates the provisioners first
via the updateprovisioners command (section 5.2.4) if the provisioners have not been
updated in the last 5 minutes. The conditional update period can be set with the
provisioningnodeautoupdatetimeout parameter (section 5.2.4).

© Bright Computing, Inc.

5.7 Adding New Nodes 219

So, with the default setting of 5 minutes, if there has been a new image created within the last 5
minutes, then provisioners do not get the updated image when doing the updates, which means
that nodes in turn do not get those updates. Running the updateprovisioners command just
before running the imageupdate command therefore usually makes sense.

• By default, Bright Cluster Manager does not allow provisioning if automount (page 800) is run-
ning.

• Also, when updating services, the services on the nodes may not restart since the init process
may not notice the replacement.

For these reasons, especially for more extensive changes, it can be safer for the administrator to simply
reboot the nodes instead of using imageupdate to provision the images to the nodes. A reboot by default
ensures that a node places the latest image with an AUTO install (section 5.4.7), and restarts all services.

The Reinstall node option, which can be run, for example, on a node node001, using a clickpath of
Devices→Nodes[node001]→Edit↓Software image→Reinstall node also does the same as a reboot
with default settings, except for that it unconditionally places the latest image with a FULL install, and
so may take longer to complete.

5.7 Adding New Nodes
How the administrator can add a single node to a cluster is described in section 1.3 of the Installation
Manual. This section explains how nodes can be added in ways that are more convenient for larger
numbers of nodes.

5.7.1 Adding New Nodes With cmsh And Bright View Add Functions
Node objects can be added from within the device mode of cmsh by running the add command:

Example

[bright91->device]% add physicalnode node002 10.141.0.2
[bright91->device*[node002*]% commit

The Bright View equivalent of this is following the clickpath:
Devices→Nodes→Add→Settings→Hostname
then adding the value node002 to Hostname, and saving it.

When adding the node objects in cmsh and Bright View, some values (IP addresses for example) may
need to be filled in before the object validates. For regular nodes, there should be an interface and an
IP address for the network that it boots from, as well as for the network that manages the nodes. A
regular node typically has only one interface, which means that the same interface provides boot and
management services. This interface is then the boot interface, BOOTIF, during the pre-init stage, but is
also the management interface, typically eth0 or whatever the device is called, after the pre-init stage.
The IP address for BOOTIF is normally provided via DHCP, while the IP address for the management
interface is set to a static IP address that is set via cmsh or Bright View by the administrator.

Adding new node objects as “placeholders” can also be done from cmsh or Bright View. By place-
holders, here it is meant that an incomplete node object is set. For example, sometimes it is useful to
create a node object with the MAC address setting unfilled because it is still unknown. Why this can be
useful is covered shortly.

5.7.2 Adding New Nodes With The Node Creation Wizard
Besides adding nodes using the add command of cmsh or the Add button of Bright View as in the preced-
ing text, there is also a Bright View wizard that guides the administrator through the process—the node
creation wizard. This is useful when adding many nodes at a time. It is available via the clickpath:

Devices→Nodes→Create nodes

© Bright Computing, Inc.

220 Node Provisioning

This wizard should not be confused with the closely-related node identification resource described in
section 5.4.2, which identifies unassigned MAC addresses and switch ports, and helps assign them node
names.

• The node creation wizard creates an object for nodes, assigns them node names, but it leaves the
MAC address field for these nodes unfilled, keeping the node object as a “placeholder”.

• The node identification resource assigns MAC addresses so that node names are associated with a
MAC address.

If a node is left with an unassigned MAC address—that is, in a “placeholder” state—then it means
that when the node starts up, the provisioning system lets the administrator associate a MAC address
and switch port number at the node console for the node. This occurs when the node-installer reaches
the node configuration stage during node boot as described in section 5.4.2. This is sometimes preferable
to associating the node name with a MAC address remotely with the node identification resource.

The node creation wizard sets IP addresses for the nodes. By default it starts IP addressing for the
new nodes by guessing an appropriate value from the node names. The administrator can override this
starting value in the main screen of the wizard by modifying it in the header section of the IP addresses
column (figure 5.18).

Figure 5.18: Node Creation Wizard: Setting Interfaces

The cmsh equivalent of the node creation wizard is the foreach loop with the –clone option acting
on a node (section 2.5.5).

5.8 Troubleshooting The Node Boot Process
During the node boot process there are several common issues that can lead to an unsuccessful boot.
This section describes these issues and their solutions. It also provides general hints on how to analyze
boot problems.

Before looking at the various stages in detail, the administrator may find that simply updating soft-
ware or firmware may fix the issue. In general, it is recommended that all available updates are deployed
on a cluster.

• Updating software is covered in Chapter 12.

– On the head node, the most relevant software can be updated with yum, zypper, or apt, as
explained in section 12.2. For example, with yum:

Example

© Bright Computing, Inc.

5.8 Troubleshooting The Node Boot Process 221

yum update cmdaemon node-installer

– Similarly for the software image, the most relevant software can be updated too. This is done
via a procedure involving a chroot installation., as described in section 12.4. If using yum, then
the update can be carried out within the image, <software image>, with:

Example

yum update --installroot=/cm/images/<software image> cmdaemon node-installer-slave

• UEFI or BIOS firmware should be updated as per the vendor recommendation

The various stages that may fail during node boot are now examined.

5.8.1 Node Fails To PXE Boot
Possible reasons to consider if a node is not even starting to network boot (PXE boot for x86 nodes) in
the first place:

• DHCP may not be running. A check can be done to confirm that DHCP is running on the internal
network interface (usually eth0):

[root@bright91 ~]# ps u -C dhcpd
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2448 0.0 0.0 11208 436 ? Ss Jan22 0:05 /usr/sbin/dhcpd eth0

This may indicate that Node booting is disabled in Bright View (figure 3.5, page 68) and needs to
be enabled. The equivalent in cmsh is to check if the response to:

cmsh -c "network use internalnet; get nodebooting"

needs to be set to yes.

• The DHCP daemon may be “locked down” (section 3.2.1, figure 3.5, table 3.2.1). New nodes are
granted leases only after lockdowndhcpd is set to no in cmsh, or Lock down dhcpd is disabled in
Bright View for the network.

• A rogue DHCP server may be running. If there are all sorts of other machines on the network the
nodes are on, then it is possible that there is a rogue DHCP server active on it, perhaps on an IP
address that the administrator has forgotten, and interfering with the expected PXE booting. Such
stray DHCP servers should be eliminated.

In such a case, removing all the connections and switches and just connecting the head node di-
rectly to a problem node, NIC-to-NIC, should allow a normal network boot to happen. If a normal
network boot then does happen, it indicates the problem is indeed due to a rogue DHCP server on
the more-connected network.

• The boot sequence may be set wrongly in the BIOS. The boot interface should normally be set to
be the first boot item in the BIOS.

• The node may be set to boot from UEFI mode. If UEFI mode has a buggy network boot imple-
mentation, then it may fail to network boot. For x86 nodes, setting the node to PXE boot using the
legacy BIOS mode can be tried instead, or perhaps the UEFI firmware can be updated.

• There may a bad cable connection. This can be due to moving the machine, or heat creep, or
another physical connection problem. Firmly inserting the cable into its slot may help. Replacing
the cable or interface as appropriate may be required.

© Bright Computing, Inc.

222 Node Provisioning

• There may a problem with the switch. Removing the switch and connecting a head node and a
regular node directly with a cable can help troubleshoot this.

Disabling the Spanning Tree Protocol (STP) functions of a managed switch is recommended. With
STP on, nodes may randomly fail to network boot.

• The cable may be connected to the wrong interface. By default, on the head node, for a type 1
network, the first consistent network device name, for example eno1, is normally assigned the
internal network interface, and the second one, for example en02, is assigned the external network
interface. However, the following possibilities should be considered during troubleshooting:

– The two interfaces can be confused when physically viewing them and a connection to the
wrong interface can therefore be made.

– It is also possible that the administrator has changed the default assignment.

– The interface may have been set by the administrator to follow the network device naming
scheme that has been used prior to RHEL7. Interfaces with names such as eth0 and eth1 on
the head node are suggestive of this. The problem with the pre-RHEL7 scheme is that it can
sometimes lead to network interfaces swapping after reboot, which is why the scheme is no
longer recommended. The workaround for this issue in pre-RHEL7 schemes was to define a
persistent name in the udev ruleset for network interfaces.
In Bright Cluster Manager 9.0 onwards, the default scheme is the consistent network device
naming scheme, and it is recommended.

Interface Naming Conventions Post-RHEL7 (Recommended)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
Networking_Guide/ch-Consistent_Network_Device_Naming.html describes the consistent
network device scheme for interfaces post-RHEL7. This scheme sets an interface assignment
on iPXE boot for multiple interfaces that is also valid by default during the very first iPXE
boot. This means that an administrator can know which interface is used for provisioning
and can connect the provisioning cable accordingly.
Some care may need to be taken in unusual naming assignments, in order to avoid exceeding
the 16-character limit that Linux has for the naming of network interfaces.

Reverting To The Pre-RHEL7 Interface Naming Conventions (Not Recommended)

To revert to the pre-RHEL7 behavior, the text:

net.ifnames=0 biosdevname=0

can be appended to the line starting with GRUB_CMDLINE_LINUX in /etc/default/grub within
the head node. For this:

* The biosdevname parameter only works if the dev helper is installed. The dev helper
is available from the biosdevname RPM package. The parameter also requires that the
system supports SMBIOS 2.6 or ACPI DSM.

* The net.ifnames parameter is needed if biosdevname is not installed.

Example

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/swap vconsole.keymap=us \
crashkernel=auto rd.lvm.lv=centos/root vconsole.font=latarcyr\
heb-sun16 rhgb quiet net.ifnames=0 biosdevname=0"

A cautious system administrator may back up the original grub.cfg file:

[root@bright91 ~]# cp --preserve /boot/grub2/grub.cfg /boot/grub2/grub.cfg.orig

© Bright Computing, Inc.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html
/etc/default/grub

5.8 Troubleshooting The Node Boot Process 223

The GRUB configuration should be generated with:

[root@bright91 ~]# grub2-mkconfig -o /boot/grub2/grub.cfg

If for some reason the administrator would like to carry out the pre-RHEL7 naming conven-
tion on a regular node, then the text net.ifnames=0 biosdevname=0 can be appended to the
kernelparameters property, for an image selected from softwareimage mode.

Example

[bright91->softwareimage]% list
Name (key) Path
-------------------- ------------------------------
default-image /cm/images/default-image
openstack-image /cm/images/openstack-image
[bright91->softwareimage]% use default-image
[bright91->softwareimage[default-image]]% append kernelparame\
ters " net.ifnames=0 biosdevname=0"
[bright91->softwareimage*[default-image*]]% commit

The append command requires a space at the start of the quote, in order to separate the kernel
parameters from any pre-existing ones.

• The TFTP server that sends out the image may have hung. During a normal run, an output similar
to this appears when an image is in the process of being served:

[root@bright91 ~]# ps ax | grep [t]ftp
7512 ? Ss 0:03 in.tftpd --maxthread 500 /tftpboot

If the TFTP server is in a zombie state, the head node should be rebooted. If the TFTP service
hangs regularly, there is likely a networking hardware issue that requires resolution.

Incidentally, grepping the process list for a TFTP service returns nothing when the head node
is listening for TFTP requests, but not actively serving a TFTP image. This is because the TFTP
service runs under xinet.d and is called on demand. Running

[root@bright91 ~]# chkconfig --list

should include in its output the line:

tftp: on

if TFTP is running under xinet.d.

• The switchover process from TFTP to HTTP may have hung. During a normal provisioning run,
assuming that CMDaemon uses the default bootloaderprotocol setting of HTTP, then TFTP is
used to load the initial boot loader, but the kernel and ramdisk are loaded up via HTTP for speed.
Some hardware has problems with switching over to using HTTP.

In that case, setting bootloaderprotocol to TFTP keeps the node using TFTP for loading the kernel
and ramdisk, and should work. Another possible way to solve this is to upgrade the PXE boot
BIOS to a version that does not have this problem.

ARMv8 hardware can boot only via TFTP.

Setting bootloaderprotocol to HTTPS only works for some special hardware.

• Sometimes a manufacturer releases hardware with buggy drivers that have a variety of problems.
For instance: Ethernet frames may be detected at the interface (for example, by ethtool), but
TCP/IP packets may not be detected (for example, by wireshark). In that case, the manufacturer
should be contacted to upgrade their driver.

• The interface may have a hardware failure. In that case, the interface should be replaced.

© Bright Computing, Inc.

224 Node Provisioning

5.8.2 Node-installer Logging
If the node manages to get beyond the net booting stage to the node-installer stage, then the first place
to look for hints on node boot failure is usually the node-installer log file. The node-installer runs on
the node that is being provisioned, and sends logging output to the syslog daemon running on that
node. This forwards all log data to the IP address from which the node received its DHCP lease, which
is typically the IP address of the head node or failover node. In a default Bright Cluster Manager setup,
the local5 facility of the syslog daemon is used on the node that is being provisioned to forward all
node-installer messages to the log file /var/log/node-installer on the head node.

After the node-installer has finished running, its log is also stored in /var/log/node-installer on
the regular nodes.

If there is no node-installer log file anywhere yet, then it is possible that the node-installer is not yet
deployed on the node. Sometimes this is due to a system administrator having forgotten to change a
provisioning-related configuration setting. One possibility is that the nodegroups setting (section 5.2.1),
if used, may be misconfigured. Another possibility is that the image was set to a locked state (sec-
tion 5.4.7). The provisioningstatus -a command can indicate this:

Example

[bright91->softwareimage]% provisioningstatus -a | grep locked
Scheduler info: requested software image is locked, request deferred

To get the image to install properly, the locked state should be removed for a locked image.

Example

[root@bright91 ~]# cmsh -c "softwareimage islocked"
Name Locked
-------------- --------
default-image yes
[root@bright91 ~]# cmsh -c "softwareimage unlock default-image"
[root@bright91 ~]# cmsh -c "softwareimage islocked"
Name Locked
-------------- --------
default-image no

The node automatically picks up the image after it is unlocked.
Optionally, extra log information can be written by enabling debug logging, which sets the

syslog importance level at LOG_DEBUG. To enable debug logging, the debug field is changed in
/cm/node-installer/scripts/node-installer.conf.

For the node-installer.conf file in multidistro and multiarch (section 12.7) configurations, the
directory path /cm/node-installer takes the form:

/cm/node-installer-<distribution>-<architecture>
The values for <distribution> and <architecture> can take the values outlined on page 521.

From the console of the booting node the log file is generally accessible by pressing Alt+F7 on the
keyboard. Debug logging is however excluded from being viewed in this way, due to the output volume
making this impractical.

A booting node console can be accessed remotely if Serial Over LAN (SOL) is enabled (section 17.7),
to allow the viewing of console messages directly. A further depth in logging can be achieved by setting
the kernel option loglevel=N, where N is a number from 0 (KERN_EMERG) to 7 (KERN_DEBUG).

One possible point at which the node-installer can fail on some hardware is if SOL (section 17.7)
is enabled in the BIOS, but the hardware is unable to cope with the flow. The installation can freeze
completely at that point. This should not be confused with the viewing quirk described in section 17.7.4,
even though the freeze typically appears to take place at the same point, that point being when the
console shows “freeing unused kernel memory” as the last text. One workaround to the freeze would
be to disable SOL.

© Bright Computing, Inc.

5.8 Troubleshooting The Node Boot Process 225

5.8.3 Provisioning Logging
The provisioning system sends log information to the CMDaemon log file. By default this is in
/var/log/cmdaemon on the local host, that is, the provisioning host. The host this log runs on can be
configured with the CMDaemon directive SyslogHost (Appendix C).

The image synchronization log file can be retrieved with the synclog command running from device
mode in cmsh. Hints on provisioning problems are often found by looking at the tail end of the log.

If the tail end of the log shows an rsync exit code of 23, then it suggests a transfer error. Sometimes
the cause of the error can be determined by examining the file or filesystem for which the error occurs.
For the rsync transport, logs for node installation are kept under /var/spool/cmd/, with a log written
for each node during provisioning. The name of the node is set as the prefix to the log name. For
example node002 generates the log:

/var/spool/cmd/node002-\.rsync

5.8.4 Ramdisk Fails During Loading Or Sometime Later
One issue that may come up after a software image update via yum, zypper, or apt (section 12.4), is
that the ramdisk stage may fail during loading or sometime later, for a node that is rebooted after the
update. This occurs if there are instructions to modify the ramdisk by the update. In a normal machine
the ramdisk would be regenerated. In a cluster, the extended ramdisk that is used requires an update,
but Bright Cluster Manager is not aware of this. Running the createramdisk command from cmsh or
the Recreate Initrd command via the clickpaths:

• Devices→Nodes→Edit↓Kernel→Recreate Initrd

• Grouping→Node Categories→Edit↓Kernel→Recreate Initrd

• Provisioning→Software Images→Edit→Recreate Initrd

(section 5.3.2) generates an updated ramdisk for the cluster, and solves the failure for this case.

Another, somewhat related possible cause of a halt at this stage, is that the kernel modules that are
to be loaded may have been specified at a wrongly by the administrator in the hierarchy of software
image, category, or node (page 172). A check of the kernel modules specified in softwareimage mode,
category mode, or device mode (for the particular node) may reveal a misconfiguration.

5.8.5 Ramdisk Cannot Start Network
The ramdisk must activate the node’s network interface in order to fetch the node-installer. To activate
the network device, the correct kernel module needs to be loaded. If this does not happen, booting fails,
and the console of the node displays something similar to figure 5.19.

© Bright Computing, Inc.

/var/spool/cmd/

226 Node Provisioning

Figure 5.19: No Network Interface

To solve this issue the correct kernel module should be added to the software image’s kernel module
configuration (section 5.3.2). For example, to add the e1000 module to the default image using cmsh:

Example

[mc]% softwareimage use default-image
[mc->softwareimage[default-image]]% kernelmodules
[mc->softwareimage[default-image]->kernelmodules]% add e1000
[mc->softwareimage[default-image]->kernelmodules[e1000]]% commit
Initial ramdisk for image default-image was regenerated successfully
[mc->softwareimage[default-image]->kernelmodules[e1000]]%

After committing the change it typically takes about a minute before the initial ramdisk creation is
completed via a mkinitrd run by CMDaemon.

5.8.6 Node-Installer Cannot Create Disk Layout
When the node-installer is not able to create a drive layout it displays a message similar to figure 5.20.
The node-installer log file (section 5.8.2) contains something like:

Mar 24 13:55:31 10.141.0.1 node-installer: Installmode is: AUTO
Mar 24 13:55:31 10.141.0.1 node-installer: Fetching disks setup.
Mar 24 13:55:31 10.141.0.1 node-installer: Checking partitions and
filesystems.
Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':
not found
Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':
not found
Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev/sda /dev/hda).
Mar 24 13:55:32 10.141.0.1 node-installer: Partitions and/or filesystems
are missing/corrupt. (Exit code 4, signal 0)
Mar 24 13:55:32 10.141.0.1 node-installer: Creating new disk layout.

© Bright Computing, Inc.

5.8 Troubleshooting The Node Boot Process 227

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':
not found
Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':
not found
Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev/sda /dev/hda).
Mar 24 13:55:32 10.141.0.1 node-installer: Failed to create disk layout.
(Exit code 4, signal 0)
Mar 24 13:55:32 10.141.0.1 node-installer: There was a fatal problem. This node can not be\
installed until the problem is corrected.

Figure 5.20: No Disk

Disk layout failures can have several reasons.

BIOS And Order Issues
One reason may be that the drive may be disabled in the BIOS. It should be enabled.

Another reason may be that the drive order was changed. This could happen if, for example, a
defective motherboard has been replaced. The drive order should be kept the same as it was before a
motherboard change.

Read-only Mode Issues
Another reason may be due to SSDs that have a hardware jumper or toggle switch that sets a drive to
read-only mode. A read-only mode drive will typically fail at this point. The drive should be made
writeable.

Hardware Issues
If the node-installer log for the node shows lines with the text Input/output error, then it generally
indicates a hardware issue. Possible hardware issues include:

• a drive failure

• a faulty cable between storage and controller

© Bright Computing, Inc.

228 Node Provisioning

• a faulty storage controller

• a faulty backplane in the server

If the node has enough RAM, then it is possible to boot up the node up as a diskless node, to carry out
further diagnosis with disk tools such as smartmontools.

Software Driver Issues
One of the most common software issues is that the correct storage driver is not being loaded. To
solve this issue, the correct kernel module should be added to the software image’s kernel module
configuration (section 5.3.2).

Experienced system administrators work out what drivers may be missing by checking the results
of hardware probes. For example, going into the node-installer shell using Alt-F2, and then looking at
the output of lspci, shows a list of hardware detected in the PCI slots and gives the chipset name of the
storage controller hardware in this case:

Example

[<installer> root@node001 ~]# lspci | grep SCSI
00:10.0 Serial Attached SCSI controller: LSI Logic / Symbios Logic SAS2\
008 PCI-Express Fusion-MPT SAS-2 [Falcon] (rev 03)

The next step is to Google with likely search strings based on that output.
The Linux Kernel Driver DataBase (LKDDb) is a hardware database built from kernel sources that

lists driver availability for Linux. It is available at http://cateee.net/lkddb/. Using the Google search
engine’s “site” operator to restrict results to the cateee.net web site only, a likely string to try might
be:

Example

SAS2008 site:cateee.net

The search result indicates that the mpt2sas kernel module needs to be added to the node kernels. A
look in the modules directory of the software image shows if it is available:

Example

find /cm/images/default-image/lib/modules/ -name "*mpt2sas*"

If it is not available, the driver module must then be obtained. If it is a source file, it will need to
be compiled. By default, nodes run on standard distribution kernels, so that only standard procedures
need to be followed to compile modules.

If the module is available, it can be added to the default image, by using cmsh in softwareimage
mode to create the associated object. The object is given the same name as the module, i.e. mp2sas in
this case:

Example

[bright91]% softwareimage use default-image
[bright91->softwareimage[default-image]]% kernelmodules
[bright91->softwareimage[default-image]->kernelmodules]% add mpt2sas
[bright91->softwareimage[default-image]->kernelmodules*[mpt2sas*]]% commit
[bright91->softwareimage[default-image]->kernelmodules[mpt2sas]]%
Thu May 19 16:54:52 2011 [notice] bright91: Initial ramdisk for image de\
fault-image is being generated
[bright91->softwareimage[default-image]->kernelmodules[mpt2sas]]%
Thu May 19 16:55:43 2011 [notice] bright91: Initial ramdisk for image de\
fault-image was regenerated successfully.
[bright91->softwareimage[default-image]->kernelmodules[mpt2sas]]%

© Bright Computing, Inc.

http://cateee.net/lkddb/

5.8 Troubleshooting The Node Boot Process 229

After committing the change it can take some time before ramdisk creation is completed—typically
about a minute, as the example shows. Once the ramdisk is created, the module can be seen in the list
displayed from kernelmodules mode. On rebooting the node, it should now continue past the disk
layout stage.

5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface
In some cases the node-installer is not able to configure a node’s BMC interface, and displays an error
message similar to figure 5.21.

Figure 5.21: No BMC Interface

Usually the issue can be solved by adding the correct BMC (IPMI/iLO) kernel modules to the soft-
ware image’s kernel module configuration. However, in some cases the node-installer is still not able to
configure the BMC interface. If this is the case the BMC probably does not support one of the commands
the node-installer uses to set specific settings, or there may be a hardware glitch in the BMC.

The setupBmc Node-Installer Configuration Setting
To solve this issue, setting up BMC interfaces can be disabled globally by setting the setupBmc field
to false in the node-installer configuration file /cm/node-installer/scripts/node-installer.conf
(for multiarch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf).

Doing this disables configuration of all BMC interfaces by the node-installer. A custom finalize
script (Appendix E) can then be used to run the required commands instead.

The setupBmc field in the node-installer should not be confused with the SetupBMC directive in
cmd.conf (Appendix C). The former is about enabling the BMC interface, while the latter is about en-
abling automated passwords to the BMC interface (an interface that must of course be enabled in the
first place to work).

The failOnMissingBmc Node-Installer Configuration Setting
If the kernel modules for the BMC are loaded up correctly, and the BMC is configured, but it is not
detected by the node-installer, then the node-installer halts by default. This corresponds to the set-

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf

230 Node Provisioning

ting failOnMissingBmc = true in the node-installer configuration file /cm/node-installer/scripts/
node-installer.conf. Toggling this to false skips BMC network device detection, and lets the node-
installer continue past the BMC detection and configuration stage. This can be convenient, for example,
if the BMC is not yet configured and the aim is to get on with setting up the rest of the cluster.

The failOnFailedBmcCommand Node-Installer Configuration Setting
If a BMC command fails, then the node-installer by default terminates node installation. The idea behind
this is to allow the administrator to fix the problem. Sometimes, however, hardware can wrongly signal
a failure. That is, it can signal a false failure, as opposed to a true failure.

A common case is the case of ipmitool. ipmitool is used by Bright Cluster Manager to configure
the BMC. With most hardware vendors it works as expected, signaling success and failure correctly. As
per the default behavior: with success, node installation proceeds, while with failure, it terminates.

With certain hardware vendors however ipmitool fails with an exit code 1, even though the BMC
is properly configured. Again, as per the default behavior: success has node installation proceed, while
failure has node installation terminate. Only this time, because the failure signal is incorrect, the termi-
nation on failure is also incorrect behavior.

To get around the default behavior for false failure cases, the administrator can force
the node-installer to set the value of failOnFailedBmcCommand to false in the node-
installer configuration file /cm/node-installer/scripts/node-installer.conf (for multi-
arch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf). The installation then skips past the false failure.

BMC Hardware Glitch And Cold Reset
Sometimes, typically due to a hardware glitch, a BMC can get into a state where it is not providing
services, but the BMC is still up (responding to pings). Contrariwise, a BMC may not respond to pings,
but still respond to IPMI commands. A fix for such glitchy states is usually to power cycle the BMC.
This is typically done, either physically, or by using a BMC management tool such as ipmitool.

Physically resetting the power supply to the BMC is done typically by pulling the power cable out
and then pushing it in again. For typical rack-based servers the server can just be pulled out and in
again. Just doing a shutdown of the server with the power cable still in place normally does not power
down the BMC.

BMC management does allow the BMC to power down and be reset from software, without having
to physically handle the server. This software-based cold reset is a BIOS-manufacturer-dependent feature.
A popular tool used for managing BMCs that can do such a cold reset is ipmitool. This can be run
remotely, but also on the node console if the node cannot be reached remotely.

With ipmitool, a cold reset is typically carried out with a command such as:

[root@bright91 ~]# module load ipmitool
[root@bright91 ~]# ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> -I lanplus mc reset cold

The values for <bmcusername> and <bmcpassword> can be obtained as shown in section 3.7.2.

BMC Troubleshooting With The System Event Log
The System Event Log (SEL) can be read with:

[root@bright91 ~]# module load ipmitool
[root@bright91 ~]# ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> -I lanplus sel list

The timestamped output can be inspected for errors related to the CPU, ECC, or memory.

Other BMC Troubleshooting
Some more specific commands for handling IPMI might be via the service ipmi <option> commands,
which can show the IPMI service has failed to start up:

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf

5.8 Troubleshooting The Node Boot Process 231

Example

[root@bright91 ~]# service ipmi status
Redirecting to /bin/systemctl status ipmi.service

ipmi.service - IPMI Driver
Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)
Active: inactive (dead)

In the preceding session the driver has simply not been started up. It can be started up with the start
option:

Example

[root@bright91 ~]# service ipmi start
Redirecting to /bin/systemctl start ipmi.service
Job for ipmi.service failed because the control process exited with error code. See "systemctl\
status ipmi.service" and "journalctl -xe" for details.

In the preceding session, the start up failed. The service status output shows:

Example

[root@bright91 ~]# service ipmi status -l
Redirecting to /bin/systemctl status -l ipmi.service

ipmi.service - IPMI Driver
Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)
Active: failed (Result: exit-code) since Mon 2016-12-19 14:34:27 CET; 2min 3s ago
Process: 8930 ExecStart=/usr/libexec/openipmi-helper start (code=exited, status=1/FAILURE)

Main PID: 8930 (code=exited, status=1/FAILURE)

Dec 19 14:34:27 bright91 systemd[1]: Starting IPMI Driver...
Dec 19 14:34:27 bright91 openipmi-helper[8930]: Startup failed.
Dec 19 14:34:27 bright91 systemd[1]: ipmi.service: main process exited, code=exited, status=1/\
FAILURE
Dec 19 14:34:27 bright91 systemd[1]: Failed to start IPMI Driver.
Dec 19 14:34:27 bright91 systemd[1]: Unit ipmi.service entered failed state.
Dec 19 14:34:27 bright91 systemd[1]: ipmi.service failed.

Further details can be found in the journal:

Example

[root@bright91 ~]# journalctl -xe | grep -i ipmi
...
-- Unit ipmi.service has begun starting up.
Dec 19 14:34:27 bright91 kernel: ipmi message handler version 39.2
Dec 19 14:34:27 bright91 kernel: IPMI System Interface driver.
Dec 19 14:34:27 bright91 kernel: ipmi_si: Unable to find any System Interface(s)
Dec 19 14:34:27 bright91 openipmi-helper[8930]: Startup failed.
...

In the preceding session, the failure is due to a missing BMC interface (Unable to find any System
Interface(s). A configured BMC interface should show an output status similar to:

Example

© Bright Computing, Inc.

232 Node Provisioning

[root@bright91 ~]# service ipmi status
Redirecting to /bin/systemctl status ipmi.service

ipmi.service - IPMI Driver
Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)
Active: active (exited) since Mon 2016-12-19 14:37:10 CET; 2min 0s ago
Process: 61019 ExecStart=/usr/libexec/openipmi-helper start (code=exited, status=0/SUCCESS)

Main PID: 61019 (code=exited, status=0/SUCCESS)
Dec 19 14:37:10 bright91 systemd[1]: Starting IPMI Driver...
Dec 19 14:37:10 bright91 systemd[1]: Started IPMI Driver.

Sometimes the issue may be an incorrect networking specification for the BMC interfaces. MAC and
IP details that have been set for the BMC interface can be viewed with the lan print option to ipmitool
if the service has been started:

Example

[root@bright91 ~]# module load ipmitool
[root@bright91 ~]# ipmitool lan print
Set in Progress : Set Complete
Auth Type Support : MD5 PASSWORD
Auth Type Enable : Callback : MD5 PASSWORD

: User : MD5 PASSWORD
: Operator : MD5 PASSWORD
: Admin : MD5 PASSWORD
: OEM :

IP Address Source : Static Address
IP Address : 93.184.216.34
Subnet Mask : 255.255.255.0
MAC Address : aa:bb:01:02:cd:ef
SNMP Community String : public
IP Header : TTL=0x00 Flags=0x00 Precedence=0x00 TOS=0x00
BMC ARP Control : ARP Responses Enabled, Gratuitous ARP Disabled
Gratituous ARP Intrvl : 0.0 seconds
Default Gateway IP : 93.184.216.1
Default Gateway MAC : 00:00:00:00:00:00
Backup Gateway IP : 0.0.0.0
Backup Gateway MAC : 00:00:00:00:00:00
802.1q VLAN ID : Disabled
802.1q VLAN Priority : 0
RMCP+ Cipher Suites : 0,1,2,3,4,6,7,8,9,11,12,13,15,16,17,18
Cipher Suite Priv Max : caaaaaaaaaaaaaa

: X=Cipher Suite Unused
: c=CALLBACK
: u=USER
: o=OPERATOR
: a=ADMIN
: O=OEM

During normal operation the metrics (Appendix G) displayed by Bright Cluster Manager are useful.
However, if those are not available for some reason, then the direct output from BMC sensor metrics
may be helpful for troubleshooting:

Example

[root@bright91 ~]# module load ipmitool
[root@bright91 ~]# ipmitool sensor list all

© Bright Computing, Inc.

5.8 Troubleshooting The Node Boot Process 233

ipmitool sensor list
Ambient Temp | 22.000 | degrees C | ok | na | na | na | 38.000 | 41.000 | 45.000
AVG Power | 300.000 | Watts | ok | na | na | na | na | na | na
Fan 1 Tach | 4125.000 | RPM | ok | na | 750.000 | na | na | na | na
...

© Bright Computing, Inc.

6
User Management

Users and groups for the cluster are presented to the administrator in a single system paradigm. That is,
if the administrator manages them with the Bright Cluster Manager, then the changes are automatically
shared across the cluster (the single system).

Bright Cluster Manager runs its own LDAP service to manage users, rather than using unix user and
group files. In other words, users and groups are managed via the centralizing LDAP database server
running on the head node, and not via entries in /etc/passwd or /etc/group files.

Sections 6.1 and 6.2 cover the most basic aspects of how to add, remove and edit users and groups
using Bright Cluster Manager.

Section 6.3 describes how an external LDAP server can be used for authentication services instead of
the one provided by Bright Cluster Manager.

Section 6.4 discusses how users can be assigned only selected capabilities when using Bright View
or cmsh, using profiles with sets of tokens.

6.1 Managing Users And Groups With Bright View
Within Bright View:

• users can be managed via the clickpath Identity Management→Users

• groups can be managed via the clickpath Identity Management→Groups.

For users (figure 6.1) the LDAP entries for regular users are displayed. These entries are editable and
each user can then be managed in further detail.

There is already one user on a newly installed Bright Cluster Manager: cmsupport. This user has no
password set by default, which means (section 6.2.2) no logins to this account are allowed by default.
Bright Cluster Manager uses the user cmsupport to run various diagnostics utilities, so it should not be
removed, and the default contents of its home directory should not be removed.

There are five buttons, Revert, Add, Delete, Save, and Edit available in the window:

1. Add: allows users to be added via a dialog (figure 6.2). These additions can be committed via the
Save button.

© Bright Computing, Inc.

236 User Management

Figure 6.1: Bright View User Management

Figure 6.2: Bright View User Management: Add Dialog

An explanation of the less obvious items in the dialog follows:

• Shadow warning: The number of days, before the password expires, that the user is warned
of the expiry

• Shadow max: The maximum number of days the password is valid

• Shadow min: The minimum number of days required between password changes. A value of

© Bright Computing, Inc.

6.2 Managing Users And Groups With cmsh 237

zero means the user may change their password at any time

• Inactive: The number of days of inactivity allowed for the user before the account is blocked.
A value of zero means the user is never blocked

• Profile: The preconfigured capability that the user is assigned. Available settings are:

– admin: Allows the user to run Bright View with the same privileges as user admin
– cloudjob: Allows the user to run cmjob, the cloud job submission utility (section 4.7 of

the User Manual, and section 4.3 of the Cloudbursting Manual)
– portal: Allows the user to access the user portal
– readonly: Allows the user to run Bright View without the ability to modify settings.
– none: (default). Prevents the user from using Bright View

A profile setting only takes effect if the certificate for the user is used. User certificates are
only persistent for a cluster with a permanent license (page 62 of the Installation Manual), so
the administrator should check the license is not a temporary license before attempting to use
this feature. Section 6.4 explains the concepts of capabilities, profiles, certificates, and tokens.

2. Save: saves the as-yet-uncommitted Add or Edit operations. When saving an addition:

• User and group ID numbers are automatically assigned from UID and GID 1000 onwards.

• A home directory is created and a login shell is set. Users with unset passwords cannot log
in.

3. Edit: allows user attributes to be modified via a dialog similar to the Add dialog of figure 6.2.

4. Revert: discards unsaved edits that have been made via the Edit button. The reversion goes back
to the last save.

5. Delete: deletes selected rows of users. By default, their home directories are not deleted.

Group management in Bright View is carried out via the clickpath Identity Management→Groups.
Clickable LDAP object entries for regular groups then show up, similar to the user entries already cov-
ered. Management of these entries is done with the same button functions as for user management.

6.2 Managing Users And Groups With cmsh

User management tasks as carried out by Bright View in section 6.1, can be carried with the same end
results in cmsh too.

A cmsh session is run here in order to cover the functions corresponding to the user management
functions of Bright View of section 6.1. These functions are run from within the user mode of cmsh:

Example

[root@bright91 ~]# cmsh
[bright91]% user
[bright91->user]%

6.2.1 Adding A User
This part of the session corresponds to the functionality of the Add button operation in section 6.1. In user
mode, the process of adding a user maureen to the LDAP directory is started with the add command:

Example

[bright91->user]% add maureen
[bright91->user*[maureen*]]%

© Bright Computing, Inc.

238 User Management

The cmsh utility helpfully drops into the user object just added, and the prompt shows the user name
to reflect this. Going into user object would otherwise be done manually by typing use maureen at the
user mode level.

Asterisks in the prompt are a helpful reminder of a modified state, with each asterisk indicating that
there is an unsaved, modified property at that asterisk’s level.

The modified command displays a list of modified objects that have not yet been committed:

Example

[bright91->user*[maureen*]]% modified
State Type Name
------ ----------------------- ---------------
+ User maureen

This corresponds roughly to what is displayed by the Unsaved entities icon in the top right corner of
the Bright View standard display (figure 13.5).

Running show at this point reveals a user name entry, but empty fields for the other properties of
user maureen. So the account in preparation, while it is modified, is clearly not yet ready for use:

Example

[bright91->user*[maureen*]]% show
Parameter Value
------------------------------ --------------------------
Accounts
Managees
Name maureen
Primary group
Revision
Secondary groups
ID
Common name
Surname
Group ID
Login shell
Home directory
Password < not set >
email
Profile
Write ssh proxy config no
Shadow min 0
Shadow max 999999
Shadow warning 7
Inactive 0
Last change 1970/1/1
Expiration date 2038/1/1
Project manager <submode>
Notes <0B>

6.2.2 Saving The Modified State
This part of the session corresponds to the functionality of the Save button operation in section 6.1.

In section 6.2.1 above, user maureen was added. maureen now exists as a proposed modification, but
has not yet been committed to the LDAP database.

Running the commit command now at the maureen prompt stores the modified state at the user
maureen object level:

© Bright Computing, Inc.

6.2 Managing Users And Groups With cmsh 239

Example

[bright91->user*[maureen*]]% commit
[bright91->user[maureen]]% show
Parameter Value
------------------------------ ---------------------------
Accounts
Managees
Name maureen
Primary group maureen
Revision
Secondary groups
ID 1001
Common name maureen
Surname maureen
Group ID 1001
Login shell /bin/bash
Home directory /home/maureen
Password *********
email
Profile
Write ssh proxy config no
Shadow min 0
Shadow max 999999
Shadow warning 7
Inactive 0
Last change 2021/3/12
Expiration date 2038/1/1
Project manager <submode>
Notes <0B>

If, however, commit were to be run at the user mode level without dropping into the maureen object
level, then instead of just that modified user, all modified users would be committed.

When the commit is done, all the empty fields for the user are automatically filled in with defaults
based the underlying Linux distribution used. Also, as a security precaution, if an empty field (that is, a
“not set”) password entry is committed, then a login to the account is not allowed. So, in the example,
the account for user maureen exists at this stage, but still cannot be logged into until the password is set.
Editing passwords and other properties is covered in section 6.2.3.

The default permissions for file and directories under the home directory of the user are defined by
the umask settings in /etc/login.defs, as would be expected if the administrator were to use the stan-
dard useradd command. Setting a path for the homedirectory parameter for a user sets a default home
directory path. By default the default path is /home/<username> for a user <username>. If homedirectory
is unset, then the default is determined by the HomeRoot directive (Appendix C).

6.2.3 Editing Properties Of Users And Groups
This corresponds roughly to the functionality of the Edit button operation in section 6.1.

In the preceding section 6.2.2, a user account maureen was made, with an unset password as one of
its properties. Logins to accounts with an unset password are refused. The password therefore needs to
be set if the account is to function.

Editing Users With set And clear
The tool used to set user and group properties is the set command. Typing set and then either using
tab to see the possible completions, or following it up with the enter key, suggests several parameters
that can be set, one of which is password:

© Bright Computing, Inc.

/home/

240 User Management

Example

[bright91->user[maureen]]% set

Name:
set - Set specific user property

Usage:
set [user] <parameter> <value> [<value> ...] (type 1)
set [user] <parameter> [file] (type 2)

Arguments:
user

name of the user, omit if current is set

Parameters: (type 1)
commonname Full name (e.g. Donald Duck)
email email
expirationdate Date on which the user login will be disabled
groupid Base group of this user
homedirectory Home directory
id User ID number
inactive Number of days of inactivity allowed for the user
loginshell Login shell
name User login (e.g. donald)
password Password
profile Profile for Authorization
projectmanager Project manager
revision Entity revision
shadowmax Maximum number of days for which the user password remains valid.
shadowmin Minimum number of days required between password changes
shadowwarning Number of days of advance warning given to the user before the

user password expires
surname Surname (e.g. Duck)
writesshproxyconfig . Write ssh proxy config

Parameters: (type 2)
notes Administrator notes

[bright91->user[maureen]]%

Continuing the session from the end of section 6.2.2, the password can be set at the user context
prompt like this:

Example

[bright91->user[maureen]]% set password seteca5tr0n0my
[bright91->user*[maureen*]]% commit
[bright91->user[maureen]]%

At this point, the account maureen is finally ready for use.
The converse of the set command is the clear command, which clears properties:

Example

[bright91->user[maureen]]% clear password; commit

Setting a password in cmsh is also possible by setting the LDAP hash (the encrypted storage format)
that is generated from the password within cmsh. When setting passwords in cmsh, a string starting with
{MD5}, {CRYPT} or {SSHA} is considered to be the hash of the password:

© Bright Computing, Inc.

6.2 Managing Users And Groups With cmsh 241

Example

[root@bright91 ~]# #first create the LDAP salted SHA-1 hash of the password:
[root@bright91 ~]# /cm/local/apps/openldap/sbin/slappasswd -h {SSHA} -s seteca5tr0n0my
[root@bright91 ~]# {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d
[root@bright91 ~]# cmsh
[bright91]% user use maureen
[bright91->user[maureen]]% set password
enter new password: #here and in the next line {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d is typed in
retype new password:
[bright91->user[maureen]]% commit
[bright91->user[maureen]]% !ssh maureen@node001 #now will test the password that generated the hash
Warning: Permanently added 'node001' (ECDSA) to the list of known hosts.
maureen@node001's password: #here seteca5tr0n0my is typed in
Creating ECDSA key for ssh
[maureen@node001 ~]$ #successfully logged in with the password associated with the hash

Managing passwords in cmsh via direct LDAP hash entry is not normally done.

Editing Groups With append And removefrom
While the preceding commands set and clear also work with groups, there are two other commands
available which suit the special nature of groups. These supplementary commands are append and
removefrom. They are used to add extra users to, and remove extra users from a group.

For example, it may be useful to have a printer group so that several users can share access to a
printer. For the sake of this example (continuing the session from where it was left off in the preceding),
tim and fred are now added to the LDAP directory, along with a group printer:

Example

[bright91->user[maureen]]% add tim; add fred
[bright91->user*[fred*]]% exit; group; add printer
[bright91->group*[printer*]]% commit
[bright91->group[printer]]% exit; exit; user
[bright91->user*]%

The context switch that takes place in the preceding session should be noted: The context of user
maureen was eventually replaced by the context of group printer. As a result, the group printer is
committed, but the users tim and fred are not yet committed, which is indicated by the asterisk at the
user mode level.

Continuing onwards, to add users to a group the append command is used. A list of users maureen,
tim and fred can be added to the group printer like this:

Example

[bright91->user*]% commit
Successfully committed 2 Users
[bright91->user]% group use printer
[bright91->group[printer]]% append members maureen tim fred; commit
[bright91->group[printer]]% show
Parameter Value
------------------------ --------------------------
ID 1002
Revision
Name printer
Members maureen,tim,fred

© Bright Computing, Inc.

242 User Management

To remove users from a group, the removefrom command is used. A list of specific users, for example,
tim and fred, can be removed from a group like this:

[bright91->group[printer]]% removefrom members tim fred; commit
[bright91->group[printer]]% show
Parameter Value
------------------------ --------------------------
ID 1002
Revision
Name printer
Members maureen

The clear command can also be used to clear members—but it also clears all of the extras from the
group:

Example

[bright91->group[printer]]% clear members
[bright91->group*[printer*]]% show
Parameter Value
------------------------ --------------------------
ID 1002
Revision
Name printer
Members

The commit command is intentionally left out at this point in the session in order to illustrate how
reversion is used in the next section.

6.2.4 Reverting To The Unmodified State
This corresponds roughly to the functionality of the Revert button operation in section 6.1.

This section (6.2.4) continues on from the state of the session at the end of section 6.2.3. There, the
state of group printers was cleared so that the extra added members were removed. This state (the
state with no group members showing) was however not yet committed.

The refresh command reverts an uncommitted object back to the last committed state.
This happens at the level of the object it is using. For example, the object that is being handled here is

the properties of the group object printer. Running revert at a higher level prompt—say, in the group
mode level—would revert everything at that level and below. So, in order to affect only the properties
of the group object printer, the refresh command is used at the group object printer level prompt.
It then reverts the properties of group object printer back to their last committed state, and does not
affect other objects:

Example

[bright91->group*[printer*]]% refresh
[bright91->group[printer]]% show
Parameter Value
------------------------ --------------------------
ID 1002
Revision
Name printer
Members maureen

Here, the user maureen reappears because she was stored in the last save. Also, because only the
group object printer has been committed, the asterisk indicates the existence of other uncommitted,
modified objects.

© Bright Computing, Inc.

6.3 Using An External LDAP Server 243

6.2.5 Removing A User
Removing a user using cmsh corresponds roughly to the functionality of the Delete button operation in
section 6.1.

The remove command removes a user or group. The useful “-d|--data” flag added to the end of
the username removes the user’s home directory too. For example, within user mode, the command
“remove user maureen -d; commit” removes user maureen, along with her home directory. Continu-
ing the session at the end of section 6.2.4 from where it was left off, as follows, shows this result:

Example

[bright91->group[printer]]% user use maureen
[bright91->user[maureen]]% remove -d; commit
Successfully removed 1 Users
Successfully committed 0 Users
[bright91->user]% !ls -d /home/*| grep maureen #no maureen left behind
[bright91->user]%

6.3 Using An External LDAP Server
Sometimes, an external LDAP server is used to serve the user database. If, instead of just using the
database for authentication, the user database is also to be managed, then its LDAP schema must match
the Bright Cluster Manager LDAP schema.

For RHEL7, the /etc/nslcd.conf, /etc/openldap/ldap.conf, and the certificate files under /cm/
local/apps/openldap/etc/certs/ should be copied over. Port 636 on ShoreWall running on the head
node should be open for LDAP communication over the external network, if external nodes are using it
on the external network. In addition, the external nodes and the head node must be able to resolve each
other.

By default, Bright Cluster Manager runs an LDAP health check using the cmsupport user on the
LDAP server. The LDAP health check may need to be modified or disabled by the administrator to
prevent spurious health warnings with an external LDAP server:

Modifying Or Disabling The ldap Healthcheck
Modifying the ldap health check: To keep a functional ldap health check with an external LDAP
server, a permanent external LDAP user name, for example ldapcheck, can be added. This user can then
be set as the parameter for Bright Cluster Manager’s ldap health check object that is used to monitor the
LDAP service. Health checks and health check objects are discussed in Chapter 13.

• If user management is not configured to work on CMDaemon for the external LDAP server, then
the user management tool that is used with the external LDAP server should be used by the ad-
ministrator to create the ldapcheck user instead.

• If user management is still being done via CMDaemon, then an example session for configuring
the ldap script object to work with the new external LDAP user is (some prompt text elided):

Example

[root@bright91 ~]# cmsh
[bright91]% user
[bright91->user]% add ldapcheck; commit
[bright91->user[ldapcheck]]% monitoring setup use ldap
[bright91->monitoring->setup[ldap]]% show
Parameter Value
-------------------------------- ---
...

© Bright Computing, Inc.

/etc/nslcd.conf
/etc/openldap/ldap.conf
/cm/local/apps/openldap/etc/certs/
/cm/local/apps/openldap/etc/certs/

244 User Management

Arguments
...
[bright91->monitoring->setup[ldap]]% set arguments "ldapcheck"; commit
[bright91->monitoring->setup[ldap:ldapcheck]]%

Disabling the ldap health check: Instead of modifying the ldap health check to work when using an
external LDAP server, it can be disabled entirely via Bright View or cmsh.

• Bright View: the ldap health check is disabled via the clickpath:

Monitoring→Data Producers→ldap→Edit

• cmsh: the disabled parameter of the ldap health check object is set to yes. The disabled parameter
for the ldap health check can be set as follows:

[root@bright91 ~]# cmsh -c "monitoring setup use ldap; set disabled yes; commit"

Configuring The Cluster To Authenticate Against An External LDAP Server
The cluster can be configured in different ways to authenticate against an external LDAP server.

For smaller clusters, a configuration where LDAP clients on all nodes point directly to the external
server is recommended. An easy way to set this up is as follows:

• On the head node:

– In distributions that are derived from the RHEL 7.x series: the file /etc/ldap.conf does
not exist. The files in which the changes then need to be made are /etc/nslcd.conf and
/etc/openldap/ldap.conf. To implement the changes, the nslcd daemon must then be
restarted, for example with service nslcd restart.

– the updateprovisioners command (section 5.2.4) is run to update any other provisioners.

• Then, the configuration files are updated in the software images that the nodes use. If the nodes
use the default-image, and if the nodes are based on RHEL7 and derivatives, then the files to up-
date are /cm/images/default-image/etc/nslcd.conf and /cm/images/default/etc/openldap/
ldap.conf. After the configuration change has been made, and the nodes have picked up the new
configuration, the regular nodes can then carry out LDAP lookups.

– Nodes can simply be rebooted to pick up the updated configuration, along with the new
software image.

– Alternatively, to avoid a reboot, the imageupdate command (section 5.6.2) can be run to pick
up the new software image from a provisioner.

• The CMDaemon configuration file cmd.conf (Appendix C) has LDAP user management direc-
tives. These may need to be adjusted:

– If another LDAP tool is to be used for external LDAP user management instead of Bright
View or cmsh, then altering cmd.conf is not required, and Bright Cluster Manager’s user
management capabilities do nothing in any case.

– If, however, system users and groups are to be managed via Bright View or cmsh, then CM-
Daemon, too, must refer to the external LDAP server instead of the default LDAP server. This
configuration change is actually rare, because the external LDAP database schema is usually
an existing schema generated outside of Bright Cluster Manager, and so it is very unlikely to
match the Bright Cluster Manager LDAP database schema. To implement the changes:

© Bright Computing, Inc.

/cm/images/default-image/etc/nslcd.conf
/cm/images/default/etc/openldap/ldap.conf
/cm/images/default/etc/openldap/ldap.conf

6.3 Using An External LDAP Server 245

* On the node that is to manage the database, which is normally the head node, the
LDAPHost, LDAPUser, LDAPPass, and LDAPSearchDN directives in cmd.conf are changed
so that they refer to the external LDAP server.

* CMDaemon is restarted to enable the new configurations.

For larger clusters the preceding solution can cause issues due to traffic, latency, security and connec-
tivity fault tolerance. If such occur, a better solution is to replicate the external LDAP server onto the
head node, hence keeping all cluster authentication local, and making the presence of the external LDAP
server unnecessary except for updates. This optimization is described in the next section.

6.3.1 External LDAP Server Replication
This section explains how to set up replication for an external LDAP server to an LDAP server that is
local to the cluster, if improved LDAP services are needed. Section 6.3.2 then explains how this can then
be made to work with a high availability setup.

Typically, the Bright Cluster Manager LDAP server is configured as a replica (consumer) to the ex-
ternal LDAP server (provider), with the consumer refreshing its local database at set timed intervals.
How the configuration is done varies according to the LDAP server used. The description in this section
assumes the provider and consumer both use OpenLDAP.

External LDAP Server Replication: Configuring The Provider
It is advisable to back up any configuration files before editing them.

The provider is assumed to be an external LDAP server, and not necessarily part of the Bright Cluster
Manager cluster. The LDAP TCP ports 389 and 689 may therefore need to be made accessible between
the consumer and the provider by changing firewall settings.
If a provider LDAP server is already configured then the following synchronization directives must be
in the slapd.conf file to allow replication:

index entryCSN eq
index entryUUID eq
overlay syncprov
syncprov-checkpoint <ops> <minutes>
syncprov-sessionlog <size>

The openldap documentation (http://www.openldap.org/doc/) has more on the meanings of these
directives. If the values for <ops>, <minutes>, and <size> are not already set, typical values are:

syncprov-checkpoint 1000 60

and:

syncprov-sessionlog 100

To allow the consumer to read the provider database, the consumer’s access rights need to be config-
ured. In particular, the userPassword attribute must be accessible. LDAP servers are often configured
to prevent unauthorized users reading the userPassword attribute.

Read access to all attributes is available to users with replication privileges. So one way to allow the
consumer to read the provider database is to bind it to replication requests.

Sometimes a user for replication requests already exists on the provider, or the root account is used
for consumer access. If not, a user for replication access must be configured.

A replication user, syncuser with password secret can be added to the provider LDAP with ade-
quate rights using the following syncuser.ldif file:

dn: cn=syncuser,<suffix>
objectClass: person
cn: syncuser
sn: syncuser
userPassword: secret

© Bright Computing, Inc.

http://www.openldap.org/doc/

246 User Management

Here, <suffix> is the suffix set in slapd.conf, which is originally something like dc=example,dc=com.
The syncuser is added using:

ldapadd -x -D "cn=root,<suffix>" -W -f syncuser.ldif

This prompts for the root password configured in slapd.conf.
To verify syncuser is in the LDAP database the output of ldapsearch can be checked:

ldapsearch -x "(sn=syncuser)"

To allow access to the userPassword attribute for syncuser the following lines in slapd.conf are
changed, from:

access to attrs=userPassword
by self write
by anonymous auth
by * none

to:

access to attrs=userPassword
by self write
by dn="cn=syncuser,<suffix>" read
by anonymous auth
by * none

Provider configuration is now complete. The server can be restarted using service slapd restart in
RHEL 7.x.

External LDAP Server Replication: Configuring The Consumer(s)
The consumer is an LDAP server on a Bright Cluster Manager head node. It is configured to replicate
with the provider by adding the following lines to /cm/local/apps/openldap/etc/slapd.conf:

syncrepl rid=2
provider=ldap://external.ldap.server
type=refreshOnly
interval=01:00:00:00
searchbase=<suffix>
scope=sub
schemachecking=off
binddn="cn=syncuser,<suffix>"
bindmethod=simple
credentials=secret

Here:

• The rid=2 value is chosen to avoid conflict with the rid=1 setting used during high availability
configuration (section 6.3.2).

• The provider argument points to the external LDAP server.

• The interval argument (format DD:HH:MM:SS) specifies the time interval before the consumer
refreshes the database from the external LDAP. Here, the database is updated once a day.

• The credentials argument specifies the password chosen for the syncuser on the external LDAP
server.

More on the syncrepl directive can be found in the openldap documentation (http://www.openldap.
org/doc/).

The configuration files must also be edited so that:

© Bright Computing, Inc.

/cm/local/apps/openldap/etc/slapd.conf
http://www.openldap.org/doc/
http://www.openldap.org/doc/

6.3 Using An External LDAP Server 247

• The <suffix> and rootdn settings in slapd.conf both use the correct <suffix> value, as used by the
provider.

• The base value in /etc/ldap.conf uses the correct <suffix> value as used by the provider. This
is set on all Bright Cluster Manager nodes including the head node(s). If the /etc/ldap.conf file
does not exist, then the note on page 244 applies.

Finally, before replication takes place, the consumer database is cleared. This can be done by re-
moving all files, except for the DB_CONFIG file, from under the configured database directory, which by
default is at /var/lib/ldap/.

The consumer is restarted using service ldap restart. This replicates the provider’s LDAP
database, and continues to do so at the specified intervals.

6.3.2 High Availability
No External LDAP Server Case
If the LDAP server is not external—that is, if the Bright Cluster Manager is set to its high availability
configuration, with its LDAP servers running internally, on its own head nodes—then by default LDAP
services are provided from both the active and the passive node. The high-availability setting ensures
that CMDaemon takes care of any changes needed in the slapd.conf file when a head node changes
state from passive to active or vice versa, and also ensures that the active head node propagates its
LDAP database changes to the passive node via a syncprov/syncrepl configuration in slapd.conf.

External LDAP Server With No Replication Locally Case
In the case of an external LDAP server being used, but with no local replication involved, no special
high-availability configuration is required. The LDAP client configuration in /etc/ldap.conf simply
remains the same for both active and passive head nodes, pointing to the external LDAP server. The
file /cm/images/default-image/etc/ldap.conf, in each software image also point to the same external
LDAP server. If the /etc/ldap.conf files referred to here in the head and software images do not exist,
then the note on page 244 applies.

External LDAP Server With Replication Locally Case
In the case of an external LDAP server being used, with the external LDAP provider being replicated to
the high-availability cluster, it is generally more efficient for the passive node to have its LDAP database
propagated and updated only from the active node to the passive node, and not updated from the
external LDAP server.

The configuration should therefore be:

• an active head node that updates its consumer LDAP database from the external provider LDAP
server

• a passive head node that updates its LDAP database from the active head node’s LDAP database

Although the final configuration is the same, the sequence in which LDAP replication configuration
and high availability configuration are done has implications on what configuration files need to be
adjusted.

1. For LDAP replication configuration done after high availability configuration, adjusting the new
suffix in /cm/local/apps/openldap/etc/slapd.conf and in /etc/ldap.conf on the passive node
to the local cluster suffix suffices as a configuration. If the ldap.conf file does not exist, then the
note on page 244 applies.

2. For high availability configuration done after LDAP replication configuration, the initial LDAP
configurations and database are propagated to the passive node. To set replication to the passive
node from the active node, and not to the passive node from an external server, the provider option

© Bright Computing, Inc.

/var/lib/ldap/
/cm/images/default-image/etc/ldap.conf
/cm/local/apps/openldap/etc/slapd.conf

248 User Management

in the syncrepl directive on the passive node must be changed to point to the active node, and the
suffix in /cm/local/apps/openldap/etc/slapd.conf on the passive node must be set identical to
the head node.

The high availability replication event occurs once only for configuration and database files in Bright
Cluster Manager’s high availability system. Configuration changes made on the passive node after the
event are therefore persistent.

6.4 Tokens And Profiles
Tokens can be assigned by the administrator to users so that users can carry out some of the operations
that the administrator do with Bright View or cmsh. Every cluster management operation requires that
each user, including the administrator, has the relevant tokens in their profile for the operation.

The tokens for a user are grouped into a profile, and such a profile is typically given a name
by the administrator according to the assigned capabilities. For example the profile might be called
readmonitoringonly if it allows the user to read the monitoring data only, or it may be called
powerhandler if the user is only allowed to carry out power operations. Each profile thus consists
of a set of tokens, typically relevant to the name of the profile, and is typically assigned to several users.

The profile is stored as part of the authentication certificate (section 2.3) which is generated for run-
ning authentication operations to the cluster manager for the certificate owner.

Profiles are handled with the profiles mode of cmsh, or from the Profiles window, accessible via
a clickpath of Identity Management→Profiles

The following preconfigured profiles are available from cmsh:

Profile name Default Tasks Allowed

admin all tasks

cloudjob cloud job submission

cmhealth health-related prejob tasks

cmpam Bright Cluster Manager PAM tasks

litenode CMDaemon Lite (section 2.6.7) tasks

monitoringpush pushing raw monitoring data to CMDaemon via a JSON POST
(page 381 of the Developer Manual)

node node-related

portal user portal viewing

power device power

readonly view-only

The available preconfigured profiles in cmsh can be seen by running the list command in profile
mode. Another way to see them is by using tab-completion prompting, as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% profile
[bright91->profile]% show <TAB> <TAB>
admin cloudjob cmhealth cmpam litenode monitoringpush node portal power readonly

The tokens, and other properties of a particular profile can be seen within profile mode as follows:

Example

© Bright Computing, Inc.

/cm/local/apps/openldap/etc/slapd.conf

6.4 Tokens And Profiles 249

[bright91->profile]% show readonly
Parameter Value
------------ --
Name readonly
Non user no
Revision
Services CMDevice CMNet CMPart CMMon CMJob CMAuth CMServ CMUser CMSession CMMain CMGui CMP+
Tokens GET_DEVICE_TOKEN GET_CATEGORY_TOKEN GET_NODEGROUP_TOKEN POWER_STATUS_TOKEN GET_DE+

For screens that are not wide enough to view the parameter values, the values can also be listed:

Example

[bright91->profile]% get readonly tokens
GET_DEVICE_TOKEN
GET_CATEGORY_TOKEN
GET_NODEGROUP_TOKEN
...

A profile can be set with cmsh for a user within user mode as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% user use conner
[bright91->user[conner]]% get profile

[bright91->user[conner]]% set profile readonly; commit

6.4.1 Modifying Profiles
A profile can be modified by adding or removing appropriate tokens to it. For example, the readonly
group by default has access to the burn status and burn log results. Removing the appropriate tokens
stops users in that group from seeing these results.

In cmsh the removal can be done from within profile mode as follows:

[root@bright91 ~]# cmsh
[bright91]% profile use readonly
[...[readonly]]% removefrom tokens burn_status_token get_burn_log_token
[bright91]%->profile*[readonly*]]% commit

Tab-completion after typing in removefrom tokens helps in filling in the tokens that can be removed.
In Bright View (figure 6.3), the same removal action can be carried out via the clickpath:

Identity Management→Profiles→readonly→Edit→Tokens
In the resulting display it is convenient to maximize the window. Also convenient is running a search
for burn, which will show the relevant tokens, BURN_STATUS_TOKEN and GET_BURN_LOG_TOKEN, as well
as the subgroup they are in device. The ticks can be removed from the BURN_STATUS_TOKEN and
GET_BURN_LOG_TOKEN checkboxes, and the changed settings can then be saved.

6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By Bright Cluster
Manager’s Internal LDAP

Custom profiles can be created to include a custom collection of capabilities in cmsh and Bright View.
Cloning of profiles is also possible from cmsh.

A certificate file, with an associated expiry date, can be created based on a profile. The time of expiry
for a certificate cannot be extended after creation. An entirely new certificate is required after expiry of
the old one.

© Bright Computing, Inc.

250 User Management

Figure 6.3: Bright View Profile Token Management

The creation of custom certificates using cmsh (page 252) or Bright View (page 252) is described
later on. After creating such a certificate, the openssl utility can be used to examine its structure and
properties. In the following example most of the output has been elided in order to highlight the expiry
date (30 days from the time of generation), the common name (democert), the key size (2048), profile
properties (readonly), and system login name (peter), for such a certificate:

[root@bright91]# openssl x509 -in peterfile.pem -text -noout Certificate:
Data:

...
Not After : Sep 21 13:18:27 2014 GMT

Subject: ... CN=democert
Public-Key: (2048 bit)

...
X509v3 extensions:

1.3.6.1.4.4324.1:
..readonly

1.3.6.1.4.4324.2:
..peter

[root@bright91]#

However, using the openssl utility for managing certificates is rather inconvenient. Bright Cluster
Manager provides more convenient ways to do so, as described next.

Listing Certificates
All certificates that have been generated by the cluster are noted by CMDaemon.

Listing certificates with cmsh: Within the cert mode of cmsh, the listcertificates command lists
all cluster certificates and their properties:

[root@bright91 ~]# cmsh -c "cert; listcertificates"
Serial num Days left Profile Country Name Revoked
---------- ---------- -------- -------- ----------------- --------
1 36451 admin US Administrator Yes
10 9 readonly ef democert Yes
11 36496 node NL 52-54-00-de-e3-6b No

© Bright Computing, Inc.

6.4 Tokens And Profiles 251

12 36496 node NL 52-54-00-44-fb-85 No
13 36496 admin UK otheradmin No
...

Listing certificates with Bright View: The Bright View equivalent for listing certificates is via the click-
path Identity Management→Certificates (figure 6.4):

Figure 6.4: Bright View Certificates List Window

In the certificates list, node certificates that are generated by the node-installer (section 5.4.1) for each
node for CMDaemon use are listed.

Custom certificates are also listed in the certificate lists.

Creating A Custom Certificate
Unlike node certificates, which are normally system-generated, custom certificates are typically gener-
ated by a user with the appropriate tokens in their profile, such as root with the admin profile. Such a
user can create a certificate containing a specified profile, as discussed in the next section, by using:

• cmsh: with the createcertificate operation from within cert mode

• Bright View: via the clickpath Identity Management→Users→Edit→Profile to set the Profile.

Creating a new certificate for cmsh users: Creating a new certificate in cmsh is done from cert mode
using the createcertificate command, which has the following help text:

[bright91->cert]% help createcertificate
Name:

createcertificate - Create a new certificate

Usage:
createcertificate <key-length> <common-name> <organization> <organizational-unit> <loca\

lity> <state> <country> <profile> <sys-login> <days> <key-file> <cert-file>

Arguments:
key-file

Path to key file that will be generated

cert-file
Path to pem file that will be generated

© Bright Computing, Inc.

252 User Management

Accordingly, as an example, a certificate file with a read-only profile set to expire in 30 days, to be
run with the privileges of user peter, can be created with:

Example

createcertificate 2048 democert a b c d ef readonly peter 30 /home/peter\
/peterfile.key /home/peter/peterfile.pem

Fri Aug 22 06:18:27 2014 [notice] bright91: New certificate request with ID: 1
[bright91->cert]% createcertificate 2048 democert a b c d ef readonly pe\
ter 30 /home/peter/peterfile.key /home/peter/peterfile.pem
Certificate key written to file: /home/peter/peterfile.key
Certificate pem written to file: /home/peter/peterfile.pem

The certificates are owned by the owner generating them, so they are root-owned if root was running
cmsh. This means that user peter cannot use them until their ownership is changed to user peter:

Example

[root@bright91 ~]# cd /home/peter
[root@bright91 peter]# ls -l peterfile.*
-rw------- 1 root root 1704 Aug 22 06:18 peterfile.key
-rw------- 1 root root 1107 Aug 22 06:18 peterfile.pem
[root@bright91 peter]# chown peter:peter peterfile.*

Other users must have the certificate ownership changed to their own user names. Users associated
with such a certificate can then carry out cmdaemon tasks that have a read-only profile, and CMDaemon
sees such users as being user peter. Two ways of being associated with the certificate are:

1. The paths to the pem and key files can be set with the -i and -k options respectively of cmsh. For
example, in the home directory of peter, for the files generated in the preceding session, cmsh can
be launched with these keys with:

[peter@bright91 ~] cmsh -i peterfile.pem -k peterfile.key
[bright91]% quit

2. If the -i and -k options are not used, then cmsh searches for default keys. The default keys for
cmsh are under these paths under $HOME, in the following order of priority:

(a) .cm/admin.{pem,key}

(b) .cm/cert.{pem,key}

Creating a custom certificate for Bright View users: As in the case of cmsh, a Bright View user having
a sufficiently privileged tokens profile, such as the admin profile, can create a certificate and key file for
themselves or another user. This is done by associating a value for the Profile from the Add or Edit
dialog for the user (figure 6.2).

The certificate files, cert.pem and cert.key, are then automatically placed in the following paths
and names, under $HOME for the user:

• .cm/admin.{pem,key}

• .cm/cert.{pem,key}

Users that authenticate with their user name and password when running Bright View use this cer-
tificate for their Bright View clients, and are then restricted to the set of tasks allowed by their associated
profile.

© Bright Computing, Inc.

6.4 Tokens And Profiles 253

6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External
LDAP

The use of an external LDAP server instead of Bright Cluster Manager’s for user management is de-
scribed in section 6.3. Generating a certificate for an external LDAP user must be done explicitly in
Bright Cluster Manager. This can be carried out with the external-user-cert script, which is provided
with the cluster-tools package. The package is installed by default with Bright Cluster Manager.

Running the external-user-cert script embeds the user and profile in the certificate during certifi-
cate generation. The script has the following usage:

external-user-cert -h
Usage: for a single profile: external-user-cert <profile> <user> [<user> ...]

--home=<home-prefix> [-g <group>] [-o]
for several profiles: external-user-cert --home=<home-prefix>

--file=<inputfile> [-g <group>]
where lines of <inputfile> have the syntax
<profile> <user> [<user> ...]

Options:
-h, --help show this help message and exit
--file=FILE input FILE
--home=HOME_PATH path for home directories, default /home/
-g GROUP name of primary group, e.g. wheel
-o overwrite existing certificates

Here,

• <profile> should be a valid profile

• <user> should be an existing user

• <home-prefix> is usually /home

• <group> is a group, such as wheel

• <inputfile> is a file with each line having the syntax

<profile> <user> [<user> ...]

One or more external LDAP user certificates can be created by the script. The certificate files generated
are cert.pem and cert.key. They are stored in the home directory of the user.

For example, a user spongebob that is managed on the external server, can have a read-only certificate
generated with:

external-user-cert readonly spongebob --home=/home

If the home directory of spongebob is /home/spongebob, then the key files that are generated are
/home/spongebob/.cm/cert.key and /home/spongebob/.cm/cert.pem.

Assuming no other keys are used by cmsh, a cmsh session that runs as user spongebob with readonly
privileges can now be launched:

$ module load cmsh
$ cmsh

If other keys do exist, then they may be used according to the logic explained in item 2 on page 252.

© Bright Computing, Inc.

254 User Management

6.4.4 Logging The Actions Of CMDaemon Users
The following directives allow control over the logging of CMDaemon user actions.

• CMDaemonAudit: Enables logging

• CMDaemonAuditorFile: Sets log location

• DisableAuditorForProfiles: Disables logging for particular profiles

Details on these directives are given in Appendix C.

© Bright Computing, Inc.

7
Workload Management

For clusters that have many users and a significant load, a workload manager (WLM) system allows a
more efficient use of resources to be enforced for all users than if there were no such system in place. This
is because without resource management, there is a tendency for each individual user to over-exploit
common resources.

When a WLM is used, the end user can submit a job to it. This can be done interactively, but it is
typically done as a non-interactive batch job.

The WLM assigns resources to the job, and checks the current availability as well as checking its
estimates of the future availability of the cluster resources that the job is asking for. The WLM then
schedules and executes the job based on the assignment criteria that the administrator has set for the
WLM system. After the job has finished executing, the job output is delivered back to the user.

Among the hardware resources that can be used for a job are GPUs. Installing CUDA software to
enable the use of GPUs is described in section 7.4 of the Installation Manual. Configuring GPU settings
for Bright Cluster Manager is described in section 3.13.2 of the Administration Manual. Configuring
GPU settings for an individual WLM is described in the section on getting that particular WLM up and
running.

The details of job submission from a user’s perspective are covered in the User Manual.
Sections 7.1–7.5 cover the installation procedure to get a WLM up and running.
Sections 7.6 –7.7 describe how Bright View and cmsh are used to view and handle jobs, queues and

node drainage.
Section 7.8 shows examples of WLM assignments handled by Bright Cluster Manager.
Section 7.9 describes the power saving features of WLMs.
Section 7.10 describes cgroups, a resources limiter, mostly in the context of WLMs.
Section 7.11 describes WLM customizations for settings other than the common settings covered by

Bright Cluster Manager.

7.1 Workload Managers Choices
Some WLM packages are installed by default, others require registration from the distributor before
installation.

During cluster installation, a WLM can be chosen (figure 3.10 of the Installation Manual) for setting
up. The choices are:

• PBS: An HPC job scheduler, originally developed at NASA, now developed by Altair. This comes
in 3 variants:

1. PBS Pro: A commercial variant, with commercial support from Altair.

2. PBS Pro CE, renamed to OpenPBS (for version 20 and onward): A free (AGPL) variant. This
is community-supported, and the default workload manager provided with Bright Cluster
Manager.

© Bright Computing, Inc.

256 Workload Management

3. OpenPBS: renamed from PBS Pro CE for version 20 and higher.

• Slurm v19 and v20: A free (GPL) job scheduler, with commercial support.

• Univa Grid Engine (UGE), v8.6.0: This is a further development of the older Sun Grid Engine.
UGE is proprietary commercial software, developed by Univa. Bright Cluster Manager 9.1 sup-
ports integration with UGE version 8.6.

• LSF v10.1: IBM Spectrum LSF (Load Sharing Facility) version 10.1, is a further development of
what used to be IBM Platform LSF. It is now a part of the IBM Spectrum LSF Suite v10.2.0.9. The
cluster manager no longer supports deployment of IBM Spectrum LSF suite. LSF Standard Edition
remains the supported option.

• None: For clusters that need no HPC job-scheduling.

The WLMs in the preceding list can also be chosen and set up later using the cm-wlm-setup tool
(section 7.3).

After installation, if there are no major changes in the WLM for updated versions of the workload
managers, then

• WLMs that are packaged with Bright Cluster Manager (Slurm, PBS) can have their packages up-
dated using standard package update commands (yum update and similar). The installation and
configuration of the WLM from the updated packages is carried out as described later on in this
chapter.

• WLMs that are installed by picking up software from the vendor (UGE, LSF) can be updated by
following vendor guidelines. For UGE the installation is carried out as outlined in section 7.5.2.

7.2 Forcing Jobs To Run In A Workload Management System
Another preliminary step is to consider forcing users to run jobs only within the WLM system. Having
jobs run via a WLM is normally a best practice.

For convenience, the Bright Cluster Manager defaults to allowing users to log in via ssh to a node,
using the authorized keys files stored in each users directory in /home (section 2.3.2). This allows users to
run their processes without restriction, that is, outside the WLM system. For clusters with a significant
load this policy results in a sub-optimal use of resources, since such unplanned-for jobs disturb any
already-running jobs.

Disallowing user logins to nodes, so that users have to run their jobs through the WLM system,
means that jobs are then distributed to the nodes only according to the planning of the WLM. If planning
is based on sensible assignment criteria, then resources use is optimized—which is the entire aim of a
WLM in the first place.

7.2.1 Disallowing User Logins To Regular Nodes Via cmsh
The usernodelogin setting of cmsh restricts direct user logins from outside the WLM, and is thus one
way of preventing the user from using node resources in an unaccountable manner. The usernodelogin
setting is applicable to node categories only, rather than to individual nodes.

In cmsh the attribute of usernodelogin is set from within category mode:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% set usernodelogin onlywhenjob
[bright91->category*[default*]]% commit

The attributes for usernodelogin are:

© Bright Computing, Inc.

7.2 Forcing Jobs To Run In A Workload Management System 257

• always (the default): This allows all users to ssh directly into a node at any time.

• never: This allows no user other than root to directly ssh into the node.

• onlywhenjob: This allows the user to ssh directly into the node when a job is running on it. It
typically also prevents other users from doing a direct ssh into the same node during the job run,
since typically the WLM is set up so that only one job runs per node. However, an ssh session that
is already running is not automatically terminated after the job is done.

– Some cluster administrators may wish to allow some special user accounts to override the
onlywhenjob setting, for example for diagnostic purposes. Before giving the details of how
to override the setting, some background explanation is probably useful:
The onlywhenjob setting works with the PAM system, and adds the following line to /etc/
pam.d/sshd on the regular nodes:

account required pam_bright.so

Nodes with the onlywhenjob restriction can be configured to allow a particular set of users
to access them, despite the restriction, by whitelisting them in the PAM system, as follows:
Within the software image <node image> used by the node, that is under /cm/images/<node
image>, the administrator can add the set of user accounts to the file etc/security/pam_
bright.d/pam_whitelist.conf. This file is installed in the software image with a chroot
installation (section 12.4) of the cm-libpam package.
Other adjustments to PAM configuration, such as the number of attempted logins and the
associated wait time per login, can be carried by editing the /etc/security/pam_bright.d/
cm-check-alloc.conf file.
The image can then be updated to implement the whitelist, by running the imageupdate
command in cmsh (section 5.6.2), or by clicking the Update node option in Bright View (sec-
tion 5.6.3).

7.2.2 Disallowing User Logins To Regular Nodes Via Bright View
In Bright View, user node login access is set via a category setting, for example for the default category
via the clickpath in figure 7.1:
Grouping→Categories[default]↓Edit→Settings→User node login

© Bright Computing, Inc.

/etc/pam.d/sshd
/etc/pam.d/sshd
etc/security/pam_bright.d/pam_whitelist.conf
etc/security/pam_bright.d/pam_whitelist.conf
/etc/security/pam_bright.d/cm-check-alloc.conf
/etc/security/pam_bright.d/cm-check-alloc.conf

258 Workload Management

Figure 7.1: Disallowing User Logins To Nodes Via Bright View

7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes
Besides disabling user logins, administrators may choose to disable interactive jobs in the WLM as an
additional measure to prevent users from starting jobs on other nodes.

Administrators may also choose to set up scripts that run after job execution. Such scripts can termi-
nate user processes outside the WLM, as part of a policy, or for general administrative hygiene. These
are Epilog scripts and are part of the WLM.

The WLM documentation has more on configuring these options.

7.2.4 High Availability By Workload Managers
Bright Cluster Manager uses the existing built-in high availability (HA) functionalities of workload man-
agers as much as possible. A double server HA configuration with the existing built-in HA functionality
can be carried out using the cm-wlm-setup utility (section 7.3), or using the Bright View HA wizard (sec-
tion 7.4.1). The built-in functionality makes use of the primary WLM server and secondary WLM server,
which are placed on separate nodes.

The HA configuration aspect (section 18.1.3) in this case means that a WLM server role is assigned
to both the WLM primary and the WLM secondary nodes. These primary WLM and secondary WLM
servers can then:

• both be on head nodes,

• both be on regular (compute) nodes

It is not possible to configure a mixed setup—that is with one head node and one regular node—for the
WLM servers on an HA setup.

If the head nodes are configured with the WLM server roles, then in the cluster entity configuration
the primary server value is empty. This is because Bright Cluster Manager always configures the
primary WLM server on the primary cluster head node.

If two regular nodes are configured with the WLM server roles instead, then in the cluster entity
configuration the primary server parameter is set to one of the compute nodes.

The cluster primary head node and the WLM primary server should not be confused. In particular,
the active cluster head node and active workload manager server are not necessarily the same for the
case of the Slurm, PBS Pro, or LSF workload managers. For these, if the passive cluster head node
becomes an active cluster head node without a crash, then this does not trigger a passive WLM server

© Bright Computing, Inc.

7.3 Installation Of Workload Managers 259

on the newly active head node to also become an active WLM server. Thus, the WLM server can be
active on a passive head node, and vice versa, because the WLM primary server is independent of the
cluster primary head node.

7.3 Installation Of Workload Managers
Normally the administrator selects a WLM to be used during Bright Cluster Manager installation (fig-
ure 3.10 of the Installation Manual). A WLM may however also be added and configured after Bright
Cluster Manager has been installed, using cm-wlm-setup, or the Bright View WLM wizard.

With most other objects, the Bright Cluster Manager front ends—cmsh and Bright View—can be used
to create a new object from scratch, or can clone a new object from another existing object. However, the
front ends cannot do this for a WLM object. An attempt to create or clone a new WLM object via cmsh
or Bright View is prohibited by the front ends, because there are many pitfalls possible in configuration.

A new WLM object, and WLM instance, can therefore only be installed via cm-wlm-setup, the Bright
View WLM wizard, or by selecting a WLM during the initial Bright Cluster Manager installation.

7.3.1 Running cm-wlm-setup In CLI Mode
The recommended way to run the cm-wlm-setup utility is without options or arguments, in which case
an Ncurses dialog starts up. An Ncurses run with cm-wlm-setup is covered in section 7.3.2.

However, the cm-wlm-setup utility can alternatively be used in a non-Ncurses, command-line, mode,
with options and arguments. The utility has the following usage:

[root@bright91 ~]# cm-wlm-setup -h
usage: Workload manager setup cm-wlm-setup [-c <config_file>]

[--setup | --disable]
[--wlm <name>]
[--server-nodes SERVER_NODES]
[--server-primary SERVER_PRIMARY]
[--server-overlay-name SERVER_OVERLAY_NAME]
[--server-overlay-priority SERVER_OVERLAY_PRIORITY]
[--client-categories CLIENT_CATEGORIES]
[--client-nodes CLIENT_NODES]
[--client-overlay-name CLIENT_OVERLAY_NAME]
[--client-overlay-priority CLIENT_OVERLAY_PRIORITY]
[--client-slots <slots>]
[--submit-categories SUBMIT_CATEGORIES]
[--submit-nodes SUBMIT_NODES]
[--submit-overlay-name SUBMIT_OVERLAY_NAME]
[--submit-overlay-priority SUBMIT_OVERLAY_PRIORITY]
[--wlm-cluster-name WLM_CLUSTER_NAME]
[--reboot] [--reset-cgroups]
[--yes-i-really-mean-it]
[--archives-location <path>]
[--license <license>] [--purge]
[--accounting-overlay-name ACCOUNTING_OVERLAY_NAME]
[--accounting-overlay-priority ACCOUNTING_OVERLAY_PRIORITY]
[-v] [--no-distro-checks] [--json]
[--output-remote-execution-runner]
[--on-error-action debug,remotedebug,undo,abort]
[--skip-packages]
[--min-reboot-timeout <reboot_timeout_seconds>]
[--dev] [-h]

The help output from running cm-wlm-setup -h continues on beyond the preceding text output,
and presents more options.

© Bright Computing, Inc.

260 Workload Management

These options can be grouped as follows:

Optional Arguments
• --setup: Helps set up a server, enable roles, and create the default queues/partitions

• --disable: Disable WLM services

• -h, --help: Displays the help screen

Common Arguments
• -c <YAML configuration file>: Loads a runtime configuration for plugins, from a YAML configura-

tion file.

Options For Installing Or Managing A WLM
• --wlm <WLM name>: Specifies which WLM is to be set up. Choices for <WLM name> are:

– pbspro-ce

– openpbs

– pbspro

– slurm

– uge

– lsf

• --wlm-cluster-name <WLM cluster name>: Specifies the name for the new WLM cluster that is to be
set up.

• --reboot: Reboot after install

Server Role Settings
• --server-nodes <server nodes>: Sets the server roles of the WLM to the value set for <server nodes>,

which is a comma-separated list of nodes. Default value: HEAD, which is a reserved name for the
head node.

• --server-primary <primary server>: Sets the hostname used for the primary server to <primary
server>. Default name: HEAD.

• -server-overlay-name <server overlay name>: Sets the server role configuration overlay name to
<server overlay name>. Default name: <WLM name>-server, where <WLM name> is the name spec-
ified in the --wlm option.

• -server-overlay-priority <server overlay priority>: Sets the server role configuration overlay pri-
ority to <server overlay priority>. Default value: 500.

Client Role Settings
• --client-categories <client categories>: Sets the client roles of the WLM to the value set for <client

categories nodes>, which is a comma-separated list of node categories. Default value: default.

• --client-nodes <client nodes>: Sets the client roles of the WLM to the value set for <client nodes>,
which is a comma-separated list of nodes. No value set by default.

• -client-overlay-name <client overlay name>: Sets the client role configuration overlay name to
<client overlay name>. Default name: <WLM name>-client, where <WLM name> is the name speci-
fied in the --wlm option.

• -client-overlay-priority <client overlay priority>: Sets the client role configuration overlay prior-
ity to <client overlay priority>. Default value: 500.

• --client-slots <slots>: Sets the number of slots on the client to <slots>.

© Bright Computing, Inc.

7.3 Installation Of Workload Managers 261

Submit Role Settings
• --submit-categories <submit categories>: Sets the submit roles of the WLM to the value set for

<submit categories nodes>, which is a comma-separated list of node categories that are submit nodes.
Default value: default.

• --submit-nodes <submit nodes>: Sets the submit roles of the WLM to the value set for <sumit nodes>,
which is a comma-separated list of submit nodes. No value set by default.

• -submit-overlay-name <submit overlay name>: Sets the submit role configuration overlay name to
<submit overlay name>. Default name: <WLM name>-submit, where <WLM name> is the name
specified in the --wlm option.

• -submit-overlay-priority <submit overlay priority>: Sets the submit role configuration overlay pri-
ority to <submit overlay priority>. Default value: 500.

Disable Options
• --reset-cgroups: Disable joining cgroup controllers with systemd setting JoinControllers

• --yes-i-really-mean-it: Required for additional safety

Workload Manager Specific Options
• --archives-location <path>: Set the directory path for the archive files, only for LSF and UGE.

This parameter is mandatory for LSF installation.

• --purge: Remove the directories on disable, for UGE and LSF.

• --license <path>: Set the path to the PBSPro or LSF license.

• --accounting-overlay-name <accounting overlay name>: Sets the accounting role configuration over-
lay

• -accounting-overlay-priority <accounting overlay priority>: Sets the accounting role configuration
overlay priority to <accounting overlay priority>. Default value: 500.

Advanced Options
• -v, --verbose: This displays a more verbose output. It can be helpful in troubleshooting.

• --no-distro-checks: Disables distribution checks based on ds.json.

• --json: Use json formatting for logs printed to STDOUT.

• --output-remote-execution-runner: Format output for CMDaemon.

• --on-error-action {debug,remotedebug,undo,abort}: Upon encountering a critical error, instead
of asking the user for choice, the setup will do the selected action.

• --skip-packages: Skip the stages which install packages. Requires packages to be already in-
stalled.

• --min-reboot-timeout <timeout>: How long to wait for nodes to finish reboot, in seconds. Mini-
mum value: 300. Default value: 300.

• --dev: Enables additional command line arguments for developers.

For example, if UGE packages are downloaded to /root/ugedl, then a UGE setup could be carried
out with (much output elipsized):

Example

© Bright Computing, Inc.

/root/ugedl

262 Workload Management

[bright91 ~]# cm-wlm-setup -v --setup --wlm uge --archives-location /root/ugedl --client-categories default
I 19-12-05 15:29:46 |
D 19-12-05 15:29:46 | Please wait...
D 19-12-05 15:29:46 | ##
D 19-12-05 15:29:46 | ######################## START ###
D 19-12-05 15:29:46 | ##
D 19-12-05 15:29:46 |
D 19-12-05 15:29:46 | ### Logging Current Runtime environment
...
...
I 19-12-05 15:30:20 | Took: 00:33 min.
I 19-12-05 15:30:20 | Progress: 100/100
I 19-12-05 15:30:20 | ########### Finished execution for 'Workload manager setup', status: completed
I 19-12-05 15:30:20 |
I 19-12-05 15:30:20 | Workload manager setup finished!
I 19-12-05 15:30:20 |
D 19-12-05 15:30:20 |
D 19-12-05 15:30:20 | ######################## END ###
D 19-12-05 15:30:20 |
I 19-12-05 15:30:20 |

A check to see if the UGE instance (WLM cluster) has been created could be:

Example

[bright91 ~]# cmsh -c "wlm; list"
Type Name (key) Server nodes Submit nodes Client nodes
------ --------------------- ------------ ------------------------ ----------------
UGE uge bright91 bright91,node001,node002 node001,node002

The UGE instance can then be removed with:

Example

[bright91 ~]#
cm-wlm-setup -v --disable --wlm uge --purge --yes-i-really-mean-it --wlm-cluster-name=uge

A log file of the setup can be seen at /var/log/cm-wlm-setup.log.

7.3.2 Running cm-wlm-setup In Ncurses Mode
Running cm-wlm-setup with no options and with no arguments brings up an Ncurses screen (figure 7.2).

Figure 7.2: cm-wlm-setup Ncurses initial screen

© Bright Computing, Inc.

/var/log/cm-wlm-setup.log

7.3 Installation Of Workload Managers 263

Express Installation
The Setup (Express) menu option allows the administrator to select the workload manager in the next
screen (figure 7.3), and to install it with a minimal number of configuration steps. If it has already been
installed, but disabled via cm-wlm-setup, then it can also be re-enabled, instead of installed from scratch.

Figure 7.3: cm-wlm-setup Ncurses WLM selection screen

Step By Step Installation
If the Setup (Step By Step) menu option is chosen instead of the express option, then this also allows
the administrator to select the workload manager in figure 7.3. But after selection, there are a number
of extra configuration steps that can be carried out which are not available in the express configuration.
Guidance is given for these extra steps, and sensible default values are already filled in for many options.

GPU Configuration Screens
Some of the extra steps cover GPU configuration screens. Those steps are discussed on page 7 of the
Installation Manual.

Disabling An Installation
The Disable option in figure 7.2 allows the administrator to disable an existing instance.

Summary Screen
The screen that appears after the configuration steps are completed, is the Summary screen (figure 7.4).
This screen allows the configuration to be viewed, saved, or saved and deployed.

Figure 7.4: cm-wlm-setup Ncurses summary screen

If deployment is carried out, then several screens of output are displayed. After the deployment is
completed, the log file can be viewed at /var/log/cm-wlm-setup.log.

© Bright Computing, Inc.

/var/log/cm-wlm-setup.log

264 Workload Management

7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Containerized
Jobs

What Is Enroot?
As the README file for Enroot says, Enroot is an open source tool to turn container images into un-
privileged sandboxes. Enroot can be thought of as an enhanced unprivileged chroot. It uses user and
mount namespaces, as well as other modern kernel features, in order to create such sandboxes. It
uses the same underlying technologies as containers, but removes much of the isolation that they in-
herently provide, while preserving filesystem separation. Further details on Enroot can be found at
https://github.com/NVIDIA/enroot.

Enroot can be used with different workload managers, but for now only Slurm has been tightly
integrated.

What Is Pyxis?
Pyxis (https://github.com/NVIDIA/pyxis) is a SPANK plugin for Slurm. SPANK (Slurm Plug-in ar-
chitecture for Node and job Kontrol, man(8) spank) is a generic interface for job launch code control in
Slurm. The Pyxis plugin requires the Enroot utility, and allows the user’s jobs to be executed seamlessly
over Enroot in unprivileged containers. The plugin enables the Slurm submission utilities to provide
container-related command line options.

How Are Enroot And Pyxis Set Up In The Cluster Manager?
Pyxis and Enroot can be set up by the administrator by choosing the appropriate options when Slurm
is set up. In order to choose the appropriate options, cm-wlm-setup must be run in step by step mode
(page 263).

This eventually presents a screen where the Pyxis setup can be configured:

Figure 7.5: cm-wlm-setup Pyxis setup screen

The Pyxis screen is available for RHEL8-based systems and Ubuntu 20 and beyond. Older systems
are not supported.

If yes is selected in the Pyxis setup screen then cm-wlm-setup installs the enroot and enroot+caps
packages from https://github.com/NVIDIA/enroot/releases into the software images where the
Slurm client role is to be assigned. It also installs them directly on the head node if the head node was
selected to run jobs. Pyxis sources are downloaded from GitHub, compiled with the installed Slurm,
and installed in the appropriate Slurm directory.

When Pyxis is set up, cm-wlm-setup also prepares the following configuration files for the compute
nodes:

• /etc/enroot/enroot.conf: This is a symlink to /cm/shared/apps/slurm/var/etc/enroot.conf.
The configuration file provides reasonable default settings that allows Enroot to be used by many
users. Important settings in the file are:

– ENROOT_RUNTIME_PATH: working directory for enroot, created per user. Default value: /run/
enroot/runtime/$(id -u)

© Bright Computing, Inc.

https://github.com/NVIDIA/enroot/blob/master/README.md
https://github.com/NVIDIA/enroot
https://github.com/NVIDIA/pyxis
https://github.com/NVIDIA/enroot/releases
/etc/enroot/enroot.conf
/cm/shared/apps/slurm/var/etc/enroot.conf
/run/enroot/runtime/
/run/enroot/runtime/

7.3 Installation Of Workload Managers 265

– ENROOT_CACHE_PATH: directory where container layers are stored. Default value: /run/enroot/
cache/$(id -u)

– ENROOT_DATA_PATH: directory where the filesystems of running containers are stored. Default
value: /run/enroot/data/$(id -u)

– ENROOT_SQUASH_OPTIONS: options passed to mksquashfs to produce container images. De-
fault value: -noI -noD -noF -noX -no-duplicates

– ENROOT_MOUNT_HOME: mount the current user’s home directory by default. Default value: yes.

The administrator can change the symlink, or replace the file with a customized enroot.conf, if
other values are preferred.

• /etc/sysctl.d/80-enroot.conf: symlink to /cm/shared/apps/slurm/var/etc/enroot-sysctl.
conf. The file tunes sysctl parameters for Enroot.

• /cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh: symlink to /cm/shared/apps/
slurm/var/cm/prolog-enroot.sh. This is the slurmd prolog that creates appropriate directories,
with appropriate user permissions, that are used by Enroot.

• /cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh: symlink to /cm/shared/apps/
slurm/var/cm/epilog-enroot.sh. Cleans the user directories used by Enroot.

When cm-wlm-setup finishes its Pyxis configuration run, then there is no need for the nodes to be
rebooted. The plugin works immediately.

The new Slurm submission command option names start with either --container or --no-container.
The full list of options can be displayed with the --help option. For example:

Example

[root@bright91 ~]$ srun --help | grep container
--container Path to OCI container bundle
--container-image=[USER@][REGISTRY#]IMAGE[:TAG]|PATH

[pyxis] the image to use for the container
--container-mounts=SRC:DST[:FLAGS][,SRC:DST...]

[pyxis] bind mount[s] inside the container. Mount
--container-workdir=PATH

[pyxis] working directory inside the container
--container-name=NAME [pyxis] name to use for saving and loading the

container on the host. Unnamed containers are
containers are not. If a container with this name
already exists, the existing container is used and

--container-save=PATH [pyxis] Save the container state to a squashfs
--container-mount-home [pyxis] bind mount the user's home directory.
--no-container-mount-home
--container-remap-root [pyxis] ask to be remapped to root inside the

container. Does not grant elevated system
--no-container-remap-root

[pyxis] do not remap to root inside the container
--container-entrypoint [pyxis] execute the entrypoint from the container
--no-container-entrypoint

container image
--container-writable [pyxis] make the container filesystem writable
--container-readonly [pyxis] make the container filesystem read-only

© Bright Computing, Inc.

/run/enroot/cache/
/run/enroot/cache/
/run/enroot/data/
/etc/sysctl.d/80-enroot.conf
/cm/shared/apps/slurm/var/etc/enroot-sysctl.conf
/cm/shared/apps/slurm/var/etc/enroot-sysctl.conf
/cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh
/cm/shared/apps/slurm/var/cm/prolog-enroot.sh
/cm/shared/apps/slurm/var/cm/prolog-enroot.sh
/cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh
/cm/shared/apps/slurm/var/cm/epilog-enroot.sh
/cm/shared/apps/slurm/var/cm/epilog-enroot.sh

266 Workload Management

Simple installation validation: The simplest way to validate the Pyxis/Enroot setup after Slurm setup
is to try out an srun command:

Example

[user@bright91 ~]$ module load slurm
[user@bright91 ~]$ srun --container-image=ubuntu grep PRETTY /etc/os-release
pyxis: importing docker image: ubuntu
PRETTY_NAME="Ubuntu 20.04.3 LTS"

A more thorough installation validation: In order to perform a more thorough test of Pyxis/Enroot,
an NCCL-based test can be used. NCCL is the NVIDIA Collective Communications Library (https:
//docs.nvidia.com/deeplearning/nccl), which is a library of multi-GPU collective communication
primitives. The test can be found at https://github.com/NVIDIA/nccl-tests. A prebuilt container
image, with the NCCL test already installed, can be started as follows:

Example

[user@bright91 ~]$ module load slurm
[user@bright91 ~]$ srun --export="NCCL_DEBUG=INFO,NCCL_IB_DISABLE=1,PMIX_MCA_gds=hash" -N 2 --ntasks-per-node=1 \
--gpus-per-task=1 --mpi=pmix_v3 --container-image=deepops/mpi-nccl-test /nccl_tests/build/all_reduce_perf -b \
1M -e 4G -f 2 -g 1

pyxis: imported docker image: deepops/mpi-nccl-test
pyxis: imported docker image: deepops/mpi-nccl-test
nThread 1 nGpus 1 minBytes 1048576 maxBytes 4294967296 step: 2(factor) warmup iters: 5 iters: 20 validation: 1
#
Using devices
Rank 0 Pid 175945 on node001 device 0 [0x00] Tesla V100-SXM3-32GB
Rank 1 Pid 180379 on node002 device 0 [0x00] Tesla V100-SXM3-32GB
node001:175945:175945 [0] NCCL INFO Bootstrap : Using ens3:10.141.0.5<0>
node001:175945:175945 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
node001:175945:175945 [0] NCCL INFO NCCL_IB_DISABLE set by environment to 1.
node001:175945:175945 [0] NCCL INFO NET/Socket : Using [0]ens3:10.141.0.5<0>
node001:175945:175945 [0] NCCL INFO Using network Socket
NCCL version 2.11.4+cuda11.6
node002:180379:180379 [0] NCCL INFO Bootstrap : Using ens3:10.141.0.6<0>
node002:180379:180379 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
node002:180379:180379 [0] NCCL INFO NCCL_IB_DISABLE set by environment to 1.
node002:180379:180379 [0] NCCL INFO NET/Socket : Using [0]ens3:10.141.0.6<0>
node002:180379:180379 [0] NCCL INFO Using network Socket
node002:180379:182573 [0] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1
node001:175945:177561 [0] NCCL INFO Channel 00/02 : 0 1
node001:175945:177561 [0] NCCL INFO Channel 01/02 : 0 1
node001:175945:177561 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1
node001:175945:177561 [0] NCCL INFO Channel 00 : 1[60] -> 0[60] [receive] via NET/Socket/0
node002:180379:182573 [0] NCCL INFO Channel 00 : 0[60] -> 1[60] [receive] via NET/Socket/0
node001:175945:177561 [0] NCCL INFO Channel 01 : 1[60] -> 0[60] [receive] via NET/Socket/0
node002:180379:182573 [0] NCCL INFO Channel 01 : 0[60] -> 1[60] [receive] via NET/Socket/0
node001:175945:177561 [0] NCCL INFO Channel 00 : 0[60] -> 1[60] [send] via NET/Socket/0
node002:180379:182573 [0] NCCL INFO Channel 00 : 1[60] -> 0[60] [send] via NET/Socket/0
node001:175945:177561 [0] NCCL INFO Channel 01 : 0[60] -> 1[60] [send] via NET/Socket/0
node002:180379:182573 [0] NCCL INFO Channel 01 : 1[60] -> 0[60] [send] via NET/Socket/0
node001:175945:177561 [0] NCCL INFO Connected all rings
node002:180379:182573 [0] NCCL INFO Connected all rings
node001:175945:177561 [0] NCCL INFO Connected all trees

© Bright Computing, Inc.

https://docs.nvidia.com/deeplearning/nccl
https://docs.nvidia.com/deeplearning/nccl
https://github.com/NVIDIA/nccl-tests

7.3 Installation Of Workload Managers 267

node001:175945:177561 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 8/8/512
node001:175945:177561 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
node002:180379:182573 [0] NCCL INFO Connected all trees
node002:180379:182573 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 8/8/512
node002:180379:182573 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer
node001:175945:177561 [0] NCCL INFO comm 0x1551f0001000 rank 0 nranks 2 cudaDev 0 busId 60 - Init COMPLETE
#
out-of-place in-place
size count type redop time algbw busbw error time algbw busbw error
(B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)
node001:175945:175945 [0] NCCL INFO Launch mode Parallel
node002:180379:182573 [0] NCCL INFO comm 0x1551f8001000 rank 1 nranks 2 cudaDev 0 busId 60 - Init COMPLETE

1048576 262144 float sum 1491.5 0.70 0.70 0e+00 1421.3 0.74 0.74 0e+00
2097152 524288 float sum 3077.5 0.68 0.68 0e+00 2568.8 0.82 0.82 0e+00
4194304 1048576 float sum 4617.3 0.91 0.91 0e+00 4622.5 0.91 0.91 0e+00
8388608 2097152 float sum 9483.1 0.88 0.88 0e+00 8911.9 0.94 0.94 0e+00
16777216 4194304 float sum 17516 0.96 0.96 0e+00 18613 0.90 0.90 0e+00
33554432 8388608 float sum 34799 0.96 0.96 0e+00 41837 0.80 0.80 0e+00
67108864 16777216 float sum 99790 0.67 0.67 0e+00 83126 0.81 0.81 0e+00
134217728 33554432 float sum 204614 0.66 0.66 0e+00 199530 0.67 0.67 0e+00
268435456 67108864 float sum 319701 0.84 0.84 0e+00 341630 0.79 0.79 0e+00
536870912 134217728 float sum 608809 0.88 0.88 0e+00 683016 0.79 0.79 0e+00
1073741824 268435456 float sum 1337187 0.80 0.80 0e+00 1247369 0.86 0.86 0e+00
2147483648 536870912 float sum 2638741 0.81 0.81 0e+00 2743454 0.78 0.78 0e+00
4294967296 1073741824 float sum 5996381 0.72 0.72 0e+00 5430549 0.79 0.79 0e+00

Out of bounds values : 0 OK
Avg bus bandwidth : 0.810575
#

The test demonstrates the usage of PMIX, MPI, and GPU in Enroot containers on multiple nodes. In
the preceding example, 2 nodes with 1 GPU on each is requested by the job. For better results the cluster
administrator can tune the test parameters.

It should be noted that the image is quite large, and requires enough free space under /var. Also, the
transfer timeout (ENROOT_TRANSFER_TIMEOUT) in enroot.conf must be large enough to download such
a large container image to the compute nodes. A value of at least 600 seconds is recommended.

7.3.4 Prolog And Epilog Scripts
What Prolog And Epilog Scripts Do
The workload manager runs prolog scripts before job execution, and epilog scripts after job execution.
The purpose of these scripts can include:

• checking if a node is ready before submitting a job execution that may use it

• preparing a node in some way to handle the job execution

• cleaning up resources after job execution has ended.

The administrator can run custom prolog or epilog scripts for the queues from CMDaemon for UGE,
or LSF, by setting such scripts in the Bright View or cmsh front ends.

Example

[bright91->wlm[uge]->jobqueue]% use all.q
[bright91->wlm[uge]->jobqueue[all.q]]% show | grep . | grep -i epilog
Epilog NONE

© Bright Computing, Inc.

268 Workload Management

For PBS and Slurm, there are global prolog and epilog scripts, but editing them is not recommended.
Indeed, in order to discourage editing them, the scripts cannot be set via the cluster manager front ends.
Instead the scripts must be placed by the administrator in the software image, and the relevant nodes
updated from the image.

Detailed Workings Of Prolog And Epilog Scripts
Even though it is not recommended, some administrators may nonetheless wish to link and edit the
scripts directly for their own needs, outside of the Bright View or cmsh front ends. A more detailed
explanation of how the prolog scripts work therefore follows:

The prolog scripts have names and function according to their locations. The scripts are placed in
two directories:

1. In the main scripts directory, at:

/cm/local/apps/cmd/scripts/

In this directory, a main prolog script, prolog, can call a sequence of rc.d-style prolog scripts for a
particular workload manager in an rc.d-style directory.

2. rc.d-style prolog directory, at:

/cm/local/apps/<workload manager>/var/prologs/

In this directory, prolog scripts, if they exist, are stored in a directory path associated with the
workload manager name. The names of the scripts have suffixes and prefixes associated with
them that make them run in special ways, as follows:

• suffixes used in the rc.d-style directory:

◦ -prejob script runs prior to all jobs
◦ -cmjob: script runs prior to job run in a cloud

• prefixes used in the rc.d-style directory:

◦ 00- to
◦ 99-

Number prefixes determine the order of script execution. This is like for SysV-style rc.d
names, where scripts with the lower number are run earlier. Hence the terminology “rc.d-
style” associated with these prolog scripts.

The script names can therefore look like:

Example

• 00-prolog-prejob

• 10-prolog-cmjob

Return values for the rc.d-style scripts have these meanings:

• 0: the next script in the directory is run.

• A non-zero return value: no further scripts are executed from the rc.d-style directory.

Often, the script in an rc.d-style prolog directory is not a real script but a symlink, with the symlink
going to a general script located in the main scripts directory. In that case, this general script is
then able to take care of what is expected of the symlink. The name of the symlink, and destination
file, usually hints at what the script is expected to do.

© Bright Computing, Inc.

7.3 Installation Of Workload Managers 269

For example, by default each of the PBS workload manager variants use the sym-
link 10-prolog-prejob within the rc.d-style directory /cm/local/apps/<workload man-
ager>/var/prologs/. The symlink links to the script prolog-prejob within the main scripts
directory /cm/local/apps/cmd/scripts/. In this case, the script is expected to run prior to the
job.

Example

[root@bright91 apps]# pwd
/cm/local/apps
[root@bright91 apps]# ls -l *pbs*/var/prologs/
openpbs/var/prologs/:
total 0
lrwxrwxrwx 1 root root 40 Dec 23 15:44 10-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

pbspro-ce/var/prologs/:
total 0
lrwxrwxrwx 1 root root 40 Dec 23 15:44 10-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

pbspro/var/prologs/:
total 0
lrwxrwxrwx 1 root root 40 Dec 23 15:44 10-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

Epilog scripts, which run after a job run, can be used for UGE and Slurm.

Workload Manager Package Configuration For Prolog And Epilog Scripts
Each workload manager package configures prolog- and epilog-related scripts or links during installa-
tion, as follows:

• Slurm

– prolog-prejob: in the main scripts directory at /cm/local/apps/cmd/scripts/
prolog-prejob, is assigned to PrologSlurmctld in /cm/shared/apps/slurm/var/
etc/<Slurm instance name>/slurm.conf It runs by default during job execution, and is
executed with the slurm user permissions.

– prolog: in the main scripts directory at /cm/local/apps/cmd/scripts/prolog, is assigned to
the variable Prolog in /cm/shared/apps/slurm/var/etc/<Slurm instance name>/slurm.conf
The script executes the <number>-prolog{-cmjob|-prejob} scripts located in the rc.d-style
directory, if they exist. By default, none exist. The epilog script in the main scripts directory
follows the same pattern, with the appropriate name changes.

• UGE, LSF

– prolog: in the main scripts directory at /cm/local/apps/cmd/scripts/prolog, executes any
<number>-prolog{-cmjob|-prejob} scripts located in the rc.d-style directory, if they exist.
It is set by default to execute 10-prolog-prejob in the rc.d-style directory. This in turn is
configured as a symlink to prolog-prejob in the main scripts directory, which is able to
handle the execution of scripts in a general manner. Any further scripts in the rc.d-style
directories, whether for prologs or epilogs, are then also processed

• PBS variants

– mom_priv/prologue: (with the -ue ending) in the rc.d-style directory, is a symlink to prolog
in the main scripts directory.

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/
/cm/local/apps/cmd/scripts/prolog-prejob
/cm/local/apps/cmd/scripts/prolog-prejob
/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/
/cm/local/apps/cmd/scripts/prolog
/cm/shared/apps/slurm/var/etc/
/cm/local/apps/cmd/scripts/prolog

270 Workload Management

Example

[root@bright91 apps]# pwd
/cm/local/apps
[root@bright91 apps]# ls -l *pbs*/var/spool/mom_priv/prologue
lrwxrwxrwx 1 root root 33 Dec 23 15:44 openpbs/var/spool/mom_priv/prologue ->\
/cm/local/apps/cmd/scripts/prolog
lrwxrwxrwx 1 root root 33 Dec 23 15:44 pbspro-ce/var/spool/mom_priv/prologue ->\
/cm/local/apps/cmd/scripts/prolog
lrwxrwxrwx 1 root root 33 Dec 23 15:44 pbspro/var/spool/mom_priv/prologue ->\
/cm/local/apps/cmd/scripts/prolog

This in turn executes any <number>-prolog{-cmjob|-prejob} scripts located in the rc.d-style
directory, if they exist. Similar to this are any epilogue scripts in the rc.d-style directory.

7.4 Enabling, Disabling, And Monitoring Workload Managers
Rebooting The Compute Nodes For A Newly Installed Workload Manager
After a workload manager package is installed and initialized with cm-wlm-setup (section 7.3), the com-
pute nodes that are being managed by the workload manager must be rebooted before running work-
load manager jobs on them for the first time. A list of which nodes must be rebooted can be seen by
checking their status.

Example

[bright91->device]% ds
node001 [UP], restart required (cm-wlm-setup: compute role assigned)
node002 [UP], restart required (cm-wlm-setup: compute role assigned)
node003 [UP], restart required (cm-wlm-setup: compute role assigned)
[bright91 [UP]

Enabling And Disabling A WLM
A WLM can be disabled for all nodes with cm-wlm-setup. Disabling the WLM means the workload
management services are stopped by removing roles, and removing the WLM cluster object.

Alternatively, a WLM can be enabled or disabled by the administrator via role addition and role
removal with Bright View or cmsh. This is described further on in this section.

Multiple WLM instances of the same type: Versions of Bright Cluster Manager prior to 9.0 already
had the ability to have different workload managers run at the same time. However, Bright Cluster
Manager version 9.0 introduced the additional ability to run many workload managers of the same
kind at the same time.

Example

Two WLM instances, Slurm and OpenPBS, are already running at the same time in the cluster, with
each WLM assigned to one category. Then, Bright Cluster Manager can start up a third WLM instance,
such as another Slurm WLM instance. These WLM instances are alternatively called WLM clusters,
because they effectively allow one cluster to function as many separate clusters as far as running WLMs
is concerned.

From the Bright View or cmsh point of view a WLM consists of

• a WLM server, usually on the head node

• WLM clients, usually on the compute nodes

© Bright Computing, Inc.

7.4 Enabling, Disabling, And Monitoring Workload Managers 271

For the administrator, enabling or disabling the servers or clients is then simply a matter of assign-
ing or unassigning a particular WLM server or client role on the head or compute nodes, as deemed
appropriate.

The administrator typically also sets up an appropriate WLM environment module (slurm, uge,
pbspro, lsf), so that it is loaded up for the end user (section 2.2.3).

7.4.1 Enabling And Disabling A WLM With Bright View
A particular WLM package may be installed, but the WLM may not be enabled. This can happen, for
example, if disabling a WLM that was previously enabled.

If a WLM instance exists, then the WLM client, submission, and server roles can be enabled or dis-
abled from Bright View by assigning or removing the appropriate roles to nodes, categories, or con-
figuration overlays. Within the role, the properties of the WLM may be further configured by setting
options.

Workload Manager Role Assignment To An Individual Node With Bright View
Workload Manager Server The following roles are WLM roles that can be assigned to a node:

• server

• submit

• accounting (for the Slurm WLM only, to configure and run the slurmdbd service)

• client

For example, a Slurm server role can be assigned to a head node, bright91, via the clickpath:

Devices→Head Nodes[bright91]↓Edit→Settings→Roles→ADD↓Slurm server role

Figure 7.6: Workload Management Role Assignment On A Head Node

Options can be set within the workload manager, within the role. For example, for Slurm, a builtin
or backfill option can be set for the Scheduler parameter. The workload manager server role is then
saved with the selected options (figure 7.7). For starting it up on non-head nodes (but not for a head
node), the imageupdate command (section 5.6.2) is then run. The workload manager server process and
any associated schedulers then automatically start up.

© Bright Computing, Inc.

272 Workload Management

Figure 7.7: Workload Management Role Assignment Options On A Head Node

Workload Manager Client Similarly, the workload manager client process can be enabled on a node
or head node by having the workload manager client role assigned to it. Some basic options can be set
for the client role right away.

Saving the role, and then running imageupdate (section 5.6.2), automatically starts up the client
process with the options chosen, and managed by CMDaemon.

Workload Manager Role Assignment To A Category With Bright View
It is true that workload manager role assignment can be done as described in the preceding text for
individual non-head nodes. However it is usually more efficient to assign roles using categories or
configuration overlays, due to the large number of compute nodes in typical clusters.

Thus, as an example, the case can be considered of all physical on-premises non-head nodes. By
default these are placed in the default category. This means that, by default, roles in the category
are automatically assigned to all those non-head nodes, unless, as an exception, an individual node
configuration overrides the category setting and uses a role setting instead at node level.

Viewing the possible workload manager roles for the category default is done by using the click-
path:
Grouping→Categories[default]↓Edit→Settings→Roles→Add
Once the role is selected, its options can be edited and saved.

For compute nodes, the role assigned is usually a workload manager client. If the assigned role
is that of a workload manager client, then the node with that role can have queues, GPUs, and other
parameters specified for it.

For example, queues can then be assigned via the clickpath:
HPC→WLM Management Clusters[cluster instance]→Job Queues
while GPUs, if using Slurm as the workload manager with default settings, can then be specified via the
clickpath:
Configuration Overlays→slurm-client-gpu→roles→slurmclient↓edit→Generic Resources→gpu

© Bright Computing, Inc.

7.4 Enabling, Disabling, And Monitoring Workload Managers 273

The workload manager server role can also be assigned to a non-head node. For example, a Slurm
server role can be taken on by a non-head node. This is the equivalent to the --server-nodes option of
cm-wlm-setup.

Saving the roles with their options and then running imageupdate (section 5.6.2) automatically starts
up the newly-configured workload manager.

Workload Manager Role Options With Bright View
Each compute node role (workload manager client role) has options that can be set for GPUs, Queues,
and Slots.

• Slots, in a workload manager, corresponds in Bright Cluster Manager to:

– the CPUs setting (a NodeName parameter) in Slurm’s slurm.conf

– the np setting in PBS,

and is normally set to the number of cores per node.

In LSF setting the number of slots for the client role to 0 means that the client node does not run
jobs on itself, but becomes a submit host, which means it is able to forward jobs to other client
nodes.

• Queues with a specified name are available in their associated role after they are created. The
creation of queues is described in sections 7.6.2 (using Bright View) and 7.7.2 (using cmsh).

All server roles also provide the option to enable or disable the External Server setting. Enabling
that means that the server is no longer managed by Bright Cluster Manager, but provided by an external
device.

The cmsh equivalent of enabling an external server is described on page 277.

7.4.2 Enabling And Disabling A Workload Manager With cmsh
A particular workload manager package may be set up, but not enabled. This can happen, for example,
if no WLM server or WLM client role has been assigned.

If a WLM instance exists, then the WLM client, server, or submit roles can be enabled from cmsh by
assigning it from within the roles submode. Within the assigned role, the properties of the WLM may
be further configured by setting options.

Workload Manager Role Assignment To A Configuration Overlay With cmsh
In cmsh, workload manager role assignment to a configuration overlay (section 2.1.5) can be done using
configurationoverlay mode. By default cm-wlm-setup run as an Ncurses session creates some con-
figuration overlays with suggestive names, and assigns roles to the configuration overlays according to
what the names suggest. Thus, for example, with the cm-wlm-setup Ncurses session used to carry out
an express setup for Slurm, the configuration overlays that get created are the following:

Example

[bright91->configurationoverlay]% list
Name (key) Priority Nodes Categories Roles
----------------- ---------- -------- ---------------- ------------------
slurm-accounting 500 slurmaccounting
slurm-client 500 default slurmclient
slurm-server 500 slurmserver
slurm-submit 500 bright91 default slurmsubmit

Nodes in the default category can take on the slurmclient or slurmsubmit role by setting the nodes
for the role using the associated configuration overlays slurm-client or slurm-submit.

© Bright Computing, Inc.

274 Workload Management

Example

[bright91->configurationoverlay]% use slurm-client
[bright91->configurationoverlay[slurm-client]]% show
Parameter Value
-------------------------------- --
Name slurm-client
Revision
All head nodes no
Priority 500
Nodes
Categories default
Roles slurmclient
Customizations <0 in submode>
[bright91->configurationoverlay[slurm-client]]% set nodes
node001 node002 node003 bright91
[bright91->configurationoverlay[slurm-client]]% set nodes node001..node002
[bright91->configurationoverlay*[slurm-client*]]% commit
[bright91->configurationoverlay[slurm-client]]% list
Name (key) Priority All head nodes Nodes Categories Roles
----------------- --------- --------------- ---------------- ---------- ----------------
slurm-accounting 500 yes slurmaccounting
slurm-client 500 no node001,node002 default slurmclient
slurm-server 500 yes slurmserver
slurm-submit 500 no bright91 default slurmsubmit
[bright91->configurationoverlay[slurm-client]]%

All the head nodes can also be made to take on the configuration overlay role by setting its All head
nodes value to yes. The union set of All head nodes with Nodes is the set of nodes to which the role is
applied for that configuration overlay.

Values for the parameters in a role, such as the slurmclient role, can be set within the configuration
overlay:

Example

[bright91->configurationoverlay[slurm-client]]% roles
[bright91->configurationoverlay[slurm-client]->roles]% use slurmclient
[bright91->configurationoverlay[slurm-client]->roles[slurmclient]]% show
Parameter Value
-------------------------------- --
Name slurmclient
Revision
Type SlurmClientRole
Add services yes
WLM cluster slurm
Slots 0
All Queues no
Queues defq
Provisioning associations <0 internally used>
Power Saving Allowed no
Features
Sockets 0
Cores Per Socket 0
ThreadsPerCore 0
Boards 0
SocketsPerBoard 0

© Bright Computing, Inc.

7.4 Enabling, Disabling, And Monitoring Workload Managers 275

RealMemory 0
NodeAddr
Weight 0
Port 0
TmpDisk 0
Reason
CPU Spec List
Core Spec Count 0
Mem Spec Limit 0
Node Customizations <0 in submode>
Generic Resources <0 in submode>
[bright91->configurationoverlay[slurm-client]->roles[slurmclient]]%

After the workload manager roles are assigned or unassigned, and after running imageupdate (sec-
tion 5.6.2) for non-head nodes, the associated workload manager services automatically start up or stop
as appropriate.

The configuration overlay role values are inherited by categories and nodes, unless the categories
and nodes have their own values set. Thus, for role properties, a value set at node level overrides values
set at category level, and a value set at configuration overlay level overrides a value set at category level.
This is typical of how properties of objects are inherited in Bright Cluster Manager levels.

Workload Manager Role Assignment To A Category With cmsh
In cmsh, workload manager role assignment to a node category can be done using category mode, using
the category name, assigning a role from the roles submode, setting the WLM instance for that role,
and committing the modified role:

Example

[root@bright91 ~]# cmsh
[bright91]% category
[bright91->category]% use default
[bright91->category[default]]% roles
[bright91->category[default]->roles]% assign slurmclient
[bright91->category[default]->roles*[slurmclient*]]% wlm list
Type Name (key) Server nodes Submit nodes Client nodes
------- --------------------- ------------ ---------------- ----------------
slurm slurm1 bright91 bright91,node001 node001,node002
[bright91->category[default]->roles*[slurmclient*]]% set wlmcluster slurm1
[bright91->category[default]->roles*[slurmclient*]]% commit

Settings that are assigned in the slurmclient role of the category overrule the slurmclient role
configuration overlay settings.

The role assignment at category level requires the value for a WLM instance to be specified for
wlmcluster before the commit command is successful.

Workload Manager Role Assignment To An Individual Node With cmsh
In cmsh, assigning a workload manager role to a head node can be done in device mode. This can be
done by using the head node name as the device, assigning the workload manager role to the device,
setting the WLM instance value to the role within the role submode, and committing the modified role.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% use bright91
[bright91->device[bright91]]% roles

© Bright Computing, Inc.

276 Workload Management

[bright91->device[bright91]->roles]% assign slurmserver
[bright91->category[default]->roles*[slurmserver*]]% wlm list
Type Name (key) Server nodes Submit nodes Client nodes
------- --------------------- ------------ ---------------- ----------------
slurm slurm1 bright91 bright91,node001 node001,node002
[bright91->category[default]->roles*[slurmserver*]]% set wlmcluster slurm1
[bright91->device*[bright91*]->roles*[slurmserver*]]% commit
[bright91->device[bright91]->roles[slurmserver]]%

For regular nodes, role assignment is done via device mode, using the node name. Th node name is
assigned the workload manager role, the WLM instance value is set for that role in the role submode,
and the modified role is committed.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% use node001
[bright91->device[node001]]% roles
[bright91->device[node001]->roles]% assign slurmclient
[bright91->device[node001]->roles*[slurmclient*]]% wlm list
Type Name (key) Server nodes Submit nodes Client nodes
------- --------------------- ------------ ---------------- ----------------
slurm slurm1 bright91 bright91,node001 node001,node002
[bright91->device[node001]->roles*[slurmclient*]]% set wlmcluster slurm1
[bright91->device[node001]->roles*[slurmclient*]]% commit
[bright91->device[node001]->roles[slurmclient]]%

The role assignment at node level requires the value for a WLM instance to be specified for wlmcluster
before the commit command is successful.

Role assignment values set in device mode have precedence over any role assignment values set in
category mode for that node. This means, for example, that if a node is originally in a node category
with a slurmclient role and queues set, then when the node is assigned a slurmclient role from device
mode, its queue properties are empty by default.

Setting Options For Workload Manager Settings With cmsh
In the preceding text, it is explained how the workload manager client or server is assigned a role (such
as slurmclient or slurmserver) within the roles submode. It is done from within a main mode of
cmsh. The main modes from which role assignment can be done are: configurationoverlay, category
or device.

Options for workload managers in general: Whatever main mode is used, the workload manager
options for a role can then be set with the usual object commands introduced in section 2.5.3.

• WLM client options: For example, the configuration options of a WLM client, such as the PBS Pro
client, can be seen by using the show command on the role. Here it can be seen at a category level,
for the default category default:

Example

[bright91->category[default]->roles[pbsproclient]]% show
Parameter Value
-------------------------------- --
Add services yes
All Queues no

© Bright Computing, Inc.

7.4 Enabling, Disabling, And Monitoring Workload Managers 277

GPUs 0
Name pbsproclient
Properties
Provisioning associations <0 internally used>
Queues
Revision
Slots 1
Type PbsProClientRole
WLM cluster
Mom Settings <submode>
Comm Settings <submode>
Node Customizations <0 in submode>

The Slots option can be set in the role

Example

[bright91->category[default]->roles[pbsproclient]]% set slots 2
[bright91->category*[default*]->roles*[pbsproclient*]]% commit
[bright91->category[default]->roles[pbsproclient]]%

• WLM server options: Similarly, WLM server options can be managed from an assigned server
role. For PBS, the pbsproserver role for a device shows:

Example

[bright91->device[bright91]->roles]% use pbsproserver
[bright91->device[bright91]->roles[pbsproserver]]% show
Parameter Value
-------------------------------- --
Add services yes
Name pbsproserver
Provisioning associations <0 internally used>
Revision
Type PbsProServerRole
WLM cluster
External Server no
Comm Settings <submode>

Option to set an external workload manager: A workload manager can be set to run as an external
server from within a device mode role:

Example

[bright91->device[bright91]->roles[pbsproserver]]% set externalserver on
[bright91->device[bright91]->roles[pbsproserver*]]% commit

For convenience, setting it on the head node is recommended.
The Bright View equivalent of configuring externalserver is described on page 273.

7.4.3 Monitoring The Workload Manager Services
By default, the workload manager services are monitored. Bright Cluster Manager attempts to restart
the services using the service tools (section 3.11), unless the role for that workload manager service is
disabled, or the service has been stopped.

© Bright Computing, Inc.

278 Workload Management

Workload manager roles and corresponding services can be disabled using cm-wlm-setup (section
7.3), Bright View role configuration (section 7.4.1), or cmsh role configuration (section 7.4.2).

The daemon service states can be viewed for each node via the shell, cmsh, or Bright View (sec-
tion 3.11).

Queue submission and scheduling daemons normally run on the head node. From Bright View their
states are viewable via the clickpath to the services running on the node. For example, on a head node
(figure 7.8), via the clickpath:

Devices→Head Nodes→[bright91]→Settings→Services

Figure 7.8: Services seen on head node in Bright View

For a regular node, a similar clickpath for node001, for example, is:
Devices→Nodes→node001→Settings→Services

and leads to a view of services on the regular nodes (figure 7.9)

Figure 7.9: Services seen on regular node in Bright View

Considering only the WLMs: in figure 7.8 the pbsserver is seen running on the head node, while in
figure 7.9 the pbsmom server is seen running on the compute node.

The roles that set up that result in those servers running on the head node and compute nodes are
seen in figures 7.10 and 7.11:

© Bright Computing, Inc.

7.4 Enabling, Disabling, And Monitoring Workload Managers 279

Figure 7.10: Roles seen on head node in Bright View

Figure 7.11: Roles seen on regular node in Bright View

The roles seen in these figures are from the defaults that cm-wlm-setup provides in an express setup.
For regular nodes, the inheritance of roles from category level or configuration overlay level is indi-

cated by the values in the INHERITED column. Thus, in figure 7.11, the pbsprosubmit role is decided by
the default setting from the category level, while the pbsproclient role is decided by the default setting
in the pbspro-ce-client overlay.

The assignment of roles can be varied to taste for WLMs. This allows WLM services to run on the
head node or on the regular nodes.

From cmsh the services states are viewable from within device mode, using the services command.
One-liners from the shell to illustrate this are (output elided):

Example

[root@bright91 ~]# cmsh -c "device services node001; status"
Service Status
------------ -----------
nslcd [UP]
pbsmom [UP]
[root@bright91 ~]# cmsh -c "device services bright91; status"

Service Status
------------ -----------

© Bright Computing, Inc.

280 Workload Management

...
pbsserver [UP]

Roles can be viewed from within the main modes of configurationoverlay, category, or device.
One-liners to view these are:

Example

[root@bright91 ~]# cmsh -c "configurationoverlay; list"
Name (key) Priority All head nodes Nodes Categories Roles
---------------- ---------- -------------- ---------------- ---------------- ----------------
openpbs-client 500 no default pbsproclient
openpbs-server 500 yes pbsproserver
openpbs-submit 500 yes default pbsprosubmit

[root@bright91 ~]# cmsh -c "category; use default; roles; list -p"
Name (key)

[overlay:openpbs-client:500] pbsproclient
[overlay:openpbs-submit:500] pbsprosubmit

[root@bright91 ~]# cmsh -c "device use node001; roles; list -p"
Name (key)
--
[overlay:openpbs-client:500] pbsproclient
[overlay:openpbs-submit:500] pbsprosubmit

[root@bright91 ~]# cmsh -c "device use bright91; roles; list -p"
Name (key)
--
[750] backup
[750] boot
[750] firewall
[750] headnode
[750] monitoring
[750] provisioning
[750] storage
[overlay:openpbs-server:500] pbsproserver
[overlay:openpbs-submit:500] pbsprosubmit

The -p|--priority option displays of the list command the priority setting for the roles.

7.5 Configuring And Running Individual Workload Managers
Bright Cluster Manager deals with the various choices of workload managers in as generic a way as
possible. This means that not all features of a particular workload manager can be controlled, so that
fine-tuning must be done through the workload manager configuration files. Workload manager con-
figuration files that are controlled by Bright Cluster Manager should normally not be changed directly
because Bright Cluster Manager overwrites them. However, overwriting by CMDaemon is prevented
on setting the directive:

FreezeChangesTo<workload manager>Config = <true|false>

in cmd.conf (Appendix C), where <workload manager> takes the value of Slurm, UGE, LSF, or PBSPro,
as appropriate. The value of the directive defaults to false.

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 281

A list of configuration files that are changed by CMDaemon, the items changed, and the events
causing such a change are listed in Appendix H.

A very short guide to some specific workload manager commands that can be used outside of the
Bright Cluster Manager 9.1 system is given in Appendix F.

7.5.1 Configuring And Running Slurm
Slurm Version
At the time of writing (April 2022), Bright Cluster Manager is integrated with Slurm by using the fol-
lowing packages from the Bright Cluster Manager repositories:

• slurm19, slurm19-*: For Slurm version 19.05.8

• slurm20, slurm20-*: For Slurm version 20.02.7

• slurm20.11, slurm20.11-*: For Slurm version 20.11.8

• slurm21.08, slurm21.08-*: For Slurm version 21.08.5

A Slurm version 22 release is expected with Bright Cluster Manager release 9.1-4.
The exact list of packages can be found by running, for example:

Example

[root@bright91 ~]# i="slurm19 slurm20 slurm20.11 slurm21.08 slurm22"
for j in $i ; do echo "===="; yum info $j $j-* | grep ^Name; done
====
Name : slurm19
Name : slurm19-client
Name : slurm19-contribs
Name : slurm19-devel
Name : slurm19-perlapi
Name : slurm19-slurmdbd
Name : slurm19-example-configs
Name : slurm19-openlava
Name : slurm19-pam
Name : slurm19-torque
====
Name : slurm20
Name : slurm20-client
Name : slurm20-contribs

Important updates from upstream are patched into the Bright Cluster Manager repositories.

Updating From slurm19 To slurm20
Upgrading between major versions of Slurm is generally possible. It is a good idea to upgrade one
version at a time, rather than jumping 2 or more versions ahead, which requires a full wipe of the Slurm
configuration.

If Slurm is using Pyxis (section 7.3.3), then upgrading the Slurm version means that Pyxis needs to be
reinstalled using cm-wlm-setup. The reinstallation run for Pyxis compiles Pyxis and recreates a plugin
directory for the new Slurm version under /cm/shared/apps/slurm/.

An upgrade from one major version of Slurm to another can be carried out according to the following
example, which is for an update from major version 19 to version 20, and avoids total reconfiguration
of the Slurm configuration:

• It is recommended that no jobs are running. Draining nodes (section 7.7.3) is one way to arrange
this over time. No new jobs run on a drained node, but old ones are allowed to finish.

© Bright Computing, Inc.

/cm/shared/apps/slurm/

282 Workload Management

• When all running jobs are finished, then Slurm server services—slurmctld and slurmdbd—should
be stopped using cmsh or Bright View (section 3.11.2):

Example

[bright91->device[bright91]->services]% stop slurmctld
[bright91->device[bright91]->services]% stop slurmdbd

• The old Slurm packages should then be removed. There can be only one version of Slurm at a
time, so there will be a package installation conflict if a new version is installed while an old one
is still there.

Removal can be carried out on RHEL-based systems with, for example:

[root@bright91 ~]# yum remove slurm19*

The old packages must also be removed from each software image that uses it:

[root@bright91 ~]# cm-chroot-sw-img /cm/images/<software image>
...
[root@<software image> /]# yum remove slurm19*
...removal takes place...
[root@<software image> /]# exit

• The new packages can then be installed. For installation onto the RHEL head node, the installation
might be carried out as follows:

[root@bright91 ~]# yum install slurm20 slurm20-client slurm20-contribs slurm20-devel \
slurm20-perlapi slurm20-slurmdbd

The client package can be installed in each software image with, for example:

[root@bright91 ~]# cm-chroot-sw-img /cm/images/<software image>
...
[root@<software image> /]# yum install slurm20-client
...installation takes place
[root@<software image> /]# exit

Other Slurm packages from the repository may also be installed on the head node and within the
software images, as needed.

• The new Slurm version is then set in cmsh or Bright View, in the Slurm WLM cluster configuration:

Example

[root@bright91 ~]# cmsh
[bright91]% wlm use slurm
[bright91->wlm[slurm]]% set version 20; commit

• Slurm server services slurmctld and slurmdbd should then be started again using cmsh or Bright
View

Example

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 283

[bright91->device[bright91]->services]% start slurmdbd
[bright91->device[bright91]->services]% start slurmctld

• The nodes can then have their new image placed on them, and the new Slurm configuration can
then be taken up. This can be done in the following two ways:

1. The regular nodes can then be restarted to supply the live nodes with the new image and get
the new Slurm configuration running.

2. Alternatively, the imageupdate command (section 5.6.2) can be run on the live nodes to sup-
ply them with the image.
Running the imageupdate command in dry mode (the default) first is recommended. The
synclog command can then be run to check there are no unexpected changes that will take
place due to the update. If all is well, then imageupdate’s wet mode flag -w can be used in
order to really carry out the task.
For example, the change can be checked, and then actually carried out, for the image on
node001 with:

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% imageupdate
Performing dry run (use synclog command to review result, then pass -w to perform real update)...
...some messages...
imageupdate [COMPLETED]
[bright91->device[node001]]% synclog
...rsync dry run output...
[bright91->device[node001]]% imageupdate -w
...same messages as before, but this time it really happens...
[bright91->device[node001]]% commit

The last commit command triggers the reconfiguration of the file /etc/systemd/system/
slurmd.service.d/99-cmd.conf on the node. After a short time—around 30 seconds—the
file is regenerated. The slurmd service on the node can then be restarted with:

[root@bright91 ~]# ssh node001 "systemctl daemon-reload"
cmsh -c "device services node001; use slurmd; restart"

Configuring Slurm
After package setup is done with cm-wlm-setup (section 7.3), Slurm software components are installed
in a symlinked directory /cm/shared/apps/slurm/current.

Slurm clients and servers can be configured to some extent via role assignment (sections 7.4.1
and 7.4.2).

Using cmsh, advanced option parameters can be set under the slurmclient and slurmserver
roles. The settings for the roles can be done at configuration overlay, category, or node level (sec-
tions 2.1.5, 2.1.6).

By default, the cm-wlm-setup utility configures Slurm using configuration overlays.

Example

[bright91->configurationoverlay]% list
Name (key) Priority All head nodes Nodes Categories Roles
----------------- ---------- -------------- ---------------- ---------------- ----------------
slurm-accounting 500 yes slurmaccounting
slurm-client 500 no default slurmclient
slurm-server 500 yes slurmserver
slurm-submit 500 yes default slurmsubmit

© Bright Computing, Inc.

/etc/systemd/system/slurmd.service.d/99-cmd.conf
/etc/systemd/system/slurmd.service.d/99-cmd.conf
/cm/shared/apps/slurm/current

284 Workload Management

The settings within the roles can be viewed and modified. For example, the slurmclient role of the
slurm-client configuration overlay can be viewed:

Example

[bright91->configurationoverlay]% roles slurm-client
[bright91->configurationoverlay[slurm-client]->roles]% show
Parameter Value
-------------------------------- --
Name slurmclient
Revision
Type SlurmClientRole
Add services yes
WLM cluster slurm
Slots 0
All Queues no
Queues defq
Provisioning associations <0 internally used>
Features
Sockets 0
Cores Per Socket 0
ThreadsPerCore 0
Boards 0
SocketsPerBoard 0
RealMemory 0B
NodeAddr
Weight 0
Port 0
TmpDisk 0
Reason
CPU Spec List
Core Spec Count 2
Mem Spec Limit 0B
Auto Detect None
Node Customizations <0 in submode>
Generic Resources <0 in submode>
Cpu Bindings None

The settings can be modified. For example Core Spec Count:

Example

[bright91->configurationoverlay[slurm-client]->roles]% set slurmclient corespeccount 2
[bright91->configurationoverlay*[slurm-client*]->roles*]% commit

As usual, values set at node level override the values set at categories and configuration overlays
level.

For example, to set corespeccount to 4, only for node001 but not for other nodes, the session might
run further as:

Example

[bright91->configurationoverlay[slurm-client]->roles]% device use node001
[bright91->device[node001]]% roles
[bright91->device[node001]->roles]% assign slurmclient
[bright91->device*[node001*]->roles*[slurmclient*]]% set corespeccount 4
[bright91->device*[node001*]->roles*[slurmclient*]]% commit

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 285

Field Message
------------------------ --
wlmCluster Error: The WLM cluster should be set
[bright91->device*[node001*]->roles*[slurmclient*]]% wlm list
Type Name (key) Server nodes Submit nodes Client nodes
------ ------------------------ ------------ ---------------- ----------------
Slurm slurm bright91 bright91,node001 node001,node001
[bright91->device*[node001*]->roles*[slurmclient*]]% set wlmcluster slurm
[bright91->device*[node001*]->roles*[slurmclient*]]% commit

In the preceding session, the role needs to be assigned at node level with assign slurmclient be-
cause it does not initially exist at node level. If it already existed, then use slurmclient could have
been used to descend into that role.

Also in the preceding session, one of the values that the Slurm client needs to know is wlmcluster,
which decides which WLM it is to work with on the cluster. The value is selected from the list of WLM
instance names in wlm mode.

The level of the active role can be seen with the list command. For example, the Slurm client role
assignment at node level is seen here:

Example

[bright91->device[node001]->roles[slurmclient]]% list
Name (key)

[overlay:slurm-submit] slurmsubmit
slurmclient

Removing the assignment has the list command display the configuration overlay Slurm client role
assignment:

Example

[bright91->device[node001]->roles[slurmclient]]% unassign slurmclient; commit
[bright91->device[node001]->roles[slurmclient]]% list
Name (key)

[overlay:slurm-submit] slurmsubmit
[overlay:slurm-client] slurmclient

Generic resources (gres) configuration in Slurm: In order to configure generic resources, the
genericresources mode can be used to set a list of objects. Each object then represents one generic
resource available on nodes.

Each value of name in genericresources must already be defined in the list of GresTypes. The list
of GresTypes is defined in the wlm role for the instance.

Example

[bright91->wlm[slurm]]% get grestypes
gpu

Several generic resources entries can have the same value for name (for example gpu), but must have
a unique alias. The alias is a string that is used to manage the resource entry in cmsh or in Bright View.
The string is enclosed in square brackets in cmsh, and is used instead of the name for the object. The alias
does not affect Slurm configuration.

For example, to add two GPUs for all the nodes in the default category which are of type k20xm, and
to assign them to different CPU cores, the following cmsh commands can be run:

© Bright Computing, Inc.

286 Workload Management

Example

[bright91]% configurationoverlay use slurm-client
[bright91->configurationoverlay[slurm-client]]% roles
[bright91->configurationoverlay[slurm-client]->roles*]% use slurmclient
[...[slurmclient]]% genericresources
[...[slurmclient]->genericresources]% add gpu0
[...[slurmclient*]->genericresources*[gpu0*]]% set name gpu
[...[slurmclient*]->genericresources*[gpu0*]]% set file /dev/nvidia0
[...[slurmclient*]->genericresources*[gpu0*]]% set cores 0-7
[...[slurmclient*]->genericresources*[gpu0*]]% set type k20xm
[...[slurmclient*]->genericresources*[gpu0*]]% add gpu1
[...[slurmclient*]->genericresources*[gpu1*]]% set name gpu
[...[slurmclient*]->genericresources*[gpu1*]]% set file /dev/nvidia1
[...[slurmclient*]->genericresources*[gpu1*]]% set cores 8-15
[...[slurmclient*]->genericresources*[gpu1*]]% set type k20xm
[...[slurmclient*]->genericresources*[gpu1*]]% commit
[...[slurmclient]->genericresources[gpu1]]% list
Alias (key) Name Type Count File
----------- -------- -------- -------- ----------------
gpu0 gpu k20xm /dev/nvidia0
gpu1 gpu k20xm /dev/nvidia1
[...[slurmclient]->genericresources[gpu2]]%

In Bright View, the clickpath:

Configuration Overlays→slurm-client-gpu↓Edit→Roles→slurmclient↓Edit→Generic Resources→ADD

provides the equivalent (figure 7.12):

Figure 7.12: Bright View access to NVIDIA GPU configuration options

After the generic resources are committed, Bright Cluster Manager updates the gres.conf file.

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 287

Since Bright Cluster Manager version 8.2 and higher, a single gres.conf configuration file, located
at /cm/shared/apps/slurm/var/etc/slurm/gres.conf is used.

If the category consists of node001 and node002, then the entries to the gres.conf file in this case
would look like:

Example

This section of this file was automatically generated by cmd. Do not edit manually!
BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE
NodeName=node[001,002] Name=gpu Type=k20xm Count=1 File=/dev/nvidia0 Cores=0-7
NodeName=node[001,002] Name=gpu Type=k20xm Count=1 File=/dev/nvidia1 Cores=8-15
END AUTOGENERATED SECTION -- DO NOT REMOVE
[root@bright91 ~]#

GPU autodetection: Slurm supports GPU autodetection from version 20 onwards, using the
AutoDetect flag in gres.conf.

Bright Cluster Manager 9.0 and onward provide a slurm20 package built with GPU autodetection en-
abled. Both AMD and NVidia GPUs can then be detected if autodetection is also enabled in gres.conf.

Bright Cluster Manager 9.1 onwards allows the AutoDetect flag to be set via cmsh or BrightView.
There are 3 options for the flag:

1. None: do not autodetect any GPUs (AutoDetect is not added to gres.conf),

2. NVML: detect NVidia GPUs (AutoDetect=nvml is added to gres.conf),

3. RSMI: detect AMD GPUs (AutoDetect=rsmi is added to gres.conf).

The default value is None.
GPU autodetection removes the need for explicit GPU configuration in gres.conf, although the

Gres=... line in slurm.conf is still required in order to tell slurmctld how many GRES to expect. This
means the administrator needs to define GPUs in the genericresources mode of the slurmclient role.

However there is no need in this case to specify all the details. It is enough to add a single generic
resource named gpu, and to specify the number of such GPUs. In order to skip adding the generic
resources, the flag AddToGresConfig should be set in the genericresource entity. For example:

Example

[bright91]% configurationoverlay use slurm-client
[bright91->configurationoverlay[slurm-client]]% roles
[bright91->configurationoverlay[slurm-client]->roles]% use slurmclient
[...[slurmclient]]% genericresources
[...[slurmclient]->genericresources]% add autodetected-gpus
[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set name gpu
[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set count 8
[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set addtogresconfig no
[...[slurmclient*]->genericresources*[autodetected-gpus*]]% commit
[...[slurmclient]->genericresources[autodetected-gpus]]% wlm use slurm
[bright91->wlm[slurm]]% set autodetect nvml
[bright91->wlm*[slurm*]]% commit
[bright91->wlm[slurm]]%

Slurm node settings: The parameter value for a Slurm option in slurm.conf is set by CMDaemon, if
its value is not: 0.

A parameter value of 0 means that the default values of Slurm are used. These usually have the
value: 0.

The advanced options that CMDaemon manages for Slurm are:

© Bright Computing, Inc.

/cm/shared/apps/slurm/var/etc/slurm/gres.conf

288 Workload Management

Bright View Option Slurm Option Description

Features Feature=<string>
entry in the file
slurm.conf

Arbitrary strings can be entered to indicate some character-
istics of a node, one string per entry. For example:
text1
text2
and so on. These become part of the:
Feature=text1,text2...
attribute to the
NodeName=<node name>
entry line in slurm.conf, as indicated in man(5)
slurm.conf. The strings also become added attributes
to the GresTypes entry of that file.
Default: blank.

Slots CPU Number of logical processors on the node. For Slurm 20 and
beyond, CMDaemon detects the number of CPU cores, and
sets procs=number of cores via slots autodetection. Default
for Slurm prior to version 20: 0

Sockets Sockets Processor chips on node. If this is defined, then
SocketsPerBoard must not be defined. Default: 0

Cores per
socket

CoresPerSocket Number of cores per socket. Default: 0

ThreadsPerCore ThreadsPerCore Number of logical threads for a single core. Default: 0

Boards Boards Number of baseboards in a node. Default: 0

SocketsPerBoard SocketsPerBoard Number of processor chips on baseboard. If this is defined,
then Sockets must not be defined. Default: 0

RealMemory RealMemory Size of real memory on the node, MB. Default: 0

NodeHostname NodeHostname Default: as defined by Slurm’s NodeName parameter.

...continues

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 289

...continued

Bright View Option Slurm Option Description

NodeAddr NodeAddr Default: as set by Slurm’s NodeHostname parameter.

State State State of the node with user jobs. Possible Slurm values are:
DOWN, DRAIN, FAIL, FAILING, and UNKNOWN. Default: UNKNOWN

Weight Weight The priority of the node for scheduling. Default: 0

Port Port Port that slurmd listens to on the compute node. Default:
as defined by SlurmdPort parameter. If SlurmdPort is not
specified during build: Default: 6818.

TmpDisk TmpDisk Total size of Slurm’s temporary filesystem, TmpFS, typically
/tmp, in MB. TmpFS is the storage location available to user
jobs for temporary storage. Default: 0

Options extra options Extra options that are added to slurm.conf

Further Slurm documentation is available:

• via man pages under /cm/shared/apps/slurm/current/man.

• as HTML documentation in the directory /cm/shared/apps/slurm/current/share/doc/
slurm-20.11.5/html

• at the Slurm website at http://slurm.schedmd.com/documentation.html

Slurm is set up with reasonable defaults, but administrators familiar with Slurm can reconfigure the
configuration file using a web browser with the following JavaScript-based configuration generators:

• /cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html/configurator.easy.html:
this is a simplified configurator

• /cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html/configurator.html: this is
the full version of the configurator.

If the configuration file becomes mangled beyond repair, the original default can be regenerated
once again by re-installing the Slurm package, then running the script /cm/shared/apps/slurm/var/
cm/cm-restore-db-password, and then running cm-wlm-setup. Care must be taken to avoid duplicate
parameters being set in the configuration file—slurmd may not function correctly in such a configura-
tion.

Running Slurm
Slurm can be disabled and re-initialized with the cm-wlm-setup tool (section 7.3) during package in-
stallation itself.

Alternatively, role assignment and role removal can be used to adjust what nodes, if any, run Slurm.
The assignment and removal of roles can be carried out from Bright View (section 7.4.1) or cmsh (sec-
tion 7.4.2).

The Slurm workload manager runs these daemons:

© Bright Computing, Inc.

/cm/shared/apps/slurm/current/man
/cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html
/cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html
http://slurm.schedmd.com/documentation.html
/cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html/configurator.easy.html
/cm/shared/apps/slurm/current/share/doc/slurm-20.11.5/html/configurator.html
/cm/shared/apps/slurm/var/cm/cm-restore-db-password
/cm/shared/apps/slurm/var/cm/cm-restore-db-password

290 Workload Management

1. as servers:

(a) slurmdbd: The database that tracks job accounting. It is part of the slurmdbd service.

(b) slurmctld: The controller daemon. Monitors Slurm processes, accepts jobs, and assigns re-
sources. It is part of the slurm service.

(c) munged: The authentication (client-and-server) daemon. It is part of the munge service.

2. as clients:

(a) slurmd: The compute node daemon that monitors and handles tasks allocated by slurmctld
to the node. It is part of the slurm service.

(b) slurmstepd: A temporary process spawned by the slurmd compute node daemon to handle
Slurm job steps. It is not initiated directly by users or administrators.

(c) munged: The authentication (client-and-server) daemon. It is part of the munge service.

Logs for the daemons are saved on the node that they run on. Accordingly, the locations are:

• /var/log/slurmdbd

• /var/log/slurmd

• /var/log/slurmctld

• /var/log/munge/munged.log

7.5.2 Installing, Configuring, And Running UGE
The workload manager, Univa Grid Engine (UGE), is a further development of the venerable SGE. Bright
Cluster Manager 9.1 supports integration with UGE version 8.6 at the time of writing of this section (June
2024).

UGE should be picked up directly from the Univa website at http://www.univa.com.
The installation and integration of UGE into Bright Cluster Manager 9.1 can be carried out as in the

following steps:

1. These UGE tar.gz file collections should be downloaded from the Univa website to a directory on
the head node:

• Binary files:

– The 64-bit Linux bundle
ge-<uge_ver>-bin-lx-amd64.tar.gz

– or the 32-bit Linux bundle
ge-<uge_ver>-bin-lx-x86.tar.gz

• Common files:

– ge-<uge_ver>-common.tar.gz

Here <uge_ver> is the UGE version, for example: 8.6.0

To avoid installation issues, a check should be done to ensure that during the download, the
tar.gz files have not been renamed, or that their names not been changed to upper case. Both
packages must be located in the same directory before installation.

If a failover setup already exists, then the installation should be done on the active head node in
the steps that follow.

© Bright Computing, Inc.

/var/log/slurmdbd
/var/log/slurmd
/var/log/slurmctld
/var/log/munge/munged.log
http://www.univa.com

7.5 Configuring And Running Individual Workload Managers 291

2. The cm-uge package should be installed from the Bright Computing repository via the distribu-
tion’s package manager. That is, via, yum, zypper, or apt, as appropriate.

The package installs, amongst others, the following template files under /cm/shared/apps/uge/
var/cm/:

(a) An environment module template, uge.module.template

(b) An installation configuration template, inst_template.conf.template

(c) Some other template files for a default GE configuration, under the directory templates

The templates decide the configuration of UGE (section “Configuring UGE”, page 292).

The original files 2a and 2b, with the .template suffix, should never be modified by the adminis-
trator. The administrator can change the parameters affected by the installation configuration from
their default values by copying these original files to the same directory without the .template
suffix, and then editing the .conf file:

Example

[root@bright91 ~]# cd /cm/shared/apps/uge/var/cm
[root@bright91 cm]# cp inst_template.conf.template inst_template.conf
[root@bright91 cm]# vi inst_template.conf

The copied file, inst_template.conf, can be changed by the administrator to decide the location
of UGE software and how UGE handles jobs, if needed. The changed file overrides the settings
suggested by the .template file, when the Bright Cluster Manager utility cm-wlm-setup runs in
the next step of the installation procedure.

Some of the values in the key-value pairs in the file are enclosed by percentage signs, %. For
example: CELL_NAME="%CELL_NAME%". Such flagged values should not be modified, since they are
replaced by Bright Cluster Manager values by cm-wlm-setup during installation.

Values not enclosed by percentage signs are not replaced by cm-wlm-setup. Such unflagged values
can, if needed, be tuned in the copied file by the administrator. These values are then kept by
cm-wlm-setup during installation, and used when UGE is run.

3. cm-wlm-setup is run. The directory where the downloaded UGE files are located can be specified
with the --archives-location option, if using the CLI mode with options.

Example

root@bright91:~# ls -al /root/uge/
total 67892
drwxr-xr-x 2 root root 82 Dec 18 16:03 .
drwx------ 10 root root 4096 Dec 18 16:03 ..
-rw-r--r-- 1 root root 63426260 Dec 18 16:03 ge-8.6.7-demo-bin-lx-amd64.tar.gz
-rw-r--r-- 1 root root 6088929 Dec 18 16:03 ge-8.6.7-demo-common.tar.gz
root@bright91:~# cm-wlm-setup --wlm uge --setup --archives-location /root/uge

4. The nodes are rebooted. The UGE command qhost then displays an output similar to:

Example

© Bright Computing, Inc.

/cm/shared/apps/uge/var/cm/
/cm/shared/apps/uge/var/cm/

292 Workload Management

[root@bright91 ~]# module load uge
[root@bright91 ~]# qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR NLOAD ...
---...
global - - - - - - ...
node001 lx-amd64 8 1 1 8 0.01 ...
node002 lx-amd64 8 1 1 8 0.01 ...
node003 lx-amd64 8 1 1 8 0.01 ...
node004 lx-amd64 8 1 1 8 0.01 ...

The output in the preceding example has been truncated for this manual, for convenience.

Configuring UGE
After installation and initialization, UGE has reasonable defaults, with $SGE_ROOT set to /cm/shared/
apps/uge/current.

By default, the UGE application is installed in /cm/shared/apps/uge/current, and job examples are
kept in /cm/shared/examples/workload/sge/jobscripts/.

Running UGE
The UGE workload manager runs the following two daemons:

1. an sge_qmaster daemon running on the head node. This handles queue submissions and sched-
ules them according to criteria set by the administrator.

2. an sge_execd execution daemon running on each compute node. This accepts, manages, and
returns the results of the jobs on the compute nodes.

Messages from the qmaster daemon are logged in:

/cm/shared/apps/uge/current/<uge instance name>/spool/messages

On the associated compute nodes the execution log messages exists, alongside other job tracking
files and directories, at:

/cm/local/apps/uge/var/spool/node<number>/messages

where node<number> is the node name, for example:

node001, node002 . . .

UGE Submission, Administrative And Execution Hosts
UGE is still similar to SGE in many ways, but is evolving.

In UGE terminology:

• A submission host, or submit host, is a node that is allowed to submit jobs. Submission can be from
the user, or from another job run by the user.

• An execution host, or exec host, is a node on which the computational part of the job is executed.

• An administrative host, or admin host, is a node that can carry out administrative Grid Engine com-
mands.

Standard Bright Cluster Manager Use
In a standard Bright Cluster Manager configuration, a submission, administrative or execution host in

UGE is configured with the following ugeclient role properties:

© Bright Computing, Inc.

/cm/shared/apps/uge/current
/cm/shared/apps/uge/current
/cm/shared/apps/uge/current
/cm/shared/examples/workload/sge/jobscripts/

7.5 Configuring And Running Individual Workload Managers 293

1. Admin Host – adds the node to a list of administrative hosts in UGE,

2. Exec Host – adds the node to a list of execution hosts in UGE,

3. Submit Host – adds the node to a list of submission hosts in UGE.

The nodes that are assigned a ugeserver role are always automatically added to the administrative
and submission host lists.

Non-standard Bright Cluster Manager Use
For non-standard configurations, where the UGE service or login service is managed outside of

Bright Cluster Manager control, advanced configuration directives allow the cluster to be aware of the
situation.

1. If the ugeclient role cannot be added, for instance due to the UGE service being managed outside
of Bright Cluster Manager, then the additional execution hosts can be specified in the advanced
configuration directive, AdditionalExecHosts, in the cmd.conf file:

Example

AdvancedConfig = {"AdditionalExecHosts=node002,login01"}

2. If the ugeclient role cannot be added, for instance due to the login service being managed outside
of Bright Cluster Manager, then the execution hosts can be specified in the advanced configuration
directive, AdditionalSubmitHosts, in the cmd.conf file:

Example

AdvancedConfig = {"AdditionalSubmitHosts=node002,login01"}

Parallel Environments
A parallel environment (PE) allows the configuration of applications that use shared or distributed
memory. The main—but not sole—purpose of a PE is to provide a job environment within which
MPI applications can run, using various MPI libraries. PEs can be provided by the cluster software
or hardware vendor, as well as distributed with UGE itself. Default PEs are provided for various MPI
libraries, such as Open MPI, MVAPICH, and so on. The default PEs are automatically added to UGE
when cm-wlm-setup installs UGE.

The CMDaemon front ends, i.e. cmsh or Bright View, can be used to add, remove, or modify the
existing PE. Each UGE cluster has a Parallel Environments submode. In the Parallel Environments
submode, each PE is represented as a separate object with associated properties. For example, with cmsh
the wlm mode is used to access the Open MPI properties within a UGE cluster (some text elided):

Example

[root@bright91 ~]# cmsh
[bright91]% wlm
[bright91->wlm]% list
Type Name (key) Server nodes Submit nodes Client nodes
------- ----------- ------------ -- -----------------
UGE uge bright91 node001..node003,bright91 node001..node003
[bright91->wlm]% use uge
[bright91->wlm[uge]]% parallelenvironments
[bright91->wlm[uge]->parallelenvironments]% list
Name (key) Slots Allocation Rule
----------------- -------- ----------------

© Bright Computing, Inc.

294 Workload Management

impi 999999 $round_robin
mpich 999999 $round_robin
mpich2 999999 $round_robin
openmpi 999999 $round_robin
openmpi_rankfile 999999 4
[bright91->wlm[uge]->parallelenvironments]% use openmpi
[bright91->wlm[uge]->parallelenvironments[openmpi]]% show
Parameter Value
-------------------------------- --
Daemon Forks Slaves yes
Master Forks Slaves no
Revision
Type UGEParallelEnvironment
Name openmpi
Slots 999999
User Lists NONE
X User Lists NONE
Start Procedure Arguments NONE
Stop Procedure Arguments NONE
Allocation Rule $round_robin
Control Slaves yes
Job Is First Task no
Urgency Slots min
Accounting Summary yes
Per PE Task Prolog NONE
Per PE Task Epilog NONE
Extra Parameters
[bright91->wlm[uge]->parallelenvironments[openmpi]]%

The values shown in the preceding example are defaults.

Database Recovery
By default, Bright Cluster Manager configures UGE to use flat file, or classic spooling as its format for the
sge_qmaster spool. Typically this can handle thousands of jobs a day without running into performance
issues, and it is the current (May 2015) recommendation for stability reasons.

For larger clusters it is possible to use Berkeley DB as the spooling format. This comes with a number
of utilities, some of which can be useful for UGE spool maintenance and debugging, such as db_recover,
db_verify, and others.

The Berkeley DB utilities that come with UGE are modified versions of the ones that are shipped
with with the parent distribution Berkeley DB packages. The UGE versions include extra sanity tests for
the UGE spool database, and it is best to use them instead of the standard versions. The utilities can be
found in on the head node under:

/cm/shared/apps/uge/current/utilbin/lx-amd64/

This directory is not added to the $PATH when loading the UGE environment with module load uge.
The full Berkeley DB documentation for these tools is part of the UGE distribution. A local HTML

format copy of the documentation is available at:

/cm/shared/apps/uge/current/doc/berkeleydb/db_*.html

© Bright Computing, Inc.

/cm/shared/apps/uge/current/utilbin/lx-amd64/
/cm/shared/apps/uge/current/doc/berkeleydb/db_*.html

7.5 Configuring And Running Individual Workload Managers 295

GPU And MIC Management
When managing host resources such as GPU or Xeon Phi (MIC) PCI-e cards1, UGE 8.1.0 and higher al-
lows the accelerators to be configured via a resource map, RSMAP. This is a complex (man (5) complex)
value type defined on the host. RSMAP values restrict how much of a resource is used concurrently from
a host, attaches identifiers to the resource used, and assigns the identifiers to the jobs when they get dis-
patched to that host. Bright Cluster Manager automatically configures UGE execution hosts with gpu
and phi RSMAP resources.

The ugeclient role can configure GPUs by using the following cmsh parameters:

• GPU devices: a list of GPU names that are attached to a job by UGE.

• Gpus: the number of GPUs on a host.

The GPU devices parameter has a higher priority then Gpus, so that if names are set in GPU devices,
then they are always used.

GPUs can also be bound to particular CPU sockets and CPU cores, using a topology mask.
The mask is defined with a set of characters. In principle, the mask is applied to the computing units

available for a device. The computing units correspond to processing units, and are grouped as CPU
sockets, cores, and hardware threads. These correspond to the letters S, C, T. In the mask. An uppercase
character allows a device to use a computing unit, while a lowercase character forbids it, as indicated
by the following table:

Table 7.5.2: Mask Composition

Unit To Mask Enable Unit with Disable Unit with

Socket S s

Core C c

Hardware Thread T t

In practice, s and t are currently (May 2015) ignored, so that only cores can be masked.
Some mask examples:

• SccSCC: This is a two-core two-socket system. The first socket cannot be used, while both cores on
the second socket can be used.

• SCcCCSccCC: This is a four-core two-socket system. The first socket has its first, third, and fourth
cores available, and the second socket has its third and fourth cores available.

Some configuration examples from cmsh and the corresponding RSMAP complex attribute values on
the host:

• Naming 2 GPUs:

[root@bright91 ~]# cmsh
[bright91]% category roles default
[bright91->device[bright91]->roles]% assign ugeclient; commit
[bright91->device[bright91]->roles[ugeclient]] show | grep -i gpu
GPU devices gpu0 gpu1
GPUs 2

The RSMAP attribute value is then:
GPU=2(gpu0 gpu1)

1Integration of PCI-e MIC cards is discontinued from Bright Cluster Manager 8.2 onwards, but UGE support for the cards via
RSMAP attributes continues. This means that the administrator typically would download the MIC MPSS packages, compile the
driver, install the images manually, and after getting the MICs to work, would integrate the MIC with the appropriate RSMAP
attributes

© Bright Computing, Inc.

296 Workload Management

• Allow GPUs to use only different sockets:

[bright91->device[bright91]->roles[ugeclient]]% show | grep -i gpu
GPU devices gpu0:SCCCCScccc gpu1:SccccSCCCC
GPUs 0

The RSMAP attribute value is then:
GPU=2(gpu0:SCCCCScccc gpu1:SccccSCCCC)

• Allow Xeon Phi resources to set up sockets in a spaced-out way:

Here, 4 MICs mic0 to mic3 have their cores enabled as follows: The first core of mic0, the second
core of mic1, the third core of mic2 and the fourth core of mic3. The remaining cores of the MICs
are disabled:

[bright91->device[bright91]->roles[ugeclient]]% show | grep mic
MIC devices mic0:SCccc mic1:ScCcc mic2:SccCc mic3:ScccC

As is seen here, MICs are set up very much like GPUs, and also within the ugeclient role. The
only differences are that the parameters that are set differ according to the accelerator used:

– while for GPUs topology masks are set for the GPU devices parameter, for MICs topology
masks are set for the MIC devices parameter

– while for GPUs the number of GPUs is manually specified in the Gpus parameter, for MICs
the number of MICs is counted automatically and there is no equivalent parameter.

The RSMAP attribute value in this example is then:
MIC=4(mic0:SCccc mic1:ScCcc mic2:SccCc mic3:ScccC)

Further detailed information about RSMAP and topology mask usage can be found in the Univa Grid
Engine Administrator’s Guide.

7.5.3 Configuring And Running PBS
PBS Variants
Bright Cluster Manager provides three variants of PBS:

• PBS Pro Commercial Edition. This is the commercial variant. It requires a license or a license
server in order to run jobs. This information can be provided during a run of the setup wizard, or
it can be manually configured after setup.

– The version 2020 packages for the commercial variant are available as:

* pbspro2020 and

* pbspro2020-client.

– The version 2021 packages for the commercial variant are available as:

* pbspro2021 and

* pbspro2021-client.

Pre-2020 major versions of this PBS variant were denoted by 2 digits (such as 18 or 19) to
signify the year. Since version 20 the numbering is denoted by 4 digits (2020 and 2021).

• PBS Pro Community Edition (or CE). This is the variant with community support (http://pbspro.
org). The version 19 packages for the community edition are available as:

– pbspro19-ce for the server

– pbspro19-ce-client for the compute nodes.

© Bright Computing, Inc.

http://pbspro.org
http://pbspro.org

7.5 Configuring And Running Individual Workload Managers 297

• For version 20 Altair is renaming PBS Pro Community Edition to OpenPBS, and the packages are
available as:

– openpbs20 for the server, and

– openpbs20-client for the compute nodes.

• OpenPBS version 22 packages are also available as:

– openpbs22.05 for the server, and

– openpbs22.05-client for the compute nodes.

All three variants can be installed as a selection option during Bright Cluster Manager 9.1 installa-
tion, at the point when a workload manager must be selected (figure 3.10 of the Installation Manual).
Alternatively they can be installed later on, when the cluster has already been set up.

When no particular edition is specified in the Bright Cluster Manager documentation, then the text
is valid for all editions.

If Bright Cluster Manager has already been set up without PBS, then the cm-wlm-setup tool (sec-
tion 7.3) should be used to install and initialize PBS.

PBS Pro Versions
Bright Cluster Manager is integrated with the version 20 PBS Pro Commercial and version 19 PBS Pro
CE workload managers, and with the versions 20 and 22 OpenPBS workload manager.

The PBS packages can be installed and removed with a package manager such as YUM.
Bright Cluster Manager provides a similar level of integration for the Commercial and the CE pack-

ages. It is up to the cluster administrator to decide which version is set up.
For example, an existing pbspro19-ce package can be removed and a new pbspro2020 package can

be installed with the package manager as follows (assuming the administrator is using YUM, and that
the PBS Pro workload manager is already disabled):

Example

[root@bright91 ~]# yum remove pbspro19-ce pbspro19-ce-client
[root@bright91 ~]# yum remove --installroot=/cm/images/default-image pbspro19-ce-client
[root@bright91 ~]# yum install pbspro2020 pbspro2020-client
[root@bright91 ~]# yum install --installroot=/cm/images/default-image pbspro2020-client

The PBS packages that Bright Computing provides from the Bright Computing repositories should
be used instead of other available versions, such as from the Linux distribution.

Installing PBS
After package installation via the package manager, as described in the preceding section, PBS can be
installed and initialized to work with Bright Cluster Manager via cm-wlm-setup. With no options, an
Ncurses session is started to guide the process. The alternative CLI process with options might take the
following forms:

Example

[root@bright91 ~]# cm-wlm-setup --wlm pbspro --wlm-cluster-name ppro --license <license information>

or

[root@bright91 ~]# cm-wlm-setup --wlm pbspro-ce --wlm-cluster-name pce

© Bright Computing, Inc.

298 Workload Management

The option --wlm pbspro installs the commercial version, while --wlm pbspro-ce installs the commu-
nity version.

The license information is either a path to a license file, or it is a Altair license server address list in the
format:

<port1>@<host1>:<port2>@<host2>:<...>@<...>:<portN>@<hostN>

This license information can also be set manually for the pbs_license_info attribute. For example if
there is just one license server, pbspro-license-server, serving on port 6200, it could be set with qmgr
as follows:

Example

qmgr -c "set server pbs_license_info = 6200@pbspro-license-server"

The software components are installed and initialized by default under the Spool directory, which
is defined by the PBS_HOME environment variable. The directory is named after the WLM cluster name,
and follows a path of the form:
/cm/shared/apps/pbspro/var/spool/<WLM cluster name>
or
/cm/shared/apps/pbspro-ce/var/spool/<WLM cluster name>
as appropriate.

The paths /cm/shared/apps/pbspro, /cm/shared/apps/openpbs, or /cm/shared/apps/pbspro-ce
are the Prefix settings of the WLM, and depend on whether the WLM is running PBS Pro, OpenPBS or
PBS Pro CE.

Users must load an environment module associated with the cluster name to set $PBS_HOME and
other environment variables, in order to use that cluster.

Example

[root@bright91 ~]# module load pbspro

PBS Configuration
PBS documentation is available at http://www.altair.com/pbs-works-documentation.

By default, PBS examples are available under the directory /cm/shared/examples/workload/pbspro/
jobscripts/

Some PBS configuration under Bright Cluster Manager can be done using roles. The roles are the
same for all variants of PBS and denoted as PBS Pro roles:

• In Bright View the roles setting allows the configuration of PBS Pro client and server roles.

– For the PBS Pro server role, the role is enabled, for example on a head node bright91, via a
clickpath of:
Devices→Head Nodes→bright91→Settings→Roles→Add→PBS pro server role

* Within the role window for the server role, its installation path and server spool path can
be specified.

– For the PBS Pro client role, the role is enabled along a similar clickpath, just ending at PBS pro
client role. The number of slots, GPUs and other properties can be specified, and queues
can be selected.

• In cmsh the client and server roles can be managed for the individual nodes in device mode,
or managed for a node category in category mode, or they can be managed for a configuration
overlay in configurationoverlay mode.

For example, if there is a PBS Pro cluster instance called pbsfast, then the head node could be
assigned a PBS Pro server role, with the following properties:

© Bright Computing, Inc.

/cm/shared/apps/pbspro
/cm/shared/apps/openpbs
/cm/shared/apps/pbspro-ce
http://www.altair.com/pbs-works-documentation
/cm/shared/examples/workload/pbspro/jobscripts/
/cm/shared/examples/workload/pbspro/jobscripts/

7.5 Configuring And Running Individual Workload Managers 299

Example

[root@bright91 ~]# cmsh
[bright91]% device roles bright91
[bright91->device[bright91]->roles]% assign pbsproserver
[bright91->device*[bright91*]->roles*[pbsproserver*]]% show
Parameter Value
-------------------------------- --
Name pbsproserver
Revision
Type PbsProServerRole
Add services yes
WLM cluster
Provisioning associations <0 internally used>
External Server no
Comm Settings <submode>
[bright91->device*[bright91*]->roles*[pbsproserver*]]% set wlmcluster pbsfast; commmit
[bright91->device[bright91]->roles[pbsproserver]]%

Similarly, a category of nodes that can be used by the instance pbsfast, and called fastnodes,
may have a PBS Pro client role assigned and set with the following properties:

Example

[bright91->category[fastnodes]->roles[pbsproclient]]% show
Parameter Value
-------------------------------- --
Name pbsproclient
Revision
Type PbsProClientRole
Add services yes
WLM cluster pbsfast
Slots 1
GPUs 0
All Queues no
Queues
Properties
Provisioning associations <0 internally used>
Mom Settings <submode>
Comm Settings <submode>
Node Customizations <0 in submode>

Cloudbursting with cluster extension may need special handling for PBS. If this feature is needed,
then the administrator should contact Bright Computing support via the website https://support.
brightcomputing.com.

Further configuration of PBS is done using its qmgr command and is covered in the PBS documenta-
tion.

Running PBS
For the WLM cluster instances, PBS runs the following four daemons:

1. a pbs_server daemon running, typically on the head node. This handles submissions acceptance,
and talks to the execution daemons on the compute nodes when sending and receiving jobs. It
writes logs to the var/spool/<WLM cluster instance>/server_logs/ directory, which is a directory
that is under /cm/shared/apps/pbspro or /cm/shared/apps/pbspro-ce. Queues for this service
are configured with the qmgr command.

© Bright Computing, Inc.

https://support.brightcomputing.com
https://support.brightcomputing.com
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro-ce

300 Workload Management

2. a pbs_sched scheduler daemon, also typically running on the head node. It writes logs to
the var/spool<WLM cluster instance>/sched_logs/ directory under /cm/shared/apps/pbspro or
/cm/shared/apps/pbspro-ce.

3. a pbs_mom execution daemon running on each compute node. This accepts, manages, and returns
the results of jobs on the compute nodes. By default, it writes logs

• to the relative directory var/spool/<WLM cluster instance>/mom_logs/, which is under /cm/
shared/apps/pbspro or /cm/shared/apps/pbspro-ce
and

• to /cm/local/apps/pbspro/var/spool/mom_logs/ on nodes with the client role.

4. a pbs_comm communication daemon usually running on the head node. This handles communica-
tion between PBS daemons, except for server-to-scheduler and server-to-server daemons commu-
nications. It writes logs

• to the relative directory var/spool/<WLM cluster instance>/comm_logs/, which is under /cm/
shared/apps/pbspro or /cm/shared/apps/pbspro-ce
and

• to /cm/local/apps/pbspro/var/spool/comm_logs/ on nodes with the client role.

Running PBS On Cluster Extension
When PBS is set up with cm-wlm-setup or during the installation of the head node, then the
pbsproclient role is assigned by default via a configuration overlay to the default node category only.

[root@bright91 ~]# cmsh -c "category; roles default; list"
Name (key)
--
[overlay:pbspro-ce-client] pbsproclient
...

In order to add cloud nodes to PBS, the administrator can assign the pbsproclient role manually.
There are two types of PBS configuration in this case. The configurations can be applied to both the

commercial and to the community editions.

1. pbs_mom daemons on cloud compute nodes communicate to the pbs_server directly.

This scenario is suited to a non-VPN setup where cloud nodes have addresses on the same IP
subnet for the cloud and for the on-premises parts of the cluster. Usually this kind of setup is used
with Amazon DirectConnection or Azure ExpressRoute. In order to add new cloud nodes, the
administrator just needs to assign the pbsproclient role to the cloud node category or the cloud
nodes directly.

2. pbs_mom daemons on cloud compute nodes communicate to the pbs_server via a separate
pbs_comm server. Bright Computing recommends the use of the cloud-director for this purpose.

This can be useful if cluster extension is configured with a VPN tunnel setup. In this case the
pbs_mom running on a cloud node communicates with the pbs_server by using the VPN con-
nection, and the communication traffic goes via an OpenVPN server. The OpenVPN connection
adds overhead on the cloud-director where the OpenVPN daemon runs. If the traffic is routed
via pbs_comm running on cloud-director, then the OpenVPN server is not used. This is because
pbs_comm daemon on the cloud director resolves the cloud pbs_mom addresses with cloud IP ad-
dresses, while pbs_server resolves pbs_comm on the cloud director by using the VPN tunnel IP.

In order to configure PBS to pass the communication traffic via pbs_comm, the administrator should
assign pbsproclient roles to not only the compute cloud nodes, but also to the cloud-director.

© Bright Computing, Inc.

/cm/shared/apps/pbspro
/cm/shared/apps/pbspro-ce
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro-ce
/cm/local/apps/pbspro/var/spool/mom_logs/
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro-ce
/cm/local/apps/pbspro/var/spool/comm_logs/

7.5 Configuring And Running Individual Workload Managers 301

On the cloud director, the administrator should enable pbs_comm daemon to start, and pbs_mom
daemon to not start, automatically. These actions are done in the commsettings and momsettings
submodes of pbsproclient role.

For the pbsproclient role assigned in the configuration overlay, the settings can be accessed in
cmsh as in the following:

Example

[root@bright91 ~]# cmsh
[bright91]% configurationoverlay
[bright91->configurationoverlay]% use pbspro-ce-client
[bright91->configurationoverlay[pbspro-ce-client]]% roles
[bright91->configurationoverlay[pbspro-ce-client]->roles]% use pbsproclient
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]]% show
Parameter Value
-------------------------------- --
Name pbsproclient
Revision
Type PbsProClientRole
Add services yes
WLM cluster pbspro-ce
Slots 1
GPUs 0
All Queues no
Queues workq
Properties
Provisioning associations <0 internally used>
Mom Settings <submode>
Comm Settings <submode>
Node Customizations <0 in submode>
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]]% commsettings
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]->commsettings]% show
Parameter Value
-------------------------------- --
Comm Routers
Revision
Comm Threads 4
Start Comm no
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]->commsettings]% ..
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]]% momsettings
[bright91->configurationoverlay[pbspro-ce-client]->roles[pbsproclient]->momsettings]% show
Parameter Value
-------------------------------- --
Output Hostname
Revision
Leaf Routers
Leaf Name
Leaf Management FQDN no
Start Mom yes
Spool /cm/local/apps/pbspro-ce/var/spool

Further configuration that should be carried out is to set the commrouters parameter on the cloud
director to master, and set the leafrouters parameter on the compute cloud nodes to the host-
name of the cloud director.

For example (some text elided):

© Bright Computing, Inc.

302 Workload Management

Example

[root@bright91 ~]# cmsh
[bright91]% category roles cloud-nodes
[bright91->category[cloud-nodes]->roles]% assign pbsproclient
[bright91->category*[cloud-nodes*]->roles*[pbsproclient*]]% set queues cloudq
[bright91->...*]->roles*[pbsproclient*]->momsettings*]% momsettings
[bright91->...*]->roles*[pbsproclient*]->momsettings*]% set leafrouters director
[bright91->...*]->roles*[pbsproclient*]->momsettings*]% commit
[bright91->...*]->roles[pbsproclient]->momsettings]% device roles director
[bright91->...*]->roles]% assign pbsproclient
[bright91->...*]->roles*[pbsproclient*]]% momsettings
[bright91->...*]->roles*[pbsproclient*]->momsettings*]% set startmom no
[bright91->...*]->roles*[pbsproclient*]->momsettings*]% ..
[bright91->...*]->roles*[pbsproclient*]]% commsettings
[bright91->...*]->roles*[pbsproclient*]->commsettings*]% set startcomm yes
[bright91->...*]->roles*[pbsproclient*]->commsettings*]% set commrouters master
[bright91->...*]->roles*[pbsproclient*]->commsettings*]% commit
[bright91->...]->roles[pbsproclient]->commsettings]%

7.5.4 Installing, Configuring, And Running LSF
IBM prefers to make LSF available directly from their Passport Advantage Online website, which is why
it is not available by direct selection in figure 3.10 of the Installation Manual.

Installing LSF
The workload manager LSF version 10.1 is installed and integrated into Bright Cluster Manager 9.1 with
the following steps:

1. The following LSF files should be downloaded from the IBM web site into a directory on the head
node:

• Installation package: lsf<lsf_ver>_lsfinstall_linux_<cpu_arch>.tar.Z

• Distribution package: lsf<lsf_ver>_linux<kern_ver>-glibc<glibc_ver>-<cpu_arch>.tar.Z

• Documentation package (optional): lsf<lsf_ver>_documentation.tar.Z

Here:

• <lsf_ver> is the LSF version, for example: 10.1

• <kern_ver> is the Linux kernel version, for example: 2.6

• <glibc_ver> is the glibc library version, for example: 2.3

• <cpu_arch> is the CPU architecture, for example: x86_64

A check should be done to ensure that the tar.Z files have not been renamed or had their names
changed to lower case during the download, in order to avoid installation issues. All the files must
be in the same directory before installation.

In case of an existing failover setup, the installation is done on the active head node.

A license file for LSF may also be needed for the installation, but it does not have to be in the same
directory as the other tar.Z files.

2. The cm-lsf package must be installed on the head node. The cm-lsf-client package must be
installed on both the head node and within the software images. By default they should have been
already installed. If not then they can be installed manually from the Bright Computing repository.
For RHEL-based distributions the procedure looks like:

© Bright Computing, Inc.

http://www.ibm.com/software/passportadvantage

7.5 Configuring And Running Individual Workload Managers 303

[root@bright91 ~]# yum install cm-lsf cm-lsf-client
[root@bright91 ~]# chroot <IMAGE> yum install cm-lsf-client

For SLES distributions the procedure looks like:

[root@bright91 ~]# zypper install cm-lsf cm-lsf-client
[root@bright91 ~]# chroot <IMAGE> zypper install cm-lsf-client

For Ubuntu distributions the procedure looks like:

[root@bright91 ~]# apt-get install cm-lsf cm-lsf-client
[root@bright91 ~]# cm-chroot-sw-img <IMAGE>
[root@bright91 ~]# apt-get install cm-lsf-client
...
[root@bright91 ~]# exit

The cm-lsf and cm-lsf-client packages contain a template for an environment module file, an
installation configuration file, and systemd unit files. The installation configuration file may be
tuned by the administrator if required. It is passed to the lsfinstall script distributed with LSF,
which is executed by cm-wlm-setup during setup. To change the default values in the installation
configuration file, the administrator should change the template file:

[root@bright91 ~]# cd /cm/shared/apps/lsf/var/cm/
[root@bright91 cm]# vi install.config.template
...

Values enclosed by a percentage sign, ‘%’, are replaced by cm-wlm-setup during installation. If
such values are replaced by custom values, then cm-wlm-setup does not change them, and the
custom values are used during installation.

If install.config is changed instead of the template file, then cm-wlm-setup replaces it with
the configuration file generated from the template. So, changing install.config directly should
almost certainly not ever be done.

3. cm-wlm-setup is run. The directory where the LSF files were downloaded is specified on one of
the setup screens, or with the --archives-location option.

Example

[root@bright91 ~]# cm-wlm-setup --wlm lsf --setup --archives-location /root/lsf

The same can be achieved by executing cm-wlm-setup without any command line arguments. The
required information can be specified within the Ncurses configuration screens in this case. Also
the same can be achieved with the WLM Wizard in BrightView.

4. The nodes are then rebooted, and the LSF command bhosts then displays an output similar to:

Example

[root@bright91 ~]# module load lsf
[root@bright91 ~]# bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP ...
bright91 ok - 2 0 0 0 ...
head2 ok - 0 0 0 0 ...

© Bright Computing, Inc.

304 Workload Management

node001 ok - 1 0 0 0 ...
node002 ok - 1 0 0 0 ...
node003 unavail - 1 0 0 0 ...
node004 closed - 1 0 0 0 ...
node005 ok - 1 0 0 0 ...

The output in the preceding example has been truncated for this manual, for convenience.

The installation status can be checked with the service lfsd (some output elided):

[root@bright91 ~]# systemctl status lsfd
lsfd.service - IBM Spectrum LSF
Loaded: loaded (/usr/lib/systemd/system/lsfd.service; enabled; vendor preset: disabled)
Active: active (running) since Mon 2020-03-30 13:59:29 CEST; 27min ago
Tasks: 13

Memory: 107.6M
CGroup: /system.slice/lsfd.service

|- 2411 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/lim
|- 3470 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/pim
|- 3472 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/res
|- 3478 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/sbatchd
|- 3483 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/mbatchd -d

/cm/shared/apps/l...
|- 3499 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/mbschd
|- 3527 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/melim
`-11580 /cm/shared/apps/lsf/lsf...3-x86_64/10.1/linux2.6-glibc2.3-x86_64/etc/mbatchd -d

/cm/shared/apps/l...

Mar 30 13:59:21 bright91 systemd[1]: Starting IBM Spectrum LSF...
Mar 30 13:59:22 bright91 lsf_daemons[2274]: Starting the LSF subsystem
Mar 30 13:59:29 bright91 systemd[1]: Started IBM Spectrum LSF.
[root@bright91 ~]#

while default queues can be seen by running:

[root@bright91 ~]# module load lsf
[root@bright91 ~]# bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P ...
owners 43 Open:Active - - - ...
priority 43 Open:Active - - - ...
night 40 Open:Active - - - ...
chkpnt_rerun_qu 40 Open:Active - - - ...
short 35 Open:Active - - - ...
license 33 Open:Active - - - ...
normal 30 Open:Active - - - ...
interactive 30 Open:Active - - - ...
idle 20 Open:Active - - - ...

The output in the preceding example has been truncated for this manual, for convenience.

If more than one instance of an LSF cluster is set up, then the full modulefile name should be
specified. For example:

[root@bright91 ~]# module load lsf/lsf1/10.1

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 305

Configuring LSF
LSF server configuration: After LSF is set up with cm-wlm-setup, the following CMDaemon settings
can be modified for the LSF server role:

• External Server: a value of yes means that LSF server daemons are running on an external server
that is not managed by Bright Cluster Manager.

The following settings are available in LSF cluster settings, and are applied to all the LSF roles of the
LSF cluster:

• Prefix: this sets the path to the root location of the LSF installation. The default value is /cm/
shared/apps/lsf/current.

• Var: this sets the path to the var directory of LSF. The default value is /cm/shared/apps/lsf/var.

• Cgroups: this is a submode that contains LSF-related cgroups settings.

The cgroups settings that affect LSF behavior are available via the LSF instance. For example, for
an instance lsf, the settings can be accessed within cmsh via cmsh->wlm[lsf]->cgroups. The settings
available are:

• Automount: if yes, then the workload manager tries to mount a subsystem if it is not mounted yet.
The default value is No.

• Job Cgroup Template: this is the template relative job cgroup path. The token $CLUSTER specified
in this template path is replaced with the actual LSF cluster name, and $JOBID is replaced by the
job ID. The path is used by the Bright Cluster Manager monitoring system in order collect job
metrics from the cgroups. By default, the path is set to "lsf/$CLUSTER/job.$JOBID.*".

• Process Tracking: if yes, then processes are tracked based on job control functions such as: termi-
nation, suspension, resume, and other signaling. These are used on Linux systems that support the
freezer subsystem under cgroups. The parameter sets LSF_PROCESS_TRACKING in lsf.conf.

• Linux Cgroup Accounting: if yes, then LSF tracks processes based on CPU and memory ac-
counting. This is for Linux systems that support the memory and cpuacct subsystems un-
der cgroups. Once enabled, this parameter takes effect for new jobs. The parameter sets
LSF_LINUX_CGROUP_ACCT in lsf.conf.

If this parameter and Process Tracking are both enabled, then they take precedence over the
parameters LSF_PIM_LINUX_ENHANCE and EGO_PIM_SWAP_REPORT in lsf.conf.

• Mount Point: specifies a path where cgroups is mounted. It only makes sense to set this when the
location is not standard for the operating system.

• Resource Enforce: If yes, then resource enforcement is carried out through the Linux memory
and cpuset subsystems under cgroups. This is for Linux systems with cgroup support. The pa-
rameter sets LSB_RESOURCE_ENFORCE in lsf.conf.

The server role settings can be modified as follows:

• Within Bright View: For example for a head node bright91, via a clickpath of
Devices→Head Nodes→bright91→Settings→Roles→LSF server role

• Within cmsh: For a particular category in the category mode, or a particular device in the device
mode, the roles submode is chosen. Within the roles submode, the lsfserver object can be
assigned or used. The following example shows how to set the LSF prefix parameter for the
default category.

Example

© Bright Computing, Inc.

/cm/shared/apps/lsf/current
/cm/shared/apps/lsf/current
/cm/shared/apps/lsf/var

306 Workload Management

[root@bright91~]# cmsh
[bright91]% configurationoverlay use lsf-server; roles
[bright91->configurationoverlay[lsf-server]->roles]% use lsfserver
[bright91->...[lsfserver]]% set externalserver yes
[bright91->...[lsfserver*]]% commit

The global LSF cluster settings can be modified as follows:

• Within Bright View:
For example, for a head node bright91, via a clickpath of:
HPC→Wlm Clusters→CLUSTER_NAME→Settings

• Within cmsh:
A particular LSF cluster instance can be chosen within wlm mode, to set its global parameters. The
following example shows how to set the LSF prefix parameter for the lsf1 cluster.

Example

[root@bright91~]# cmsh
[bright91]% wlm use lsf1
[bright91->wlm[lsf1]]% set prefix /cm/shared/apps/lsf2
[bright91->wlm*[lsf1*]]% commit
[bright91->wlm[lsf1]]% commit

LSF client configuration: After installation, the following CMDaemon settings can be specified for the
LSF client role:

• Queues A restricted list of queues named “qname1”, “qname2” and so on can be set using a
command syntax like this instead:

set queues <qname1> [<qname2> ...]

Alternatively, these, and other queues can be added or deleted using Bright View (section 7.6.2) or
cmsh (section 7.7.2).

Figure 7.13: Bright View access to LSF configuration options via roles window options

© Bright Computing, Inc.

7.5 Configuring And Running Individual Workload Managers 307

• Options The options that can be set for a regular node node001, via figure 7.13, reached via a
clickpath of
Devices→Nodes[node001]→Edit→Settings→Roles→Add→LSF client role are:

– Slots: The number of CPUs per node. By default LSF tries to determine the value automati-
cally. If the number of slots is set to 0, then the node becomes an LSF submit host, so that no
jobs can run on the host, but users can submit their jobs from this host using the LSF utilities.

– GPUs: The number of GPUs per node

– Queues: All queues.

– Advanced button: This brings up a dialogue that allows GPU devices to be added.

– Node Customizations: LSF node custom properties (section 7.11).

From cmsh these properties are accessible from within the appropriate node or category roles
submode (section 7.4.2).

Submission hosts: By default, all compute nodes to which the lsfclient role is assigned, also become
submission hosts. This means that LSF users can submit their jobs from those compute nodes. If the
administrator wants to allow users to submit their jobs from a non-compute node—for example from a
login node—then the lsfsubmit role should be assigned, for example:

Example

[root@bright91~]# cmsh
[...->configurationoverlay[lsf1-submit]]% roles
[...->roles]% assign lsfsubmit
[...->roles*[lsfsubmit*]]% append lsfclusters lsf1
[...->roles*[lsfsubmit*]]% commit
[...->roles[lsfsubmit]]%

Configuring a node according to the preceding steps then allows users to submit their jobs from that
node, without the submitted jobs getting scheduled to run on that node.

If more than one LSF cluster is set up, and they share the same submit host, then a single lsfsubmit
role can be used. In this case, all the LSF cluster names should be appended to the lsfcluster parameter
of the role.

Further configuration: For further configuration the Administering Platform LSF manual provided with
the LSF software should be consulted.

Running LSF
Role assignment and role removal enables and disables LSF from Bright View (sections 7.4.1) or cmsh
(section 7.4.2).

An active LSF master service (typically, but not necessarily on a head node) has the following LSF-
related processes running on it:

© Bright Computing, Inc.

308 Workload Management

Process/Service Description

res Remote Execution Server*

sbatchd client batch job execution daemon*

mbatchd master batch job execution daemon

eauth External Authentication method

lim Load Information Manager*

pim Process Information Manager*

pem Process Execution Manager*

vemkd Platform LSF Kernel Daemon

egosc Enterprise Grid Orchestrator service controller

mbschd master batch scheduler daemon
*These services/processes run on compute nodes.

Non-active LSF-masters running as compute nodes run the processes marked with an asterisk only.
LSF daemon logs are kept under /cm/local/apps/lsf/var/log/, on each of the nodes where LSF

services run.

7.6 Using Bright View With Workload Management
Viewing the workload manager services from Bright View is described in section 7.4.3. The HPC (High
Performance Computing) icon, which looks like a speedometer, is the Bright View resource that allows
the following items to be accessed:

• WLM clusters: for WLM cluster settings for a WLM cluster instance to be viewed and managed

• jobs: for jobs to be viewed and managed

• queues: for queues to be viewed and managed

• job queue stats: for job queue statistics to be viewed

These items are described next.

7.6.1 Jobs Display And Handling In Bright View
The clickpath HPC→Jobs opens a window that displays displays a list of recent job IDs, along with the
scheduler, user, queue, and status of the job (figure 7.14).

© Bright Computing, Inc.

7.6 Using Bright View With Workload Management 309

Figure 7.14: Workload Manager Jobs

If there are jobs running, then buttons in the OPTIONS column allow the jobs to be examined and
managed.

• the Show button opens up a window with further details of the selected job.

• A selection button, , allows the selected job to be managed, via a Manage hint, using menu
options as follows:

– The Hold option stops selected queued jobs from being considered for running by putting
them in a Hold state.

– The Release option releases selected queued jobs in the Hold state so that they are considered
for running again.

– The Suspend option suspends selected running jobs.

– The Resume option allows selected suspended jobs to run again.

– The Cancel option removes selected jobs from the queue.

7.6.2 Queues Display And Handling In Bright View
The clickpath HPC→Wlm Clusters→Edit→Job Queues displays a list of queues available (figure 7.15).

Figure 7.15: Workload Manager Queues

Queues can be added or deleted. An Edit button allows existing queue parameters to be set, for
example as in figure 7.16.

© Bright Computing, Inc.

310 Workload Management

Figure 7.16: Workload Manager Queue Parameters Configuration

7.7 Using cmsh With Workload Management
The wlm mode in cmsh gives the administrator access to the WLM instances running on the cluster.

The cmsh tree (Appendix M) has the following submodes structure under the wlm mode:

`-- wlm
|-- cgroups
|-- chargeback
|-- jobqueue
|-- jobs
|-- parallelenvironments
`-- placeholders

• cgroups: provides ways to configure WLMs via the cgroup mechanism of the Linux kernel (sec-
tion 7.10)

• chargeback: provides ways to measure the costs of requested IT resources for WLM jobs (Chap-
ter 16).

• jobqueue: allows WLM job queues to be managed (section 7.7.2)

• jobs: allows WLM jobs to be viewed and managed (section 7.7.1)

• parallelenvironments: allows MPI job environment parameters to be configured (page 293) for
WLMs

© Bright Computing, Inc.

7.7 Using cmsh With Workload Management 311

• placeholders: allows nodes to be configured in advance, for planning resource use in WLMs
(section 8.4.8)

For basic WLM management via cmsh, the administrator is expected to use wlm mode with the jobs
and jobqueue submodes.

If there is just one WLM instance running on the cluster, then an administrator that accesses wlm
mode drops straight into the object representing that WLM instance, and can then access the submodes.

If there is more than one WLM running, then the administrator must select a WLM instance from the
top level wlm mode, with the use command, in order to access the submodes.

While at the top level wlm mode, the instances can be listed. The list shows the nodes used by the
instance, and the node roles assigned to the nodes.

Suppose Bright Cluster Manager is being used to manage two WLM instances:

• one Slurm WLM, named slr

• one UGE WLM, named uc

with their nodes having been allocated roles as follows:

Example

[bright91->wlm]% list
Type Name (key) Server nodes Submit nodes Client nodes
------ ------------------------ ------------ ------------------------- ----------------
Slurm slr node001 bright91,node001..node003 node002,node003
UGE uc node004 bright91,node004..node006 node005,node006

Then one way to list all jobs running per WLM instance, queue, and user, is with the filter com-
mand:

[bright91->wlm]% filter --running
WLM Job ID Job name User Queue Submit time Start time End time Nodes Exit code
---- ------ --------- ----- ------ ----------- ------------ --------- ----------------- ----------
slr 103 sjob maud defq 15:43:02 15:43:03 N/A node002,node003 0
slr 104 sjob maud defq 15:43:02 15:43:25 N/A node002,node003 0
slr 105 sjob maud defq 15:43:02 15:43:33 N/A node002,node003 0
slr 106 sjob maud defq 15:43:02 15:43:36 N/A node002,node003 0
slr 171 sjob maud defq 14:20:09 14:20:23 N/A node002,node003 0
uc 200 ugjob fred all.q 14:22:18 14:23:20 N/A node005,node006 0

The filter command can also be run within the jobs mode, for a particular WLM instance, and is
described in more detail on page 313.

An alternate way to list all jobs from wlm mode is with a foreach command to descend into jobs
submode to list the jobs for each WLM instance:

Example

[bright91->wlm]% foreach * (jobs ; list)
Type Job ID User Queue Running time Status Nodes
----- ------- ----- ------ ------------ ---------- ----------------
Slurm 55 maud defq 18m 10s COMPLETED node002,node003
Slurm 56 maud defq 18m 5s COMPLETED node002,node003
Slurm 57 maud defq 2m 11s RUNNING node002,node003
Slurm 58 maud defq 0s PENDING

Type Job ID User Queue Running time Status Nodes
----- ------- ----- ------ ------------ ---------- ----------------
UGE 96 maud all.q 2m 30s r node005,node006
UGE 97 maud 0s qw
UGE 98 maud 0s qw

© Bright Computing, Inc.

312 Workload Management

The jobs submode is now discussed further.

7.7.1 The jobs Submode In cmsh
Within the jobs submode of a WLM instance, the administrator can list jobs that are running or queued
up for that particular instance. For example, the running and queued jobs listed for a PBS instance may
be displayed as:

Example

[bright91->wlm[pbspro-ce]->jobs]% list
Type Job ID User Queue Running time Status Nodes
--------- ------------- ----------- ------------ ------------ -------- -------------
PBSPro 3117.bright91 pbuser1 hydroq 1s R node002
PBSPro 3118.bright91 pbuser2 workq 1s R node001
PBSPro 3119.bright91 pbuser1 hydroq 0s Q
PBSPro 3120.bright91 pbuser3 hydroq 0s Q
PBSPro 3121.bright91 pbuser1 hydroq 0s Q
PBSPro 3122.bright91 pbuser1 hydroq 0s Q

In the foreach jobs listings for the Slurm and UGE WLM instances shown earlier, the jobs are in a
running, queued up, or completed state. They are also all being run by a user maud, who happens to be
making use of both workload managers.

For Slurm, completed jobs are shown for a short time with the status COMPLETED. For UGE, completed
jobs are shown for an even shorter time with a blank for their status.

Commands That Change The Status Of A Queued Or Running Job
Within a jobs submode, the following commands, used with a job ID, can change the status of a partic-
ular queued or running job:

• hold: puts a queued job into a hold state. This prevents the job from being considered for running.

• release: releases a job from a hold state, putting it back in the queue, so that it can be considered
for running.

• suspend: pauses a running job

• resume: resumes a suspended job

• remove: removes a job

For example, continuing the case earlier on of the cmsh session with the foreach listing (page 311):

The administrator can suspend the running job with job ID 57 on the Slurm instance as follows:

Example

[bright91->wlm]% jobs slr; suspend 57
[bright91->wlm[slr]->jobs]% list | head -2; list | grep 57
Type Job ID User Queue Running time Status Nodes
----- ------- ----- ------ ------------ ---------- ----------------
Slurm 57 maud defq 2m 51s SUSPENDED node002,node003

and can hold the queued waiting job with job ID 98 on the UGE instance as follows:

Example

© Bright Computing, Inc.

7.7 Using cmsh With Workload Management 313

[bright91->wlm]% jobs uc; hold 98
[bright91->wlm[uc]->jobs]% list | head -2; list | grep 98
Type Job ID User Queue Running time Status Nodes
----- ------- ----- ------ ------------ ---------- ----------------
UGE 98 maud 0s hqw

The administrator can then resume the suspended job ID 57, and can release the held job ID 98 as
follows:

Example

[bright91->wlm[uc]->jobs]% wlm; jobs uc; release 98
[bright91->wlm[uc]->jobs]% wlm; jobs slr; resume 57

Commands To Inspect Jobs:
Within the jobs submode, the following commands can be used to inspect a job:

• show <job ID>: properties are shown for a running or pending job.

• info <job ID>: information is shown about a historic job.

• statistics: statistics are shown for jobs. More detail on the statistics command is given on
page 314.

• list: lists pending and running jobs. Recently completed jobs are also displayed.

• dumpmonitoringdata [OPTIONS] [<start-time> <end-time>] <metric> <job id>: Displays the
monitoring data for a specific metric or healthcheck for a running or completed job. Example:
dumpmonitoringdata CtxtSwitches 170

More detail is given on the dumpmonitoringdata command in section 13.6.4.

• latestmonitoringdata [OPTIONS]<job ID>: Displays the last measured job monitoring data for
the job.

– latesthealthdata <job ID>: The subset of health checks within the last measured monitor-
ing data.

– latestmetricdata <job ID>: The subset of metrics within the last measured monitoring data.

More detail is given on the latest*data commands in section 13.6.3.

• measurables <job ID>: The measurables used for job monitoring data.

– healthchecks <job ID>: The subset of health checks within the measurables used for job
monitoring data.

– metrics <job ID>: The subset of metrics within the measurables used for job monitoring data.

– enumetrics <job ID>: The subset of enumetrics within the measurables used for job monitor-
ing data.

The filter Command Within jobs Submode
If run at the top-level wlm mode, then the filter command lists jobs for all WLM instances.

It can also be run at the submode-level jobs mode, for a particular WLM instance, in which case it
lists only the jobs for that instance (section 14.5).

The filter command without any options is a bit like an extension of the list command in that it
lists currently pending and running jobs, although in a different format. However, in addition, it also
lists past tasks, with their start and end times.

An example to illustrate the output format for a Slurm instance, somewhat simplified for clarity, is:

© Bright Computing, Inc.

314 Workload Management

Example

[bright91->wlm[myslurminstance]]% filter
Job ID Job name User Queue Submit time Start time End time Nodes Exit code
------ -------------- ----- ----- ----------- ---------- -------- ---------------- ---------
2 hello fred defq 15:00:51 15:00:51 15:00:52 node001 0
3 mpirun fred defq 15:03:17 15:03:17 15:03:18 node001 0
...
25 slurmhello.sh fred defq 16:17:30 16:17:31 16:17:33 node001..node004 0
26 slurmhello.sh fred defq 16:18:39 16:18:40 16:19:02 node001..node004 0
27 slurmhello.sh fred defq 16:18:41 16:19:03 16:19:25 node001..node004 0
28 slurmhello.sh fred defq 16:18:41 N/A N/A node001..node004 0
29 slurmhello.sh fred defq 16:18:42 N/A N/A node001..node004 0

In the preceding example, the start and end times for jobs 28 and 29 are not yet available because the
jobs are still pending.

Because all jobs for that WLM instance—historic and present—are displayed by the filter com-
mand, it means that finding a particular job in the output displayed can be hard. The displayed output
can therefore be filtered further.

The following options to the filter command are therefore available in order to find particular
groupings of jobs:

• -w|--wlm: by WLM instance

• -u|--user: by user

• -g|--group: by group

• --ended: by jobs that ended successfully, with a zero exit status

• --running: by jobs that are running

• --pending: by jobs that are pending

• --failed: by jobs that finished unsuccessfully, with a non-zero exit status

It may take about a minute for CMDaemon to become aware of job data. This means that, for example,
a job submitted 10s ago may not show up in the output.

Further options to filter command can be seen by running the command help filter within the
wlm or jobs modes.

The statistics Command
The statistics command without any options displays an overview of states for all past and present
jobs:

Example

[bright91->wlm[uc]]% statistics
Pending Running Finished Error Nodes
---------- ---------- ---------- ---------- ----------
4 0 154 5 309

The options available include the following:

• -w|--wlm <WLM instance>: by WLM instance

• -u|--user: by user

• -g|--group: by group

© Bright Computing, Inc.

7.7 Using cmsh With Workload Management 315

• -a|--account: by account

• -p|--parentid: by job parent ID

• --hour : by hour

• --day: by day

• --week: by week

• --interval: by interval

The jobs statistics can be split across users. An example of the output format in this case, somewhat
simplified for clarity, is:

Example

[bright91->wlm[slurm]->jobs]% statistics --user
User Pending Running Finished Error Nodes
---------------------- ---------- ---------- ---------- ----------
alice 0 0 2 0 1
bob 0 0 5 0 4
charline 0 1 2 0 2
dennis 0 0 6 0 4
eve 0 0 4 0 1
frank 0 0 1 0 1

The job statistics can be displayed over various time periods, if there are jobs within the period. An
example of the output format for an interval of 60s is:

Example

[bright91->wlm[slurm]->jobs]% statistics --interval 60
Date Pending Running Finished Error Nodes
-------------------- ---------- ---------- ---------- ---------- ----------
2020/05/13 15:00:00 0 0 1 0 1
2020/05/13 15:03:00 0 0 7 0 7
2020/05/13 15:04:00 0 0 1 1 2
2020/05/13 15:06:00 0 0 3 0 7
2020/05/13 15:07:00 0 0 1 0 0
2020/05/13 15:08:00 0 0 6 0 8
2020/05/13 16:17:00 0 0 1 0 4
2020/05/13 16:19:00 0 0 9 0 36
2020/05/13 16:20:00 0 0 6 0 24
2020/05/13 16:21:00 0 0 3 0 12

Job Directives
Job directives configure some of the ways in which CMDaemon manages job information processing.

The administrator can configure the following directives:

• JobInformationKeepCount: The maximal number of jobs that are kept in the cache, default 8192,
maximal value 100 million (page 803).

• JobInformationKeepDuration: How long to keep jobs in the CMDaemon database, default 28
days (page 803).

• JobInformationMinimalJobDuration: Minimal duration for jobs to place them in the cache, de-
fault 0s (page 804).

• JobInformationFlushInterval: Over what time period to flush the cache to storage (page 804).

• JobInformationDisabled: Disables job information processing (page 802).

© Bright Computing, Inc.

316 Workload Management

7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode
The jobqueue submode under the top level wlmmode can be used to manage queues for a WLM instance.
Queue properties can be viewed and set.

From the top level wlm mode, a list of queues can be seen for each WLM instance by descending into
the WLM instance with a foreach:

Example

[bright91->wlm]% foreach * (get name; jobqueue; list)
slr
Name (key) Nodes
------------ ------------------------
defq node002,node003
uc
Name (key) Nodes
------------ ------------------------
all.q node005,node006
[bright91->wlm]%

The usual object manipulation commands (show, get, set and others) of section 2.5.3 work in the
jobqueue submode.

Job Queue Parameters For UGE
For example, for a UGE instance, the show command might display the following properties:

Example

[bright91->wlm[uc]->jobqueue]% show all.q
Parameter Value
-------------------------------- --
Epilog NONE
Maximal runtime INFINITY
Minimal runtime INFINITY
Name all.q
Nodes node005,node006
Options
Parallel environments openmpi,mpich2
Prolog NONE
Revision
Slots 0
Temp directory /tmp
Type UGE
WlmCluster uc
Resume method NONE
Starter method NONE
Suspend method NONE
Terminate method NONE

Job Queue Parameters For Slurm
Similarly, for a Slurm instance, the show command might display the following properties:

[bright91->wlm[slr]->jobqueue]% show defq
Parameter Value
-------------------------------- --
Allow QOS ALL
Allow accounts ALL

© Bright Computing, Inc.

7.7 Using cmsh With Workload Management 317

Allow groups ALL
Alternate
Default memory per CPU UNLIMITED
Default memory per Node UNLIMITED
Default time NONE
Deny Accounts
Deny Groups
Deny QOS
Disable root no
Grace time 0
Hidden no
LLN no
Max CPUs per node UNLIMITED
Max memory per CPU UNLIMITED
Max memory per Node UNLIMITED
Max nodes UNLIMITED
Max time UNLIMITED
Min nodes 1
Name defq
Nodes node002,node003
Options
OverSubscribe NO
Preemption mode OFF
Priority Job Factor 1
Priority Tier 1
Require reservation NO
Revision
Root only no
Select Type Parameters
Status
TRES Billing Weights
Total cpus 0
Total nodes 0
Type Slurm
WlmCluster slr
default yes

Job Queue Parameters For PBS
Likewise, for a PBS instance, the show command might display the following properties:

[bright91->wlm[pb]->jobqueue]% show workq
Parameter Value
-------------------------------- --
ACL host enable no
Default Queue yes
Default runtime
Enabled yes
From Route Only no
Maximal Queued 0
Maximal runtime 240:00:00
Minimal runtime 00:00:00
Name workq
Nodes node008,node009
Options
Priority 0
Queue Type EXECUTION

© Bright Computing, Inc.

318 Workload Management

Revision
Route Held Jobs no
Route Lifetime 0
Route Retry Time 0
Route Waiting Jobs no
Routes
Started yes
Type PBSPro
WlmCluster pb

7.7.3 Nodes Drainage Status And Handling In cmsh
Running the device mode command drainstatus displays if a specified node is in a Drained state or
not. In a Drained state jobs are not allowed to start running on that node.

Running the device mode command drain puts a specified node in a Drained state:

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% drainstatus
Node Queue Status
------------------------ ------------------------ ----------------
node001 PbsPro/pb:workq
node002 UGE/uc/all.q
[bright91->device]% drain node001
Node Queue Status
------------------------ ------------------------ ----------------
node001 PbsPro/pb:workq Drained

The undrain command unsets the Drained state so that jobs may start running on the node again.
The drain, undrain, and drainstatus commands have the same grouping options. The grouping

options can make the command apply to not just one node, but to a list of nodes, a group of nodes, a
category of nodes, a rack, a chassis, an overlay, a role, or a status. Continuing the example:

[bright91->device]% drain -c default; !# for a category of nodes
Node Queue Status
------------------------ ------------------------ ----------------
node001 PbsPro/pb:workq Drained
node002 UGE/uc/all.q Drained

The help text for each command indicates the syntax:

Example

[root@bright91 ~]# cmsh -c "device help drain"
Name: drain - Drain jobs (not data) on a set of nodes

Usage: drain [OPTIONS/node]

Options: -n, --nodes <node>
List of nodes, e.g.
node001..node015,node020..node028,node030 or
^/some/file/containing/hostnames

-g, --group <group>
Include all nodes that belong to the node group, e.g.

© Bright Computing, Inc.

7.7 Using cmsh With Workload Management 319

testnodes or test01,test03

-c, --category <category>
Include all nodes that belong to the category, e.g. default
or default,gpu

-r, --rack <rack>
Include all nodes that are located in the given rack, e.g
rack01 or rack01..rack04

-h, --chassis <chassis>
Include all nodes that are located in the given chassis, e.g
chassis01 or chassis03..chassis05

-e, --overlay <overlay>
Include all nodes that are part of the given overlay, e.g
overlay1 or overlayA,overlayC

-m, --image <image>
Include all nodes that have the given image, e.g default-image
or default-image,gpu-image

-t, --type <type>
Type of devices, e.g node or virtualnode,cloudnode

-i, --intersection
Calculate the intersection of the above selections

-u, --union
Calculate the union of the above selections

-l, --role <role>
Filter all nodes that have the given
role

-s, --status <status>
Only run command on nodes with specified status, e.g. UP,
"CLOSED|DOWN", "INST.*"

--setactions <actions>
set drain actions, actions already set will be removed
(comma-separated)

--appendactions <actions>
append drain actions to already existing drain actions
(comma-separated)

--removeactions <actions>
remove drain actions

--listactions
list all drain actions

--clearactions
remove all drain actions

© Bright Computing, Inc.

320 Workload Management

Examples: drain Drain the current node
drain node001 Drain node001
drain -r rack01 Drain all nodes in rack01
drain --setactions reboot Drain the current node, and reboot when all jobs are completed

A useful one-liner to reboot and reprovision a sequence of nodes could be in the following format:

Example

cmsh -c 'device; drain -n <nodes> --setactions powerreset ; drain -n <nodes> --appendactions undrain'

This drains the nodes and does a power reset action, which provisions the nodes. After the nodes
are up again, they are undrained so that they are ready to accept jobs again. The command allows the
sequence of nodes to be rebooted, for example for the purpose of upgrading a kernel, without needing
to schedule a downtime for the cluster.

The cluster administrator should be aware that that using the preceding one-liner is not a universal
solution. For example, it is not a good solution if the drain takes a long time, because it means that
nodes that drain early could be idle for a long time.

7.8 Examples Of Workload Management Assignment
7.8.1 Setting Up A New Category And A New Queue For It
Suppose a new node with processor optimized to handle Shor’s algorithm is added to a cluster that
originally has no such nodes. This merits a new category, shornodes, so that administrators can config-
ure more such new nodes efficiently. It also merits a new queue, shorq, so that users are aware that they
can submit suitably-optimized jobs to this category.

Ways to configure the cluster manager for this are described next.

A New Category And A New Queue With Bright View For An Existing Workload Manager Cluster
Queues can be added to a WLM cluster by running the WLM wizard (clickpath HPC→Wlm Wizard) if the
WLM cluster does not yet exist. The wizard provides an option during WLM cluster creation for adding
queues.

To create a new queue in an existing WLM cluster, the clickpath HPC→Wlm Clusters<WLM cluster
name>Job queues→<queue name>→Add is followed. The properties of the new queue can then be set—at
least the queue name should be set—in the dialog window of the queue (figure 7.17).

© Bright Computing, Inc.

7.8 Examples Of Workload Management Assignment 321

Figure 7.17: Adding A New Queue Via Bright View

The configuration for the queue properties is saved, and then the job queue scheduler configuration
is saved.

Next, a new category can be added via the clickpath Grouping→Node categories→Add. Parameters
in the new category can be set—at least the category name should be set—to suit the new machines
(figure 7.18).

© Bright Computing, Inc.

322 Workload Management

Figure 7.18: Adding A New Category Via Bright View

The name shornodes can therefore be set here.
Another option within the category is to set the queue. The queue, shorq, is therefore set here for this

new category. Setting a queue for the category means configuring the options of the queue scheduler
role, for example PBS Pro client role, for the category. Continuing from within the Node categories
options window of figure 7.18, the relative clickpath to set a queue is ROLES→Roles→Add→PBS pro
client role→Edit→Queues. The appropriate queue can be selected from the queue scheduler menu
option (figure 7.19).

© Bright Computing, Inc.

7.8 Examples Of Workload Management Assignment 323

Figure 7.19: Setting A Queue For A New Category Via Bright View

In this case, the shorq created earlier on in figure 7.17 is presented for selection. After selection, the
configuration settings can then be saved—for this example it means going back up through the levels
and clicking on the Save button at the node category settings level (the right hand window shown in
figure 7.18), and also going up one more level to click the Save button on the node category list window
(the left hand window shown in figure 7.18).

Nodes that are to use the queue should be members of the shornodes category. The final step is then
to allocate such nodes to the category. This can be done, for example for a node001, by going into the
settings of the node, via the clickpath Devices→Nodes[node001]→Edit→Settings→Category and
setting the category to shornodes.

A New Category And A New Queue With cmsh
The preceding example can also be configured in cmsh as follows:

The new queue can be added from within jobqueue mode, for the workload manager. For example,
if Slurm is the WLM cluster that is enabled:

[bright91]% wlm; use slrum; jobqueue; add shorq
[bright91->wlm[slurm]->jobqueue*[shorq*]]% commit

The new category, shornodes, can be created by cloning an old category, such as default:

[bright91->wlm[slurm]->jobqueue[shorq]]% category
[bright91->category]% clone default shornodes
[bright91->category*[shornodes*]]% commit

Then, going into the roles submode, appropriate workload manager roles can be assigned, and ap-
propriate queues can be appended and committed for that category:

[bright91->category[shornodes]]% roles
[bright91->category[shornodes]->roles]% assign slurmclient; commit
[bright91->category[shornodes]->roles[slurmclient]]% append queues shorq
[bright91->category[shornodes*]->roles*]% commit

The nodes belonging to the shornodes category can then be placed by going into device mode to
select the nodes to be placed in that category. For example:

© Bright Computing, Inc.

324 Workload Management

[bright91->category[shornodes]->roles]% device use node002
[bright91->device[node002]]% set category shornodes
[bright91->device*[node002*]]% commit

7.8.2 Setting Up A Prejob Check
How It Works
Measurables such as health checks (section 13.2.4) by default run as scheduled tasks over regular inter-
vals. They can optionally be configured to run on demand instead, or as prejob checks, that is, before a
job is run.

If a health check is configured with the prejob setting, then its response means the same as that of a
health check, that is:

• If the response to a prejob health check is PASS, then it shows that the node is displaying healthy
behavior for that particular health check.

• If the response to a prejob health check is FAIL, then it implies that the node is unhealthy, at least
for that particular health check.

The reason a prejob health check is treated more carefully is that, if the node it has just run on is
unhealthy, then it means that a job submitted to the node may fail, may not be able to start, or may
even vanish outright. The way it can vanish in some cases, without any information beyond the job
submission “event horizon” leads to this behavior sometimes being called the Black Hole Node Syndrome.

Draining On Prejob Health Check Failure: It can be troublesome for a system administrator to pin-
point the reason for such job failures, since a node may only fail under certain conditions that are hard
to reproduce later on. It is therefore a good policy to disallow passing a job to a node which has just
been flagged as unhealthy by a health check. Thus, a sensible action (section 13.2.6) taken by a prejob
health check on receiving a FAIL response would be to put the node in a Drained state (section 7.7.3).
The drain state means that Bright Cluster Manager arranges a rescheduling of the job so that the job
runs only on nodes that are believed to be healthy.

A node that has been put in a Drained state with a health check is not automatically undrained. The
administrator must clear such a state manually.

The failedprejob health check (page 873) is enabled by default, and logs any prejob health check
passes and failures. By default there are no prejob health checks configured, so by default this health
check should always pass.

Considerations When Large Job Arrays Run A Prejob Health Check: The cluster administrator should
exercise caution if the cluster is regularly used to run large job arrays. A single job may be delayed by a
prejob health check by a time of less than a second. However, if a job array is run, consisting of, for ex-
ample, 1000 jobs, and assuming a delay of say, 240ms, then the check would then take about 4 minutes.
This may or may not be acceptable, depending on the job application and user needs.

The SchedMD recommendation for Slurm is to disable prologs and epilogs for high throughput en-
vironments:

PrologSlurmctld/EpilogSlurmctld: Neither of these is recommended for a high throughput environment. When
they are enabled a separate slurmctld thread has to be created for every job start (or task for a job array). Current
architecture requires acquisition of a job write lock in every thread, which is a costly operation that severely limits
scheduler throughput.

--https://slurm.schedmd.com/high_throughput.html (retrieved March 2021)

© Bright Computing, Inc.

https://slurm.schedmd.com/high_throughput.html

7.9 Power Saving With cm-scale 325

Configuration Using Bright View
To configure the monitoring of nodes with a prejob check in Bright View, the clickpath:
Monitoring→Data Producers→Monitoring data producers→Edit→When↓Pre job
is used to set the When value for when it runs. In this case, When is set to Pre job.

Configuration Using cmsh
Within cmsh, the equivalent can be carried out as follows:

Example

For example, for the ib health check:

[bright91->monitoring->setup]% get ib when
Timed
[bright91->monitoring->setup]% set ib when <TAB><TAB>
on\ demand pre\ job timed
[bright91->monitoring->setup]% set ib when pre\ job
[bright91->monitoring->setup*]% commit

Configuration Outside Of CMDaemon
For more unusual prejob checking requirements, further details on how prologs are configured are given
in section 7.3.4.

7.9 Power Saving With cm-scale

The cm-scale service can be used by an administrator to reduce the energy and storage costs of compute
nodes by changing their power state, or their existence state, according to workload demands. That is,
cm-scale automatically scales a cluster up or down, on-demand, by powering up physical nodes, cloud
nodes, or virtual nodes. The scaling is carried out according to settings in the ScaleServer role which
set the nodes that are to use the cm-scale service.

The cm-scale service is covered extensively in Chapter 8.

7.10 Cgroups
Linux system processes and all their future children can be aggregated into sets. These sets can be made
into hierarchical groups with specialized behavior using the Control Groups (cgroups) mechanism. The
behaviour is controlled by different subsystems that are attached to the cgroup. A subsystem may, for
example, allow particular CPU cores to be allocated, or it may restrict memory, or it may reduce swap
usage by processes that belong to the group, and so on.

Details about Linux cgroups and their subsystems can be found at https://www.kernel.org/doc/
Documentation/cgroups-v1/cgroups.txt.

As far as workload management is concerned, it makes sense to distinguish between workload man-
ager cgroup settings and system-wide cgroup parameters. The workload manager cgroup settings al-
low the administrator to configure a workload manager to use cgroups in a particular way, whereas the
system-wide cgroup settings allow the administrator to manage cgroups whether a workload manager
is used or not.

7.10.1 Cgroups Settings For Workload Managers
If the workload manager allows cgroups usage, then Bright Cluster Manager provides capabilities to
manage the cgroup parameters within the workload manager.

Slurm
Slurm supports 3 cgroups-related plugins. These are all enabled by default, and are:

© Bright Computing, Inc.

https://www.kernel.org/doc/Documentation/cgroups-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups-v1/cgroups.txt

326 Workload Management

1. proctrack/cgroup: enables process tracking and suspend/resume capability using cgroups. This
plugin is more reliable for tracking and control than the former proctrack/linux.

2. task/cgroup: provides the ability to

• confine jobs and steps to their allocated cpuset

• bind tasks to sockets, cores and threads

• confine jobs and steps to specific memory resources and gres devices

3. jobacct_gather/cgroup: collects accounting statistics for jobs, steps and tasks using the cpuacct,
memory, and blkio cgroups subsystems.

Slurm uses 2 configuration files to store the parameters and devices used for cgroup support:

1. /cm/shared/apps/slurm/var/etc/<cluster name>/cgroup.conf: defines parameters used by Slurm’s
Linux cgroup-related plugins. The file contains a section that is autogenerated by CMDaemon,
with cgroups-related parameters defined in the SlurmServer role.

2. /etc/slurm/cgroup_allowed_devices_file.conf: declares devices that need to be allowed by
default for all jobs. The syntax of this file accepts one device per line. It permits wildcard defini-
tions such as /dev/sda* or /dev/cpu/*/*. The path to this file can be changed in cmsh by setting
the value of the cgroup parameter Allowed Devices File within the cgroups submode of the
WLM mode for the Slurm instance.

Example

[root@bright91 ~]# cmsh
[bright91]% wlm use slurm
[bright91->wlm[slurm]]% cgroups; get alloweddevicesfile
/etc/slurm/cgroup_allowed_devices_file.conf

For Slurm, the administrator can set cgroups parameters using cmsh by going into the cgroups sub-
mode of the WLM instance.

Parameters that can be managed include:

Parameter Description Configuration Parameter

In cgroup.conf

Auto Mount∗ Force Slurm to mount cgroup subsystems
if they are not mounted yet

CgroupAutomount

Mount Point Where cgroup root is mounted CgroupMountpoint

Task Affinity∗ Set a default task affinity to bind each step
task to a subset of the allocated cores using
sched_setaffinity

TaskAffinity

...continues

© Bright Computing, Inc.

/etc/slurm/cgroup_allowed_devices_file.conf

7.10 Cgroups 327

...continued

Parameter Description Configuration Parameter

In cgroup.conf

Release Agent
Dir

Directory containing Slurm cgroup re-
lease_agent files

CgroupReleaseAgentDir

Allowed Devices
File

File used to declare the default devices for
all the jobs, if ConstrainDevices is true

AllowedDevicesFile

Constrain Cores∗ Constrain allowed cores to the subset of
allocated resources

ConstrainCores

Constrain RAM
Space∗

Constrain the job’s RAM usage ConstrainRAMSpace

Constrain Swap
Space∗

Constrain the job’s swap space usage ConstrainSwapSpace

Constrain
Devices∗

Constrain the job’s allowed devices based
on GRES allocated resources

ConstrainDevices

Allowed RAM
Space

Percentage memory (default is 100%) out
of the allocated RAM allowed for the job
cgroup RAM. If this percentage is ex-
ceeded, then the job steps will be killed
and a warning message will be written to
standard error.

AllowedRAMSpace

Allowed Swap
Space

Percent allocated memory allowed for the
job cgroup swap space

AllowedSwapSpace

Max RAM Percent Maximum percent of total RAM for a job MaxRAMPercent

Max Swap Percent Maximum percent of total RAM for the
amount of RAM+Swap that may be used
for a job

MaxSwapPercent

...continues

© Bright Computing, Inc.

328 Workload Management

...continued

Parameter Description Configuration Parameter

In cgroup.conf

Min RAM Space Minimum MB for the memory limits de-
fined by Allowed RAM Space and Allowed
Swap Space

MinRAMSpace

* Boolean (takes yes or no as a value)

The options are always written in the cgroup.conf file. More details on these options can be found
in the man page man(5) cgroup.conf.

UGE
Univa Grid Engine allows cgroups settings to be defined at two levels.

• Globally: The parameters can be set globally in the global configuration. Bright Cluster Manager
defines cgroups global settings in the cgroups submode of the UGEServer role.

• Per host: The parameters can be overridden in the host configuration for particular hosts. Bright
Cluster Manager defines cgroups host settings in the cgroups submode of the UGEClient role.

The global and host level cgroups parameters are the same, and are as follows:

Parameter Description Configuration Parameter

In qconf

Auto Mount∗ Force UGE to mount a cgroup subsystems
if they are not mounted yet

mount

Cpuset If true, then core binding is done by the
cgroup cpuset subsystem

cpuset

Freezer If true, then it enables the cgroup freezer
subsystem for job suspension and re-
sumption

freezer

Freeze PE Tasks If true and the freezer subsystem is turned
on, then the master task is suspended, and
all slave tasks of the parallel job are also
frozen

freeze_pe_tasks

Killing If true then UGE signals all processes
forked/started by the job until all of them
are killed

killing

Forced NUMA If true then on NUMA machines only lo-
cal memory (memory in the same NUMA
zone) is allowed to be used when the job
requested memory allocation with -mbind
cores:strict

forced_numa

...continues

© Bright Computing, Inc.

cgroup.conf

7.10 Cgroups 329

...continued

Parameter Description Configuration Parameter

In qconf

Virtual Memory
Limit

Specifies if virtual memory can be limited
with cgroups

h_vmem_limit

Memory Free Hard If true then kernel ensures that the job
does not use more main memory than re-
quired

h_mem_free_hard

Memory Free Soft If true, and the hard memory limit is
turned off, then the requested memory
with m_mem_free is a soft limit

h_mem_free_soft

Min Memory Limit A host based minimum memory limit, in
bytes or values like 10M, 1G

min_memory_limit

Devices Controls which devices the job can ac-
cess. It permits wildcard definitions such
as /dev/sda* or /dev/cpu/*/*

devices

Options Additional cgroups parameters for UGE

* Boolean (takes yes or no as a value)

The options are updated in UGE only when cgroups are enabled in the UGEServer or UGEClient roles.
To enable them, enabled must be set to true within the cgroups submode of the role. By default only
global cgroups settings are enabled in UGE.

PBS
PBS Professional supports cgroups through a special Python hook that is installed by cm-wlm-setup by
default. The hook name is pbs_cgroups.

LSF
LSF allows resource enforcement to be controlled with the Linux cgroup memory and cpuset subsys-
tems. By default, when LSF is set up with cm-wlm-setup, then both subsystems are enabled for LSF jobs.
If job processes on a host use more memory than the defined limit, then the job is immediately killed by
the Linux cgroup memory subsystem. The cgroups-related configuration options are available in cmsh
or Bright View, and can be found in the cgroups submode of the LSF cluster settings:

© Bright Computing, Inc.

/dev/sda*
/dev/cpu/*/*

330 Workload Management

Parameter Description Configuration Parameter

In lsf.conf

Resource Enforce Controls resource enforcement through
the Linux cgroups memory and cpuset
subsystem, on Linux systems with
cgroups support. The resource can be
either memory or cpu, or both cpu and
memory, in either order (default: memory
cpu)

LSB_RESOURCE_ENFORCE

Process
Tracking∗

This parameter, when enabled, has LSF
track processes based on job control func-
tions such as termination, suspension, re-
sume, and other signals, on Linux systems
which support the cgroups freezer subsys-
tem

LSF_PROCESS_TRACKING

Linux Cgroup
Accounting∗

When enabled, processes are tracked
based on CPU and memory accounting
for Linux systems that support cgroup’s
memory and cpuacct subsystems

LSF_LINUX_CGROUP_ACCT

* Boolean (takes yes or no as a value)

7.11 Custom Node Parameters
Bright Cluster Manager 9.1 allows the administrator to specify the most important node parameters
when a node is configured in a workload manager. But sometimes the workload manager allows the
configuration of other advanced or user-defined settings for the nodes. When an administrator clones
a node in Bright Cluster Manager, or creates it from scratch, then those advanced settings may need to
be configured manually per node in the workload manager. Sometimes the nodes are created or cloned
automatically, for example cm-scale (Chapter 8), in which case node parameters customization is not
possible without manual intervention in the workload manager configuration.

Since Bright Cluster Manager version 8.2, the administrator can configure the advanced node set-
tings in the node customizations mode of cmsh or Bright View. The customizations are available in
the workload manager client roles, so they can be applied at the node, node category or configuration
overlay levels.

In order to configure a custom node parameter for the workload manager, the administrator adds
the node customization entry and sets its value. The entry is enabled by default, using the parameter
enabled. Setting the value to disabled automatically removes the parameters from the node settings of
the workload manager.

For example, in order to add a new customization entry for PBS, the following cmsh commands can
be used:

Example

[bright91]% category use default
[bright91->category[default]]% use pbsproclient
...->roles[pbsproclient]]% nodecustomizations
...->roles[pbsproclient]->nodecustomizations]% add resv_enable
...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% set value False
...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% show
Parameter Value
-------------------------------- --

© Bright Computing, Inc.

7.11 Custom Node Parameters 331

Key recv_enable
Value False
Enabled yes
Notes <0 bytes>
...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% commit
...->roles[pbsproclient]->nodecustomizations[resv_enable]]%

Different workload managers allow different kinds of node settings to be set. For example, for the
Grid Engines, the settings are the so-called complex attributes, as defined by the administrator. But
for PBS, the node settings are built-in, and so the administrator can only change their values but not
their names. So when the administrator configures node customization entries, Bright Cluster Manager
configures them differently depending on the workload manager that is used.

Thus if the administrator creates a new customization entry with key name <KEY> and value
<VALUE>, then this is applied to the workload managers as follows:

• Slurm. The node customization entry is appended to the NodeName line of the particular nodes
in slurm.conf in the form <KEY>=<VALUE>. If the entry is removed or disabled in Bright Cluster
Manager configuration, then the entry <KEY>=<VALUE> pair is removed from the NodeName
line.

• PBS Pro, OpenPBS and PBS Pro CE. The entry is configured with the qmgr utility, using this com-
mand: set node NODENAME <KEY>=<VALUE>. If the entry is removed or disabled, then it is unset
in the qmgr.

• UGE. The entry is applied to an exechost complex attribute that must already be defined in the
configuration. The complex attribute name is set to <KEY> and its value to <VALUE>. If the entry
is removed or disabled, then it is removed from the exechost settings of the node.

• LSF. The entry is set in the lsb.hosts file, in the Hosts section. If the <KEY> of the entry is defined
as one of the section columns, then the parameter value is replaced by Bright Cluster Manager to
<VALUE>. When the customization entry is removed or disabled, then its value is replaced by ()
in the section.

© Bright Computing, Inc.

s

8
Bright Cluster Manager Auto

Scaler
8.1 Introduction
Bright Cluster Manager Auto Scaler can be used by an administrator to reduce the energy and storage
costs of compute nodes by changing their power state, or their existence state, according to workload
demands. The idea behind Auto Scaler is that it automatically scales a cluster up or down, on-demand,
by powering up physical nodes or cloud nodes.

On the cluster itself, Auto Scaler is implemented by the cm-scale service. The scaling is carried out
according to settings in the ScaleServer role which set the nodes that are to use the cm-scale service.

The cm-scale service runs as a daemon. It collects information about workloads from different
workload engines, and it uses knowledge of the nodes in the cluster. In the case of HPC jobs, the
daemon also gathers knowledge of the queues that the jobs are to be assigned to1, and also gathers
knowledge on which of the HPC jobs are requesting exclusive node access.

Based on the workload engine information and queues knowledge, the cm-scale service can clone
and start compute nodes when the workloads are ready to start. The service also stops or terminates
compute nodes, when no queued or running workloads remain on the managed nodes.

8.1.1 Use Cases
The cm-scale service can be considered as a basis for the construction of different kinds of dynamic
data centers. Within such centers, nodes can be automatically re-purposed from one workload engine
setup to another, or they can be powered on and off based on the current workload demand.

A few use cases are discussed next, to show how this basis can be built upon:

1. An organization wants to run PBS Pro and Slurm on the same cluster, but how much one workload
engine is used relative to the other varies over time. For this case, nodes can be placed in the
same pool and shared. When a node finishes an existing job, the cm-scale service can then re-
purpose that node from one node category to another if needed, pretty much immediately. The
re-purposing decision for the node is based on the jobs situation in the PBS Pro and Slurm queues.

2. An organization would like to use their cluster for both Kubernetes and for Slurm jobs. For this
case, the admin adds Kubernetes- and Slurm-related settings to the ScaleServer role. Using these
settings, the cm-scale service then switches nodes from one configuration overlay to another. For
example, if Slurm jobs are pending and there is a free Kubernetes node, then the node is turned
into a Slurm node pretty much immediately.

1HPC UGE jobs have no queue assignment by default, and are therefore ignored by default. Adding a line such as:
-q all.q

to the var/<instance name>/common/sge_request file, under /cm/shared/apps/uge/, assigns UGE jobs to the all.q queue by
default, so that cm-scale considers them.

© Bright Computing, Inc.

/cm/shared/apps/uge/

334 Bright Cluster Manager Auto Scaler

3. An organization has a small cluster with Slurm installed on it, and would like to be able to run
more jobs on it. This can be carried out using Bright Cluster Manager’s Cluster Extension cloud-
bursting capability (Chapter 3 of the Cloudbursting Manual) to extend the cluster when there are
too many jobs for the local cluster. The extension to the cluster is made to a public cloud provider,
such as AWS or Azure. For this case, the users can use the cmjob utility (section 4.7 of the User
Manual, and section 4.3 of the Cloudbursting Manual) to submit their cloud jobs, and Slurm sbatch
for their regular jobs. The cm-scale service then tracks the Slurm queues, and decides whether
or not new cloud nodes should be added from the cloud as extensions to the local network and
queues. When the jobs are finished, then the cloud nodes are terminated automatically. Cluster
extension typically takes several minutes from prepared images, and longer if starting up from
scratch, but in any case this change takes longer than simple re-purposing does.

4. An organization runs PBS Pro only and would like to power down free, local, physical nodes
automatically, and start up such nodes when new jobs come in, if needed. In this case, cm-scale
follows the queues and decides to stop or to start the nodes automatically depending on workload
demand. Nodes typically power up in several minutes, so this change takes longer than simple
re-purposing does.

8.1.2 Resource Constraints
1. Two workload engines of the same kind cannot be served by cm-scale on the same Bright Cluster

Manager cluster. For example, two Slurm instances cannot be managed, but Slurm and LSF can.

2. When the service considers whether or not the node is suited for the workload, it considers the
following requested resources:

(a) the number of CPU cores;

(b) the number and type of GPUs;

(c) the amount of memory.

It does not consider other types of resources. For example, if a workload needs Xeon Phis, then
cm-scale does not verify if the node actually includes Xeon Phis. The validation is however per-
formed by the engine. If a resource requested by the workload cannot be provided by the node,
then the engine (the workload manager) specifies a pending reason that is used by cm-scale to
decide on node operations.

In cmsh, the wlmresources command displays the resources that Auto Scaler considers.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[bright91->device]% wlmresources
WLM Name Amount Nodes
-------- ----------------- -------------- ----------------
pbspro cpu_total 32 node001..node006
pbspro gpu_free 1 node005
pbspro gpu_free 2 node001..node00+
pbspro mem_free 8,108,032,000 node004,node005
pbspro mem_free 948,224,000 node006
slurm cpu_alloc 2 node001..node006
slurm cpu_total 16 node006
slurm cpu_total 8 node001..node005
slurm gpu_free 1 node005
slurm gpu_free 2 node001..node004
slurm mem_free 1,000,000,000 node006

© Bright Computing, Inc.

8.1 Introduction 335

slurm mem_free 380,000,000 node004
slurm mem_free 6,778,000,000 node005
slurm mem_free 7,257,000,000 node001..node003
uge cpu_total 32 node001..node00+
uge gpu_free 1 node005
uge gpu_free 2 node001..node00+
uge mem_free 0 node001..node003
uge mem_free 1,396,000,000 node004
uge mem_free 7,456,000,000 node005
uge mem_free 990,900,000 node006
uge mem_free_per_cpu 1,396,000,000 node004
uge mem_free_per_cpu 990,900,000 node006
[bright91->device]%

These resources are taken from appropriate workload manager, and not necessarily equal to the
available physical resources on the nodes.

Number Of CPU Cores Calculation
The cm-scale service uses the number of CPU cores on a node in order to map workloads to the node.
The calculation of this number is optimized for many node scenarios.

For each node, at the beginning of each cm-scale iteration, the following procedure is followed step-
by-step to determine the CPU cores number. The procedure for the current iteration stops when a step
yields a non-zero value, otherwise the next step is tried.

1. If the engine is a workload manager, then the workload manager client role is considered and its
slots parameter is used. In the very unusual case of several workload manager roles assigned to
the node at the same time, then the minimum number of slots is calculated.

2. If the node is a cloud node, then its flavor Type parameter in the case of EC2, or VMSize in case of
Azure, is used. These parameters are accessible via cmsh, within device mode for the cloud node,
within the cloudsettings submode. For EC2 nodes the flavor value (Type) can be set to a long
statement such as: "62 EC2 Compute Units (16 virtual cores with 3.00 EC2 Compute Units each)",
and for this statement 16 is used as the number of CPU cores. If the flavor is not defined on the
node, then its cloud provider is considered.

3. If a template node is defined in the dynamic node provider, and it is a cloud node, then the tem-
plate node flavor is used for the CPU core number in the same way as shown in the preceding
step.

4. If the Default Resources parameter (in a resource provider) contains "cpus=N", where N is a
number of CPU cores, then N is used.

5. If the node exists at this moment (for example, it is not just cloned in Bright Cluster Manager), then
the CPU cores number is requested from CMDaemon, which collects nodes system information.
This is used as one of the last methods because it is slow.

6. If the node is defined in the ScaleServer role via the dynamic resource provider, then the CPU
cores number is retrieved from its template node. This method is as slow as the preceding method.
It is therefore not recommended when many nodes are managed by cm-scale, otherwise the it-
eration can take several minutes. In such a case, setting the slots parameter manually is typically
wiser, so that step 1 is the step that decides the CPU cores number.

If cm-scale does not manage to find a value for the node, then it prints a warning in the log file and
does not make use of the node during the iteration. It is usually wise for the administrator to set the
slots parameter manually for nodes that otherwise persistently stay unused, so that resources are not
wasted.

© Bright Computing, Inc.

336 Bright Cluster Manager Auto Scaler

Requested GPUs
When a user of a workload manager requests a number of GPUs for the job that is to be run, then Auto
Scaler maps this job to nodes that have enough available GPUs. In the case of Slurm, in addition to
the number of GPUs, Auto Scaler recognizes the GPU type if the user specifies it. For other workload
managers only number of GPUs is counted.

In order to find out how many GPUs and what types are available, Auto Scaler, gets this informa-
tion from a workload manager via CMDaemon. Thus if some GPUs are in use, or if the administrator
configures fewer GPUs than the node has, then Auto Scaler still knows what GPUs the workload man-
agers can use during their job scheduling. The number and type of requested GPUs, as well as the
number and types of available GPUs, can be found in the log file /var/log/cm-scale.log if debug
messages are enabled in ScaleServer role.

Requested Memory
A memory request is considered by Auto Scaler if a user specifies this request when the job is submit-
ted. If the user does not specify the memory, then a value of 0 is assumed.

UGE does not provide the amount of memory requested by a user per node, but allocates memory
per CPU core. Thus, Auto Scaler by default operates with a memory amount per CPU core, which can
also be seen in the logs.

Default Resources Specification
Sometimes the available consumable resources must be defined explicitly by administrator. This is
needed in the case of LSF, because when a node is down, LSF does not provide the available consum-
able resources configured for the node. Therefore in this case Auto Scaler does not know if the node
actually has any of the resources known to LSF. The mechanism used for defining explicitly can also be
used for other workload managers, for testing purposes.

For now, only the following types of consumable resources can be specified as default resources to
the Default Resources setting, under the Resource Provider parameter. The setting is a list of strings,
where each string specifies one of the following resources:

1. cpus: the number of CPU cores that will be used, if other sources for this information do not
provide a value (the calculation for the number of CPU cores is described on page 335);

2. mem_free: the amount of available memory. If no units are specified, then bytes are assumed. It is
also possible to append one of the following units:

• KB or K (kilobytes), KIB (kibibytes)

• MB or M (megabytes), MiB (mebibytes)

• GB or G (gigabytes), GiB (gigibytes)

• TB or T (terabytes), TiB (tebibytes)

• PB or P (petabytes), PiB (pebibytes)

The format of the memory specification is the following:

mem_free:<engine>=<amount>

where <engine> is the name of the workload engine which "provides" this value, and <amount> is
the amount of memory.

Example

mem_free:lsf1=32GB

© Bright Computing, Inc.

/var/log/cm-scale.log

8.1 Introduction 337

3. gpu_free: the number of available GPUs. The format of the GPUs specification is:

gpu_free[:<type>]:<engine>=<number>

where <type> is a string that specifies the GPUs type (available only for Slurm). Only a single
GPU type per node is currently supported. <number> is a number of GPUs, and <engine> is the
name of the workload engine which "provides" this value.

Example

gpu_free:a100:uge3=8

or

gpu_free:lsf=1

8.1.3 Setup
In order to set up Auto Scaler the administrator can run the cm-auto-scaler-setup script. The setup
allows one of the three base scenarios to be configured. This is possible in express mode as well as in
step-by-step mode. When the setup is complete, the administrator can further tune the behaviour of
Auto Scaler within the ScaleServer role. The Scaleserver role is always assigned to the head nodes,
via a new configuration overlay named autoscaler.

The setup tool assigns the role. The role, in turn, starts the cm-scale system service (Auto Scaler).
Auto Scaler can be disabled by running cm-auto-scaler-setup again, and selecting the menu item
Disable. When Auto Scaler is disabled, the configuration overlay is removed.

The service writes logs to /var/log/cm-scale.log. Running the cm-scale daemon in the fore-
ground for debugging or demonstration purposes is also possible, using the -f option. Other additional
options that may be used, including at the same time, are:

• -d: debug logs

• -i <N>: number (<N>) of iterations

The logs are then duplicated to STDOUT:

Example

root@bright91$ module load cm-scale
root@bright91$ cm-scale -f
[...]

When cm-auto-scaler-setup is started the administrator can select from one of the following setup
operations (figure 8.1):

• express setup,

• step-by-step setup,

• disable.

© Bright Computing, Inc.

/var/log/cm-scale.log

338 Bright Cluster Manager Auto Scaler

Figure 8.1: Auto Scaler Setup Operations

• Express setup allows an initial setup to be carried out, without many questions being asked. It
applies default values whereever possible. Some inputs that do not have default values are still
needed. Express setup is a good start for the administrators who have never used Auto Scaler
before.

• Step-by-step setup allows an initial setup to be carried out too, but with some more questions to
help tune the cluster to the needs of the administrator. This is more suitable for administrators
with some experience in Auto Scaler configuration.

After the wizard has carried out the deployment, both the express and the step-by-step configuration
can have their configurations tuned further via cmsh, within the scaleserver role.

Express setup and step-by-step setup both allow one of the 3 pre-defined use-case scenarios to be
selected (figure 8.2):

Figure 8.2: Auto Scaler Setup Scenario Selection

These use cases are:

1. Workload Manager (On-premises): Auto Scaler tracks selected workload manager queues, and
starts or stops specified on-premises nodes on demand. A static node provider is automatically
added to the role for this scenario.

2. Workload Manager (Cluster extension): Auto Scaler dynamically clones nodes from a cloud tem-
plate node, on demand. The nodes can be terminated or stopped when idle. This scenario is used
when cloudbursting is set up. A dynamic node provider is added automatically to the role for this
scenario.

3. Kubernetes (On-premises): Auto Scaler tracks Kubernetes jobs or individual pods, and starts or
stops the nodes on demand. A static node provider is automatically added to the role for this
scenario.

© Bright Computing, Inc.

8.1 Introduction 339

Static nodes and dynamic nodes providers are discussed in section 8.2.2.
In step-by-step mode, for the next step, the dialog suggests specifying Auto Scaler base options

(figure 8.3):

Figure 8.3: Auto Scaler Setup Base Options

The Auto Scaler base options are:

• Enable debug messages: Auto Scaler adds debug messages to its log file (default: /var/log/
cm-scale).

• Dry run mode: Disables actual execution of any operation on the cluster. Auto Scaler decisions are
still all written to the log file.

• Run interval: Number of seconds that Auto Scaler waits before making new decisions regarding
cluster auto scaling.

Use Case: Workload Manager (On-premises)
When this scenario is selected, then the next step is to configure the static nodes provider. First, cate-
gories and individual nodes to be managed by Auto Scaler are selected. The nodes of a selected category,
or individual nodes, are added to the node provider (figures 8.4 and 8.5):

Figure 8.4: Auto Scaler Setup Categories Selection For Static Node Provider

© Bright Computing, Inc.

/var/log/cm-scale
/var/log/cm-scale

340 Bright Cluster Manager Auto Scaler

Figure 8.5: Auto Scaler Setup Individual Nodes Selection For Static Node Provider

The next step is to pick the workload manager cluster (figure 8.6):

Figure 8.6: Auto Scaler Setup Workload Manager Selection

If only one workload manager instance exists, then the screen is skipped. The screen provides a list
of workload manager names that cm-wlm-setup has set up. The cm-auto-scaler-setup wizard only
configures one workload manager cluster, but others can be added later as separate workload engines
with the ScaleServer role.

If running express mode, then the summary screen is displayed. The summary screen includes
options to just show the configuration file, or to save the configuration and deploy the setup (figure 8.7):

Figure 8.7: Auto Scaler Setup Summary

If running step-by-step mode, then there are some additional tune up screens:

© Bright Computing, Inc.

8.1 Introduction 341

Values can be set for resources in the default node resources screen (figure 8.8):

Figure 8.8: Auto Scaler Setup Default Resources

Resources that can be set are:

1. number of CPU cores per node. Format: <number>

2. number (and optionally, type) of GPUs per node. Format: [<type>]:<number>

3. available memory for jobs per node. Units can be specified as: KB, K, KiB, MB, M, MiB, GB, G, GiB,
TB, T, TiB, PB, P, PiB. Format: <amount>[<unit>]. If no units are specified, then bytes are assumed.

When Auto Scaler considers whether or not the node is suited for the workload, it considers the follow-
ing requested resources:

In cmsh, the wlmresources command, executed in devices mode, displays the resources that Auto
Scaler considers. These resources are taken from the corresponding workload manager, and are not
necessarily equal to the available physical resources on the nodes. Sometimes the available consumable
resources must be defined explicitly by the adminstrator. This is needed if the node never started, or
if the WLM (such as in the case of LSF) does not provide node resource information when the node is
down. It is recommended that these values are always defined. If nodes vary in their resource require-
ments, then, after setup, an administrator can add new resource providers (within the ScaleServer role)
and set the various default resources for the various groups of nodes.

In the next screen the administrator can specify some engine settings (figure 8.9):

Figure 8.9: Auto Scaler Setup Engine Settings

The settings are:

• Engine Priority: The workload engine priority. This value is used when the final (global) work-
load priority is calculated by Auto Scaler. If 0, then this priority is not taken into account.

• Workloads Per Node: The maximum number of jobs that can be started on a node in parallel.

Auto Scaler fetches the workload priority values from the settings specified in the next screen (fig-
ure 8.10):

© Bright Computing, Inc.

342 Bright Cluster Manager Auto Scaler

Figure 8.10: Auto Scaler Setup Workload Priorities Source Selection

The settings are:

• Fetched: Priorities are fetched from workload engine. Age and engine priorities are ignored. This
option sets the age factor to 0.0, and engine priority to 0

• Calculated: Priorities are calculated from the workload age and engine priority. Both can be
tuned by the administrator in ScaleServer role. This option sets the age factor to 1.0, and the
external priority factor to 0.0

Workload trackers settings can be set in the next screen (figure 8.11):

Figure 8.11: Auto Scaler Setup Tracker Settings

The settings are:

• Queue Length Threshold: Number of pending workloads. If this number is reached, then nodes
are triggered to start up.

• Age Threshold: Workload pending time threshold, in seconds. If a workload reaches this age
while pending, then nodes are triggerd to start up for that workload.

• Workloads Per Node: Number of jobs that can be scheduled to the same node at the same time. A
value of 0 means no limit is set.

The settings are applied to all configuring queue trackers. The values can be tuned further afterwards
in the ScaleServer role.

Use Case: Workload Manager (Cluster Extension)
In the case of workload manager cluster extension scenario, a dynamic node provider with a template
node is configured. In this scenario the administrator should expect cloud nodes to be triggered, which
run in a previously configured and deployed cluster extension.

© Bright Computing, Inc.

8.1 Introduction 343

Cluster extension configuration and deployment in Bright Cluster Manager is described in Chapter 3
of the Cloudbursting Manual, and can be carried out, for example, for a particular cloud provider. For
command line deployment, the cm-cluster-extension setup script can be run.

Cloud nodes are thus cluster nodes that extend into a cloud provider, and which are cloned and
terminated depending on workload demand.

To configure a cluster extension with Auto Scaler, the administrator is asked to pick a cloud provider
(figure 8.12):

Figure 8.12: Auto Scaler Setup Cloud Provider

With the express setup, the next screen asks for workload manager selection (figure 8.6).
With the step-by-step setup, however, some additional screens are presented before getting to the

workload manager selection screen. These extra screens are described next.
The Auto Scaler template node selection screen (figure 8.13) prompts for the selection of a template

node that is to be used for cloud node cloning.

Figure 8.13: Auto Scaler Setup Template Node

The selected template node is then set in the dynamic node provider.
The Auto Scaler incrementing network interface screen (figure 8.14) prompts the administrator to

select the network interface on the template node that is automatically incremented when the node is
cloned.

© Bright Computing, Inc.

344 Bright Cluster Manager Auto Scaler

Figure 8.14: Auto Scaler Setup Incremented Network Interface Selection

The Auto Scaler node range specification screen (figure 8.15) prompts the administrator to specify a
node range. Range format can be used. Nodes are automatically created by Auto Scaler on demand in
the cloud according to the range specified.

Figure 8.15: Auto Scaler Setup Node Range

The remaining screens in this use case have been covered in the earlier section (Use Case: Workload
Manager (On-premises)) , and are:

• default node resources (figure 8.8),

• engine settings (figure 8.9),

• workload priorities (figure 8.10),

• tracker settings (figure 8.11).

Use Case: Kubernetes (On-premises)
Selection of the Kubernetes (On-premises) scenario leads to a few screens related to Kubernetes and
Auto Scaler integration. Auto Scaler tracks Kubernetes jobs or individual pods, and can start or stop the
on-premises nodes on demand.

The first screen displayed after the scenario is selected, is a screen that asks for node categories and
individual nodes that are to be configured in the static resource provider. Such nodes are the only ones
to be managed by Auto Scaler. Category and node selection screens are then displayed as in the earlier
sections (figures 8.4 and 8.5).

The administrator is then prompted to pick a Kubernetes cluster (figure 8.16).

© Bright Computing, Inc.

8.1 Introduction 345

Figure 8.16: Auto Scaler Setup Kubernetes Cluster Selection

If there is only one Kubernetes cluster, then this screen is skipped, and the Kubernetes configuration
is used for the integration with Auto Scaler.

The next screen prompts for the Kubernetes engine settings (figure 8.17):

• Engine Priority: A workload engine priority. This value is used when the final (global) work-
load priority is calculated by Auto Scaler. If 0, then this priority is not taken into account.

• Workloads Per Node: The maximum number of workloads that can be started on a node.

• CPU Busy Threshold: The CPU load % that defines if node is too busy for new pods.

• Memory Busy Threshold: The Memory load % that defines if node is too busy for new pods.

Figure 8.17: Auto Scaler Setup Kubernetes Engine Settings

The administrator is then prompted to pick the Kubernetes namespace that will be tracked by Auto
Scaler (figure 8.18):

© Bright Computing, Inc.

346 Bright Cluster Manager Auto Scaler

Figure 8.18: Auto Scaler Setup Kubernetes Namespace Selection

In step-by-step mode, the namespace tracker settings are then displayed (figure 8.18):

Figure 8.19: Auto Scaler Setup Kubernetes Namespace Tracker Settings

The settings are:

• Queue Length Threshold: If this number of pending workloads is exceeded, then that triggers
nodes starting up.

• Age Threshold: Workload pending time threshold, in seconds. If the age of the workload is
greater than this, then nodes are triggered to start for this workload.

• Workloads Per Node: Number of workloads that can be scheduled to the same node at the same
time (0 means no limit).

The settings are applied to all configuring namespace trackers. The values can be tuned further
afterwards within the ScaleServer role.

The summary screen is displayed next (figure 8.7). Selecting Save config & deploy saves the con-
figuration and starts the setup procedure.

8.1.4 Comparison With cm-scale-cluster
Versions of Bright Cluster Manager prior to 8.0 had the cm-scale-cluster utility, which provided sim-
ilar functionality to the current cm-scale utility. However, the older utility did not allow workloads
(jobs) to be considered for more than one workload manager at a time, and also supported only HPC
workload managers as workload engines.

The current cm-scale service on the other hand, allows, for example, Slurm workloads to be con-
sidered on the same cluster, and also supports other types of workload engines besides HPC workload
managers.

© Bright Computing, Inc.

8.2 Configuration 347

Furthermore, the cm-scale utility does not use a crontab entry. The old cm-scale-cluster utility
required cron to run it regularly, because only one iteration of decision-making was performed by it. The
new cm-scale utility, on the other hand, runs the decision-making loop internally within the cm-scale
daemon. The decision-making interval is set in the ScaleServer role.

8.2 Configuration
8.2.1 The ScaleServer Role
To configure cm-scale, the cluster administrator configures the ScaleServer role. The role is typically
assigned to head nodes:

Example

[bright91]% device use master
[bright91->device[bright91]]% roles
[bright91->device[bright91]->roles]% assign scaleserver

The role is configured by setting values to its settings. There are some advanced settings for less common
options:

[bright91->device*[bright91*]->roles*[scaleserver*]]% show
Parameter Value
-------------------------------- --
Add services yes
Name scaleserver
Provisioning associations <0 internally used>
Revision
Type ScaleServerRole
Engines <0 in submode>
Resource Providers <0 in submode>
Dry Run no
Debug no
Run Interval 120
Advanced Settings <submode>
[bright82->device*[bright82*]->roles*[scaleserver*]]% advancedsettings
[bright82->device*[bright82*]->roles*[scaleserver*]->advancedsettings*]% show
Parameter Value
-------------------------------- --
Revision
Debug2 no
Max Threads 16
Power Operation Timeout 30
Connection Retry Interval 5
Log File /var/log/cm-scale.log
Pin Queues no
Mix Locations yes
Failed Node Is Healthy no
Azure Disk Image Name images
Azure Disk Container Name vhds
Azure Disk Account Prefix

An overview of the parameters and submodes is given next. An example showing how they can be
configured is given afterwards, in section 8.3.

ScaleServer Role Global Parameters
The ScaleServer role has the following global parameters for controlling the cm-scale service itself:

© Bright Computing, Inc.

348 Bright Cluster Manager Auto Scaler

• Dry Run: If set, then the service runs in dry run mode. In this mode it may claim that actions have
been carried out on the nodes that use the cm-scale service, however, no action is actually carried
out on nodes. This mode is useful for demonstration or debug purposes

• Log File: path to the log file, with a default path of /var/log/cm-scale.log

• Run Interval: interval, in seconds, between cm-scale decision-making

ScaleServer Role Submodes
Within the ScaleServer role are the following three submodes:

• advancedsettings: allows some advanced properties to be set for cm-scale, using the parameters
displayed on page 347.

• resourceproviders: defines the nodes used by cm-scale. More explicitly, this submode is used
to define resource provider objects. The resource providers can be added as static or dynamic
types, and can then have nodes and settings defined within them. The nodes allocated to these
resource provider objects are what provide resources to cm-scale when that resource provider is
requested.

• engines: define the engines used by cm-scale. This can be an instance of the type hpc, generic,
or kubernetes (page 353).

– trackers (within engines submode): define the trackers used by cm-scale (page 355)

The parameters are enforced only when the next decision-making iteration takes place.

8.2.2 Resource Providers
The cm-scale service allows nodes to change state according to the workload demand. These managed
nodes are defined by the administrator within the resourceproviders submode of ScaleServer. Bright
Cluster Manager 9.1 supports two types of resource providers: static and dynamic node providers.

Static Node Provider
When managed nodes are well-known and will not be extended or shrunk dynamically, then a static
node provider can be used. Specifying settings for the static node provider allows cm-scale to power
on, power off, or re-purpose nodes, based on nodegroups or a list of nodes nodes specified with a node
list syntax (page 44).

The static node provider supports the following properties:

• Enabled: The static node provider is currently enabled.

• Nodes: A list of nodes managed by cm-scale. These can be regular local compute nodes (nodes)
or cluster extension cloud compute nodes (cnodes). For the purposes of this section on cm-scale,
these compute nodes can conveniently be called nodes and cnodes. Since compute nodes are
typically the most common cluster nodes, significant resources can typically be saved by having
the cm-scale service decide on whether to bring them up or down according to demand.

– cnodes can be cloned and terminated as needed. Cloning and terminating saves on cloud
storage costs associated with keeping virtual machine images.

– regular local compute nodes can be started and stopped as needed. This reduces power
consumption.

• Nodegroups: List of nodegroups with nodes to be managed by cm-scale. Node groups are classed
into types. The class of node group types is independent of the class of node types, and should
not be confused with it. Node types can be physicalnode, cloudnode, gpuunit, genericdevice,
headnode, ethernetswitch, ibswitch and others, and are shown in the first column of the output

© Bright Computing, Inc.

/var/log/cm-scale.log

8.2 Configuration 349

of the default list command in device mode. Node group types currently (May 2017) consist
only of Normal and Storage pair. Only node groups of type Normal can currently be managed
by cm-scale.

• Priority: The provider priority. Nodes in the pool of a provider with a higher priority are used
first by workloads. By default a resource provider has a priority value 0. These priority values
should not be confused with the fairsharing priorities of page 353.

Dynamic Node Provider
When managed nodes can be cloned or removed from the configuration, then a dynamic node provider
should be used. A compute node that is managed by cm-scale as a dynamic node provider is configured
as a template node within the dynamic submode of the ScaleServer role.

The dynamic node provider supports the following properties:

• Template Node: A node that will be used as a template for cloning other nodes in the pool. The
following restrictions apply to the template node:

– A workload manager client role must be assigned with a positive number of slots.

– New node names should not conflict with the node names of nodes in a nodegroup defined
for the queue.

– A specific template node is restricted to a specific queue.

A template node only has to exist as an object in Bright Cluster Manager, with an associated node
image. A template node does not need to be up and running physically in order for it to be used to
create clones. Sometimes, however, an administrator may want it to run too, like the other nodes
that are based upon it, in which case the Start Template Node and Stop Template Node values
apply:

• Start Template Node: The template node specified in the Template Node parameter is also started
automatically on demand.

• Stop Template Node: The template node specified in the Template Node parameter is also stopped
automatically on demand.

• Never Terminate: Number of cloud nodes that are never terminated even if no jobs need them.
If there are this number or fewer cloud nodes, then cm-scale no longer terminates them. Cloud
nodes that cannot be terminated can, however, still be powered off, allowing them to remain con-
figured in Bright Cluster Manager. As an aside, local nodes that are under cm-scale control are
powered off automatically when no jobs need them, regardless of the Never Terminate value.

• Enabled: Node provider is currently enabled.

• Priority: Node provider priority.

• Node Range: Range of nodes that can be created and managed by cm-scale.

• Network Interface: Which node network interface is changed on cloning (incremented).

• Remove Nodes: Should the new node be removed from Bright Cluster Manager when the node
terminates? If the node is not going to be terminated, but just stopped, then it is never removed.

• Leave Failed Nodes: If nodes are discovered to be in a state of INSTALLER_FAILED or
INSTALLER_UNREACHABLE (section 5.5.4) then this setting decides if they can be left alone, so that
the administrator can decide what do with them later on.

• Default Resources: List of default resources, in format [name=value].

© Bright Computing, Inc.

350 Bright Cluster Manager Auto Scaler

– cpu: value is the number of CPUs

– mem: value is in bytes

These must be set when no real node instance is associated with a node defined in Bright Cluster
Manager.

Extra Nodes Settings For Node Providers
Both the dynamic and static node providers support extra node settings. If configured, then cm-scale
can start the extra nodes before the first workload is started, and can stop them after the last job from
the managed queue is finished.

The most common use case scenario for extra nodes in the case of cloud nodes is a cloud direc-
tor node. The cloud director node provisions cloud compute nodes and performs other management
operations in a cloud.

In the case of non-cloud non-head nodes, extra nodes can be, for example, a license server, a provi-
sioning node, or an additional storage node.

The configuration settings include:

• Extra Nodes: A list of extra nodes.

• Extra Node Idle Time: The maximum time, in seconds, that extra nodes can remain unused. The
cm-scale service checks for the existence of queued and active workloads using the extra node,
when the time elapsed since the last check reaches Extra Node Idle Time. If there are workloads
using the extra node, then the time elapsed is reset to zero and a time stamp is written into the
file cm-scale.state under the directory set by the Spool role parameter. The time stamp is used
to decide when the next check is to take place. Setting Extra Node Idle Time=0 means the extra
node is stopped whenever it is found to be idle, and started again whenever workloads require it,
which may result in a lot of stops and starts.

• Extra Node Start: Extra node is started by cm-scale before the first compute node is started.

• Extra Node Stop: Extra node is stopped by cm-scale after the last compute node stops.

The following table summarizes the default attributes in cmsh for the static and dynamic resource
providers, along the path cmsh->device[]->roles->scaleserver->resourceproviders[dynamic/static]:

Parameter static dynamic
--------------------------- ------------------------- ------------------------
Name static dynamic
Revision
Type static dynamic
Enabled yes yes
Priority 0 0
Whole Time 0 0
Stopping Allowance Period 0 0
Keep Running
Extra Nodes
Extra Node Idle Time 3600 3600
Extra Node Start yes yes
Extra Node Stop yes yes
Allocation Prolog
Allocation Epilog
Allocation Scripts Timeout 10 10
Template Node N/A
Node Range N/A
Network Interface N/A tun0
Start Template Node N/A no

© Bright Computing, Inc.

8.2 Configuration 351

Stop Template Node N/A no
Remove Nodes N/A no
Leave Failed Nodes N/A yes
Never Terminate N/A 32
Nodes N/A
Nodegroups N/A
Default Resources cpus=1 cpus=1

In the preceding table, the entry N/A means that the parameter is not available for the corresponding
resource provider.

8.2.3 Time Quanta Optimization
Time quanta optimization is an additional feature that cm-scale can use for further cost-saving with cer-
tain cloud providers.

For instance, Amazon charges per whole unit of time, or time quantum, used per cloud node, even if
only a fraction of that unit of time was actually used. The aim of Bright Cluster Manager’s time quanta
optimization is to keep a node up as long as possible within the already-paid-for time quantum, but
without incurring further cloud provider charges for a node that is not currently useful. That is, the aim
is to:

• keep a node up if it is running jobs in the cloud

• keep a node up if it is not running jobs in the cloud, if its cloud time has already been paid for,
until that cloud time is about to run out

• take a node down if it is not running jobs in the cloud, if its cloud time is about to run out, in order
to avoid being charged another unit of cloud time

Time quanta optimization is implemented with some guidance from the administrator for its asso-
ciated parameters. The following parameters are common for both static and dynamic node resource
providers:

• Whole time. A compute node running time (in minutes) before it is stopped if no workload re-
quires it. Currently (May 2017) Amazon’s time quantum is 60 minutes. By default, Bright Cluster
Manager uses a value of Whole Time=0, which is a special value that means Whole Time is ignored.
Ignoring it means that Bright Cluster Manager does no time quanta optimization to try to optimize
how costs are minimized, but instead simply takes down nodes when they are no longer running
jobs.

• Stopping Allowance Period. A time (in minutes) just before the end of the Whole Time period,
prior to which all power off (or terminate) operations must be started. The parameter associated
with time quanta optimization is the Stopping Allowance Period. This parameter can also be set
by the administrator. The Stopping Allowance Period can be understood by considering the last
call time period. The last call time period is the period between the last call time, and the time that
the next whole-time period starts. If the node is to be stopped before the next whole-time charge
is applied, then the last call time period must be at least more than the maximum time period
that the node takes to stop. The node stopping period in a cluster involves cleanly stopping many
processes, rather than just terminating the node instance, and can therefore take some minutes.
The maximum period in minutes allowed for stopping the node can be set by the administrator in
the parameter Stopping Allowance Period. By default, Stopping Allowance Period=0. Thus,
for nodes that are idling and have no jobs scheduled for them, only if the last call time period is
more than Stopping Allowance Period, does cm-scale stop the node.

The preceding parameters are explained next.
Figure 8.20 illustrates a time line with the parameters used in time quanta optimization.

© Bright Computing, Inc.

352 Bright Cluster Manager Auto Scaler

STOPPING_ALLOWANCE_PERIODsRUN_INTERVAL

WHOLE_TIME periods
(Time quanta)

time

cm-scale runs, RUN_INTERVAL starts

a time quantum ends and next one starts

STOPPING_ALLOWANCE_PERIOD starts

legend for instances on time line:

last call

Figure 8.20: Time Quanta Optimization

The algorithm that cm-scale follows, with and without time quanta optimization, can now be de-
scribed using the two parameters explained so far:

1. cm-scale as part of its normal working, checks every Run Interval seconds to see if it should
start up nodes on demand or shut down idling nodes.

2. If it sees idling nodes, then:

(a) If Whole Time has not been set, or is 0, then there is no time quanta optimization that takes
place. The cm-scale service then just goes ahead as part of its normal working, and shuts
down nodes that have nothing running on them or nothing about to run on them.

(b) If a non-zero Whole Time has been set, then a time quanta optimization attempt is made. The
cm-scale service calculates the time period until the next time quantum from public cloud
starts. This time period is the current closing time period. Its value changes each time that
cm-scale is run. If

• the current closing time period is long enough to let the node stop cleanly before the next
time quantum starts, and

• the next closing time period—as calculated by the next cm-scale run but also running
within the current time quantum—is not long enough for the node to stop cleanly before
the next quantum starts

then the current closing time period starts at a time called the last call.
In drinking bars, the last call time by a bartender allows some time for a drinker to place the
final orders. This allows a drinker to finish drinking in a civilized manner. The drinker is
meant to stop drinking before closing time. If the drinker is still drinking beyond that time,
then a vigilant law enforcement officer will fine the bartender.
Similarly, the last call time in a scaling cluster allows some time for a node to place its orders
to stop running. It allows the node to finish running cleanly. The node is meant to stop
running before the next time quantum starts. If the node is still running beyond that time,
then a vigilant cloud provider will charge for the next whole time period.
The last call time is the last time that cm-scale can run during the current whole-time period
and still have the node stop cleanly within that current whole-time period, and before the
next whole-time period starts. Thus, when Whole Time has been set to a non-zero time:

© Bright Computing, Inc.

8.2 Configuration 353

i. If the node is at the last call time, then the node begins with stopping
ii. If the node is not at the last call time, then the node does not begin with stopping

The algorithm goes back again to step 1.

8.2.4 Fairsharing Priority Calculation And Node Management
At intervals of Run Interval, cm-scale collects workloads using trackers configured in the
ScaleServer role, and puts all the workloads in a single internal queue. This queue is then sorted
by priorities. The priorities are calculated for each workload using the following fairsharing formula:

pij = k1 × ai + k2 × bj + k3 × cj (8.1)

where:

pij is the global priority for the i-th workload of the j-th engine. Its value is used to re-order the
queue.

k1 is the age factor. This is the agefactor parameter that can be set via cmsh in the engine submode
of the ScaleServer role. Usually it has the value 1.

ai is the age of the workload. That is, how long has passed since the i-th job submission, in seconds.
This typically dominates the priority calculation, and makes older workloads a higher priority.

k2 is the external priority factor. It is a floating point number in the range [0, 1], and is theExternal
Priority Factor parameter that can be set via cmsh in the engine submode of the ScaleServer role.

bi is the workload priority retrieved from the engine.
k3 is the engine factor. It is a floating point number in the range [0, 1], and is the enginefactor

parameter in the engine submode of the ScaleServer role.
cj is the engine priority. This is the priority parameter in the engine submode of the ScaleServer

role.

When all the workload priorities are calculated and the queue is re-ordered, then cm-scale starts to
find appropriate nodes for workloads. The workloads are selected in order, from the top of the queue
where the higher priority workloads are, to the bottom. This way a higher priority engine has a greater
chance of getting nodes for its workloads than a lower priority engine.

The factors k1, k2 and k3 in the equation 8.1 allow the significance of the related priority value in the
final result to be controlled. For example if only the priority fetched from the engine should be taken
into account, then k1 and k3 should be set to 0, and k2 to 1. Or, for example, when both the age and
engine priorities should be treated as equally important, then k1 and k3 can be set to 0.5 and k2 to 0.

8.2.5 Engines
Each workload engine considered by cm-scale must be configured within the engines submode within
the ScaleServer role. Bright Cluster Manager 9.1 supports the following workload engines:

• Slurm

• PBS Professional (community and commercial versions)

• LSF

• UGE

Engines can be of three types:

• hpc: for all HPC (High Performance Computing) workload managers

• kubernetes: for Kubernetes

• generic: for a generic type

© Bright Computing, Inc.

354 Bright Cluster Manager Auto Scaler

Common Parameters For The cm-scale Engines
All three engine types have the following parameters and submode in common, although their values
may differ:

• Workloads Per Node: The number of workloads that can be scheduled to run on the same node
at the same time.

– For a Kubernetes engine this parameter restricts only the number of either the Kubernetes
controllers, or the individual jobs (without any controller) per node. It does not restrict the
total number of pods that can be mapped per node by the cm-scale scheduler.
For example, a Kubernetes job, or Job with a capital ‘J’ in Kubernetes terminology, may consist
of many pods. Then, if Workload Per Node is, for example, 2, then only 2 Jobs can be mapped
to the node.
The number of pods is also taken into account by cm-scale, but this number is taken from
the Kubernetes::Node role, where the Max Pods option can be set. If the role is not assigned
to a node, then cm-scale assumes that there is no possibility for any pods to run on the node.

• Priority: The engine priority

• Age Factor: Fairsharing coefficient for workload age

• Engine Factor: Fairsharing coefficient for engine priority

• Max Nodes: The maximum number of running nodes allowed

• Trackers: Enters the workload trackers submode

Non-common parameters for the cm-scale engines:
• For the hpc engine:

– WLM Cluster: A workload manager cluster name. The name is set during workload manager
setup as the instance name. In cmsh the WLM cluster names are listed under wlm mode. In
Bright View they can be seen along the clickpath HPC→Wlm Clusters.

• For the kubernetes engine, the following parameters can be set:

– Cluster: These are the Kubernetes clusters for which pods are to be tracked. Bright Cluster
Manager allows multiple Kubernetes clusters to run on a single compute cluster. Kubernetes
must be already set up before this setting is configured.

– CPU Busy Threshold: The CPU load is a value that can range from 0 to 1. The CPU Busy
Threshold value defines if the node is too busy for new pods. Its default value is: 0.9.

– Memory Busy Threshold: The Memory load is a value that can range from 0 to 1. The Memory
Busy Threshold defines if the node is too busy for new pods. Its default value is: 0.9.

The CPU and Memory thresholds configured in the Kubernetes engine help cm-scale to decide
when more nodes are needed. But cm-scale also retrieves the number of pods that are already running
on the node and compares it with the Max Pods parameter that is configured in the Kubernetes::Node
role assigned to the node. If the number of running pods is already equal or greater than the value of
Max Pods, then (from the cm-scale point of view) the node cannot fit more pods, which means that a
new node is needed.

© Bright Computing, Inc.

8.2 Configuration 355

8.2.6 Trackers
A workload tracker is a way to specify the workload and its node requirements to cm-scale. For HPC,
the tracker may be associated with a specific queue, and cm-scale then tracks the jobs in that queue.

One or more trackers can be named and enabled within the trackers submode, which is located
within the engines submode of the ScaleServer role. A queue (for workload managers) can be assigned
to each tracker.

Example

There are three types of tracker objects supported in Bright Cluster Manager 9.1:

• queue: Used with an HPC type engine, where each workload (job) is associated with a particular
queue. The attribute Type takes the value ScaleHpcQueueTracker, and the attribute Queue is set to
the queue name for the job.

• namespace: Used with a kubernetes type engine.

• generic: Used with a generic type engine.

The following settings are common for both types of trackers:

• Enabled: Enabled means that workloads from this tracker are considered by cm-scale.

• Assign Category: A node category name that should be assigned to the managed nodes. When
a node is supposed to be used by a workload, then cm-scale should assign the node category to
that node. If the node is already running, and has no workloads running on it, but its category
differs from the category specified for the jobs of the queue, then the node is drained, stopped and
restarted on the next decision-making iteration of cm-scale, and takes on the assigned category.
Further details on this are given in the section on dynamic nodes re-purposing, page 370.

• Primary Overlays: A list of configuration overlays.

If a workload is associated with the tracker for which the overlays are specified by Primary
Overlays, then the Bright Cluster Manager-managed nodes are appended to those configuration
overlays by cm-scale. This takes place after the node is removed from the previous overlays that
it is associated with.

If the node is already running, but has not yet been appended to the overlays specified for the
workloads of the tracker, then the node is restarted when no other workloads run on the node,
before going on to run the workloads with the new overlays.

– When a workload is associated with the tracker that has Primary Overlays set, then the pool
of cm-scale-managed nodes is checked.
The check is to decide on if a node is to be made available for the workload.
If the node is appended to the Primary Overlays already and is not running workloads, then
cm-scale simply hands over a workload from the tracker to run on the node.
If the node is not appended to the Primary Overlays already, and is not running workloads,
then cm-scale prepares and boots the node as follows:

* the node is drained and rebooted if it is up, or

* the node is undrained and merely booted if it is not up

The node is removed from any previous overlays that it was with, before booting up, and it
is appended to the new overlays of Primary Overlays.

• The threshold settings:

– Queue Length Threshold: number of pending workloads that triggers cloudbursting.

© Bright Computing, Inc.

356 Bright Cluster Manager Auto Scaler

– Age Threshold: workload pending time threshold, in seconds, that triggers cloudbursting
for this workload.

The queue length and age thresholds allow the administrator to set when cm-scale starts or creates
cloudbursting nodes. Both thresholds can be used at the same time, or just one of them can be used
and the other can be ignored by setting it to 0.

If the queue length threshold is set, then cm-scale ignores pending workloads that are located
higher (added later) than the threshold in the managed queue.

Example

Assuming there are 5 jobs in the queue, with job IDs 1, 2, 3, 4, and 5, where the 1st one is the first
in the queue. If the queue length threshold is 3, then only jobs 1, 2 and 3 are taken into account,
while jobs 4 and 5 are ignored.

Example

If the age threshold is set to 100, then only workloads older than 100 seconds are taken into ac-
count, while younger jobs are ignored.

The queue type tracker has only one parameter specific to the tracker: Queue. This is set to the
workload queue that is being tracked.

Namespace Tracker
The namespace tracker of cm-scale is used to track Kubernetes workloads. It tracks Kubernetes jobs
(via its Job controllers) and tracks individual pods. It does not start new nodes for pending pods owned
by other types of Kubernetes pod controllers, such as ReplicaSet, DaemonSet, and so on. If non-Job
controllers are running, then cm-scale will not stop or terminate those nodes.

The tracker settings in cmsh or Bright View include additional parameters that are in common with
other trackers:

1. Controller Namespace: Tracks the Kubernetes namespace name. Only Kubernetes workloads
from this namespace are tracked. To track more than one namespace, one tracker must be created
per namespace.

2. Object: Type of Kubernetes objects to track. Bright Cluster Manager supports the following object
types:

(a) Job: A Kubernetes Job controller type represents one or several pods that are expected to
eventually terminate. The controller nature makes this type of Kubernetes workload very
suited to dynamic data centers.

(b) Pod: Individual pod, without any controller.

If the specified namespace does not exist in Kubernetes, then the tracked jobs or individual pods in
this namespace are ignored by cm-scale.

Generic Engine And Tracker
The cm-scale service is able to deal with workloads that use various workload types. In order to add
suuport of a new type of workload, the administrator

• adds an engine of type generic

• adds one or more trackers of type generic to the ScaleServer role

© Bright Computing, Inc.

8.2 Configuration 357

• implements Tracker and Workload classes in the Python programming language

The cm-scale service is able to to use a generic tracker to deal with workloads that use various
tracker types.

When cm-scale starts a new iteration, it re-reads the engines and trackers settings from the
ScaleServer role, and searches for the appropriate modules in its directories. In the case of a custom
tracker, the module is always loaded according to the tracker handler path. When the tracker module
is loaded, cm-scale requests a list of workloads from each of the tracker modules. So, the aim of the
tracker module is to collect and provide the workloads to cm-scale in the correct format.

The path to the tracker module should be specified in the handler parameter of the generic tracker
entity using cmsh or Bright View as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% device roles master
[bright91->device[bright91]->roles]% use scaleserver
[bright91->device[bright91]->roles[scaleserver]]% engines
...->roles[scaleserver]->engines]% add generic myengine
...*]->roles*[scaleserver*]->engines*[myengine*]]% trackers
...*[myengine*]->trackers]% add generic mytracker
...*[mytracker*]]% set handler /cm/local/apps/cm-scale/examples/custom_tracker/tracker.py
...*]->roles*[scaleserver*]->engines*[myengine*]->trackers*[mytracker*]]% commit
...->roles[scaleserver]->engines[myengine]->trackers[mytracker]]%

In the preceding example, the handler file .../examples/tracker.py is an example that is provided
with the cm-scale package. Another example module file provided with the package is .../examples/
workload.py, which implements the ExampleWorkload class. Together, the two examples can be used
to generate any amount of simple workloads during each cm-scale iteration. It is recommended to use
the tracker and workload classes as templates for custom tracker and workload modules created by the
administrator.

The generic engine does not have any specific parameters associated with its type. It only has pa-
rameters common to all of the engine types.

If the generic engine is configured with at least one generic tracker in its role, then cm-scale loads
the handler module and uses two functions that are implemented in the class. The class name can be
chosen arbitrarily, but should contain the string “Tracker”, without the quotes. The two class functions
used are:

1. __init__: initializes the tracker object. This can be omitted if there are no additional data values to
initialize.

2. get_workloads: returns a list of objects belonging to a new class inherited from the Workload class.
This new class should be created by the administrator.

The new workload class must provide the following functions and properties. The class name can
be chosen arbitrarily:

1. __init__: initializes the workload object.

2. to_string: returns a string that identifies the workload. This is printed to the log file.

3. begin_timestamp: property that returns a unix timestamp that should be >0 if the workload is not
allowed to start before that time. If it is 0 then it is ignored by cm-scale.

For example, the following very simple tracker and workload classes can be implemented:

Example

© Bright Computing, Inc.

.../examples/tracker.py
.../examples/workload.py
.../examples/workload.py

358 Bright Cluster Manager Auto Scaler

class ExampleTracker(Tracker):
def to_string(self):

return "my workload"

def get_workloads(self):
return [ExampleWorkload(self)]

class ExampleWorkload(Workload):
def __init__(self):

Workload.__init__(self, tracker)
self.set_id("1")
self._update_state()
self._update_age()
self._update_resources()

def to_string(self):
return "workload %s" % self._id

def _update_state():
self._set_pending()

def _update_age(self):
self._age = 0

def _update_resources(self):
node_res = NodeResource("*")

cpus_res = CpusResource(1)
node_res.add_resource(cpu_res)

engine_res = EngineResource("myengine")
node_res.add_resource(engine_res)

self.add_resource(node_res)

The classes should be located in different files, as Python module files. It is recommended, but not
required, to keep the both files in the same directory. The ExampleWorkload class initializes the workload
object with a state, age, and required resources. These values are described next.

State: The state can be pending, running or failed, which can be set with these appropriate functions:

• self._set_pending()

• self._set_running()

• self._set_failed()

If the state is running, then the workload is treated as one that occupies the nodes defined in the
resources list. Each NodeResource object in the resources thus represents one occupied node.

If the state is pending, then the workload is treated as one that waits for free nodes. In this case
cm-scale tries to find (start or clone) some more nodes in order to allow the workload engine to start
this workload.

The failed workload state is considered by cm-scale as exceptional. Such a workload is logged
in the log file, but is not considered when cm-scale decides what nodes to start or clone. Any other
workload state is also ignored by cm-scale.

© Bright Computing, Inc.

8.2 Configuration 359

Age: The age defines how many seconds the workload is waiting for its resources since being added
to the engine. Usually the engine can provide such information, so in the example age is set to 0, which
means the workload has been added to the workload engine just now. The age is used in the fairsharing
workload priority calculation (page 353). The value of age is not re-calculated by cm-scale after a
while. This means that the number that the module sets in the class is used during the iteration, and
then forgotten by cm-scale until the workload object is recreated from scratch on the next iteration.

Resources: The Workload class (a base class) includes the resources property with list types. This list
includes resource objects that are used by cm-scale in order to find appropriate nodes for the work-
load. The top level resource type is always NodeResource. There can be one or several node resources
requested by the workload.

If the node names are known, then one NodeResource object is created per compute node.
Otherwise a single NodeResource object is used as many times as the number of requested nodes,

with the name set to *, which is treated by cm-scale as any suitable node. The number of nodes can be
set in the NodeResource object with the set_amount(number) function of the resource.

In the preceding example one (any) node resource is added to the workload request, and the require-
ment for CPU (cores) number is set to 1. The engine resource is used in order to restrict the mapping
of workloads from different engines to one node. Thus if a node has this resource assigned, then the
node can take on the workload. If no engine resource is assigned to the node, then it can also take on
the workload, but the engine resource of the workload is assigned to the node before other workloads
are considered.

The resource types that can be added to the workload are defined in the Python module /cm/local/
apps/cm-scale/lib/core/resource.py:

• NodeResource: top level resource, contains all other resources.

• CpusResource: defines the number of cpu cores required or already used by the workload.

• CategoryResource: node category required by the workload.

• OverlayResource: required configuration overlay.

• QueueResource: HPC queue that the workload (job) belongs to. Used only with engines that
support queues.

• EngineResource: engine name that the workload belongs to.

• FeatureResource: required node feature (node property, in other terminology) that should be
supported by the engine.

Custom resource types are not supported for now.
In order to drain a node in the custom engine before the node is stopped, and to undrain it before

the node is started, the administrator can write and configure three scripts:

• Drain script: called before a node is drained by Auto Scaler.

• Undrain script: called before node is undrained by Auto Scaler.

• Drain status script: called when Auto Scaler retrieves information about the current node
drain status.

Either all of the three scripts must be configured, or none of them.
It is useful to drain and undrain the nodes in order to ensure that the engine does not start new jobs

in time period between the instant that Auto Scaler decides to stop the node, and the instant that the
actual power operation is performed.

The scripts are configured in the file:

© Bright Computing, Inc.

/cm/local/apps/cm-scale/lib/core/resource.py
/cm/local/apps/cm-scale/lib/core/resource.py

360 Bright Cluster Manager Auto Scaler

/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py

with the GENERIC_DRAIN_COMMANDS parameter appended to the opts dictionary:

Example

"GENERIC_DRAIN_COMMANDS": {
"MyEngine":
{"drain": "/cm/local/apps/cm-scale//examples/custom_drain/drain.py",
"undrain": "/cm/local/apps/cm-scale/examples/custom_drain/undrain.py",
"status": "/cm/local/apps/cm-scale/examples/custom_drain/drainstatus.py"}

},

Here, for each generic engine, a new dictionary is created that includes three items that correspond
to, and specify, the script paths. In the preceding example MyEngine is the engine name, and should be
the same as that defined in the ScaleServer role. If more then one generic engine is used then all of
them can be added to GENERIC_DRAIN_COMMANDS.

It should be noted that if GENERIC_DRAIN_COMMANDS is defined in config.py, then cm-scale does not
drain over CMDaemon.

All three scripts accept the same set of parameters, following the form:

<script name> <engine name> <host name> [host name ...]

Example

drain.py MyEngine node001 node002 node003

Each of those three scripts print the following information to standard output:

• stdout: JSON structure that represents a map: hostname -> latest (new) drain status. For example:

Example

{"node001": 2, "node002": 2, "node003": 2}

Here the numbers are enum values defined in pythoncm in the DrainResult class.

• stderr: debug logs that are appended to cm-scale.log.

Enabling Node Shutdown
By default, cm-scale powers off nodes belonging to a resource pool once there is no more workload for
them. Resource Providers can also enable shutdown, to give the node time to terminate gracefully.

Shutdown has two options that can be set by the cluster administrator in the configuration file at
/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py:

• SHUTDOWN_ENABLED: If set to yes, then the shutdown command is run to terminate the system ser-
vices first, and after that a command is run to power off the system. A waiting time of SHUTDOWN_TIMEOUT
seconds takes place between the two events.

• SHUTDOWN_TIMEOUT: The number of seconds to wait before powering off a node that is in a shut-
down state.

It may take more than SHUTDOWN_TIMEOUT seconds for a node to power off, depending on the Run
Interval setting. For example, if SHUTDOWN_TIMEOUT is 60, and Run Interval is 50, then effectively the
shutdown timeout is 100s, because the power off event only occurs during an iteration execution of
cm-scale.

© Bright Computing, Inc.

python3.7
/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py

8.3 Examples Of cm-scale Use 361

8.3 Examples Of cm-scale Use
8.3.1 Simple Static Node Provider Usage Example
The example session that follows explains how a static node provider (page 348) can be configured and
used with cm-scale. The session considers a default cluster with a head node and 5 regular nodes
which have been previously defined in Bright Cluster Manager configuration. 3 of the regular nodes are
powered down at the start of the run. The power control for the nodes must be functioning properly, or
otherwise cm-scale cannot power nodes on and off.

The head node has the Slurm server role by default, and the regular nodes run with the Slurm client
role by default. So, on a freshly-installed cluster, the roleoverview command should show something
like:

Example

[bright91->device[bright91]]% roleoverview | head -2 ; roleoverview | grep slurm
Role Nodes Categories Nodes up
-------------- ----------------- ------------ ---------
slurmclient node001..node005 default 2 of 5
slurmserver bright91 1 of 1

A test user, fred can be created by the administrator (section 6.2), and an MPI hello executable
based on the hello.c code (from section 3.5.1 of the User Manual) can be built:

Example

[fred@bright91 ~]$ module add shared openmpi/gcc/64/1.10.3 slurm
[fred@bright91 ~]$ mpicc hello.c -o hello

A batch file slurmhello.sh (from section 5.3.1 of the User Manual) can be set up. Restricting it to 1
process per node so that it spreads over nodes easier for the purposes of the test can be done with the
settings:

Example

[fred@bright91 ~]$ cat slurmhello.sh
#!/bin/sh
#SBATCH -o my.stdout
#SBATCH --time=30 #time limit to batch job
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
module add shared openmpi/gcc/64/1.10.1 slurm

mpirun /home/fred/hello

The user fred can now flood the default queue, defq, with the batch file:

Example

[fred@bright91 ~]$ while (true); do sbatch slurmhello.sh; done

After putting enough jobs into the queue (a few thousand should be enough, and keeping it less than
5000 would be sensible) the flooding can be stopped with a ctrl-c.

The activity in the queue can be watched:

Example

© Bright Computing, Inc.

362 Bright Cluster Manager Auto Scaler

[root@bright91 ~]# watch "squeue | head -3 ; squeue | tail -3"

Every 2.0s: squeue | head -3 ; squeue | tail -3 Thu Sep 15 10:33:17 2016

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
6423 defq slurmhel fred CF 0:00 1 node001
6424 defq slurmhel fred CF 0:00 1 node002
6572 defq slurmhel fred PD 0:00 1 (Priority)
6422 defq slurmhel fred R 0:00 1 node001
6423 defq slurmhel fred R 0:00 1 node002

The preceding indicates that node001 and node002 are being kept busy running the batch jobs, while
the remaining nodes are not in use.

The administrator can check on the job status via the job metrics of cmsh too, using the options to the
filter command, such as --pending or --running:

Example

[root@bright91 ~]# cmsh -c "wlm use slurm; jobs; watch filter --running -u fred"
Every 2.0s: filter --running -u fred Wed May 7 12:50:05 2017
Job ID Job name User Queue Submit time Start time End time Nodes Exit code
------ ------------- ---- ----- ----------- ---------- -------- --------------- ---------
406 slurmhello.sh fred defq 16:16:56 16:27:21 N/A node001,node002 0

and eventually, when jobs are no longer running, it should show something like:

[root@bright91 ~]# cmsh -c "wlm use slurm; jobs; watch filter --running -u fred"
Every 2.0s: filter --running Wed May 7 12:56:53 2017
No jobs found

So far, the cluster is queuing or running jobs without cm-scale being used.
The next steps are to modify the behavior by bringing in cm-scale. The administrator assigns the

ScaleServer role to the head node. Within the role a new static node provider, Slurm engine, and queue
tracker for the defq are set as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% device roles master
[bright91->device[bright91]->roles]% use scaleserver
[bright91->device[bright91]->roles[scaleserver]]% resourceproviders
...->roles[scaleserver]->resourceproviders]% add static pool1
...*]->roles*[scaleserver*]->resourceproviders*[pool1*]]% set nodes node001..node005
...*]->roles*[scaleserver*]->resourceproviders*[pool1*]]% commit
...]->roles[scaleserver]->resourceproviders[pool1]]% ..;..
...]->roles[scaleserver]]% engines
...]->roles[scaleserver]->engines]% add hpc slurm1
...*]->roles*[scaleserver*]->engines*[slurm1*]]% set wlmcluster slurm
...*]->roles*[scaleserver*]->engines*[slurm1*]]% trackers
...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers]% add queue tr1
...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers*[tr1*]]% set queue defq
...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers*[tr1*]]% commit
...->roles[scaleserver]->engines[slurm1]->trackers[tr1]]%

The nodes node001..node005 should already be in the queue defq, as assigned to them by default
when they were assigned the SlurmClient role. With these settings, they can now be powered up or

© Bright Computing, Inc.

8.3 Examples Of cm-scale Use 363

down on demand by cm-scale service, depending on the number of jobs that are pending. When the
new ScaleServer role is committed in cmsh or Bright View, then the cm-scale service is started. If
needed, the administrator can check the log file /var/log/cm-scale to see what the service is doing.

On each iteration cm-scale checks whether the node states should be changed. Thus after a while,
the nodes node003..node005 are started. Once up, they can start to process the jobs in the queue too.

Watching the running jobs should show something like:

Example

[root@bright91 ~]# cmsh -c "wlm use slurm; jobs ; watch filter --running"

Every 2.0s: filter --running Thu Sep 8 13:01:59 2016
Job ID Job name User Queue Submit time Start time Nodes Exit code
------ ------------- ---- ----- ------------------- ------------------- ------- ---------
16498 slurmhello.sh fred defq 07/05/2017 12:44:20 07/05/2017 13:20:58 node003 0
16499 slurmhello.sh fred defq 07/05/2017 12:44:20 07/05/2017 13:20:58 node002 0

Eventually, cm-scale finds that all jobs have been dealt with, and the nodes are then powered down.

High-availability And Using A Configuration Overlay For The ScaleServer Role
For high-availability clusters, where there are two head nodes, the scaleserver should run on the active
head node. One labor-intensive way to set this up is to assign the service to both the head nodes,
and match the scaleserver settings on both head nodes. A simpler way is to define a configuration
overlay for the head nodes for the scaleserver. If the head nodes are bright91-1 and bright91-2, then
a configuration overlay called brightheads can be created and assigned the service as follows:

Example

[bright91-1]% configurationoverlay add brightheads
[bright91-1->configurationoverlay*[brightheads*]]% append nodes bright91-1 bright91-2
[bright91-1->configurationoverlay*[brightheads*]]% roles
[bright91-1->configurationoverlay*[brightheads*]->roles]% assign scaleserver
[bright91-1->configurationoverlay*[brightheads*]->roles*[scaleserver*]]%

The scaleserver can then be configured within the configuration overlay instead of on a single head as
was done previously in the example of page 362. After carrying out a commit, the scaleserver settings
modifications are then mirrored automatically between the two head nodes.

Outside the scaleserver settings, one extra modification is to set the cm-scale service to run on a
head node if the head node is active. This can be done with:

Example

[bright91-1->configurationoverlay[brightheads]->roles[scaleserver]]% device services bright91-1
[bright91-1->device[bright91-1]->services]% use cm-scale
[bright91-1->device[bright91-1]->services[cm-scale]]% set runif active
[bright91-1->device*[bright91-1*]->services*[cm-scale*]]% commit
[bright91-1->device[bright91-1]->services]% device use bright91-2
[bright91-1->device[bright91-2]->services]% use cm-scale
[bright91-1->device[bright91-2]->services[cm-scale]]% set runif active
[bright91-1->device*[bright91-2*]->services*[cm-scale*]]% commit

The result is a scaleserver that runs when the head node is active.

© Bright Computing, Inc.

/var/log/cm-scale

364 Bright Cluster Manager Auto Scaler

8.3.2 Simple Dynamic Node Provider Usage Example
The following example session explains how a dynamic node provider (page 349) can be configured
and used with cm-scale. The session considers a default cluster with a head node and 2 regular nodes
which have been previously defined in Bright Cluster Manager configuration, and also 1 cloud director
node and 2 cloud compute nodes. The cloud nodes can be configured using cm-cluster-extension.
Only the head node is running at the start of the session, while the regular nodes and cloud nodes are
all powered down at the start of the run.

At the start, the device status shows something like:

Example

[bright91->device]% ds
eu-west-1-cnode001 [DOWN] (Unassigned)
eu-west-1-cnode002 [DOWN] (Unassigned)
eu-west-1-cnode003 [DOWN] (Unassigned)
eu-west-1-director [DOWN]
node001 [DOWN]
node002 [DOWN]
bright91 [UP]

The power control for the regular nodes must be functioning properly, or otherwise cm-scale cannot
power them on and off.

If the head node has the slurmserver role, and the regular nodes have the slurmclient role, then
the roleoverview command should show something like:

Example

[bright91->device[bright91]]% roleoverview
Role Nodes Categories Nodes up
----------------- -------------------------------------- ---------------------------- --------
boot bright91 1 of 1
cgroupsupervisor eu-west-1-cnode001..eu-west-1-cnode002 aws-cloud-director,default 1 of 6

,eu-west-1-director,node001..node002 ,eu-west-1-cloud-node
,bright91

clouddirector eu-west-1-director 0 of 1
cloudgateway bright91 1 of 1
login bright91 1 of 1
master bright91 1 of 1
monitoring bright91 1 of 1
provisioning eu-west-1-director,bright91 1 of 2
slurmclient eu-west-1-cnode001..eu-west-1-cnode002 default,eu-west-1-cloud-node 0 of 3

,node001..node002
slurmserver bright91 1 of 1
storage eu-west-1-director,bright91 aws-cloud-director 1 of 2

A test user, fred can be created by the administrator (section 6.2), and an MPI hello executable
based on the hello.c code (from section 3.5.1 of the User Manual) can be built:

Example

[fred@bright91 ~]$ module add shared openmpi/gcc/64/1.10.3 slurm
[fred@bright91 ~]$ mpicc hello.c -o hello

A batch file slurmhello.sh (from section 5.3.1 of the User Manual) can be set up. Restricting it to 1
process per node so that it spreads over nodes easier for the purposes of the test can be done with the
settings:

© Bright Computing, Inc.

8.3 Examples Of cm-scale Use 365

Example

[fred@bright91 ~]$ cat slurmhello.sh
#!/bin/sh
#SBATCH -o my.stdout
#SBATCH --time=30 #time limit to batch job
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
module add shared openmpi/gcc/64/1.10.1 slurm

mpirun /home/fred/hello

A default cluster can queue or run jobs without cm-scale being used. The default behavior is modi-
fied in the next steps, which bring in the cm-scale service:

The administrator assigns the ScaleServer role to the head node.

Example

[root@bright91 ~]# cmsh
[bright91]% device roles master
[bright91->device[bright91]->roles]% assign scaleserver

Within the assigned scaleserver role, a new dynamic node provider can be set, and properties for
the dynamic pool of nodes can be set for the cloud compute nodes. Here the properties that are set are
priority (page 349), templatenode (page 349), noderange (page 349), and extranodes (page 350).

Example

[bright91->device*[bright91*]->roles*[scaleserver*]]% resourceproviders
...->roles[scaleserver]->resourceproviders]% add dynamic pool2
...resourceproviders*[pool2*]]% set priority 2
...resourceproviders*[pool2*]]% set noderange eu-west-1-cnode001..eu-west-1-cnode002
...resourceproviders*[pool2*]]% set templatenode eu-west-1-cnode001
...resourceproviders*[pool2*]]% set extranodes eu-west-1-director
...resourceproviders*[pool2*]]% commit
...resourceproviders[pool2]]%

The regular compute nodes, node001..node002 should be specified as nodes in the static pool.
The administrator may notice the similarity of dynamic and static pool configuration. The Bright

Cluster Manager front end has deliberately been set up to present dynamic pool and static pool nodes
to the cluster administrator as two different configuration methods. This is because separating the pool
types as dynamic and static pools is simpler for the cluster administrator to deal with. This way, regular
compute nodes are treated, not as a special case of a dynamic pool, but simply as static pool nodes.
The fundamental reason behind this separate treatment is because physical nodes cannot “materialize”
dynamically with properties in the way the cloud compute nodes–which are virtualized nodes—can,
due to the need to associate a MAC address with a physical node.

Assigning regular compute nodes to a static pool can be done in a similar way to what was shown
before in the example on page 362.

Continuing with the current session, the nodes node001..node002 are added to the static pool of
nodes, on-premises-nodes. For this example they are set to a lower priority than the cloud nodes:

Example

...->roles[scaleserver]->resourceproviders]% add static on-premises-nodes

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% set nodes node001..node002

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% set priority 1

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% commit

...->roles[scaleserver]->resourceproviders[on-premises-nodes]]%

© Bright Computing, Inc.

366 Bright Cluster Manager Auto Scaler

What this lower priority means is that a node that is not up and is in the static pool of nodes, is only
powered on after all the cloud nodes are powered on and busy running jobs. If there happen to be nodes
from the static pool that are already up, but are not running jobs, then these nodes take a job, despite
the lower priority of the static pool, and irrespective of whether the dynamic pool nodes are in use.

Job priorities can be overridden in cm-scale by:

• allowing locations by setting Mix Locations to true (page 372) or

• pinning queues by setting Pin Queues to true (page 374)

A Slurm engine, and queue tracker for the defq are set as follows:

Example

...]->roles[scaleserver]]% engines

...]->roles[scaleserver]->engines]% add hpc slurm2

...*]->roles*[scaleserver*]->engines*[slurm2]]% set wlmcluster slurm

...*]->roles*[scaleserver*]->engines*[slurm2]]% trackers

...*]->roles*[scaleserver*]->engines*[slurm2]->trackers]% add queue tr2

...*]->roles*[scaleserver*]->engines*[slurm2]->trackers*[tr2*]]% set queue defq

...*]->roles*[scaleserver*]->engines*[slurm2*]->trackers*[tr2*]]% commit

...->roles[scaleserver]->engines[slurm2]->trackers[tr2]]%

The nodes node001..node002 and eu-west-1-cnode001..eu-west-1-cnode002 should already be
in the queue defq by default, ready to run the jobs:

Example

...->roles[scaleserver]->engines[slurm2]->trackers[tr2]]% wlm use slurm; jobqueue; get defq nodes
eu-west-1-cnode001
eu-west-1-cnode002
node001
node002

The roleoverview (page 364) command is also handy for an overview, and to confirm that the role
assignment of these nodes are all set to the SlurmClient role:

With these settings, the nodes in the dynamic pool can now be powered up or down on demand by
cm-scale service, depending on the number of jobs that are pending. When the new ScaleServer role
is committed in cmsh or Bright View, then the cm-scale is run periodically. Each time it is run, cm-scale
checks whether the node states should be changed. If needed, the administrator can check the log file
/var/log/cm-scale to see what the service is doing.

Job submission can now be carried out, and the scaleserver assignment carried out earlier scales the
cluster to cope with jobs according to the configuration that has been carried out in the session.

Before submitting the batch jobs, the administrator or user can check the jobs that are queued and
running with the squeue command. If there are no jobs yet submitted, the output is simply the squeue
headers, with no job IDs listed:

Example

[fred@bright91 ~]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

As in the previous example for the static pool only case (page 361), a way for user fred to flood the
default queue defq is to run the batch file in a loop:

Example

© Bright Computing, Inc.

/var/log/cm-scale

8.3 Examples Of cm-scale Use 367

[fred@bright91 ~]$ while (true); do sbatch slurmhello.sh; done
Submitted batch job 1
Submitted batch job 2
Submitted batch job 3
...

After putting enough jobs into the queue (a few thousand should be enough, not more than five
thousand would be sensible), the flooding can be stopped with a ctrl-c.

The changes in the queue can be watched by user fred:

Example

[fred@bright91 ~]$ watch "squeue | head -5 ; squeue | tail -4"
Every 2.0s: squeue | head -5 ; squeue | tail -4 Wed Nov 22 16:08:52 2017

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1 defq slurmhel fred PD 0:00 1 (Resources)
2 defq slurmhel fred PD 0:00 1 (Resources)
3 defq slurmhel fred PD 0:00 1 (Resources)
4 defq slurmhel fred PD 0:00 1 (Resources)

3556 defq slurmhel fred PD 0:00 1 (Resources)
3557 defq slurmhel fred PD 0:00 1 (Resources)
3558 defq slurmhel fred PD 0:00 1 (Resources)
3559 defq slurmhel fred PD 0:00 1 (Resources)

The head -4 and tail -4 filters here are convenient for showing just the first 4 rows and last 4 rows
of the very long squeue output, and skipping the bulk of the queue.

The preceding output illustrates how, with the jobs queued up, nothing is being processed yet from
jobs number 1 to 3559 due to the resources not yet being available.

At this point cm-scale should have noticed that jobs are queued and that resources are needed to
handle the jobs.

At the start of this example session the cloud director is not up. So, cm-scale powers it up. This can
be seen by running the ds command, or from CMDaemon info messages:

[bright91->device]% ds | grep director
eu-west-1-director [DOWN]

then some time later:
eu-west-1-director [PENDING] (External ip assigned: 34.249.166.63, setting up tunnel)

then some time later:
eu-west-1-director [INSTALLING] (node installer started)

then some time later:
eu-west-1-director [INSTALLER_CALLINGINIT] (switching to local root)

then some time later:
eu-west-1-director [UP]

If the cloud director is yet to be provisioned to the cloud from the head node for the very first time
(“from scratch”), then that can take a while. Then, because the cloud compute nodes are in turn provi-
sioned from the cloud director, it takes a while for the cloud compute nodes to be ready to run the jobs.
So, the jobs just have to wait around in the queue until the cloud compute nodes are ready, before they
are handled. Fortunately, the startup of a cloud director is by default much faster after the very first
time.

A quick aside about how provisioning is speeded up the next time around: The cloud compute nodes
will be stopped if they are idle, and after there are no more jobs in the queue, because the jobs have all
been dealt with. Then, when the extranodeidletime setting has been exceeded, the cloud director is
also stopped. The next time that jobs are queued up, all the cloud nodes are provisioned from a stopped

© Bright Computing, Inc.

368 Bright Cluster Manager Auto Scaler

state, rather than from scratch, and so they are ready for job execution much faster. Therefore, unlike
the first time, the jobs queued up the next time are processed with less waiting around.

Getting back to how things proceed in the example session after the cloud director is up: cm-scale
then provisions the cloud compute nodes eu-west-1-node001 and eu-west-1-node002 from the cloud
director.

Example

[bright91->device]% ds | grep cnode
eu-west-1-cnode001 [PENDING] (Waiting for instance to start)
eu-west-1-cnode002 [PENDING] (Waiting for instance to start)

then some time later:
eu-west-1-cnode002 [INSTALLING] (node installer started)
eu-west-1-cnode001 [INSTALLING] (node installer started)

and so on

Once these cloud compute nodes reach the state of UP, they can start to process the jobs in the queue.
The queue activity then would show something like:

Example

when the dynamic pool nodes are being readied for job execution:
[fred@bright91 ~]$ squeue | head -5 ; squeue | tail -4
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1 defq slurmhel fred PD 0:00 1 (Resources)
2 defq slurmhel fred PD 0:00 1 (Resources)
3 defq slurmhel fred PD 0:00 1 (Resources)
4 defq slurmhel fred PD 0:00 1 (Resources)

3556 defq slurmhel fred PD 0:00 1 (Resources)
3557 defq slurmhel fred PD 0:00 1 (Resources)
3558 defq slurmhel fred PD 0:00 1 (Resources)
3559 defq slurmhel fred PD 0:00 1 (Resources)

then later:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
11 defq slurmhel fred CF 0:00 1 eu-west-1-cnode001
12 defq slurmhel fred CF 0:00 1 eu-west-1-cnode002
13 defq slurmhel fred CF 0:00 1 (priority)
14 defq slurmhel fred CG 0:00 1 (priority)

3556 defq slurmhel fred PD 0:00 1 (Priority)
3557 defq slurmhel fred PD 0:00 1 (Priority)
3558 defq slurmhel fred PD 0:00 1 (Priority)
3559 defq slurmhel fred PD 0:00 1 (Priority)

then later, when cm-scale sees all of the dynamic pool is used up, the lower priority static pool gets started up:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
165 defq slurmhel fred CF 0:00 1 eu-west-1-cnode001
166 defq slurmhel fred CF 0:00 1 node001
168 defq slurmhel fred CG 0:00 1 node002

3556 defq slurmhel fred PD 0:00 1 (Priority)
3557 defq slurmhel fred PD 0:00 1 (Priority)
3558 defq slurmhel fred PD 0:00 1 (Priority)
3559 defq slurmhel fred PD 0:00 1 (Priority)
167 defq slurmhel fred R 0:00 1 eu-west-1-cnode002

© Bright Computing, Inc.

8.3 Examples Of cm-scale Use 369

In cmsh, the priority can be checked with:

Example

[bright91 ->device[bright91]->roles[scaleserver]->resourceproviders]% list
Name (key) Priority Enabled
----------------- ------------ -------
on-premises-nodes 1 yes
pool2 2 yes

Also in cmsh, the jobs can be listed via the jobs submode:

Example

[bright91->wlm[slurm]->jobs]% list | head -5 ; list | tail -4
Type Job ID User Queue Running time Status Nodes
------ ------ ----- ----- ------------ ---------- ------------------
Slurm 334 fred defq 1s COMPLETED eu-west-1-cnode001
Slurm 336 fred defq 1s COMPLETED node001
Slurm 3556 fred defq 0s PENDING
Slurm 3557 fred defq 0s PENDING
Slurm 3558 fred defq 0s PENDING
Slurm 3559 fred defq 0s PENDING
Slurm 335 fred defq 1s RUNNING eu-west-1-cnode002
[bright91->wlm[slurm]->jobs]%

Eventually, when the queue has been fully processed, the jobs are all gone:

Example

[fred@bright91 ~]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

With the current configuration the cloud compute nodes in the dynamic pool pool2 are powered up
before the regular compute nodes in the static pool on-premises-pool. That is because the cloud com-
pute nodes have been set by the administrator in this example to have a higher priority. This is typically
sub-optimal, and is actually configured this way just for illustrative purposes. In a real production clus-
ter, the priority of regular nodes is typically going to be set higher than that for cloud compute nodes,
because using on-premises nodes is likely to be cheaper.

The administrator can also check on the job status via the job metrics of cmsh too, using the options
to the filter command, such as --pending or --running:

Initially, before the jobs are being run, something like this will show up:

Example

[root@bright91 ~]# cmsh -c "wlm use slurm; jobs ; watch filter --running -u fred"
Every 2.0s: filter --running -u fred Wed Nov 22 16:03:18 2017
No jobs found

Then, eventually, when the jobs are being run, the cloud nodes, which have a higher priority, start
job execution, so that the output looks like:

Example

Every 2.0s: filter --running -u fred Wed Nov 22 16:50:35 2017
Job ID Job name User Queue Submit time Start time End time Nodes Exit code
------ ------------- ---- ----- ----------- ---------- -------- --------------- ---------
406 slurmhello.sh fred defq 16:16:56 16:27:21 N/A eu-west1-cnode001 0
407 slurmhello.sh fred defq 16:16:56 16:27:21 N/A eu-west1-cnode002 0

and eventually the regular on-site nodes which are originally down are started up by the ScaleServer
and are also listed.

© Bright Computing, Inc.

370 Bright Cluster Manager Auto Scaler

8.4 Further cm-scale Configuration And Examples
8.4.1 Dynamic Nodes Re-purposing
Sometimes it is useful to share the same nodes among several queues, and reuse the nodes for jobs
from other queues. This can be done by dynamically assigning node categories in cm-scale. Different
settings, or a different software image, then run on the re-assigned node after re-provisioning.

The feature is enabled by setting Assign Category parameter in the tracker settings.
For example, the following case uses Slurm as the workload engine, and sets up two queues chem_q

and phys_q. Assuming in this example that jobs that are to go to chem_q require chemistry software on the
node, but jobs for phys_q require physics software on the node, and that for some reason the softwares
cannot run on the node at the same time. Then, the nodes can be re-purposed dynamically. That is, the
same node can be used for chemistry or physics jobs by setting up the appropriate configuration for it.
In this case the same node can be used by jobs that require a different configuration, software, or even
operating system. The trackers configuration may then look as follows:

Example

[bright91->device[bright91]->roles[scaleserver]->engines[slurm]->trackers[chem]]% show
Parameter Value
-------------------------------- --
Type ScaleHpcQueueTracker
Name chem
Queue chem_q
Enabled yes
Assign Category chem_cat
Primary Overlays
[bright91->device[bright91]->roles[scaleserver]->engines[slurm]->trackers[chem]]% use phys
[bright91->device[bright91]->roles[scaleserver]->engines[slurm]->trackers[phys]]% show
Parameter Value
-------------------------------- --
Type ScaleHpcQueueTracker
Name chem
Queue chem_q
Enabled yes
Assign Category phys_cat
Primary Overlays
[bright91->device[bright91]->roles[scaleserver]->engines[slurm]->trackers[phys]]%

Assuming that initially there are two nodes, node001 and node002, both in category chem_cat. Then,
when cm-scale finds a pending job in queue phys_q, it may decide to assign category phys_cat to either
node001, or to node002. In this way the number of nodes serving queue phys_q increases and number
of nodes serving chem_q decreases, in order to handle the current workload. When the job is finished,
the old node category is not assigned back to the node, until a new job appears in chem_q and requires
this node to have the old category.

8.4.2 Pending Reasons
This section is related only to HPC engines (workload managers). In this section, the term job is used
instead of workload.

If cm-scale makes a decision on how many nodes should be started for a job, then it checks the
status of the job first. If the job status is pending, then it checks the list of pending reasons for that job.
The checks are to find pending reasons that prevent the job from starting when more free nodes become
available.

A pending reason can be one of the following 3 types:

Type 1: allows a job to start when new free nodes become available

© Bright Computing, Inc.

8.4 Further cm-scale Configuration And Examples 371

Type 2: prevents a job from starting on particular nodes only

Type 3: prevents a job from starting anywhere

Each pending reason has a text associated with it. The text is usually printed by the
workload manager job statistics utilities. The list of pending reasons texts of types 1 and 2
can be found in the pending reasons exclude file, /cm/local/apps/cm-scale/lib/python3.
7/site-packages/cmscale/trackers/hpc_queue/pending_reasons/WLM.exclude, where WLM is a
name of workload manager specified in the configuration of the engine in ScaleServer role.

In the pending reasons exclude file, the pending reason texts are listed as one reason per line. The
reasons are grouped in two sublists, with headers:

• [IGNORE_ALWAYS]

• [IGNORE_NO_NODE]

The [IGNORE_ALWAYS] sublist lists the type 1 pending reason texts. If a job has only this group of
reasons, then cm-scale considers the job as ready to start, and attempts to create or boot compute nodes
for it.

The [IGNORE_NO_NODE] sublist lists the type 2 pending reason texts. If the reason does not specify
the hostname of a new free node at the end of a pending reason after the colon (“:”), then the job can
start on the node. If the reason does specify the hostname of a new free node after the colon, and if
the hostname is owned by one of the managed nodes—nodes that can be stopped/started/created by
cm-scale—then the job is considered as one that is not to start, when nodes become available.

If a job has a pending reason text that is not in the pending reasons exclude file, then it is assumed to
be a type 3 reason. New free nodes for such a job do not get the job started.

If there are several pending reason texts for a job, then cm-scale checks all the pending reasons one
by one. If all reasons are from the IGNORE_ALWAYS or IGNORE_NO_NODE sublists, and if a pending reason text
matched in the IGNORE_NO_NODE sublist does not include hostnames for the managed nodes, only then
will the job be considered as one that can be started just with new nodes.

Custom Pending Reasons
If the workload manager supports them, then custom pending reason texts are also supported. The
administrator can add a pending reason text to one of the sections in the pending reasons exclude file.

The cm-scale service checks only if the pending reason text for the job starts with a text from the
pending reasons file. It is therefore enough to specify just a part of the text of the reason in order to
make cm-scale take it into account. Regular expressions are also supported. For example, the next two
pending reason expressions are equivalent when used to match the pending reason text Not enough
job slot(s):

Example

• Not enough

• Not enough [a-z]* slot(s)

The workload manager statistics utility can be used to find out what custom pending reason texts
there are, and to add them to the pending reasons file. To do this, some test job can be forced to have
such a pending reason, and the output of the job statistics utility can then be copy-pasted. For example,
LSF shows custom pending reasons that look like this:

Example

Customized pending reason number <integer>

Here, <integer> is an identifier (an unsigned integer) for the pending reason, as defined by the ad-
ministrator.

© Bright Computing, Inc.

python3.7
python3.7

372 Bright Cluster Manager Auto Scaler

8.4.3 Locations
Sometimes it makes sense to restrict the workload manager to run jobs only on a defined subset of nodes.
For example, if a user submits a multi-node job, then it is typically better to run all the job processes
either on the on-premises nodes, or on the cloud nodes. That is, without mixing the node types used for
the job. The locations feature of cm-scale allows this kind of restriction for HPC workload managers.

The cm-scale configuration allows one of these two modes to be selected:

1. forced location: when the workload is forced to use one of the locations chosen by cm-scale,

2. unforced location: when workloads are free to run on any of the compute nodes that are already
managed (running, freed or started) by cm-scale. This is the default if Auto Scaler is set up.

In Bright Cluster Manager 9.1, for a forced location, cm-scale supports these two different locations:

1. local: on-premises nodes,

2. cloud: AWS instances (Chapter 3 of the Cloudbursting Manual) or Azure instances (Chapter 5 of
the Cloudbursting Manual)

To restrict the WLM location—that is to choose a forced location—the mixlocations advanced set-
ting in the scaleserver role for the node must be set to no

Example

[bright91->device[bright91]->roles[scaleserver]->advancedsettings]% set mixlocations no
[bright91->device*[bright91*]->roles*[scaleserver*]->advancedsettings*]% commit

The location is automatically configured by Bright Cluster Manager when the node is added to the
workload manager. Details per workload manager are described next.

Slurm
Slurm does not allow the assignment of node properties—features, in Slurm terminology—to jobs if no
node exists that is labeled by this property. Thus any property used must be added to some node. This
can be the template node if a dynamic resource provider is used, or it can be an appropriate off-premises
node if a static resource provider is used. If the slurmclient role is assigned to a node—for example,
a template node—then the location value for this node is automatically configured by Bright Cluster
Manager.

The current location value can be found using the scontrol command. For example, for node001:

Example

[root@bright91 ~]# module load slurm
[root@bright91 ~]# scontrol show node node001 | grep AvailableFeatures

PBS
A new generic resource, resources_available.location, lets the administrator decide the locations
where cm-scale can run PBS jobs.

If the pbsproclient role is assigned to a node, then the location value for this node is automatically
configured by Bright Cluster Manager.

The current location value for a node can be found using the qmgr command. For example, for
node001:

Example

[root@bright91 ~]# module load openpbs
[root@bright91 ~]# qmgr -c "print node node001" | grep location
set node node001 resources_available.location = local

© Bright Computing, Inc.

8.4 Further cm-scale Configuration And Examples 373

UGE
A new generic resource, location, lets the administrator use cm-scale to restrict UGE jobs. The resource
is added automatically as a string type complex attribute. The exec host locations can be found with the
qhost command.

If the ugeclient role is assigned to a node, then the location value for this node is automatically
configured by Bright Cluster Manager.

The current location value for a node can be found using the qhost -F command. For example, for
node001:

Example

[root@bright91 ~]# module load uge
[root@bright91 ~]# qhost -F location -h node001
HOSTNAME ARCH NCPU NSOC NCOR NTHR NLOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
node001 lx-amd64 2 2 2 2 0.01 3.9G 543.2M 0.0 0.0

hf:location=local

LSF
In order to allow cm-scale to restrict LSF jobs, Bright Cluster Manager configures a generic resource
called location per node. The resource is added as a string resource in lsf.cluster.<CLUSTER_NAME:>
configuration file.

The location value for this node is automatically configured by Bright Cluster Manager.
To verify that the resource is added, the lshosts -s command can be run:

Example

[root@bright91 ~]# lshosts -s location | head -1; lshosts -s location | grep node001
RESOURCE VALUE LOCATION
location local node001.cm.cluster

8.4.4 Azure Storage Accounts Assignment
If an Azure node is cloned manually from some node or node template, then the Azure node gets the
same storage account as the node it has been cloned from. This may slow the nodes down if too many
nodes use the same storage account. The cm-scale utility can therefore assign different storage accounts
to nodes that are cloned like this.

The maximum number of nodes for such a storage account is defined by the
AZURE_DISK_ACCOUNT_NODES parameter. This parameter has a value of 20 by default, and can
be changed in the configuration file /cm/local/apps/cm-scale/lib/python3.7/site-packages/
cmscale/config.py. The cm-scale utility must be restarted after the change.

The newly-cloned-by-cm-scale Azure node gets a randomly-generated storage account name if
other storage accounts already have enough nodes associated with them. That is, if other storage ac-
counts have AZURE_DISK_ACCOUNT_NODES or more nodes.

The storage account name is assigned in the node cloud settings in storage submode. For example,
in cmsh, the assigned storage accounts can be viewed as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% device use cnode001
[bright91->device[cnode001]]% cloudsettings
[bright91->device[cnode001]->cloudsettings]% storage
[bright91->...[cnode001]->cloudsettings->storage]% get root-disk storageaccountname
azurepaclogzjus1

© Bright Computing, Inc.

/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py
/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py

374 Bright Cluster Manager Auto Scaler

[bright91->...[cnode001]->cloudsettings->storage]% get node-installer-disk storageaccountname
azurepaclogzjus1
[bright91->device[cnode001]->cloudsettings->storage]% ..
[bright91->device[cnode001]->cloudsettings]% get bootdiagnosticsstorageaccountname
azurepaclogzjus1
[bright91->device[cnode001]->cloudsettings]%

If a node is terminated and removed from the Bright configuration, then the storage account remains
in Azure. It has to be explicitly manually removed by the administrator.

8.4.5 Mapping HPC Jobs To Particular Nodes
By default, cm-scale assumes that an HPC job submitted to a particular queue can take a node from
outside the queue. This is because by assigning a category, or moving the node to a configuration
overlay, the node will be moved to the appropriate queue eventually. From this point of view, the nodes
form a single resource pool, and the nodes in the pool are re-purposed on demand.

In some scenarios there is a need for certain types of HPC jobs run only on particular types of nodes,
without the nodes being re-purposed. A typical example: jobs with GPU code require cloud nodes that
have access to GPU accelerators, while jobs that do not have GPU code can use the less expensive non-
GPU cloud nodes. For this case then, the GPU cloud node is started when the GPU job requires a node,
and otherwise a non-GPU node is started.

Job segregation is achieved in cm-scale as follows:

1. The Pin Queues setting, which is an advanced setting in the scaleserver role for the node, is
enabled:

[bright91->device[bright91]->roles[scaleserver]->advancedsettings]% set pinqueues yes
[bright91->device*[bright91*]->roles*[scaleserver*]->advancedsettings*]% commit

2. A new queue is created, or an existing one is used. The queue is used for the jobs that require a
particular node type.

3. The particular node type is added to this queue. If the node is already defined in Bright Cluster
Manager, then the administrator can assign the queue to the node in the workload manager client
role. For example, if the workload manager is Slurm, then the queue is assigned to the nodes in the
slurmclient role. If the node has not been defined yet and will be cloned on demand (according to
the dynamic resource provider settings, page 349), then its template node is assigned to the queue.
When a new node is cloned from the template, the queue is then inherited from the template node.

4. The previous two steps are repeated for each job type.

After that, if a user submits a job to one of the queues, then cm-scale starts or clones a node that is
linked with the job queue.

The following cmsh session snippet shows a configuration example:

Example

[root@bright91 ~]# cmsh
[bright91]% device roles master
[bright91->device[bright91]->roles]% use scaleserver
[bright91->...roles[scaleserver]]% resourceproviders
[bright91->...roles[scaleserver]->resourceproviders]% add dynamic rp1
[bright91->...roles[scaleserver]->resourceproviders*[rp1*]]% set templatenode tnode1
[bright91->...roles[scaleserver]->resourceproviders*[rp1*]]% set noderange cnode001..cnode100
[bright91->...roles[scaleserver]->resourceproviders*[rp1*]]% commit
[bright91->...roles[scaleserver]->resourceproviders[rp1]]% clone rp2

© Bright Computing, Inc.

8.4 Further cm-scale Configuration And Examples 375

[bright91->...roles[scaleserver]->resourceproviders*[rp2*]]% set templatenode tnode2
[bright91->...roles[scaleserver]->resourceproviders*[rp2*]]% set noderange cnode101..cnode200
[bright91->...roles[scaleserver]->resourceproviders*[rp2*]]% commit
[bright91->...roles[scaleserver]->resourceproviders[rp2]]% ..;..
[bright91->...roles[scaleserver]]% engines
[bright91->...roles[scaleserver]->engines]% add hpc s1
[bright91->...roles[scaleserver]->engines*[e1*]]% set workloadmanager slurm
[bright91->...roles[scaleserver]->engines*[e1*]]% trackers
[bright91->...roles[scaleserver]->engines*[e1*]->trackers]]% add queue tr1
[bright91->...roles[scaleserver]->engines*[e1*]->trackers*[tr1*]]% set queue q1
[bright91->...roles[scaleserver]->engines*[e1*]->trackers*[tr1*]]% commit
[bright91->...roles[scaleserver]->engines[e1]->trackers[tr1]]% clone tr2
[bright91->...roles[scaleserver]->engines*[e1*]->trackers*[tr2*]]% set queue q2
[bright91->...roles[scaleserver]->engines*[e1*]->trackers*[tr2*]]% commit
[bright91->...roles[scaleserver]->engines[e1]->trackers[tr2]]% category
[bright91->category]% clone default cat1
[bright91->category*[cat1*]]% roles
[bright91->category*[cat1*]->roles*]% assign slurmclient
[bright91->category*[cat1*]->roles*[slurmclient*]]% set queues q1
[bright91->category*[cat1*]->roles*[slurmclient*]]% commit
[bright91->category[cat1]->roles[slurmclient]]% category clone cat1 cat2
[bright91->category*[cat2*]->roles*[slurmclient*]]% set queues q2
[bright91->category*[cat2*]->roles*[slurmclient*]]% commit
[bright91->category[cat2]->roles[slurmclient]]% device use tnode1
[bright91->device[tnode1]]% set category cat1
[bright91->device*[tnode1*]]% commit
[bright91->device[tnode1]]% device use tnode2
[bright91->device[tnode2]]% set category cat2
[bright91->device*[tnode2*]]% commit
[bright91->device[tnode2]]%

Using the preceding configuration, the user may submit a job with a regular workload manager
submission utility specifying the queue q1 or q2, depending on whether the job requires nodes that
should be cloned from tnode1 or from tnode2.

8.4.6 How To Exclude Unused Nodes From Being Stopped
If a node is idle, then by default cm-scale automatically stops or terminates the node.

However, in some cases there may be a need to start a node on demand, and when it becomes
idle, there may be a need to keep the node running. This can be useful if the administrator would
like to investigate the performance of an application, or to debug some issues. After completing the
investigation or debug session, the administrator can stop the node manually.

The parameter KEEP_RUNNING_RANGES keeps such nodes from being stopped or terminated. The
parameter should be added to the configuration file /cm/local/apps/cm-scale/lib/python3.7/
site-packages/cmscale/config.py. To have the changed setting take effect, the cm-scale service must
be restarted.

KEEP_RUNNING_RANGES defines a map of resource provider names to node name ranges.
Extra nodes can be added to the range of the nodes. However, if the extra node must not be stopped

or terminated by cm-scale, then for each resource provider that has such an extra node, the value of
extranodestop must be set to yes.

In the following example, nodes cnode002, cnode003, cnode004, and cnode010, are associated with
the azurenodes1 resource provider. They are therefore never stopped or terminated by cm-scale. They
are only started on demand by cm-scale.

The nodes cnode012 and cnode014 are associated with the azurenodes2 resource provider. They are
therefore also not stopped or terminated by cm-scale.

© Bright Computing, Inc.

/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py
/cm/local/apps/cm-scale/lib/python3.7/site-packages/cmscale/config.py

376 Bright Cluster Manager Auto Scaler

Example

opts = {
[...]
"KEEP_RUNNING_RANGES": {
"azurenodes1": "cnode002..cnode004,cnode010",
"azurenodes2": "cnode012,cnode014"

}
}

8.4.7 Prolog And Epilog Scripts With Auto Scaler
Sometimes the administrator would like some actions to be performed for a workload when the Auto
Scaler allocates and starts using a node, or when the Auto Scaler deallocates and stops using a node.
The administrator can arrange such actions by configuring prolog and epilog scripts (section 7.3.4) in
the resource provider. The scripts are then executed on the nodes running the Auto Scaler service, i.e.
with the ScaleServer role.

Both the dynamic and the static resource providers (section 8.2.2) support the following options:

1. allocationProlog: path to a shell script that is executed just before a node is started up by Auto
Scaler

2. allocationEpilog: path to a shell script that is executed just before a node is powered off by Auto
Scaler

3. allocationScriptsTimeout: the prolog and epilog scripts timeout (the script that is running is
killed if the timeout is exceeded).

The prolog script runs when an existing node is about to start, and also runs when a node has just
been cloned and is also about start.

The epilog script runs when a node is stopped or when a cloud node is terminated.
The prolog and epilog scripts are run per node, and can run in parallel. Thus if synchronization

between them is needed, then it should be implemented by the scripts themselves.
The standard output and error messages of the executed scripts are mixed and added to the Auto

Scaler as debug2 log messages (the debug2 logs can be enabled in the AdvancedSettings submode of the
ScaleServer role). It therefore makes sense to keep the output reasonably small, informative, and human
readable.

When the scripts are run, Auto Scaler passes environment variables that can be used inside the scripts
in order to decide what to do. These environment variables are:

1. AS_NODE: node short hostname which the script started for;

2. AS_SCRIPT_TYPE: either "epilog" or "prolog";

3. AS_RESOURCE_PROVIDER: name of the resource provider where this script is configured;

4. AS_ENGINE: workload engine name, which workload requires the node ("unknown" if no workload
requires the node).

By default the scripts are not defined, and therefore nothing is executed by default when nodes are
stopped, terminated or started.

8.4.8 Queue Node Placeholders
A queue node placeholder is a node that does not yet exist, but has a corresponding object that exists,
and the object has queues defined, amongst other properties. It can be used to plan resource use.

© Bright Computing, Inc.

8.4 Further cm-scale Configuration And Examples 377

Job Rejection For Exceeding Total Cluster Resources
At the time of job submission, the workload manager checks the total available number of slots (used
and unused) in a queue. This is the sum of the available slots (used and unused) provided by each node
in that queue.

• Jobs that require less than the total number of slots are normally made to wait until more slots
become available.

• Jobs that require more than this total number of slots are normally rejected outright by the work-
load manager, without being put into a wait state. This is because workload managers normally
follow a logic that relies on the assumption that if the job demands more slots than can exist on the
cluster as it is configured at present, then the cluster will never have enough slots to allow a job to
run.

Assuming The Resources Can Never Be Provided
The latter assumption, that a cluster will never have enough slots to allow a job to run, is not true when
the number of slots is dynamic, as is the case when cm-scale is used. When cm-scale starts up nodes,
it adds them to a job queue, and the workload manager is automatically configured to allow users to
submit jobs to the enlarged queue. That is, the newly available slots are configured as soon as possible
so that waiting jobs are dealt with as soon as possible. For jobs that have already been rejected, and are
not waiting, this is irrelevant, and users would have to submit the jobs once again.

Ideally, in this case, the workload manager should be configured to know about the number of nodes
and slots that can be started up in the future, even if they do not exist yet. Based on that, jobs that would
normally be rejected, could then also get told to wait until the resources are available, if it turns out that
configured future resources will be enough to run the job.

Slurm Resources Planning With Placeholders:
Slurm allows nodes that do not exist yet to be defined. These are nodes with hostnames that do not
resolve, and have the Slurm setting of state=FUTURE. Bright Cluster Manager allows Slurm to add such
“fake” nodes to Slurm queues dynamically, when not enough real nodes have yet been added. Bright
Cluster Manager supports this feature only for Slurm at present.

This feature is not yet implemented for the other workload managers because they require the host-
name of nodes that have been added to the workload manager configuration to be resolved.

Within the Slurm WLM instance it is possible to set a list of placeholder objects. In cmsh this can be
done within the main wlm mode, selecting the Slurm instance, and then going into the placeholders
submode. Each placeholder allows the following values to be set:

• queue: the queue name, used as key

• maxnodes: the maximum number of nodes that this queue allows

• basenodename: the base node name that is used when a new node name is generated

• templatenode: a template node that is used to provide user properties taken from its slurmclient
role when new fake nodes are added.

For example, the following cmsh session uses the head node with an existing slurm instance to illus-
trate how the Slurm queue defq could be configured so that it always has a maximum of 32 nodes, with
the nodes being like node001:

Example

[root@bright91 ~]# scontrol show part defq | grep " Nodes="
Nodes=node001
[root@bright91 ~]# cmsh

© Bright Computing, Inc.

378 Bright Cluster Manager Auto Scaler

[bright91]% wlm use slurm
[bright91->wlm[slurm]]% placeholders
[bright91->wlm[slurm]->placeholders]% add defq
[bright91->wlm*[slurm*]->placeholders*[defq*]]% set maxnodes 32
[bright91->wlm*[slurm*]->placeholders*[defq*]]% set basenodename placeholder
[bright91->wlm*[slurm*]->placeholders*[defq*]]% set templatenode node001
[bright91->wlm*[slurm*]->placeholders*[defq*]]% commit
[bright91->wlm[slurm]->placeholders[defq]]%
[root@bright91 ~]# scontrol show part defq | grep " Nodes="

Nodes=node001,placeholder[01-31]

If a new real node is added to the queue, then the number of placeholder nodes is decreased by one.
The placeholders can also be configured in Bright View via the HPC resource, using the clickpath:
HPC→Workload Management Clusters→<Slurm instance>→JUMP TO Placeholders

© Bright Computing, Inc.

9
Containerization

Containerization is a technology that allows processes to be isolated by combining cgroups, Linux names-
paces, and (container) images.

• Cgroups are described in section 7.10.

• Linux namespaces represent independent spaces for different operating system facilities: process
IDs, network interfaces, mount points, inter-process communication resources and others. Such
cgroups and namespaces allow processes to be isolated from each other by separating the available
resources as much as possible.

• A container image is a component of a container, and is a file that contains one or several layers.
The layers cannot be altered as far the container is concerned, and a snapshot of the image can be
used for other containers. A union file system is used to combine these layers into a single image.
Union file systems allow files and directories of separate file systems to be transparently overlaid,
forming a single coherent file system.

Cgroups, namespaces and image are the basis of a container. When the container is created, then a
new process can be started within the container. Containerized processes running on a single machine
all share the same operating system kernel, so they start instantly. No process is allowed to change the
layers of the image. All changes are applied on a temporary layer created on top of the image, and these
changes destroyed when the container is removed.

There are several ways to manage the containers, but the most powerful approaches use Docker,
also known as Docker Engine (section 9.1), and Kubernetes (section 9.3). Docker manages containers
on individual hosts, while Kubernetes manages containers across a cluster. Bright Cluster Manager
integrates both of these solutions, so that setup, configuration and monitoring of containers becomes an
easily-managed part of Bright Cluster Manager.

Singularity (section 9.6) is an application containerization tool, designed to execute containers as if
they are just native applications on a host computer, and to work with HPC.

OpenShift (section 9.7) is Red Hat’s container manager.

9.1 Docker Engine
Docker integration with Bright Cluster Manager 9.1 for Docker version 19.03.13 is available at the time
of writing of this paragraph (March 2020) on the x86_64 architecture for RHEL/SL/CentOS versions
7.x, for SLES versions 12 and above, and for Ubuntu 16.04 and above. For a more up-to-date status, the
features matrix at https://support.brightcomputing.com/feature-matrix/ can be checked.

Docker Engine (or just Docker) is a tool for container management. Docker allows containers and
their images to be created, controlled, and monitored on a host using Docker command line tools or the
Docker API.

© Bright Computing, Inc.

https://support.brightcomputing.com/feature-matrix/

380 Containerization

Swarm mode, which allows containers to spawn on several hosts, is not formally supported by Bright
Cluster Manager 9.1. This is because Bright Cluster Manager 9.1 provides Kubernetes for this purpose
instead.

Docker provides a utility called docker, and two daemons called dockerd and containerd.
Additional functionality includes pulling the container image from a specific image registry (sec-

tion 9.2), configuring the container network, setting systemd limits, and attaching volumes.

9.1.1 Docker Setup
Bright Cluster Manager provides the cm-docker package. The package includes the following compo-
nents:

• docker itself, that provides API and delegates the container management to containerd;

• containerd runtime, that manages OCI images and OCI containers (via runC);

• runC, a CLI tool for spawning and running containers according to the OCI specification runtime;

• docker-py, a Python library for the Docker API.

Typically, however, the administrator is expected to simply run the cm-docker-setup utility, which
is provided by Bright Cluster Manager’s cm-setup package. Running cm-docker-setup takes care of
the installation of the cm-docker package and also takes care of Docker setup. If run without options
the utility starts up an Ncurses dialog (figure 9.1).

Figure 9.1: cm-docker-setup Ncurses startup

The cm-docker-setup utility asks several questions, such as which Docker registries are to be
used, what nodes Docker is to be installed on, which volume back end to configure, and so on. If
cm-docker-setup is used with the -c option, and given a YAML configuration file <YAMLfile>, then a
runtime configuration is loaded from that file. The YAML file is typically generated and saved from an
earlier run.

When the questions in the Ncurses dialog have been answered and the deployment is carried out,
the utility:

• installs the cm-docker package, if it has not been installed yet

• then assigns the DockerHost role to the node categories or head nodes that were specified

• adds health checks to the Bright Cluster Manager monitoring configuration

• performs the initial configuration of Docker.

The regular nodes on which Docker is to run, are restarted by the utility, if needed. The restart
operation provisions the updated images from the image directory onto the nodes.

The cm-docker package also includes a module (section 2.2) file, docker, which must be loaded in
order to use the docker command. By default only the administrator can run the docker commands
after setup (some output ellipsized):

© Bright Computing, Inc.

9.1 Docker Engine 381

Example

[root@bright91 ~]# ssh node001
[root@node001 ~]# module load docker
[root@node001 ~]# docker info
Containers: 0
Images: 0
...
Docker Root Dir: /var/lib/docker
[root@node001 ~]#

and the hello-world image can be run as usual with:

Example

[root@node001 ~]# docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Or, for example, importing and running Apache containers with Docker may result in the following
output:

Example

[root@node001 ~]# module load docker
[root@node001 ~]# docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
62071069436f httpd "httpd-foreground" 4 hours ago Up 4 hours 80/tcp elated_euler
3310d85b17f4 httpd "httpd-foreground" 4 hours ago Up 4 hours 80/tcp sleepy_lichterman
35387f3cc606 httpd "httpd-foreground" 4 hours ago Up 4 hours 80/tcp wonderful_wiles
...
[root@node001 ~]#

Using Docker directly means being root on the host. It is rarely sensible to carry out regular user
actions as the root user at all times.

So, to make Docker available to regular users, a user management layer and restrictions are provided
by Kubernetes.

After Docker has been installed, Kubernetes can be set up to allow regular user access to the Docker
containers as covered in section 9.3. It is a best practice for regular users to use Kubernetes instead of
Docker commands directly.

9.1.2 Integration With Workload Managers
Bright Cluster Manager does not provide integration of Docker with workload managers. The adminis-
trator can however tune the workload managers in some cases to enable Docker support.

• LSF – An open beta version of LSF with Docker support is available from the IBM web site. This
LSF version allows jobs to run in Docker containers, and monitors the container resources per job.

• PBS Pro – Altair provides a hook script that allows jobs to start in Docker containers. Altair should
be contacted to obtain the script and instructions.

© Bright Computing, Inc.

382 Containerization

9.1.3 DockerHost Role
When cm-docker-setup is executed, the DockerHost role is assigned to nodes or categories. The Dock-
erHost role is responsible for Docker service management and configuration.

From cmsh, the configuration parameters can be managed from the Docker::Host role:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% roles
[bright91->category[default]->roles]% assign docker::host
[bright91->category*[default*]->roles*[Docker::Host*]]% show
Parameter Value
-------------------------------- -------------------------------
Add services yes
Name Docker::Host
Provisioning associations <0 internally used>
Revision
Type DockerHostRole
Debug no
Default Ulimits
Enable SELinux yes
Log Level info
Spool /var/lib/docker
Tmp dir $spool/tmp
API Sockets unix:///var/run/docker.sock
Bridge
Bridge IP
Iptables yes
MTU 0
User Namespace Remap
Insecure Registries
Certificates Path /etc/docker
Enable TLS no
TLS CA
TLS Certificate
TLS Key
Verify TLS no
Storage Backends <0 in submode>
Containerd Socket
Runtime runc
Options
[bright91->category*[default*]->roles*[Docker::Host*]]%

The parameters that CMDaemon can configure in the DockerHost role, along with a description, are
shown in table 9.1:

Parameter Description

Add services∗ Add services to nodes belonging to this node. Care must be taken if setting
this to no. (default: yes)

...continues

© Bright Computing, Inc.

9.1 Docker Engine 383

...continued

Parameter Description

Debug∗ Enable debug mode (default: no)

Default Ulimits Set the default ulimit options for all containers

Enable SELinux∗ Enable selinux support in Docker daemon (default: yes)

Log Level Set the daemon logging level. In order of increasing verbosity: fatal,
error, warn, info, debug. (default: info)

Spool Root of the Docker runtime (default: /var/lib/docker)

Tmp dir Location for temporary files. Default: $<spool>/tmp, where $<spool> is re-
placed by the path to the Docker runtime root directory

API Sockets Daemon socket(s) to connect to (default: unix:///var/run/docker.sock)

Bridge Attach containers to a network bridge (not defined by default)

Bridge IP Network bridge IP (not defined by default)

Iptables∗ Enable iptables rules (default: yes)

MTU Set the containers network MTU, in bytes (default: 0, which does not set
the MTU at all)

User Namespace Remap User/Group setting for user namespaces (not defined by default). It can
be set to any of <UID>, <UID:GID>, <username>, <username:groupname>. If it
is used, then user_namespace.enable=1 must be set in the kernel options
for the relevant nodes, and those nodes must be rebooted to pick up the
new option.

Insecure Registries If registry access uses HTTPS but does not have proper certificates dis-
tributed, then the administrator can make Docker accept this situation by
adding the registry to this list (empty by default)

Certificates Path Path to Docker certificates (default: /etc/docker)

...continues

© Bright Computing, Inc.

/var/lib/docker

384 Containerization

...continued

Parameter Description

Enable TLS∗ Use TLS (default: no)

TLS CA Trust only certificates that are signed by this CA (not defined by default)

TLS Certificate Path to TLS certificate file (not defined by default)

TLS Key Path to TLS key file (not defined by default)

Verify TLS∗ Use TLS and verify the remote (default: no)

Storage Backends Docker storage back ends. Storage types can be created and managed, in a
submode under this mode. The available types are described in table 9.2.
Each of these storage types has options that can be set from within the
submode.

Containerd Socket Path to containerd socket (default: not used)

Runtime Docker runtime

Options Additional parameters for docker daemon

* Boolean (takes yes or no as a value)

Table 9.1: DockerHost role and docker options

9.1.4 Iptables
By default iptables rules have been added to nodes that function as a Docker host, to let network traf-
fic go from the containers to outside the pods network. If this conflicts with other software that uses
iptables, then this option can be disabled. For example, if the docker::host has already been assigned
to the nodes via the default category, then the iptables rules that are set can be disabled by setting the
iptables parameter in the Docker::Host role to no:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% roles
[bright91->category[default]->roles]% use docker::host
[bright91->category[default]->roles[Docker::Host]]% set iptables no
[bright91->category*[default*]->roles*[Docker::Host*]]% commit

9.1.5 Storage Backends
A core part of the Docker model is the efficient use of containers based on layered images. To implement
this Docker provides different storage back ends, also called storage drivers. These storage back ends
rely heavily on various filesystem features in the kernel or volume manager. Some storage back ends
perform better than others, depending on the circumstances.

The default storage back end configured by cm-docker-setup is overlay2. Storage back ends sup-
ported by Docker are listed in table 9.2:

© Bright Computing, Inc.

9.1 Docker Engine 385

Technology Description Backend Name

OverlayFS
This is a modern union filesystem. It is the preferred storage
driver for recent Docker versions. It has been in the main-
line Linux kernel since version 3.18, with additional improve-
ments for Docker in version 4.0. All of the distributions that
Bright Cluster Manager 8.2 supports have backported the ker-
nel changes needed for this to work.

overlay2

Device Mapper Deprecated in Docker Engine 18.09. It is a kernel-based frame-
work that has been included in the mainline Linux kernel since
version 2.6.9. It underpins many advanced volume manage-
ment technologies on Linux. The driver stores every image and
snapshot on its own virtual device, and works at the block level
rather than the file level.

• A loopback mechanism can be implemented using
loop-lvm mode. This allows files on a local disk to be
managed as if they are on a physical disk or block device.
This is simpler than the thin pool mode, but is strongly
discouraged for production use. In Bright Cluster Man-
ager this mode is implemented by selecting the option
loopback (testing only). This is selected in the stor-
age back end selection screen of the cm-docker-setup in-
stallation.

• A thin pool mode can be implemented using direct-lvm
mode. This uses a logical volume as a thin pool to use
as backing for the storage pool, and uses a spare block
device. Configuring this is normally more involved.

In Bright Cluster Manager this mode is implemented by
selecting the option block (production ready). This is
selected in the storage back end selection screen of the
cm-docker-setup installation session.

Device mapper options for these modes are described in Ta-
ble 9.3

devicemapper

AUFS This was the first storage back end that Docker used. AUFS
is not included in the mainline Linux kernel. Out of the dis-
tributions that Bright Cluster Manager 8.2 supports, it is only
Ubuntu that supports it.

aufs

Table 9.2: Docker storage back ends

The docker info command, amongst many other items, shows the storage driver and related set-
tings that are being used in Docker:

Example

[root@bright91 ~]# module load docker
[root@bright91 ~]# docker info
Containers: 29
Running: 18
Paused: 0
Stopped: 11

© Bright Computing, Inc.

386 Containerization

Images: 3
Server Version: 17.03.2-ce
Storage Driver: devicemapper
Pool Name: docker-253:17-17199918-pool
Pool Blocksize: 65.54 kB
Base Device Size: 10.74 GB
Backing Filesystem: xfs
Data file: /dev/loop0
Metadata file: /dev/loop1
Data Space Used: 1.296 GB
Data Space Total: 107.4 GB
Data Space Available: 4.56 GB
Metadata Space Used: 4.325 MB
Metadata Space Total: 2.147 GB
Metadata Space Available: 2.143 GB
Thin Pool Minimum Free Space: 10.74 GB
Udev Sync Supported: true
Deferred Removal Enabled: false
Deferred Deletion Enabled: false
Deferred Deleted Device Count: 0
Data loop file: /var/lib/docker/devicemapper/devicemapper/data
Metadata loop file: /var/lib/docker/devicemapper/devicemapper/metadata
Library Version: 1.02.146-RHEL7 (2018-01-22)
...

Docker data volumes are not controlled by the storage driver. Reads and writes to data volumes
bypass the storage driver. It is possible to mount any number of data volumes into a container. Multiple
containers can also share one or more data volumes.

More information about Docker storage back ends is available at https://docs.docker.com/engine/
userguide/storagedriver.

Device Mapper Driver Settings Support
Bright Cluster Manager supports device mapper driver settings more explicitly than the other driver
back end settings.

By default the device mapper storage back end is added automatically, and can be configured in the
storagebackends submode of the DockerHost role:

Example

[bright91->device[bright91]->roles[dockerhost]]% storagebackends
[bright91->device[bright91]->roles[dockerhost]->storagebackends]% use devicemapper
[bright91->device[bright91]->roles[dockerhost]->storagebackends[devicemapper]]% show
Parameter Value
-------------------------------- --
Blk Discard yes
Block Size 64K
Filesystem xfs
Loop Data Size 100GB
Loop Device Size
Loop Metadata Size 2GB
Mkfs Arguments
Mount Options
Name devicemapper
Pool Device
Type DockerStorageDeviceMapperBackend

© Bright Computing, Inc.

https://docs.docker.com/engine/userguide/storagedriver
https://docs.docker.com/engine/userguide/storagedriver

9.1 Docker Engine 387

The parameters that are used in the Docker device mapper back end are described in table 9.3:

Parameter Description Option to docker

Blk Discard∗ Enables or disables the use of blkdiscard when
removing device mapper devices (default: yes)

dm.blkdiscard

Block Size Custom blocksize to use for the thin pool (de-
fault: 64kB)

dm.blocksize

Filesystem Filesystem type to use for the base device (de-
fault: xfs)

dm.fs

Loop Data Size Size to use when creating the loopback file for the
data virtual device which is used for the thin pool
(default: 100GB)

dm.loopdatasize

Loop Device Size Size to use when creating the base device, which
limits the size of images and container (not set by
default)

dm.basesize

Loop Metadata Size Size to use when creating the loopback file for the
metadata device which is used for the thin pool
(default: 2GB)

dm.loopmetadatasize

Mkfs Arguments Extra mkfs arguments to be used when creating
the base device

dm.mkfsarg

Mount Options Extra mount options used when mounting the
thin devices

dm.mountopt

Pool Device Custom block storage device to use for the thin
pool (not set by default)

dm.thinpooldev

* Boolean (takes yes or no as a value)

Table 9.3: Device mapper back end Docker options

For back end driver storage settings other than device mapper, such as AUFS or OverlayFS, settings
can be added as options if needed. In cmsh this can be done by setting the options parameter in the
storagebackend submode under the docker::host role.

9.1.6 Docker Monitoring
When cm-docker-setup runs, it configures and runs the following Docker health checks:

1. makes a test API call to the endpoint of the Docker daemon

2. checks containers to see that none is in a dead state

The Docker daemon can be monitored outside of Bright Cluster Manager with the usual commands
directly.

Bright Cluster Manager ways to manage or check on Docker include the following:
In CMDaemon, the docker service can be checked:

Example

[bright91->device[node001]->services]% list
Service (key) Monitored Autostart
------------------------ ---------- ----------
docker yes yes
nslcd yes yes
[bright91->device[node001]->services]% show docker
Parameter Value

© Bright Computing, Inc.

388 Containerization

-------------------------------- ------------------------------
Autostart yes
Belongs to role yes
Monitored yes
Revision
Run if ALWAYS
Service docker
Sickness check interval 60
Sickness check script
Sickness check script timeout 10
Timeout -1

The docker0 interface statistics can be checked within the nodeoverview output:

Example

[bright91->device[node001]]% nodeoverview
...

Interface Received Transmitted
------------ ------------ ------------
docker0 16.0 KiB 3.16 KiB
eth0 492 MiB 72.5 MiB
eth1 0 B 0 B
...

The measurable Docker checks if the docker service is healthy.

Example

[bright91->device[node001]]% dumpmonitoringdata -1h now Docker
Timestamp Value Info
-------------------------- ---------- ----------
2019/03/19 17:25:17.249 PASS
2019/03/22 14:59:17.248 PASS

9.1.7 Docker Setup For NVIDIA
NVIDIA GPU Cloud (NGC) is a cloud platform that runs on NVIDIA GPUs. NGC containers are
lightweight containers that run applications on NVIDIA GPUs. The applications are typically HPC,
machine learning, or deep learning applications.

An NGC can be set up to run NGC containers from the registry http://ngc.nvidia.com.
Docker can be configured as an NGC running NGC containers by using the NVIDIA Container

Toolkit.
The Bright Cluster Manager package provided for this is: cm-nvidia-container-toolkit. This

package can be installed via the package manager, yum or apt after Docker has been set up (section 9.1.1).
The toolkit has to be running on the compute nodes that have GPUs. The installation therefore must go
to the appropriate node image (section 12.4). For example, if the appropriate image is gpu-image:

Example

yum install --installroot=/cm/images/gpu-image cm-nvidia-container-toolkit

The nodes that use that GPU image can then be rebooted to pick up the new package.
The GPU status can then be printed with the NVIDIA system management interface command. For

example, if the image has been picked up by node001:

© Bright Computing, Inc.

http://ngc.nvidia.com

9.2 Docker Registries 389

Example

[root@bright91 ~]# ssh node001
Last login: Thu Dec 2 09:24:03 2021 from bright91.cm.cluster
[root@node001 ~]# module load docker
[root@node001 ~]# docker run --runtime=nvidia --rm nvidia/cuda:11.4-base nvidia-smi
Unable to find image 'nvidia/cuda:11.4.0-base' locally
11.4.0-base: Pulling from nvidia/cuda
...
Digest: sha256:f0a5937399da5e4efb37fd7b75beb8c484b84dc381243c4b81fc5f9fcad42b66
Status: Downloaded newer image for nvidia/cuda:11.4.0-base
Mon Mar 7 17:30:48 2022
+---+
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |
| 23% 32C P8 22W / 235W | 0MiB / 12206MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
[root@node001 ~]# logout
Connection to node001 closed.

The available Cuda Docker images can be found at https://hub.docker.com/r/nvidia/cuda.
How to run applications in an NGC with Bright Cluster Manager is illustrated for PyTorch,

TensorFlow, and MXNet, in the white paper at https://www.brightcomputing.com/hubfs/docs/
Bright-NGC-WPP-v01.pdf. The sessions illustrated in that paper require the installation of Kubernetes
(section 9.3), or Singularity (section 9.6).

9.2 Docker Registries
When a user creates a new container, an image specified by the user should be used. The images are
kept either locally on a host, or in a registry. The image registry can be provided by a cloud provider or
locally.

9.2.1 Docker And Harbor Registries: Introduction
Docker Hub, A Remote Registry
By default, Docker searches for images in Docker Hub, which is a cloud-hosted public and private image
registry. Docker Hub serves a huge collection of existing images that users can make use of. Every user
is allowed to create a new account, and to upload and share images with other users. Using the Docker
client, a user can search for already-published images, and then pull them down to a host in order to
build containers from them.

When an image is found in the registry, then Docker verifies if the latest version of the image has
already been downloaded. If it has not, then Docker downloads the images, and stores them locally. It
also tries to synchronize them when a new container is created. When the latest image is downloaded,
Docker creates a container from the image layers that are formatted to be used by a union file system.

© Bright Computing, Inc.

https://hub.docker.com/r/nvidia/cuda
https://www.brightcomputing.com/hubfs/docs/Bright-NGC-WPP-v01.pdf
https://www.brightcomputing.com/hubfs/docs/Bright-NGC-WPP-v01.pdf

390 Containerization

Docker can make use of several union file system variants, including AUFS, btrfs, vfs, and DeviceMap-
per.

Local Image Registry Options: Classic Docker Registry Vs Harbor
Besides using Docker Hub for the image registry, the administrator can also install a local image registry
on the cluster. Bright Cluster Manager provides two ways to integrate such a local registry with the
cluster, based on existing open source projects:

• The first one is the classic docker registry provided by Docker Inc, and can be useful if the registry
is used by trusted users.

• The second registry, Harbor, developed by VMware and introduced in Bright Cluster Manager
version 8.1-5, provides additional features such as security and identity management, and is aimed
at the enterprise.

Both options can be installed with the cm-docker-registry-setup utility, which comes with Bright
Cluster Manager’s cm-setup package.

9.2.2 Docker And Harbor Registries: Setup And Configuration
Docker Registry and Harbor can be installed via the cm-docker-registry-setup command-line util-
ity. They can also be installed via Bright View in Bright Cluster Manager for versions beyond 8.1-6 as
follows:

• The Docker Registry Deployment Wizard is launched via the clickpath:
Containers→Docker→Docker Registry Wizard

• Either Docker Registry, or Harbor, should be chosen as a registry.

• A single node is ticked for the deployment. The address, port, and the root directory for storing
the container images are configured. If the head node is selected for Harbor, then the setup later
on asks to open the related port on the head node. This is to make Harbor and the Harbor UI
externally accessible.

• In the summary page, if the Ready for deployment box is ticked, then the administrator can go
ahead with deploying the registry.

• When the deployment is complete, the Docker Registry becomes ready for use. Harbor can take a
few additional minutes to be ready for use.

Similar to the case of etcd nodes (section 9.3.2), nodes that run Harbor or Docker Registry have the
datanode option (section 5.4.4) when installed by Bright Cluster Manager utilities. The option helps
prevent the registry being wiped out by accident, and is added when the cm-docker-registry-setup
utility is used to install Harbor or Docker Registry. This extra protection is put into place because if
a registry is wiped out, then the state of images in the container becomes incoherent and cannot be
restored.

Harbor UI If the head node is where Harbor is to be installed, and is to be made externally accessible,
then the Harbor UI can be accessed at https://<head node hostname>:9443.

If a different node is used for Harbor to be installed, then the related port must be forwarded locally.
Harbor can be logged into by default with the admin user and the default Harbor12345 password.
It is recommended to change that password after the first login.

Clair Harbor comes with Clair, a tool for vulnerability static analysis of container images.
More information on using Clair with Harbor can be found at https://github.com/vmware/harbor/

blob/master/docs/user_guide.md#vulnerability-scanning-via-clair.

© Bright Computing, Inc.

https://github.com/vmware/harbor/blob/master/docs/user_guide.md#vulnerability-scanning-via-clair
https://github.com/vmware/harbor/blob/master/docs/user_guide.md#vulnerability-scanning-via-clair

9.2 Docker Registries 391

Dealing with a pre-existing Kubernetes or Harbor installation: Since Harbor uses Docker internally,
and because Kubernetes customizes Docker networking, it means that nodes where Kubernetes is run-
ning cannot be reused for Harbor, and that nodes where Harbor is running cannot be reused for Kuber-
netes.

Docker Registry Daemon Configuration Using The Docker Registry Role
The Docker Registry role is used to configure and manage the docker-registry daemon, and its pa-
rameters are described in table 9.4:

Parameter Description

Domain Main domain name (default: hostname of the node)

Alt Domains Alternative domain names (default: FQDN of the node)

Port Port (default: 5000)

Spool Dir Spool directory (default: /var/lib/docker-registry)

* Boolean (takes yes or no as a value)

Table 9.4: Docker Registry role parameters

The values stored in the Docker Registry role are not supposed to be changed, but they are useful for
the uninstall procedure, and also as a record of the settings for the administrator.

[bright91->device[bright91]->roles[generic::docker_registry]]% environments
[bright91->device[bright91]->roles[generic::docker_registry]->environments]% list
Name (key) Value Node Environment
---------------- ------------------------- ----------------
alt_domains node001.cm.cluster no
domain node001 no
port 5000 no
spool_dir /var/lib/docker-registry no

Further details on the docker-registry daemon can be found at https://github.com/docker/
distribution.

Harbor Daemon Configuration Using The Harbor Role
The Harbor role is used to configure and manage the harbor daemon. The parameters of the role are
described in table 9.5:

Parameter Description

Domain Main domain name (default: hostname of the node)

Alt Domains Alternative domain names (default: FQDN of the node)

...continues

© Bright Computing, Inc.

https://github.com/docker/distribution
https://github.com/docker/distribution

392 Containerization

...continued

Parameter Description

Port Port (default: 9443)

Spool Dir Spool directory (default: /var/lib/harbor)

Default Password Default password of the Harbor admin user (default: Harbor12345)

DB Password Password of the Harbor database (default: randomly generated)

Clair DB Password Password of the Clair database (default: randomly generated)

* Boolean (takes yes or no as a value)

Table 9.5: Harbor role parameters

The values stored in the Harbor role are not supposed to be changed, but they are useful for the
uninstall procedure, and also as reminder of the settings for the administrator.

[bright91->device[bright91]->roles[generic::harbor]]% environments
[bright91->device[bright91]->roles[generic::harbor]->environments]% list
Name (key) Value Node Environment
------------------ -------------------------- ----------------
alt_domains harbor,node001.cm.cluster no
clair_db_password <generated password> no
db_password <generated password> no
default_password Harbor12345 no
domain node001 no
port 9443 no
spool_dir /var/lib/harbor no

Further details on Harbor can be found at https://vmware.github.io/harbor.

9.3 Kubernetes
Kubernetes is an open-source platform for automating deployment, scaling, and operations of applica-
tion containers across clusters of hosts. With Kubernetes, it is possible to:

• scale applications on the fly

• seamlessly update running services

• optimize hardware usage by using only the resources that are needed

Bright Cluster Manager provides the administrator with the required packages, allows Kubernetes
to be set up on cluster, and manages and monitors Kubernetes. More information about the design
of Kubernetes, its command line interfaces, and other Kubernetes-specific details, can be found at the
official online documentation at https://kubernetes.io/docs/.

Kubernetes integration with Bright Cluster Manager 9.1 for Kubernetes v1.18 is available at the time
of writing of this paragraph (March 2020) on the x86_64 architecture for RHEL/SL/CentOS versions
7.x, for SLES versions 12 and above, and for Ubuntu 16.04 and above. For a more up-to-date status, the
features matrix at https://support.brightcomputing.com/feature-matrix/ can be checked.

© Bright Computing, Inc.

https://vmware.github.io/harbor
https://support.brightcomputing.com/feature-matrix/

9.3 Kubernetes 393

9.3.1 Reference Architecture
A reference architecture for Kubernetes in Bright Cluster Manager comprises:

• etcd nodes: An etcd cluster—the Kubernetes distributed key-value storage—runs on regular nodes
only, and uses an odd number (1, 3, 5 ...) of nodes.

• master nodes: Kubernetes master units run on head or compute nodes. 2 (or 3) are recommended
for High Availability (HA). In a Bright HA configuration, both or none of the head nodes should
be selected. That is, it must not run on only one head node of an HA configuration.

• worker nodes: Kubernetes worker units run on regular nodes only.

Since Bright Cluster Manager version 8.2, multiple clusters of Kubernetes can be deployed. In such
a configuration the same node cannot be shared across different Kubernetes clusters.

A Kubernetes API server proxy based on NGINX runs on every node, except for on nodes that run
etcd. The proxy also runs on the head node(s).

Because of the server proxy, a port is reserved on the head node(s) for every Kubernetes cluster. This
is required for Kubernetes HA (section 9.3.1), and it also allows kubectl and other tools such as Helm
to be used from the head node, to access each Kubernetes cluster.

Kubernetes HA
For a Kubernetes HA setup the minimum node requirements are:

• at least 3 nodes for Etcd

• at least 2 nodes for Kubernetes Master

In an average cluster, Bright Computing recommends 3 nodes for the etcd cluster, and 3 nodes for
the Kubernetes master.

Even without a Kubernetes master in an HA configuration, there is no downtime for existing pods
running on the worker nodes. The worker nodes will still continue to work.

However, Kubernetes HA is needed to be able to schedule tasks, spawn new pods, and in general
keep the cluster in the desired state.

9.3.2 Kubernetes Setup
Bright Cluster Manager provides the following Kubernetes-related packages:

• The cm-kubernetes-master, cm-kubernetes-node, conntrack and nginx packages: These are al-
ways installed on the head node(s) and on the master and worker node(s).

• The cm-etcd package is installed on the nodes selected for etcd. In a similar way to the case of
Harbor or Docker Registry (section 9.2.2), the nodes that run etcd are protected by Bright Cluster
Manager with the datanode option (section 5.4.4). For etcd nodes, the option is added during the
cm-kubernetes-setup installation. As in the case for the registries, the datanode option is set in
order to help prevent the administrator from wiping out the existing state of etcd nodes. Wiping
out the state of etcd nodes means that the Kubernetes cluster becomes incoherent and that it cannot
be restored to where it was just before the etcd nodes were wiped. The etcd version installed by
the Bright Cluster Manager package is 3.4.13.

The packages are installed automatically from the repository when the administrator runs
cm-kubernetes-setup from the command line.

The log file produced by the setup can be found in /var/log/cm-kubernetes-setup.log.

© Bright Computing, Inc.

394 Containerization

Kubernetes Core Add-ons
During setup, some critical add-on components such as CoreDNS and Calico are automatically de-
ployed in the kube-system namespace. In Bright Cluster Manager all add-ons are treated as Kubernetes
applications (section 9.4), and belong to the default app group system.

A cmsh treeview illustrating the hierarchy to access these applications is:

[cmsh]
|-- ...
|
|-- kubernetes[default]
| `-- appgroups[system]
| `-- applications
|-- ...

CoreDNS: The DNS server add-on for internal service discovery. It reads the IP addresses of services
and pods from Etcd, and resolves domain names for them. If a domain name is not found because
the domain is external to the Kubernetes cluster, then CoreDNS forwards the request to the main DNS
server. Bright Cluster Manager uses CoreDNS version 1.62.

Calico: A modern SDN (Software-Defined Networking) add-on to manage a cluster-wide network for
pods. Calico uses an agent called Felix to run on each node as a pod. Bright Cluster Manager uses Calico
version 3.10.

When the Kubernetes cluster is composed of more than 50 nodes, the component Typha is also de-
ployed for better scalability. The number of Typha replicas is calculated by allocating one Typha replica
per 150 nodes, with a minimum of 3 (above 50 nodes) and a maximum of 20.

Further details on Calico can be found at https://docs.projectcalico.org/.

Kubernetes Optional Add-ons
The following add-ons are installed by default unless otherwise noted. However, the user can choose to
skip some or all of them during the setup.

Kubernetes Dashboard: The web user interface add-on for GUI cluster administration and metrics
visualization. Bright Cluster Manager uses Kubernetes Dashboard version 2.0.

There are two ways to access the dashboard:

• Using kubectl proxy and accessing http://localhost:8001/api/v1/namespaces/
kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/. To use the proxy,
kubectl must be set up locally (section 9.3.2 of the User Manual).

• Users on an external network can log in to kubectl or Kubernetes Dashboard by following the
procedures described in section 9.3.14.

Kubernetes Metrics Server: This add-on is a replacement for Heapster. It aggregates metrics, and
provides container monitoring and performance analysis. It exposes metrics via an API. Bright Cluster
Manager runs Metrics server version 1.0.0.

Helm: An add-on that manages charts, which are packages of pre-configured Kubernetes resources.
The Helm component is installed and properly configured with Bright Cluster Manager’s Kubernetes
installation by default. It is initialized and ready for use for every Kubernetes user when the Kubernetes
module is loaded. Bright Cluster Manager uses Helm version 3.

© Bright Computing, Inc.

https://docs.projectcalico.org/
 http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
 http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

9.3 Kubernetes 395

NGINX Ingress Controller: The official Kubernetes ingress controller add-on is built around the Ku-
bernetes Ingress resource, using a ConfigMap to store the NGINX configuration. Ingress provides HTTP
and HTTPS routes from outside a Kubernetes cluster to services within the cluster. Traffic routing is con-
trolled by rules defined in the Ingress resource. Bright Cluster Manager uses NGINX Ingress Controller
version 0.26.

By default, Bright Cluster Manager provides an ingress for Kubernetes Dashboard during the
cm-kubernetes-setup run, so that the Dashboard works. Port 30080 is the default that is set for the
HTTP, and port 30443 is the default that is set for HTTPS.

These 2 ports are exposed on every Kubernetes node, both masters and workers.
The Ingress Controller is deployed as a NodePort which means it comes with a default range of

possible port values of 30000-32767.

NVIDIA device plugin for Kubernetes: An add-on option in the cm-kubernetes-setup run. By de-
fault it is not selected. To be used, in addition to being selected, it requires that the NVIDIA GPU drivers
are first installed (section 7.4 of the Installation Manual) on the head node and regular node container
hosts.

This means that, as described in that section, the regular nodes on which the GPUs are located must
have the cuda-driver and cuda-dcgm packages installed, inside the software image.

After booting up the container host regular nodes, the functioning of the DCGM (Data Center GPU
Manager) tools should be checked by running module load cuda-dcgm; dcgmi config --get.

The plugin add-on can then be installed as a selection option in the cm-kubernetes-setup session
that is run by the system administrator after the NVIDIA GPU drivers have been installed. The plugin
is somewhat beta at the time of writing (March 2019).

If cuda-dcgm and cuda-driver are installed for GPUs on the head node, then to ensure that the head
node GPUs are detected by CMDaemon, it is recommended to restart CMDaemon on the head node
with service cmdaemon restart.

The plugin then allows the GPUs to be consumed from the containers. Overcommitting GPUs (shar-
ing) is not possible from containers or pods. Multiple GPUs can be requested by the container. Some
documentation on its use can be found at https://github.com/NVIDIA/k8s-device-plugin.

Bright Cluster Manager provides NVIDIA device plugin version 1.11

Kubernetes Setup From The Command Line
The cm-kubernetes-setup command line utility has the following usage synopsis:

[root@bright91 ~]# cm-kubernetes-setup -h

usage: Kubernetes Setup cm-kubernetes-setup [-v] [-h] [-c <config_file>]
[--skip-modules <mod1,mod2,...>]
[--only-these-modules <mod1,mod2,...>]
[--dev]
[--on-error-action {OnErrorAction.debug,

OnErrorAction.remotedebug, OnErrorAction.undo,
OnErrorAction.abort}]

[--output-remote-execution-runner]
[--json] [--no-distro-checks]
[--skip-packages]
[--min-reboot-timeout <reboot_timeout_seconds>]
[--cluster CLUSTER_NAME]
[--skip-docker] [--skip-reboot]
[--skip-image-update]
[--add-user USERNAME]
[--namespace NAMESPACE]
[--role ROLE]

© Bright Computing, Inc.

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://github.com/NVIDIA/k8s-device-plugin

396 Containerization

[--no-secure-namespace]
[--remove-user USERNAME_REMOVE]
[--regenerate-certs] [--psp]
[--apparmor] [--disable-psp]
[--remove]
[--yes-i-really-mean-it]
[--remove-ceph-storage]
[--allow-device-mapper]
[--allow-disksetup-cleanup]

optional arguments:
--cluster CLUSTER_NAME

Name of the referred Kubernetes cluster

common:
Common arguments

-v, --verbose Verbose output
-h, --help Print this screen
-c <config_file> Load runtime configuration for plugins from a YAML config file

advanced:
Various *advanced* configuration options flags.

--skip-modules <mod1,mod2,...>
Load and use all the default plugins (kubernetes, docker), except from these
ones. Comma-separated list.

--only-these-modules <mod1,mod2,...>
Out of all default plugins, load and use only those. Comma-separated list.

--dev Enables additional command line arguments
--on-error-action {debug,remotedebug,undo,abort}

Upon encountering a critical error, instead of asking the user for choice,
setup will undo (revert) the deployment stages.

--output-remote-execution-runner
Format output for CMDaemon

--json Use json formatting for log lines printed to stdout
--no-distro-checks Disable distribution checks based on ds.json
--skip-packages Skip the any stages which install packages. Requires packages to be already

installed.
--min-reboot-timeout <reboot_timeout_seconds>

How long to wait for nodes to finish reboot (default and minimum allowed:
300 seconds).

installing Kubernetes clusters:
Flags for installing or managing Kubernetes clusters

--skip-docker Skip the Docker installation steps.
--skip-reboot Skip the reboot steps.
--skip-image-update Skip the image update steps.

adding user:
Flags for adding a new user in a Kubernetes cluster

--add-user USERNAME Create a new user in a Kubernetes cluster
--namespace NAMESPACE

© Bright Computing, Inc.

9.3 Kubernetes 397

Specify namespace for the new (--add-user) role binding (Default: default)
--role ROLE Specify role for the new (--add-user) role binding (Default: admin)
--no-secure-namespace

Specify secure namespace for the new (--add-user) role binding (Default:
disabled)

removing user:
Flags for removing a user from a Kubernetes cluster

--remove-user USERNAME_REMOVE
Remove existing user from a Kubernetes cluster

regenerate Kubernetes certificates:
Flag for regenerating the Kubernetes certificates

--regenerate-certs Regenerate certificates for a Kubernetes cluster

pod security policies:
Flags for setting up Pod Security Policies

--psp Setup PSP
--apparmor Use AppArmor (Default: false)

disable pod security policies:
Flags for removing Pod Security Policies

--disable-psp Remove PSP

removing Kubernetes clusters:
Flags for removing a Kubernetes cluster

--remove Remove a Kubernetes cluster
--yes-i-really-mean-it

Required for additional safety
--remove-ceph-storage

Remove Kubernetes osd pool from Ceph cluster

Docker storage backend specific:
--allow-device-mapper

Allow to select DeviceMapper (DEPRECATED) storage in wizard

Docker removal specific:
--allow-disksetup-cleanup

Allow to clean up disk setup during docker removal. (DeviceMapper thin pool
only).

The cm-kubernetes-setup utility should be executed on the console.

Dealing with a pre-existing Docker installation: Docker is required for Kubernetes configured by
Bright Cluster Manager. The setup wizard checks if Docker has been installed (page 380), and automati-
cally installs Docker, if needed. However, if Docker has already been configured on the same category of
nodes on which Kubernetes is to be installed, then the installation stops, because overriding the existing
Docker configuration may not be what is wanted. To override the existing Docker configuration, Docker
for that category should first be removed with the cm-docker-setup --remove command.

© Bright Computing, Inc.

398 Containerization

Dealing with a pre-existing Etcd cluster: Etcd is required by Kubernetes to store all the key-value
states of the Kubernetes cluster. If no Etcd cluster is found, then the setup wizard prompts to deploy an
Etcd cluster. If Etcd is already installed, or present from a previous Kubernetes cluster, then the setup
wizard prompts on whether to use the existing Etcd cluster.

Dealing with a pre-existing Harbor installation: Since Harbor uses Docker internally, and because
Kubernetes customizes Docker networking, it means that nodes where Harbor is running cannot be
reused for Kubernetes.

Kubernetes Setup From An Ncurses Session
When the Kubernetes installation is carried out using cm-kubernetes-setup without any options, an
Ncurses wizard starts up. The administrator can answer several questions in the wizard. Questions
that are asked include questions about which of the node categories or which of the individual nodes
should be configured to run the Kubernetes services. There are also questions about the service and
pod networks parameters, the port numbers that will be configured for the daemons, whether to install
specific add-ons, and so on. After the wizard has been completed, a configuration file can be saved that
can be used to set up Kubernetes.

The configuration file can be deployed immediately from the wizard, or it can be deployed later by
specifying it as an option to cm-kubernetes-setup, in the form -c <file>.

Example

[root@bright91 ~]# cm-kubernetes-setup

ncurses session starts up:

Figure 9.2: Kubernetes Ncurses Session: Main Operations Screen

The deployment via CLI or via Ncurses assigns the appropriate roles, it adds the new Kubernetes
cluster, it adds health checks to the monitoring configuration, and it generates certificates for the Kuber-
netes daemons.

Docker and Etcd are also deployed when needed.

Testing Kubernetes
To test that Kubernetes works, the cluster-info command can be run. For example, on the head node,
bright91:

Example

[root@bright91 ~]# module load kubernetes/default/1.18
[root@bright91 ~]# kubectl cluster-info
Kubernetes master is running at https://localhost:10443
CoreDNS is running at https://localhost:10444/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

© Bright Computing, Inc.

9.3 Kubernetes 399

Metrics-server is running at https://localhost:10443/api/v1/namespaces/kube-system/services/\
https:metrics-server:/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

After cm-kubernetes-setup finishes, and the regular nodes have been rebooted, the state of the
nodes can be found by running the get nodes command:

Example

[root@bright91 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
node001 Ready <none> 25m v1.18
node002 Ready <none> 25m v1.18
node003 Ready <none> 25m v1.18
node004 Ready <none> 25m v1.18
node005 Ready <none> 25m v1.18
node006 Ready <none> 25m v1.18

A six node cluster should show the following Kubernetes installed add-ons, when using kubectl
with the get all -n kube-system option (some lines truncated):

Example

[root@bright91 ~]# module load kubernetes/default/1.18
[root@bright91 ~]# kubectl get all -n kube-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/calico-typha ClusterIP 10.150.160.210 <none> 5473/TCP 21m
service/kube-dns ClusterIP 10.150.255.254 <none> 53/UDP,53/TCP,9153/TCP 31m
service/metrics-server ClusterIP 10.150.246.100 <none> 443/TCP 33m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE
daemonset.apps/calico-node 0 0 0 0 0
beta.kubernetes.io/os=linux 21m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/calico-kube-controllers 0/1 0 0 21m
deployment.apps/calico-typha 0/0 0 0 21m
deployment.apps/coredns 0/2 0 0 31m
deployment.apps/metrics-server 0/2 0 0 33m

NAME DESIRED CURRENT READY AGE
replicaset.apps/calico-kube-controllers-759789cdfb 1 0 0 4m18s
replicaset.apps/coredns-77cc869d4c 2 0 0 4m18s

The administrator can now configure the cluster to suit the particular site requirements.

9.3.3 Using GPUs With Kubernetes: NVIDIA GPUs
Prerequisites
The GPUs have to be recognized by the nodes, and have the appropriate drivers (such as cuda-driver)
installed. Details on how to do this are given in section 7.4 of the Installation Manual.

To verify the GPUs are recognized and have drivers in place, the invoking nvidia-smi command
can be invoked. The response displayed for a GPU should look similar to the following:

Example

© Bright Computing, Inc.

400 Containerization

root@node001:~# nvidia-smi
Mon Sep 28 15:13:22 2020
+---+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |
| 23% 28C P8 22W / 235W | 0MiB / 12206MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+

Existing Docker Deployment
If Docker has been deployed before Kubernetes is deployed, then the instructions from section 9.1.7
must be followed first. These are the instructions on making sure that GPUs can be used inside Docker.
The NVIDIA container toolkit (cm-nvidia-container-toolkit) has to be present on the nodes.

To verify Docker is working with GPUs, nvidia-smi can be run from inside a container:

Example

root@node001:~# module load docker/19.03.5
root@node001:~# docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Mon Sep 28 13:13:39 2020
+---+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |
| 23% 28C P8 22W / 235W | 0MiB / 12206MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

New Kubernetes Installation
If Docker is deployed as part of the Kubernetes setup, then the NVIDIA container toolkit is taken care
of by the installer. During the installation of Kubernetes there is a step where custom add-ons can be
selected (figure 9.3):

© Bright Computing, Inc.

9.3 Kubernetes 401

Figure 9.3: Kubernetes Ncurses Session: Deployment Of Add-ons

In that step, the add-on Nvidia device plugin for Kubernetes should be enabled. This ensures
that cm-nvidia-container-toolkit is installed in the software image.

This is the default approach. It can be verified to work by deploying a Pod that requests a GPU,
as requested using the nvidia.com/gpu: 1 inside the yaml file. Alternatively there is a GPU operator
that can be deployed via Helm (page 402)

If more GPUs are available on a single host, then only one GPU should be made visible, and recog-
nized inside the Pod, when requesting a single GPU, as in the example:

Example

root@cluster:~> cat gpu.yaml
apiVersion: v1
kind: Pod
metadata:

name: gpu-pod
spec:

restartPolicy: Never
containers:
- name: cuda-container
image: nvidia/cuda:9.2-runtime
command: ["nvidia-smi"]
resources:
limits:

nvidia.com/gpu: 1
root@cluster:~> kubectl apply -f gpu.yaml
pod/gpu-pod configured
root@cluster:~> kubectl logs gpu-pod
Mon Sep 28 12:12:46 2020
+---+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |
| 23% 29C P8 22W / 235W | 0MiB / 12206MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |

© Bright Computing, Inc.

402 Containerization

| ID ID Usage |
|===|
| No running processes found |
+---+

Existing Kubernetes Installation
The NVIDIA device plugin is deployed as an add-on. If during the installation the add-on was not
selected (section 9.3.3 shows a screenshot), then it can be enabled in cmsh or Bright View afterwards.

[cluster->kubernetes[default]->appgroups[system]->applications[nvidia]]% set enabled yes
[cluster->kubernetes*[default*]->appgroups*[system*]->applications*[nvidia*]]% commit

This add-on deploys a DaemonSet that will run the NVIDIA device plugin for Kubernetes on nodes
with the brightcomputing.com/gpu-accelerator label.

Bright Cluster Manager is responsible for setting this GPU label on the appropriate Kubernetes
nodes, with parameter values specified for the labelset:

Example

[cluster->kubernetes[default]->labelsets[nvidia]]% show
Parameter Value
-------------------------------- --
Categories
Name nvidia
Nodes node001
Overlays
Revision
Labels brightcomputing.com/gpu-accelerator=

These labels should appear in Kubernetes Node resources as a result, and the device plugin running
on these particular nodes (some columns of output have been removed for clarity):

Example

kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
node001 Ready <none> 3h13m v1.16.1 brightcomputing.com/gpu-accelerator=,...
cluster Ready master 3h13m v1.16.1 node-role.kubernetes.io/master=,...
root@rb-mygpufriend:~> kubectl get pod -l name=nvidia-device-plugin-ds -n kube-system -o wide
NAME IP NODE NOMINATED NODE READINESS GATES
nvidia-device-plugin-daemonset-pzjcl 172.29.152.142 node001 <none> <none>

Using The NVIDIA GPU Operator
The NVIDIA GPU Operator (https://github.com/NVIDIA/gpu-operator) can be deployed using
Helm. It leverages the Kubernetes Operator Framework, and has the benefit that it does not require
any labels to be set by the user or by Bright Cluster Manager. GPUs should be detected by the operator,
and it knows for which nodes the device plugin should be deployed automatically.

For this case, if it is in use, the NVIDIA device plugin add-on configured by Bright should be dis-
abled.

[cluster->kubernetes[default]->appgroups[system]->applications[nvidia]]% set enabled no
[cluster->kubernetes*[default*]->appgroups*[system*]->applications*[nvidia*]]% commit

The nodes from the labelset can optionally be removed, since
brightcomputing.com/gpu-accelerator= is no longer used for anything. The deployment can
then proceed using Helm.

These instructions follow the guidance at https://docs.nvidia.com/datacenter/cloud-native/
gpu-operator/getting-started.html (and some columns of display output have been removed for
clarity):

© Bright Computing, Inc.

https://github.com/NVIDIA/gpu-operator
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html

9.3 Kubernetes 403

Example

root@cluster:~> helm repo add nvidia https://nvidia.github.io/gpu-operator
root@cluster:~> helm repo update

root@cluster:~> helm install nvidia/gpu-operator --wait --generate-name
NAME: gpu-operator-1601301333
LAST DEPLOYED: Mon Sep 28 15:55:36 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
root@cluster:~> helm list
NAME NAMESPACE STATUS CHART APP VERSION
gpu-operator-1601301333 default deployed gpu-operator-1.1.7 1.1.7

Uninstalling can be done through Helm as well:

Example

root@cluster:~> helm delete gpu-operator-1601301333
release "gpu-operator-1601301333" uninstalled

9.3.4 Using GPUs With Kubernetes: AMD GPUs
Prerequisites
The GPUs have to be recognized by the node. One way to check this from within Bright Cluster Manager
is to run sysinfo for the node:

Example

[bright91->device[bright91]]% sysinfo | grep GPU
Number of GPUs 1
GPU Driver Version 4.18.0-193.el8.x86_64
GPU0 Name Radeon Instinct MI25

In order to make Kubernetes aware of nodes that have AMD GPUs, the AMD GPU device plugin has
to be deployed as a DaemonSet inside Kubernetes. The official GitHub repository that hosts this plugin
can be found at:

https://github.com/RadeonOpenCompute/k8s-device-plugin

The device plugin requires Kubernetes v1.16+, which has been around since Bright Cluster Manager
version 9.0. With some extra instructions, the plugin can also be made a part of Bright Cluster Manager
version 8.2.

The DaemonSet YAML file can be deployed with:

Example

kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/v1.16/
k8s-ds-amdgpu-dp.yaml

Managing The YAML File Through CMDaemon
The plugin can be added by the user via the Kubernetes appgroups as an application. In the session that
follows, it is given the arbitrary name device-plugin:

Example

© Bright Computing, Inc.

https://github.com/RadeonOpenCompute/k8s-device-plugin

404 Containerization

[root@bright91 ~]# wget https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/
v1.16/k8s-ds-amdgpu-dp.yaml -O /tmp/k8s-ds-amdgpu-dp.yaml
[root@bright91 ~]# cmsh
[bright91]% kubernetes
[bright91->kubernetes[default]]% appgroups
[bright91->kubernetes[default]->appgroups]% add amd
[bright91->kubernetes*[default*]->appgroups*[amd*]]% applications
[bright91->kubernetes*[default*]->appgroups*[amd*]->applications]% add device-plugin

The configuration of the plugin can be set to the YAML file, by setting the config parameter to take
the value of the YAML file path.

Example

[bright91->...[amd*]->applications*[device-plugin*]]% set config /tmp/k8s-ds-amdgpu-dp.yaml
[bright91->kubernetes*[default*]->appgroups*[amd*]->applications*[device-plugin*]]% show
Parameter Value
-------------------------------- --
Name device-plugin
Revision
Format Yaml
Enabled yes
Config <914B>
Environment <0 in submode>
Exclude list snippets <0 in submode>
[bright91->kubernetes*[default*]->appgroups*[amd*]->applications*[device-plugin*]]% commit

The YAML file can also be edited within cmsh after it has been set, by running set config without a
value.

There are older releases available, starting from Kubernetes v1.10, if needed. Saving this device-
plugin YAML should result in pods being scheduled on all the non-tainted nodes, as seen by listing the
pods (some columns elided):

[root@bright91 ~]# module load kubernetes/default/1.18.8
[root@bright91 ~]# kubectl get pod -n kube-system -l name=amdgpu-dp-ds -o wide
NAME READY STATUS ... IP NODE ...
amdgpu-device-plugin-daemonset-66jl7 1/1 Running ... 172.29.112.135 gpu001 ...
amdgpu-device-plugin-daemonset-8mh9w 1/1 Running ... 172.29.152.130 gpu002 ...

Including Head Nodes as part of the DaemonSet:
Bright Cluster Manager taints head nodes, so that they do not run non-critical pods. The taint can be
removed with the “-” operator to allow non-critical pods to run:

Example

kubectl taint nodes bright91 node-role.kubernetes.io/master-

However, a more specific exception can be configured in the DaemonSet itself.
Within the YAML file, the following existing tolerations definition has to be modified, from:

tolerations:
- key: CriticalAddonsOnly

operator: Exists

to:

© Bright Computing, Inc.

9.3 Kubernetes 405

tolerations:
- key: node-role.kubernetes.io/master

effect: NoSchedule
operator: Exists

The modified toleration tolerates this taint, and therefore has the device plugin run on such tainted
nodes.

Verifying that AMD GPUs are recognized by Kubernetes: If Kubernetes is aware of the AMD GPUs
for a node, then several mentions of amd.com/gpu are displayed when running the kubectl describe
node command for the node. The following session shows output for a node gpu01, ellipsized for clarity:

Example

[root@bright91 ~]# kubectl describe node gpu01
Name: gpu01
...
Capacity:

amd.com/gpu: 3
cpu: 64
ephemeral-storage: 1813510Mi
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 527954676Ki
pods: 50

...

Running The DaemonSet Only On Specific Nodes
The AMD GPU device plugin, unlike the NVIDIA GPU device plugin Daemonset, is scheduled to run
on each Kubernetes host. This means that it runs even if the host has no GPU.

This can be prevented with the following steps:
A LabelSet can be created via cmsh, and the nodes or categories that have GPUs are assigned within

the labelsets mode:

Example

[root@bright91 ~]# cmsh
[bright91]% kubernetes
[bright91->kubernetes[default]]% labelsets
[bright91->kubernetes[default]->labelsets]% use nvidia
[bright91->kubernetes[default]->labelsets[nvidia]]% .. #but, we're using AMD GPUs, so:
[bright91->kubernetes[default]->labelsets]% add amd
[bright91->kubernetes*[default*]->labelsets*[amd*]]% set labels brightcomputing.com/amd-gpu-accelerator=
[bright91->kubernetes*[default*]->labelsets*[amd*]]% append categories gpu-nodes
[bright91->kubernetes*[default*]->labelsets*[amd*]]% commit

This assigns the labels to the nodes with GPUs. This can be verified with:

Example

kubectl get nodes -l brightcomputing.com/amd-gpu-accelerator=
NAME STATUS ROLES AGE VERSION
gpu001 Ready master 66m v1.18.8
gpu002 Ready master 66m v1.18.8
...

© Bright Computing, Inc.

406 Containerization

The DaemonSet YAML can now be adjusted to only run the device plugin on nodes with this new
label. This can be done by adding an affinity block after the tolerations block:

Example

tolerations:
- key: CriticalAddonsOnly # toleration may be different, if changes were made to it

operator: Exists
affinity:

nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:
- matchExpressions:

- key: 'brightcomputing.com/amd-gpu-accelerator'
operator: Exists

This results in the device plugin pods being removed immediately from all nodes that do not have
the label.

Running An Example Workload
An example workload can be run as described in the official AMD GPU Kubernetes device plugin doc-
umentation at:

https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/v1.16#example-workload

Thus it should now be possible to run:

[root@bright91 ~]# kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/
k8s-device-plugin/v1.16/example/pod/alexnet-gpu.yaml

The YAML requests only one GPU at the bottom of the YAML file:

apiVersion: v1
kind: Pod
metadata:

name: alexnet-tf-gpu-pod
labels:
purpose: demo-tf-amdgpu

spec:
containers:
- name: alexnet-tf-gpu-container
image: rocm/tensorflow:latest
workingDir: /root
env:
- name: HIP_VISIBLE_DEVICES

value: "0" # # 0,1,2,...,n for running on GPU and select the GPUs, -1 for running on CPU
command: ["/bin/bash", "-c", "--"]

args: ["python3 benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=alexnet;\
trap : TERM INT; sleep infinity & wait"]

resources:
limits:
amd.com/gpu: 1 # requesting a GPU

Container creation might take a while due to the image size. Once scheduled, it prints out that it
found exactly one GPU, and proceeds to run a TensorFlow workload.

© Bright Computing, Inc.

https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/v1.16#example-workload

9.3 Kubernetes 407

Example

[root@bright91 ~]# kubectl logs -f alexnet-tf-gpu-pod
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/compat/v2_compat.py:96:
disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed
in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
2021-01-08 21:03:29.222293: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104]
CPU Frequency: 2495445000 Hz
2021-01-08 21:03:29.222398: I tensorflow/compiler/xla/service/service.cc:168]
XLA service 0x39f62f0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2021-01-08 21:03:29.222420: I tensorflow/compiler/xla/service/service.cc:176]

StreamExecutor device (0): Host, Default Version
2021-01-08 21:03:29.223754: I tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libamdhip64.so
2021-01-08 21:03:31.635339: I tensorflow/compiler/xla/service/service.cc:168]
XLA service 0x3a40bb0 initialized for platform ROCM (this does not guarantee that XLA will be used). Devices:
2021-01-08 21:03:31.635363: I tensorflow/compiler/xla/service/service.cc:176]

StreamExecutor device (0): Device 738c, AMDGPU ISA version: gfx908
2021-01-08 21:03:31.931125: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1734]
Found device 0 with properties:

pciBusID: 0000:27:00.0 name: Device 738c ROCm AMD GPU ISA: gfx908
coreClock: 1.502GHz coreCount: 120 deviceMemorySize: 31.98GiB deviceMemoryBandwidth: 1.12TiB/s

...
TensorFlow: 2.3
Model: alexnet
Dataset: imagenet (synthetic)
Mode: training
SingleSess: False
Batch size: 512 global

512 per device
Num batches: 100
Num epochs: 0.04
Devices: ['/gpu:0']
...

Had more GPUs been requested, more would have been made available to the container.
For comparison, a CPU version of the container is also available. The official instructions can be

referred to for these, too.

9.3.5 Kubernetes Configuration Overlays
A list of configuration overlays can be seen from within configurationoverlay mode:

Example

[bright91->configurationoverlay]% list
Name (key) Priority Nodes Categories Roles
-------------------- ---------- ----------------- ------------- ------------------...
kube-default-etcd 500 node001..node003 Etcd::Host
kube-default-master 510 node001..node003 Docker::Host, Kube...
kube-default-worker 500 node004..node006 default Docker::Host, Kube...

9.3.6 Removing A Kubernetes Cluster
A Kubernetes cluster can be removed using cm-kubernetes-setup with the --remove and
--yes-i-really-mean-it options. Also, if there more than one cluster present, then the cluster name
must be specified using the --cluster parameter.

© Bright Computing, Inc.

408 Containerization

A removal run looks as follows (some output ellipsized):

Example

[root@bright91 ~]# cm-kubernetes-setup --remove --cluster default --yes-i-really-mean-it

Connecting to CMDaemon
Executing 17 stages
################### Starting execution for 'Kubernetes Setup'

- kubernetes
- docker

Progress: 0
stage: kubernetes: Get Kube Cluster
Progress: 5
stage: kubernetes: Check Kube Cluster Exists
Progress: 11
stage: kubernetes: Find Installed Components
Progress: 17
stage: kubernetes: Find Files On Headnodes
Progress: 23
stage: kubernetes: Close Api Server Proxy Port
Closing port 10443 in Shorewall
Progress: 52
stage: kubernetes: Remove Installed Components
Progress: 58
stage: kubernetes: Remove Files On Headnodes
Progress: 64
stage: kubernetes: Remove Etcd Spool
Progress: 70
stage: kubernetes: Set Reboot Required
You need to reboot 6 nodes to cleanup the network configuration
Progress: 76
stage: kubernetes: Collection Update Provisioners
Progress: 82
stage: docker: Get Objects To Process
Progress: 100

Took: 00:01 min.
Progress: 100/100
################### Finished execution for 'Kubernetes Setup', status: completed

Kubernetes Setup finished!

Using the --remove option removes the Kubernetes cluster configuration from Bright Cluster Man-
ager, unassigns Kubernetes-related roles—including the EtcdHost role—and removes Kubernetes health
checks. The command does not remove packages that were installed with a cm-kubernetes-setup com-
mand before that.

After the disabling procedure has finished, the cluster has no Kubernetes configured and running.

9.3.7 Kubernetes Cluster Configuration Options
Kubernetes allows many Kubernetes clusters to be configured. These are separated sets of hosts with
different certificates, users and other global settings.

When carrying out the Kubernetes setup run, a Kubernetes cluster name will be asked, and a new
object with the cluster settings is then added into the CMDaemon configuration. The administrator can
change the settings of the cluster from within the kubernetes mode of cmsh or within the Kubernetes

© Bright Computing, Inc.

9.3 Kubernetes 409

Clusters options window of Bright View, accessible via the clickpath Containers→Kubernetes
Clusters.

The cmsh equivalent looks like:

Example

[root@bright91 ~]# cmsh
[bright91]% kubernetes list
Name (key)

default
[bright91]% kubernetes use default
[bright91->kubernetes[default]]% show
Parameter Value
--- ---
Kubernetes role bindings <0 in submode>
Notes
Revision
Name default
Authorization Mode Node,RBAC
Kube Config /cm/local/apps/kubernetes/var/etc/node.kubeconfig
Kube Client Config /cm/local/apps/kubernetes/var/etc/kubelet.kubeconfig
Kube Config Template <409 bytes>
CA /cm/local/apps/kubernetes/var/etc/kubeca-default.pem
CA Key /cm/local/apps/kubernetes/var/etc/kubeca-default.key
Kubernetes Certificate /cm/local/apps/kubernetes/var/etc/node.pem
Kubernetes Key /cm/local/apps/kubernetes/var/etc/node.key
Kubernetes Client Certificate /cm/local/apps/kubernetes/var/etc/kubelet.pem
Kubernetes Client Key /cm/local/apps/kubernetes/var/etc/kubelet.key
Service Accounts Certificate /cm/local/apps/kubernetes/var/etc/sa-default.pem
Service Accounts Certificate Key /cm/local/apps/kubernetes/var/etc/sa-default.key
Kubernetes API Aggregator Certificate /cm/local/apps/kubernetes/var/etc/apiaggregator.pem
Kubernetes API Aggregator Certificate Key /cm/local/apps/kubernetes/var/etc/apiaggregator.key
Cluster Domain cluster.local
Etcd Cluster kube-default
Etcd Prefix /kube-apiserver
Etcd Servers
Service Network kube-default-service
Trusted domains bright91.local,kubernetes,kubernetes.default,kubernetes.\

default.svc,master,localhost
Pod Network kube-default-pod
Pod Network Node Mask
Internal Network internalnet
KubeDNS IP 10.150.255.254
Kubernetes API server
Kubernetes API server proxy port 10444
App Groups <1 in submode>
Label Sets <2 in submode>
Module file template <1130 bytes>
[bright91->kubernetes[default]]%

The preceding kubernetes mode parameters are described in table 9.6:

© Bright Computing, Inc.

410 Containerization

Parameter Description

Authorization Mode Selects how to authorize on the secure port (default: RBAC (Role-Based
Access Control) and Node Authorization modes)

Kube Config Path to a kubeconfig file, specifying how nodes authenticate to the API
server

Kube Client Config Path to a kubeconfig file, specifying how kubelets authenticate to the
API server

Kube Config Template Template Bright Cluster Manager uses to generate kubeconfig files for
services and users.

CA Path to PEM-encoded RSA or ECDSA certificate used for the CA

CA Key Path to PEM-encoded RSA or ECDSA private key used for the CA

Kubernetes Certificate File containing x509 certificate used by the kubelets

Kubernetes Key File containing x509 private key used by the Kubernetes kubelets

Kubernetes Client
Certificate

File containing x509 certificate used for the kubelets

Kubernetes Client Key File containing x509 private key used for the Kubernetes kubelets

Service Accounts
Certificate

File containing x509 certificate used for Kubernetes service accounts.
This certificate value will be used as --service-account-key-file in the
Kubernetes API service.

Service Accounts Key File containing x509 private key used for Kubernetes Service Accounts.
This key value will be used as --service-account-private-key-file in
the controller manager service.

Cluster Domain Domain for this cluster

Etcd Cluster The Etcd cluster instance.

Etcd Prefix The prefix for all resource paths in etcd

...continues

© Bright Computing, Inc.

9.3 Kubernetes 411

...continued

Parameter Description

Etcd Servers List of etcd servers to watch (format: http://<IP address>:<port
number>)

Service Network Network from which the service cluster IP addresses will be assigned,
in IPv4 CIDR format. Must not overlap with any IP address ranges
assigned to nodes for pods. Default: 172.29.0.0/16

Pod Network Network where pod IP addresses will be assigned from

Internal Network Network to back the internal communications.

Trusted Domains Trusted domains to be included in Kubernetes-related certificates as Al-
ternative Subject Names.

KubeDNS IP CoreDNS IP Address.

Kubernetes API Server Kubernetes API server address (format: https://<host>:<port
number>).

Kubernetes API Server
Proxy Port

Kubernetes API server proxy port.

Addons Kubernetes Add-ons managed by CMDaemon.

Table 9.6: kubernetes mode parameters

9.3.8 EtcdCluster
The EtcdCluster mode sets the global Etcd cluster settings. It can be accessed via the top level etcd
mode of cmsh.

Parameter Description Option to etcd

Name Etcd Cluster Name. --initial-cluster-token

Election Timeout Election Timeout, in milliseconds. --election-timeout

Heart Beat Interval Heart Beat Interval, in milliseconds. --heartbeat-interval

CA The Certificate Authority (CA) Certifi-
cate path for Etcd, used to generate cer-
tificates for Etcd.

--peer-trusted-ca-file

...continues

© Bright Computing, Inc.

412 Containerization

...continued

Parameter Description Option to etcd

CA Key The CA Key path for Etcd, used to gen-
erate certificates for Etcd.

Member Certificate The Certificate path to use for Etcd clus-
ter members, signed with the Etcd CA.
The EtcdHost Role can specify a Mem-
ber CA as well, and in that case it over-
writes any value set here.

--peer-cert-file

Member Certificate
Key

The Key path to use for Etcd cluster
members, signed with the Etcd CA. The
EtcdHost Role can specify a Member
CA as well, and in that case it over-
writes any value set here.

--peer-key-file

Client CA The CA used for client certificates.
When set it is assumed client certificate
and key will be generated and signed
with this CA by another party. Etcd still
expects the path to be correct for the
Client Certificate and Key.

--trusted-ca-file

Client Certificate The Client Certificate, used by Etcdctl
for example.

--cert-file

Client Certificate
Key

The Client Certificate Key, used by
Etcdctl for example.

--key-file

* Boolean (takes yes or no as a value)

Table 9.7: EtcdCluster role parameters and etcd options

9.3.9 Kubernetes Roles
Kubernetes roles include the following roles:

• EtcdHost (page 413)

• KubernetesApiServerProxy (page 413)

• KubernetesApiServer (page 414)

• KubernetesController (page 416)

• KubernetesScheduler (page 418)

• KubernetesProxy (page 419)

• KubernetesNode (page 420)

When nodes are configured using Kubernetes roles, then settings in these roles may sometimes use the
same pointer variables—for example the Kubernetes or Etcd cluster instance. Pointer variables such as
these have definitions that are shared across the roles, as indicated by the parameter description tables
for the roles, and which are described in the following pages.

In cmsh, the roles can be assigned:

• for individual nodes via the roles submode of device mode

• for a category via the roles submode of a category

• for a configuration overlay via the roles submode of configurationoverlay mode

© Bright Computing, Inc.

9.3 Kubernetes 413

EtcdHost Role
The EtcdHost role is used to configure and manage the etcd service for a node.

The etcd service manages the etcd database, which is a hierarchical distributed key-value database.
The database is used by Kubernetes to store its configurations. The EtcdHost role parameters are de-
scribed in table 9.8:

Parameter Description Option to etcd

Member Name The human-readable name for this etcd
member ($hostname will be replaced by
the node hostname)

--name

Spool Path to the data directory (default:
/var/lib/etcd)

--data-dir

Advertise Client List of client URLs for this member to --advertise-client-urls
URLs advertise publicly (default: http://

$hostname:5001)

Advertise Peers List of peer URLs for this member to --initial-advertise-peer-urls
URLs advertise to the rest of the cluster (de-

fault: http://$hostname:5002)

Listen Client URLs List of URLs to listen on for client traf-
fic (default: http://$hostname:5001,
http://127.0.0.1:2379)

--listen-client-urls

Listen Peer URLs List of URLs to listen on for peer traffic
(default: http://$hostname:5002)

--listen-peer-urls

Snapshot Count Number of committed transactions that
trigger a snapshot to disk (default:
5000)

--snapshot-count

Debug∗ Drop the default log level to DEBUG for
all subpackages? (default: no)

--debug

Member Certificate Etcd member certificate, signed with
CA specified in the Etcd Cluster. When
set it will overrule the value from the
EtcdCluster object. Default empty.

--peer-cert-file

Member Certificate
Key

Etcd member certificate key, signed
with CA specified in the Etcd Cluster.
When set it will overrule the value from
the EtcdCluster object. Default empty.

--peer-keyt-file

Options Additional parameters for the etcd
daemon (empty by default)

* Boolean (takes yes or no as a value)

Table 9.8: EtcdHost role parameters and etcd options

The etcd settings are updated by Bright Cluster Manager in /cm/local/apps/etcd/current/etc/
cm-etcd.conf.

The KubernetesAPIServerProxy Role
The KubernetesApiServerProxy role sets up a proxy that provides the entry point for one or more in-
stances of the Kubernetes API server. The proxy runs on every node of a Kubernetes cluster instance,
including the head node.

© Bright Computing, Inc.

http://$hostname:5001
http://$hostname:5001
http://$hostname:5002
http://$hostname:5001,http://127.0.0.1:2379
http://$hostname:5001,http://127.0.0.1:2379
http://$hostname:5002
/cm/local/apps/etcd/current/etc/cm-etcd.conf
/cm/local/apps/etcd/current/etc/cm-etcd.conf

414 Containerization

If multiple Kubernetes master nodes are present, then it enables HA for the Kubernetes master com-
ponents, as described in section 9.3.1.

The KubernetesApiServer Role
The KubernetesApiServer role is used to configure and manage the kube-apiserver daemon. The
kube-apiserver daemon is a Kubernetes API server that validates and configures data for the Kuber-
netes API objects. The API objects include pods, services, and replication controllers. The API Server
processes REST operations, and provides a front end to the shared state of the cluster through which all
the other components interact.

The KubernetesApiServer role parameters are described in table 9.9:

© Bright Computing, Inc.

9.3 Kubernetes 415

Parameter Description Option to kube-apiserver

Kubernetes Cluster The Kubernetes cluster instance (pointer)

Insecure API Port The port on which to serve unsecured, --insecure-port
unauthenticated access (disabled by
default)

Secure API Port The port on which to serve HTTPS with --secure-port
authentication and authorization. If 0,
then HTTPS will not be served at all.
(default: 6443)

Advertise Address The IP address on which to advertise the
API server to members of the cluster with
--advertise-address. If set to 0.0.0.0,
then the IP address of the management
network of the head node is used.
(default: 0.0.0.0)

Insecure Bind Address IP address to serve on (default: --insecure-bind-address
127.0.0.1)

Secure Bind Address The IP address on which to serve the read- --bind-address
and secure ports (default: 0.0.0.0)

Admission Control Ordered list of plug-ins to control the --admission-control
admission of resources into the cluster)
(default: NamespaceLifecycle,LimitRanger,
ServiceAccount,PersistentVolumeLabel,
DefaultStorageClass,ValidatingAdmissionWebhook,
ResourceQuota,DefaultTolerationSeconds,
MutatingAdmissionWebhook)

Allowed Privileged∗ If true, allow privileged containers --allow-privileged
(default: no)

Event TTL Time period that events are retained. --event-ttl
Empty by default. A format example:
1h0m0s

Kubelet Timeout Kubelet port timeout (default: 5s) --kubelet-timeout

Log Level Log level (default: 0) --v

Log To StdErr∗ Logging to stderr means it goes into --logtostderr
the systemd journal (default: yes)

...continues

© Bright Computing, Inc.

416 Containerization

...continued

Parameter Description Option to kube-apiserver

Options Additional parameters for the
kube-apiserver daemon (empty
by default)

* Boolean (takes yes or no as a value)

Table 9.9: KubernetesApiServer role parameters and kube-apiserver options

Further details on the Kubernetes API Server can be found at https://kubernetes.io/docs/admin/
kube-apiserver/.

KubernetesController Role
The Kubernetes Controller role is used to configure and manage the kube-controller-manager daemon
that embeds the core control loops shipped with Kubernetes. In Kubernetes, a controller is a control loop
that watches the shared state of the cluster through the API server, and it makes changes in order to try
to move the current state towards the desired state. Examples of controllers that ship with Kubernetes
at the time of writing (January 2018) are:

• the replication controller

• the endpoints controller,

• the namespace controller,

• the serviceaccounts controller

The KubernetesController role parameters are described in table 9.10:

Parameter Description Option to

kube-controller-manager

Kubernetes Cluster The Kubernetes cluster instance (pointer)

Address IP address to serve on (default: 0.0.0.0) --address

Port Port to serve on (default: 10252) --port

Concurrent Number of endpoint syncing operations --concurrent-endpoint-syncs
Endpoint Syncs that will be done concurrently. (default: 5

Concurrent Rc The number of replication controllers that --concurrent-rc-syncs
Syncs are allowed to sync concurrently. 5

Namespace Sync Period for syncing namespace --namespace-sync-period
Period life-cycle updates

Node Monitor Period for syncing NodeStatus in --node-monitor-grace-period
Grace Period NodeController

...continues

© Bright Computing, Inc.

https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/admin/kube-apiserver/

9.3 Kubernetes 417

...continued

Parameter Description Option to

kube-controller-manager

Node Monitor Period the running Node is allowed to be --node-monitor-period
Period unresponsive before marking it unhealthy

Node Startup Period the starting Node is allowed to be --node-startup-grace-period
Grace Period unresponsive before marking it unhealthy

Node Sync Period Period for syncing nodes from cloud-
provider

--node-sync-period

Pod Eviction Grace period for deleting pods on failed --pod-eviction-timeout
Timeout nodes

Pv Claim Binder Period for syncing persistent volumes and --pvclaimbinder-sync-period
Sync Period persistent volume claims

Register Retry Number of retries for initial node --register-retry-count
Count registration

Resource Quota Period for syncing quota usage status in --resource-quota-sync-period
Sync Period the system

Log Level Log level (default: 0) --v

Log To StdErr∗ Logging to stderr means getting it into the
systemd journal (default: yes)

--logtostderr

Options Additional parameters for the
kube-controller-manager daemon

Cluster signing
Cert file

Filename containing a PEM-encoded X509
CA certificate used to issue cluster-scoped
certificates. (leave empty to use the value
of CA defined in the Kubernetes Cluster
instance).

--cluster-signing-cert-file

Cluster signing
Cert Key file

Filename containing a PEM-encoded RSA
or ECDSA private key used to sign
cluster-scoped certificates. (leave empty
to use the value of CA Key defined in the
Kubernetes Cluster instance).

--cluster-signing-key-file

Use Service Account
Credentials

Flag to enable or disable use of Service Ac-
count Credentials.

--use-service-account-credentials

Allocate Node Cidrs Allocate node CIDR in cluster using Pod
Network and Node Mask size defined in
Kubernetes Cluster Object.

--allocate-node-cidrs

Kube Config Path to a kubeconfig file, specifying how
to authenticate to API server.

--kubeconfig

Kubernetes
Certificate

File containing x509 Certificate used by
Kubernetes Controller Manager. This will
be embedded in the Kube Config file.

(1)

Kubernetes Key File containing x509 private key used by
Kubernetes Controller Manager. This will
be embedded in the Kube Config file.

(2)

...continues

© Bright Computing, Inc.

418 Containerization

...continued

Parameter Description Option to

kube-controller-manager

* Boolean (takes yes or no as a value)

Table 9.10: KubernetesController role parameters and kube-controller-manager options

Further details on the Kubernetes controller manager can be found at https://kubernetes.io/
docs/admin/kube-controller-manager/.

KubernetesScheduler Role
The KubernetesScheduler role is used to configure and manage the kube-scheduler daemon. The Ku-
bernetes scheduler defines pod placement, taking into account the individual and collective resource
requirements, quality of service requirements, hardware/software/policy constraints, affinity and anti-
affinity specifications, data locality, inter-workload interference, deadlines, and so on.

The KubernetesScheduler role parameters are described in table 9.11:
Parameter Description Option to kube-scheduler

Kubernetes Cluster The Kubernetes cluster instance (pointer)

Address IP address to serve on (default: 0.0.0.0) --address

Scheduler Port Port to serve on (default: 10253) --port

Algorithm Provider The scheduling algorithm provider to use
(default: DefaultProvider)

--algorithm-provider

Policy Config File with scheduler policy configuration
(default: /cm/local/apps/kubernetes/
var/etc/scheduler-policy.json)

--policy-config-file

Log Level Log level (default: 0) --v

Log To StdErr∗ Logging to STDERR means getting it into
the systemd journal (default: yes)

--logtostderr

Options Additional parameters for the
kube-scheduler daemon

Kube Config Path to a kubeconfig file, specifying how
to authenticate to API server.

--kubeconfig

Kubernetes
Certificate

File containing x509 Certificate used by
Kubernetes Scheduler. This certificate will
be embedded in the Kube Config file.

Kubernetes Key File containing x509 private key used by
Kubernetes Scheduler. This certificate key
will be embedded in the Kube Config file.

* Boolean (takes yes or no as a value)

Table 9.11: KubernetesScheduler role parameters and kube-scheduler options

Further details on the Kubernetes scheduler can be found at https://kubernetes.io/docs/admin/
kube-scheduler/.

© Bright Computing, Inc.

https://kubernetes.io/docs/admin/kube-controller-manager/
https://kubernetes.io/docs/admin/kube-controller-manager/
/cm/local/apps/kubernetes/var/etc/scheduler-policy.json
/cm/local/apps/kubernetes/var/etc/scheduler-policy.json
https://kubernetes.io/docs/admin/kube-scheduler/
https://kubernetes.io/docs/admin/kube-scheduler/

9.3 Kubernetes 419

KubernetesProxy Role
The KubernetesProxy role is used to configure and manage kube-proxy daemon. The kube-proxy dae-
mon runs on each node, and reflects services as defined in the Kubernetes API. It can do simple TCP
and UDP stream-forwarding or round-robin TCP and UDP forwarding across a set of back ends.

The KubernetesProxy role parameters are described in table 9.12:

© Bright Computing, Inc.

420 Containerization

Parameter Description Configuration Parameter

Passed To kube-proxy

Kubernetes Cluster The Kubernetes cluster instance (pointer)

Address IP address to serve on (default: 0.0.0.0) --address

Proxy Port Range Start Bottom of range of host ports that may be
consumed in order to proxy service traffic
(not set by default)

--proxy-port-range

Proxy Port Range End Top of range of host ports that may be
consumed in order to proxy service traffic
(not set by default)

--proxy-port-range

Masquerade All If using the pure iptables proxy, SNAT ev-
erything (default: yes)

--masquerade-all

Health Check IP address for the health check server --healthz-port
Address to serve on

Health Check Port Port to bind the health check server to
serve on (default: 10251, use 0 to disable)

--healthz-port

Oom Score Adjust The oom_score_adj value for the kube-
proxy process, in range [-999, 999] (de-
fault: -999)

--oom-score-adj

Kube Config Path to a kubeconfig file, specifying how
to authenticate to the API server.

--kubeconfig

Kubernetes Certificate File containing x509 Certificate used by
kube-proxy. This certificate is embedded
in the Kube Config.

Kubernetes Key File containing x509 private key used by
Kubernetes API server. This certificate
key is embedded in the Kube Config.

Log Level Log level (default: 0) --v

Log To StdErr∗ Logging to STDERR means it goes in the
systemd journal (default: yes)

--logtostderr

Options Additional parameters for the
kube-scheduler daemon

* Boolean (takes yes or no as a value)

Table 9.12: KubernetesProxy role parameters and kube-proxy options

Further details on the Kubernetes network proxy can be found at https://kubernetes.io/docs/
admin/kube-proxy/.

KubernetesNode Role
The KubernetesNode role is used to configure and manage the kubelet daemon, which is the primary
node agent that runs on each node. The kubelet daemon takes a set of pod specifications, called Pod-
Specs, and ensures that the containers described in the PodSpecs are running and healthy.

The KubernetesNode role parameters are described in table 9.13:

© Bright Computing, Inc.

https://kubernetes.io/docs/admin/kube-proxy/
https://kubernetes.io/docs/admin/kube-proxy/

9.3 Kubernetes 421

Parameter Description Option to kubelet

Kubernetes Cluster The Kubernetes cluster instance (pointer)

Address IP address to serve on (default: 0.0.0.0) --address

Kubelet Port Port that the HTTP service of the node
runs on (default: 10250)

--port

CNI plugin binaries
path

The full path of the directory in which to
search for CNI plugin binaries. (default:
/cm/local/apps/kubernetes/current/
bin/cni)

--cni-bin-dir

Enable Server∗ Enable server mode of Kubelet --enable-server

Host Network
Sources

List of sources from which Kubelet allows
pods use of the host network (default:
file)

--host-network-sources

Hostname Override If non-empty, use this string as identifica-
tion instead of the actual hostname (not
set by default)

--hostname-override

Manifests Path Path to the config file or directory of files
(default: /cm/local/apps/kubernetes/
var/etc/manifests)

--pod-manifest-path

Network plugin The name of the network plugin to be in-
voked for various events in kubelet/pod
lifecycle. (default: cni)

--network-plugin

Spool Directory path for managing Kubelet files
(default: /cm/local/apps/kubernetes/
var/kubelet)

--root-dir

Cgroup Root Optional root cgroup to use for pods --cgroup-root

Docker Endpoint Docker endpoint address
to connect to (default:
unix:///var/run/docker.sock)

--docker-endpoint

Docker Spool Absolute path to the Docker state root di-
rectory (default: /var/lib/docker)

--docker-root

Resource Container Absolute name of the resource-only con-
tainer to create and run the Kubelet in (de-
fault: /kubelet)

--resource-container

Allowed Privileged∗ If true, allow privileged containers (de-
fault: no)

--allow-privileged

Labels List of node labels

Register On Start∗ Register the node with the API server (de-
fault: yes)

--register-node

Eviction minimum
reclaim

Minimum amount of resources re-
claimed in an eviction (default:
imagefs.available=1Gi)

--eviction-minimum-reclaim

...continues

© Bright Computing, Inc.

/cm/local/apps/kubernetes/current/bin/cni
/cm/local/apps/kubernetes/current/bin/cni
/cm/local/apps/kubernetes/var/etc/manifests
/cm/local/apps/kubernetes/var/etc/manifests
/cm/local/apps/kubernetes/var/kubelet
/cm/local/apps/kubernetes/var/kubelet

422 Containerization

...continued

Parameter Description Option to kubelet

Hard eviction Hard eviction constraints (default:
imagefs.available<1%)

--eviction-hard

Max Pods Number of pods that can run on this node --max-pods

Max pod eviction
grace period

Maximum allowed grace period (in sec-
onds) allowed to terminated pods (de-
fault: 60)

--eviction-max-pod-grace-period

Soft eviction Soft eviction constraints (default:
imagefs.available<5%)

--eviction-soft

Soft eviction grace
period

Soft eviction grace period (default:
imagefs.available=1m30s)

--eviction-soft-grace-period

File Check Duration between checking configuration --file-check-frequency
Frequency files for new data (default: 20s)

HTTP Flush Duration between checking HTTP for --http-check-frequency
Frequency new data (default: 20s)

Node Status Update The absolute free disk space, in MB, to --node-status-update-\
Frequency maintain (default: 10s) frequency

Run Once∗ If true, exit after spawning pods from local
manifests or remote URLs (default: no)

--runonce

Streaming Maximum time a streaming connection --streaming-connection-\
Connection Idle connection can be idle before the idle-timeout
Timeout connection is automatically closed (de-

fault: 1h)

Sync Frequency Maximum period between synchronizing
running containers and config (default:
10s)

--sync-frequency

Image GC High Percent of disk usage after which --image-gc-high-\
Threshold image garbage collection is always run

(default: 90)
threshold

Image GC Low Percent of disk usage before which --image-gc-low-\
Threshold image garbage collection is never run (de-

fault: 80)
threshold

Threshold maintain (default: 256) threshold-mb

Oom Score Adjust The oom_score_adj value for the kube-
proxy process, in range [-999, 999] (de-
fault: -999)

--oom-score-adj

Log Level Log level (default: 0) --v

Log To StdErr∗ Logging to STDERR means it gets into the
systemd journal (default: yes)

--logtostderr

Options Additional parameters for the kube-
scheduler daemon

...continues

© Bright Computing, Inc.

9.3 Kubernetes 423

...continued

Parameter Description Option to kubelet

* Boolean (takes yes or no as a value)

Table 9.13: KubernetesNode role parameters and kubelet options

Further details on the kubelet daemon can be found at https://kubernetes.io/docs/admin/
kubelet/.

9.3.10 Security Model
The Kubernetes security model allows authentication using a certificate authority (CA), with the user
and daemon certificates signed by a Kubernetes CA. The Kubernetes CA should not be confused with
the Bright Cluster Manager CA.

Bright Cluster Manager will create a CA specifically for issuing all Kubernetes-related certificates.
The certificates are put into /cm/local/apps/kubernetes/var/etc/ by default, and /etc/kubernetes/
is made a link to this directory.

In Kubernetes terminology a user is a unique identity accessing the Kubernetes API server. The user
may be a human or an automated process. For example an admin or a developer are human users, but
kubelet represents an infrastructure user. Both types of users are authorized and authenticated in the
same way against the API server.

Kubernetes uses client certificates, tokens, or HTTP basic authentication methods to authenticate
users for API calls. Bright Cluster Manager configures client certificate usage by default. The authenti-
cation is performed by the API server which validates the user certificate using the common name part
of the certificate subject.

In Kubernetes, authorization happens as a separate step from authentication. Authorization applies
to all HTTP accesses on the main (secure) API server port. Bright Cluster Manager by default enables
RBAC (Role-Based Access Control) combined with Node Authorization. The authorization check for
any request thus takes the common name and/or organization part of the certificate subject to determine
which roles the user or service has associated. Roles carry a certain set of privileges for resources within
Kubernetes.

PodSecurityPolicy
Bright Cluster Manager also has support for PodSecurityPolicy (PSP) in the Kubernetes API Server. PSP
can be explicitly enabled or disabled (section 9.3.13).

For each user, a PSP is generated and assigned via their role binding YAML configuration. The
following defaults are applied:

• Users can only mount their own home directory. They cannot mount other paths such as /etc

• Users cannot run privileged Pods.

• Users can only bind on ports higher than 1024.

• Users can run with their own uid and gid.

• Users can run as root, without using hostPath volumes.

There are also

• default role bindings that grant access to the resources covered by the kubectl get all command.

• some minimally-required privileges required to run, for example, JupyterHub notebooks.

The details of the YAML role binding specification is to be found in Appendix N. A higher-level expla-
nation about each of the resources is given in section 9.3.12.

These policies only do something if PodSecurityPolicies are enabled, or enforced by Kubernetes,
which is not the default. Section 9.3.13 can be referred to for enabling and disabling PodSecurityPolicies.

© Bright Computing, Inc.

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kubelet/
/cm/local/apps/kubernetes/var/etc/
/etc/kubernetes/

424 Containerization

9.3.11 Addition Of New Kubernetes Users And Kubernetes Role Bindings Configuration
Bright users can use Kubernetes by making them Kubernetes users. This means having Kubernetes con-
figuration and access set up for them. This can be carried out a via the cm-kubernetes-setup Ncurses
utility, and choosing the Add user option (figure 9.2). The utility then prompts for

• a Kubernetes cluster

• a user name

• a namespace that the privileges are to be assigned to. This can be

– left blank to use <user>-restricted

– set to the value default if PSP is not enabled.)

• a role for the user, with choices provided from:

– cluster-admin: cluster-wide administrator

– admin: administrator

– edit: regular user

– view: read-only user

Later the RBAC that is generated under the hood for this role binding can be customized via cmsh, in
the rolebinding submode of the main kubernetes mode. For example, if a Bright user test has been
created, and then made a Kubernetes user, then its rolebindings can be accessed as follows:

Example

[bright91]% kubernetes
[bright91->kubernetes[default]]% rolebindings #default is Kubernetes Cluster auto-completed name
[bright91->kubernetes[default]->rolebinding]% list
User (key) Config
------------- ------------
test <5.2KiB>
user2 <5.4KiB>
user3 <5.1KiB>
user4 <5.1KiB>
[bright91->kubernetes[default]->rolebinding]% use test
[bright91->kubernetes[default]->rolebinding[test]]% get config
apiVersion: v1
kind: ServiceAccount
metadata:

name: test
namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: test
namespace: default

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: edit

subjects:
apiGroup: rbac.authorization.k8s.io

- kind: User

© Bright Computing, Inc.

9.3 Kubernetes 425

name: test
- kind: ServiceAccount

name: test
namespace: default

[bright91->kubernetes[default]->rolebinding[test]]% set config # opens an $EDITOR
...
[bright91->kubernetes*[default*]->rolebinding*[test*]]% commit

A cmsh treeview that displays the hierarchy to access the configuration of a Kubernetes application
is:

[cmsh]
|-- ...
|
|-- kubernetes[default]
| |-- appgroups[system]
| | `-- applications
| |-- labelsets[label set, for example: ingress_controller]
| `-- rolebinding[user name]

For a user within the rolebinding submode, the command set config opens an editor, and an
appropriate RBAC setting for the user can then be copy/pasted. Or modified, if the user exists, as in the
case of the user test, made a Kubernetes user via cm-kubernetes-setup.

How to construct the RBAC from scratch is documented at https://kubernetes.io/docs/admin/
authorization/rbac/#kubectl-create-rolebinding.

If there is a need to create custom roles, then adding a YAML configuration file is recommended for
the roles. This is done in the Kubernetes applications submode (section 9.4).

The Role Bindings found in the config are kept in sync with the Kubernetes API server.

Keeping Kubernetes RoleBindings and Kubernetes applications in sync with the API Server: If a
RoleBinding is first added, changed, removed, or disabled:

Example

[bright91->kubernetes[default]->rolebinding[test]]% set config # admin makes changes
[bright91->kubernetes*[default*]->rolebinding*[test*]]% set disabled # .. and/or disables
[bright91->kubernetes*[default*]->rolebinding*[test*]]% commit

then Bright Cluster Manager on the node that is elected the Kubernetes leader (using Etcd’s leader
election) talks to the Kubernetes API server. The elected leader can be found as follows:

root@bright91:~> kubectl get ep -n kube-system kube-controller-manager -o yaml
apiVersion: v1
kind: Endpoints
metadata:

annotations:
control-plane.alpha.kubernetes.io/leader: '{"holderIdentity":"node001_e55e8c3b-a3a6-490d-bf65-23da07b5478f",\

"leaseDurationSeconds":15,"acquireTime":"2021-03-17T05:09:14Z","renewTime":"2021-03-17T21:03:56Z",\
"leaderTransitions":30}'
creationTimestamp: "2021-03-16T11:56:39Z"
name: kube-controller-manager
namespace: kube-system
resourceVersion: "282094"
selfLink: /api/v1/namespaces/kube-system/endpoints/kube-controller-manager
uid: 244706f5-6802-49c9-9a3d-a521d01f7e74

© Bright Computing, Inc.

https://kubernetes.io/docs/admin/authorization/rbac/#kubectl-create-rolebinding
https://kubernetes.io/docs/admin/authorization/rbac/#kubectl-create-rolebinding

426 Containerization

The annotation control-plane.alpha.kubernetes.io/leader in the preceding output shows that
node001 is the elected leader.

If an error occurs, then there should be an event visible, and an event should also show up in Bright
Cluster Manager’s journal.

If Bright Cluster Manager elects the passive head node, then it overrides the election and uses the
active head node instead anyway.

Example

[bright91->kubernetes[default]->rolebinding[test]]% commit
Commit user 'test' ...
Wed Jan 15 15:59:16 2020 [warning] bright91: Error applying role binding with\
kubectl for user: test
For details type: events details 569
[bright91->kubernetes[default]->rolebinding[test]]%

If certain resources are removed from the role binding YAML, then Bright Cluster Manager detects
the difference, and makes sure that resources that are no longer present in the new YAML are also
removed from Kubernetes.

If the cluster administrator does not want CMDaemon to do this, or manage the YAML at all, then
the YAML should be stored separately—for example in a file on disk—and removed from the submode.

How To Manage YAML Outside Of Bright Cluster Manager
One way to manage the RBAC is to only add a user in the rolebinding without any YAML like this:

[cluster->kubernetes[default]->rolebinding]% add newuser
[cluster->kubernetes*[default*]->rolebinding*[newuser*]]% commit

The benefit is that CMDaemon still creates the user’s Kubernetes RoleBinding configuration file and
generates certificates for the user. The configuration of the rest of the Kubernetes settings for the user is
however expected to be managed by the cluster administrator outside of CMDaemon.

For existing users, with an already lengthy YAML in place, a caveat is in order: CMDaemon removes
resources that are removed from the configuration.

[cluster->kubernetes[default]->rolebinding[existinguser]]% set config

Removing all the YAML configuration here results in CMDaemon deleting the resources that were
previously there. For most resources, such as roles and bindings, this is likely what is intended.

However, if a user has access to their secure namespace:

Example

Namespace/existinguser-restricted

and has created anything inside this namespace, then removal also removes everything created un-
der this namespace.

Adding Users Non-Interactively with cm-kubernetes-setup
The cm-kubernetes-setup CLI wizard provides the following options.

cm-kubernetes-setup --add-user <user>
[--namespace <namespace> --role <role>
| --role cluster-admin] [--no-secure-namespace]

The user has to be a user that exists on the cluster already. The additional namespace (when pro-
vided) also has to exist on the Kubernetes cluster already.

© Bright Computing, Inc.

9.3 Kubernetes 427

Example

cm-kubernetes-setup --add-user john

The preceding example creates a user john for the secure namespace john-restricted. Secure
namespaces (Appendix N.2) are used to refer to the namespace created by Bright to which the user
is confined by default with specific privileges for security purposes. This secure namespace can be
disabled by adding an additional --no-secure-namespace parameter:

Example

cm-kubernetes-setup --add-user john --no-secure-namespace

The preceding creates a user john without access to any namespace. john is only able to see the nodes
that are part of the Kubernetes cluster with kubectl get nodes, since read-only access is assigned for
this resource by default to all users.

A way to assign any of the default Kubernetes user-facing roles is also provided, and documented at
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles

The roles are: view, edit, admin, cluster-admin. These can be assigned to users for specific names-
paces by means of the --role and --namespace parameters.

Example

cm-kubernetes-setup --add-user john --namespace development --role edit

The preceding example creates a user john with edit privileges for the development namespace, in
addition to the john-restricted namespace for which john also has privileges.

Example

cm-kubernetes-setup --add-user john --namespace development --role edit --no-secure-namespace

The preceding example creates a user john, with edit privileges only, for the development names-
pace. john-restricted is also created.

Example

cm-kubernetes-setup --add-user john --namespace development --role view --no-secure-namespace

The preceding example creates a user john, with view privileges only, for the development names-
pace. john-restricted is also created.

Example

cm-kubernetes-setup --add-user john --role cluster-admin --no-secure-namespace

The preceding example creates a user john, with cluster-admin privileges only, for all namespaces.
john-restricted is also created.

More information on admin and cluster-admin roles can be found in the official Kubernetes docu-
mentation, which does a good explanation.

It should be noted that the cluster-admin role is across namespaces. That is why it makes no differ-
ence to specify a namespace with or without --namespace. If specified, then the flag is ignored in this
case.

9.3.12 List Of Resources Defined For Users
These resources are defined in the RoleBindings submode, and can therefore be found inside Kuber-
netes. The full YAML can be found in Appendix N.

© Bright Computing, Inc.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles

428 Containerization

The role bindings deployed for every user by default:

• ClusterRole/john-nodes (in namespace john-restricted)

• ClusterRoleBinding/john-nodes (in namespace john-restricted)

User john is given read-only rights for the Nodes resource (for kubectl get nodes).

The secure namespace related resources: The secure namespace:

• Namespace/john-restricted

The service account used by john:

• ServiceAccount/john (in namespace john-restricted)

This is found referenced, for example, in john’s $HOME/.kube/config.
The PodSecurityPolicy that defines the user can run non-privileged pods, and use only ports above

1024, and so on:

• PodSecurityPolicy/john-restricted (in namespace john-restricted)

More details on this can be found in section 9.3.10, page 423 of the admin-manual. This policy will
only do something as soon as the PodSecurityPolicy Admission Controller is enabled in the API server.

A PodSecurityPolicy that defines the user can run as root as well, but without hostPath volumes:

• PodSecurityPolicy/john-restricted-root (in namespace john-restricted)

To give the aforementioned privileges to john’s secure namespace, so that john can run workloads,
execute kubectl get all and more:

• Role/john-restricted (in namespace john-restricted)

• RoleBinding/john-restricted (in namespace john-restricted)

The RoleBinding assigns it to the User john and ServiceAccount account for john. The upstream doc-
umentation: https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin,
has more details on this.

john can be given the ability to use the PodSecurityPolicy defined earlier in his secure namespace,
but also in other namespaces:

• ClusterRole/john-psp (in namespace john-restricted)

• ClusterRoleBinding/john-psp (in namespace john-restricted)

The same ability can be given for the second "root but no hostPath" PodSecurityPolicy:

• ClusterRole/john-psp-root (in namespace john-restricted)

• ClusterRoleBinding/john-psp-root (in namespace john-restricted)

Additional namespace related resources This can optionally be enabled with --namespace and --role.
A service account for john for the additionally provided namespace, for example his research group

or team:

• ServiceAccount/john-restricted (in namespace development)

The edit role (a default role already present in Kubernetes) can be assigned to john for the develop-
ment namespace:

• RoleBinding/john (in namespace development)

© Bright Computing, Inc.

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin

9.3 Kubernetes 429

9.3.13 Pod Security Policies
Enabling Pod Security Policies For Kubernetes
By default Kubernetes has very few restrictions on users. For a more fine-grained authorization it is
possible to enable Pod Security Policies (PSP).

This can be done via the cm-kubernetes-setup Ncurses wizard and choosing “Enable PSP”. Alter-
natively, it can be done non-interactively using cm-kubernetes-setup –psp.

Optionally, AppArmor can be enabled as well, using non-interactive command option –apparmor.
Enabling PSP creates two new Applications within the Kubernetes AppGroup system:

• psp: this defines the policy and roles for privileged services. The cluster administrator needs to
bind these to services typically running in the kube-system namespace.

• psp_system: this is auto-generated by the wizard. It binds the previously-mentioned privileges
to service accounts, for services defined in the system namespaces. This way Calico, CoreDNS,
Ingress, and so on, can still function.

The wizard also removes access to the default namespace for existing users, and it restarts the Ku-
bernetes API Server with the PodSecurityPolicy feature enabled to enforce all privileges.

Each user should already have their own <user>-restricted namespace and privileges to work
within this namespace. After the Kubernetes API Server is enabled with the PodSecurityPolicy feature,
these policies are enforced after the API server has restarted.

A useful command to check what exactly any given user, for example test, can do is the following:

kubectl --kubeconfig=/home/test/.kube/config auth can-i --list --namespace=test-restricted

Disabling Pod Security Policies For Kubernetes
Disabling PSP can be done via the cm-kubernetes-setup Ncurses wizard, and choosing Disable PSP.
It can alternatively be carried out non-interactively using cm-kubernetes-setup –disable-psp.

When disabling, it should be noted that:

• Existing users are not automatically re-added to the default namespace.

• Policies are still defined as resources, but are no longer enforced. This may result in more privileges
for users then they had before. That is, they may be able to run as root in containers again.

Enabling Manually Via cmsh Instead
The PodSecurityPolicy feature is an Admission controller that can be added via cmsh:

[cluster->configurationoverlay[kube-default-master]->roles[Kubernetes::ApiServer]]% get admissioncontrol
NamespaceLifecycle
LimitRanger
ServiceAccount
DefaultStorageClass
DefaultTolerationSeconds
MutatingAdmissionWebhook
ValidatingAdmissionWebhook
ResourceQuota
PodSecurityPolicy

Adding or removing PodSecurityPolicy from here in cmsh triggers CMDaemon to restart the
kube-apiserver services.

It could be that running PODs are not affected. However, if the cluster administrator re-creates them,
then it may be that new pods are not created by ReplicaSets, DaemonSets and the like, reporting errors
such as:

© Bright Computing, Inc.

430 Containerization

Warning FailedCreate 5m22s (x20 over 5m33s) replicaset-controller Error creating:\
pods "coredns-b5cdc886c-" is forbidden: unable to validate against any pod security policy: \
[spec.containers[0].securityContext.capabilities.add: Invalid value: "NET_BIND_SERVICE": \
capability may not be added spec.containers[0].securityContext.capabilities.add: Invalid \
value: "NET_BIND_SERVICE": capability may not be added spec.containers[0].securityContext.capabilities.add: \
Invalid value: "NET_BIND_SERVICE": capability may not be added]

Also, the kubelet services themselves will not have the proper privileges to manage their Pods. If a
PodSecurityPolicies admission controller is enabled, then the cluster administrator must be explicit and
define PodSecurityPolicies.

The psp application
The purpose of this application is to define a PodSecurityPolicy for these more privileged components.
It starts by assigning it to the kubelet component. Other system components such as CoreDNS or Calico
are not yet assigned to this PodSecurityPolicy.

In cmsh, parts of the configuration setting can be seen with:

[cluster->kubernetes[default]->appgroups[system]->applications[psp]]% get config | grep -E "^kind|^ name" \
|grep kind -A 2
kind: PodSecurityPolicy
name: privileged

kind: ClusterRole
name: privileged-psp

kind: RoleBinding
name: privileged-psp-nodes
namespace: kube-system

In the preceding configuration, resources define a PodSecurityPolicy/privileged, which the clus-
ter administrator binds to Group/system:nodes with a RoleBinding/privileged-psp-nodes and using
role ClusterRole/privileged-psp. The Group/system:nodes allows access to resources required by
the kubelet component, including read access to secrets, and write access to pods.

The psp application configuration: The full YAML configuration for the psp application follows:

privileged psp to be used for kube system services only
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: privileged
annotations:

seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
spec:
privileged: true
allowPrivilegeEscalation: true
allowedCapabilities: ['*']
volumes: ['*']
hostNetwork: true
hostPorts:

- min: 0
max: 65535

hostIPC: true
hostPID: true
runAsUser:

rule: 'RunAsAny'
seLinux:

© Bright Computing, Inc.

9.3 Kubernetes 431

rule: 'RunAsAny'
supplementalGroups:
rule: 'RunAsAny'

fsGroup:
rule: 'RunAsAny'

cluster role privileged psp
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: privileged-psp
rules:

- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames: ['privileged']

- apiGroups: ['extensions']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames: ['privileged']

role binding for privileged psp to system:nodes
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: privileged-psp-nodes
namespace: kube-system

roleRef:
kind: ClusterRole
name: privileged-psp
apiGroup: rbac.authorization.k8s.io

subjects:
- kind: Group

apiGroup: rbac.authorization.k8s.io
name: system:nodes

The psp_system application:
The purpose of this application is to also assign the more privileged PodSecurityPolicy created in the
psp application to all system applications. To be more specific, this is done by binding it to all the
ServiceAccounts and appropriate Namespaces for those services.

In cmsh the binding configuration can be viewed with:

[cluster->kubernetes[default]->appgroups[system]->applications[psp_system]]% get config|grep -E "^kind|^ name" \
|grep kind -A 2
kind: RoleBinding

name: privileged-psp-calico-kube-controllers
namespace: kube-system

--
kind: RoleBinding

name: privileged-psp-nginx-ingress-serviceaccount
namespace: ingress-nginx

--
kind: RoleBinding

name: privileged-psp-metrics-server
namespace: kube-system

--

© Bright Computing, Inc.

432 Containerization

kind: RoleBinding
name: privileged-psp-coredns
namespace: kube-system

--
kind: RoleBinding

name: privileged-psp-kubernetes-dashboard
namespace: kubernetes-dashboard

--
kind: RoleBinding

name: privileged-psp-calico-node
namespace: kube-system

This psp_system is generated by reading all the existing system add-ons from cmsh, and
binding the ClusterRole/privileged-psp to all ServiceAccounts used by those services with a
RoleBinding/privileged-psp-<serviceaccount> for each of them.

The psp_system application configuration: The YAML configuration for the psp_system application
can be seen with:

[cluster->kubernetes[default]->appgroups[system]->applications[psp_system]]% get config
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: privileged-psp-calico-kube-controllers
namespace: kube-system

roleRef:
kind: ClusterRole
name: privileged-psp
apiGroup: rbac.authorization.k8s.io

subjects:
- kind: ServiceAccount

name: calico-kube-controllers
namespace: kube-system

...

The display in the preceding session is truncated, but it is followed by a long list of similar blocks for
each of the Service Accounts used by Calico, DNS, metrics server, device plugins, and so on.

The role has been assigned specifically to ServiceAccounts. One alternative way could be to assign
once to the system:serviceaccounts group.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: privileged-psp-system-serviceaccounts
namespace: kube-system

roleRef:
kind: ClusterRole
name: privileged-psp
apiGroup: rbac.authorization.k8s.io

subjects:
- apiGroup: rbac.authorization.k8s.io

kind: Group
name: system:serviceaccounts

It should be noted that a few more bindings may still be required for multiple namespaces (kube-
system, kube-dashboard, and so on).

© Bright Computing, Inc.

9.3 Kubernetes 433

Users And PodSecurityPolicies
Since PodSecurityPolicies are already created for Users by default, these can be found in the rolebindings
submode.

When PodSecurityPolicies have not been enabled from the start, it is possible that users are already
running Pods that do not necessarily adhere to the new policy. For example Pods that have mounted
paths outside of their home directory, or are running privileged containers. These may keep working,
at least until the Kubernetes Scheduler decides to re-schedule them, or until they are terminated.

9.3.14 Providing Access To External Users
To provide access to users on an external network, the requirements are:

• for kubectl, an entry in the company/internal DNS server should resolve the external FQDN to
the head node or to one of the nodes where Kubernetes is running;

• for the Kubernetes Dashboard, dashboard is a subdomain that must be included as a DNS entry
under the external FQDN.

The external FQDN, which is set during the Kubernetes cluster setup, is the first item in the list of
trusted domains. This can be retrieved from the Kubernetes cluster entity with cmsh as follows:

Example

[bright91->kubernetes[default]]% get trusteddomains
bright91.example.com
kubernetes
kubernetes.default
kubernetes.default.svc
master
localhost

In the preceding example, the FQDN of the cluster is bright91.example.com. The cluster adminis-
trator managing their own cluster will have another FQDN, and not this FQDN.

For kubectl, the Kubernetes API server proxy port should be open to the external network. The
proxy port can be retrieved from the Kubernetes cluster entity as follows:

[bright91->kubernetes[default]]% get kubernetesapiserverproxyport
10443

For the Kubernetes Dashboard, the Ingress Controller HTTPS port should be open to the external
network. This port, by default with a value of 30443, can be retrieved from the ingress_controller
add-on environment:

Example

[bright91->kubernetes[default]]% appgroups
[bright91->kubernetes[default]->appgroups]% applications system
[bright91->kubernetes[default]->appgroups[system]->applications]% environment ingress_controller
[bright91->...applications[ingress_controller]->environment]% list
Name (key) Value Nodes environment
--------------------------- --------------------------------------- ------------------
CM_KUBE_EXTERNAL_FQDN bright91.example.com yes
CM_KUBE_INGRESS_HTTPS_PORT 30443 yes
CM_KUBE_INGRESS_HTTP_PORT 30080 yes
ingress_controller_label brightcomputing.com/ingress-controller no
replicas 1 no

If exposing the Kubernetes API server to the external network is selected during setup with
cm-kubernetes-setup, then the HTTPS and HTTP ports in the preceding example are opened on the
Shorewall service that runs on the head node. Exposure to the external network is enabled by default.

© Bright Computing, Inc.

434 Containerization

Convention of using a domain name as a prefix label: in the preceding example, the
brightcomputing.com prefix that is part of the value for ingress_controller_label is just a label
rather than a domain. The reason that prefix is used is that it simply follows the convention of us-
ing domain names as labels, such as is done by the Kubernetes community (domain: kubernetes.io)
and RHEL OpenShift (domain: openshift.io). The prefix brightcomputing.com could equally well
have been the prefix brightaccess instead. However it is probably less confusing now to follow the
established convention. So that is what is done here for the label.

Users can access the Kubernetes Dashboard: using dashboard. By default, the URL takes the FQDN
and the port value along with the dashboard subdomain, and has the form:

https://dashboard.<CM_KUBE_EXTERNAL_FQDN>:<CM_KUBE_INGRESS_HTTPS_PORT>

So, for example, it could be something like:

Example

https://dashboard.bright91.example.com:30443

Ingress configuration for Dashboard in cmsh: The default Ingress rule described earlier can be found
as an object within cmsh:

[bright91->kubernetes[default]->appgroups[system]->applications[dashboard_ingress]]% get config
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
name: kubernetes-dashboard
namespace: kubernetes-dashboard
annotations:

kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/secure-backends: "true"
nginx.ingress.kubernetes.io/ssl-passthrough: "true"
nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"

spec:
rules:
- host: "dashboard.$CM_KUBE_EXTERNAL_FQDN"
http:
paths:
- path: /

backend:
serviceName: kubernetes-dashboard
servicePort: 443

Using kubectl, the Ingress resource can be found with:

bash$ kubectl get ingress -n kubernetes-dashboard
NAME HOSTS ADDRESS PORTS AGE
kubernetes-dashboard dashboard.cluster1.local 10.150.153.251 80 45h

The official documentation for Ingress, at https://v1-16.docs.kubernetes.io/docs/concepts/
services-networking/ingress/, explains it well. Path rewrites without domain names can also be
used to set up Ingress with multiple backends (serviceName and servicePort pairs), without having to
deal with setting up a DNS.

© Bright Computing, Inc.

kubernetes.io
openshift.io
https://v1-16.docs.kubernetes.io/docs/concepts/services-networking/ingress/
https://v1-16.docs.kubernetes.io/docs/concepts/services-networking/ingress/

9.3 Kubernetes 435

Ingress Controller running on compute nodes: For scenarios where the head node is not involved in
a Kubernetes setup, Bright Cluster Manager does not currently set up any forwarding for the Ingress
Controller. Bright Cluster Manager does set up an NGINX proxy to expose the Kubernetes API Server
in such cases, and accessing the Dashboard can then be done with the kubectl proxy approach.

For now a workaround to forward Ingress to a compute node can be achieved with port-forwarding,
for example by adding the following line to /etc/shorewall/rules in Shorewall (section 7.2 of the
Installation Manual):

Example

DNAT net nat:10.141.0.1:30443 tcp 30443

Using one Ingress controller for multiple Kubernetes clusters: Bright Cluster Manager does not offer
an out-of-the-box solution for one Ingress Controller with multiple Kubernetes clusters. This configu-
ration can be achieved by configuring software such as NGINX to proxy, based on the domain name to
the appropriate backend(s).

9.3.15 Networking Model
Kubernetes expects all pods to have unique IP addresses, which are reachable from within the cluster.
This can be implemented in several ways, including adding pod network interfaces to a network bridge
created on each host, or by using 3rd party tools to manage pod virtual networks.

Since Bright Cluster Manager 9.1, the pod network provider is Calico (https://www.
projectcalico.org/). Calico uses the Border Gateway Protocol (BGP) to distribute routes for every
Kubernetes pod. This allows the Kubernetes cluster to be integrated without the need for overlays
(IP-in-IP). Calico is particularly suitable for large Kubernetes deployments on bare metal, or in private
clouds. This is because for larger deployments the performance and complexity costs of overlay net-
works can become significant.

9.3.16 Kubernetes Monitoring
When cm-kubernetes-setup is run, it configures the following Kubernetes-related health checks:

1. KubernetesChildNode: checks if all the expected agents and services are up and running for active
nodes

2. KubernetesComponentsStatus: checks if all the daemons running on a node are healthy

3. KubernetesNodesStatus: checks if Kubernetes nodes have a status of Ready

4. KubernetesPodsStatus: checks if all the pods are in one of these states: Running, Succeeded, or
Pending

9.3.17 Setup Of A Storage Class For Ceph
Pods running on Kubernetes can use Ceph as a distributed storage system to store data in a persistent
way.

Instead of creating Kubernetes PersistentVolumes every time, a modern and practical way is using
the StorageClass feature.

Further documentation on StorageClass is available at:

• http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html

• https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses

This section assumes a working Ceph cluster. Ceph installation for Bright Cluster Manager is cov-
ered in Chapter 10.

A new pool kube can be created with a replication factor of 3:

© Bright Computing, Inc.

https://www.projectcalico.org/
https://www.projectcalico.org/
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses

436 Containerization

Example

[root@bright91 ~]# ceph osd pool create kube 100 100
pool 'kube' created
[root@bright91 ~]# ceph osd pool set kube size 3
set ppol 1 size to 3
[root@bright91 ~]# ceph osd pool set kube min_size 1
set pool 1 min_size to 1

The parameters settings in the preceding example are documented at the Ceph website, at

• http://docs.ceph.com/docs/master/rados/operations/pools/ for documentation on Ceph op-
erations

• http://docs.ceph.com/docs/master/rados/configuration/pool-pg-config-ref/ for documen-
tation on Ceph pool and PG (placement group) configuration

The pods of a given namespace have to have access to the Ceph RBD images created to back the
volumes.

A kube client can be created with:

Example

[root@bright91 ~]# ceph auth get-or-create client.kube mon 'allow r' osd 'allow rwx pool=kube'
[client.kube]

key = AQCnOvdZpYewBBAAWv1d7c7/XbEvj7QO7N0THg==

A list of the current users, and their access control can be viewed with (some output elided):

Example

[root@bright91 ~]# ceph auth list
installed auth entries:

osd.0
key: AQD9M/dZw8HPNRAAT+X8mGSgRUkjLnQo38j4EA==
caps: [mon] allow rwx
caps: [osd] allow *

osd.1
...
client.admin

key: AQCnM/dZONOPMxAAwqY9ADbJV+6i2Uq/ZNqh5A==
auid: 0
caps: [mds] allow *
caps: [mgr] allow *
caps: [mon] allow *
caps: [osd] allow *

...
client.kube

key: AQCnOvdZpYewBBAAWv1d7c7/XbEvj7QO7N0THg==
caps: [mon] allow r
caps: [osd] allow rwx pool=kube

The admin user must be able to create images in the pool. The admin configuration must therefore
look like the section for client.admin in the preceding example.

Similarly, the kube user must be able to map images. The kube configuration must therefore look
similar to the section for client.kube in the preceding example.

A Kubernetes secret must be created in the kube-system namespace, using the Ceph admin key:

© Bright Computing, Inc.

http://docs.ceph.com/docs/master/rados/operations/pools/
http://docs.ceph.com/docs/master/rados/configuration/pool-pg-config-ref/

9.3 Kubernetes 437

[root@bright91 ~]# kubectl create secret generic ceph-secret --type="kubernetes.io/rbd" \
--from-literal=key=$(ceph auth get-key client.admin) --namespace=kube-system
secret "ceph-secret" created

A Kubernetes secret must be created in the default namespace, and in every Kubernetes namespace
that needs storage, using the Ceph user key:

[root@bright91 ~]# kubectl create secret generic ceph-secret-user --type="kubernetes.io/rbd" \
--from-literal=key=$(ceph auth get-key client.kube) --namespace=default
secret "ceph-secret-user" created

Ceph monitor <IP address>:<port> values can be found by running ceph mon stat:

Example

[root@bright91 ~]# ceph mon stat
e1: 3 mons at {node001=10.141.0.1:6789/0,node002=10.141.0.2:6789/0,node003=10.141.0.3:6789/0},\
election epoch 38, quorum 0,1,2 node001,node002,node003

A storage-class.yml file can then be created, similar to:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: fast
provisioner: kubernetes.io/rbd
parameters:

monitors: 10.141.0.1:6789,10.141.0.2:6789,10.141.0.3:6789
adminId: admin
adminSecretName: ceph-secret
adminSecretNamespace: kube-system
pool: kube
userId: kube
userSecretName: ceph-secret-user

Details about the StorageClass parameters can be found at: https://kubernetes.io/docs/concepts/
storage/persistent-volumes/#ceph-rbd

The Kubernetes storage class for Ceph RBD can now be created:

[root@bright91 ~]# kubectl apply -f storage-class.yml
storageclass "fast" created

To verify it has been created, the new StorageClass can be listed with:

[root@bright91 ~]# kubectl get sc
NAME PROVISIONER
fast kubernetes.io/rbd

9.3.18 Integration With Harbor
In order to spawn pods that use images from the Harbor registry, a secret must first be created with the
credentials:

[root@bright91 ~]# kubectl create secret docker-registry myregistrykey \
--docker-server=node001:9443 --docker-username=admin --docker-password=Harbor12345

The secret must then be referenced from the pod:

© Bright Computing, Inc.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#ceph-rbd
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#ceph-rbd

438 Containerization

apiVersion: v1
kind: Pod
metadata:

name: foo
spec:

containers:
- name: foo
image: node001:9443/library/nginx

imagePullSecrets:
- name: myregistrykey

Further information on this is available at https://kubernetes.io/docs/concepts/containers/
images/#specifying-imagepullsecrets-on-a-pod.

9.4 Kubernetes Apps
Kubernetes add-ons were introduced in Bright Cluster Manager version 8.1, and could be managed in
that version as part of the addons submode of the kubernetes mode in cmsh. In Bright Cluster Manager
version 8.2 this feature was expanded into the Kubernetes Applications & Groups feature. Kubernetes
Applications & Groups, less formally called app groups, can be accessed via the appgroups submode of
cmsh:

Example

root@bright91 ~# cmsh
[bright91]% kubernetes
[bright91->kubernetes[default]]% appgroups
[bright91->kubernetes[default]->appgroups]% list
Name (key) Applications
------------ ------------------------------
system <13 in submode>
[bright91->kubernetes[default]->appgroups]%

The version 8.1, addons mode parameters are now accessed from version 8.2 onwards via a default
system app group instance. The system instance is accessed in the appsgroup submode.

Example

[bright91->kubernetes[default]->appgroups]% use system
[bright91->kubernetes[default]->appgroups[system]]% show
Parameter Value
-------------------------------- --
Name system
Revision
Enabled yes
applications <13 in submode>
[bright91->kubernetes[default]->appgroups[system]]% applications
[bright91->kubernetes[default]->appgroups[system]->applications]% list
Name (key) Format Enabled
------------------- ------ -------
bootstrap Yaml yes
calico Yaml yes
dashboard Yaml yes
dashboard_ingress Yaml yes
dns Yaml yes
flannel Yaml no

© Bright Computing, Inc.

https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

9.4 Kubernetes Apps 439

ingress_controller Yaml yes
kubernetes_ingress Yaml no
kubestatemetrics Yaml yes
metrics_server Yaml yes
nvidia Yaml no
root Yaml yes

A Kubernetes application can span multiple namespaces. A name in appgroups therefore only exists
to group logically-related applications. Each application contains a YAML configuration file, which
Bright Cluster Manager synchronizes to the Kubernetes API.

The default system app group is pre-defined. Other app groups can be created as needed. For exam-
ple, an app group called monitoring could be created to group applications for running Prometheus,
node exporters, and anything else related to exposing or viewing Prometheus metrics.

Toggling the Enable parameter of an app group enables or disables all of its application components
in Kubernetes. Finer-grained control is possible within the applications mode level, by toggling the
enabled parameter per application component instance. For example, within the calico application
component instance:

Example

[bright91->kubernetes[default]->appgroups[system]->applications]% use calico
[bright91->kubernetes[default]->appgroups[system]->applications[calico]]% show
Parameter Value
-------------------------------- --
Name calico
Revision
Format Yaml
Enabled yes
Config <25118 bytes>
Environment <3 in submode>
Exclude list snippets <1 in submode>

A large YAML configuration file for each application component instance can be configured via the
Config parameter property, using the set option of cmsh. This opens up a text editor and allows the
environment variables in the YAML configuration file to be managed.

Exclude list snippets are short exclude lists that can be set within the Exclude list snippets sub-
mode to prevent software image updates from overwriting files or directories important to the Kuber-
netes application.

Using exclude list snippets within an excludelistsnippets submode is discussed in detail in sec-
tion 4.4.1 of the Cloudbursting Manual, where in cloud computing the snippets are used in a similar
manner to prevent overwriting of the provisioned files and directories of cloud images.

Environment entries can be set via the Environment submode. Environment entries are similar to en-
vironment variables, and are used to replace variables inside the YAML configuration file. Environment
entries can be added to the environment as well, if the Nodes environment value inside the Environment
submode is set to yes.

Example

[bright91->kubernetes[default]->appgroups[system]->applications[calico]]% environment
[bright91->kubernetes[default]->appgroups[system]->applications[calico]->environment]% list
Name (key) Value Nodes environment
---------------------- ---------------- ------------------
calico_typha_replicas 0 no
calico_typha_service none no
head_node_internal_ip 10.141.255.254 no

© Bright Computing, Inc.

440 Containerization

9.4.1 Providing Custom Docker Images
Allowing users to work with custom Docker images on the cluster requires adding the user to the docker
group. This can be carried out with usermod -aG docker <user>.

9.5 Kubernetes On Edge
How edge sites can be configured is described in Chapter 2 of the Edge Manual.

If there are Bright Edge sites configured in the cluster, then the Kubernetes setup prompts the user
with edge sites that Kubernetes can be deployed on.

Figure 9.4: cm-kubernetes-setup prompting for edge sites.

If an edge site is selected, then the rest of the wizard prompts only for nodes available within that
edge site; prompts only for the associated network interfaces; and so on.

9.5.1 Flags For Edge Installation
Edge directors often lack high-bandwidth connectivity to the central head node, or they often may ben-
efit from coming up as quickly as possible. It can therefore sometimes be useful to skip stages of the
setup.

Running cm-kubernetes-setup –-help displays some additional flags that allow some setup stages,
that bring up a cloud director, to be skipped explicitly:

cm-kubernetes-setup --help
...
installing Kubernetes clusters:

Flags for installing or managing Kubernetes clusters

--skip-package-install
Skip the package installation steps. Ignores skip_packages
flags in the config.

--skip-reboot Skip the reboot steps.
--skip-image-update Skip the image update steps.
--skip-disksetup-changes

Never change the disk-setup. Use this flag if you manually
configure a partition or device for docker thin pool devices
for example.

...

Speeding Up Kubernetes Installation To Edge Nodes With The –-skip-* Flags: Use Cases
Explanations and use cases for these flags are given in the following table:

© Bright Computing, Inc.

9.6 Singularity 441

Flag Use case

–-skip-package-install all edge directors share the same software image, and the im-
age is already up to date. So the installer does not need to
install packages from that image to the edge director.

–-skip-image-update and all edge directors are already provisioned with the up-to-date
–-skip-reboot software image. So the installer does not need to carry out an

update from the ISO or head node, and then reboot the edge
director.

–-skip-disksetup-changes all edge directors already have the correct disk layout. This
flag can be set if the disk layout was already configured up-
front, in order to avoid full provisioning.

These flags can also be configured in the YAML configuration file of the cm-kubernetes-setup wiz-
ard.

The flags can be used for scripted installations for quick Kubernetes setups. For a scripted installation
of an edge director, preparations can be done beforehand so that all the requirements in the software
images that the edge directors use are already installed, the right disk layouts are already configured,
and packages are already updated.

All the stages in the flag options can then be skipped for installing onto edge sites. This can make
the setup take just a few seconds per Kubernetes deployment.

9.6 Singularity
Bright Cluster Manager provides an application containerization tool called Singularity. Singularity is
designed to execute containers as if they are just native applications on a host computer, and to work
with HPC. Singularity users can therefore run Singularity containers just as they run any other program
on an HPC cluster. Bright Cluster Manager provides Singularity version 3.6.3.

9.6.1 Use Cases
Adding Singularity to Bright Cluster Manager brings a stronger integration of containerization with
HPC. While Docker and Kubernetes can work within HPC, some drawbacks still prevent the use of
HPC resources in the way that HPC users and administrators are used to.

Besides the use of Singularity containers in HPC jobs, Singularity users can create portable images
with their applications. Singularity images are files that represent the container filesystem. These images
can be copied from one environment (cluster) to another and executed without modification. Thus,
when a user creates a container image file, it is up to the user what files, or which RPMs, to install in the
image. For example, the user can create an image file that bundles Open MPI with the user’s application.
This guarantees that the application will be able to run if it requires that MPI implementation, even if
no MPI libraries are installed on the execution host or if there is some version incompatibility.

There is no need for a special configuration inside workload managers in order to use Singularity.
This is because the containers are designed to be run like any application on the system. Users need
just to use the image file as the usual script or binary to be executed in their jobscripts or in a shell. The
singularity command can also be used to apply special options to the container, when executing the
image file in the jobscript or shell.

9.6.2 Package cm-singularity
Singularity is packaged for SLES12 and RHEL7 and derivatives. It is available from the YUM or Zypper
repositories from version 7.3 of Bright Cluster Manager onwards, and is distributed as a package called
cm-singularity. The package should be installed in the software image for each node. The user is able
to run a Singularity image only if the Singularity package is installed on the node. In order to allow
users to build an image, it makes sense to install the package on the head and login nodes as well. The

© Bright Computing, Inc.

442 Containerization

tool does not provide services that run in the background, so a simple installation of the package is
enough to start using it.

Singularity contexts are always run as the user running them. This means that there is no risk in
allowing the containers to have access to, and interact with, the file system of the host.

This means that, if an image is created by the root user on a machine, then the files that require
root access inside the image, still need to be allowed root permissions on any other machine. Thus, if a
user crates an image on a laptop, and adds a file that can be read only by the root user, then when the
container is started on another machine by a regular user, that regular user has no access to the root-only
readable file inside the container.

While there is no daemon running as root, nor any persistent processes that an attacker may use to
escalate privileges, there is a need to run some system calls as root so that the container is encapsulated.
For this part of the run flow, there is a single SUID binary called Sexec (Singularity Exec). This is a
simple binary that is as small as possible, and which the Singularity developers claim has been audited
by multiple security experts.

9.6.3 MPI Integration
Because of the nature of Singularity, all MPI implementations should work fine inside a Singularity
container. The developers of the tool have spent a lot of effort in making Singularity aware of Open MPI,
as well as adding a Singularity module into Open MPI so that running at extreme scale is as efficient as
possible. However, in some cases, starting an MPI process may not be as optimal as execution outside
the container. So, specifically for Open MPI, Singularity provides a special mechanism to handle the
execution of MPI processes. It adds all the MPI processes of the same MPI application to the same
container on a host. This also reduces the application startup time. The Open MPI daemon orted in
this case is not added to the running container, which means the overhead of starting up daemons is
reduced.

When an Open MPI application that has been packaged to an image is started, the following steps
take place:

1. mpirun is called;

2. mpirun forks and executes orted;

3. orted initializes the PMI (process management interface);

4. orted forks as many times as the number of processes per node requested;

5. the container image is started in each fork (because it is the original command specified in mpirun
arguments);

6. each container process executes the command (that is, the MPI application) passed inside the given
container;

7. each of the MPI process links to the dynamic Open MPI library, which loads shared libraries with
dlopen system call;

8. Open MPI libraries connect back to the original orted process via PMI;

9. all non-shared memory communication then occurs through the PMI, and then passes on to local
network interfaces.

Additional information about Singularity usage can be found in Chapter 10 of the User Manual. The
official web site of the tool is https://www.sylabs.io/singularity.

© Bright Computing, Inc.

https://www.sylabs.io/singularity

9.7 OpenShift Container Platform Integration With Bright Cluster Manager 443

9.7 OpenShift Container Platform Integration With Bright Cluster Manager
OpenShift is Red Hat’s container manager.

This section describes how OpenShift 4.5 can be installed on a cluster running Bright Cluster Man-
ager version 9.1. The integration of OpenShift with the cluster manager is deprecated and will be
dropped in a future release.

The OpenShift cluster deployed in this section is composed of 7 nodes:

• 3 OpenShift master nodes (not managed by Bright)

• 3 RHEL OpenShift compute nodes (managed by Bright and OpenShift)

• 1 RHEL Bright Cluster Manager compute node running a load balancer (managed by Bright).

More OpenShift compute nodes may be added after the initial setup is completed.
The OpenShift master nodes run Red Hat’s Core operating system (RHCOS), and are not Bright-

managed. The OpenShift compute nodes are managed by both Bright and OpenShift.
The following official Red Hat documentation can be referred to for further details on OpenShift:

• Installing a cluster on bare metal (OpenShift Container Platform 4.5) (https://docs.openshift.
com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.
html)

• Adding a RHEL compute machine (OpenShift Container Platform 4.5) (https://docs.openshift.
com/container-platform/4.5/machine_management/user_infra/adding-rhel-compute.html)

9.7.1 Prerequisites
A cluster with 7 spare compute nodes can be used to install OpenShift 4.5. The minimal hardware spec-
ifications for 6 of the OpenShift nodes are:

Node Type Storage Virtual RAM vCPU

3 masters 120 GB 16 GB 4

1 bootstrap 120 GB 16 GB 4

2 computes 120 GB 8 GB 2

Aside from the 6 nodes described above, one extra node is to be used as an L4 (OSI Layer 4, the
transport layer) load balancer. Its minimum specifications depend on the expected load of the OpenShift
cluster. During the setup process any regular node can handle the load sufficiently.

The head node should have at least 30 GB of spare storage space for the installation.
The Bright cluster must be running on RHEL 7.7 or 7.8. These are the supported distribution versions

for OpenShift.
This session assumes that Kubernetes is not set up.
A prerequisite is that the head node, from where the installation setup is to run, has an active RHEL

subscription. A RHEL subscription can be set up by running the following commands:

[root@bright91 ~]# subscription-manager register --username=<user_name> --password=<password>
[root@bright91 ~]# subscription-manager refresh

9.7.2 Installation
Head Node Setup
The subscription to OpenShift Container Platform should be made. Its details can be searched for by
running:

[root@bright91 ~]# subscription-manager list --available --matches '*OpenShift Container Platform*'

© Bright Computing, Inc.

https://docs.openshift.com/container-platform/4.5/installing/installing_bare_metal/installing-bare-metal.html
https://docs.openshift.com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.html
https://docs.openshift.com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.html
https://docs.openshift.com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.html
https://docs.openshift.com/container-platform/4.5/machine_management/user_infra/adding-rhel-compute.html
https://docs.openshift.com/container-platform/4.5/machine_management/user_infra/adding-rhel-compute.html
https://docs.openshift.com/container-platform/4.5/machine_management/user_infra/adding-rhel-compute.html

444 Containerization

One of the outputs in the listing is the pool ID. Using the pool ID that is obtained from the listing,
something similar to the following can then be run:

[root@bright91 ~]# openshift_version=4.5
[root@bright91 ~]# pool_id=8a85f99b70d0559c0170d5b5fa6e5c41
[root@bright91 ~]# subscription-manager attach --pool=${pool_id}
[root@bright91 ~]# subscription-manager repos --enable="rhel-7-server-rpms" --enable="rhel-7-server-extras-\
rpms" --enable="rhel-7-server-ansible-2.8-rpms" --enable="rhel-7-server-ose-${openshift_version}-rpms"
[root@bright91 ~]# yum install -y openshift-ansible openshift-clients jq

Enabling System-wide SELinux
OpenShift compute nodes require SELinux (Chapter 9 of the Installation Manual) to be enabled in
enforcing mode. This in turn requires the head node from which OpenShift is installed to have SELinux
enabled at least to Permissive mode.

This has serious implications to the rest of the environment, because with SELinux enabled in the
head node, SELinux must be enabled to at least Permissive mode for every software image in the
cluster, otherwise nodes booting from those images will fail during the provisioning step. It is assumed
that the administrator understands the implications of this, and sets up these settings accordingly prior
to installing OpenShift.

SELinux can be enabled on the Bright Cluster Manager head node as follows:

[root@bright91 ~]# sed -i 's/^SELINUX=disabled/SELINUX=permissive/' /etc/selinux/config
[root@bright91 ~]# reboot

For each software image, SELinux must be enabled, and must be set to permissive, or enforcing, if
the environment is set up this way. For example, to set it for the default-image, the following steps could
be followed:

[root@bright91 ~]# img_name='default-image'
[root@bright91 ~]# selinux_conf_path="/cm/images/${img_name}/etc/selinux/config"
[root@bright91 ~]# sed -i 's/^SELINUX=.*/SELINUX=permissive/' ${selinux_conf_path}

The node installer configuration must be set to enable SELinux as well. This can be done by adjusting
some SELinux-related directives in the node-installer.conf file:

[root@bright91 ~]# node_inst_conf_path='/cm/node-installer/scripts/node-installer.conf'
[root@bright91 ~]# sed -i 's/SELinuxInitialize.*/SELinuxInitialize = true/' ${node_inst_conf_path}
[root@bright91 ~]# sed -i 's/SELinuxFileContextActionInAutoInstallMode.*/SELinuxFileContext\
ActionInAutoInstallMode = 2/' ${node_inst_conf_path}
[root@bright91 ~]# sed -i 's/SELinuxFileContextActionInFullInstallMode.*/SELinuxFileContext\
ActionInFullInstallMode = 2/' ${node_inst_conf_path}

Installing OpenShift
A pull secret file should be picked up from https://cloud.redhat.com/openshift/install/metal, by
clicking on Download pull secret. After placing the file on the head node, the following is run as root
on the head node:

[root@bright91 ~]# cm-openshift-setup

An interactive wizard then walks the cluster administrator through some configuration options for
setting up an initial OpenShift cluster.

Some fields in the screens of the wizard are pre-filled with default values.

© Bright Computing, Inc.

https://cloud.redhat.com/openshift/install/metal

9.7 OpenShift Container Platform Integration With Bright Cluster Manager 445

Installation Steps
When running cm-openshift-setup, some of the queries concern the following:

• RHEL Subscription Manager Credentials: setting these credentials is necessary in order to install
the necessary packages into the OpenShift compute nodes.

• Pull Secret: The path of the file that was downloaded earlier.

• Selecting which nodes are to be used as bootstrap, master, compute, and load balancer nodes.

• Setting a name for the OpenShift Cluster, and a domain name. Any name valid for a URL (RFC
1035) works.

There are options which are not asked in the wizard, with default values pre-filled:

• software_image_name: The name of the software image used by cmdaemon when provisioning new
OpenShift compute nodes.

• category_name: The name of the category assigned by cmdaemon to OpenShift compute nodes.

• openshift_version: Currently set to 4.5.x. Changing this value is not supported at the time of
writing (October 2020).

• binaries_urls: The default values can be used initially. In future installations, the administrator
may want to host those files at a local server, and provide the path for those files in that server, in
order to speed up the process in future installations.

• ssh_key_path: The RSA Key used to interact with the nodes. If the key in the path does not yet
exist, then a new one is generated, which is recommended. The administrator may provide an
existing key instead.

• openshift_config_dir: Path to store the OpenShift configurations. The default path should work
fine.

• roles.openshift_load_balancer: Used to set up the OpenShift load balancer.

• pxe_template: Used to populate the PXE boot template, in order to boot RHCOS nodes.

Installation progress can be examined in greater detail in the log file:

Example

[root@bright91 ~]# tail -f /var/log/cm-openshift-setup.log

Installation can take around 40 to 90 minutes. After installation is complete, the kubeadmin pass-
word can be found in the following path:

[root@bright91 ~]# cat /etc/openshift/auth/kubeadmin-password

9.7.3 Adding New Compute Nodes
After the installation is complete, new OpenShift compute nodes can be added into the OpenShift clus-
ter. There are two ways to do so.

1. One way is interactive, using the wizard again:

[root@bright91 ~]# cm-openshift-setup

In the main Ncurses screen of the wizard, the option Add OpenShift Compute Nodes should be
selected. The dialog that follows then asks for nodes to be selected with:

© Bright Computing, Inc.

https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1035.txt

446 Containerization

• Select node assigned as the balancer for OpenShift: This is the balancer node that
was chosen by the administrator during the installation step

• Select the nodes to be reprovisioned into OpenShift Compute Nodes: These are the
compute nodes.

2. The second way uses a configuration file with the cm-openshift-setup wizard. The configuration
file can be generated by cm-openshift-setup after selecting the Add OpenShift Compute Nodes
option.

[root@bright91 ~]# cm-openshift-setup --add-compute-nodes -c <path to cm-openshift-setup config file>

The nodes that are added are moved to a different category and software image.

9.7.4 Validation
All the nodes that were selected during setup can be listed with.

[root@bright91 ~]# oc get nodes

The load balancer does not appear in the list since it is not managed by OpenShift.
A validation check for the cluster operators is:

[root@bright91 ~]# oc get clusteroperators

If all values in the column AVAILABLE are set to True, then the installation has been successful.

9.7.5 Uninstall
The following 3 ways of uninstalling OpenShift are possible if it was installed using the
cm-openshift-setup wizard.

1. The setup wizard can be run interactively, and the Uninstall OpenShift option can be selected:

[root@bright91 ~]# cm-openshift-setup

[Ncurses screen opens up]

When uninstalling, a confirmation is requested for the values of the fields unmanaged_config_name,
category_name and software_image_name. Those fields are pre-filled with the default values. A
change is only needed if these were explicitly changed in the installation configuration file gener-
ated by the wizard during the installation process (section 9.7.2).

2. The setup wizard can be run non-interactively for an uninstall as follows:

[root@bright91 ~]# cm-openshift-setup --remove

Run like this, the default values are used.

3. The setup wizard can also be run non-interactively for an uninstall while providing a configuration
file for the values, using the following format:

[root@bright91 ~]# cm-openshift-setup --remove -c <path to cm-openshift-setup configuration file>

© Bright Computing, Inc.

10
Ceph Installation

10.1 Ceph Introduction
Ceph is a storage software designed for distributed computing. The official Ceph documentation can be
found at http://docs.ceph.com/en/latest/start/intro/.

Bright Cluster Manager version 9.1 comes with the Octopus (Ceph 15 series) release of Ceph. Octo-
pus has also been backported to Bright Cluster Manager version 9.0.

Ceph Octopus is properly supported for the RHEL8 and CentOS8 distributions, but does not fully
support RHEL7 and CentOS7.

Nautilus (Ceph 14 series) remains supported for the RHEL7 and CentOS7 distributions.
The current chapter discusses

• The concepts and required hardware for Ceph (section 10.1)

• Ceph installation with cm-ceph-setup (section 10.2)

• Ceph installation with Bright View (section 10.3)

• Ceph settings checks, and management with Bright Cluster Manager (section 10.4)

10.1.1 Ceph Object And Block Storage
Ceph is a distributed storage software. It is based on an object store layer called RADOS (Reliable
Autonomic Distributed Object Store), which consists of Ceph components called OSDs (Object Storage
Daemons) and MONs (Monitoring Servers). These components feature heavily in Ceph. OSDs deal with
storing the objects to a device, while MONs deal with mapping the cluster. OSDs and MONs, together
carry out object storage and block storage within the object store layer. The Ceph Manager daemon
(MGR) runs alongside monitor daemons, to provide additional monitoring and interfaces to external
monitoring and management systems. The stack diagram of figure 10.1 illustrates these concepts.

© Bright Computing, Inc.

http://docs.ceph.com/en/latest/start/intro/

448 Ceph Installation

RADOS

OS/Hardware

MGRMON

RBD RADOS GW

OSD

MDS

CephFS

Figure 10.1: Ceph Concepts

On top of the object store layer are 3 kinds of access layers:

1. Block device access: RADOS Block Device (RBD) access can be carried out in two slightly different
ways:

(i) via a Linux kernel module based interface to RADOS. The module presents itself as a block
device to the machine running that kernel. The machine can then use the RADOS storage,
that is typically provided elsewhere.

(ii) via the librbd library, used by virtual machines based on qemu or KVM. A block device that
uses the library on the virtual machine then accesses the RADOS storage, which is typically
located elsewhere.

2. Gateway API access: RADOS Gateway (RADOS GW) access provides an HTTP REST gateway
to RADOS. Applications can talk to RADOS GW to access object storage in a high level manner,
instead of talking to RADOS directly at a lower level. The RADOS GW API is compatible with the
APIs of Swift and Amazon S3.

3. Ceph Filesystem access: CephFS provides a filesystem access layer. A component called MDS
(Metadata Server) is used to manage the filesystem with RADOS. MDS is used in addition to the
OSD and MON components used by the block and object storage forms when CephFS talks to
RADOS.

10.1.2 Ceph Storage Backends
OSDs have a choice of two storage backends for managing their data. These are BlueStore and FileStore.

BlueStore
BlueStore is a special-purpose storage backend designed specifically for managing data on disk for
Ceph OSD workloads. It is the default, and recommended, backend for the Ceph version 13.2.x series
onwards.

© Bright Computing, Inc.

10.1 Ceph Introduction 449

BlueStore consumes raw block devices or partitions. In contrast to the legacy FileStore approach,
BlueStore avoids any intervening layers of abstraction that may limit performance or add complex-
ity. BlueStore does however, by its design, in contrast to FileStore, require at least an extra volume on
the node the OSD runs on. Ceph BlueStore in Bright Cluster Manager versions previous to 8.2 used
ceph-disk to manage BlueStore devices, while versions 8.2 and beyond use ceph-volume, although
existing devices managed by ceph-disk will continue to work.

FileStore
FileStore is the legacy approach to storing objects in Ceph. It relies on a standard file system, which
is normally XFS. FileStore is well-tested and widely used in production. However it does suffer from
many performance deficiencies due to its overall design and reliance on a traditional file system for
storing object data.

Though it is technically possible to store Ceph data alongside other data when using FileStore, it is
preferred that dedicated block devices (disks) are used.

Bright Cluster Manager supports both storage backends. In the following sections the storage back-
ends are described in some more detail.

10.1.3 Ceph Software Considerations Before Use
Recommended Filesystem For Legacy FileStore
BlueStore is the recommended storage backend for Ceph. BlueStore requires dedicated block devices
(disks) that are fully managed by ceph-volume (ceph-disk in Bright Cluster Manager prior to version
8.2). The legacy FileStore backend, on the other hand, stores the data directly on a regular file system.

If using FileStore, then recommended file system is XFS, due to its stability, ability to handle extreme
storage sizes, and its intrinsic ability to deal with the significant sizes of the extended attributes required
by Ceph.

The nodes that run OSDs are typically regular nodes. Within the nodes, the storage devices used
by FileStore OSDs automatically have their filesystems configured to be of the XFS type during the
installation of Ceph with Bright Cluster Manager.

Use Of datanode For The Protection Of Ceph Data
OSD nodes store the actual data contents of the Ceph cluster. Ceph Monitor nodes also store some data
content that is essential for the operation of the Ceph cluster. The devices of these nodes that store such
content need protection from being wiped during the reprovisioning that takes place during a reboot of
regular nodes.

The recommended way to protect storage devices from being wiped is to set the datanode property
of their node to yes (page 195).

The datanode property is automatically set for Monitor and OSD nodes during installation of Ceph
with Bright Cluster Manager.

Use Of Slurm On OSD Nodes
Ceph can be quite demanding of the network and I/O. Running Slurm jobs on an OSD node is therefore
not recommended. In addition, if Slurm roles are to be assigned to nodes that have OSD roles, then the
default ports 6817 and 6818 used by Slurm can conflict with the default range 6800-7300 used by the
Ceph OSD daemons. If there is a need to run Slurm on an OSD node then it is necessary to arrange it
so that the ports used do not conflict with each other. During installation, a warning is given when this
conflict is present.

10.1.4 Hardware For Ceph Use
An absolute minimum installation: can be carried out on two nodes, where:

• 1 node, the head node, runs one Ceph Monitor and the first OSD.

• 1 node, the regular node, runs the second OSD.

© Bright Computing, Inc.

450 Ceph Installation

This is however not recommended, or even supported by Bright Cluster Manager. Reasons for why
this is not recommended are:

• If the Ceph monitor crashes, and there is no other Ceph monitor running, then Ceph cannot func-
tion, and data could be lost.

• The first OSD on the head node requires its own Ceph-compatible filesystem. If that filesystem is
not provided, then Ceph on the cluster will run, but in a degraded state.

• Running a monitor service on the same host as an OSD may impair performance due to fsync
issues with the kernel.

Using such a system to try to get familiar with how Ceph behaves in a production environment with
Bright Cluster Manager is unlikely to be worthwhile.

A more useful minimum: if there is a node to spare, then it is possible to install Ceph over 3 nodes as
follows:

• 1 node, the head node, runs one Ceph Monitor.

• 1 node, the regular node, runs the first OSD.

• 1 more node, also a regular node, runs the second OSD.

In this case the OSD pool default size should be set to 2 in the Global OSD Settings (figure 10.9).
Although useful for some testing purposes, this is again not a production system, due to the possible

loss of data as well as loss of service if the single Ceph Monitor has issues. This can therefore also not
be regarded as a good test cluster.

For production use: a redundant number of Ceph Monitor servers is recommended. This is because
Ceph Monitors are crucial to Ceph operations. Since the number of Ceph Monitoring servers must
be odd, then at least 3 Ceph Monitor servers, with each on a separate node, are recommended for
production purposes. The recommended minimum of nodes for production purposes is then 5:

• 2 regular nodes running OSDs.

• 2 regular nodes running Ceph Monitors.

• 1 head node running a Ceph Monitor.

Drives usable by Ceph: Ceph OSDs can use any type of disk that presents itself as a block device in
Linux. This means that a variety of drives can be used.

10.2 Ceph Installation With cm-ceph-setup

Ceph installation for Bright Cluster Manager can be carried out in a terminal GUI session using the
cm-ceph-setup utility. The utility is part of the cm-setup package that comes with Bright Cluster Man-
ager. If the Ceph packages are not already installed, then the utility is able to install them for the head
and regular nodes, assuming the repositories are accessible, and that the package manager priorities are
at their defaults.

© Bright Computing, Inc.

10.2 Ceph Installation With cm-ceph-setup 451

10.2.1 Ceph Installation: The Configuration Stage
The cm-ceph-setup utility can be run as root from the head node to open up a terminal GUI screen
(figure 10.2):

Figure 10.2: Ceph Installation Welcome

Here the administrator may choose to

• Deploy Ceph

• Uninstall Ceph if it is already installed.

Ceph public network selection: If the deploy option is chosen, then a screen opens up that allows the
selection of the Ceph network used to connect Monitor, OSD and client nodes (figure 10.3):

Figure 10.3: Ceph Installation: Public Network Selection

For a cluster that is configured in a standard default Bright Cluster Manager Type 1 architecture,
the network that is chosen is internalnet. In Ceph terminology this is called the public, or front-side,
network. This should not be confused with the informal terminology a Bright Cluster Manager admin-
istrator may sometimes use for a Type 1 architecture, where externalnet is sometimes called the public
network.

Network architecture types for cluster are discussed in section 3.3.9 of the Installation Manual.

Ceph cluster network selection: The next screen allows the Ceph cluster, or back-side, network to be
selected (figure 10.4):

© Bright Computing, Inc.

452 Ceph Installation

Figure 10.4: Ceph Installation: Ceph Cluster Network Selection

The OSDs use this network to rebalance storage.
In a Type 1 architecture this is also typically internalnet.
Ceph documentation suggests just using a single public network. In the Type 1 architecture case

this is achieved by using the same network, internalnet, for the Ceph cluster network as for the Ceph
public network.

Ceph Monitor role assignment to categories: The OK button in figure 10.3 then brings up a screen that
allows the Ceph Monitor role to be assigned to categories (figure 10.5).

Figure 10.5: Ceph Installation: Monitors Assignment To Categories

Ceph Monitor role assignment to nodes: The next screen is similar, and allows Ceph Monitors to be
assigned to nodes (figure 10.6):

Figure 10.6: Ceph Installation: Monitors Assignment To Nodes

Ceph OSD role assignment to categories: OSD Roles can then be assigned to categories (figure 10.7):

© Bright Computing, Inc.

10.2 Ceph Installation With cm-ceph-setup 453

Figure 10.7: Ceph Installation: OSDs Assignment To Categories

Ceph OSD role assignment to nodes: If there are any nodes that have not yet been assigned the OSD
role, then the next screen (figure 10.8) is similar, and allows the OSD role to be assigned to nodes:

Figure 10.8: Ceph Installation: OSDs Assignment To Nodes

Global Ceph OSD settings: After OSD role assignment is completed, the next screen displayed is the
Global Ceph OSD settings screen, (figure 10.9) which allows the OSD pool default size to be set. The
OSD pool default size is the default number of replicas for objects in the pool. It should be less than or
equal to the number of OSD nodes. If unsure the administrator can just leave it at the default value.

Figure 10.9: Ceph Installation OSD Global Settings: OSD Pool Default Size

BlueStore device settings: The next screen is the BlueStore configuration screen, which requires that
block devices be specifed for the OSDs (figure 10.10).

Figure 10.10: Ceph Installation: Block Devices For BlueStore

Typically, the administrator would have prepared the nodes that will be taking care of file storage
with one or more block devices for BlueStore to use. If these are not there during deployment, then
deployment will fail.

© Bright Computing, Inc.

454 Ceph Installation

Ceph removal of OSD pools: The next screen asks if Ceph is to be allowed to remove OSD pools
(figure 10.11):

Figure 10.11: Ceph Installation: Option To Have Ceph Allowed To Remove OSD Pools

Cep dashboard screen: The Ceph dashboard settings can then be specified:

Figure 10.12: Ceph Installation: Dashboard Configuration

Summary screen: The summary screen (figure 10.13) allows the configuration to be viewed, saved, or
deployed in various combinations.

Figure 10.13: Ceph Installation: Save Configuration Options

If a save option is chosen, then by default, the configuration is saved to /root/cm-ceph-setup.conf.
To deploy, the administrator should choose the Save config & deploy option:

10.2.2 Ceph Installation: The Deployment Stage
Deployment session output: If deployment is carried out, then the terminal GUI screen ends, and
session ouput similar to the following appears:

Executing 35 stages
################### Starting execution for 'Ceph Setup'

- ceph

© Bright Computing, Inc.

/root/cm-ceph-setup.conf

10.2 Ceph Installation With cm-ceph-setup 455

Progress: 0
stage: ceph: Networks is available and allowed types.
Connecting to CMDaemon
Progress: 2
stage: ceph: Monitor categories and nodes is available.
Progress: 5
stage: ceph: OSD categories and nodes is available.
Progress: 8
stage: ceph: Default pool size is correct for selected amount of nodes
Progress: 11
stage: ceph: Check and normalize device paths to '/dev/<device>' form.
Progress: 14
stage: ceph: BlueStore configurations is correct and points to devices
Progress: 17
stage: ceph: FileStore configurations is technically correct.
Progress: 20
stage: ceph: Collection Nodes Online
Progress: 22
stage: ceph: Get Software Image Paths
Progress: 25
stage: ceph: Collection Package Manager Repos Add
Progress: 28
stage: ceph: Collection Package Manager Repos Enable
Progress: 31
stage: ceph: Collection Packages Installer
Progress: 37
stage: ceph: Mark block devices "ClearedOnNextBoot" and "restart_required"
Progress: 42
stage: ceph: Collection Nodes Reboot
All nodes to be rebooted: mon002, mon003, osd001, osd002, mon001
Node has been rebooted mon002
Node has been rebooted mon003
Node has been rebooted osd001
Node has been rebooted osd002
Node has been rebooted mon001
Press ctrl+c to abort waiting and continue with deployment
Waiting for nodes to start reboot
Going to wait up to 30 minutes for the nodes to come back up.
Waiting for 5 nodes to come back up
Waiting for 5 nodes to come back up
Waiting for 3 nodes to come back up
All 5 nodes came back up.
Progress: 45
stage: ceph: Mark monitors nodes as DataNode
Progress: 48
stage: ceph: Mark osd nodes as DataNode
Progress: 54
stage: ceph: Create Ceph cluster object
Progress: 57
stage: ceph: Bootstrap Monitors
Progress: 60
stage: ceph: Assign Monitor Role
Assigning CephMonitorRole role
Progress: 62
stage: ceph: Wait Monitors Majority Up

© Bright Computing, Inc.

456 Ceph Installation

Progress: 65
stage: ceph: Assign Ceph Mgr Role
Assigning CephMGRRole role
Progress: 68
stage: ceph: Mark OSD nodes with FileStore: restart_required
Progress: 71
stage: ceph: Assign Ceph OSD Role
Assigning CephOSDRole role
Progress: 74
stage: ceph: Wait Osd Id File Store Assigned
Progress: 80
stage: ceph: Configure Prometheus module
Prometheus interface set up correctly
Progress: 82
stage: ceph: Load Dashboard module
Progress: 85
stage: ceph: Open Shorewall Port On Headnode
Opening port 8443 in Shorewall for ceph dashboard rev. proxy
Restarting shorewall
Progress: 88
stage: ceph: Assign Generic Role
Progress: 91
stage: ceph: Make the Dashboard visible to Bright View
Progress: 94
stage: ceph: Check Installation
Ceph monitors started
Ceph-manager started
All services started
Progress: 97
stage: ceph: Wait for CEPH OSD is full functional (all OSDs up)
Progress: 100

Took: 09:21 min.
Progress: 100/100
################### Finished execution for 'Ceph Setup', status: completed

Ceph Setup finished!

[root@myhost ~]#

A log of the session is kept at /var/log/cm-ceph-setup.log as well as other relevant logs of instal-
lation process.

10.3 Installation Of Ceph From Bright View
Ceph can be installed from Bright Cluster Manager in the following two ways:

• Using the text-based cm-ceph-setup utility (section 10.2). The utility is a part of the standard
cluster-tools package.

• Using the Bright View Ceph Wizard (this section). This is the recommended installation method.

10.3.1 Bright View Ceph Install: Main Details Screen
The clickpath Storage→Ceph→Ceph Wizard brings the browser to the Ceph main details screen, (fig-
ure 10.14), if Ceph has not yet been installed by Bright Cluster Manager. This screen is beginning of

© Bright Computing, Inc.

10.3 Installation Of Ceph From Bright View 457

the Ceph installation process, and the page displayed asks for details of the main Ceph configuration
settings:

Figure 10.14: Ceph Wizard Installation: General Cluster Settings

The GUI screen of figure 10.14 is a combination of the terminal GUI public network selection screen
(figure 10.3, page 451), together with the terminal GUI OSD journal settings screen of (figure 10.9,
page 453). The settings of the Bright View screen are explained in the texts in the section for figures 10.3
and 10.9.

10.3.2 Bright View Ceph Install: Nodes Selection Screen
The next screen is the Ceph Nodes selection screen (figure 10.15). This allows items to be selected for
use as Ceph Monitors and OSDs. The items to be selected can be categories or nodes:

© Bright Computing, Inc.

458 Ceph Installation

Figure 10.15: Ceph Wizard Installation: Ceph Nodes Selection Screen

For every selected OSD category or node, the corresponding block devices need to be configured.
Clicking on the small settings icon next to the checkbox opens the block device selection dialog (fig-
ure 10.16):

Figure 10.16: Ceph Wizard Installation: Ceph Block Devices Selection Screen

© Bright Computing, Inc.

10.3 Installation Of Ceph From Bright View 459

10.3.3 Bright View Ceph Install: Summary Screen
The next screen is the Summary screen (figure 10.17). This summarizes the choices that have been made.
The Show config button displays the underlying raw YAML configuration in a popup window.

Figure 10.17: Ceph Wizard Installation: Configuration Summary

In figure 10.17 after the Ready for deployment checkbox is checked, the Deploy button proceeds
with deploying Ceph according to the configuration specified in the wizard.

10.3.4 Bright View Ceph Install: Deployment Screen
During the deployment process, the progress is displayed (figure 10.18).

© Bright Computing, Inc.

460 Ceph Installation

Figure 10.18: Ceph Wizard Installation: Deployment Progress

The event viewer in Bright View also shows the changes taking place. When deployment is complete,
the Finish button ends the wizard.

The state of the deployed system can be checked as shown in section 10.4.1.

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup
10.4.1 Checking On Ceph And Ceph-related Files From The Shell
After deployment, the OSD and Monitor services take some time be created and to start up. When all
is up and running, the status of a healthy system, according to the output of the ceph -s command,
should look something like the following:

Example

[root@myhost ~]# ceph -s
cluster:
id: b4e9fd96-800d-4f66-87f1-79febb102ef5
health: HEALTH_OK

services:
mon: 3 daemons, quorum mon001,mon002,mon003
mgr: mon003(active), standbys: mon001, mon002
osd: 2 osds: 2 up, 2 in

data:
pools: 0 pools, 0 pgs
objects: 0 objects, 0 B
usage: 2.0 GiB used, 118 GiB / 120 GiB avail
pgs:

© Bright Computing, Inc.

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup 461

The -h option to ceph lists many options. Users of Bright Cluster Manager should usually not need
to use these, and should find it more convenient to use the Bright View or cmsh front ends instead.

Generated YAML Configuration File
A YAML configuration file, by default cm-ceph-setup.conf, is generated after a run by the
cm-ceph-setup utility.

Using A YAML Configuration File
The -c option to cm-ceph-setup allows an existing YAML configuration file to be used.

Example

[root@bright91 ~]# cm-ceph-setup -c /root/cm-ceph-setup.conf

A Sample YAML Configuration File
Example

###
This config file should be used with cm-ceph-setup tool
Example:
cm-ceph-setup -c <filename>
##
Generated by:
cm-ceph-setup
cluster-tools-8.2-112402_cm8.2_5c7d79cc2f
cmdline: /cm/local/apps/cm-setup/bin/cm-ceph-setup
Generate on host:
bright91
Date of generation:
Tue Feb 12 17:43:22 2019
MD5 checksum of everything after the closing comment:
2fc239700ef9f639d5aeb7cb9103091a
to compare: grep -v '^##' <this_file> | md5sum
###
meta:

command_line: /cm/local/apps/cm-setup/bin/cm-ceph-setup
date: Tue Feb 12 17:43:22 2019
generated_with: Ceph Setup
hostname: bright91
package_name: cluster-tools-8.2-112402_cm8.2_5c7d79cc2f
package_version: '112402'

modules:
ceph:
dashboard:
external_port: 8443
internal_port: 8444
password: ceph
username: ceph

head_node:
external_repos:
- https://openresty.org/package/centos/openresty.repo
packages:
- openresty

monitors:
allow_pool_delete: true
categories: {}

© Bright Computing, Inc.

462 Ceph Installation

nodes:
mon001: {}
mon002: {}
mon003: {}

networks:
cluster: ''
public: ''

osd:
FileStore:

journal_size: 5120
categories: {}
nodes:

osd001:
BlueStore:

configurations:
osd0:
device: /dev/vdc

FileStore:
configurations: {}
shared_journal:
device: ''

osd002:
BlueStore:

configurations:
osd0:
device: /dev/vdc

FileStore:
configurations: {}
shared_journal:
device: ''

pool_default_size: 2
packages:
- ceph
- cm-config-ceph-systemd
prometheus:
description: Prometheus Ceph plugin
filter: Prometheus4CephFilter
name: Prometheus4Ceph
port: 9283

repos:
- epel
- Ceph
- Ceph-noarch
roles:
ceph_dashboard_reverse_proxy:

configurations:
- content: ceph/templates/nginx.service
kind: static
name: service
path: /usr/lib/systemd/system/ceph-dashboard-reverse-proxy.service

- kind: template
name: lua-script
path: /cm/local/apps/ceph/dashboard/nginx/nginx.lua
template: ceph/templates/lua.template

- kind: template

© Bright Computing, Inc.

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup 463

name: config
path: /cm/local/apps/ceph/dashboard/nginx/nginx.conf
template: ceph/templates/config.template

env:
ext_port: 8443
int_port: 8444

kind: generic
nodes:
- active
packages:
- openresty
services:
- ceph-dashboard-reverse-proxy

For legacy FileStore configurations, the partitioning of Ceph OSD storage devices is done using the
disk setup functionality as described in section 3.9.3. For BlueStore, the corresponding devices are listed
in the CephOSDBlueStoreConfig of the CephOSDRole only, and no entries are added to the XML disk
layout.

Installation Logs
Installation logs to Ceph are kept at:

/var/log/cm-ceph-setup.log

10.4.2 Ceph Management With Bright View And cmsh
Only one instance of Ceph is supported at a time. Its name is ceph.

Ceph Overview And General Properties
From within cmsh, ceph mode can be accessed:

Example

[root@bright91 ~]# cmsh
[bright91]% ceph
[bright91->ceph]%

From within ceph mode, the overview command lists an overview of Ceph OSDs, MONs, and place-
ment groups for the ceph instance:

Example

[bright91->ceph]% overview ceph
Parameter Value
-------------------------------- ----------------------------
Status HEALTH_OK
Number of OSDs 2
Number of OSDs up 2
Number of OSDs in 2
Number of mons 1
Number of placements groups 192
Placement groups data size 0B
Placement groups used size 10.07GB
Placement groups available size 9.91GB
Placement groups total size 19.98GB

The Bright View equivalent of the overview command is the Ceph Overview window, accessed via
the clickpath Storage→Ceph→Ceph Settings→Overview.

© Bright Computing, Inc.

464 Ceph Installation

Some of the major Ceph configuration parameters can be viewed and their values managed by CM-
Daemon from ceph mode. The show command shows parameters and their values for the ceph instance:

Example

[bright91->ceph]% show ceph
Parameter Value
------------------------------------ --
Admin keyring path /etc/ceph/ceph.client.admin.keyring
Auto Adjust CRUSH Map no
Bootstrapped yes
Client admin key AQCI7klcHwWIBxAAMUSzd7eYYQiskZELGiaEaA==
Cluster networks
Config file path /etc/ceph/ceph.conf
Creation time Thu, 24 Jan 2019 17:57:43 CET
Extra config parameters osd journal size = 5120
Monitor daemon port 6789
Monitor key AQCI7klc2bSyAxAAa5p6p+ljWin75ucxR3gy+Q==
Monitor keyring path /etc/ceph/ceph.mon.keyring
Public networks
Revision
auth client required cephx yes
auth cluster required cephx yes
auth service required cephx yes
filestore xattr use omap no
fsid b4e9fd96-800d-4f66-87f1-79febb102ef5
mon allow pool delete yes
mon max osd 10000
mon osd full ratio 0.950000
mon osd nearfull ratio 0.850000
name ceph
osd pool default min size 0
osd pool default pg num 8
osd pool default pgp num 8
osd pool default size 2
rbd cache yes
rbd cache max dirty 25165824
rbd cache max dirty age 1.000000
rbd cache size 33554432
rbd cache target dirty 16777216
rbd cache writethrough until flush yes
rbd readahead disable after bytes 52428800
rbd readahead max bytes 524288
rbd readahead trigger requests 10
version 13.2.4
[bright91->ceph]%

The Bright View equivalent of these settings is in the Settings window, accessed via a clickpath of
Storage→Ceph→Ceph Settings→Overview→Settings.

Ceph extraconfigparameters setting: The Extra config parameters property of a ceph mode ob-
ject can be used to customize the Ceph configuration file. The Ceph configuration file is typically in
/etc/ceph.conf, and using extraconfiparameters settings, Ceph can be configured with changes that
CMDaemon would otherwise not manage. After the changes have been set, CMDaemon manages them
further.

Thus, the following configuration section in the Ceph configuration file:

© Bright Computing, Inc.

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup 465

[mds.2]
host=rabbit

could be placed in the file via cmsh with:

Example

[root@bright91 ~]# cmsh
[bright91]% ceph
[bright91->ceph[ceph]]% append extraconfigparameters "[mds.2] host=rabbit"
[bright91->ceph*[ceph*]]% commit

If a section name, enclosed in square brackets, [], is used, then the section is recognized at the start
of an appended line by CMDaemon.

If a section that is specified in the square brackets does not already exist in /etc/ceph.conf, then it
will be created. The \n is interpreted as a new line at its position. After the commit, the extra configura-
tion parameter setting is maintained by the cluster manager.

If the section already exists in /etc/ceph.conf, then the associated key=value pair is appended. For
example, the following appends host2=bunny to an existing mds.2 section:

[bright91->ceph[ceph]]% append extraconfigparameters "[mds.2] host2=bunny"
[bright91->ceph*[ceph*]]% commit

If no section name is used, then the key=value entry is appended to the [global] section.

[bright91->ceph[ceph]]% append extraconfigparameters "osd journal size = 128"
[bright91->ceph*[ceph*]]% commit

The /etc/ceph.conf file has the changes written into it about a minute after the commit, and may
then look like (some lines removed for clarity):

[global]
auth client required = cephx
osd journal size=128

[mds.2]
host=rabbit
host2=bunny

As usual in cmsh operations (section 2.5.3):

• The set command clears extraconfigparameters before setting its value

• The removefrom command operates as the opposite of the append command, by removing key=value
pairs from the specified section.

There are similar extraconfigparameters for Ceph OSD filesystem associations (page 466) and for
Ceph monitoring (page 467).

Ceph OSD Properties
From within ceph mode, the osdinfo command for the Ceph instance displays the nodes that are pro-
viding OSDs along with their OSD IDs:

Example

[bright91->ceph]% osdinfo ceph
OSD id Node OSD name
------------ ---------------------- ------------
0 node001 osd0
1 node002 osd0

© Bright Computing, Inc.

/etc/ceph.conf
/etc/ceph.conf
/etc/ceph.conf

466 Ceph Installation

Within a device or category mode, the roles submode allows parameters of an assigned cephosd
role to be configured and managed.

Example

[bright91->device[node001]->roles]% show cephosd
Parameter Value
--------------------------- ------------------------------
Add services yes
Name cephosd
OSD configurations <1 in submode>
Provisioning associations <0 internally used>
Revision
Type CephOSDRole

Within the cephosd role the templates for OSD filesystem configurations, osdconfigurations, can
be set or modified:

Example

[bright91->device[node001]->roles]% use cephosd
[bright91...[node001]->roles[cephosd]]% osdconfigurations
[bright91...osd]->osdconfigurations]% show osd0
Parameter Value
-------------------------------- --------------------------------------
Automatically adjust weight off
Extra config parameters
Initial weight 0.1
Journal data /var/lib/ceph/osd/$cluster-$id/journal
Journal size 0 MiB
Name osd0
OSD data /var/lib/ceph/osd/$cluster-$id
Production weight 1
Revision
Type CephOSDLegacyConfig
Weight adjust interval 5
Weight adjust rate 0.1
Weight interpretation scale

The Bright View equivalent to access the preceding cmsh OSD configuration settings is via the role
for a particular node or category. The clickpath that brings up these configuration options for node
node001 is, for example:

Devices→Physical Nodes→node001→Edit→Settings→Roles→cephosd→Edit→osd0→Edit

OSD filesystem association extraconfigparameters setting: Extra configuration parameters can be
set for an OSD filesystem association such as ods0 by setting values for its extraconfigparameters
option. This is similar to how it can be done for Ceph general configuration (page 464):

Example

[bright91...osd]->osdconfigurations]% use osd0
[bright91...osdconfigurations[ods0]]% show
Parameter Value
-------------------------------- --------------------------------------
...

© Bright Computing, Inc.

10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup 467

Automatically adjust weight off
Extra config parameters
...
[bright91...osdconfigurations[osd0]]% set extraconfigparameters "a=b"
...

Ceph Monitoring Properties
Similarly to Ceph OSD properties, the parameters of the cephmonitor role can be configured and man-
aged from within the node or category that runs Ceph monitoring.

Example

[bright91]% device use bright91
[bright91->device[bright91]]% roles ; use cephmonitor
[ceph->device[bright91]->roles[cephmonitor]]% show
Parameter Value
-------------------------------- ------------------------------------
...
Extra config parameters
Monitor data /var/lib/ceph/mon/$cluster-$hostname
Name cephmonitor
Provisioning associations <0 internally used>
Revision
Type CephMonitorRole

Ceph monitoring extraconfigparameters setting: Ceph monitoring can also have extra configura-
tions set via the extraconfigparameters option, in a similar way to how it is done for Ceph general
configuration (page 464).

The Bright View equivalent to access the preceding cmsh Monitor configuration setting is via the
role for a particular node or category. The clickpath that brings up these configuration options for node
node004 is, for example:

Devices→Physical Nodes→node004→Edit→Settings→Roles→cephmonitor→Edit

Ceph bootstrap
For completeness, the bootstrap command within ceph mode can be used by the administrator to ini-
tialize Ceph Monitors on specified nodes if they are not already initialized. Administrators are however
not expected to use it, because they are expected to use the cm-ceph-setup installer utility when in-
stalling Ceph in the first place. The installer utility carries out the bootstrap initialization as part of
its tasks. The bootstrap command is therefore only intended for use in the unusual case where the
administrator would like to set up Ceph storage without using the cm-ceph-setup utility.

© Bright Computing, Inc.

11
BeeGFS

11.1 BeeGFS Introduction
11.1.1 BeeGFS Concepts
BeeGFS is a high-performance parallel file system, developed by the Fraunhofer Competence Center for
High Performance Computing, and optimized for intensive I/O. It uses a distributed metadata architec-
ture designed for scalability and flexibility. More information about BeeGFS can be found at the official
online documentation at https://www.beegfs.io/content/documentation/.

Bright Cluster Manager provides packages to allow BeeGFS to be deployed, managed, and moni-
tored on a Bright cluster running RHEL or Centos. The deployment tool provided by Bright Cluster
Manager is cm-beegfs-setup (section 11.2).

A BeeGFS cluster consists of a management server, one or more metadata servers and one or more
storage servers. Clients should have client servers running on them.

If high-availability is required, then the administrator needs to arrange for it separately, for the
BeeGFS management servers.

Since BeeGFS is a parallel filesystem, it means that adding more nodes increases not only the storage
capacity, but also system performance. BeeGFS can work with any local file system for data storage as
long as it is POSIX compilant.

Versions of BeeGFS before 7.2 had an optional graphical user interface called Admon which was
integrated with Bright Cluster Manager. This has been dropped since BeeGFS version 7.2, which means
it has been dropped since Bright Cluster Manager 9.1. The BeeGFS Mon monitoring service is on the
roadmap for future Bright Cluster Manager integration.

11.1.2 BeeGFS Installation Notes And Options
By default all logging is done to the systemd journal. The installation logs can be viewed using:

journalctl -u ’beegfs-*’.

Log locations can be changed using cmsh or Bright View at any moment after installation, by editing
BeeGFS roles for the corresponding configuration overlays (section 11.2.1).

Authentication is possible for the BeeGFS cluster via a shared secret file. The shared secret file can
be installed during cm-beegfs-setup installation (section 11.2).

11.2 Deployment And Uninstallation Of BeeGFS With cm-beegfs-setup

Deployment and uninstallation for a Bright Cluster Manager can be carried out with the Ncurses-based
cm-beegfs-setup utility. The utility is a part of a cluster-tools package that comes with Bright Clus-
ter Manager. If the BeeGFS packages are not installed, then the utility installs them.

© Bright Computing, Inc.

https://www.beegfs.io/content/documentation/

470 BeeGFS

The cm-beegfs-setup utility can be run as root from the head node. The first Ncurses screen that
shows up is the main menu for operations (figure 11.1)

Figure 11.1: BeeGFS Script Main Menu

In the main menu, the administrator can choose to:

• Deploy BeeGFS (section 11.2.1)

• Uninstall BeeGFS (section 11.2.2)

• Simply exit the Ncurses session

11.2.1 Deployment Of BeeGFS
If the Deploy option is chosen, then the deployment wizard starts.

Configuration Overlays
The wizard firsts asks for names for the configuration overlays (figure 11.2):

Figure 11.2: Configuration Overlays Creation

These overlay names are for :

• the BeeGFS metadata configuration overlay

• the BeeGFS storage configuration overlay

• the BeeGFS client configuration overlay

Select Management Node
The next screen (figure 11.3) then asks for a node to be selected to be the BeeGFS management server:

© Bright Computing, Inc.

11.2 Deployment And Uninstallation Of BeeGFS With cm-beegfs-setup 471

Figure 11.3: Management Node

Select Metadata Nodes
The next screen (figure 11.4) then asks for nodes to be selected to be the BeeGFS metadata servers:

Figure 11.4: Select Metadata Nodes

Select Storage Nodes
The next screen (figure 11.5) asks for nodes to be selected to be the BeeGFS storage servers:

Figure 11.5: Select Storage Nodes

Select Client Nodes
The next screen (figure 11.6) asks for nodes to be selected to be the client nodes:

© Bright Computing, Inc.

472 BeeGFS

Figure 11.6: Select Client Nodes

Management Server Configuration
The next screen (figure 11.7) asks for some configuration parameters for the BeeGFS management server
to be set:

Figure 11.7: Management Server Configuration

The values required are for the:

• Path to a data directory

• Management server TCP port

• Management server UDP port

Metadata Server Configuration
The next screen (figure 11.8) asks for input on configuring the BeeGFS metadata servers:

Figure 11.8: Metadata Server Configuration

The values required are for the:

• Path to a data directory

• Metadata server TCP port

• Metadata server UDP port

© Bright Computing, Inc.

11.2 Deployment And Uninstallation Of BeeGFS With cm-beegfs-setup 473

Storage Server Configuration
The next screen (figure 11.9) asks for input on setting some configuration parameters for the BeeGFS
storage servers:

Figure 11.9: Storage Server Configuration

The items required are for the:

• Path to a data directory

• Storage server TCP port

• Storage server UDP port

Client Configuration
The next screen (figure 11.10) asks for input on configuring the BeeGFS clients:

Figure 11.10: Client Configuration

The inputs required are for the:

• Client UDP port

• Helper TCP port

Authentification Configuration
In the next screen, (figure 11.11) a path must be specified for the shared secret file:

Figure 11.11: Authentification Configuration

This is a file with arbitrary content. If it is set, then it must exist on all BeeGFS nodes.

Deployment Summary
Finally, the wizard displays a deployment summary (figure 11.12):

© Bright Computing, Inc.

474 BeeGFS

Figure 11.12: Deployment Summary

From this screen the deployment process can be started, the deployment configuration can be viewed
and saved, or the wizard can simply be exited.

Command Line Installation
If a configuration file is saved from a cm-beegfs-setup run, then it can be used to install a BeeGFS
cluster automatically:

Example

cm-beegfs-setup -c cm-beegfs-setup.conf

11.2.2 Uninstalling BeeGFS
If the Uninstall option is chosen from the main menu (figure 11.1), then the uninstallation process
starts.

An extra Are you sure? prompt is thrown in the way first, to help avoid a mistaken removal. After
confirmation, a BeeGFS instance must then be selected for the removal, by selecting its management
node (figure 11.13):

Uninstall Management Node Selection

Figure 11.13: Uninstall Management Node Selection

The uninstallation process then starts. It can take several minutes in order to ensure that services are
stopped properly, so that errors and junk files are avoided.

11.3 Managing The Deployed BeeGFS Instance
A BeeGFS cluster consists of:

• One Management node

• Some Metadata nodes

• Some Storage nodes

Information about the right number of nodes to use can be found at https://www.beegfs.io/docs/
whitepapers/Picking_the_right_Number_of_Targets_per_Server_for_BeeGFS_by_ThinkParQ.pdf

© Bright Computing, Inc.

https://www.beegfs.io/docs/whitepapers/Picking_the_right_Number_of_Targets_per_Server_for_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Picking_the_right_Number_of_Targets_per_Server_for_BeeGFS_by_ThinkParQ.pdf

11.3 Managing The Deployed BeeGFS Instance 475

BeeGFS clients should have client servers running on them.

11.3.1 Setup
Associated with BeeGFS are the following BeeGFS-related packages, most of which provide services:

1. beegfs-mgmtd

2. beegfs-meta

3. beegfs-storage

4. beegfs-client

5. beegfs-helperd

6. beegfs-utils

The repository from which these packages are picked up is added to the repositories list when
BeeGFS is installed by Bright Cluster Manager (section 11.2), and the packages are then installed on all
of the cluster nodes. The services are assignable by the cluster administrator to cluster devices as roles.
In cmsh these BeeGFS roles are treated as objects, and the configuration of these roles is determined by
role parameters (object attributes). The roles are described in detail section 11.3.2.

11.3.2 BeeGFS Objects
BeeGFSManagement Role
The BeeGFSManagement role is used to configure BeeGFS management services. The role parameters
are described in table 11.1:

Parameter Description Option to beegfs-mgmtd

Data directory Path to data directory storeMgmtdDirectory

Allow new servers Allow new servers registration sysAllowNewServers

Allow new storage Allow new storage targets registration sysAllowNewTargets

targets

Authentification Path to shared secret authentication connAuthFile

file file

Backlog TCP TCP listen backlog size connBacklogTCP

Interfaces file Path to file with interfaces list connInterfacesFile

Management port TCP TCP port for management service connMgmtdPortTCP

...continues

© Bright Computing, Inc.

476 BeeGFS

...continued

Parameter Description Option to beegfs-mgmtd

Management port UDP UDP port for management service connMgmtdPortUDP

Net filter file Path to file with list of allowed IP connNetFilterFile

subnets

Log level Log level logLevel

No log date Do not show date along with time in log logNoDate

Number of log lines Number of lines in log file, after which logNumLines

it will be rotated

Number of log Number of old log files to keep logNumRotatedFiles

rotated files

Log file Path to log file, empty means logs go logStdFile

to the journal

Enable Quota Enable quota quotaEnableEnforcement

Quota query GID file Path to file with GIDs to be checked by
quota

quotaQueryGIDFile

Quota query GID GID range to be checked by quota quotaQueryGIDRange

range

Quota query UID file Path to file with UIDs to be checked by quotaQueryUIDFile

quota

Quota query UID UID range to be checked by quota quotaQueryUIDRange

range

Quota query type Query type for quota quotaQueryType

Quota query with Allow also system users/groups to be quotaQueryWithSystemUsersGroups

system users groups checked by quota

Quota update Quota update interval quotaUpdateIntervalMin

interval

...continues

© Bright Computing, Inc.

11.3 Managing The Deployed BeeGFS Instance 477

...continued

Parameter Description Option to beegfs-mgmtd

Target offline Timeout for targets on storage server sysTargetOfflineTimeoutSecs

timeout to be considered offline when no target

status received

Client auto remove Time after which an unreachable node tuneClientAutoRemoveMins

time is considered dead

Number of workers Number of worker threads tuneNumWorkers

Meta dynamic pools Raise lower limits if difference in tuneMetaDynamicPools

capacity becomes too large between

targets

Meta inodes low Metadata inode free space pool tuneMetaInodesLowLimit

limit threshold

Meta inodes Metadata inode free space pool tuneMetaInodesEmergencyLimit

emergency limit threshold

Meta space low limit Metadata space free space pool tuneMetaSpaceLowLimit

threshold

Meta space emergency Metadata space free space pool tuneMetaSpaceEmergencyLimit

limit threshold

Storage dynamic Raise lower limits if difference in tuneStorageDynamicPools

pools capacity becomes too large between

targets

Storage inodes low Storage inode free space pool tuneStorageInodesLowLimit

limit threshold

Storage inodes Storage inode free space pool tuneStorageInodesEmergencyLimit

emergency limit threshold

Storage space low Storage space free space pool tuneStorageSpaceLowLimit

limit threshold

Storage space Storage space free space pool tuneStorageSpaceEmergencyLimit

emergency limit threshold

Table 11.1: BeeGFSManagement role parameters and beegfs-mgmtd options

© Bright Computing, Inc.

478 BeeGFS

The beegfs-mgmtd settings are updated by Bright Cluster Manager in /etc/beegfs/beegfs-mgmtd.
conf.

The settings can be managed in cmsh via the beegfs::management role. Roles are, as usual, assigned
via device, category or configurationoverlay mode. The parameters of the role that correspond to
the parameters in the preceding table can then be set.

Example

[bright91 ~]# cmsh
[bright91]% device roles node001
[bright91->device[node001]->roles]% assign bee<TAB><TAB><TAB>
beegfs::client beegfs::management beegfs::metadata beegfs::storage
[bright91->device[node001]->roles]% assign beegfs::management
[bright91->device*[node001*]->roles*[BeeGFS::Management*]]% show
Parameter Value
-------------------------------------- --
Add services yes
Name BeeGFS::Management
Provisioning associations <0 internally used>
Revision
Type BeeGFSManagementRole
Allow new servers yes
Data directory /var/lib/beegfs/management
Allow new storage targets yes
Authentification file
Backlog TCP 128
Interfaces file
Management port TCP 8008
Management port UDP 8008
Net filter file
Log file
Log level 2
No log date no
Number of log lines 50000
Number of log rotated files 5
Enable Quota no
Quota query GID file
Quota query GID range
Quota query UID file
Quota query UID range
Quota query type system
Quota query with system users groups no
Quota update interval 10m
Target offline timeout 3m
Client auto remove time 30m
Number of workers 4
Meta dynamic pools yes
Meta inodes emergency limit 1M
Meta inodes low limit 10M
Meta space emergency limit 3G
Meta space low limit 10G
Storage dynamic pools yes
Storage inodes emergency limit 1M
Storage inodes low limit 10M
Storage space emergency limit 20G
Storage space low limit 1T

© Bright Computing, Inc.

/etc/beegfs/beegfs-mgmtd.conf
/etc/beegfs/beegfs-mgmtd.conf

11.3 Managing The Deployed BeeGFS Instance 479

BeeGFSMetadata Role
The BeeGFSMetadata role is used for configuring BeeGFS metadata services. The role parameters are
described in Table 11.2:

Parameter Description Option to beegfs-meta

Data directory Path to the data directory storeMetaDirectory

Management node Node with a management role sysMgmtdHost

Authentification Path to the shared secret connAuthFile

file authentification file

Backlog TCP TCP listen backlog connBacklogTCP

Fallback expiration Time after which a connection to a connFallbackExpirationSecs

fallback interface expires

Interfaces file Path to the file with a list of interfaces connInterfacesFile

for communication

Max internode number Max number of simultaneous connMaxInternodeNum

connections to the same node

Meta port TCP TCP port for metadata service connMetaPortTCP

Meta port UDP UDP port for metadata service connMetaPortUDP

Net filter file Path to a file with a list of allowed connNetFilterFile

IP subnets

Use RDMA Use RDMA connUseRDMA

RDMA type of service RDMA type of service connRDMATypeOfService

Tcp only filter file Path to a file with a list of no DRMA connTcpOnlyFilterFile

IP ranges

Log level Log level logLevel

...continues

© Bright Computing, Inc.

480 BeeGFS

...continued

Parameter Description Option to beegfs-meta

No log date Do not show date along with time in log logNoDate

Number of log lines Number of lines in log file, after which logNumLines

it will be rotated

Number of log Number of old log files to keep logNumRotatedFiles

rotated files

Log file Path to the log file, empty means logs logStdFile

go to the journal

Client xattrs Enable client-side extended attributes storeClientXAttrs

Client ACLs Enable handling and storage of client-
side ACLs

storeClientACLs

client-side ACLs

Use extended Store metadata as extended attributes storeUseExtendedAttribs

attributes or not

Target attachment File with a list of targets to be grouped sysTargetAttachmentFile

file within the same domain for

randominternode

Target offline Timeout for targets on a storage sysTargetOfflineTimeoutSecs

timeout server to be considered offline when no

target status is received

Allow user set Allow non-privileged users to modify sysAllowUserSetPattern

pattern stripe pattern settings for directories

they own

Bind to numa zone Zero-based NUMA zone number to tuneBindToNumaZone

which all threads of metadata process

should be bound

Number of stream The number of threads waiting for tuneNumStreamListeners

listeners incoming data events

Number of workers Number of worker threads tuneNumWorkers

...continues

© Bright Computing, Inc.

11.3 Managing The Deployed BeeGFS Instance 481

...continued

Parameter Description Option to beegfs-meta

Target chooser The algorithm to choose storage targets tuneTargetChooser

for file creation

Use aggressive Actively poll for events instead of tuneUseAggressiveStreamPoll

stream poll sleeping until an event occurs

Use per user msg Use per-user queues for pending tuneUsePerUserMsgQueues

queues requests

Table 11.2: BeeGFSMetadata role parameters and beegfs-meta options

The beegfs-meta settings are updated by Bright Cluster Manager in /etc/beegfs/beegfs-meta.
conf.

The settings can be managed in cmsh via the beegfs::metadata role. Roles are, as usual, assigned
via device, category or configurationoverlay mode. The parameters of the role that correspond to
the parameters in the preceding table can then be set.

Example

[bright91 ~]# cmsh
[bright91]% category roles default
[bright91->category[default]->roles]% assign bee<TAB><TAB><TAB>
beegfs::client beegfs::management beegfs::metadata beegfs::storage
[bright91->category[default]->roles]% assign beegfs::metadata
[bright91->category*[default*]->roles*[BeeGFS::Metadata*]]% show
Parameter Value
-------------------------------- --
Add services yes
Name BeeGFS::Metadata
Provisioning associations <0 internally used>
Revision
Type BeeGFSMetadataRole
Data directory /var/lib/beegfs/metadata
Management node
Authentification file
Backlog TCP 128
Fallback expiration 15m
Interfaces file
Max internode number 32
Meta port TCP 8005
Meta port UDP 8005
Net filter file
RDMA type of service 0
Tcp only filter file
Use RDMA yes
Log file
Log level 3
No log date no
Number of log lines 50000
Number of log rotated files 5

© Bright Computing, Inc.

/etc/beegfs/beegfs-meta.conf
/etc/beegfs/beegfs-meta.conf

482 BeeGFS

Client ACLs no
Client xattrs no
Use extended attributes yes
Allow user set pattern no
Target attachment file
Target offline timeout 3m
Bind to numa zone
Number of stream listeners 1
Number of workers 0
Target chooser randomized
Use aggressive stream poll no
Use per user msg queues no

BeeGFSStorage Role
The BeeGFSStorage role is used for configuring BeeGFS storage services. The role parameters are de-
scribed in Table 11.3:

Parameter Description Option to beegfs-storage

Data directories Path to the data directories storeStorageDirectory

Management node Node with a management role sysMgmtdHost

Authentification Path to the shared secret connAuthFile

file authentification file

Backlog TCP TCP listen backlog connBacklogTCP

Interfaces file Path to the file with a list of interfaces connInterfacesFile

for communication

Max internode number Max number of simultaneous connMaxInternodeNum

connections to the same node

Storage port TCP TCP port for storage service connStoragePortTCP

Storage port UDP UDP port for storage service connStoragePortUDP

Net filter file Path to a file with a list of allowed connNetFilterFile

IP subnets

Use RDMA Use RDMA connUseRDMA

...continues

© Bright Computing, Inc.

11.3 Managing The Deployed BeeGFS Instance 483

...continued

Parameter Description Option to beegfs-storage

RDMA type of service RDMA type of service connRDMATypeOfService

Tcp only filter file Path to a file with a list of subnets connTcpOnlyFilterFile

with no RDMA

Log level Log level logLevel

No log date Do not show date along with time in log logNoDate

Number of log lines Number of lines in log file, after which logNumLines

it will be rotated

Number of log Number of old log files to keep logNumRotatedFiles

rotated files

Log file Path to the log file, empty means logs logStdFile

go to the journal

Resync safety Add an extra amount of time to the last sysResyncSafetyThresholdMins

threshold successful communication timestamp

in case of a potential cache loss

Target offline Timeout until targets on a storage sysTargetOfflineTimeoutSecs

timeout server are considered offline when no

target status is received

Bind to numa zone Zero-based NUMA zone number to tuneBindToNumaZone

which all threads of metadata process

should be bound

File read ahead size Byte range submitted to the kernel for tuneFileReadAheadSize

read-ahead after number of bytes was

already read from target

File read ahead Number of bytes read after which tuneFileReadAheadTriggerSize

trigger size the read-ahead is triggered

File read size Maximum amount of data server tuneFileReadSize

should read in a single operation

...continues

© Bright Computing, Inc.

484 BeeGFS

...continued

Parameter Description Option to beegfs-storage

File write size Maximum amount of data server tuneFileWriteSize

should write in a single operation

File write sync size Number of bytes after which kernel tuneFileWriteSyncSize

advised to commit data

Number of resync Number of threads to gather filesystem tuneNumResyncGatherSlaves

gather slaves information for a buddy mirror resync

Number of resync Number of threads to sync filesystem tuneNumResyncSlaves

slaves information for a buddy mirror resync

Number of stream Number of threads waiting for tuneNumStreamListeners

listeners incoming data events

Number of workers Number of worker threads tuneNumWorkers

Use aggressive Actively poll for events instead of tuneUseAggressiveStreamPoll

stream poll sleeping until an event occur

Use per target Create a separate set of workers and tuneUsePerTargetWorkers

workers attach it for each storage target

Use per user msg Use per-user queues for pending tuneUsePerUserMsgQueues

queues requests

Worker buffer size Size of network and io buffers, allo-
cated for each worker

tuneWorkerBufSize

Table 11.3: BeeGFSStorage role parameters and beegfs-storage options

The beegfs-storage settings are updated by Bright Cluster Manager in /etc/beegfs/
beegfs-storage.conf.

The settings can be managed in cmsh via the beegfs::storage role. Roles are, as usual, assigned via
device, category or configurationoverlay mode. The parameters of the role that correspond to the
parameters in the preceding table can then be set.

Example

[bright91 ~]# cmsh
[bright91]% category roles default
[bright91->category[default]->roles]% assign bee<TAB><TAB><TAB>
beegfs::client beegfs::management beegfs::metadata beegfs::storage
[bright91->category[default]->roles]% assign beegfs::storage
[bright91->category*[default*]->roles*[BeeGFS::Storage*]]% show

© Bright Computing, Inc.

/etc/beegfs/beegfs-storage.conf
/etc/beegfs/beegfs-storage.conf

11.3 Managing The Deployed BeeGFS Instance 485

Parameter Value
-------------------------------- --
Add services yes
Name BeeGFS::Storage
Provisioning associations <0 internally used>
Revision
Type BeeGFSStorageRole
Data directories /var/lib/beegfs/storage
Management node
Authentification file
Backlog TCP 128
Interfaces file
Max internode number 12
Net filter file
RDMA type of service 0
Storage port TCP 8003
Storage port UDP 8003
Tcp only filter file
Use RDMA yes
Log file
Log level 3
No log date no
Number of log lines 50000
Number of log rotated files 5
Resync safety threshold 10m
Target offline timeout 3m
Bind to numa zone
File read ahead size 0m
File read ahead trigger size 4m
File read size 128k
File write size 128k
File write sync size 0m
Number of resync gather slaves 6
Number of resync slaves 12
Number of stream listeners 1
Number of workers 12
Use aggressive stream poll no
Use per target workers yes
Use per user msg queues no
Worker buffer size 4m

BeeGFSClient Role
The BeeGFSClient role is used for configuring BeeGFS client and helperd services.

The role parameters are described in table 11.4 and in table 11.5:

Parameter Description Option to beegfs-client

Management node Node with a management role sysMgmtdHost

...continues

© Bright Computing, Inc.

486 BeeGFS

...continued

Parameter Description Option to beegfs-client

Authentification Path to the shared secret connAuthFile

file authentification file

Client port UDP UDP port for client service connClientPortUDP

Helper port TCP TCP port for helper service connHelperdPortTCP

Communication retry Time for retries in case of a network connCommRetrySecs

time failure

Fallback expiration Time after which a connection to a connFallbackExpirationSecs

time fallback interface expires

Interfaces file Path to file with list of communication connInterfacesFile

interfaces

Max internode number Maximum simultaneous connections connMaxInternodeNum

to the same node

Net filter file Path to a file with a list of allowed connNetFilterFile

IP subnets

Use RDMA Use RDMA connUseRDMA

RDMA buffers number Number of RDMA buffers connRDMABufNum

RDMA buffer size Maximum size of a buffer that will be connRDMABufSize

sent over the network

RDMA type of service RDMA type of service connRDMATypeOfService

Tcp only filter file Path to a file with a list of no RDMA connTcpOnlyFilterFile

IP ranges

Log level Log level logLevel

Enable Quota Enable quota quotaEnabled

...continues

© Bright Computing, Inc.

11.3 Managing The Deployed BeeGFS Instance 487

...continued

Parameter Description Option to beegfs-client

Create hardlinks as Create a symlink when an application sysCreateHardlinksAsSymlinks

symlinks tries to create a hardlink

Mount sanity check Time in ms that server has to respond sysMountSanityCheckMS

ms after mount sanity check

Session check on Check for valid sessions on storage sysSessionCheckOnClose

close server when a file is closed

Sync on close Sync file content on close sysSyncOnClose

Target offline Timeout until all storage targets are sysTargetOfflineTimeoutSecs

timeout considered offline when no target

state updates can be fetched from

management server

Update target states Interval for storage targets states check sysUpdateTargetStatesSecs

time

Enable xattrs Enable xattrs sysXAttrsEnabled

Enable ACLs Enable ACLs sysACLsEnabled

File cache type File read/write cache type tuneFileCacheType

Preferred meta file Path to a file with preferred metadata tunePreferredMetaFile

servers

Preferred storage Path to a file with preferred storage tunePreferredStorageFile

file targets

Remote fsync Should fsync be executed on server to tuneRemoteFSync

flush cached file

Use global append Should files, opened in append mode, tuneUseGlobalAppendLocks

locks be protected by locks on local machine

(false) or on servers (true)

Use global file Should advisory locks be checked on tuneUseGlobalFileLocks

locks local machine (false) or on servers

...continues

© Bright Computing, Inc.

488 BeeGFS

...continued

Parameter Description Option to beegfs-client

(true)

Table 11.4: BeeGFSClient role parameters and beegfs-client options

The beegfs-client settings are updated by Bright Cluster Manager in /etc/beegfs/
beegfs-client.conf.

Parameter Description Option to beegfs-client

Authentification Path to the shared secret connAuthFile

file authentification file

Helper port TCP TCP port for helper service connHelperdPortTCP

No log date Do not show date along with time in log logNoDate

Number of log lines Number of lines in log file, after which logNumLines

it is rotated

Number of log Number of old log files to keep logNumRotatedFiles

rotated files

Log file Path to the log file, empty means logs logStdFile

go to the journal

Helper workers Number of worker threads for helper tuneNumWorkers

number service

Table 11.5: BeeGFSClient role parameters and beegfs-helperd options

The beegfs-helperd settings are updated by Bright Cluster Manager within /etc/beegfs/
beegfs-helperd.conf.

The settings can be managed in cmsh via the beegfs::client role:

Example

[bright91 ~]# cmsh
[bright91]% category roles default
[bright91->category[default]->roles]% assign bee<TAB><TAB><TAB>
beegfs::client beegfs::management beegfs::metadata beegfs::storage
[bright91->category[default]->roles]% assign beegfs::client
[bright91->category*[default*]->roles*[BeeGFS::Client*]]% show
Parameter Value
-------------------------------- --
Add services yes
Name BeeGFS::Client
Provisioning associations <0 internally used>

© Bright Computing, Inc.

/etc/beegfs/beegfs-client.conf
/etc/beegfs/beegfs-client.conf
/etc/beegfs/beegfs-helperd.conf
/etc/beegfs/beegfs-helperd.conf

11.3 Managing The Deployed BeeGFS Instance 489

Revision
Type BeeGFSClientRole
Management node
Authentification file
Client port UDP 8004
Communication retry time 10m
Fallback expiration time 15m
Helper port TCP 8006
Interfaces file
Max internode number 12
Mountpoint /mnt/beegfs
Net filter file
RDMA buffer size 8192
RDMA buffers number 70
RDMA type of service 0
Tcp only filter file
Use RDMA yes
Log file
Log level 3
No log date no
Number of log lines 50000
Number of log rotated files 5
Enable Quota no
Create hardlinks as symlinks no
Enable ACLs no
Enable xattrs no
Mount sanity check ms 11s
Session check on close no
Sync on close no
Target offline timeout 15m
Update target states time 1m
File cache type buffered
Helper workers number 2
Preferred meta file
Preferred storage file
Remote fsync yes
Use global append locks no
Use global file locks no

11.3.3 Usage
Accessing The Filesystem
After the installation process finishes, the BeeGFS filesystem can be accessed on the client nodes or on
the head node. The default mount point is /mnt/beegfs, which can be changed within /etc/beegfs/
beegfs-mounts.conf.

© Bright Computing, Inc.

/mnt/beegfs
/etc/beegfs/beegfs-mounts.conf
/etc/beegfs/beegfs-mounts.conf

12
Post-Installation Software

Management
Some time after Bright Cluster Manager has been installed, administrators may wish to manage other
software on the cluster. This means carrying out software management actions such as installation,
removal, updating, version checking, and so on.

Since Bright Cluster Manager is built on top of an existing Linux distribution, it is best that the
administrator use distribution-specific package utilities for software management.

Packages managed by the distribution are hosted by distribution repositories. SUSE and RHEL dis-
tributions require the purchase of their license in order to access their repositories. The other distribu-
tions do not.

Packages managed by Bright Cluster Manager are hosted by the Bright Computing repository. Ac-
cess to the Bright Computing repositories also requires a license (Chapter 4 of the Installation Manual).
Available packages for a particular Bright Cluster Manager version and distribution can be viewed via
the package dashboard at https://support.brightcomputing.com/packages-dashboard/.

There may also be software that the administrator would like to install that is outside the default
packages collection. These could be source files that need compilation, or packages in other repositories.

A software image (section 2.1.2) is a filesystem that a node picks up from a provisioner (a head
node or a provisioning node) during provisioning so that the node can run as a linux system after
provisioning. A subtopic of software management on a cluster is software image management—the
management of software on a software image. By default, a node uses the same distribution as the head
node for its base image along with necessary minimal, cluster-mandated changes. A node may however
deviate from the default, and be customized by having software added to it in several ways.

This chapter covers the techniques of software management for the cluster.
Section 12.1 describes the naming convention for a Bright Cluster Manager RPM or .deb package.
Section 12.2 describes how an RPM or .deb package is managed for the head node.
Section 12.3 describes how an RPM or .deb kernel package can be managed on a head node or image.
Section 12.4 describes how an RPM or .deb package can be managed on a software image.
Section 12.5 describes how a software other than an RPM or .deb package can be managed on a

software image.
Section 12.6 describes how custom software images are created that are completely independent of

the existing software image distribution and version.

12.1 Bright Cluster Manager Packages And Their Naming Convention
Like the distributions it runs on top of, Bright Cluster Manager uses either .rpm packages, managed by
RPM (RPM Package Manager), or .deb (Debian) packages, managed by APT (Advanced Package Tool).
For example, the cmdaemon package built by Bright Cluster Manager has the following .rpm and .deb
packages:

© Bright Computing, Inc.

https://support.brightcomputing.com/packages-dashboard/

492 Post-Installation Software Management

cmdaemon-9.1-146965_cm9.1_e6f593b676.x86_64.rpm
cmdaemon_9.1-146965-cm9.1-e6f593b676_amd64.deb

The file name has the following structure:

package-version-revision_cmx.y_hash.architecture.rpm

and

package_version-revision-cmx.y-hash_architecture.deb

where:

• package (cmdaemon) is the name of the package

• version (9.1) is the version number of the package

• revision (146965) is the revision number of the package

• cm is used to indicate it is a package built by Bright Computing for the cluster manager

• x.y (9.1) is the version of Bright Cluster Manager for which the RPM was built

• hash (e6f593b676) is a hash, and is only present for Bright Cluster Manager packages. It is used
for reference by the developers of Bright Cluster Manager.

• architecture (x86_64 for RPMs or amd64 for APT) is the architecture for which the package was
built. The architecture name of x86_64 or amd64 refers the same 64-bit x86 physical hardware in
either case.

The differences in .rpm versus .deb package names are just some underbar/hyphen (_/-) changes,
the hash (only for Bright Cluster Manager packages), and the architecture naming convention.

Among the distributions supported by Bright Cluster Manager, only Ubuntu uses .deb packages.
The rest of the distributions use .rpm packages.

Querying The Packages
To check whether Bright Computing or the distribution has provided a file that is already installed on
the system, the package it has come from can be found.

For RPM-based systems: rpm -qf can be used with the full path of the file:

Example

[root@bright91 ~]# rpm -qf /usr/bin/zless
gzip-1.9-9.el8.x86_64
[root@bright91 ~]# rpm -qf /cm/local/apps/cmd/sbin/cmd
cmdaemon-9.1-146965_cm9.1_e6f593b676.x86_64

In the example, /usr/bin/zless is supplied by the distribution, while /cm/local/apps/cmd/sbin/
cmd is supplied by Bright Cluster Manager, as indicated by the “_cm” in the nomenclature.

For APT-based systems: A similar check can be done using dpkg -S to find the .deb package that
provided the file, and then dpkg -s on the package name to reveal further information:

Example

© Bright Computing, Inc.

/cm/local/apps/cmd/sbin/cmd
/cm/local/apps/cmd/sbin/cmd

12.1 Bright Cluster Manager Packages And Their Naming Convention 493

[root@bright91:~# dpkg -S /cm/local/apps/cmd/etc/cmd.env
cmdaemon: /cm/local/apps/cmd/etc/cmd.env
[root@bright91:~# dpkg -s cmdaemon
Package: cmdaemon
Status: install ok installed
Priority: optional
Section: devel
Installed-Size: 89143
Maintainer: Cluster Manager Development <dev@brightcomputing.com>
Architecture: amd64
Version: 9.1-146965-cm9.1-e6f593b676
Provides: cmdaemon
...

As an aside, system administrators should be aware that the Bright Computing version of a package
is provided and used instead of a distribution-provided version for various technical reasons. The most
important one is that it is tested and supported by Bright Cluster Manager. Replacing the Bright Com-
puting version with a distribution-provided version can result in subtle and hard-to-trace problems in
the cluster, and Bright Computing cannot offer support for a cluster that is in such a state, although
some guidance may be given in special cases.

More information about the RPM Package Manager is available at http://www.rpm.org, while APT
is documented for Ubuntu at http://manpages.ubuntu.com/manpages/.

12.1.1 The packages Command
Bright Cluster Manager also provides the packages command in the device mode of cmsh. This should
not be confused with the packages command used by zypper. The packages command used by cmsh
displays an overview of the installed packages, independent of rpm or deb package management.

The -a|--all option can be used to list all the packages installed on a particular node:

Example

[bright91]% device use node001
[bright91->device[node001]]% packages -a
Node Type Name Version Arch Size Install date
-------- -------- ----------------- --------- -------- -------- --------------------
node001 rpm GConf2 3.2.6 x86_64 6.3MiB 2021/03/03 12:39:28
node001 rpm Lmod 8.4 noarch 1.10MiB 2021/03/03 12:40:49
node001 rpm NetworkManager 1.22.8 x86_64 8.6MiB 2020/07/22 13:42:20
...

The -c|--category option can be used to list all the packages installed in a node category:

Example

[bright91]% device
[bright91->device]% packages -a -c default
Node Type Name Version Arch Size Install date
-------- -------- ----------------- --------- -------- -------- --------------------
node001 rpm GConf2 3.2.6 x86_64 6.3MiB 2021/03/03 12:39:28
node001 rpm Lmod 8.4 noarch 1.10MiB 2021/03/03 12:40:49
node001 rpm NetworkManager 1.22.8 x86_64 8.6MiB 2020/07/22 13:42:20
...

Running the -a option for many nodes can be user-unfriendly. That is because per node this com-
mand typically returns about 100KB of data. So, for a 1000 nodes this would output about 100MB and a
table with nearly a million lines.

© Bright Computing, Inc.

http://www.rpm.org
http://manpages.ubuntu.com/manpages/

494 Post-Installation Software Management

When checking packages for many nodes, it is best to request the package by name. Multiple
-f|--find options can be used in the command line to display several packages.

Example

[bright91]% device
[bright91->device]% packages -c default -f cmdaemon
Node Type Name Version Arch Size Install date
-------- -------- --------- -------- -------- -------- --------------------
node001 rpm cmdaemon 9.1 x86_64 87MiB 2021/03/03 12:40:58
node002 rpm cmdaemon 9.1 x86_64 87MiB 2021/03/03 12:40:58
...

Further options, and examples, can be listed by running the help packages command within the
device mode of cmsh.

12.2 Managing Packages On The Head Node
12.2.1 Managing RPM Or .deb Packages On The Head Node
Once Bright Cluster Manager has been installed, distribution packages and Bright Cluster Manager
software packages are conveniently managed using the yum, zypper or apt repository and package
managers. The zypper tool is recommended for use with the SUSE distribution, the apt utility is recom-
mended for use with Ubuntu, and yum is recommended for use with the other distributions that Bright
Cluster Manager supports. YUM is not set up by default in SUSE, and it is better not to install and use
it with SUSE unless the administrator is familiar with configuring YUM.

Listing Packages On The Head Node With YUM and Zypper
For YUM and zypper, the following commands list all available packages:

yum list
or
zypper refresh; zypper packages

For zypper, the short command option pa can also be used instead of packages.

Listing Packages On The Head Node With APT
For Ubuntu, the apt-cache command is used to view available packages. To generate the cache used by
the command, the command:

apt-cache gencaches

can be run.
A verbose list of available packages can then be seen by running:

apt-cache dumpavail

It is usually more useful to use the search option to apt-cache to search for the package with a regex:

apt-cache search <regex>

A similar, but slightly more verbose option is the search option for apt:
apt search <regex>

© Bright Computing, Inc.

12.2 Managing Packages On The Head Node 495

Updating/Installing Packages On The Head Node
To install a new package called <package name> into a distribution, the corresponding package managers
are used as follows:

yum install <package name>
zypper in <package name> #for SLES
apt install <package name> #for Ubuntu

Installed packages can be updated to the latest by the corresponding package manager as follows:

yum update
zypper refresh; zypper up #refresh recommended to update package metadata
apt update; apt upgrade #update recommended to update package metadata

An aside on the differences between the update, refresh/up, and update/upgrade options of the
package managers: The update option in YUM by default installs any new packages. On the other
hand, the refresh option in zypper, and the update option in APT only update the meta-data (the
repository indices). Only if the meta-data is up-to-date will an update via zypper, or an upgrade via
apt install any newly-known packages. For convenience, in the Bright Cluster Manager manuals, the
term update is used in the YUM sense in general—that is, to mean including the installation of new
packages—unless otherwise stated.

Bright Computing maintains YUM and zypper repositories of its packages at:

http://updates.brightcomputing.com/yum

and updates are fetched by YUM and zypper for Bright Cluster Manager packages from there by default,
to overwrite older package versions by default.

For Ubuntu, the Bright Computing .deb package repositories are at:

http://updates.brightcomputing.com/deb

Accessing the repositories manually (i.e. not using yum, zypper, or apt) requires a username and
password. Authentication credentials are provided upon request. For more information on this,
supportteam@brightcomputing.com should be contacted.

Cleaning Package Caches On The Head Node
The repository managers use caches to speed up their operations. Occasionally these caches may need
flushing to clean up the index files associated with the repository. This can be done by the appropriate
package manager with:

yum clean all
zypper clean -a #for SUSE
apt-get clean #for Ubuntu

Signed Package Verification
As an extra protection to prevent Bright Cluster Manager installations from receiving malicious up-
dates, all Bright Cluster Manager packages are signed with the Bright Computing GPG public key
(0x5D849C16), installed by default in /etc/pki/rpm-gpg/RPM-GPG-KEY-cm for Red Hat, Scientific Linux,
and CentOS packages. The Bright Computing public key is also listed in Appendix B.

The first time YUM or zypper are used to install updates, the user is asked whether the Bright Com-
puting public key should be imported into the local repository packages database. Before answering
with a “Y”, yum users may choose to compare the contents of /etc/pki/rpm-gpg/RPM-GPG-KEY-cm with
the key listed in Appendix B to verify its integrity. Alternatively, the key may be imported into the local
RPM database directly, using the following command:

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-cm

© Bright Computing, Inc.

supportteam@brightcomputing.com
/etc/pki/rpm-gpg/RPM-GPG-KEY-cm
/etc/pki/rpm-gpg/RPM-GPG-KEY-cm

496 Post-Installation Software Management

With APT the Bright Cluster Manager keyring is already imported into /etc/apt/trusted.gpg.d/
brightcomputing-archive-cm.gpg if the cm-config-apt package, provided by the Bright Computing
repository, has been installed. The cm-config-apt package is installed by default for the Ubuntu edition
of Bright Cluster Manager.

Third Party Packages
Installation of the following third party packages, most of which are repackaged by Bright Computing
for installation purposes, is described in Chapter 7 of the Installation Manual. These are installed mostly
on the head node, but some packages work as a server and client process, with the clients installed and
running on the regular nodes:

Most of the third party packages in the following list are repackaged by Bright Computing for instal-
lation purposes. These are installed mostly on the head node, but some packages work as a server and
client process, with the clients installed and running on the regular nodes. The packages are described
in Chapter 7 of the Installation Manual:

• Modules (section 7.1)

• Shorewall (section 7.2)

• Compilers (section 7.3):

– GCC (section 7.3.1)

– Intel Compiler Suite (section 7.3.2)

– PGI High-Performance Compilers (section 7.3.3)

• CUDA (section 7.4)

Exclusion of packages on the head node can be carried out as explained in section 12.3.2, where the
kernel package is used as an example for exclusion.

Gnome And KDM Installation—Disabling network-manager
NetworkManager interferes with the custom network management of Bright Cluster Manager and should
thus never be enabled.

When installing the cluster from bare metal using the Bright Cluster Manager installer, if the X11
graphical user installation option checkbox is ticked, then NetworkManager is disabled by using a finalize
script, so that Bright Cluster Manager’s networking is able to work properly.

However, some time after the cluster is configured, the administrator may wish to install the Gnome
or KDE graphical desktop environment. This can be done in YUM or APT. For example in RHEL the
installation can be carried out with:

yum groupinstall "GNOME Desktop"
The Network Manager package is a dependency of some Gnome and KDE desktop components,

and may therefore automatically be installed by the package manager command. As a result, the
NetworkManager service may be enabled, and it may start to run with the distribution defaults. How-
ever, this interferes with the custom network management of Bright Cluster Manager, and NetworkManager
should therefore be disabled in this case.

Disabling Network Manager can be done as follows:

• On RHEL 7, RHEL 8 and derivatives, and Ubuntu:

Example

[root@bright91 ~]# systemctl status NetworkManager.service
...
[root@bright91 ~]# systemctl disable NetworkManager.service

© Bright Computing, Inc.

/etc/apt/trusted.gpg.d/brightcomputing-archive-cm.gpg
/etc/apt/trusted.gpg.d/brightcomputing-archive-cm.gpg

12.3 Kernel Management On A Head Node Or Image 497

• On SLES-based systems:

Example

YAST can be used to disable NetworkManager by going to Network Devices→ Network Settings
→ Global Options → Network Setup Method, and setting the option: Traditional Method
with ifup.

12.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm
Packages

Sometimes a package is not packaged as an RPM or .deb package by Bright Computing or by the distri-
bution. In that case, the software can usually be treated as for installation onto a standard distribution.
There may be special considerations on placement of components that the administrator may feel ap-
propriate due to the particulars of a cluster configuration.

For example, for compilation and installation of the software, some consideration may be made
of the options available on where to install parts of the software within the default shared filesys-
tem. A software may have a compile option, say --prefix, that places an application <application>
in a directory specified by the administrator. If the administrator decides that <application> should be
placed in the shared directory, so that everyone can access it, the option could then be specified as:
“--prefix=/cm/shared/apps/<application>”.

Other commonly provided components of software for the applications that are placed in shared
may be documentation, licenses, and examples. These may similarly be placed in the directories /cm/
shared/docs, /cm/shared/licenses, and /cm/shared/examples. The placement may be done with a
compiler option, or, if that is not done or not possible, it could be done by modifying the placement by
hand later. It is not obligatory to do the change of placement, but it helps with cluster administration to
stay consistent as packages are added.

Module files (section 2.2 of this manual, and 7.1 of the Installation Manual) may sometimes be pro-
vided by the software, or created by the administrator to make the application work for users easily
with the right components. The directory /cm/shared/modulefiles is recommended for module files
to do with such software.

To summarize the above considerations on where to place software components, the directories un-
der /cm/shared that can be used for these components are:

/cm/shared/
|-- apps
|-- docs
|-- etc
|-- examples
|-- licenses
`-- modulefiles

12.3 Kernel Management On A Head Node Or Image
Care should be taken when updating a head node or a software image. This is particularly true when
custom kernel modules compiled against a particular kernel version are being used.

A package can be managed in a software image and the image deployed to nodes. A careful ad-
ministrator typically clones a copy of a working image that is known to work, before modifying the
image.

12.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node
A standard distribution kernel is treated almost like any other package in a distribution.

This means that:

© Bright Computing, Inc.

/cm/shared/docs
/cm/shared/docs
/cm/shared/licenses
/cm/shared/examples
/cm/shared/modulefiles

498 Post-Installation Software Management

• For head nodes, installing a standard kernel is done according to the normal procedures of man-
aging a package on a head node (section 12.2).

• For regular nodes, installing a standard distribution kernel is done according to the normal proce-
dures of managing an package inside an image, via a changed root (chroot) directory (section 12.4),
but with some special aspects that are discussed in this section.

When a kernel is updated or reinstalled (section 12.3.3), kernel-specific drivers, such as OFED drivers
may need to be updated or reinstalled. OFED driver installation details are given in section 7.6 of the
Installation Manual.

Kernel Package Name Formats
For RHEL, individual kernel package names take a form such as:

kernel-3.10.0-327.3.1.el7.x86_64.rpm
The actual one suited to a cluster varies according to the distribution used. RPM Packages with names
that begin with “kernel-devel-” are development packages that can be used to compile custom kernels,
and are not required when installing standard distribution kernels.

For Ubuntu, individual Linux kernel image package names take a form such as:
linux-image-*.deb

or
linux-signed-image-*.deb

Running apt-cache search l̂inux | grep ’kernel image’ shows the various packaged kernel
images in the distribution.

Other Extra Considerations
When installing a kernel, besides the chroot steps of section 12.4, extra considerations for kernel pack-
ages are:

• The kernel must also be explicitly set in CMDaemon (section 12.3.3) before it may be used by the
regular nodes.

• If using the chroot method to install the kernel rather than the cm-chroot-sw-img method, some
other warnings to do with missing /proc paths may appear. For RHEL and derivatives, these
warnings can be ignored.

• The ramdisk of a regular node must be regenerated using the createramdisk command (sec-
tion 12.4.3).

• If the cluster is in a high availability configuration, then installing a new kernel on to the active
head node may in some edge cases stop its network interface, and trigger a failover. It is therefore
usually wiser to make the change on the passive head node first, or to disable automatic failover,
before carrying out a change that could initiate a failover.

As is standard for Linux, both head or regular nodes must be rebooted to use the new kernel.

12.3.2 Excluding Kernels And Other Packages From Updates
Specifying A Kernel Or Other Package For Update Exclusion
Sometimes it may be desirable to exclude the kernel from updates on the head node.

• When using yum, to prevent an automatic update of a package, the package is listed after using
the --exclude flag. So, to exclude the kernel from the list of packages that should be updated, the
following command can be used:

yum --exclude kernel update

© Bright Computing, Inc.

12.3 Kernel Management On A Head Node Or Image 499

To exclude a package such as kernel permanently from all YUM updates, without having to spec-
ify it on the command line each time, the package can instead be excluded inside the repository
configuration file. YUM repository configuration files are located in the /etc/yum.repos.d direc-
tory, and the packages to be excluded are specified with a space-separated format like this:

exclude = <package 1> <package 2> ...

• The zypper command can also carry out the task of excluding the kernel package from getting
updated when updating. To do this, the kernel package is first locked (prevented from change)
using the addlock command, and the update command is run. Optionally, the kernel package is
unlocked again using the removelock command:

zypper addlock kernel
zypper update
zypper removelock kernel #optional

• One APT way to upgrade the software while excluding the kernel image package is to first update
the system, then to mark the kernel as a package that is to be held, and then to upgrade the system.
Optionally, after the upgrade, the hold mark can be removed:

apt update
apt-mark hold <linux-image-version>
apt upgrade
apt-mark unhold <linux-image-version> #optional

The complementary way to carry out an upgrade in APT while holding the kernel back, is to use
pinning. Pinning can be used to set dependency priorities during upgrades. Once set, it can hold a
particular package back while the rest of the system upgrades.

Specifying A Repository For Update Exclusion
Sometimes it is useful to exclude an entire repository from an update on the head node. For example,
the administrator may wish to exclude updates to the parent distribution, and only want updates for the
cluster manager to be pulled in. In that case, in RHEL-derivatives a construction such as the following
may be used to specify that only the repository IDs matching the glob cm* are used, from the repositories
in /etc/yum.repos.d/:

[root@bright91 ~]# yum repolist
...
122 packages excluded due to repository priority protections
repo id repo name status
base/7/x86_64 CentOS-7 - Base 10,067+30
cm-rhel7-9.1/x86_64 CM 9.1 for Red Hat Enterprise Linux 7 10,949+56
epel/x86_64 Extra Packages for Enterprise Linux 7 - x86_64 13,324+92
extras/7/x86_64 CentOS-7 - Extras 301+3
updates/7/x86_64 CentOS-7 - Updates 332
repolist: 34,973
[root@bright91 ~]# yum --disablerepo=* --enablerepo=cm* update

In Ubuntu, repositories can be added or removed by editing the repository sources under /etc/apt/
sources.list.d/. There is also the apt edit-sources command, which, unsurprisingly, also edits
the repository sources. The add-apt-repository command (man (1) add-apt-repository) edits the
repository sources by line. Running add-apt-repository -h shows options and examples.

© Bright Computing, Inc.

/etc/yum.repos.d
/etc/yum.repos.d/
/etc/apt/sources.list.d/
/etc/apt/sources.list.d/

500 Post-Installation Software Management

12.3.3 Updating A Kernel In A Software Image
A kernel is typically updated in the software image by carrying out a package installation using the
chroot environment (section 12.4), or specifying a relative root directory setting.

Package dependencies can sometimes prevent the package manager from carrying out the update,
for example in the case of OFED packages (section 7.6 of the Installation Manual). In such cases, the
administrator can specify how the dependency should be resolved.

Parent distributions are by default configured, by the distribution itself, so that only up to 3 kernel
images are kept when installing a new kernel with the package manager. However, in a Bright Cluster
Manager cluster, this default distribution value is overridden by a default Bright Cluster Manager value,
so that kernel images are never removed during YUM updates, or apt upgrade, by default.

For a software image, if the kernel is updated by the package manager, then the kernel is not used
on reboot until it is explicitly enabled with either Bright View or cmsh.

• To enable it using Bright View, the Kernel version entry for the software im-
age should be set. This can be accessed via the clickpath Provisioning→Software
images→Edit→Settings→Kernel version (figure 12.1).

Figure 12.1: Updating A Software Image Kernel With Bright View

• To enable the updated kernel from cmsh, the softwareimage mode is used. The kernelversion
property of a specified software image is then set and committed:

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage
[bright91]->softwareimage% use default-image
[bright91->softwareimage[default-image]]% set kernelversion 3.10.0-327.3.1.el7.x86_64
[bright91->softwareimage*[default-image*]]% commit -w

Tab-completion suggestions for the set kernelversion command will display the available values
for the kernel version.

© Bright Computing, Inc.

12.3 Kernel Management On A Head Node Or Image 501

12.3.4 Setting Kernel Options For Software Images
A standard kernel can be booted with special options that alter its functionality. For example, a ker-
nel can boot with apm=off, to disable Advanced Power Management, which is sometimes useful as a
workaround for nodes with a buggy BIOS that may crash occasionally when it remains enabled.

In Bright View, to enable booting with this kernel option setting, the clickpath
Provisioning→Software images→Edit→Settings→Kernel parameters (figure 12.1) is used
to set the kernel parameter to apm=off for that particular image.

In cmsh, the equivalent method is to modify the value of “kernel parameters” in softwareimage
mode for the selected image:

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage
[bright91]->softwareimage% use default-image
[bright91->softwareimage[default-image]]% append kernelparameters " apm=off"
[bright91->softwareimage*[default-image*]]% commit

Often kernel options load up modules and their parameters. Making module loading persist after
reboot and setting module loading order is covered in section 5.3.2

Some kernel options may require changes to be made in the BIOS settings in order to function.

12.3.5 Kernel Driver Modules
Bright Computing provides some packages which install new kernel drivers or update kernel drivers.
In RPM-based distributions, such packages generally require the kernel-devel package. In this section,
the kernel-devel-check utility is first described, followed by the various drivers that Bright Computing
provides.

Kernel Driver Modules: kernel-devel-check Compilation Check
For RPM, the distribution’s kernel-devel package is required to compile kernel drivers for its kernel.
It must be the same version and release as the kernel running on the node. For APT, the linux-header
package corresponding to the kernel image is used.

In RPM-based distributions, to check the head node and software images for the installation status
of the kernel-devel package, the Bright Cluster Manager utility kernel-devel-check is run from the
head node:

Example

[root@mycluster ~]# kernel-devel-check
Head node: mycluster

No kernel development directories found, probably no kernel development package installed.
package kernel-devel-3.10.0-957.1.3.el7.x86_64 is not installed

Kernel development package kernel-devel-3.10.0-957.1.3.el7.x86_64 not found
If needed, try to install the kernel development package with:
yum install kernel-devel-3.10.0-957.1.3.el7.x86_64

Software image: default-image
No kernel development directories found, probably no kernel development package installed.

package kernel-devel-3.10.0-957.1.3.el7.x86_64 is not installed
Kernel development package kernel-devel-3.10.0-957.1.3.el7.x86_64 not found
If needed, try to install the kernel development package with:
chroot /cm/images/default-image yum install kernel-devel-3.10.0-957.1.3.el7.x86_64

As suggested by the output of kernel-devel-check, running a command on the head node such as:

[root@mycluster ~]# chroot /cm/images/default-image1 yum install kernel-devel-3.10.0-957.1.3.el7.x86_64

© Bright Computing, Inc.

502 Post-Installation Software Management

installs a kernel-devel package, to the software image called default-image1 in this case. The package
version suggested corresponds to the kernel version set for the image, rather than necessarily the latest
one that the distribution provides.

Kernel Driver Modules: Improved Intel Wired Ethernet Drivers
Improved Intel wired Ethernet drivers—what they are: The standard distributions provide Intel
wired Ethernet driver modules as part of the kernel they provide. Bright Computing provides an im-
proved version of the drivers with its own intel-wired-ethernet-drivers package. The package con-
tains more recent versions of the Intel wired Ethernet kernel drivers: e1000, e1000e, igb, igbvf, ixgbe
and ixgbevf. They often work better than standard distribution modules when it comes to performance,
features, or stability.

Improved Intel wired Ethernet drivers—replacement mechanism: The improved drivers can be in-
stalled on all nodes.

For head nodes, the standard Intel wired Ethernet driver modules on the hard drive are overwritten
by the improved versions during package installation. Backing up the standard driver modules before
installation is recommended, because it may be that some particular hardware configurations are unable
to cope with the changes, in which case reverting to the standard drivers may be needed.

For regular nodes, the standard distribution wired Ethernet drivers are not overwritten into the
provisioner’s software image during installation of the improved drivers package. Instead, the standard
driver modules are removed from the kernel and the improved modules are loaded to the kernel during
the init stage of boot.

For regular nodes in this “unwritten” state, removing the improved drivers package from the soft-
ware image restores the state of the regular node, so that subsequent boots end up with a kernel running
the standard distribution drivers from on the image once again. This is useful because it allows a very
close-to-standard distribution to be maintained on the nodes, thus allowing better distribution support
to be provided for the nodes.

If the software running on a fully-booted regular node is copied over to the software image, for ex-
ample using the “Grab to image” button (section 12.5.2), this will write the improved driver module
into the software image. Restoring to the standard version is then no longer possible with simply re-
moving the improved drivers packages. This makes the image less close-to-standard, and distribution
support is then less easily obtained for the node.

Thus, after the installation of the package is done on a head or regular node, for every boot from the
next boot onwards, the standard distribution Intel wired Ethernet drivers are replaced by the improved
versions for fully-booted kernels. This replacement occurs before the network and network services
start. The head node simply boots from its drive with the new drivers, while a regular node initially
starts with the kernel using the driver on the software image, but then if the driver differs from the
improved one, the driver is unloaded and the improved one is compiled and loaded.

Improved Intel wired Ethernet drivers—installation: The drivers are compiled on the fly on the reg-
ular nodes, so a check should first be done that the kernel-devel package is installed on the regular
nodes (section 12.3.5).

If the regular nodes have the kernel-devel package installed, then the following yum commands are
issued on the head node, to install the package on the head node and in the default-image:

Example

[root@mycluster ~]# yum install intel-wired-ethernet-drivers
[root@mycluster ~]# chroot /cm/images/default-image
[root@mycluster /]# yum install intel-wired-ethernet-drivers

For SUSE, the equivalent zypper commands are used (“zypper in” instead of “yum install”).

© Bright Computing, Inc.

12.4 Managing A Package In A Software Image And Running It On Nodes 503

Kernel Driver Modules: CUDA Driver Installation
CUDA drivers are drivers the kernel uses to manage GPUs. These are compiled on the fly for nodes
with GPUs in Bright Cluster Manager. The details of how this is done is covered in the CUDA software
section (section 7.4 of the Installation Manual).

Kernel Driver Modules: OFED And OPA Stack Installation
By default, the distribution provides the OFED stack used by the kernel to manage the InfiniBand or
RDMA interconnect. Installing a Bright Cluster Manager repository OFED stack to replace the distribu-
tion version is covered in section 7.6 of the Installation Manual. Some guidance on placement into initrd
for the purpose of optional InfiniBand-based node provisioning is given in section 5.3.3.

Installing a Bright Cluster Manager repository Omni-Path (OPA) stack is covered in section 7.7 of the
Installation Manual.

12.4 Managing A Package In A Software Image And Running It On Nodes
A package can be managed in a software image and the image deployed to nodes. A careful adminis-
trator typically clones a copy of a working image that is known to work, before modifying the image.

12.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which The
Packages Are Deployed

Managing packages (including the kernel) inside a software image is most easily done while on the head
node, using a “change root” (chroot) mechanism. The easiest way to carry out the chroot mechanism
in Bright Cluster Manager is to use a wrapper provided by Bright Cluster Manager, cm-chroot-sw-img,
which works with all distributions.

The same can be carried out more laboriously using the distribution package managers, such as rpm,
yum, zypper, or apt, by using the associated chroot package manager option, or invoking chroot as a
standalone command.

Change Root As An Option In The Package Manager Command
Using the rpm command: The rpm command supports the --root flag. To install an RPM package
inside the default software image while in the head node environment, using the repositories of the
head node, the command can be used as follows:

Example

rpm --root /cm/images/default-image -ivh /tmp/libxml2-2.6.16-6.x86_64.rpm

Using the yum command: The yum command allows more general updates with a change root option.
For example, all packages in the default image can be updated using yum for RHEL and derivatives with:

Example

yum --installroot=/cm/images/default-image update #for RHEL variants

A useful option to restrict the version to which an image is updated, is to use the option
--releasever. For example, to allow only updates up to RHEL7.4, the command in the preceding
example would have --releasever=7.4 appended to it.

Using the zypper command: For SLES, zypper can be used as follows to update the image:

Example

zypper --root /cm/images/default-image up #for SLES

© Bright Computing, Inc.

504 Post-Installation Software Management

Change Root With chroot, Then Running The Package Manager Commands
If the repositories used by the software image are the same as the repositories used by the head node,
then the chroot command can be used instead of the --installroot/--root options to get the same
result as the package manager options. That is, the same result is accomplished by first chrooting
into an image, and subsequently executing the rpm, yum, or zypper commands without --root or
--installroot arguments. Thus:

For RHEL and derivatives: For YUM-based update, running yum update is recommended to update
the image, after using the chroot command to reach the root of the image:

Example

[root@bright91 ~]# chroot /cm/images/default-image
[root@bright91 /]# yum update #for RHEL variants
...updates happen...
[root@bright91 /]# exit #get out of chroot

For SLES: For SLES, running zypper up is recommended to update the image, after using the chroot
command to reach the root of the image:

Example

bright91:~# chroot /cm/images/default-image
bright91.cm.cluster:/ # zypper up #for SLES
...updates happen...
bright91.cm.cluster:/ # exit #get out of chroot

For Ubuntu: For Ubuntu and APT, for package installation into the software image, there is often a
need for the /proc, /sys, /dev, and perhaps other directories to be available within the chroot jail.
Additionally, the /proc namespace used should not be that of the head node due to namespace issues
that affect decision-making in some of the pre- and post-installation script bundled with the package.

Pre-configuring all this with bind mounting before going into the chrooted filesystem is a little te-
dious. Therefore the Bright Cluster Manager utility, cm-chroot-sw-img, is strongly recommended to
take care of this.

Thus, for Ubuntu, if the cluster administrator would like to run apt update; apt upgrade to up-
date the image, then the recommended way to do it is to start the process with the cm-chroot-sw-img
command:

Example

root@bright91:~# cm-chroot-sw-img /cm/images/default-image
...messages indicate that the special directories have been mounted automatically, and a chroot jail has been entered...
root@bright91:/# apt update; apt upgrade #for Ubuntu
...An upgrade session runs in the image root. Some administrator inputs may be needed...
root@bright91:/# exit #get out of chroot
...messages indicate that the special directories have been unmounted automatically...

The cm-chroot-sw-img wrapper is less needed in other distributions, with yum and zypper instead of
apt. This is because the namespace issues are not so serious in with those other distributions. However
even in those other distributions, it is cleaner to use the wrapper.

© Bright Computing, Inc.

12.4 Managing A Package In A Software Image And Running It On Nodes 505

Excluding Packages And Repositories From The Image
Sometimes it may be desirable to exclude a package or a repository from an image.

• If using yum --installroot, then to prevent an automatic update of a package, the package is
listed after using the --exclude flag. For example, to exclude the kernel from the list of packages
that should be updated, the following command can be used:

yum --installroot=/cm/images/default-image --exclude kernel update

To exclude a package such as kernel permanently from all YUM updates, without having to spec-
ify it on the command line each time, the package can instead be excluded inside the repository
configuration file of the image. YUM repository configuration files are located in the /cm/images/
default-image/etc/yum.repos.d directory, and the packages to be excluded are specified with a
space-separated format like this:

exclude = <package 1> <package 2> ...

• The zypper command can also carry out the task of excluding a package from getting updated
when during update. To do this, the package is first locked (prevented from change) using the
addlock command, then the update command is run, and finally the package is unlocked again
using the removelock command. For example, for the kernel package:

zypper --root /cm/images/default-image addlock kernel
zypper --root /cm/images/default-image update
zypper --root /cm/images/default-image removelock kernel

• For Ubuntu, the apt-mark hold command can be used to exclude a package. This is described in
the particular case of excluding the kernel package earlier on, in section 12.3.2.

• Sometimes it is useful to exclude an entire repository from an update to the image. For example,
the administrator may wish to exclude updates to the base distribution, and only want Bright Clus-
ter Manager updates to be pulled into the image. In that case, a construction like the following may
be used to specify that, for example, from the repositories listed in /cm/images/default-image/
etc/yum.repos.d/, only the repositories matching the pattern cm* are used:

[root@bright91 ~]# cd /cm/images/default-image/etc/yum.repos.d/
[root@bright91 yum.repos.d]# yum --installroot=/cm/images/defaul\
t-image --disablerepo=* --enablerepo=cm* update

• For Ubuntu, excluding a repository can be carried out by removing the repository under /etc/
apt/sources.list.d/. Slightly handier may be to use the add-apt-repository command, or the
apt edit-sources command.

12.4.2 Installing From Head Into The Image: Updating The Node
If the images are in place, then the node that use those images do not run those images until they have
the changes placed on the nodes. Rebooting the nodes that use the software images is a straightforward
way to have those nodes start up with the new images. Alternatively, the nodes can usually simply be
updated without a reboot (section 5.6), if no reboot is required by the underlying Linux distribution.

12.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root, yum
--installroot Or chroot

• The update process on an image, when using YUM, zypper, or APT, will fail to start if the image is
being provisioned by a provisioner at the time. The administrator can either wait for provisioning
requests to finish, or can ensure no provisioning happens by locking the image (section 5.4.7),
before running the update process. The image can then be updated. The administrator normally
unlocks the image after the update, to allow image maintenance by the provisioners again.

© Bright Computing, Inc.

/cm/images/default-image/etc/yum.repos.d
/cm/images/default-image/etc/yum.repos.d
/cm/images/default-image/etc/yum.repos.d/
/cm/images/default-image/etc/yum.repos.d/
/etc/apt/sources.list.d/
/etc/apt/sources.list.d/

506 Post-Installation Software Management

Example

[root@bright91 ~]# cmsh -c "softwareimage lock default-image"
[root@bright91 ~]# yum --installroot /cm/images/default-image update
[root@bright91 ~]# cmsh -c "softwareimage unlock default-image"

• The rpm --root or yum --installroot command can fail if the versions between the head node
and the version in the software image differ significantly. For example, installation from a Scientific
Linux 7 head node to a RHEL8 software image is not possible with those commands, and can only
be carried out with chroot.

• While installing software into a software image with an rpm --root, yum --installroot or with
a chroot method is convenient, there can be issues if daemons start up in the image, or if the
distribution installation scripts exit with errors due to being in an image environment rather than
a real instance.

For example, installation scripts that stop and re-start a system service during a package instal-
lation may successfully start that service within the image’s chroot jail and thereby cause related,
unexpected changes in the image. Pre- and post- (un)install scriptlets that are part of RPM or APT
packages may cause similar problems.

Bright Computing’s RPM and .deb packages are designed to install under chroot without issues.
However packages from other repositories may cause the issues described. To deal with that, the
cluster manager runs the chrootprocess health check, which alerts the administrator if there is a
daemon process running in the image. The chrootprocess also checks and kills the process if it is
a crond process.

• For some package updates, the distribution package management system attempts to modify the
ramdisk image. This is true for kernel updates, many kernel module updates, and some other
packages. Such a modification is designed to work on a normal machine. For a regular node on a
cluster, which uses an extended ramdisk, the attempt does nothing.

In such cases, a new ramdisk image must nonetheless be generated for the regular nodes, or the
nodes will fail during the ramdisk loading stage during start-up (section 5.8.4).

The ramdisk image for the regular nodes can be regenerated manually, using the createramdisk
command (section 5.3.2).

• Trying to work out what is in the image from under chroot must be done with some care.

For example, under chroot, running “uname -a” returns the kernel that is currently running—
that is the kernel outside the chroot. This is typically not the same as the kernel that will load
on the node from the filesystem under chroot. It is the kernel in the filesystem under chroot that
an unwary administrator may wrongly expect to detect on running the uname command under
chroot.

To find the kernel version that is to load from the image, the software image kernel version prop-
erty (section 12.3.3) can be inspected using the cluster manager with:

Example

cmsh -c "softwareimage; use default-image; get kernelversion"

12.4.4 Managing A Package In The Node-Installer Image
A special software image is the node-installer image. The node-installer image was introduced in Bright
Cluster Manager version 9.0, to make multiarch (section 12.7) possible.

The node-installer image is an image that, unsurprisingly, contains the node-installer (section 5.4).
The default /cm/node-installer tree is a standalone image for that architecture. It requires updating
just like the regular software image. So, for example, in YUM, the entire tree can be updated with:

© Bright Computing, Inc.

12.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 507

chroot /cm/node-installer yum update

or

yum --installroot=/cm/node-installer update

while a particular package inside the image, such as util-linux, could be installed with:

yum --installroot=/cm/node-installer install util-linux

Updating the node-installer is recommended whenever there are updates available, in order to fix
possible bugs that might affect the node-installer operations.

12.5 Managing Non-RPM Software In A Software Image And Running It On
Nodes

Sometimes, packaged software is not available for a software image, but non-packaged software is. This
section describes the installation of non-packaged software onto a software image in these two cases:

1. copying only the software over to the software image (section 12.5.1)

2. placing the software onto the node directly, configuring it until it is working as required, and sync-
ing that back to the software image using Bright Cluster Manager’s special utilities (section 12.5.2)

In both cases, before making changes, a careful administrator typically clones a copy of a working
image that is known to work, before modifying the image.

As a somewhat related aside, completely overhauling the software image, including changing the
base files that distinguish the distribution and version of the image is also possible. How to manage that
kind of extreme change is covered separately in section 12.6.

However, this current section (12.5) is about modifying the software image with non-RPM software
while staying within the framework of an existing distribution and version.

In all cases of installing software to a software image, it is recommended that software components be
placed under appropriate directories under /cm/shared (which is actually outside the software image).

So, just as in the case for installing software to the head node in section 12.2.2, appropriate software
components go under:

/cm/shared/
|-- apps
|-- docs
|-- examples
|-- licenses
`-- modulefiles

12.5.1 Managing The Software Directly On An Image
The administrator may choose to manage the non-packaged software directly in the correct location on
the image.

For example, the administrator may wish to install a particular software to all nodes. If the software
has already been prepared elsewhere and is known to work on the nodes without problems, such as for
example library dependency or path problems, then the required files can simply be copied directly into
the right places on the software image.

The chroot command may also be used to install non-packaged software into a software image. This
is analogous to the chroot technique for installing packages in section 12.4:

Example

© Bright Computing, Inc.

508 Post-Installation Software Management

cd /cm/images/default-image/usr/src
tar -xvzf /tmp/app-4.5.6.tar.gz
chroot /cm/images/default-image
cd /usr/src/app-4.5.6
./configure --prefix=/usr
make install

Whatever method is used to install the software, after it is placed in the software image, the change
can be implemented on all running nodes by running the updateprovisioners (section 5.2.4) and
imageupdate (section 5.6.2) commands.

12.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image
Why Sync Node-To-Image?
Sometimes, typically if the software to be managed is more complex and needs more care and testing
than might be the case in section 12.5.1, the administrator manages it directly on a node itself, and then
makes an updated image from the node after it is configured, to the provisioner.

For example, the administrator may wish to install and test an application from a node first before
placing it in the image. Many files may be altered during installation in order to make the node work
with the application. Eventually, when the node is in a satisfactory state, and possibly after removing
any temporary installation-related files on the node, a new image can be created, or an existing image
updated.

Administrators should be aware that until the new image is saved, the node loses its alterations and
reverts back to the old image on reboot.

The node-to-image sync can be seen as the converse of the image-to-node sync that is done using
imageupdate (section 5.6.2).

The node-to-image sync discussed in this section is done using the “Grab to image” or
“Synchronize image” menu option from Bright View, or using the “grabimage” command with ap-
propriate options in cmsh. The sync automatically excludes network mounts and parallel filesystems
such as Lustre and GPFS, but includes any regular disk mounted on the node itself.

Some words of advice and a warning are in order here

• The cleanest, and recommended way, to change an image is to change it directly in the node image,
typically via changes within a chroot environment (section 12.5.1).

• Changing the deployed image running on the node can lead to unwanted changes that are not
obvious. While many unwanted changes are excluded because of the excludelistgrab* lists
during a node-to-image sync, there is a chance that some unwanted changes do get captured.
These changes can lead to unwanted or even buggy behavior. The changes from the original
deployed image should therefore be scrutinized with care before using the new image.

• For scrutiny, the bash command:

vimdiff <(cd image1; find . | sort) <(cd image2; find . | sort)

run from /cm/images/ shows the changed files for image directories image1 and image2, with
uninteresting parts folded away. The <(commands) construction is called process substitution, for
administrators unfamiliar with this somewhat obscure technique.

Node-To-Image Sync Using Bright View
In Bright View, saving the node state from, for example, node001 to a new
image is done by selecting the appropriate menu option from the clickpath
Devices→Nodes[node001]→Edit→Settings→Actions→Software image→option (figure 12.2).

© Bright Computing, Inc.

https://www.gnu.org/software/bash/manual/html_node/Process-Substitution.html

12.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 509

Figure 12.2: Synchronizing From A Node To A Software Image In Bright View

The possible options for saving a node state to an image are:

1. The Grab to image option: This opens up a dialog offering an image to sync to. Se-
lecting the image creates a fresh image, grabbing what is to go to the image from the
node. It wipes out whatever (if anything) is in the selected image, except for a list
of excluded items. The excluded items are specified in the “Exclude list grabbing
to a new image” list, available under Node Categories via the clickpath Grouping→Node
categories[default-image]→Settings→Exclude list grab new. The exclude list is known
as excludelistgrabnew (page 510) in cmsh.

2. The Synchronize image option: This does a sync from the node back to the software image that
the node is provisioned with, using evaluation based on file change detection between the node
and the image. It is thus a synchronization to the already existing software image that is currently
in use by the node.

The items that it excludes from the synchronization are specified in the “Exclude
list image grab” list, available under Node Categories via the clickpath Grouping→Node
categories[default-image]→Settings→Exclude list grab. This exclude list is known as
excludelistgrab (page 511) in cmsh.

The synchronize option can be viewed by the administrator as being a more “gentle” way to carry
out a node-to-image sync, compared to the grab option—that is, a “gentle sync” that tries to avoid
wiping out existing files, versus a “violent grab” that can wipe out existing files.

The exclude lists are there to ensure, among other things, that the configuration differences between
nodes are left alone for different nodes with the same image. The exclude lists are simple by default,
but they conform in structure and patterns syntax in the same way that the exclude lists detailed in
section 5.4.7 do, and can therefore be quite powerful.

The images that are available for selection with the Grab to image option can be existing images,
while the image that the Synchronize image option syncs to is the existing image. If such existing
images are known to work well with nodes, then overwriting them with a new image on a production
system may be reckless. A wise administrator who has prepared a node that is to write an image would
therefore follow a process similar to the following instead of simply overwriting an existing image:

© Bright Computing, Inc.

510 Post-Installation Software Management

1. A new image can be cloned from the old image via the clickpath Provisioning→Software
images↓Clone, and setting a name for the new image, for example: newimage. The node state with
the software installed on it would then be saved using the Grab to image option, and choosing
the image name newimage as the image to save it to.

2. A new category is then cloned from the old category via the clickpath
Grouping→Categories↓Clone, and setting a name for the new category, for example
newcategory. The old image in newcategory is changed to the new image newimage via
the clickpath Grouping→Categories→Edit→Settings→Software image↓newimage.

3. A newly-cloned category has no nodes initially. Some nodes are set to the new category so that
their behavior with the new image can be tested. The chosen nodes can be made members of the
new category from within the Settings option of each node, and saving the change. The clickpath
for this is Devices→Nodes→Edit→Settings→Category↓newcategory

4. The nodes that have been placed in the new category are now made to pick up and run their new
images. This can be done with a reboot of those nodes.

5. After sufficient testing, all the remaining nodes can be moved to using the new image. The old
image is removed if no longer needed, or perhaps kept around just in case for reference.

Node-To-Image Sync Using cmsh
The preceding Bright View method can alternatively be carried out using cmsh commands. The cmsh
equivalent to the Synchronize image option is the grabimage command, available from device mode.
The cmsh equivalent to the Grab to image option is the grabimage -i command, where the -i option
specifies the image it will write to. As before, that image must be created or cloned beforehand.

Cloning an image for use, setting a category of nodes that will use it, and then synchronizing a node
that has the new software setup over to the new image on the provisioner might be carried out as follows
via cmsh:

[root@bright91 ~]# cmsh
[bright91]% softwareimage
[bright91->softwareimage]% clone default-image default-image1
[bright91->softwareimage*[default-image1]]% commit
[bright91->softwareimage[default-image1]]% category
[bright91->category]% clone default default1
[bright91->category*[default1*]]% commit
[bright91->category[default1]]% set softwareimage default-image1
[bright91->category*[default1*]]% commit
[bright91->category[default1]]% device
[bright91->device]% grabimage -w -i default-image1 node001
[bright91->device]%
Mon Jul 18 16:13:00 2011 [notice] bright91: Provisioning started on node node001
[bright91->device]%
Mon Jul 18 16:13:04 2011 [notice] bright91: Provisioning completed on node node001

The grabimage command without the -w option simply does a dry-run so that the user can see in the
provisioning logs what should be grabbed, without having the changes actually carried out. Running
grabimage -w instructs CMDaemon to really write the image.

When writing out the image, two exclude lists may be used:

• The excludelistgrabnew object. This is used with grabimage with the -i option. The list
can be accessed and edited under cmsh, in its category mode for a node image, as the
excludelistgrabnew object. It corresponds to the “Exclude list grabbing to a new image”
exclusion list associated with the Grab to image option (page 509) in Bright View.

© Bright Computing, Inc.

12.6 Creating A Custom Software Image 511

• The excludelistgrab object. This is used with the grabimage command, run without the -i
option. The list can be accessed and edited under cmsh, in its category mode for a node image,
as the excludelistgrab object. It corresponds to the “Exclude list image grab” exclusion list
associated with the Synchronize image option (page 509) in Bright View.

12.6 Creating A Custom Software Image
By default, the software image used to boot non-head nodes is based on the same version and release
of the Linux distribution as used by the head node. However, sometimes an image based on a different
distribution or a different release from that on the head node may be needed.

A custom software image is created typically by building an entire filesystem image from a regular
node. The node, which is never a head node, is then called the base host, with the term “base” used
to indicate that it has no additional cluster manager packages installed. The distribution on the base
host, is called the base distribution and is a selection of packages derived from the parent distribution (Red
Hat, Scientific Linux etc). A base distribution package is a package or rpm that is directly provided by the
vendor of the parent distribution which the base distribution is based on, and is not provided by Bright
Cluster Manager.

Creating a custom software image consists of two steps. The first step (section 12.6.1) is to create
a base (distribution) archive from an installed base host. The second step (section 12.6.2) is to create the
image from the base archive using a special utility, cm-create-image.

12.6.1 Creating A Base Distribution Archive From A Base Host
Structure Of The Base Distribution Archive
The step of creating the base distribution archive is done by creating an archive structure containing the
files that are needed by the non-head node.

The filesystem that is archived in this way can differ from the special way that a Linux distribution
unpacks and installs its filesystem on to a machine. This is because the distribution installer often carries
out extra changes, for example in GRUB boot configuration. The creation of the base distribution archive
is therefore a convenience to avoid working with the special logic of a distribution installer, which will
vary across distributions and versions. Instead, the filesystem and contents of a node on which this
parent distribution is installed—i.e. the end product of that logic—is what is dealt with.

The archive can be a convenient and standard tar.gz file archive (sometimes called the “base tar”),
or, taking the step a little further towards the end result, the archive can be a fully expanded archive file
tree.

Repository Access Considerations When Intending To Build A Base Distribution Archive
For convenience, the archive should be up-to-date. So, the base host used to generate the base distri-
bution archive should ideally have updated files. If, as is usual, the base host is a regular node, then it
should ideally be up to date with the repositories that it uses. Therefore running yum update or zypper
up on the base host image, and then provisioning the image to the base host, is recommended in order
to allow the creation of an up-to-date base distribution archive.

However sometimes updates are not possible or desirable for the base host. This means that the
base host archive that is put together from the base host filesystem is an un-updated archive. The
custom image that is to be created from the archive must then be also be created without accessing the
repositories, in order to avoid dependency problems with the package versions. Exclusion of access to
the repositories is possible by specifying options to the cm-create-image command, and is described in
section 12.6.2.

Examples Of How To Build A Base Distribution Archive
In the following example, a base distribution tar.gz archive /tmp/BASEDIST.tar.gz is created from
the base host basehost64. The archive that is created should normally have access control lists and
extended attributes preserved too:

© Bright Computing, Inc.

512 Post-Installation Software Management

Example

ssh root@basehost64 \
"tar -cz --acls --xattrs \
--exclude /etc/HOSTNAME --exclude /etc/localtime \
--exclude /proc --exclude /lost+found --exclude /sys \
--exclude /root/.ssh --exclude /var/lib/dhcpcd/* \
--exclude /media/floppy --exclude /etc/motd \
--exclude /root/.bash_history --exclude /root/CHANGES \
--exclude /etc/udev/rules.d/*persistent*.rules \
--exclude /var/spool/mail/* --exclude /rhn \
--exclude /etc/sysconfig/rhn/systemid --exclude /tmp/* \
--exclude /var/spool/up2date/* --exclude /var/log/* \
--exclude /etc/sysconfig/rhn/systemid.save \
--exclude /root/mbox --exclude /var/cache/yum/* \
--exclude /etc/cron.daily/rhn-updates /" > /tmp/BASEDIST.tar.gz

Or alternatively, a fully expanded archive file tree can be created from basehost64 by rsyncing to an
existing directory (here it is /cm/images/new-image):

Example

rsync -av --acls --xattrs --hard-links --numeric-ids \
--exclude=/etc/HOSTNAME --exclude=/etc/localtime --exclude=/proc \
--exclude=/lost+found --exclude=/sys --exclude=/root/.ssh \
--exclude=/var/lib/dhcpcd/* --exclude=/media/floppy \
--exclude=/etc/motd --exclude=/root/.bash_history \
--exclude=/root/CHANGES --exclude=/var/spool/mail/* \
--exclude=/etc/udev/rules.d/*persistent*.rules \
--exclude=/rhn --exclude=/etc/sysconfig/rhn/systemid \
--exclude=/etc/sysconfig/rhn/systemid.save --exclude=/tmp/* \
--exclude=/var/spool/up2date/* --exclude=/var/log/* \
--exclude=/root/mbox --exclude=/var/cache/yum/* \
--exclude=/etc/cron.daily/rhn-updates \
root@basehost64:/ /cm/images/new-image/

The --acls and --xattrs options are not explicitly required for rsync with SLES12 and beyond.
They are also not required for RHEL7 and beyond, and derivatives.

SELinux and file attributes: To use SELinux on compute nodes for RHEL7 and its derivatives, ex-
tended attributes must not be used.

The defaults can be modified, if needed, by adjusting attributes for partitions via cmsh, in fspart
mode:

Example

[bright91->fspart]% foreach * (set rsyncxattr no)
[bright91->fspart*]% list -f path:0,rsyncxattr
path (key) rsyncxattr
----------------------------- --------------------
/cm/images/default-image no
/cm/images/default-image/boot no
/cm/node-installer no
/cm/shared no
/tftpboot no
/var/spool/cmd/monitoring no

Having built the archive by following the examples suggested, the first step in creating the software
image is now complete.

© Bright Computing, Inc.

12.6 Creating A Custom Software Image 513

12.6.2 Creating The Software Image With cm-create-image
The second step, that of creating the image from the base archive, now needs to be done. This uses the
cm-create-image utility, which is part of the cluster-tools package.

The cm-create-image utility uses the base archive as the base for creating the image. By default, it
expects that the base distribution repositories be accessible just in case files need to be fetched from a
repository package.

Thus, when the cm-create-image utility is run with no options, the image created mostly picks up
the software only from the base archive. However, the image picks up software from the repository
packages:

• if it is required as part of a dependency, or

• if it is specified as part of the package selection file (page 514).

If a repository package file is used, then it should be noted that the repository package files may be
more recent compared with the files in the base archive. This can result in an image with files that are
perhaps unexpectedly more recent in version than what might be expected from the base archive, which
may cause compatibility issues. To prevent this situation, the --exclude option (section 12.2) can be
used to exclude updates for the packages that are not to be updated.

Repository access can be directly to the online repositories provided by the distribution, or it can be
to a local copy. For RHEL, online repository access can be activated by registering with the Red Hat
Network (section 5.1 of the Installation Manual). Similarly, for SUSE, online repository access can be
activated by registering with Novell (section 5.2 of the Installation Manual). An offline repository can be
constructed as described in section 12.6.3 of this manual.

Usage Of The cm-create-image Command
The usage information for cm-create-image lists options is:

[root@head ~]# cm-create-image
usage: cm-create-image (-a FROMARCHIVE | -d FROMDIR | -h FROMHOST | -k)

[--add-only] [--arch IMAGE_ARCH] [--os IMAGE_OS]
[-c CMREPO | --cmdvd CMDVD] [-b BASEDISTREPO] [-e] [-f]
[-g ENABLEEXTRAREPO] [-i IMAGEDIR] [-j EXCLUDEDIST]
[-l RESOLVCONF] [-m] -n IMAGENAME [-o EXCLUDE_FROM]
[-q EXCLUDEHWVENDOR] [-r] [-s]
[-t {node-installer,cmshared}] [-u] [-v] [-w HWVENDOR]
[-x EXCLUDECM] [-y] [-z CUSTOM_PRE_INSTALL_SCRIPT]
[--no-progress] [-L LOGFILE]
[--sles-allow-vendor-change]
[--skip-connectivity-check] [--tar-options ...]

Examples In Usage Of cm-create-image
Examples of the usage text follow:

1. In the following, a base distribution archive file, /tmp/RHEL7.tar.gz, is written out to a software
image named rhel7-image:

cm-create-image -a /tmp/RHEL7.tar.gz -n rhel7-image

The image with the name rhel7-image is created in the CMDaemon database, making it avail-
able for use by cmsh and Bright View. If an image with the above name already exists, then
/cm/create-image will exit and advise the administrator to provide an alternate name.

By default, the image name specified sets the directory into which the software image is installed.
Thus here the directory is /cm/images/rhel7-image/.

© Bright Computing, Inc.

514 Post-Installation Software Management

2. Instead of the image getting written into the default directory as in the previous item, an alter-
native directory can be specified with the --imagedir option. Thus, in the following, the base
distribution archive file, /tmp/RHEL7.tar.gz is written out to the /cm/images/test-image direc-
tory. The software image is given the name rhel7-image:

cm-create-image -a /tmp/RHEL7.tar.gz -n rhel7-image -i /cm/images/test-image

3. If the contents of the base distribution file tree have been transferred to a directory, then no ex-
traction is needed. The --fromdir option can then be used with that directory. Thus, in the
following, the archive has already been transferred to the directory /cm/images/SLES11-image,
and it is that directory which is then used to place the image under a directory named
/cm/images/sles11-image/. Also, the software image is given the name sles11-image:

cm-create-image -a /cm/images/SLES11-image -n sles11-image

4. A software image can be created from a running node using the --fromhost option. This option
makes cm-create-image behave in a similar manner to grabimage (section 12.5.2) in cmsh. It
requires passwordless access to the node in order to work. Generic nodes, that is nodes that are
not managed by the Bright Cluster Manager, can also be used. An image named node001-image
can then be created from a running node named node001 as follows:

cm-create-image -h node001 -n node001-image

By default the image goes under the /cm/images/node001-image/ directory.

Package Selection Files In cm-create-image
The selection of packages on the head node is done using a package selection file. Package selection files
are available in /cm/local/apps/cluster-tools/config/. For example, if the base distribution of the
software image being created is CentOS6, then the configuration file used is:

/cm/local/apps/cluster-tools/config/CENTOS6-config-dist.xml

The package selection file is made up of a list of XML elements, specifying the name of the package,
architecture and image type. For example:

...
<package image="slave" name="apr" arch="x86_64"/>
<package image="slave" name="apr-util" arch="x86_64"/>
<package image="slave" name="atk-devel" arch="x86_64"/>
<package image="slave" name="autoconf" arch="noarch"/>
...

The minimal set of packages in the list defines the minimal distribution that works with Bright Clus-
ter Manager, and is the base-distribution set of packages, which may not work with some features of
the distribution or Bright Cluster Manager. To this minimal set the following packages may be added to
create the custom image:

• Packages from the standard repository of the parent distribution. These can be added to enhance
the custom image or to resolve a dependency of Bright Cluster Manager. For example, in the
(parent) Red Hat distribution, packages can be added from the (standard) main Red Hat channel
to the base-distribution.

© Bright Computing, Inc.

/cm/local/apps/cluster-tools/config/

12.6 Creating A Custom Software Image 515

• Packages from outside the standard repository, but still from inside the parent distribution. These
can be added to enhance the custom image or to resolve a dependency of Bright Cluster Manager.
For example, outside the main Red Hat channel, but still within the parent distribution of RHEL7,
there is an extra, supplementary, and an optional packages channel. Packages from these channels
can be added to the base-distribution to enhance the capabilities of the image or resolve depen-
dencies of Bright Cluster Manager. Section 7.4.1 of the Installation Manual considers an example of
such a dependency for the CUDA package.

Unless the required distribution packages and dependencies are installed and configured, particular
features of Bright Cluster Manager, such as CUDA, cannot work correctly or cannot work at all.

The package selection file also contains entries for the packages that can be installed on the head
(image="master") node. Therefore non-head node packages must have the image="slave" attribute.

Kernel Module Selection By cm-create-image
For an image created by cm-create-image, with a distribution <dist>, the default list of ker-
nel modules to be loaded during boot are read from the file /cm/local/apps/cluster-tools/
config/<dist>-slavekernelmodules.

<dist> can take the value CENTOS7U8, CENTOS8U2, RHEL7U8, RHEL8U2, SLES12SP5, SLES15SP2,
UBUNTU1804, UBUNTU2004.

If custom kernel modules are to be added to the image, they can be added to this file.

Output And Logging During A cm-create-image Run
The cm-create-image run goes through several stages: validation, sanity checks, finalizing the base
distribution, copying Bright Cluster Manager repository files, installing distribution package, finalizing
image services, and installing Bright Cluster Manager packages. An indication is given if any of these
stages fail.

Further detail is available in the logs of the cm-create-image run, which are kept in
/var/log/cmcreateimage.log.<image name>, where <image name> is the name of the built image.

Default Image Location
The default-image is at /cm/images/default-image, so the image directory can simply be kept as
/cm/images/.

During a cm-create-image run, the --imagedir option allows an image directory for the image to
be specified. This must exist before the option is used.

More generally, the full path for each image can be set:

• Using Bright View via the clickpath Provisioning→Software images→Software
Images→Edit→Settings→Path

• In cmsh within softwareimage mode, for example:

[bright91->softwareimage]% set new-image path /cm/higgs/new-images

• At the system level, the images or image directory can be symlinked to other locations for organi-
zational convenience

12.6.3 Configuring Local Repositories For Linux Distributions, And For The Bright Cluster
Manager Package Repository, For A Software Image

Using local instead of remote repositories can be useful in the following cases:

• for clusters that have restricted or no internet access.

• for the RHEL and SUSE Linux distributions, which are based on a subscription and support model,
and therefore do not have free access to their repositories.

© Bright Computing, Inc.

/cm/local/apps/cluster-tools/config/
/cm/local/apps/cluster-tools/config/

516 Post-Installation Software Management

• for creating a custom image with the cm-create-image command introduced in section 12.6.2,
using local base distribution repositories.

The administrator can choose to access an online repository provided by the distribution itself via a
subscription as described in Chapter 5 of the Installation Manual. Another way to set up a repository is
to set it up as a local repository, which may be offline, or perhaps set up as a locally-controlled proxy
with occasional, restricted, updates from the distribution repository.

In the three procedures that follow, the first two procedures explain how to create and configure a lo-
cal offline SLES zypper or RHEL YUM repository for the subscription-based base distribution packages.
These first two procedures assume that the corresponding ISO/DVD has been purchased/downloaded
from the appropriate vendors. The third procedure then explains how to create a local offline YUM
repository from the Bright Cluster Manager ISO for CentOS so that a cluster that is completely offline
still has a complete and consistent repository access.

Thus, a summary list of what these procedures are about is:

• Setting up a local repository for SLES (page 516)

• Setting up a local repository for RHEL (page 516)

• Setting up a local repository for CentOS and Bright from the Bright Cluster Manager ISO for Cen-
tOS (page 517)

Configuring Local Repositories For SLES For A Software Image
For SLES11 SP0, SLES11 SP1, and SLES11 SP2, the required packages are spread
across two DVDs, and hence two repositories must be created. Assuming the im-
age directory is /cm/images/sles11sp1-image, while the names of the DVDs are
SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso and SLES-11-SP1-DVD-x86_64-GM-DVD1.iso, then
the contents of the DVDs can be copied as follows:

mkdir /mnt1 /mnt2
mkdir /cm/images/sles11sp1-image/root/repo1
mkdir /cm/images/sles11sp1-image/root/repo2
mount -o loop,ro SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso /mnt1
cp -ar /mnt1/* /cm/images/sles11sp1-image/root/repo1/
mount -o loop,ro SLES-11-SP1-DVD-x86_64-GM-DVD1.iso /mnt2
cp -ar /mnt2/* /cm/images/sles11sp1-image/root/repo2/

The two repositories can be added for use by zypper in the image, as follows:

chroot /cm/images/sles11sp1-image
zypper addrepo /root/repo1 "SLES11SP1-SDK"
zypper addrepo /root/repo2 "SLES11SP1"
exit (chroot)

Configuring Local Repositories For RHEL For A Software Image
For RHEL distributions, the procedure is almost the same. The required packages are contained in one
DVD.

mkdir /mnt1
mkdir /cm/images/rhel-image/root/repo1
mount -o loop,ro RHEL-DVD1.iso /mnt1
cp -ar /mnt1/* /cm/images/rhel-image/root/repo1/

The repository is added to YUM in the image, by creating the repository file /cm/images/
rhel-image/etc/yum.repos.d/rhel-base.repo with the following contents:

© Bright Computing, Inc.

/cm/images/rhel-image/etc/yum.repos.d/rhel-base.repo
/cm/images/rhel-image/etc/yum.repos.d/rhel-base.repo

12.6 Creating A Custom Software Image 517

[base]
name=Red Hat Enterprise Linux $releasever - $basearch - Base
baseurl=file:///root/repo1/Server
gpgcheck=0
enabled=1

Configuring Local Repositories For CentOS And Bright Computing For A Software Image
Mounting the ISOs The variable $imagedir is assigned as a shortcut for the software image that is to
be configured to use a local repository:

imagedir=/cm/images/default-image

If the ISO is called bright-centos.iso, then its filesystem can be mounted by the root user on a new
mount, /mnt1, as follows:

mkdir /mnt1
mount -o loop bright-centos.iso /mnt1

The head node can then access the ISO filesystem.
The same mounted filesystem can also be mounted with the bind option into the software image.

This can be done inside the software image by the root user, in the same relative position as for the head
node, as follows:

mkdir $imagedir/mnt1
mount -o bind /mnt1 $imagedir/mnt1

This allows an operation run under the $imagedir in a chroot environment to access the ISO filesys-
tem too.

Creating YUM repository configuration files: YUM repository configuration files can be created:

• for the head node: A repository configuration file

/etc/yum.repos.d/cm9.1-dvd.repo

can be created, for example, for a release tagged with a <subminor> number tag, with the content:

[bright-repo]
name=Bright Cluster Manager DVD Repo
baseurl=file:///mnt1/data/packages/9.1-<subminor>
enabled=1
gpgcheck=1
exclude = slurm* pbspro* uge* cm-hwloc

• for the regular node image: A repository configuration file

$imagedir/etc/yum.repos.d/cm9.1-dvd.repo

can be created. This file is in the image directory, but it has the same content as the previous head
node yum repository configuration file.

© Bright Computing, Inc.

518 Post-Installation Software Management

Verifying that the repository files are set up right: To verify the repositories are usable on the head
node, the YUM cache can be cleaned, and the available repositories listed:

[root@bright91 ~]# yum clean all
[root@bright91 ~]# yum repolist -v
bright-repo Bright Cluster Manager DVD Repo
...

To carry out the same verification on the image, these commands can be run with
yum --installroot=$imagedir substituted in place of just yum.

The ISO repository should show up, along with any others that are accessible. Connection attempts
that fail to reach a network-based or local repositories display errors. If those repositories are not needed,
they can be disabled from within their configuration files.

12.6.4 Creating A Custom Image From The Local Repository
After having created the local repositories for SLES, RHEL or CentOS (section 12.6.3), a custom software
image based on one of these can be created. For example, for CentOS, in a directory given the arbitrary
name offlineimage:

cm-create-image -d $imagedir -n offlineimage -e -s

The -e option prevents copying the default cluster manager repository files on top of the image being
created, since they may have been changed by the administrator from their default status. The -s option
prevents installing additional base distribution packages that might not be required.

12.7 Creating Images For Other Distributions And Architectures (Multidistro
And Multiarch)

Bright Cluster Manager version 9.0 onwards makes it easier to mix distributions in the cluster. This
ability is called multidistro. However, it is often also loosely called multiOS.

Bright Cluster Manager version 9.0 also introduced the ability to run on certain mixed architecture
combinations. The ability to run on multiple architectures is called multiarch. For Bright Cluster Man-
ager, multiarch means that the node hardware can be based on either the x86-64 CPU architecture, or
the ARMv8 CPU architecture, or on a mixture of both.

The Linux distributions and the hardware architectures supported by Bright Cluster Manager 9.1 are
shown in the following table:

Head

RHEL7 RHEL8 Ubuntu 18.04, 20.04 SLES12 SLES15

(x86-64) (x86-64, aarch64) (x86-64, aarch64) (x86-64) (x86-64)

Image

RHEL7 x86-64 x86-64 x86-64 x86-64 x86-64

RHEL8 x86-64 x86-64, aarch64 x86-64, aarch64 x86-64 x86-64

Ubuntu 18.04 x86-64 x86-64, aarch64 x86-64, aarch64 x86-64 x86-64

Ubuntu 20.04 - x86-64, aarch64 x86-64, aarch64 - x86-64

SLES12 - x86-64 - x86-64 x86-64

SLES15 - x86-64 x86-64 x86-64 x86-64

For example, a head node running Ubuntu 18.04, on x86-64 or ARMv8 hardware, can support an
Ubuntu 18.04, Ubuntu 20.04, and RHEL8 distribution running on x86-64 and on ARMv8 hardware for
the compute nodes. In addition, that same head node supports running RHEL7 and SLES15 on the
compute nodes, but only for x86-64 hardware.

To configure multiarch and multidistro, the cm-image tool is used.

© Bright Computing, Inc.

12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 519

12.7.1 The cm-image Tool
The cm-image tool is essentially a wrapper for the cm-create-image (section 12.6) tool. The cm-image
tool however has some extra features, including allowing the cluster administrator

• to bootstrap the creation of an image from an online or offline repository 1

• to create a separate node-installer image as well as a separate software image

• to create a directory under /cm/shared for each image

• to select the architecture

• to manage packages in an image more easily

When used to enable a distribution for the first time, multiple changes are made to critical files and
paths that may put the regular nodes into an unstable state. This means that all regular nodes should be
rebooted after its first use.

The command options of cm-image are illustrated by the following modes and options tree:

cm-image
|---------- shell
| -h|--help
| -i|--image <image>
|
|---------- create
| |----- all
| | -a|--arch <architecture> (mandatory)
| | -d|--distro <distribution> (mandatory)
| | -h|--help
| | -f|--force
| | --archive <archive>
| | --dir <directory>
| | --host <host>
| | --bootstrap
| | --add-only
| | -b|--baserepo <base repository>
| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <Bright packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --baseurl <base distribution repository URL>
| | --extraurl <extra repository URL>
| |
| |----- node-installer
| | -a|--arch <architecture> (mandatory)
| | -d|--distro <distribution> (mandatory)
| | -h|--help
| | -f|--force
| | --archive <archive>
| | --dir <directory>
| | --host <host>

1Conditions apply.
The --bootstrap option for creating images relies on debootstrap and yumbootstrap being available in the distributions, along

with repository access.
In addition, the glibc library on the image kernel needs to be sufficiently compatible with the head node kernel. This is not the

case, for example, for a head node running RHEL7, if attempting to create an image of Ubuntu 20.04. In this case, the Ubuntu
20.04 kernel is too new for the RHEL7 kernel, and image creation fails.

Head node distributions that support the bootstrap option are RHEL7/8 and derivatives, Ubuntu 18.04, Ubuntu 20.04, and
SLES15.

© Bright Computing, Inc.

/cm/shared

520 Post-Installation Software Management

| | --bootstrap
| | --add-only
| | -b|--baserepo <base repository>
| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <Bright packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --baseurl <base distribution repository URL>
| | --extraurl <extra repository URL>
| | --default
| |
| |----- swimage
| | -a|--arch <architecture> (mandatory)
| | -d|--distro <distribution> (mandatory)
| | -h|--help
| | -f|--force
| | --archive <archive>
| | --dir <directory>
| | --host <host>
| | --bootstrap
| | --add-only
| | -b|--baserepo <base repository>
| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <Bright packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --baseurl <base distribution repository URL>
| | --extraurl <extra repository URL>
| |
| |----- fromfile <JSON input file>
| |
| '----- cmshared
| -a|--arch <architecture> (mandatory)
| -d|--distro <distribution> (mandatory)
| -h|--help
| -f|--force
| --add-only
| --default
| -i|--image <image>
| -b|--baserepo <base repository>
| -c|--cmrepo <cluster manager repository>
| -x|--excludecm <Bright packages to exclude from installation>
| -j|--excludedist <distribution packages to exclude from installation>
| --baseurl <base distribution repository URL>
| --extraurl <extra repository URL>
|
|---------- remove
| -a|--arch <architecture> (mandatory)
| -d|--distro <distribution> (mandatory)
| -h|--help
| -f|--force
| --erase
|
'---------- package

-h|--help
-i|--image <image>
--install <package to install>

© Bright Computing, Inc.

12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 521

--remove <package to remove>
--list
--update <package to update>
--update-all
--update-cm

Values that can be set are:

• <architecture>: aarch64, x86_64

• <distribution>: rhel7u7, rhel8u0, rhel8u1, rhel8u2, rhel8u3, rhel8u4, sles12sp2, sles12sp3,
sles12sp4, sles12sp5, sles15sp1, sles15sp2,ubuntu1804, ubuntu2004. centos is automatically
substituted for rhel for CentOS distributions.

• <archive>: path to a base tar file (section 12.6.1), eg:/root/basetar/data/UBUNTU1804.tar.gz

• <directory>: path to a filesystem, eg: /root/basetar/data/untarred/

• <host>: URL to a host, eg: http://10.141.255.254/x86-iso/data/packages/dist

• <base repository>: repository file for base tar, eg: /root/bright9.0-centos8u0-iso.repo

• <base distribution repository url>: URL for base distribution repository, eg:
http://mirror.centos.org/$contentdir/$releasever/BaseOS/$basearch/os/

• <cluster manager repository>: repository file for cluster manager, eg: /root/cm-bright9.0-centos8u0-iso.
repo

• <image>: image to operate on when managing packages. Eg: /cm/images/default-image-rhel8-aarch64
or /cm/node-installer-centos7-x86

• <package to install>: eg: cluster-tools

• <package to remove>: eg: cluster-tools

• <package to update>: eg: cluster-tools

12.7.2 Multidistro Examples: Provisioning From CentOS 7 Head Node To Ubuntu 18.04
Regular Nodes

Using Bootstrap For Cluster With Network Access To Repositories
[root@bright91 ~]# module load cm-image
[root@bright91 ~]# cm-image create all -a x86_64 -d ubuntu1804 --bootstrap
Creating software image default-image-ubuntu1804-x86_64
...
Creating cmshared directory /cm/shared-ubuntu1804-x86_64
running command: 'mount --bind /cm/shared-ubuntu1804-x86_64
/cm/images/default-image-ubuntu1804-x86_64/cm/shared'
running command: 'cm-create-image --image-type cmshared -n default-image-ubuntu1804-x86_64 -d
/cm/images/default-image-ubuntu1804-x86_64 -u -s '
...
Installing CM packages........................... [OK]
running command: 'umount /cm/images/default-image-ubuntu1804-x86_64/cm/shared'
Adding cmshared entry /cm/shared-ubuntu1804-x86_64
Cloning fsexports entry
Completed
Added new category: default-ubuntu1804-x86_64
Use this category for adding nodes
Completed

© Bright Computing, Inc.

/root/basetar/data/UBUNTU1804.tar.gz
/root/basetar/data/untarred/
http://10.141.255.254/x86-iso/data/packages/dist
/root/bright9.0-centos8u0-iso.repo
/root/cm-bright9.0-centos8u0-iso.repo
/root/cm-bright9.0-centos8u0-iso.repo
/cm/images/default-image-rhel8-aarch64
/cm/node-installer-centos7-x86

522 Post-Installation Software Management

As suggested by the output, a new category, default-ubuntu1804-x86_64, appears.
A node can be placed in the new category and restarted:

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% set category default-ubuntu1804-x86_64
[bright91->device*[node001*]]% commit
[bright91->device[node001]]%
Thu Jan 16 14:35:08 2020 [notice] bright91: node001 [UP], restart required (category)
[bright91->device[node001]]% reboot
node001: Reboot in progress ...

Using ISO For Cluster Without Network Access
A base tar (section 12.6.1) can be used

[root@bright91 ~]# module load cm-image
[root@bright91 ~]# cm-image --verbose create all -a x86_64 -d ubuntu1804 --archive \
/root/basetar/data/UBUNTU1804.tar.gz
Creating software image default-image-ubuntu1804-x86_64
...
output follows similar to the preceding case where repository access was possible

Adding Several Update Versions Alongside Each Other
In the following session, a CentOS7u8 ArchOS base tar is being added with cm-image. A CentOS7u7
software image is then being added with cm-create-image, using the same node-installer and /cm/shared/
images:

[root@bright91 ~]# module load cm-image
[root@bright91 ~]# cm-image --verbose create all -a x86_64 -d centos7 --archive \
/root/basetar/data/CENTOS7u8.tar.gz
[root@bright91 ~]# cm-create-image -a /run/CENTOS7u7.tar.gz --arch x86_64 --os centos7 -f -n\
default-image-centos7u7-x86_64 -i /cm/images/default-image-centos7u7-x86_64 -g public
[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% set category default-centos7-x86_64
[bright91->device[node001]]% set softwareimage default-centos7u7-x86_64

12.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8
Architecture Regular Nodes

This section explains how to configure regular node ARMv8 hardware, assuming Bright Cluster Man-
ager is installed on a head node (Chapter 3 of the Installation Manual).

Assuming an ARMv8 ISO bright91-rhel8u2.aarch64.iso has been picked up, it can be mounted
for web access with:

[root@bright91 ~]# mkdir /var/www/html/aarch64-iso
[root@bright91 ~]# mount -o loop /root/bright91-rhel8u2.aarch64.iso /var/www/html/aarch64-iso

A repository file can be created with the following content:

[root@bright91 ~]# cat /root/rhel8-aarch64-cm-iso.repo
[dist-packages-rhel8-aarch64]
name=Dist packages rhel8 aarch64
baseurl=http://10.141.255.254/aarch64-iso/data/packages/dist
enabled=1
gpgcheck=0

© Bright Computing, Inc.

12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 523

[cm-packages-rhel8-aarch64]
name=CM packages rhel8 aarch64
baseurl=http://10.141.255.254/aarch64-iso/data/packages/9.1
enabled=1
gpgcheck=0

[cm-packages-rhel8-aarch64-hpc]
name=CM packages rhel8 aarch64 HPC
baseurl=http://10.141.255.254/aarch64-iso/data/packages/packagegroups/hpc
enabled=1
gpgcheck=0

This assumes that the head node has the IP address 10.141.255.254. It should be changed if needed.
It also assumes the 9.1 packages are in the 9.1 packages directory of the ISO. If it is not, then the

corresponding baseurl string should be changed if needed. Thus, if, for example, after inspecting
the loop-mounted paths under /var/www/html/, the relative path data/packages/9.1 has changed to
data/packages/9.1-6, then the baseurl should be changed to end in 9.1-6 instead of 9.1 too.

The images can then be created with:

[root@bright91 ~]# module load cm-image
[root@bright91 ~]# cm-image --verbose create all -a aarch64 -d rhel8 --archive \
/var/www/html/aarch64-iso/data/RHEL8u2.tar.gz -b /root/rhel8-aarch64-cm-iso.repo -c \
/root/rhel8-aarch64-cm-iso.repo

This takes a while to complete. At the end of the process the following ARMv8 images and entities
are created by default:

• The node-installer image: /cm/node-installer-rhel8-aarch64

• The /cm/shared-... directory: /cm/shared-rhel8-aarch64

• The node image: /cm/images/default-image-rhel8-aarch64

• The node category: default-rhel8-aarch64

The preceding can be verified via cmsh:

[root@bright91 ~]# cmsh
[bright91]% category list
Name (key) Software image Nodes
------------------------ -------------------------------------- --------
default-centos8-x86_64 default-image 1
default-rhel8-aarch64 default-image-rhel8-aarch64 1
[bright91]% softwareimage list
Name (key) Path ...
--------------------------- -------------------------------------- ...
default-image /cm/images/default-image ...
default-image-rhel8-aarch64 /cm/images/default-image-rhel8-aarch64 ...
[bright91]% partition archos base; list
Arch OS Primary image Shared Installer
------- ----- --------------------------- ------------------------- ---------------------------------
x86_64 rhel8 default-image /cm/shared-centos8-x86_64 /cm/node-installer-centos8-x86_64
aarch64 rhel8 default-image-rhel8-aarch64 /cm/shared-rhel8-aarch64 /cm/node-installer-rhel8-aarch64

The node settings should be updated. The new category can be assigned to any ARMv8 nodes:

[root@bright91 ~]# cmsh
[bright91]% device use arm-node001
[bright91->device[node001]]% set category default-rhel8-aarch64
[bright91->device*[node001*]]% commit

© Bright Computing, Inc.

/cm/node-installer-rhel8-aarch64
/cm/shared-rhel8-aarch64
/cm/images/default-image-rhel8-aarch64

524 Post-Installation Software Management

Carrying out changes to primaryimage requires an associated category: The value defined for the
property primaryimage decides the software image used to boot new nodes. The image also tracks
what packages are used under its associated shared directory, via the RPM or APT database. The image
for primaryimage and the associated shared directory can be set with cmsh from within the archos
submode, under the top-level partition mode.

Example

[bright91->partition[base]->archos]% list
Arch OS Primary image Shared Installer
------- ------------ --------------------------------- ------------------------------ ---------
aarch64 ubuntu1804 default-image-ubuntu1804-aarch64 /cm/shared-ubuntu1804-aarch64 /cm/n....
x86_64 rhel8 default-image /cm/shared-centos8-x86_64 /cm/n....
[bright91->partition[base]->archos]% use aarch64/ubuntu1804
[bright91->partition[base]->archos[aarch64/ubuntu1804]]% set primaryimage
default-image default-image-ubuntu1804-aarch64 new-image-ubuntu1804-aarch64
[bright91->...->archos[aarch64/ubuntu1804]]% set primaryimage new-image-ubuntu1804-aarch64
[bright91->partition*[base*]->archos*[aarch64/ubuntu1804*]]% commit

If cm-image is used to generate a new architecture and operating system, then the primary image is
automatically set. Otherwise, by default, the value of primaryimage is not set.

If the value of primaryimage is set, then it is strongly recommended that a category that has that
image must exist.

If such a category does not exist, then CMDaemon uses the RPM or APT database of the new image
to decide what the packages are on the shared directory.

If the value of primaryimage is set and multiple categories use the image, then the first category that
is found is used.

Setting the bootloaderprotocol for ARMv8 hardware: The bootloaderprotocol should be set to
tftp to work with ARMv8 hardware:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default-rhel8-aarch64
[bright91->category[default-rhel8-aarch64]]% set bootloaderprotocol tftp
[bright91->category*[default-rhel8-aarch64*]]% commit

Setting the kernelconsoleoutput for ARMv8 hardware: The kernelconsoleoutput should be changed
to ttyAMA0 to work with the image running on the ARMv8 hardware:

[root@bright91 ~]# cmsh
[bright91]% softwareimage use default-rhel8-aarch64
[bright91->softwareimage[default-rhel8-aarch64]]% set kerneloutputconsole ttyAMA0
[bright91->softwareimage*[default-rhel8-aarch64*]]% commit

The settings configured so far are for generic ARMv8 hardware.

Fujitsu ARMv8 Hardware Configuration
Nodes using Fujitsu ARMv8 hardware can have their configuration options modified further.

The BMC settings of the nodes should be updated with extra arguments:

Example

© Bright Computing, Inc.

12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 525

[root@bright91 ~]# cmsh
[bright91]% device use arm-node001
[bright91->device[node001]]% bmcsettings; set extraarguments "-L USER -t 0x30"
[bright91->device*[node001*]]% commit

The configuration for fetching environmental metrics should also be updated. The ipmitool moni-
toring resource available for Fujitsu ARMv8 hardware is run via the a64fx resource.

The existence of the a64fx monitoring resource can be checked for on the ARMv8 node:

[root@bright91 ~]# cmsh
[bright91]% device monitoringresources arm-node001 | grep a64fx
a64fx

The monitoring settings for IPMI via the a64fx object can be enabled as follows:

[root@bright91 ~]# cmsh
[bright91]% monitoring setup; use ipmi
[bright91->monitoring->setup[ipmi]]% set script /cm/local/apps/cmd/scripts/metrics/sample_ipmitool.py
[bright91->monitoring->setup*[ipmi*]]% executionmultiplexers
[bright91->monitoring->setup*[ipmi*]->executionmultiplexers]% remove ipmi
[bright91->monitoring->setup*[ipmi*]->executionmultiplexers*]% add resource a64fx
[bright91->monitoring->setup*[ipmi*]->executionmultiplexers*[a64fx*]]% set resources a64fx
[bright91->monitoring->setup*[ipmi*]->executionmultiplexers*[a64fx*]]% commit

© Bright Computing, Inc.

13
Monitoring: Monitoring Cluster

Devices
Bright Cluster Manager monitoring allows a cluster administrator to monitor anything that can be mon-
itored in the cluster. Much of the monitoring consists of pre-defined sampling configurations. If there is
anything that is not configured, but the data on which it is based can be sampled, then monitoring can
be configured for it too, by the administrator.

The monitoring data can be viewed historically, as well as on demand. The historical monitoring
data can be stored raw, and optionally also as consolidated data—a way of summarizing data.

The data can be handled raw and processed externally, or it can be visualized within Bright View
in the form of customizable charts. Visualization helps the administrator spot trends and abnormal
behavior, and is helpful in providing summary reports for managers.

Monitoring can be configured to set off alerts based on triggers, and pre-defined or custom actions
can be carried out automatically, depending on triggers. The triggers can be customized according to
user-defined conditional expressions.

Carrying out such actions automatically after having set up triggers for them means that the moni-
toring system can free the administrator from having to carry out these chores.

In this chapter, the monitoring system is explained with the following approach:

1. A basic example is first presented in which processes are run on a node. These processes are
monitored, and trigger an action when a threshold is exceeded.

2. With this easy-to-understand example as a basic model, the various features and associated func-
tionality of the Bright Cluster Manager monitoring system are then described and discussed in fur-
ther depth. These include visualization of data, concepts, configuration, monitoring customization
and cmsh use.

13.1 A Basic Monitoring Example And Action
13.1.1 Synopsis Of Basic Monitoring Example
In section 13.1, after an overview (section 13.1.1), a minimal basic example of monitoring a process is
set up (section 13.1.2) and used (section 13.1.3). The example is contrived, with the aim being to present
a basic example that covers a part of what the monitoring system is capable of handling. The basic
example gives the reader a structure to keep in mind, around which further details are fitted and filled
in during the coverage in the rest of this chapter.

For the basic example, a user runs a large number of pointless CPU-intensive processes on a head
node which is normally very lightly loaded. An administrator can monitor user mode CPU load usage
throughout the cluster, and notices this usage spike. After getting the user to stop wasting CPU cycles,
the administrator may decide that putting a stop to such processes automatically is a good idea. The

© Bright Computing, Inc.

528 Monitoring: Monitoring Cluster Devices

� High load detected
and processes stopped

6

CPU-intensive
processes started

CPU load

Time

Figure 13.1: Monitoring Basic Example: CPU-intensive Processes Started, Detected And Stopped

administrator can set that up with an action that is triggered when a high load is detected. The action
that is taken after triggering, is to stop the processes (figure 13.1).

The basic example thus illustrates how Bright Cluster Manager monitoring can be used to detect
something on the cluster and how an action can be set up and triggered based on that detection.

13.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces
Running A Large Number Of Pointless CPU-Intensive Processes
One way to simulate a user running pointless CPU-intensive processes is to run several instances of the
standard unix utility, yes. The yes command sends out an endless number of lines of “y” texts. It is
typically used in scripts to answer dialog prompts for confirmation.

The administrator can run 8 subshell processes in the background from the command line on the
head node, with yes output sent to /dev/null, as follows:

for i in {1..8}; do (yes > /dev/null &); done

Running “mpstat 2” shows usage statistics for each processor, updating every 2 seconds. It shows that
%user, which is user mode CPU usage percentage, is close to 90% on an 8-core or less head node when
the 8 subshell processes are running.

Setting Up The Kill Action
To stop the pointless CPU-intensive yes processes, the command killall yes can be used. The admin-
istrator can make it a part of a script killallyes:

#!/bin/bash
killall yes

and make the script executable with a chmod 700 killallyes. For convenience, it may be placed in the
/cm/local/apps/cmd/scripts/actions directory where some other action scripts also reside.

© Bright Computing, Inc.

13.1 A Basic Monitoring Example And Action 529

13.1.3 Using The Monitoring Basic Example
Now that the pieces are in place, the administrator can use Bright View to add the killallyesaction
action to its action list, and then set up a trigger for the action:

Adding The Action To The Actions List
In Bright View:

• The clickpath

Monitoring→Actions→Monitoring Actions→killprocess→Clone

is used to clone the structure of an existing action. The killprocess action is convenient because
it is expected to function in a similar way, so its options should not have to be modified much.
However, any action could be cloned and the clone modified in appropriate places.

• The name of the cloned action is changed. That is, the administrator sets Name to
killallyesaction. This is just a sensible label—the name can be arbitrary.

• Script is set to the path /cm/local/apps/cmd/scripts/actions/killallyes, which is where the
script was placed earlier (page 528).

After saving, the killallyesaction action becomes part of the list of monitoring actions (figure 13.2).

Figure 13.2: Bright View Monitoring Configuration: Adding An Action

Setting Up A Trigger Using CPUUser On The Head Node(s)
The clickpath

Monitoring→Triggers→Failing health checks→Clone

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/actions/killallyes

530 Monitoring: Monitoring Cluster Devices

can be used to configure a monitoring trigger, by cloning an existing trigger. A trigger is a sample
state condition that runs an action. In this case, the sample state condition may be that the metric
(section 13.2.3) CPUUser must not exceed 50. If it does, then an action (killallyesaction) is run, which
should kill the yes processes.

• CPUUser is a measure of the time spent in user mode CPU usage per second, and is measured in
jiffy intervals per second.

• A jiffy interval is a somewhat arbitrary time interval that is predefined for kernel developers per
platform. It is the minimum amount of time that a process has access to the CPU before the kernel
can switch to another task.

Unlike %user from the top command, a jiffy interval is not a percentage.

To configure this, the trigger attributes can be modified as follows (figure 13.3):

Figure 13.3: Bright View Monitoring Configuration: Setting A Trigger

• A name is set for the trigger. The name can be arbitrary, and killallyestrigger is used in this
example.

• the trigger is made active by enabling it

• the trigger can be set to run an action script if the sample state crosses over into a state that meets
the trigger condition. That is, Enter actions is configured for a particular condition.

The condition under which the Enter actions action script is run in the example, can simply be
when CPUUser on the head node is above 50. Such a condition can be set by setting an expression
in the expression subwindow. In this subwindow (figure 13.4):

© Bright Computing, Inc.

13.1 A Basic Monitoring Example And Action 531

Figure 13.4: Bright View Monitoring Configuration: Setting An Expression

– A name is set for the expression. The name can be arbitrary, and killallyesregex is used
for Name in this example.

– An entity is set. In this case, the entity being monitored is the head node. If the head node
is called bright91 in this example, then bright91 is the value set for entities. An entity is
often simply a device, but it can be any object that CMDaemon stores.

– A measurable is set. In this case, Measurables is set to CPUUser.

– An operator and threshold value are set. In this case GT, which is the greater than operator,
and 50 which is a significant amount of CPUUser time in jiffies/s, are set for Operator and
Value.

After saving the configuration, the killallyesregex regular expression evaluates the data being
sampled for the killallyestrigger trigger. If the expression is TRUE, then the trigger launches the
killallyesaction action.

The Result
In the preceding section, an action was added, and a trigger was set up with a monitoring expression.

With a default installation on a newly installed cluster, the measurement of CPUUser is done every
120s (the period can be modified in the Data Producer window of Bright View, as seen in figure 13.9).
The basic example configured with the defaults thus monitors if CPUUser on the head node has crossed
the bound of 50 jiffies/s every 120s.

If CPUUser is found to have entered—that is: crossed over from below the value and gone into the
zone beyond 50 jiffies/s—then the killallyesexp expression notices that. Then, the trigger it is con-
figured for, killallyestrigger trigger, runs the killallyesaction action, which runs the killallyes
script. The killallyes script kills all the running yes processes. Assuming the system is trivially loaded
apart from these yes processes, the CPUUser metric value then drops to below 50 jiffies/s.

To clarify what “found to have entered” means in the previous paragraph:
After an Enter trigger condition has been met for a sample, the first sample immediately after that

does not ever meet the Enter trigger condition, because an Enter threshold crossing condition requires
the previous sample to be below the threshold.

The second sample can only launch an action if the Enter trigger condition is met and if the preceding
sample is below the threshold.

© Bright Computing, Inc.

532 Monitoring: Monitoring Cluster Devices

Other non-yes CPU-intensive processes running on the head node can also trigger the killallyes
script. Since the script only kills yes processes, leaving any non-yes processes alone, it would in such
a case run unnecessarily. This is a deficiency due to the contrived and simple nature of the basic ex-
ample which is being illustrated here. In a production case the action script is expected to have a more
sophisticated design.

At this point, having gone through section 13.1, the reader is expected to have a rough idea of how
monitoring, triggers, trigger conditional expressions, and actions work. The following sections in this
chapter cover the concepts and features for Bright Cluster Manager monitoring in greater detail.

13.2 Monitoring Concepts And Definitions
A discussion of the concepts of monitoring, along with definitions of terms used, is appropriate at this
point. The features of the monitoring system in Bright Cluster Manager covered later on in this chapter
will then be understood more clearly.

13.2.1 Measurables
Measurables are measurements (sample values) that are obtained via data producers (section 13.2.10) in
CMDaemon’s monitoring system. The measurements can be made for nodes, head nodes, other devices,
or other entities.

Types Of Measurables
Measurables can be:

• enummetrics: measurements with a small number of states. The states can be pre-defined, or user-
defined. Further details on enummetrics are given in section 13.2.2.

• metrics: measurements with number values, and no data, as possible values. For example, values
such as: -13113143234.5, 24, 9234131299. Further details on metrics are given in section 13.2.3.

• health checks: measurements with the states PASS, FAIL, and UNKNOWN as possible states, and no
data as another possible state, when none of the other states are set. Further details on health
checks are given in section 13.2.4.

no data And Measurables
If no measurements are carried out, but a sample value needs to be saved, then the sample value is set
to no data for a measurable. This is a defined value, not a null data value. metrics and enummetrics
can therefore also take the no data value.

Entities And Measurables
An entity is a concept introduced in Bright Cluster Manager version 8.0.

Normally, a device, or a category or some similar grouping is a convenient idea to keep in mind as
an entity, for concreteness.

The default entities in a new installation of Bright Cluster Manager are the following:
device category partition[base] softwareimages
However, more generally, an entity can be an object from the following top level modes of cmsh:
category ceph cloud cmjob configurationoverlay device edgesite etcd fspart group jobqueue

jobs kubernetes network nodegroup partition profile rack softwareimage user
For example, a software image object that is to be provisioned to a node is an entity, with some of

the possible attributes of the entity being the name, kernelversion, creationtime, or locked attributes
of the image:

[root@bright91 ~]# cmsh -c "softwareimage use default-image; show"
Parameter Value
-------------------------------- ---

© Bright Computing, Inc.

13.2 Monitoring Concepts And Definitions 533

Creation time Thu, 08 Jun 2017 18:15:13 CEST
Enable SOL no
Kernel modules <44 in submode>
Kernel parameters
Kernel version 3.10.0-327.3.1.el7.x86_64
Locked no
Name default-image
...

Because measurements can be carried out on such a variety of entities, it means that the monitoring
and conditional actions that can be carried out on a Bright Cluster Manager cluster can be very diverse.
This makes entities a powerful and versatile concept in Bright Cluster Manager’s monitoring system for
managing clusters.

Listing Measurables Used By An Entity
In cmsh, for an entity, such as a device within device mode, a list of the measurables used by that device
can be viewed with the measurables command.

Example

[bright91->device]% measurables node001
Type Name Parameter Class Producer
------------ ------------------- ---------- --------- ---------------
Enum DeviceStatus Internal DeviceState
HealthCheck ManagedServicesOk Internal CMDaemonState
HealthCheck defaultgateway Network defaultgateway
HealthCheck diskspace Disk diskspace
HealthCheck dmesg OS dmesg
...
...

The subsets of these measurables—enummetrics, metrics, and health checks—can be listed with the
enummetrics (section 13.2.2), metrics (section 13.2.3), or healthchecks (section 13.2.4) command.

In Bright View, all the entities that are using health checks can be viewed via the clickpath:

Monitoring→All Health Checks (figure 13.22 section 13.4.7)

Listing Entities That Use A Measurable
The entities using a specific measurable can be listed with the usage command:

Example

[bright91->monitoring->measurable]% usage nfs_v3_server_total
Measurable Count Entities
-------------------- ------ --------------
nfs_v3_server_total 1 bright91

If the number of measurables is too large to view on the screen:

Example

[bright91->monitoring->measurable]% usage devicestatus
Measurable Count Entities
------------- ------ --
DeviceStatus 21 node001,node002,node003,node004,node005,node006,node007,node008,node009,node010+

© Bright Computing, Inc.

534 Monitoring: Monitoring Cluster Devices

then the -v option can be used to list the entities over multiple lines:

Example

bright91->monitoring->measurable]% usage -v devicestatus
Measurable Count Entities
------------- ------ --
DeviceStatus 21 node001,node002,node003,node004,node005,node006,node007,node008,node009,node010,

node011,node012,node013,node014,node015,node016,node017,node018,node019,node020,
bright91

Listing Measurables From monitoring Mode
Similarly, under monitoring mode, within the measurable submode, the list of measurable objects that
can be used can be viewed with a list command:

Example

[bright91->monitoring]% measurable list
Type Name (key) Parameter Class Producer
------------ ------------------- ---------- ---------------------------- ------------------
Enum DeviceStatus Internal DeviceState
HealthCheck ManagedServicesOk Internal CMDaemonState
HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem
HealthCheck chrootprocess OS chrootprocess
HealthCheck cmsh Internal cmsh
...
...

The subsets of these measurables—enummetrics, metrics, and health checks—can be listed with:
list enum (section 13.2.2), list metric (section 13.2.3), or list healthcheck (section 13.2.4).

In Bright View, the equivalent to listing the measurables can be carried out via the clickpath:

Monitoring→Measurables (figure 13.10, section 13.4.2)

and listing the subsets of the measurables is possible using column filtering (figure 13.11, section 13.4.2).

Viewing Parameters For A Particular Measurable From monitoring Mode
Within the measurable submode, parameters for a particular measurable can be viewed with the show
command for that particular measurable:

Example

[bright91->monitoring->measurable]% use devicestatus
[bright91->monitoring->measurable[DeviceStatus]]% show
Parameter Value
-------------------------------- ----------------------
Class Internal
Consolidator none
Description The device status
Disabled no (DeviceState)
Maximal age 0s (DeviceState)
Maximal samples 4,096 (DeviceState)
Name DeviceStatus
Parameter
Producer DeviceState
Revision
Type Enum

© Bright Computing, Inc.

13.2 Monitoring Concepts And Definitions 535

13.2.2 Enummetrics
An enummetric is a measurable for an entity that can only take a limited set of values. At the time of
writing (June 2017), DeviceStatus is the only enummetric. This may change in future versions of Bright
Cluster Manager.

The full list of possible values for the enummetric DeviceStatus is:
up, down, closed, installing, installer_failed, installer_rebooting, installer_callinginit,

installer_unreachable, installer_burning, burning, unknown, opening, going_down, pending, and
no data.

The enummetrics available for use can be listed from within the measurable submode of the
monitoring mode:

Example

[bright91->monitoring->measurable]% list enum
Type Name (key) Parameter Class Producer
------ ------------------------ ------------------- --------- -------------------
Enum DeviceStatus Internal DeviceState
[bright91->monitoring->measurable]%

The list of enummetrics that is configured to be used by an entity, such as a device, can be viewed
with the enummetrics command for that entity:

Example

[bright91->device]% enummetrics node001
Type Name Parameter Class Producer
------ ------------------------ ------------------- --------- -------------------
Enum DeviceStatus Internal DeviceState
[bright91->device]%

The states that the entity has been through can be viewed with a dumpmonitoringdata command
(section 13.6.4):

Example

[bright91->device]% dumpmonitoringdata -99d now devicestatus node001
Timestamp Value Info
-------------------------- ----------- ----------
2017/07/03 16:07:00.001 down
2017/07/03 16:09:00.001 installing
2017/07/03 16:09:29.655 no data
2017/07/03 16:11:00 up
2017/07/12 16:05:00 up

The parameters of an enummetric such as devicestatus can be viewed and set from monitoring
mode, from within the measurable submode (page 534).

13.2.3 Metrics
A metric for an entity is typically a numeric value for an entity. The value can have units associated with
it.

In the basic example of section 13.1, the metric value considered was CPUUser, measured at the
default regular time intervals of 120s.

The value can also be defined as no data. no data is substituted for a null value when there is no
response for a sample. no data is not a null value once it has been set. This means that there are no null
values stored for monitored data.

Other examples for metrics are:

© Bright Computing, Inc.

536 Monitoring: Monitoring Cluster Devices

• LoadOne (value is a number, for example: 1.23)

• WriteTime (value in ms/s, for example: 5 ms/s)

• MemoryFree (value in readable units, for example: 930 MiB, or 10.0 GiB)

A metric can be a built-in, which means it comes with Bright Cluster Manager as integrated code within
CMDaemon. This is based on c++ and is therefore much faster than the alternative. The alternative is
that a metric can be a standalone script, which means that it typically can be modified more easily by an
administrator with scripting skills.

The word metric is often used to mean the script or object associated with a metric as well as a metric
value. The context makes it clear which is meant.

A list of metrics in use can be viewed in cmsh using the list command from monitoring mode:

Example

[bright91->monitoring]% measurable list metric
Type Name (key) Parameter Class Producer
------- ------------------------ -------------- ------------------ -------------
Metric AlertLevel count Internal AlertLevel
Metric AlertLevel maximum Internal AlertLevel
...

In Bright View, the metrics can be viewed with the clickpath:

Monitoring→Measurables (figure 13.10, section 13.4.2)

and then clicking on the filter widget to select Metric (figure 13.11, section 13.4.2).
A list of metrics in use by an entity can be viewed in cmsh using the metrics command for that entity.

For example, for the entity node001 in mode devices:

Example

[bright91->devices]% metrics node001
Type Name Parameter Class Producer
------- ------------------------ -------------- --------- --------------
Metric AlertLevel count Internal AlertLevel
Metric AlertLevel maximum Internal AlertLevel
...

The parameters of a metric such as AlertLevel:count can be viewed and set from monitoringmode,
from within the measurable submode, just as for the other measurables:

Example

[bright91->monitoring->measurable]% use alertlevel:count
[bright91->monitoring->measurable[AlertLevel:count]]% show
Parameter Value
-------------------------------- ----------------------
Class Internal
Consolidator default
Cumulative no
Description Number of active triggers
Disabled no
Maximal age 0s
Maximal samples 0

© Bright Computing, Inc.

13.2 Monitoring Concepts And Definitions 537

Maximum 0
Minimum 0
Name AlertLevel
Parameter count
Producer AlertLevel
Revision
Type Metric

The equivalent Bright View clickpath to edit the parameters is:

Monitoring→Measurables→Edit

13.2.4 Health Check
A health check value is a response to a check carried out on an entity. The response indicates the health
of the entity for the check that is being carried out.

For example, the ssh2node health check, which runs on the head node to check if the SSH port 22
passwordless access to regular nodes is reachable.

A health check is run at a regular time interval, and can have the following possible values:

• PASS: The health check succeeded. For example, if ssh2node is successful, which suggests that an
ssh connection to the node is fine.

• FAIL: The health check failed. For example, if ssh2node was rejected. This suggests that the ssh
connection to the node is failing.

• UNKNOWN: The health check did not succeed, did not fail, but had an unknown response. For ex-
ample, if ssh2node has a timeout, for example due to routing or other issues. It means that it is
unknown whether the connection is fine or failing, because the response that came in is unknown.
Typically the administrator should investigate this further.

• no data: The health check did not run, so no data was obtained. For example, if ssh2node is
disabled for some time, then no data values were obtained during this time. Since the health check
is disabled, it means that no data cannot be recorded during this time by ssh2node. However,
because having a no data value in the monitoring data for this situation is a good idea—explicitly
knowing about having no data is helpful for various reasons—then no data values can be set, by
CMDaemon, for samples that have no data.

Other examples of health checks are:

• diskspace: check if the hard drive still has enough space left on it

• mounts: check mounts are accessible

• mysql: check status and configuration of MySQL is correct

• hpraid: check RAID and health status for certain HP RAID hardware

These and others can be seen in the directory: /cm/local/apps/cmd/scripts/healthchecks.

Health Checks
In Bright View, the health checks that can be configured for all entities can be seen with the clickpath:

Monitoring→Measurables (figure 13.10, section 13.4.2)

and then clicking on the filter widget to select Health Check (figure 13.11, section 13.4.2).
Options can be set for each health check by clicking through via the Edit button.

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks

538 Monitoring: Monitoring Cluster Devices

All Configured Health Checks
In Bright View, health checks that have been configured for all entities can be seen with the clickpath:

Monitoring→All Health Checks (section 13.4.7)

The view can be filtered per column.

Configured Health Checks For An Entity
An overview can be seen for a particular entity <entity> via the clickpath:

Monitoring→Health status→<entity>→Show

Severity Levels For Health Checks, And Overriding Them
A health check has a settable severity (section 13.2.7) associated with its response defined in the trigger
options.

For standalone healthchecks, the severity level defined by the script overrides the value in the trig-
ger. For example, FAIL 40 or UNKNOWN 10, as is set in the hpraid health check (/cm/local/apps/cmd/
scripts/healthchecks/hpraid).

Severity values are processed for the AlertLevel metric (section 13.2.8) when the health check runs.

Default Templates For Health Checks And Triggers
A health check can also launch an action based on any of the response values.

Monitoring triggers have the following default templates:

• Failing health checks: With a default severity of 15

• Passing health checks: With a default severity of 0

• Unknown health checks: With a default severity of 10

The severity level is one of the default parameters for the corresponding health checks. These defaults
can also be modified to allow an action to be launched when the trigger runs, for example, sending an
e-mail notification whenever any health check fails.

With the default templates, the actions are by default set for all health checks. However, specific
actions that are launched for a particular measurable instead of for all health checks can be configured.
To do this , one of the templates can be cloned, the trigger can be renamed, and an action can be set to
launch from a trigger. The reader should be able to recognize that in the basic example of section 13.1 this
is how, when the metric measurable CPUUser crosses 50 jiffies/s, the killallyestrigger is activated,
and the killallyes action script is run.

13.2.5 Trigger
A trigger is a threshold condition set for a sampled measurable. When a sample crosses the threshold
condition, it enters or leaves a zone that is demarcated by the threshold.

A trigger zone also has a settable severity (section 13.2.7) associated with it. This value is processed
for the AlertLevel metric (section 13.2.8) when an action is triggered by a threshold event.

Triggers are discussed further in section 13.4.5.

13.2.6 Action
In the basic example of section 13.1, the action script is the script added to the monitoring system to kill
all yes processes. The script runs when the condition is met that CPUUser crosses 50 jiffies/s.

An action is a standalone script or a built-in command that is executed when a condition is met, and
has exit code 0 on success. The condition that is met can be:

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks/hpraid
/cm/local/apps/cmd/scripts/healthchecks/hpraid

13.2 Monitoring Concepts And Definitions 539

• A FAIL, PASS, UNKNOWN, or no data from a health check

• A trigger condition. This can be a FAIL or PASS for conditional expressions.

• State flapping (section 13.2.9).

The actions that can be run are listed from within the action submode of the monitoring mode.

Example

[bright91->monitoring->action]% list
Type Name (key) Run on Action
----------- ---------------- --
Drain Drain Active Drain node from all WLM
Email Send e-mail Active Send e-mail
Event Event Active Send an event to users with connected client
ImageUpdate ImageUpdate Active Update the image on the node
PowerOff PowerOff Active Power off a device
PowerOn PowerOn Active Power on a device
PowerReset PowerReset Active Power reset a device
Reboot Reboot Node Reboot a node
Script killallyesaction Node /cm/local/apps/cmd/scripts/actions/killallyes
Script killprocess Node /cm/local/apps/cmd/scripts/actions/killprocess.pl
Script remount Node /cm/local/apps/cmd/scripts/actions/remount
Script testaction Node /cm/local/apps/cmd/scripts/actions/testaction
Shutdown Shutdown Node Shutdown a node
Undrain Undrain Active Undrain node from all WLM

The Bright View equivalent is accessible via the clickpath:

Monitoring→Actions (figure 13.17, section 13.4.4)

Configuration of monitoring actions is discussed further in section 13.4.4.

13.2.7 Severity
Severity is a positive integer value that the administrator assigns for a trigger. It takes one of these 6
suggested values:

Value Name Icon Description

0 debug debug message

0 info informational message

10 notice normal, but significant, condition

20 warning warning conditions

30 error error conditions

40 alert action must be taken immediately

Severity levels are used in the AlertLevel metric (section 13.2.8). They can also be set by the admin-
istrator in the return values of health check scripts (section 13.2.4).

By default the severity value is 15 for a health check FAIL response, 10 for a health check UNKNOWN
response, and 0 for a health check PASS response (section 13.2.4).

© Bright Computing, Inc.

540 Monitoring: Monitoring Cluster Devices

13.2.8 AlertLevel
AlertLevel is a special metric. It is sampled and re-calculated when an event with an associated Severity
(section 13.2.7) occurs. There are three types of AlertLevel metrics:

1. AlertLevel (count): the number of events that are at notice level and higher . The aim of this
metric is to alert the administrator to the number of issues.

2. AlertLevel (max): simply the maximum severity of the latest value of all the events. The aim of
this metric is to alert the administrator to the severity of the most important issue.

3. AlertLevel (sum): the sum of the latest severity values of all the events. The aim of this metric is
to alert the administrator to the overall severity of issues.

13.2.9 Flapping
Flapping, or State Flapping, is when a measurable trigger that is detecting changes (section 13.4.5) that
are too frequent. That is, the measurable goes in and out of the zone too many times over a number
of samples. In the basic example of section 13.1, if the CPUUser metric crossed the threshold zone 5
times within 5 minutes (the default values for flap detection), then it would by default be detected as
flapping. A flapping alert would then be recorded in the event viewer, and a flapping action could also
be launched if configured to do so.

13.2.10 Data Producer
A data producer produces measurables. Sometimes it can be a group of measurables, as in the measur-
ables provided by a data producer that is being used:

Example

[bright91->monitoring->measurable]% list -f name:25,producer:15 | grep ProcStat
BlockedProcesses ProcStat
CPUGuest ProcStat
CPUIdle ProcStat
CPUIrq ProcStat
CPUNice ProcStat
CPUSoftIrq ProcStat
CPUSteal ProcStat
CPUSystem ProcStat
CPUUser ProcStat
CPUWait ProcStat
CtxtSwitches ProcStat
Forks ProcStat
Interrupts ProcStat
RunningProcesses ProcStat

Sometimes it may just be one measurable, as provided by a used data producer:

Example

[bright91->monitoring->measurable]% list -f name:25,producer:15 | grep ssh2node
ssh2node ssh2node

It can even have no measurables, and just be an empty container for measurables that are not in use
yet.

In cmsh all possible data producers (used and unused) can be listed as follows:

Example

© Bright Computing, Inc.

13.2 Monitoring Concepts And Definitions 541

[bright91->monitoring->setup]% list

The equivalent in Bright View is via the clickpath:

Monitoring→Data Producers

The data producers configured for an entity, such as a head node bright91, can be listed with the
monitoringproducers command:

Example

[bright91->device[bright91]]% monitoringproducers
Type Name Arguments Measurables Node execution filters
------------------ ----------------- ------------ ------------ ----------------------
AlertLevel AlertLevel 3 / 231 <0 in submode>
CMDaemonState CMDaemonState 1 / 231 <0 in submode>
ClusterTotal ClusterTotal 18 / 231 <1 in submode>
Collection NFS 32 / 231 <0 in submode>
Collection sdt 0 / 231 <0 in submode>
DeviceState DeviceState 1 / 231 <1 in submode>
HealthCheckScript chrootprocess 1 / 231 <1 in submode>
HealthCheckScript cmsh 1 / 231 <1 in submode>
HealthCheckScript defaultgateway 1 / 231 <0 in submode>
HealthCheckScript diskspace 1 / 231 <0 in submode>
HealthCheckScript dmesg 1 / 231 <0 in submode>
HealthCheckScript exports 1 / 231 <0 in submode>
HealthCheckScript failedprejob 1 / 231 <1 in submode>
HealthCheckScript hardware-profile 0 / 231 <1 in submode>
HealthCheckScript ib 1 / 231 <0 in submode>
HealthCheckScript interfaces 1 / 231 <0 in submode>
HealthCheckScript ldap 1 / 231 <0 in submode>
HealthCheckScript lustre 1 / 231 <0 in submode>
HealthCheckScript mounts 1 / 231 <0 in submode>
HealthCheckScript mysql 1 / 231 <1 in submode>
HealthCheckScript ntp 1 / 231 <0 in submode>
HealthCheckScript oomkiller 1 / 231 <0 in submode>
HealthCheckScript opalinkhealth 1 / 231 <0 in submode>
HealthCheckScript rogueprocess 1 / 231 <1 in submode>
HealthCheckScript schedulers 1 / 231 <0 in submode>
HealthCheckScript smart 1 / 231 <0 in submode>
HealthCheckScript ssh2node 1 / 231 <1 in submode>
Job JobSampler 0 / 231 <1 in submode>
JobQueue JobQueueSampler 7 / 231 <1 in submode>
MonitoringSystem MonitoringSystem 36 / 231 <1 in submode>
ProcMemInfo ProcMemInfo 10 / 231 <0 in submode>
ProcMount ProcMounts 2 / 231 <0 in submode>
ProcNetDev ProcNetDev 18 / 231 <0 in submode>
ProcNetSnmp ProcNetSnmp 21 / 231 <0 in submode>
ProcPidStat ProcPidStat 5 / 231 <0 in submode>
ProcStat ProcStat 14 / 231 <0 in submode>
ProcVMStat ProcVMStat 6 / 231 <0 in submode>
Smart SmartDisk 0 / 231 <0 in submode>
SysBlockStat SysBlockStat 20 / 231 <0 in submode>
SysInfo SysInfo 5 / 231 <0 in submode>
UserCount UserCount 3 / 231 <1 in submode>

© Bright Computing, Inc.

542 Monitoring: Monitoring Cluster Devices

The displayed data producers are the ones configured for the entity, even if there are no measurables
used by the entity.

Data producer configuration in Bright View is discussed further in section 13.4.1.

Access Control For Monitoring Data
Access control to data producers: An access control setting for a data producer determines who can
plot (via the measurables monitoring interface used by Bright View and the User Portal), or view data
(using the text-based interface of cmsh or pythoncm) from the measurables generated by a data producer.
Thus, for example, the charts in the user portal (section 13.8) can be restricted according to the data
producer that generates them.

There are three possible settings for access control for data producers. If the data producer is set to:

1. Public: then it means any user can, by default, plot/view data derived from that data producer.
This is because by default a user has the token PLOT_TOKEN in their profile.

2. Private: then it means that a non-root user cannot, by default, plot/view data derived
from that data producer. This is because, by default, non-root users do not have the token
PRIVATE_MONITORING_TOKEN in their profile. If that token is in the profile, then the user has an el-
evated privilege, and can plot/view data, just like root.

3. Individual: then it means that a non-root user, by default, can plot/view the data only if the job
associated with that data was run by that same non-root user. More verbosely, with the default
user settings: the user who ran a job for which job measurables are produced by a data producer,
must be the same as the user that who wants to plot/view the data, or else the data cannot be plot-
ted/viewed. 1 The exception to this is, as already suggested, if the user that wants to plot/view
the data is root, or has a user profile with the token PRIVATE_MONITORING_TOKEN. In that case the data
can be plotted/viewed.

On a regular Bright Cluster Manager cluster, only a few low level data producers are set to private.
An administrator can decide to set a data producer access control value to one of the three possible
values, by using the setup submode of monitoring mode:

Example

[root@bright91 ~]# cmsh
[bright91]% monitoring setup
[bright91->monitoring->setup]% use mounts
[bright91->...[mounts]]% set access private
[bright91->...*[mounts*]]% commit

If a data producer is newly added, then by default its access control value is set to public. Changing
this to private at a later time means that access to past and future data values from that data producer
are affected by the private setting. If access is changed once more back to public, then it means that
access to past and future data values are once again viewable and plottable by all users.

The current settings for access control for the data producers can be seen with:

Example
1Even more verbosely: Individual access control is meant for job-based measurables, and works like this:

All monitoring data is stored per (entity, measurable) pair.
If the measurable has an access control value of individual, then a user check is performed. If the login name is the same as

the user that owns the entity, then data can be plotted/viewed. If the user check does not match, then no data is returned.
Jobs—which are entities—are owned by the user that ran the job. Similarly Prometheus (entities) can have a ’user="Alice"’ label

set, to define ownership. No other entity managed by Bright Cluster Manager is owned by a user.
For all unowned entities, individual access is equivalent to private access.

© Bright Computing, Inc.

13.2 Monitoring Concepts And Definitions 543

[root@bright91 ~]# cmsh -c "monitoring setup; list -f name:40,access"
name (key) access
-- --------------------
AggregateNode Public
AlertLevel Public
BigDataTools Public
CMDaemonState Public
Cassandra Public
ClusterTotal Public
...

Access control to measurables: Measurables can also have access controls.
Access control for measurables is by default inherited from the data producer that generates it. It

can be overwritten:

Example

[root@bright91 ~]# cmsh
[bright91]% monitoring measurable
[bright91->monitoring->measurable]% use loadone
[bright91->...[LoadOne]]% get access
Public (SysInfo)
[bright91->...[LoadOne]]% set access private
[bright91->...*[LoadOne*]]% commit

A measurable can thus take an access control value of Public, Private, or Individual. It can also
explicitly be set to a value of inherit, which sets it to the value of its data producer. The inheritance
is indicated in cmsh by enclosing the parent data producer in parentheses, as shown in the preceding
example.

The current settings for access control for the measurables can be seen with:

Example

[root@bright91 ~]# cmsh -c "monitoring measurable; list -f name:40,access"
name (key) access
-- --------------------
AlertLevel Public
AlertLevel Public
AlertLevel Public
AvgJobDuration Public
BlockedProcesses Public
...

13.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Bright View
Bright View has its own display modes, event and action results logs, and account handling screen.
These can be selected via some of the 8 icons in the top right corner of the Bright View standard display
(figure 13.5):

© Bright Computing, Inc.

544 Monitoring: Monitoring Cluster Devices

Settings
(section 13.4)

6

Monitoring
(section 13.3)

6

Accounting
(Chapter 15)

6

Events

6

Action results

6

Background tasks

6

Unsaved
entities

6

Account

6

Figure 13.5: Bright View: Top Right Corner Icons

The 8 icons are described from left to right next:

1. Settings mode is the display that is shown when Bright View first starts up.

When in Settings mode, the navigation panel shows the Monitoring configuration resource. This
resource should not be confused with the Bright View Monitoring mode, which is launched by the
next icon in figure 13.5. The Monitoring configuration resource is about configuring how items
are monitored and how their data values are collected, and is discussed further in section 13.4.

2. The Monitoring mode allows visualization of the data values collected according to the spec-
ifications of the Bright View Monitoring configuration. The visualization allows graphs to be
configured, and is discussed further in section 13.3.

3. The Accounting mode typically allows visualization of job resources used by users, although it
can be used to visualize job resources used by other aggregation entities. This is helpful tracking
resources consumed by users. Job accounting is discussed further in Chapter 15.

4. The Events icon allows logs of events (section 13.10.1) to be viewed.

5. The Action results icon allows the logs of the results of actions to be viewed.

6. The Background tasks icon allows background tasks to be viewed.

7. The Unsaved entities icon allows entities that have not yet been saved to be viewed.

8. The Account handling icon allows account settings to be managed for the Bright View user.

The monitoring aspects of the first two icons are discussed in greater detail in the sections indicated.

13.3 Monitoring Visualization With Bright View
The Monitoring icon in the menu bar of Bright View (item 2 in figure 13.5) launches an intuitive visu-
alization tool that is the main GUI tool for getting a feel of the system’s behavior over periods of time.
With this tool the measurements and states of the system can be viewed as resizable and overlayable
graphs. The graphs can be zoomed in and out on over a particular time period, the graphs can be laid
out on top of each other or the graphs can be laid out as a giant grid. The graph scale settings can also
be adjusted, stored and recalled for use the next time a session is started.

An alternative to Bright View’s visualization tool is the command-line cmsh. This has the same func-
tionality in the sense that data values can be selected and studied according to configurable parameters
with it (section 13.6). The data values can even be plotted and displayed on graphs with cmsh with the
help of unix pipes and graphing utilities. However, the strengths of monitoring with cmsh lie elsewhere:
cmsh is more useful for scripting or for examining pre-decided metrics and health checks rather than a
quick visual check over the system. This is because cmsh needs more familiarity with options, and is de-
signed for text output instead of interactive graphs. Monitoring with cmsh is discussed in sections 13.5
and 13.6.

Visualization of monitoring graphs with Bright View is now described.

© Bright Computing, Inc.

13.3 Monitoring Visualization With Bright View 545

13.3.1 The Monitoring Window
If the Monitoring icon is clicked on from the menu bar of Bright View (figure 13.5), then a monitoring
window for visualizing data opens up. By default, this displays blank plot panels—graph axes with
a time scale going back some time on the x-axis, and with no y-axis measurable data values plotted
(figure 13.6).

Figure 13.6: Bright View Monitoring Window: Blank Plot Panel

Finding And Selecting The Measurable To Be Plotted
To plot measurables, the entity which it belongs to should be selected from the navigation menu on
the left-hand side. Once that has been selected, a class for that measurable can be chosen, and then
the measurable itself can be selected. For example, to plot the measurable CPUUser for a head node
bright91, it can be selected from the navigation clickpath Device→bright91→CPU→CPUUser.

Sometimes, finding a measurable is easier with the Search box. Typing in CPUUser there shows all
the measurables with that text (figure 13.7). The search is case-insensitive.

Figure 13.7: Bright View Monitoring Window: Search Box In Navigation

The search box can handle some simple regexes too, with .* and | taking their usual meaning:

© Bright Computing, Inc.

546 Monitoring: Monitoring Cluster Devices

Example

• node001.*cpuuser: select a measurable with a data path that starts with node001 and ends with
cpuuser, with 0 or more characters of any kind in between.

• (node001|node002).*cpuuser: as for preceding example, but including node002 as an alternative
to node001.

The / (forward slash) allows filtering according to the data path. It corresponds to the navigation
depth in the tree hierarchy:

Example

• node001/cpu/cpuuser: search for a measurable with a data path that matches node001/cpu/
cpuuser

Plotting The Measurable
Once the measurable is selected, it can be drag-and-dropped into a plot panel. This causes the data
values to be plotted.

When a measurable is plotted into a panel, two graph plots are displayed. The smaller, bottom
plot, represents the polled value as a bar chart. The larger, upper plot, represents an interpolated line
graph. Different kinds of interpolations can be set. To get a quick idea of the effect of different kinds
of interpolations, https://bl.ocks.org/mbostock/4342190 is an interactive overview that shows how
they work on a small set of values.

The time axes can be expanded or shrunk using the mouse wheel in the graphing area of the plot
panel. The resizing is carried out centered around the position of the mouse pointer.

13.4 Monitoring Configuration With Bright View
This section is about the configuration of monitoring for measurables, and about setting up trigger
actions.

If Bright View is running in the standard Settings mode, which is the first icon in figure 13.5,
page 544, then selecting Monitoring configuration option from the resources section makes the follow-
ing menu items available for managing or viewing:

• Data Producers (section 13.4.1)

• Measurables (section 13.4.2)

• Consolidators (section 13.4.3)

• Actions (section 13.4.4)

• Triggers (section 13.4.5)

• Health status (section 13.4.6)

• All Health checks (section 13.4.7)

• Standalone Monitored Entities (section 13.4.8)

• PromQL Queries (section 15.3)

© Bright Computing, Inc.

node001/cpu/cpuuser
node001/cpu/cpuuser
node001/cpu/cpuuser
https://bl.ocks.org/mbostock/4342190

13.4 Monitoring Configuration With Bright View 547

Figure 13.8: Bright View Monitoring Configuration Settings

These settings (figure 13.8) are now discussed in detail.

13.4.1 Monitoring Configuration: Data Producers
The Data Producers window lists all the data producers. Data producers are introduced in sec-
tion 13.2.10.

Each data producer can have its settings edited within a subwindow. For example, the ProcStat
data producer, which produces data for several measurables, including CPUUser, has the settings shown
in figure 13.9:

© Bright Computing, Inc.

548 Monitoring: Monitoring Cluster Devices

Figure 13.9: Bright View Monitoring Configuration Data Producer Settings

When the data producer takes samples to produce data, run length encoding (RLE) is used to com-
press the number of samples that are stored as data. Consolidation is carried out on the RLE samples.
Consolidation in Bright Cluster Manager means gathering several data values, and making one value
from them over time periods. Consolidation is done as data values are gathered. The point at which
data values are discarded, if ever, is thus not dependent on consolidation.

Some remarks about some of the data producer settings that are seen in the subwindow of figure 13.9:

• Maximal samples: the maximum number of RLE samples that are kept. If set to 0, then the number
of samples is not considered.

• Maximal Age: the maximum age of RLE samples that are kept. If Maximal Age is set to 0 then the
sample age is not considered.

With Maximal samples and Maximal Age, the first of the rules that is reached is the one that causes
the exceeding RLE samples to be dropped.

Samples are kept forever if Maximal samples and Maximal Age are both set to 0. This is discour-
aged due to the risk of exceeding the available data storage space.

• Interval: the interval between sampling, in seconds.

• Offset: A time offset from start of sampling. Some sampling depends on other sampling to be
carried out first. This is used, for example, by data producers that rely on sampling from other
data producers. For example, the AggregateNode data producer, which has measurables such as
TotalCPUIdle and TotalMemoryFree. The samples for AggregateNode depend upon the ProcStat
data producer, which produces the CPUIdle measurable; and the ProcMemInfo data producer,
which produces the MemoryFree measurable.

• Fuzzy offset: a multiplier in the range from 0 to 1. It is multiplied against the sampling time
interval to fix a maximum value for the time offset for when the sampling takes place. The actual
offset used per node is spread out reasonably evenly within the range up to that maximum time
offset.

© Bright Computing, Inc.

13.4 Monitoring Configuration With Bright View 549

For example, for a sampling time interval of 120s:

If the offset is 0, then there is no offset, and the sampling is attempted for all nodes at time instant
when the interval restarts. This can lead to an overload at the time of sampling.

If, on the other hand, the offset is 0.25, then the sampling is done within a range offset from the
time of sampling by a maximum of 0.25× 120s = 30s. So, each node is sampled at a time that is
offset by up to 30s from when the 120s interval restarts. From the time the change in value of the
fuzzy offset starts working, the offset is set for each node. The instant at which sampling is carried
out on a node then differs from the other nodes, even though each node still has an interval of 120s
between sampling. An algorithm is used that tends to even out the spread of the instants at which
sampling is carried out within the 30s range. The spreading of sampling has the effect of reducing
the chance of overload at the time of sampling.

• Consolidator: By default, set to the default group. The default group consolidates (summa-
rizes) the RLE samples over periods of an hour, a day, and a week. Consolidators are explained
further in section 13.4.3.

• Node execution filters: A way to filter execution (restrict execution) of the data producer. It
tells Bright Cluster Manager where the data producer runs. If not set, then the data producer runs
on all nodes managed by CMDaemon. Filters can be for nodes, types, overlays, resources, and
categories.

• Execution multiplexer: A way to multiplex execution (have execution work elsewhere) for a
data producer. It tells Bright Cluster Manager about the entities that the data producer is sampling
for. A data producer gathers data at the nodes defined by the node execution filter, and with
multiplex execution the data producer gathers samples from other entities. These entities can be
nodes, types, overlays, and resources. The entities from which it can sample are defined into
groups called execution multiplexers. Execution multiplexers can thus be node multiplexers, type
multiplexers, overlay multiplexers, or resource multiplexers.

• When: This has three possible values:

– Timed: Data producer is run at a periodic Interval. This is the default.

– Pre job: Data producer is only run before a job, in the prolog of the job. This is typically a
check as part of the workload manager process (section 7.8.2).

– On demand: Data producer is only run on demand, and not at a periodic Interval.

• Only when idle: By default a data producer runs regardless of how busy the nodes are. However,
if the Only when idle setting is enabled, then the data producer runs only when the node is idle.
Idle is a condition that is defined by the metric condition LoadOne>1 (page 855).

13.4.2 Monitoring Configuration: Measurables
The Measurables window lists the available measurables (figure 13.10):

© Bright Computing, Inc.

550 Monitoring: Monitoring Cluster Devices

Figure 13.10: Bright View Monitoring Configuration Measurables

There are many measurables. It can therefore be useful to use the filtering-by-column option at the
top of the columns. Each filtering option also has a search box associated with it (figure 13.11):

Figure 13.11: Bright View Monitoring Configuration Measurables Column Filter

From the measurables window, a subwindow can be opened with the Edit button for a measurable.
This accesses the options for a particular measurable (figure 13.12):

© Bright Computing, Inc.

13.4 Monitoring Configuration With Bright View 551

Figure 13.12: Bright View Monitoring Configuration Measurables Options Subwindow

The options shown include the sampling options: Maximal age, Maximal samples, Consolidator.
The sampling options work as described for data producers (section 13.4.1).

Other options for a metric are setting the Maximum and Minimum values, the Unit used, and whether
the metric is Cumulative.

If a metric is cumulative, then it is monotonic. Monotonic means that the metric only increments (is
cumulative), as time passes. In other words, if the metric is plotted as a graph against time, with time on
the x-axis, then the metric never descends. Normally the increments are from the time of boot onwards,
and the metric resets at boot. For example, the number of bytes received at an interface is cumulative,
and resets at boot time.

Usually the cluster administrator is only interested in the differential value of the metric per sample
interval. That is, the change in the value of the current sample, from its value in the preceding sample.
For example, bytes/second, rather than total number of bytes up to that time from boot.

13.4.3 Monitoring Configuration: Consolidators
Introduction To Consolidators
The concept of consolidators is explained using simple ascii graphics in Appendix K, while the cmsh
interface to the consolidators submode is discussed in section 13.5.2.

In this current section, the Bright View interface to consolidators is discussed.
In Bright View, the Consolidators window lists all consolidator groups (figure 13.13).

© Bright Computing, Inc.

552 Monitoring: Monitoring Cluster Devices

Figure 13.13: Bright View Monitoring Configuration Consolidator Groups

Subwindows allow the component consolidators to be created or modified (figure 13.14).

Figure 13.14: Bright View Monitoring Configuration Consolidator Groups Components

There are two pre-existing consolidator groups: default and none.

The none Consolidator Group
The none consolidator group, has no consolidators. Using a consolidator of none for a measurable or
data producer means that samples are not consolidated. This can be dangerous if the cluster is more
likely to run out of space due to unrestrained sampling, as can occur, for example, if Maximal Age and
Maximal samples (section 13.4.1) for data producers are both set to 0.

The default Consolidator Group
The default consolidator group consists of the consolidators hour, day, and week. These are, unsurpris-
ingly, defined to consolidate the samples in intervals of an hour, day, or week.

A consolidated value is generated on-the-fly. So, for example, during the hour that samples of a
measurable come in, the hour consolidator uses the samples to readjust the consolidated value for that
hour. When the hour is over, the consolidated value is stored for that hour as the data value for that
hour, and a new consolidation for the next hour begins.

Consolidator values are kept, as for sample values, until the Maximal Age and Maximal sample set-
tings prevent data values being kept.

Other Consolidator Group Possibilities
Other sets of custom intervals can also be defined. For example, instead of the default consolida-
tor group, (hour, day, week), a similar group called decimalminutes consolidator group, (1min, 10min,
100min, 1000min, 10000min) could be created with the appropriate intervals (figure 13.15):

© Bright Computing, Inc.

13.4 Monitoring Configuration With Bright View 553

Figure 13.15: Bright View Monitoring Configuration Consolidators: decimalminutes Consolidator
Group

Consolidator Item Settings
Consolidator items are members of the consolidator groups. The items have settings as properties, and
can be managed (figure 13.16).

Figure 13.16: Bright View Monitoring Configuration Consolidators: Consolidator Item Settings

For the consolidator of hour, within the default consolidators group, the clickpath to edit its prop-
erties is:

Monitoring→Consolidators[default]→Edit→Consolidator[hour]→Edit

The properties that can be set for a consolidator item are:

• Name: The name of the consolidator item. By default, for the consolidator group default, the
consolidator items with names of Day, Hour, and Month are already set up, with appropriate values
for their corresponding fields.

• Maximal samples: The maximum number of samples that are stored for that consolidator item.
This should not be confused with the Maximal samples of the measurable being consolidated.

• Interval: The time period (in seconds) covered by the consolidator sample. For example, the
consolidator with the name Hour has a value of 3600. The property should not be confused with
the time period between samples of the measurable being consolidated.

• Offset: The time offset from the default consolidation time, explained in more detail shortly.

© Bright Computing, Inc.

554 Monitoring: Monitoring Cluster Devices

• Kind: The kind of consolidation that is done on the raw data samples. The value of kind is set
to average by default. The output result for a processed set of raw data—the consolidated data
point—is an average, a maximum or a minimum of the input raw data values. Kind can thus have
the value Average, Maximum, or Minimum. The value of kind is set to average by default.

For a given consolidator, when one Kind is changed to another, the historically processed data
values become inconsistent with the newer data values being consolidated. Previous consolidated
data values for that consolidator are therefore discarded during such a change.

To understand what Offset means, the Maximal samples of the measurable being consolidated can
be considered. This is the maximum number of raw data points that the measurable stores. When this
maximum is reached, the oldest data point is removed from the measurable data when a new data point
is added. Each removed data point is gathered and used for data consolidation purposes.

For a measurable that adds a new data point every Interval seconds, the time traw gone, which is
how many seconds into the past the raw data point is removed, is given by:

traw gone = (Maximal samples)measurable × (Interval)measurable
This value is also the default consolidation time, because the consolidated data values are normally

presented from traw gone seconds ago, to further into the past. The default consolidation time occurs
when the Offset has its default, zero value.

If however the Offset period is non-zero, then the consolidation time is offset, because the time into
the past from which consolidation is presented to the user, tconsolidation, is then given by:

tconsolidation = traw gone + Offset

The monitoring visualization graphs then show consolidated data from tconsolidation seconds into
the past, to further into the past2.

13.4.4 Monitoring Configuration: Actions
Actions are introduced in section 13.2.6. The Actions window (figure 13.17) displays actions that Bright
Cluster Manager provides by default, and also displays any custom actions that have been created:

Figure 13.17: Bright View Monitoring Configuration: Actions

The killallyes script from the basic example of section 13.1 would show up here if it has been
implemented.

Actions are triggered, by triggers (section 13.4.5).
By default, the following actions exist:

2 For completeness: the time tconsolidation gone, which is how many seconds into the past the consolidated data goes and is
viewable, is given by an analogous equation to that of the equation defining traw gone:
tconsolidation gone = (Maximalsamples)consolidation × (Interval)consolidation

© Bright Computing, Inc.

13.4 Monitoring Configuration With Bright View 555

• Poweron: Powers on the node

• PowerOff: Powers off the node

• PowerReset: Hard resets the node

• Drain: Drains the node (does not allow new jobs on that node)

• Undrain: Undrains the node (allows new jobs on that node)

• Reboot: Reboots node via the operating system

• Shutdown: Shuts the node down via the operating system

• ImageUpdate: Updates the node from the software image

• Event: Sends an event to users connected with cmsh or Bright View

• killprocess: A script to kill a process

• remount: A script to remount all devices

• testaction: A test script

• Send e-mail to administrators: Sends an e-mail out

The preceding actions show their options when the associated Edit button is clicked. A subwindow
with options opens up. The following options are among those then displayed:

• Run on: What nodes the action should run on. Choices are:

– active: the action runs on the active node only

– node: the action runs on the triggering node

• Allowed time: The time interval in the 24 hour clock cycle that the action is allowed to start
running. The interval can be restricted further to run within certain days of the week, months of
the year, or dates of the month. Days and months must be specified in lower case.

Rather than defining a formal syntax, some examples are given, with explanations:

– november-march: November to March. April to October are forbidden.

– november-march{monday-saturday}: As in the preceding, but all Sundays are also forbidden.

– november-march{monday-saturday{13:00-17:00}}: Restricted to the period defined in the
preceding example, and with the additional restriction that the action can start running only
during the time 13:00-17:00.

– 09:00-17:00: All year long, but during 09:00-17:00 only.

– monday-friday{9:00-17:00}: All year long, but during 9:00-17:00 only, and not on Saturdays
or Sundays.

– november-march{monday-saturday{13:00-17:00}}: Not in April to October. In the other
months, only on Mondays to Saturdays, from 13:00-17:00.

– may-september{monday-friday{09:00-18:00};saturday-sunday{13:00-17:00}}: May to
September, with: Monday to Friday 09:00-18:00, and Saturday to Sunday 13:00-17:00.

– may{1-31}: All of May.

– may,september{1-15}: All of May, and only September 1-15.

– may,september{1-15{monday-friday}}: All of May. And only September 1-15 Monday to
Friday.

© Bright Computing, Inc.

556 Monitoring: Monitoring Cluster Devices

A BNF grammar for allowed times is given in section 3.2.1 of the Developer Manual.

The following action scripts have some additional options:

• Send e-mail to administrators: Additional options here are:

– info: body of text inserted into the default e-mail message text, before the line beginning
“Please take action”. The default text can be managed in the file /cm/local/apps/cmd/
scripts/actions/sendemail.py

– recipients: a list of recipients

– all admins: uses the list of users in the Administrator e-mail setting in partition[base]
mode

• killprocess, and testaction: Additional options for these are:

– arguments: text that can be used by the script.

– script: The location of the script on the file system.

13.4.5 Monitoring Configuration: Triggers
Triggers are introduced in section 13.2.5. The Triggers window (figure 13.18) allows actions (sec-
tion 13.2.6) to be triggered based on conditions defined by the cluster administrator.

Figure 13.18: Bright View Monitoring Configuration: Triggers

Change Detection For Triggers
Triggers launch actions by detecting changes in the data of configured measurables. The detection of
these changes can happen:

• When a threshold is crossed. That is: the latest sample value means that either the value has
entered a zone when it was not in the zone in the preceding sample, or the latest sample means
that the value has left a zone when it was in the zone in the preceding sample

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/actions/sendemail.py
/cm/local/apps/cmd/scripts/actions/sendemail.py

13.4 Monitoring Configuration With Bright View 557

• When the zone remains crossed. That is: the latest sample as well as the preceding sample are both
within the zone of a crossed threshold.

• When state flapping is detected. This is when the threshold is crossed repeatedly (5 times by
default) within a certain time period (5 minutes by default).

The monitoring configuration dialog triggers have four possible action launch configuration options
to cover these cases:

1. Enter actions: if the sample has entered into the zone and the previous sample was not in the
zone. This is a threshold-crossing change.

2. Leave actions: if the sample has left the zone and the previous sample was in the zone. This is
also a threshold-crossing change.

3. During actions: if the sample is in the zone, and the previous sample was also in the zone.

4. State flapping actions: if the sample is entering and leaving the zone within a particular
period (State flapping period, 5 minutes by default) a set number of times (State flapping
count, 5 by default).

Pre-defined Triggers: Passing, Failing, And Unknown Health Checks
By default, the only triggers that are pre-defined are the following three health check triggers, which use
the Enter actions launch configuration option, and which have the following default behavior:

• Failing health checks: If a health check fails, then on entering the state of the health check
failing, an event is triggered as the action, and a severity of 15 is set for that health check.

• Passing health checks: If a health check passes, then on entering the state of the health check
passing, an event is triggered as the action, and a severity of 0 is set for that health check.

• Unknown health checks: If a health check has an unknown response, then on entering the state of
the health check returning an unknown response, an event is triggered as the action, and a severity
of 10 is set for that health check.

Example: carry out a triggered action: cmsh or Bright View can be used for the configuration of carry-
ing out an e-mail alert action (that is: sending out an e-mail) that is triggered by failing health checks.

• A cmsh way to configure it is:

The e-mail action (send e-mail to administrators) is first configured so that the right recipients
get a useful e-mail.

[root@bright91 ~]# cmsh
[bright91]% monitoring action
[bright91->monitoring->action]% use send e-mail to administrators
[bright91->...[send e-mail to administrators]]% append recipients user1@example.com
[bright91->...*[send e-mail to administrators*]]% commit

Here, email alerts would go to user1@example.com, as well as to anyone already configured in
administratore-mail. Additional text can be set in the body of the e-mail by setting a value for
info.

The trigger can be configured to run the action when the health check enters a state where its value
is true:

© Bright Computing, Inc.

558 Monitoring: Monitoring Cluster Devices

[bright91->monitoring->action[use send e-mail to administrators]]% monitoring trigger
[bright91->monitoring->trigger]% use failing health checks
[bright91->monitoring->trigger[Failing health checks]]% append enteractions send e-mail to administrators
[bright91->monitoring->trigger*[Failing health checks*]]% commit

The settings can be viewed with the show command. TAB-completion prompting can be used to
suggest possible values for the settings.

• A Bright View way to carry out the configuration is using the clickpath:

Monitoring→Actions→Send e-mail to administrators→Edit

This can be used to set the recipients and other items, and the configuration saved.

The email action can then be configured in Bright View via the clickpath:

Monitoring→Triggers→Failing Health Checks→Edit→Enter Actions↓Send E-mail to Administrators

The checkbox for the "Send E-mail to Administrators" action should be ticked and the config-
uration saved.

Adding Custom Triggers: Any Measurable, Any Action
More triggers can be added. The killallyestrigger example from the basic example of section 13.1,
seen in figures 13.3 and 13.4, is one such example.

The idea is that actions are launched from triggers, and the action for the trigger can be set to a
predefined action, or to a custom action.

The Expression Subwindow For A Trigger
Clicking on the expression option in Trigger window of figure 13.18 opens up the expression subwin-
dow. The expression for the trigger can then be configured by setting the entity, measurable, parameter,
comparison operator, and measurable value, as shown in figure 13.19:

Figure 13.19: Bright View Monitoring Configuration: Triggers Expression

The trigger launch is carried out when, during sampling, CMDaemon evaluates the expression as
being true.

© Bright Computing, Inc.

13.4 Monitoring Configuration With Bright View 559

An example cmsh session to set up an expression for a custom trigger might be as follows, where the
administrator is setting up the configuration so that an e-mail is sent by the monitoring system when a
node is detected as having gone down:

Example

[root@bright91 ~]# cmsh
[bright91]% monitoring trigger add nodedown
[bright91->monitoring->trigger*[nodedown*]]% expression
[bright91->monitoring->trigger*[nodedown*]->expression[compare]]% show
Parameter Value
-------------------------------- --
Name compare
Revision
Type MonitoringCompareExpression
Entities
Measurables
Parameters
Operator ==
Value FAIL
Use raw no
[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% set value down
[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% set operator eq
[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% set measurables devicestate

To add a touch of realism, a deliberate mistake is set here—the use of devicestate (the data pro-
ducer) instead of devicestatus (the measurable). The validate command (page 36) gives a helpful
warning here, so that the cluster administrator can fix the setting:

[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% validate
Field Message
---------------- --
actions Warning: No actions were set
measurables/ Warning: No known measurable matches the specified regexes ('devicestate', '')
parameters
[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% set measurables devicestatus
[bright91->monitoring->trigger*[nodedown*]->expression*[compare*]]% ..;..
[bright91->monitoring->trigger*[nodedown*]]% set enteractions send e-mail to administrators
[bright91->monitoring->trigger*[nodedown*]]% commit

13.4.6 Monitoring Configuration: Health status
The Health status window (figure 13.20) displays all the nodes, and summarizes the results of all the
health checks that have been run against them over time, by presenting a table of the associated severity
levels (section 13.2.7):

© Bright Computing, Inc.

560 Monitoring: Monitoring Cluster Devices

Figure 13.20: Bright View Monitoring Configuration: Health Status

In the example shown in figure 13.20 the first entity shows a severity issue, while the other devices
are fine. Details of the individual health checks per node can be viewed in a subwindow using the Show
button for a node.

Clicking on the Show button for the first entity in this example opens up a subwindow (figure 13.21).
For this example the issue turns out to be due to an UNKNOWN status in the ssh2node measurable.

Figure 13.21: Bright View Monitoring Configuration: Health Status For An Entity

13.4.7 Monitoring Configuration: All Health Checks

Figure 13.22: Bright View Monitoring Configuration: All Health Checks For All Entities

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 561

The All Health checks window shows all the running health checks for all entities. If the filtering-by-
column option at the top of the column for the node is used to show the results for that node only, then
the results are similar to what the Show button for a node produces in section 13.4.6, figure 13.21.

13.4.8 Monitoring Configuration: Standalone Monitored Entities
The Standalone Monitored Entities window allows the cluster administrator to define a standalone
entity. A standalone entity is one that is not managed by Bright Cluster Manager—which means that no
CMDaemon is running on it to gather data and for managing it—but the entity can still be monitored.
For example, a workstation that is running the Bright View browser could be the standalone entity. This
could have its connectivity monitored by pinging it from the head node with a custom script.

13.5 The monitoring Mode Of cmsh
This section covers how to use cmsh to configure monitoring. The monitoring mode in cmsh corresponds
generally to the Monitoring item in the navigation panel of Bright View in section 13.4. Similarly to how
monitoring subwindows are accessed in Bright View, the monitoring mode of cmsh is itself is not used
directly, except as a way to access the monitoring configuration submodes of cmsh.

For this section some familiarity is assumed with handling of objects as described in the introduction
to working with objects (section 2.5.3). When using cmsh’s monitoring mode, the properties of objects in
the submodes are how monitoring settings are carried out.

The monitoring mode of cmsh gives access to 8 modes under it:

Example

[root@myheadnode ~]# cmsh
[myheadnode]% monitoring help | tail -8
============================== Monitoring ===============================
action Enter action mode
consolidator Enter consolidator mode
labeledentity Enter labeled entity mode
measurable Enter measurable mode
query.......................... Enter monitoring query mode
setup Enter monitoring configuration setup mode
standalone Enter standalone entity mode
trigger Enter trigger mode

For convenience, a tree for monitoring submodes is shown in figure 13.23.

© Bright Computing, Inc.

562 Monitoring: Monitoring Cluster Devices

Monitoring

trigger expression

standalone

consolidator

consolidators

setup

nodexecutionfilters

jobmetricsettings

executionmultiplexers

query

measurable

labeledentity

action (section 13.5.1)

(section 13.5.2)

(page 564)

(section 15.2)

(section 13.5.3)

(section 15.3) (page 575)

(section
13.5.4)

(page 572)

(page 576)

(section 13.5.5)

(section 13.5.6)

(page 577)

Figure 13.23: Submodes Under monitoring Mode

Sections 13.5.1–13.5.6 give examples of how objects are handled under these monitoring modes. To
avoid repeating similar descriptions, section 13.5.1 is relatively detailed, and is often referred to by the
other sections.

13.5.1 The action Submode
The action submode under the monitoring mode of cmsh allows monitoring actions to be configured.
This mode in cmsh corresponds to the Bright View clickpath:

Monitoring→Actions

described earlier in section 13.4.4:

The action mode handles action objects in the way described in the introduction to working with
objects (section 2.5.3). A typical reason to handle action objects—the properties associated with an action
script or action built-in—might be to view the actions available, or to add a custom action for use by, for
example, a metric or health check.

Some examples of how the action mode is used are now give.

The action Submode: list, show, And get
The list command by default lists the names and properties of actions available from action mode in
a table:

Example

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 563

[myheadnode]% monitoring action
[myheadnode->monitoring->action]% list
Type Name (key) Run on Action
----------- ---------------- -------- ---
Drain Drain Active Drain node from all WLM
Email Send e-mail to Active Send e-mail

administrators
Event Event Active Send an event to users with connected client
ImageUpdate ImageUpdate Active Update the image on the node
PowerOff PowerOff Active Power off a device
PowerOn PowerOn Active Power on a device
PowerReset PowerReset Active Power reset a device
Reboot Reboot Node Reboot a node
Script killprocess Node /cm/local/apps/cmd/scripts/actions/killprocess.pl
Script remount Node /cm/local/apps/cmd/scripts/actions/remount
Script testaction Node /cm/local/apps/cmd/scripts/actions/testaction
Shutdown Shutdown Node Shutdown a node
Undrain Undrain Active Undrain node from all WLM (node accepts new WLM jobs)

The preceding shows the actions available on a newly installed system.
The show command of cmsh displays the individual parameters and values of a specified action:

Example

[myheadnode->monitoring->action]% show poweroff
Parameter Value
-------------------------------- ----------------------------
Action Power off a device
Allowed time
Disable no
Name PowerOff
Revision
Run on Active
Type PowerOff

Instead of using list, a convenient way to view the possible actions is to use the show command
with tab-completion suggestions:

Example

[myheadnode->monitoring->action]% show<TAB><TAB>
drain killprocess powerreset send\ e-mail\ to\ administrators undrain
event poweroff reboot shutdown
imageupdate poweron remount testaction

The get command returns the value of an individual parameter of the action object:

Example

[myheadnode->monitoring->action]% get poweroff runon
active

The action Submode: add, use, remove, commit, refresh, modified, set, clear, And validate
In the basic example of section 13.1, in section 13.1.2, the killallyes action was cloned from a similar
script using a clone option in Bright View.

The equivalent can be done with a clone command in cmsh. However, using the add command
instead, while it requires more steps, makes it clearer what is going on. This section therefore covers
adding the killallyes script of section 13.1.2 using the add command.

© Bright Computing, Inc.

564 Monitoring: Monitoring Cluster Devices

When add is used: an object is added, the object is made the current object, and the name of the object
is set, all at the same time. After that, set can be used to set values for the parameters within the object,
such as a path for the value of the parameter command.

Adding an action requires that the type of action be defined. Just as tab-completion with show comes
up with action suggestions, in the same way, using tab-completion with add comes up with type sug-
gestions.

Running the command help add in the action mode also lists the possible types. These types are
drain, e-mail, event, imageupdate, poweroff, poweron, powerreset, reboot, script, servicerestart,
servicestart, servicestop, shutdown, undrain.

The syntax for the add command takes the form:

add <type> <action>

If there is no killallyes action already, then the name is added in the action mode with the
add command, and the script type, as follows:

Example

[myheadnode->monitoring->action]% add script killallyes
[myheadnode->monitoring->action*[killallyes*]]%

Using the add command drops the administrator into the killallyes object level, where its proper-
ties can be set. A successful commit means that the action is stored in CMDaemon.

The converse to the add command is the remove command, which removes an action that has had
the commit command successfully run on it.

The refresh command can be run from outside the object level, and it removes the action if it has
not yet been committed.

The use command is the usual way of "using" an object, where "using" means that the object being
used is referred to by default by any command run. So if the killallyes object already exists, then use
killallyes drops into the context of an already existing object (i.e. it “uses” the object).

The set command sets the value of each individual parameter displayed by a show command for
that action. The individual parameter script can thus be set to the path of the killallyes script:

Example

[...oring->action*[killallyes*]]% set script /cm/local/apps/cmd/scripts/actions/killallyes

The clear command can be used to clear the value that has been set for script.
The validate command checks if the object has all required values set to sensible values. So, for

example, commit only succeeds if the killallyes object passes validation.
Validation does not check if the script itself exists. It only does a sanity check on the values of the

parameters of the object, which is another matter. If the killallyes script does not yet exist in the
location given by the parameter, it can be created as suggested in the basic example of section 13.1, in
section 13.1.2. In the basic example used in this chapter, the script is run only on the head node. If it
were to run on regular nodes, then the script should be copied into the disk image.

The modified command lists changes that have not yet been committed.

13.5.2 The consolidator Submode
Consolidators are introduced in section 13.4.3. Consolidators can be managed in cmsh via the
consolidator mode, which is the equivalent of the consolidators window (section 13.4.3) in Bright
View.

The consolidator mode deals with groups of consolidators. One such pre-defined group is
default, while the other is none, as discussed earlier in section 13.4.3:

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 565

[bright91->monitoring->consolidator]% list
Name (key) Consolidators
------------------------ ------------------------
default hour, day, week
none <0 in submode>

Each consolidators entry can have its parameters accessed and adjusted.
For example, the parameters can be viewed with:

Example

[bright91->monitoring->consolidator]% use default
[bright91->monitoring->consolidator[default]]% show
Parameter Value
-------------------------------- --
Consolidators hour, day, week
Name default
Revision
[bright91->monitoring->consolidator[default]]% consolidators
[bright91->monitoring->consolidator[default]->consolidators]% list
Name (key) Interval
------------------------ ------------------------
day 1d
hour 1h
week 1w
[bright91->monitoring->consolidator[default]->consolidators]% use day
[bright91->monitoring->consolidator[default]->consolidators[day]]% show
Parameter Value
-------------------------------- --
Interval 1d
Kind AVERAGE
Maximal age 0s
Maximal samples 4096
Name day
Offset 0s
Revision
[bright91->monitoring->consolidator[default]->consolidators[day]]%

For the day consolidator shown in the preceding example, the number of samples saved per day can be
doubled with:

Example

[bright91->monitoring->consolidator[default]->consolidators[day]]% set maximalsamples 8192
[bright91->monitoring->consolidator*[default*]->consolidators*[day*]]% commit

Previously consolidated data is discarded with this type of change, if the number of samples is re-
duced. Changing parameters should therefore be done with some care.

A new consolidators group can be created if needed.
A Bright View way, where a decimalminutes group is created, is discussed in the example in sec-

tion 13.4.3, page 552.
A cmsh way, where a max-per-day group is created, is discussed in the following section:

Creation Of A Consolidator In cmsh
A new consolidator group, max-per-day, can be added to the default consolidator groups of default
and none, with:

© Bright Computing, Inc.

566 Monitoring: Monitoring Cluster Devices

Example

[bright91]% monitoring consolidator
[bright91->monitoring->consolidator]% add max-per-day
[...[max-per-day*]]%

Within this new group, a new consolidator item, max-per-day can also be defined. The item can be
defined so that it only calculates the maximum value per day, using the kind setting. Another setting is
interval, which defines the interval with which the old data is compressed:

Example

[...[max-per-day*]]% consolidators
[...[max-per-day*]->consolidators]% add max-per-day
[...[max-per-day*]]% set interval 1d
[...[max-per-day*]]% set kind maximum
[...[max-per-day*]]% show
Parameter Value
------------------- -----------
Interval 1d
Kind maximum
Maximal age 0s
Maximal samples 4096
Name max-per-day
Offset 0s
Revision
[...[max-per-day*]]% commit

13.5.3 The measurable Submode
The measurable submode under the monitoring mode of cmsh handles measurable objects, that is:
metrics, health checks, and enummetrics. This mode corresponds to the Bright View clickpath:

Monitoring→Measurables

covered earlier in section 13.4.2.
Measurable objects represent the configuration of scripts or built-ins. The properties of the objects

are handled in cmsh in the way described in the introduction to working with objects (section 2.5.3).
A typical reason to handle measurable objects might be to view the measurables already available,

or to remove a measurable that is in use by an entity.
Measurables cannot be added from this mode. To add a measurable, its associated data producer

must be added from monitoring setup mode (section 13.5.4).
This section goes through a cmsh session giving some examples of how this mode is used.

The measurable Submode: list, show, And get
In measurable mode, the list command by default lists the names of all measurable objects along with
parameters, their class, and data producer.

Example

[bright91->monitoring->measurable]% list
type name (key) parameter class producer
------------- -------------------- ---------- ----------------------------- -----------------
Enum DeviceStatus Internal DeviceState
HealthCheck ManagedServicesOk Internal CMDaemonState
HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 567

Metric nfs_v3_server_total Disk NFS
Metric nfs_v3_server_write Disk NFS
...

The above example illustrates a list with some of the measurables that can be set for sampling on a
newly installed system. A full list typically contains over two hundred items.

The list command in measurable submode can be run as:

• list metric: to display only metrics

• list healthcheck: to display only health checks

• list enum: to display only enummetrics

The show command of the measurable submode of monitoring mode displays the parameters and
values of a specified measurable, such as, for example CPUUser, devicestatus, or diskspace:

Example

Example

[myheadnode->monitoring->measurable]% show cpuuser
Parameter Value
-------------------- ----------------------------
Class CPU
Consolidator default (ProcStat)
Cumulative yes
Description CPU time spent in user mode
Disabled no (ProcStat)
Gap 0 (ProcStat)
Maximal age 0s (ProcStat)
Maximal samples 4,096 (ProcStat)
Maximum 0
Minimum 0
Name CPUUser
Parameter
Producer ProcStat
Revision
Type Metric
Unit Jiffies/s
[myheadnode->monitoring->measurable]% show devicestatus
Parameter Value
-------------------- ----------------------------
Class Internal
Consolidator none
Description The device status
Disabled no (DeviceState)
Gap 0 (DeviceState)
Maximal age 0s (DeviceState)
Maximal samples 4,096 (DeviceState)
Name DeviceStatus
Parameter
Producer DeviceState
Revision
Type Enum
[myheadnode->monitoring->measurable]% show diskspace
Parameter Value

© Bright Computing, Inc.

568 Monitoring: Monitoring Cluster Devices

-------------------- ----------------------------
Class Disk
Consolidator - (diskspace)
Description checks free disk space
Disabled no (diskspace)
Gap 0 (diskspace)
Maximal age 0s (diskspace)
Maximal samples 4,096 (diskspace)
Name diskspace
Parameter
Producer diskspace
Revision
Type HealthCheck

The Gap setting here is a number. It sets how many samples are allowed to be missed before a value
of NaN is set for the value of the metric.

As detailed in section 13.5.1, tab-completion suggestions for the show command suggest the names
of objects that can be used, with the use command in this mode. For show in measurable mode, tab-
completion suggestions suggests over 200 possible objects:

Example

[bright91->monitoring->measurable]% show
Display all 221 possibilities? (y or n)
alertlevel:count iotime:vda mon::storage::engine::elements oomkiller
alertlevel:maximum iotime:vdb mon::storage::engine::size opalinkhealth
alertlevel:sum ipforwdatagrams mon::storage::engine::usage packetsrecv:eth0
blockedprocesses ipfragcreates mon::storage::message::elements packetsrecv:eth1
buffermemory ipfragfails mon::storage::message::size packetssent:eth0
bytesrecv:eth0 ipfragoks mon::storage::message::usage packetssent:eth1
...

The single colon (“:”) indicates an extra parameter for that measurable.
Because there are a large number of metrics, it means that grepping a metrics list is sometimes handy.
When listing and grepping, it is usually a good idea to allow for case, and be aware of the existence of

the parameter column. For example, the AlertLevel metric shown in the first lines of the tab-completion
suggestions of the show command of the previous example, shows up as alertlevel. However the list
command displays it as AlertLevel. There are also several parameters associated with the AlertLevel
command. So using the case-insensitive -i option of grep, and using the head command to display the
headers is handy:

Example

[bright91->monitoring->measurable]% list | head -2 ; list metric | grep -i alertlevel
type name (key) parameter class producer
------------- -------------------- ---------- ------------------- ---------------
Metric AlertLevel count Internal AlertLevel
Metric AlertLevel maximum Internal AlertLevel
Metric AlertLevel sum Internal AlertLevel

The get command returns the value of an individual parameter of a particular health check object:

Example

[myheadnode->monitoring->measurable]% get oomkiller description
Checks whether oomkiller has come into action (then this check returns FAIL)
[myheadnode->monitoring->measurable]%

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 569

The measurable Submode: The has Command
The has command is used with a measurable to list the entities that use the measurable. Typically these
are nodes, but it can also be other entities, such as the base partition.

Example

[bright91->monitoring->measurable]% has alertlevel:sum
bright91
node001
node002
[bright91->monitoring->measurable]% use devicesup
[bright91->monitoring->measurable[DevicesUp]]% has
base

The remaining commands in measurable mode, such as use, remove, commit, refresh, modified,
set, clear, and validate; all work as outlined in the introduction to working with objects (section 2.5.3).
More detailed usage examples of these commands within a monitoring mode are given in the earlier
section covering the action submode (section 13.5.1).

The measurable Submode: An Example Session On Viewing And Configuring A Measurable
A typical reason to look at metrics and health check objects—the properties associated with the script or
built-in—might be, for example, to view the operating sampling configuration for an entity.

This section goes through a cmsh example session under monitoring mode, where the setup sub-
mode (page 570) is used to set up a health check. The healthcheck can then be viewed from the
measurable submode.

In the basic example of section 13.1, a trigger was set up from Bright View to check if the CPUUser
metric was above 50 jiffies/s, and if so, to launch an action.

A functionally equivalent task can be set up by creating and configuring a health check, because
metrics and health checks are so similar in concept. This is done here to illustrate how cmsh can be used
to do something similar to what was done with Bright View in the basic example. A start is made on
the task by creating a health check data producer, and configuring its measurable properties. using the
setup mode under the monitoring mode of cmsh. The task is completed in the section on the setup
mode in section 13.5.4.

To start the task, cmsh’s add command is used, and the type is specified, to create the new object:

Example

[root@myheadnode ~]# cmsh
[myheadnode]% monitoring setup
[myheadnode->monitoring->setup]% add healthcheck cpucheck
[myheadnode->monitoring->setup*[cpucheck*]]%

The show command shows the parameters.
The values for description, runinbash, script, and class should be set:

Example

[...->setup*[cpucheck*]]% set script /cm/local/apps/cmd/scripts/healthchecks/cpucheck
[...->setup*[cpucheck*]]% set description "CPUuser under 50%?"
[...->setup*[cpucheck*]]% set runinbash yes
[...->setup*[cpucheck*]]% set class OS
[...->setup*[cpucheck*]]% commit
[myheadnode->monitoring->setup[cpucheck]]%

On running commit, the data producer cpucheck is created:

© Bright Computing, Inc.

570 Monitoring: Monitoring Cluster Devices

Example

[myheadnode->monitoring->setup[cpucheck]]% exit; exit
[myheadnode->monitoring]% setup list | grep -i cpucheck
HealthCheckScript cpucheck 1 / 222 <0 in submode>

The measurable submode shows that a measurable cpucheck is also created:

Example

[myheadnode->monitoring]% measurable list | grep -i cpucheck
HealthCheck cpucheck OS cpucheck

Since the cpucheck script does not yet exist in the location given by the parameter script, it needs
to be created. One ugly bash script that can do a health check is:

#!/bin/bash

echo PASS if CPUUser < 50
cpu is a %, ie: between 0 and 100

cpu=`mpstat 1 1 | tail -1 | awk '{print $3}'`
comparisonstring="$cpu"" < 50"

if (($(bc <<< "$comparisonstring"))); then
echo PASS

else
echo FAIL

fi

The script should be placed in the location suggested by the object, /cm/local/apps/cmd/scripts/
healthchecks/cpucheck, and made executable with a chmod 700.

The cpucheck object is handled further within the cmsh monitoring setup mode in section 13.5.4 to
produce a fully configured health check.

13.5.4 The setup Submode
The setup Submode: Introduction
The setup submode under the monitoring mode of cmsh allows access to all the data producers. This
mode in cmsh corresponds to the Bright View clickpath:

Monitoring→Data Producers

covered earlier in section 13.4.1.

The setup Submode: Data Producers And Their Associated Measurables
The list of data producers in setup mode should not be confused with the list of measurables in
measurable mode. Data producers are not the same as measurables. Data producers produce mea-
surables, although it is true that the measurables are often named the same as, or similar to, their data
producer.

In cmsh, data producers are in the Name (key) column when the list command is run from the
setup submode:

Example

[bright91->monitoring->setup]% list
Type Name (key) Arguments Measurables Node execution filters

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks/cpucheck
/cm/local/apps/cmd/scripts/healthchecks/cpucheck

13.5 The monitoring Mode Of cmsh 571

-------------- --------------- ----------- ------------ -----------------------
AggregateNode AggregateNode 8 / 222 <1 in submode>
AlertLevel AlertLevel 3 / 222 <1 in submode>
CMDaemonState CMDaemonState 1 / 222 <0 in submode>
ClusterTotal ClusterTotal 18 / 222 <1 in submode>
Collection BigDataTools 0 / 222 <2 in submode>
Collection Cassandra 0 / 222 <1 in submode>
...

In the preceding example, the AlertLevel data producer has 3 / 222 as the value for measurables.
This means that this AlertLevel data producer provides 3 measurables out of the 222 configured mea-
surables. They may be enabled or disabled, depending on whether the data producer is enabled or
disabled, but they are provided in any case.

To clarify this point: if the list command is run from setup mode to list producers, then the pro-
ducers that have configured measurables are the ones that have 1 or more as the numerator value in the
Measurables column. Conversely, the data producers with 0 in the numerator of the Measurables col-
umn have no configured measurables, whether enabled or disabled, and are effectively just placeholders
until the software for the data producers is installed.

So, comparing the list of producers in setup mode with the measurables in measurable mode:

Example

In measurable mode, the three AlertLevel measurables (the 3 out of 222) produced by the AlertLevel
producer can be seen with:

[bright91->monitoring->measurable]% list | head -2; list | grep AlertLevel
Type Name (key) Parameter Class Producer
-------- ------------ --------- --------- -------------
Metric AlertLevel count Internal AlertLevel
Metric AlertLevel maximum Internal AlertLevel
Metric AlertLevel sum Internal AlertLevel

On the other hand, in measurable mode, there are no measurables seen for BigDataTools (the 0 out
of 222) produced by the BigDataTools producer, when running, for example: list | head -2; list
| grep BigDataTools.

The setup Submode: Listing Nodes That Use A Data Producer
The nodes command can be used to list the nodes on which a data producer <data producer> runs. It is
run in the setup submode level of the monitoring mode as:

nodes <data producer>

Example

[bright91->monitoring->setup]% list | head -2; list | grep mount
Type Name (key) Arguments Measurables Node execution filters
---------------------- -------------- ------------ ------------ ----------------------
HealthCheckScript mounts 1 / 229 <0 in submode>
[bright91->monitoring->setup]% nodes mounts
node001..node003,bright91

The setup Submode: Data Producers Properties
Any data producer from the full list in setup mode can, if suitable, be used to provide a measurable for
any entity.

An example is the data producer AlertLevel. Its properties can be seen using the show command:

© Bright Computing, Inc.

572 Monitoring: Monitoring Cluster Devices

Example

[bright91->monitoring->setup]% show alertlevel
Parameter Value
-------------------------------- --
Automatic reinitialize yes
Consolidator default
Description Alert level as function of all trigger severities
Disabled no
Execution multiplexer <1 in submode>
Fuzzy offset 0
Gap 0
Interval 2m
Maximal age 0s
Maximal samples 4096
Measurables 3 / 222
Name AlertLevel
Node execution filters <1 in submode>
Notes <0 bytes>
Offset 1m
Only when idle no
Revision
Type AlertLevel
When Timed

These properties are described in section 13.4.1. Most of these properties are inherited by the
meaurables associated with the data producer, which in the AlertLevel data producer case are
alertlevel:count, alertlevel:maximum, and alertlevel:sum.

The setup Submode: Deeper Submodes
One level under the setup submode of monitoring mode are 3 further submodes (modes deeper than
submodes are normally also just called submodes for convenience, rather than sub-submodes):

• nodeexecutionfilters

• executionmultiplexers

• jobmetricsettings

Node execution filters: A way to filter execution (restrict execution) of the data producer.
If no node execution filter is set for that data producer, then the data producer runs on all nodes of

the cluster. Filters are of type node, category, overlay, resource, and lua. The type is set when the
filter is created.

• The nodes command for listing the execution nodes

Running the nodes command for a data producer lists which nodes the execution of the data
producer is run on.

Example

[myhost->monitoring->setup]% nodes procmeminfo
mon001..mon003,myhost,osd001,osd002,node001,node002
[myhost->monitoring->setup]% nodes ssh2node
myhost
[myhost->monitoring->setup]% nodes devicestate

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 573

myhost
[myhost->monitoring->setup]% foreach * (get name; nodes) | paste - - | sort
AggregateNode myhost
AggregatePDU myhost
AlertLevel myhost
Cassandra Not used
ceph_global Not used
chrootprocess myhost
ClusterTotal myhost
CMDaemonState node001,node002,myhost
...

Most of the default data producers that are used by the cluster run on an active head node, and
often on the regular nodes.

• nodexecutionfilters to restrict data producer execution

The rogueprocess (page 875) data producer is one of the few that by default runs on a regular
node. Restricting a data producer to run on a particular list of nodes can be carried out as follows
on a cluster that is originally in its default state:

Example

[bright91->monitoring->setup[rogueprocess]]% nodeexecutionfilters
[bright91->monitoring->setup[rogueprocess]->nodeexecutionfilters]% add<TAB><TAB>
category lua node overlay resource type
[...tup[rogueprocess]->nodeexecutionfilters]% add node justthese
[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name justhese
Nodes
Revision
Type Node
[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% set nodes node001,node002
[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name justhese
Nodes node001,node002
Revision
Type Node
[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% commit

This way, the rogueprocess health check runs on just those nodes (node001, node002), and none
of the others.

• Restricting a data producer execution to the head node—monitoring a process on the head node

Another example of data producer restriction is as follows: an administrator may wish to monitor
the slapd process on the head node. In cmsh, a session to achieve this could be:

[bright91->monitoring->setup]% add procpidstat slapd
[bright91->monitoring->setup*[slapd*]]% set process slapd

© Bright Computing, Inc.

574 Monitoring: Monitoring Cluster Devices

[bright91->monitoring->setup*[slapd*]]% set consolidator none
[bright91->monitoring->setup*[slapd*]]% nodeexecutionfilters
[bright91->monitoring->setup*[slapd*]->nodeexecutionfilters]% add type headnodes
[bright91->monitoring->setup*[slapd*]->nodeexecutionfilters*[headnodes*]]% set headnode yes
[bright91->monitoring->setup*[slapd*]->nodeexecutionfilters*[headnodes*]]% show
[bright91->monitoring->setup*[slapd*]]% commit

The newly-defined slapd metric can now have its output displayed or plotted just like any other
metric:

[bright91->device[bright91]]% latestmetricdata | grep slapd
MemoryUsed slapd Process 739 MiB 28.6s
SystemTime slapd Process 2m 35s 28.6s
ThreadsUsed slapd Process 50 28.6s
UserTime slapd Process 1h 36m 28.6s
VirtualMemoryUsed slapd Process 4.77 GiB 28.6s

• Filtering a data producer by resource

A data producer can also be set up so that it is run on a particular list of nodes filtered
by resource. The resources that are available to a node can be viewed using the command
monitoringresources for that device:

Example

[bright91->device[bright91]]% monitoringresources
Active
CentOS7u5
Docker::Host
Ethernet
Kubernetes::ApiServer
Kubernetes::ApiServerProxy
Kubernetes::Controller
Kubernetes::Node
Kubernetes::Proxy
Kubernetes::Scheduler
RDO
boot
...

An example of where running a node execution filter by resource is useful, is for data producers
that are intended to run on the active head node. Most data producers that are used by the cluster
run on an active head node (besides often running on the regular nodes too).

Thus, for example, the cpucheck health check from page 569 can be set to run on the active head
node, by creating an arbitrary resource called myactive:

Example

[bright91->monitoring->setup[cpucheck]]% nodeexecutionfilters
[...tup[cpucheck]->nodeexecutionfilters]% add resource "myactive"
[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% show
Parameter Value
-------------------------------- --
Filter Include

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 575

Name myactive
Operator OR
Resources
Revision
Type Resource

and then setting the Resources parameter to Active:

[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% set resources Active
[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% show
Parameter Value
-------------------------------- --
Filter Include
Name myactive
Operator OR
Resources Active
Revision
Type Resource
[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% commit

The cpucheck health check then runs on the active head node, whichever head node it is.

When node execution filtering is carried out, the filtered data is not dropped by default. Filtered
data can be dropped for a measurable or an entity with the monitoringdrop command (section 13.6.7).

Execution multiplexer: A way to multiplex execution (have execution work elsewhere) for a data pro-
ducer. It tells Bright Cluster Manager about the entities that the data producer is sampling for. A data
producer runs and gathers data at the entity (node, category, lua, overlay, resource type) defined by
the node execution filter, and with multiplex execution the data producer gathers samples from other
entities. These entities can be nodes, categories, lua scripts, overlays, resources, and types. The entities
from which it can sample are defined into groups called execution multiplexers. Execution multiplexers
can thus be node multiplexers, category multiplexers, lua multiplexers, type multiplexers, overlay
multiplexers, or resource multiplexers.

The executionmultiplexers mode can be entered for a data producer dmesg with:

Example

root@bright91 ~]# cmsh
[bright91]% monitoring setup executionmultiplexers dmesg

Running the commands: help add, or help set, can be used to show the valid syntax in this submode.
Most data producers run on a head node, but sample from the regular nodes. So, for example, the

dmesg health check from Appendix G.2.1 can be set to sample from the regular nodes by setting it to
carry out execution multiplexing to specified node entities using a node multiplexer with the arbitrary
name of nodes as follows:

Example

[bright91->monitoring->setup[dmesg]->executionmultiplexers]% add<TAB><TAB>
category lua node overlay resource type
[bright91->monitoring->setup[dmesg]->executionmultiplexers]% add node nodes
[bright91->...*[dmesg*]->executionmultiplexers*[nodes*]]% show
Parameter Value
-------------------------------- --
Filter operation Include

© Bright Computing, Inc.

576 Monitoring: Monitoring Cluster Devices

Name nodes
Nodes
Revision
Type Node

[bright91->...*[dmesg*]->executionmultiplexers*[nodes*]]% set nodes node001,node002
[bright91->...*[dmesg*]->executionmultiplexers*[nodes*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name nodes
Nodes node001,node002
Revision
Type Node

The concepts and expected behavior of node execution filters and execution multiplexers is covered
in more explicit detail in Appendix L.

Job Metrics Settings: Job metrics settings are a submode for setting job metric collection options for
the JobSampler data producer (section 14.4).

13.5.5 The standalone Submode
The standalone submode under the monitoring mode of cmsh allows entities that are not managed by
Bright Cluster Manager to be configured for monitoring. This mode in cmsh corresponds to the Bright
View clickpath:

Monitoring→Standalone Monitored Entities

covered earlier in section 13.4.8.
The monitoring for such entities has to avoid relying on a CMDaemon that is running on the entity.

An example might be a chassis that is monitored via a ping script running on the Bright Cluster Manager
head node.

13.5.6 The trigger Submode
The trigger submode under the monitoring mode of cmsh allows actions to be configured according
to the result of a measurable.

This mode in cmsh corresponds to the Bright View clickpath:

Monitoring→Triggers

covered earlier in section 13.4.5.
By default, there are 3 triggers:

Example

[bright91->monitoring->trigger]% list
Name (key) Expression Enter actions During actions Leave actions
------------------------ ------------------------ ------------- -------------- -------------
Failing health checks (*, *, *) == FAIL Event
Passing health checks (*, *, *) == PASS Event
Unknown health checks (*, *, *) == UNKNOWN Event

Thus, for a passing, failing, or unknown health check, an event action takes place if entering a state
change. The default severity level of a passing health check does not affect the AlertLevel value. How-

© Bright Computing, Inc.

13.5 The monitoring Mode Of cmsh 577

ever, if the failing or unknown health checks are triggered on entering a state change, then these will
affect the AlertLevel value.

The trigger Submode: Setting An Expression
In the basic example of section 13.1, a trigger to run the killallyes script was configured using Bright
View.

The expression that was set for the killallyes script in the basic example using Bright View can
also be set in cmsh. For example:

Example

[bright91->monitoring->trigger]% add killallyestrigger
[bright91->monitoring->trigger*[killallyestrigger*]]% show
Parameter Value
-------------------------------- --
Disabled no
During actions
Enter actions
Leave actions
Mark entity as failed yes
Mark entity as unknown no
Name killallyestrigger
Revision
Severity 10
State flapping actions
State flapping count 5
State flapping period 5m
expression (*, *, *) == FAIL
[bright91->monitoring->trigger*[killallyestrigger*]]% expression
[bright91->monitoring->trigger*[killallyestrigger*]->expression[]]% show
Parameter Value
-------------------------------- --
Entities
Measurables
Name
Operator EQ
Parameters
Revision
Type MonitoringCompareExpression
Use raw no
Value FAIL
[bright91->monitoring->trigger*[killallyestrigger*]->expression[]]% set entities bright91
[bright91->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set measurables CPUUser
[bright91->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set operator GT
[bright91->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set value 50
[bright91->monitoring->trigger*[killallyestrigger*]->expression*[*]]% commit
[bright91->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set name killallyesregex
Field Message
------------------------ ---
actions Warning: No actions were set
============================== killallyestrigger ===============================
[bright91->monitoring->trigger[killallyestrigger]->expression[killallyesregex]]% exit
[bright91->monitoring->trigger[killallyestrigger]->expression]% exit
[bright91->monitoring->trigger[killallyestrigger]]% set enteractions killallyesname
[bright91->monitoring->trigger*[killallyestrigger*]]% commit
[bright91->monitoring->trigger[killallyestrigger]]%

© Bright Computing, Inc.

578 Monitoring: Monitoring Cluster Devices

The expression format is shown in cmsh as:

(<entity>, <measurable>, <parameter>) <comparison operator> <value>

Here:

• an entity, as described in section 13.2.1, can be, for example, a node, category, device, or software
image. To include more than one entity for the comparison, the alternation (pipe, |) symbol can
be used, with double quotes to enclose the expression.

Example

...[killallyestrigger*]->expression[]]% set entities "bright91|node001|compute|gpuimage"

In the preceding example, the entity compute could be a category, and the entity gpuimage could
be a software image.

• a measurable (section 13.2.1) can be a health check, a metric, or an enummetric. For example:
CPUUsage. Alternation works for <measurable> in a similar way to that for <entity>.

• a parameter is a further option to a measurable. For example, the FreeSpace metric can take a
mount point as a parameter. Alternation works for <parameter> in a similar way to that for <entity>.

• the comparison operator can be:

EQ: equivalent to, displayed as ==

NE: not equivalent to, displayed as !=

GT: greater than, displayed as >

LT: less than, displayed as <

If the user uses an arithmetic symbol such as > in cmsh as an unescaped entry, then the entry may
unintentionally be interpreted by the shell. That is why the two-letter entries are recommended
instead for entry, even though when displayed they display like the arithmetic symbols for easier
recognition.

• the value can be a string, or a number.

The regex evaluates to TRUE or FALSE. The trigger runs its associated action in the case of TRUE.
The wildcard * implies any entity, measurable, or parameter when used with the appropriate posi-

tion according to the syntax of the expression format.
Using .* is also possible to match zero or more of any characters.
Some further expression matching examples:

Example

True for any failing health check:

(*, *, *) == FAIL

Example

True for any nearly full local disk (less than 10MB left):

(*, FreeSpace, sd[a-z]) < 10MB

Example

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 579

True for any cloud node that is too expensive (price more than more than 10$):

(.*cnode.*, Price, *) > 10$

Example

Excluding node agw001:

(^(?!.*agw001).*$, *, *) == FAIL

Example

True for any node in the data, gpu, or hpc categories, that has a nearly full local disk (less than 10MB
left):

(!resource=category:data|category:gpu|category:hpc, FreeSpace, sd[a-z]) < 10MB

The unusual syntax in the preceding example is liable to change in future versions.

At the end of section 13.5.3 a script called cpucheck was built. This script was part of a task to use
health checks instead of metrics to set up the functional equivalent of the behavior of the basic example
of section 13.1. In this section the task is continued and completed as follows:

[bright91->monitoring->trigger]% expression killallyestrigger
[...trigger[killallyestrigger]->expression[killallyesregex]]% get measurables
CPUUser
[...trigger[killallyestrigger]->expression[killallyesregex]]% set measurables cpucheck
[...trigger*[killallyestrigger*]->expression*[killallyesregex*]]% commit

13.6 Obtaining Monitoring Data Values
The monitoring data values that are logged by devices can be used to generate graphs using the methods
in section 13.3. However, sometimes an administrator would like to have the data values that generate
the graphs instead, perhaps to import them into a spreadsheet for further direct manipulation, or to pipe
them into a utility such as gnuplot.

13.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics,
healthchecks And enummetrics Commands

The measurables for a specified entity can be seen with the measurables command, and the measurable
subtypes can be seen with the corresponding measurable subset commands: metrics, healthchecks
and enummetrics. The results look quite similar to the results of the measurable submode of the
monitoring mode (section 13.5.3). However, for entities, the measurables are a sublist of the full number
of measurables listed in the measurable submode, which in turn are only the list of measurables for the
data producers that have been enabled.

For example, within device mode where the entities are typically the head node and regular nodes,
running metrics with a specified entity shows only the metrics that are configured for that entity. Thus
if the entity is a head node, then only head node metrics are shown; and if the entity is a regular node,
only regular node metrics are shown:

Example

[bright91->device]% enummetrics node001
Type Name Parameter Class Producer
------------ ------------------ ---------- ---------------------------- ----------------
Enum DeviceStatus Internal DeviceState
[bright91->device]% use bright91
[bright91->device[bright91]]% measurables

© Bright Computing, Inc.

580 Monitoring: Monitoring Cluster Devices

Type Name Parameter Class Producer
------------ ------------------ ---------- ---------------------------- ----------------
Enum DeviceStatus Internal DeviceState
HealthCheck ManagedServicesOk Internal CMDaemonState
HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem
...
[bright91->device[bright91]]% exit
[bright91->device]% metrics node001
Type Name Parameter Class Producer
------------ ------------------ ---------- ---------------------------- ----------------
Metric AlertLevel count Internal AlertLevel
Metric AlertLevel maximum Internal AlertLevel
Metric AlertLevel sum Internal AlertLevel
Metric BlockedProcesses OS ProcStat
...

Typically the number of metrics listed on the head node will differ from those listed on a regular
node. Whatever each number is, it cannot be more than the number of metrics seen in the number of
metrics listed in the measurable submode of section 13.5.3.

The preceding example shows the measurables listing commands being carried out on head nodes
and regular nodes. These commands can be used on other entities too. For example, the base partition
in partition mode, where the measurables can be listed with:

Example

[bright91->device]% partition use base
[bright91->partition[base]]% measurables
Type Name Parameter Class Producer
------------ ------------------ ---------- ---------------------------- ----------------
Metric CoresTotal Total ClusterTotal
Metric CoresUp Total ClusterTotal
Metric DevicesClosed Total ClusterTotal
Metric DevicesDown Total ClusterTotal
...

The values for metric samples and health checks can be obtained from within device mode in various
ways, and are explained next.

13.6.2 On-Demand Metric Sampling And Health Checks
The samplenow Command For On-Demand Measurable Samples
An administrator can do live sampling, or sampling on-demand, for specified entities by using the
samplenow command. The command has the following syntax:

samplenow [OPTIONS] [<entity>] [<measurable> ...]

The command can be run without options when an entity object, such as a node is used (output
truncated):

Example

[bright91->device]% use bright91
[bright91->device[bright91]]% samplenow
Measurable Parameter Type Value Age Info
------------------ --------- --------- ------------ ------- -----
AlertLevel count Internal 0 2.01s
AlertLevel maximum Internal 0 2.01s

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 581

AlertLevel sum Internal 0 2.01s
BlockedProcesses OS 0 processes 2.01s
BufferMemory Memory 847 KiB 2.01s
...

The entity used can also be in other modes that have measurables, such as the base partition (output
truncated):

Example

[bright91->device]% partition use base
[bright91->partition[base]]% samplenow
Measurable Parameter Type Value Age Info
---------------- ------------ ------------ ---------- ---------- ----------
CoresTotal Total 24 0.001s
CoresUp Total 24 0.001s
DevicesClosed Total 0 0.001s
DevicesDown Total 0 0.001s
DevicesTotal Total 0 0.001s
DevicesUp Total 0 0.001s
...

The -n|--nodes Option
The -n option is used to sample specified nodes or node ranges:

Example

[bright91->partition[base]]% device
[bright91->device]% samplenow -n node001..node002 loadone
Entity Measurable Parameter Type Value Age Info
------------ ------------------ --------- --------- ------- ------- -----
node001 LoadOne OS 0.04 0.08s
node002 LoadOne OS 0 0.077s

The --metrics And --checks Option
For a particular entity:

• All metrics can be sampled on demand with the --metrics option

• All health checks can be sampled on demand with the --checks option

Example

[bright91->device]% samplenow --metrics loadone loadfifteen --n node001,node002
Entity Measurable Parameter Type Value Age Info
------------ ------------------ --------- --------- ------- ------- -----
node001 LoadOne OS 0.04 0.08s
node002 LoadOne OS 0 0.077s
[bright91->device]% samplenow --checks -n node001..node002
Entity Measurable Parameter Type Value Age Info
------------ ------------------ --------- --------- ------- ------- -----
node001 ManagedServicesOk Internal PASS 0.177s
node001 defaultgateway Network PASS 0.145s
node001 diskspace Disk PASS 0.16s
node001 dmesg OS PASS 0.177s
[bright91->device]% samplenow --checks diskspace -n node001..node002
Entity Measurable Parameter Type Value Age Info
------------ ------------------ --------- --------- ------- ------- -----
node001 diskspace Disk PASS 0.095s
node002 diskspace Disk PASS 0.097s
[bright91->device]%

© Bright Computing, Inc.

582 Monitoring: Monitoring Cluster Devices

The --debug Option
The --debug option passes CMD_DEBUG=1 to the script environment. This can be used to provide extra
information on what is happening during sampling.

Example

[bright91->device[node001]]% samplenow ntp
Measurable Type Value Age Info
------------ ------------ ---------- ---------- ----------
ntp Internal PASS 0.51s
[bright91->device[node001]]% samplenow --debug ntp
Measurable Type Value Age Info
------------ ------------ ---------- ---------- ------------------
ntp Internal PASS 0.524s command: "ps -e"+
[bright91->device[node001]]% samplenow --debug -v ntp
Measurable Type Value Age Info
------------ ------------ ---------- ---------- ---
ntp Internal PASS 0.543s command: "ps -e"

ntpd process found, pid: 11226
command: "/sbin/ntpq -pn"
found time syspeer: 10.141.255.254
send time request to 10.141.255.254
received a reply from 10.141.255.254
time from 10.141.255.254 : 1586171027.783
time on node : 1586171027.771
time difference : 0.012
execution time 0.06

[bright91->device[node001]]% !service ntpd stop
Redirecting to /bin/systemctl stop ntpd.service

[bright91->device[node001]] samplenow --debug -v ntp
measurable Type Value Age Info
------------ ------------ ---------- ---------- ---------------------
ntp Internal UNKNOWN 10s timed out after: 10s

Many scripts under /cm/local/apps/cmd/scripts/ can have their debug output inspected with
samplenow --debug.

A recursive grep on the head node, similar to the following, should show which scripts have a
settable debug environment:

grep -r CMD_DEBUG /cm/local/apps/cmd/scripts/

The -s|--status Option
Nodes in device mode which have a status of UP, as seen by the status command, can be sampled with
the -s|--status option:

Example

[bright91->device]% samplenow -s UP
Entity Measurable Parameter Type Value Age Info
------------ ------------------ --------- --------- ----------- ------ -----
bright91 AlertLevel count Internal 0 4.67s
bright91 AlertLevel maximum Internal 0 4.67s
bright91 AlertLevel sum Internal 0 4.67s
bright91 BlockedProcesses OS 0 processes 4.67s

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/

13.6 Obtaining Monitoring Data Values 583

bright91 BufferMemory Memory 847 KiB 4.67s
bright91 BytesRecv eth0 Network 357 MiB 4.67s
bright91 BytesRecv eth1 Network 78.7 MiB 4.67s
...

The preceding example is truncated because it is quite lengthy. However, on the screen, for the
device mode, it shows all the sample values for the measurables for all the entities—head node and
regular nodes—that are up.

To restrict the results to node001 only, it can be run as:

Example

[bright91->device]% samplenow -s UP -n node001
Measurable Parameter Type Value Age Info
------------------ --------- --------- ----------- ------ -----
AlertLevel count Internal 0 0.081s
AlertLevel maximum Internal 0 0.081s
AlertLevel sum Internal 0 0.081s
...

Sampling according to a device status value other than UP is also possible.
The help text for the samplenow command gives further details on its possible options.
The latestmetricdata and latesthealthdata commands (section 13.6.3) display the results from

the latest metric and health samples that have been gathered by the cluster, rather than sampling on
demand.

The dumpmonitoringdata command (section 13.6.4) displays monitoring data gathered over a period
of time in a variety of formats.

13.6.3 The Latest Data And Counter Values—The latest*data And latestmetriccounters
Commands

Within device mode, the values obtained by the latest measurable sampling run can be displayed for
a specified entity with the latestmonitoringdata, latestmetricdata and latesthealthdata com-
mands:

• latestmetricdata: The latestmetricdata command for a specified entity displays the most re-
cent metric value that has been obtained by the monitoring system for each metric used by the
entity. For displaying metrics on-demand in cmsh, the samplenow --metrics command (page 581)
can be used for a specified entity.

• latesthealthdata: The latesthealthdata command for a specified entity displays the most re-
cent value that has been obtained by the monitoring system for each health check used by the
entity. For displaying health check responses on demand in cmsh, the samplenow --checks com-
mand (page 581) can be used for a specified entity.

• latestmonitoringdata: The latestmonitoringdata command for a specified entity combines
the output of the latesthealthdata and latestmetricdata commands, i.e. it displays the latest
samples of the measurables for that entity. For displaying measurables on-demand in cmsh, the
samplenow command (page 580) can be run without options, for a specified entity.

The latestmetriccounters command, on the other hand, displays the latest cumulative counter
values of the cumulative metrics in use by the entity.

© Bright Computing, Inc.

584 Monitoring: Monitoring Cluster Devices

Using The latest*data Commands
When using the latest*data commands, the device must be specified (some output elided):

Example

[bright91->device]% use node001
[bright91->device[node001]]% latestmetricdata
Measurable Parameter Type Value Age Info
----------------- ---------- ------------ ------------------------ ---------------
AlertLevel count Internal 0 1m 12s FAIL schedulers
AlertLevel maximum Internal 0 1m 12s FAIL schedulers
AlertLevel sum Internal 0 1m 12s
BlockedProcesses OS 0 processes 1m 12s
BufferMemory Memory 847 KiB 1m 12s
BytesRecv eth0 Network 311.611 B/s 1m 12s
BytesRecv eth1 Network 0 B/s 1m 12s
BytesSent eth0 Network 349.953 B/s 1m 12s
BytesSent eth1 Network 0 B/s 1m 12s
CPUGuest CPU 0 Jiffies/s 1m 12s
...

Valid device grouping options and other options can be seen in the help text for the
latestmetricdata and latesthealthdata commands.

Example

[bright91->device]% help latestmetricdata
Name: Latestmetricdata - Display the latest metric data

Usage: latestmetricdata [OPTIONS] [<entity>]

Options:
-v, --verbose

Be more verbose

-n, --nodes <node>
List of nodes, e.g. node001..node015,node020..node028,node030
or ^/some/file/containing/hostnames

-g, --group <group>
Include all nodes that belong to the node group, e.g. testnodes
or test01,test03

...

By default the data values are shown with human-friendly units. The --raw option displays the data
values as raw units.

Using The latestmetriccounter Command
The latestmetriccounter is quite similar to the latestmetricdata command, except that it
displays only cumulative metrics, and displays their accumulated counts since boot. The
latestmonitoringcounter command is an alias for this command.

Example

[bright91->device]% latestmonitoringcounters node001
Measurable Parameter Type Value Age Info
---------------- ------------ ------------ ----------------------- ---------- -----

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 585

BytesRecv eth0 Network 286 MiB 11.7s
BytesRecv eth1 Network 0 B 11.7s
BytesSent eth0 Network 217 MiB 11.7s
BytesSent eth1 Network 0 B 11.7s
CPUGuest CPU 0 Jiffies/s 11.7s
CPUIdle CPU 60.1 Jiffies/s 11.7s
CPUIrq CPU 0 Jiffies/s 11.7s
CPUNice CPU 66 Jiffies/s 11.7s
...

The reader can compare the preceding example output against the example output of the
latestmetricdata command (page 584) to become familiar with the meaning of cumulative output.

13.6.4 Data Values Over A Period—The dumpmonitoringdata Command
The dumpmonitoringdata command displays monitoring data values over a specified period. This is for
an entity, such as:

• a node in device mode

• the base partition in partition mode

• an image in softwareimage mode

• a job in the jobs submode. The jobs submode is under the path cmsh→wlm[<workload
manager>]→jobs, and using dumpmonitoringdata with it is covered on page 619.

Using The dumpmonitoringdata Command
A concise overview of the dumpmonitoringdata command can be displayed by typing in “help
dumpmonitoringdata” in a cmsh mode that has entities.

The usage of the dumpmonitoringdata command consists of the following options and mandatory
arguments:
dumpmonitoringdata [OPTIONS] <start-time> <end-time> <measurable> [entity]

The mandatory arguments: The mandatory arguments for the times, the measurables being dumped,
and the entities being sampled, have values that are specified as follows:

• The measurable <measurable> for which the data values are being gathered must always be given.
Measurables currently in use can conveniently be listed by running the measurables command
(section 13.6.1).

• If [entity] is not specified when running the dumpmonitoringdata command, then it must be set
by specifying the entity object from its parent mode of cmsh (for example, with use node001 in
device mode). If the mode is device mode, then the entity can also be specified via the options as
a list, a group, an overlay, or a category of nodes.

• The time pair <start-time> or <end-time> can be specified as follows:

– Fixed time format: The format for the times that make up the time pair can be:

* [YY/MM/DD] HH:MM[:SS]
(If YY/MM/DD is used, then each time must be enclosed in double quotes)

* The unix epoch time (seconds since 00:00:00 1 January 1970)

– now: For the <end-time>, a value of now can be set. The time at which the dumpmonitoringdata
command is run is then used.

© Bright Computing, Inc.

586 Monitoring: Monitoring Cluster Devices

– Relative time format: One item in the time pair can be set to a fixed time format. The other item
in the time pair can then have its time set relative to the fixed time item. The format for the
non-fixed time item (the relative time item) can then be specified as follows:

* For the <start-time>, a number prefixed with “-” is used. It indicates a time that much
earlier to the fixed end time.

* For the <end-time>, a number prefixed with “+” is used. It indicates a time that much later
to the fixed start time.

* The number values also have suffix values indicating the units of time, as seconds (s),
minutes (m), hours (h), or days (d).

The relative time format is summarized in the following table:

Unit <start-time> <end-time>

seconds: -<number>s +<number>s

minutes: -<number>m +<number>m

hours: -<number>h +<number>h

days: -<number>d +<number>d

The options: The options applied to the samples are specified as follows:

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 587

Option Argument(s) Description

-v, --verbose show the rest of the line on a new line instead of cutting it off

-i, --intervals <number> number of samples to show

-u, --unix-epoch use a unix timestamp instead of using the default date format

-d, --delimiter "<string>" set the delimiter to a character

--sum sum over specified entities

--max maximum over specified entities

--min minimum over specified entities

--avg average over specified entities

--raw show the metric value without units

--human show the metric value with units (default)

--consolidationinterval retrieve data from the consolidator with specified interval

--consolidationoffset retrieve data from the consolidator with specified (interval,
offset)

--timeaverage calculate the average for the entire interval for specified de-
vices

--delta display change relative to previous value

--clip clip data samples to the requested interval

The following options are valid only for device mode:

-n, --nodes <list> for list of nodes

-g, --groups <list> for list of groups

-c, --categories <list> for list of categories

-r, --racks <list> for list of racks

-h, --chassis <list> for list of chassis

-e, --overlay <list> Include all nodes in list of overlays

...continues

© Bright Computing, Inc.

588 Monitoring: Monitoring Cluster Devices

...continued

Option Argument(s) Description

--union calculate the union of specified devices

--intersection calculate the intersection of the specified devices

-l, --role <role> Filter all nodes in role

-s, --status <state> for nodes in state UP, OPENING, DOWN, and so on

Notes And Examples Of dumpmonitoringdata Command Use
Notes and examples of how the dumpmonitoringdata command can be used now follow:

Fixed time formats: Time pairs can be specified for fixed times:

Example

[bright91->device[node001]]% dumpmonitoringdata 18:00:00 18:02:00 loadone
Timestamp Value Info
-------------------------- ---------- ----------
2017/08/30 17:58:00 0.02
2017/08/30 18:00:00 0.01
2017/08/30 18:02:00 0.02

Double quotes are needed for times with a YY/MM/DD specification:

Example

[bright91->device[node001]]% dumpmonitoringdata "17/08/30 18:00" "17/08/30 18:02" loadone
Timestamp Value Info
-------------------------- ---------- ----------
2017/08/30 17:58:00 0.02
2017/08/30 18:00:00 0.01
2017/08/30 18:02:00 0.02

Unix epoch time can also be set:

Example

[bright91->device[node001]]% !date -d "Aug 30 18:00:00 2017" +%s
1504108800
[bright91->device[node001]]% dumpmonitoringdata 1504108800 1504108920 loadone
Timestamp Value Info
-------------------------- ---------- ----------
2017/08/30 17:58:00 0.02
2017/08/30 18:00:00 0.01
2017/08/30 18:02:00 0.02

Intervals and interpolation: The -i|--intervals option interpolates the data values that are to be
displayed. The option needs <number> samples to be specified. This then becomes the number of in-
terpolated samples across the given time range. Using “-i 0” outputs only the non-interpolated stored
samples—the raw data—and is the default.

Example

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 589

[bright91->device]% dumpmonitoringdata -i 0 -10m now loadone node001
Timestamp Value Info
-------------------------- ---------- ----------
2017/07/21 14:56:00 0.01
2017/07/21 14:58:00 0.14
2017/07/21 15:00:00 0.04
2017/07/21 15:02:00 0.04
2017/07/21 15:04:00 0.08
2017/07/21 15:06:00 0.08

If the number of intervals is set to a non-zero value, then the last value is always no data, since it
cannot be interpolated.

Example

[bright91->device]% dumpmonitoringdata -i 3 -10m now loadone node001
Timestamp Value Info
-------------------------- ---------- ----------
2017/07/21 21:49:36 0
2017/07/21 21:54:36 0.0419998
2017/07/21 21:59:36 no data

A set of nodes can be specified for the dump:

[bright91->device]% dumpmonitoringdata -n node001..node002 -5m now cpuidle
Entity Timestamp Value Info
------------ -------------------------- ----------------- ----------
node001 2017/07/20 20:14:00 99.8258 Jiffies/s
node001 2017/07/20 20:16:00 99.8233 Jiffies/s
node001 2017/07/20 20:18:00 99.8192 Jiffies/s
node001 2017/07/20 20:20:00 99.8475 Jiffies/s
node002 2017/07/20 20:14:00 99.7917 Jiffies/s
node002 2017/07/20 20:16:00 99.8083 Jiffies/s
node002 2017/07/20 20:18:00 99.7992 Jiffies/s
node002 2017/07/20 20:20:00 99.815 Jiffies/s
[bright91->device]%

Summing values: The --sum option sums a specified metric for specified devices, for a set of specified
times. For 2 nodes, over a period from 2 hours ago until now, with values interpolated over 3 time
intervals, the option can be used as follows:

Example

[bright91->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --sum
Timestamp Value Info
-------------------------- ---------- ----------
2017/07/20 18:30:27 0.0292462
2017/07/20 19:30:27 0
2017/07/20 20:30:27 no data

Each entry in the values column in the preceding table is the sum of loadone displayed by node001, and
by node002, at that time, as can be seen from the following corresponding table:

Example

© Bright Computing, Inc.

590 Monitoring: Monitoring Cluster Devices

[bright91->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2]
Entity Timestamp Value Info
------------ -------------------------- ---------- ----------
node001 2017/07/20 18:30:27 0
node001 2017/07/20 19:30:27 0
node001 2017/07/20 20:30:27 no data
node002 2017/07/20 18:30:27 0.0292462
node002 2017/07/20 19:30:27 0
node002 2017/07/20 20:30:27 no data

Each loadone value shown by a node at a time shown in the preceding table, is in turn an average
interpolated value, based on actual data values sampled for that node around that time.

Maximum and minimum values: The --max option takes the maximum of a specified metric for spec-
ified devices, for a set of specified times. For 2 nodes, over a period from 2 hours ago until now, with
values interpolated over 3 time intervals, the option can be run as follows:

Example

[bright91->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --max
Start - Tue Nov 3 09:56:05 2020 (1604393765)
End - Tue Nov 3 11:56:05 2020 (1604400965)
LoadOne - Load average on 1 minute
Entity Timestamp Value Info
------------ -------------------------- ---------- ----------

2020/11/03 09:56:05 0.010954
2020/11/03 10:56:05 0.000000
2020/11/03 11:56:05 nan

Each entry in the values column in the preceding table is the maximum of loadone displayed by
node001, and by node002, at that time, as can be seen from the following corresponding table:

Example

[bright91->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2]
Start - Tue Nov 3 09:56:05 2020 (1604393765)
End - Tue Nov 3 11:56:05 2020 (1604400965)
LoadOne - Load average on 1 minute
Entity Timestamp Value Info
------------ -------------------------- ---------- ----------
node001 2020/11/03 09:56:05 0.0109537
node001 2020/11/03 10:56:05 0
node001 2020/11/03 11:56:05 no data
node002 2020/11/03 09:56:05 0
node002 2020/11/03 10:56:05 0
node002 2020/11/03 11:56:05 no data

Similarly, for the preceding table, if the --min option is used instead, then the result would be:

Example

[bright91->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --min
Start - Tue Nov 3 09:56:05 2020 (1604393765)
End - Tue Nov 3 11:56:05 2020 (1604400965)
LoadOne - Load average on 1 minute
Entity Timestamp Value Info
------------ -------------------------- ---------- ----------

2020/11/03 09:56:05 0.000000
2020/11/03 10:56:05 0.000000
2020/11/03 11:56:05 nan

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 591

Displaying values during a specified time period, with --clip: The --clip option is used with a
specified time period. If there are raw values within the period, these are displayed.

A value is displayed for the start of the period, either by selection of a raw value if it exists at the
exact starting time, or via interpolation if there is no raw value at the exact starting time. Similarly, at
the end of the period a raw value is shown if it exists, or an interpolated value is shown if it does not.

Example

[bright91->device[node001]]% dumpmonitoringdata -5m now bytessent:eth0 --clip
Start : 1552400295 / Tue Mar 12 14:18:15 2019
End : 1552400595 / Tue Mar 12 14:23:15 2019
Timestamp Value Info
-------------------------- ------------ ----------
2019/03/12 14:18:15 201.942 B/s
2019/03/12 14:20:15 217.883 B/s
2019/03/12 14:22:15 233.058 B/s
2019/03/12 14:23:15 235.831 B/s

In the preceding example, the first 3 samples are raw samples, the last sample is an interpolated
value, over a time period evaluated as being from 14:18:15 to 14:23:15. The epoch times for this
period, and corresponding human-readable values are shown in the heading to the output table.

Displaying according to status: The -s|--status option selects only for nodes with the specified
state. A state is one of the values output by the cmsh command ds or device status. It is also one of
the values returned by the enummetric DeviceStatus (section 13.2.2).

Example

[bright91->device]% dumpmonitoringdata -2m now loadone -s up
Entity Timestamp Value Info
------------ -------------------------- ---------- ----------
bright91 2017/07/21 15:00:00 0.35
bright91 2017/07/21 15:02:00 0.53
node001 2017/07/21 14:12:00 0.04
node001 2017/07/21 15:02:00 0.04
node002 2017/07/21 15:00:00 0.22
node002 2017/07/21 15:02:00 0.21
[bright91->device]%

The argument to -s|--status can be specified with simple regexes, which are case insensi-
tive. For example, inst.* covers the states installing, installer_failed, installer_rebooting
installer_callinginit, installer_unreachable, installer_burning.

Displaying deltas: The --delta option lists the difference between successive monitoring data values.
It subtracts the previous data value from the current data value, and divides the result by the time
interval between the two values.

Example

[bright91->device[node001]]% dumpmonitoringdata --delta -6m now pageout
Timestamp Value Delta Info
-------------------------- ------------ ---------------- ----------
2018/09/10 17:49:28 1015.46 B/s nan
2018/09/10 17:51:28 1.35 KiB/s 2.7 B/s/s
2018/09/10 17:53:28 1.34 KiB/s -0.083 B/s/s

© Bright Computing, Inc.

592 Monitoring: Monitoring Cluster Devices

Deltas are useful for seeing patterns in rates of change. For example, to check an experimental
version of CMDaemon for a memory leak, an administrator may run:

Example

[bright91->device[bright91]]% dumpmonitoringdata -2h now memoryused:cmd -n node001 --delta
Timestamp Value Delta Info
-------------------------- ---------- -------------- ----------
2018/08/15 10:00:00.812 68.4 MiB nan
2018/08/15 10:02:00.812 68.4 MiB 0.0341333 B/s
2018/08/15 12:10:00.812 68.4 MiB 0 B/s

The roughly 0B/s increase over 2 hours in the preceding output is a good sign.

Displaying union and intersection sets: The --union option displays the union of a set of specified
devices. The devices can be specified by the device grouping options (the options that are used to group
<lists>, such as -c, -r and so on).

For example:
if the overlay galeranodes has the node mon001
and
the overlay openstackhypervisors has the nodes node001, and node002
then an example of a union of the set of these two overlays is:

Example

[bright91->device]% dumpmonitoringdata --union -3m now pageout -e galeranodes,openstackhypervisors
Entity Timestamp Value Info
------------ -------------------------- ----------- ----------
mon001 2018/09/11 11:31:56.198 192 KiB/s
mon001 2018/09/11 11:33:56.198 17.8 KiB/s
node001 2018/09/11 11:31:28.996 1.37 KiB/s
node001 2018/09/11 11:33:28.996 1.22 KiB/s
node002 2018/09/11 11:32:04.509 1.54 KiB/s
node002 2018/09/11 11:34:04.509 1.30 KiB/s
[bright91->device]%

A union of sets in the same grouping option can be carried out using comma-separation for the list
of sets. In the preceding example, the same grouping option is -e|--overlay.

For a union of different grouping options however, the syntax is different. For example, for a union
of the galeranodes overlay, and a node001 node, a similar example is:

Example

[bright91->device]% dumpmonitoringdata --union -3m now pageout -u -e galeranodes -n node001
Entity Timestamp Value Info
------------ -------------------------- ------------ ----------
mon001 1536659036.198 17.3 KiB/s
mon001 1536659156.198 116 KiB/s
node001 1536659008.997 1023.99 B/s
node001 1536659128.996 1.26 KiB/s
[bright91->device]%

For an intersection of sets, the only syntax allowed is one that uses different grouping options:

Example

[bright91->device]% dumpmonitoringdata --intersection -3m now pageout -e galeranodes -n node001
No remaining entities

For intersection, comma-separation within one grouping option is pointless, and is not supported.

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 593

Some non-interpolating RLE quirks: When a sample measurement is carried out, if the sample has
the same value as the two preceding it in the records, then the “middle” sample is discarded from
storage.

Thus, when viewing the sequence of output of non-interpolated samples, identical values do not
exceed two entries one after the other. This is a common compression technique known as Run Length
Encoding (RLE). It can have some implications in the output of the dumpmonitoringdata command.

Example

[bright91->device[node001]]% dumpmonitoringdata -10m now threadsused:cmd
Timestamp Value Info
-------------------------- ---------- ----------
2017/07/21 11:16:00 42
2017/07/21 11:20:00 42
2017/07/21 11:22:00 41
2017/07/21 11:24:00 42
2017/07/21 11:26:00 42

In the preceding example, data values for the number of threads used by CMDaemon are dumped
for the last 10 minutes.

Because of RLE, the value entry around 11:18:00 in the preceding example is skipped. It also means
that at most only 2 of the same values are seen sequentially in the Value column. This means that 42 is
not the answer to everything.

For a non-interpolated value, the nearest value in the past, relative to the time of sampling, is used
as the sample value for the time of sampling. This means that for non-interpolated values, some care
may need to be taken due to another aspect of the RLE behavior: The time over which the samples
are presented may not be what a naive administrator may expect when specifying the time range. For
example, if the administrator specifies a 10 minute time range as follows:

Example

[bright91->softwareimage]% dumpmonitoringdata -10m now nodesup default-image
Timestamp Value Info
-------------------------- ---------- ----------
2017/07/13 16:43:00 2
2017/07/20 17:37:00 2
[bright91->softwareimage]%

then here, because the dump is for non-interpolated values, it means that the nearest value in the
past, relative to the time of sampling, is used as the sample value. For values that are unlikely to change
much, it means that rather than 10 minutes as the time period within which the samples are taken, the
time period can be much longer. Here it turns out to be about 7 days because the nodes happened to be
booted then.

13.6.5 Monitoring Data Health Overview–The healthoverview Command
In figure 13.20, section 13.4.6, the Bright View clickpath

Monitoring→Health Status

showed an overview of the health status of all nodes.
The cmsh equivalent is the healthoverview command, which is run from within device mode. If

run without using a device, then it provides a summary of the alert levels for all nodes.
The help text in cmsh explains the options for the healthoverview command. The command can be

run with options to restrict the display to specified nodes, and also to display according to the sort order
of the alert level values.

© Bright Computing, Inc.

594 Monitoring: Monitoring Cluster Devices

Example

[bright91->device]% healthoverview -n node00[1-3]
Device Sum Maximum Count Age Info
------------ ------------ ------------ ------------ ------------ -------------
node001 30 15 2 50.7s hot, fan high
node002 30 15 2 50.7s hot, fan high
node003 15 15 1 50.7s hot

13.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command
The monitoringinfo command provides information for specified head nodes or regular nodes about
the monitoring subsystem. The help text shows the options for the command. Besides options to specify
the nodes, there are options to specify what monitoring information aspect is shown, such as storage,
cache, or services.

Example

[bright91->device]% monitoringinfo -n node001
Service Queued Handled Cache miss Stopped Suspended Last operation
--------------------------- ------ -------- ---------- ------- --------- -------------------
Mon::CacheGather 0 0 0 yes no -
Mon::DataProcessor 0 0 0 yes no -
Mon::DataTranslator 0 932,257 0 no no Mon Jul 24 11:34:00
Mon::EntityMeasurableCache 0 0 0 no no Thu Jul 13 16:39:52
Mon::MeasurableBroker 0 0 0 no no -
Mon::Replicate::Collector 0 0 0 yes yes -
Mon::Replicate::Combiner 0 0 0 yes yes -
Mon::RepositoryAllocator 0 0 0 yes no -
Mon::RepositoryTrim 0 0 0 yes no -
Mon::TaskInitializer 0 30 0 no no Thu Jul 13 16:39:52
Mon::TaskSampler 30 233,039 0 no no Mon Jul 24 11:34:00
Mon::Trigger::Actuator 0 0 0 yes no -
Mon::Trigger::Dispatcher 0 0 0 yes no -

Cache Size Updates Requests
----------------------- ------------ ------------ ------------
ConsolidatorCache 0 17 0
EntityCache 10 17 935,280
GlobalLastRawDataCache 87 17 0
LastRawDataCache 142 17 427,301
MeasurableCache 231 17 935,230

Cache Up Down Closed
----------------- ------------ ------------ ------------
DeviceStateCache 3 0 0

Replicator First Last Requests Samples Sources
------------------------ ------------ ------------ ------------ ------------ ------------
ReplicateRequestHandler - - 0 0

Cache Queued Delivered Handled Pickup
------------ ------------ ------------ ------------ ------------
Cache 0 120 932,257 7,766

Plotter First Last Count Samples Sources Requests
------------------ ---------- ---------- -------- -------- -------- --------

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 595

RequestDispatcher - - 0 0 0 -
RequestHandler - - 0 0 0 -

Storage Elements Disk size Usage Free disk
--------------------------- ---------- ------------ -------- ------------
Mon::Storage::Engine 0 0 B 0.0% -
Mon::Storage::Message 0 0 B 0.0% -
Mon::Storage::RepositoryId 0 0 B 0.0% -

13.6.7 Dropping Monitoring Data With The monitoringdrop Command
Monitoring data gathering can be restricted to certain nodes using node execution filtering and execu-
tion multiplexers. Entire data producers can also be disabled with the disable option in monitoring
mode. However, restricting or disabling leaves historical samples in storage—the existing monitoring
data values do not automatically get removed. So, in cmsh and Bright View the latest known monitoring
data values then still show up, with a forever-increasing age.

If a data producer is removed, then the associated data values for its measurable or measurables are
removed.

Alternatively, if adding execution filters to a monitoring data producer is intended to be a permanent
change, then all previously collected data can be dropped for filtered nodes.

For example, if the ssh connectivity to only cloud nodes is to be checked:

Example

[root@bright91 ~]# cmsh
[bright91]% monitoring setup use ssh2node
[...->monitoring->setup[ssh2node]]% executionmultiplexers
[...->executionmultiplexers]% show
Type None
[...->executionmultiplexers]% use all nodes
[...->executionmultiplexers[All nodes]]% get types
Node
[...->executionmultiplexers[All nodes]]% set types CloudNode
[...->executionmultiplexers*[All nodes*]]% commit

After this is set, the monitoring data values for a non-cloud node can be checked. The ssh2node
health check data values are then seen to be getting older, without any more updates being added.
These health check data values can then be dropped using the monitoringdrop command from within
the device mode of cmsh command.

It is wise to run a dry-run operation first, in order to make sure that no data values are unintentionally
removed:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[...->device[node001]]% latestmonitoringdata | grep ssh2node
ssh2node Network PASS 43m 38s filtered
[...->device[node001]]% monitoringdrop --dry-run --filtered
Entity Measurable
------------ ------------
node001 ssh2node
[...->device[node001]]% monitoringdrop --filtered
Removed 1 entity, measurable pairs
[...->device[node001]]% latestmonitoringdata | grep ssh2node
[...->device[node001]]%

© Bright Computing, Inc.

596 Monitoring: Monitoring Cluster Devices

The --force option can be used to remove non-filtered old data, such as data from a disabled mea-
surable. This is also useful when correcting a bad metric script. After fixing the script, the old (incorrect)
data can be dropped.

Example

[root@bright91 ~]# cmsh
[bright91]% device
[...->device]% monitoringdrop --category default my-metric --force
Removed 32 entity, measurable pairs

A reboot or CMDaemon restart is required for the node to start collecting data again on a non-filtered
metric which has been dropped with the --force option.

13.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And
monitoringresume Commands

The monitoringsuspend command suspends monitoring. The monitoringresume command resumes
monitoring.

When suspension is applied to a head node, the regular nodes simply continue sampling data up to
a maximum of 1 million samples per node. The available backlog is fetched upon resumption.

Suspension can be used during benchmarking to measure the results of benchmarking runs without
having monitoring get in the way.

Suspension can also be used as a quick sanity check during regular cluster operation, as a way for
an administrator to see if it is monitoring that is consuming excessive resources, in comparison with the
other processes on the system. For example, running it on a head node (some output omitted or elided):

Example

[root@head1 ~]# sar -b 1
Linux 3.10.0-957.1.3.el7.x86_64 (head1) 10/14/2019 _x86_64_ (28 CPU)

04:41:00 PM tps rtps wtps bread/s bwrtn/s
04:41:02 PM 1481.82 0.00 1481.82 0.00 24355.56
04:41:03 PM 849.49 0.00 849.49 0.00 10367.68
04:41:04 PM 509.00 0.00 509.00 0.00 4440.00
04:41:05 PM 709.90 0.00 709.90 0.00 5853.47
04:41:06 PM 1209.00 0.00 1209.00 0.00 18168.00
^C
[root@head1 ~]# cmsh
[head1]% device use master
[head1->device[head1]]% monitoringsuspend
suspend 14 on head1
[head1->device[head1]]% monitoringinfo
Service Queued Handled Cache miss Stopped Suspended
--------------------------- ---------- ---------- ---------- ---------- ----------
Mon::CacheGather 425 39,857 0 no yes
Mon::DataConverter 0 0 0 no yes
Mon::DataProcessor 0 6,609,369 0 no yes
Mon::DataTranslator 0 311,658 0 no yes
Mon::EntityMeasurableCache 0 0 0 no yes
Mon::MeasurableBroker 0 0 0 no yes
Mon::PerpetualTaskManager 0 0 0 no yes
Mon::Replicate::Collector 0 0 0 yes yes
Mon::Replicate::Combiner 0 0 0 yes yes
...

© Bright Computing, Inc.

13.6 Obtaining Monitoring Data Values 597

[head1->device[head1]]% quit
[root@head1 ~]# sar -b 1
Linux 3.10.0-957.1.3.el7.x86_64 (head1) 10/14/2019 _x86_64_ (28 CPU)

04:41:58 PM tps rtps wtps bread/s bwrtn/s
04:41:59 PM 4.04 0.00 4.04 0.00 96.97
04:42:00 PM 3.00 0.00 3.00 0.00 96.00
04:42:01 PM 4.04 0.00 4.04 0.00 96.97
04:42:02 PM 0.00 0.00 0.00 0.00 0.00
04:42:03 PM 0.00 0.00 0.00 0.00 0.00
04:42:04 PM 43.00 0.00 43.00 0.00 528.00
04:42:05 PM 0.00 0.00 0.00 0.00 0.00
04:42:06 PM 3.06 0.00 3.06 0.00 130.61
04:42:07 PM 0.00 0.00 0.00 0.00 0.00

In the preceding example monitoring is seen to be consuming significant resources.
After running monitoringsuspend, resuming monitoring should not be forgotten, and it should be

done soon enough after suspension. If that is not done, then backlogged samples that exceed the limit
of 1 million samples per node on the regular nodes would be lost. Resumption is carried out with:

Example

[root@head1 ~]# cmsh
[head1]% device use master
[head1->device[head1]]% monitoringresume
resume 14 on head1

CMDaemon Directive Settings To Reduce Monitoring Resource Consumption
The following CMDaemon directive changes may reduce the resource consumption due to monitoring:

Increasing the job account collection interval: by increasing the value of the
JobsSamplingMetricsInterval directive (page 798).

Disabling job information collection completely: by setting the value of the
JobInformationDisabled directive to 0 (page 802).

For the Slurm workload manager only, disabling job accounting: by setting the value of the
SlurmDisableAccountingParsing directive to 0 (page 798).

Reducing the duration for which job data is stored: by reducing the value of the
JobInformationKeepDuration (page 803).

13.6.9 Monitoring Pickup Intervals
All nodes cache their monitoring data. This cached data gets picked up by the active head node at a
regular pickup interval.

It is possible to alter the pickup interval using the monitoringpickup command covered in this
section. The command is run from device mode.

The current pickup intervals can be listed with:

Example

[bright91]% device
[bright91->device]% monitoringpickup
Hostname Interval Times Priority

© Bright Computing, Inc.

598 Monitoring: Monitoring Cluster Devices

------------- ---------- -------- ----------
bright91 2m - 0
node001 2m - 0
node002 2m - 0

An interval can be set for one or more nodes. For example, a 1-minute pickup interval can be set as
follows:

Example

[bright91]% device use node001
[bright91->device[node001]]% monitoringpickup --interval 1m
Changed 1 pickup intervals
[bright91->device[node001]]% monitoringpickup
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 1m 1 100

The pickup interval is carried out only once by default, unless otherwise specified.
The --times option allows the number of times to be specified:

Example

[bright91]% device use node001
[bright91->device[node001]]% monitoringpickup --interval 1m --times 10
Changed 1 pickup intervals
[bright91->device[node001]]% monitoringpickup
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 1m 10 100

The --forever option lets the pickup be carried out “forever”3.

Example

[bright91->device[node001]]% monitoringpickup --interval 30s --forever
Changed 1 pickup intervals
[bright91->device[node001]]% monitoringpickup
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 30s - 100

The --priority option applies the priority to equal or lower priority settings:

Example

[bright91]% device
[bright91->device]% monitoringpickup -n node00[1-2]
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 1m 12 80
node002 1m 17 20
[bright91->device]% monitoringpickup -n node00[1-2] --interval 5s --priority 50
Changed 1 pickup intervals
[bright91->device]% monitoringpickup -n node00[1-2]
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 1m 12 80
node002 5s 1 50

3Strictly speaking, “forever” means (264 − 1) times on the 64-bit architecture that Bright Cluster Manager runs on. For com-
parison, (264 − 1) seconds is about 585 billion years.

© Bright Computing, Inc.

13.7 Offloaded Monitoring 599

In the preceding example, parameters for node002 only were changed, as the priority setting for
node001 was higher than the applied priority option that was requested. Thus, the Interval value
became 5s, as specified, the Times value defaulted to 1, and the specified Priority value of 50 was
applied to node002 only.

The further behavior of the pickup from node002 is as follows:
After picking up data once from node002, five seconds from the change, the interval becomes the

default of 2 minutes once again:

[bright91->device]% monitoringpickup -n node00[1-2]
Hostname Interval Times Priority
------------- ----------- -------- ---------
node001 1m 12 80
node002 2m 0 0

The yet further behavior of the pickup, during the next pickup event, is then as follows:
The Times value of 0 becomes unset. The unset value is represented by -, and is equivalent to

--forever.
In other words, if a monitoring interval is changed, and the change is not specified as “forever”, then

after the Times value has decremented to zero, the monitoring interval reverts to the default value of
2 minutes. The Times value then becomes a value of -, which implies forever, when the next pickup
occurs.

The job metric sampler can also automatically modify the pickup interval for nodes. Every time a
new job is started, all the nodes that are used by the job are assigned a modified pickup interval. The
new values for the pickup can be managed in the jobmetricsettings mode of cmsh.

[bright91->...->jobmetricsettings]% show
Parameter Value
-------------------- ------
...
Pickup interval 5s
Pickup priority 50
Pickup times 12

13.7 Offloaded Monitoring
Offloaded monitoring is a feature introduced in Bright Cluster Manager version 9.1.

Traditional Bright Cluster Manager monitoring uses a single (active) head node to manage monitor-
ing. That is, to carry out sampling and to store results for measurables. Traditional monitoring can be
used for clusters of thousands of nodes, assuming the default number measurables are running.

Offloaded monitoring in Bright Cluster Manager is designed to share the more resource-intensive
parts of monitoring across nodes so that the head node is not overloaded by monitoring. In practice,
offloaded monitoring needs only to be considered for a clusters that are greater than about 1000 nodes
in size, assuming the clusters have the default number of measurables running.

There are some mandatory requirements, and some recommended settings, which are discussed
later on in section 13.7.3.

13.7.1 Why Offloaded Monitoring?
Traditional monitoring is highly optimized, and with some care is typically able to deal with clusters
of around 10,000 nodes with the default metrics. While it has the virtue of simplicity, it also has the
following possible issues:

• there is a single point of failure, since monitoring runs on the active head node

• the head node performance as the number of nodes increases may not be sufficient. To get around
this, monitoring may rely on increasingly expensive hardware, or on reducing the sampling that

© Bright Computing, Inc.

600 Monitoring: Monitoring Cluster Devices

is carried out. With the default monitoring in place, with typical server hardware available at the
time of writing of this section (2020), a limit is reached at around 20000 nodes.

These issues may not be acceptable, in which case it makes sense to consider offloaded monitoring.
The advantages of offloaded monitoring are:

• no single point of failure

• the ability to scale with the size of the cluster

A disadvantage is that offloaded monitoring is more complicated than single head monitoring. How-
ever, Bright Cluster Manager simply implements it as a role that is assigned to nodes. The Bright Cluster
Manager backend then manages the details of offloaded monitoring.

13.7.2 Implementing Offloaded Monitoring
In cmsh offloaded monitoring is implemented via role assignment. The assignment can be carried out at
the level of device, category, or configuration overlay:

Example

[bright91->device]% use node001
[bright91->device[node001]]% roles
[bright91->device[node001]->roles]% assign monitoring
[bright91->device*[node001*]->roles*[monitoring*]]% show
Parameter Value
-------------------------------- --
Name monitoring
Revision
Type MonitoringRole
Add services yes
Provisioning associations <0 internally used>
Number of backups 2
Backup ring automatic
[bright91->device*[node001*]->roles*[monitoring*]]%

If offloaded monitoring is to run in a highly available way, so that a failure of one monitoring node
does not halt the monitoring system, then offloaded monitoring must be assigned to two or more nodes.

13.7.3 Background Details
A description of how offloaded monitoring works in the backend follows, because it should help the
cluster administrator in understanding how and when to implement it.

Offloaded monitoring uses nodes that are assigned a monitoring role.
If there are N regular (non-head) nodes in a cluster that are being monitored, and if there are M

monitoring nodes, then the idea of offloading is that each monitoring node covers N/M of the total
monitoring storage, and N/M of the sampling scripts.

In other words, the cluster manager aims to evenly spread the total storage and sampling needed for
all the regular nodes, over the nodes with a monitoring role.

Bright Cluster Manager in the default state with no high availability does not run offloaded moni-
toring.

High Availability And Offloaded Monitoring With Just The Head Nodes Running As Monitoring Nodes
The simplest offloaded monitoring configuration is when high availability is configured. That is, when
Bright Cluster Manager is configured with two head nodes as described in Chapter 18. By default, a
monitoring role is then assigned to both the head nodes.

This has the effect of doubling the monitoring capacity of the head node pair in Bright Cluster Man-
ager 9.1, in comparison with a head node pair in Bright Cluster Manager version 9.0 and earlier.

The head nodes then carry out storage and sampling for the regular nodes as well as for themselves.

© Bright Computing, Inc.

13.7 Offloaded Monitoring 601

Offloaded Monitoring With Regular Compute Nodes Running As Monitoring Nodes
It is possible to run a compute node with a monitoring role assigned to them. This means that the
compute node carries out storage and sampling as part of its monitoring role.

During a SYNC install—the default node provisioning for a healthy node—monitoring data persists.
Monitoring data would be wiped out during a FULL install (section 5.4.4). To provide a check on

this, the node can be set up with the datanode setting (page 195), which requires a confirmation from
the cluster administrator before carrying out a FULL install. However, if the monitoring data values are
that important, then the cluster administrator should consider backup solutions for it anyway.

Offloaded Monitoring With Dedicated Nodes Running As Monitoring Nodes
For large clusters of around 10,000 or more nodes, a recommended practice is to have dedicated moni-
toring nodes. These are then regular nodes that are typically set up with the datanode setting, and are
not used for other purposes such as HPC use. The dedicated monitoring nodes then carry out monitor-
ing sampling and monitoring data storage for the regular nodes. Each of the M dedicated monitoring
nodes takes on N/M of the regular nodes for itself, and records monitoring data from those N/M nodes.

This is illustrated by the following schematic, with arrows indicating the monitoring sampling flow
for the head nodes (H1, H2), dedicated monitoring nodes (M1 to M3), and regular nodes (N1 to N6):

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

Figure 13.24: Monitoring Sampling Flow For Offloaded Monitoring With Dedicated Monitoring Nodes

A monitoring node in this configuration also copies backups of its monitoring data to other monitor-
ing nodes. Number of backups for the monitoring role (section 13.7.2) is used to configure the number
of backups. In the following schematic, two neighboring monitoring nodes are used as backup:

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

Figure 13.25: A Simple Backup Flow For Offloaded Monitoring With Dedicated Monitoring Nodes

The backups need not be on the same local network. For example, edge directors can be backed up
to the head node.

If a monitoring node fails, then its monitoring data can be extracted from its backup nodes, and a

© Bright Computing, Inc.

602 Monitoring: Monitoring Cluster Devices

new distribution of nodes to be monitored is allocated to the remaining monitoring nodes.
A backup is carried out using what the Bright developers call a provisioning grab. This is similar to

grabimage (section 5.6), but this time designed for grabbing monitoring data. Like grabimage, provi-
sioning grab also works on the basis of an rsync. This means that the first copy can take a while, but that
subsequent copies are much faster.

Provisioning grabs are staggered to reduce bandwidth consumption and to reduce the likely amount
of monitoring data that goes out of date during an outage.

Dedicated monitoring nodes can cope with short outages of monitoring nodes, such as are caused by
a CMDaemon restart on that monitoring node, or by a reboot of that monitoring node. These outages are
not expected to take longer than a few minutes, and the monitoring nodes just continue on as normal,
with some missing data samples. However, if an outage is greater than about 15 minutes, such as may
happen if a monitoring node crashes, then a fully automated rebalancing of the loads on the monitoring
nodes can only take place with the aid of backups.

The head nodes in this configuration are configured as HA, and without the monitoring role, and
thus do not carry out monitoring data storage for the regular nodes. They do however still sample and
store data for themselves, and carry out backups to each other.

Backup nodes: In addition, for larger clusters, another recommended practice is to have backup nodes
(B1, B2 in the following schematic) for the dedicated monitoring nodes:

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

B1 B2

Figure 13.26: A More Sophisticated Backup Flow For Offloaded Monitoring With Dedicated Monitoring
Nodes And Dedicated Backup Nodes

Backup nodes for the monitoring nodes take away the monitoring data backup task from the moni-
toring nodes. This frees up the monitoring nodes so that they can take on even more monitoring.

Provisioning role on monitoring nodes: If there is enough capacity on the dedicated monitoring
nodes, and the cluster spends most of its time in a relatively steady state where its nodes do not reboot
frequently, then adding a provisioning role to the monitoring nodes can be an efficient use of resources.
In this case the monitoring nodes are obviously not so dedicated, but the advantage is that rebooting the
entire cluster is then faster, at the cost of perhaps some extra load on the monitoring nodes during such
a reboot.

Offloaded Monitoring Sampling And Backup Flows For Edge Computing
For a cluster with edge configured, the edge director flows in the edge network are analogous to head
node flows in the local network. Thus, monitoring is carried out by the directors on the edge nodes, and
the directors also sample themselves.

© Bright Computing, Inc.

13.7 Offloaded Monitoring 603

Thus, edge directors, not in a high-availablity configuration, have the monitoring sampling data flow
shown by the following schematic (figure 13.27):

N2 N3N1 E2 E3E1

H
D1

E5 E6E4

D2

Figure 13.27: Sampling Flow For Offloaded Monitoring With Non-HA Edge Director Nodes

For edge directors that have been set up in an HA configuration the monitoring sampling data flow
in the edge network is split up between directors, so that each director takes half of the edge nodes. This
is analogous to how head nodes in an HA configuration take half of the regular nodes each (figure 13.28):

N2 N3N1 E2 E3E1

H
D1

E5 E6E4

D2

Figure 13.28: Sampling Flow For Offloaded Monitoring With HA Edge Director Nodes

The backup data flow for a non-HA configuration would then be as follows for an edge director
(figure 13.29):

N2 N3N1

H D1 D2

E2 E3E1 E5 E6E4

Figure 13.29: Backup Flow For Offloaded Monitoring With Non-HA Edge Director Nodes

Backing up to the head node is possible for an edge director. But it is usually unwise because one of

© Bright Computing, Inc.

604 Monitoring: Monitoring Cluster Devices

the usual reasons to have a segregation of local and edge networks is to reduce data flow between the
local and edge network.

With edge directors in an HA configuration, a big advantage is that backing up to the other edge
director is possible and configured by default, rather than backing up to the head node (figure 13.30):

N2 N3N1

H1 D1 D2

E2 E3E1 E5 E6E4

Figure 13.30: Backup Flow For Offloaded Monitoring With HA Edge Director Nodes

13.8 The User Portal
13.8.1 Accessing The User Portal
The user portal is compatible with most browsers using reasonable settings. For Internet Explorer, ver-
sion 9 or later is required.

The user portal is located by default on the head node. For a head node bright91, it is
accessible to users for a login via a browser at the URL http://bright91, or more directly via
https://bright91:8081/userportal. The state of the cluster can then be viewed by the users via an
interactive interface.

The first time a browser is used to login to the portal, a warning about the site certificate being
untrusted appears.

The certificate is a self-signed certificate (the X509v3 certificate of Chapter 4 of the Installation Man-
ual), generated and signed by Bright Computing, and the attributes of the cluster owner are part of the
certificate. However, Bright Computing is not a recognized Certificate Authority (CA) like the CAs that
are recognized by a browser, which is why the warning appears.

The SSL configuration file is located at /etc/httpd/conf.d/ssl.conf. Within ssl.conf, by default
the PEM-encoded server certificate is set to /etc/pki/tls/certs/localhost.crt. The entry should
be changed if generating and installing the certificate elsewhere. A key-based certificate can be used
instead, with a private key then expected by the ssl.conf file at etc/pki/tls/private/localhost.key.

For a portal that is not accessible from the outside world, such as the internet, the warning about
Bright Computing not being a recognized Certificate Authority is not an issue, and the user can simply
accept the “untrusted” certificate.

For a portal that is accessible via the internet, some administrators may regard it as more secure to
ask users to trust the self-signed certificate rather than external certificate authorities. Alternatively the
administrator can replace the self-signed certificate with one obtained by a trusted recognized CA, for
example the one at https://letsencrypt.org, if that is preferred.

13.8.2 Setting A Common Username/Password For The User Portal
By default, each user has their own username/password login to the portal. Removing the login is not
possible, because the portal is provided by CMDaemon, and users must connect to CMDaemon.

A shared (common) username/password for all users can be set in the configuration file,
common-credentials.json. The default username/password settings are blank, which means that com-
mon access is not enabled:

Example

© Bright Computing, Inc.

/etc/httpd/conf.d/ssl.conf
/etc/pki/tls/certs/localhost.crt
etc/pki/tls/private/localhost.key
https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

13.8 The User Portal 605

[root@bright91 ~]# cat /cm/local/apps/cmd/etc/htdocs/userportal/assets/config/common-credentials.json
{

"username": "",
"password": ""

}

To enable common access:

• the common username and password must be added via cmsh or Bright View

Example

[root@bright91 ~]# cmsh
[bright91]% user
[bright91->user]% add forrestgump
[bright91->user[forrestgump]]% set password
enter new password:
retype new password:
[bright91->user*[forrestgump*]]% commit
[bright91->user[forrestgump]]% quit

• the common username and password should be set in the appropriate place in the configuration
file, common-credentials.json:

Example

[root@bright91 ~]# cat /cm/local/apps/cmd/etc/htdocs/userportal/assets/config/common-credentials.json
{
"username": "forrestgump",
"password": "1forrest1"

}

A minor stumbling block for the unwary administrator is:
If using Bright View, then if the password for the username has already been saved in the browser’s

password manager before changing it in the configuration file, then the password saved in the browser’s
password manager may need to be changed to the new one explicitly.

13.8.3 User Portal Access
By default, the user profile (section 6.4) is set to readonly, which allows viewing of the information
presented in the user portal, without allowing it to be altered.

13.8.4 User Portal Home Page
User Portal Overview Page
The default user portal home page is the Overview page. This allows a quick glance to convey the most
important cluster-related information for users (figure 13.31):

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/htdocs/userportal/index.html

606 Monitoring: Monitoring Cluster Devices

Figure 13.31: User Portal: Overview Page

The following items are displayed on the overview page:

• a Message Of The Day. This can be edited in /cm/local/apps/cmd/etc/htdocs/userportal/
assets/config/message-of-the-day.html

• links to the documentation for the cluster

• an overview of the cluster state, displaying some cluster parameters. By default, it is refreshed
every 10s.

The user portal is designed to serve files only, and will not run executables such as PHP or similar
CGI scripts. Monitoring and job accounting charts can be viewed on clicking upon the associated icons,

and , at the top right corner of the user portal page.

User Portal Monitoring Page
The user portal’s Monitoring page allows charts of measurables to be plotted in a monitoring window
in a very similar manner to how it is done in section 13.3.1.

User Portal Job Accounting Page
The user portal’s Accounting and reporting page allows job accounting to be viewed in an accounting
panel in a very similar manner to how it is done in section 15.5.

13.9 Cloud Job Tagging
Cloud job tagging is about the ability for cloud job instances to have their associated cloud resources
tagged. This is only possible for AWS at the time of writing (February 2020). Enabling cloud job tagging
via Bright Cluster Manager was introduced in version 9.0.

Tags are key=value pairs for AWS resources, and can be applied to resources. Typically, tags that are
applied are set by the user via the Tag Editor of the Amazon Management Console, and up to 50 tags
can be applied per resource.

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/htdocs/userportal/assets/config/message-of-the-day.html
/cm/local/apps/cmd/etc/htdocs/userportal/assets/config/message-of-the-day.html

13.10 Event Viewer 607

Cloud job tagging should not be confused with the tagging of job metrics for job accounting (sec-
tion 15.2). AWS cloud resource tagging is only active and handled within AWS.

Cloud job tags allow the time span between tag creation and removal to be associated with a partic-
ular workload on the node.

In cmsh, for a cloud node, cloud job tagging can be enabled within cloud mode by setting the
cloudjobtagging parameter for the EC2Provider entity to yes

Example

cmsh -c 'cloud; use amazon; set cloudjobtagging yes; commit'

If it is set to yes, then every job running on a cloud node using that specific provider is tagged
according to the applied tags.

A subset of the tags for cloud jobs are cost allocation tags. Cloud job cost allocation tags allow AWS
costs to be tracked for jobs. A cost allocation tag can be:

• an AWS generated tag: defined, created, and applied by AWS

• a user-defined tag: defined, created, and applied by the user

By default, Bright Cluster Manager provides the following tag names when the cloud job tagging
feature is enabled:

• BCM_JOB_ID

• BCM_JOB_ACCOUNT

• BCM_JOB_USER

• BCM_JOB_NAME

When CMDaemon sees that a job has started, the resources of that job are then tagged with the job ID,
the job account, the job user, and the job name. When CMDaemon detects that the job has stopped, it
removes the tags.

The AWS Cost Explorer can be used to view the AWS costs for a billing period according to tags.
Further information on tagging can be found at:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html.
Further information on using the Cost Explorer with cost allocation tags can be found at:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

13.10 Event Viewer
Monitoring in Bright Cluster Manager is normally taken by developers to mean how sampling with data
producers is handled. However, cluster administrators using this manual typically consider watching
and handling events in Bright Cluster Manager to also be a part of a more general concept of monitoring.
This manual is aimed at cluster administrators, and therefore this section on event viewing and handling
is also placed in the current Monitoring chapter.

Bright Cluster Manager events can be handled and viewed in several ways.

13.10.1 Viewing Events In Bright View
In Bright View, events can be viewed by clicking on the Events icon of figure 13.5. This opens up a
window with a sortable set of columns listing the events in the events log, and with by default with the
most recent events showing up first.

© Bright Computing, Inc.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

608 Monitoring: Monitoring Cluster Devices

13.10.2 Viewing Events In cmsh
The events command is a global cmsh command. It allows events to be viewed at several severity levels
(section 13.2.7), and allows old events to be displayed. The usage and synopsis of the events command
is:

Usage: events
events on [broadcast|private]
events off [broadcast|private]
events level <level>
events clear
events details <id> [<id>]
events <number> [level]
events follow

Arguments:

level info,notice,warning,error,alert

Running the command without any option shows event settings, and displays any event messages
that have not been displayed yet in the session:

Example

[bright91->device]% events
Private events: off
Broadcast events: on
Level: notice
custom[RESET] node001

Running the command with options allows the viewing and setting of events as follows:

• on [broadcast|private]: event messages are displayed as they happen in a session, with cmsh
prompts showing in between messages:

– If only on is set, then all event messages are displayed as they happen:

* either to all open cmsh sessions, and also in Bright View event viewer panes, if the event
or its trigger has the “broadcast” property.

* or only in the cmsh session that is running the command, if the event or its trigger has the
“private” property.

– If the further option broadcast is set, then the event message is displayed as it happens in all
open cmsh sessions, and also in all Bright View event viewer panes, if the event or its trigger
has the “broadcast” property.

– If the further option private is set, then the event message is displayed as it happens only in
the cmsh session that ran the command, if the event or its trigger has the “private” property.

• off [broadcast|private]: disallows viewing of event messages as they happen in a session.
Event messages that have not been displayed due to being forbidden with these options, are dis-
played when the events command is run without any options in the same session.

– If only off is set, then no event message is displayed as it happens in the session. This is
regardless of the “broadcast” or “private” property of the event or its trigger.

– If the further option broadcast is set, then the event message is not displayed as it happens,
if the event or its trigger has the “broadcast” property.

– If the further option private is set, then the event message is not displayed as it happens, if
the event or its trigger has the “private” property.

© Bright Computing, Inc.

13.10 Event Viewer 609

• level <info|notice|warning|error|alert>: sets a level. Messages are then displayed for this
and higher levels.

• clear: clears the local cmsh event message cache. The cache indexes some of the events.

• details <id>: shows details for a specific event with the index value of <id>, which is a number
that refers to an event.

• <number> [info|notice|warning|error|alert]: shows a specified <number> of past lines of
events. If an optional level (info, notice,...) is also specified, then only that level and higher
(more urgent) levels are displayed.

• follow: follows event messages in a cmsh session, similar to tail -f /var/log/messages. This
is useful, for example, in tracking a series of events in a session without having the cmsh prompt
showing. The output can also be filtered with the standard unix text utilities, for example: events
follow | grep node001

A common example of events that send private messages as they happen are events triggered by the
updateprovisioners command, which has the “private” property. The following example illustrates
how setting the event viewing option to private controls what is sent to the cmsh session. Some of the
output has been elided or truncated for clarity:

Example

[bright91->softwareimage]% events on private
Private events: on
[bright91->softwareimage]% updateprovisioners
Provisioning nodes will be updated in the background.
[bright91->softwareimage]%
Tue Apr 29 01:19:12 2014 [notice] bright91: Provisioning started: sendi...
[bright91->softwareimage]%
Tue Apr 29 01:19:52 2014 [notice] bright91: Provisioning completed: sen...
updateprovisioners [COMPLETED]
[bright91->softwareimage]% !#events were indeed seen in cmsh session
[bright91->softwareimage]% !#now block the events and rerun update:
[bright91->softwareimage]% events off private
Private events: off
[bright91->softwareimage]% updateprovisioners
Provisioning nodes will be updated in the background.
[bright91->softwareimage]% !#let this 2nd update run for a while
[bright91->softwareimage]% !#(time passes)
[bright91->softwareimage]% !#nothing seen in cmsh session.
[bright91->softwareimage]% !#show a 2nd update did happen:
[bright91->softwareimage]% events 4 | grep -i provisioning
Tue Apr 29 01:19:12 2014 [notice] bright91: Provisioning started: sendi...
Tue Apr 29 01:19:52 2014 [notice] bright91: Provisioning completed: sen...
Tue Apr 29 01:25:37 2014 [notice] bright91: Provisioning started: sendi...
Tue Apr 29 01:26:01 2014 [notice] bright91: Provisioning completed: sen...

13.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States
Event Bucket Default Behavior
The Bright Cluster Manager event bucket accepts input piped to it, somewhat like the traditional unix
“bit bucket”, /dev/null. However, while the bit bucket simply accepts any input and discards it, the
event bucket accepts a line of text and makes an event of it. Since the event bucket is essentially an event
processing tool, the volumes that are processed by it are obviously less than that which /dev/null can
handle.

© Bright Computing, Inc.

610 Monitoring: Monitoring Cluster Devices

By default, the location of the event bucket is at /var/spool/cmd/eventbucket, and a message can
be written to the event pane like this:

Example

[root@bright91 ~]# echo "Some text" > /var/spool/cmd/eventbucket

This adds an event with, by default, the info severity level, to the event pane, with the InfoMessage
“Some text”.

13.10.4 InfoMessages
InfoMessages are optional messages that inform the administrator of the reason for the status change of
a measurable, or an event in the cluster.

Measurable scripts can use file descriptor 3 within their scripts to write an InfoMessage:

Example

echo "Drive speed unknown: Reverse polarity" >&3

Event Bucket Severity Levels
To write events at specific severity levels (section 13.2.7), and not just at the info level, the appropriate
text can be prepended from the following to the text that is to be displayed:

EVENT_SEVERITY_DEBUG:
EVENT_SEVERITY_INFO:
EVENT_SEVERITY_NOTICE:
EVENT_SEVERITY_WARNING:
EVENT_SEVERITY_ERROR:
EVENT_SEVERITY_ALERT:

Example

echo "EVENT_SEVERITY_ERROR:An error line" > /var/spool/cmd/eventbucket

The preceding example displays an output notification in the Bright View event viewer as shown in
figure 13.32:

Figure 13.32: Bright View Monitoring: Event Bucket Message Example

Event Bucket Filter
Regex expressions can be used to conveniently filter out the user-defined messages that are about to go
into the event bucket from the shell. The filters used are placed in the event bucket filter, located by
default at /cm/local/apps/cmd/etc/eventbucket.filter.

Event Bucket CMDaemon Directives
The name and location of the event bucket file and the event bucket filter file can be set using the
EventBucket and EventBucketFilter directives from the CMDaemon configuration file directives (Ap-
pendix C).

© Bright Computing, Inc.

13.10 Event Viewer 611

Adding A User-Defined Message To A Device State With The Event Bucket
While the event bucket is normally used to send a message to the event viewer, it can instead be used to
add a message to the state of a device. The line passed to the echo command then has the message and
device specified in the following format:

STATE.USERMESSAGE[.device]:[message].
The device can be anything with a status property, such as, for example, a node, a switch, or a chassis.

Example

echo "STATE.USERMESSAGE.node001:just right" > /var/spool/cmd/eventbucket

The state then shows as:

cmsh -c "device ; status node001"
node001 (just right) [UP]

If the device is not specified, then the current host of the shell that is executing the echo command is
used. For example, running these commands from the head node, bright91, as follows:

Example

echo "STATE.USERMESSAGE:too hot" > /var/spool/cmd/eventbucket
ssh node001 'echo "STATE.USERMESSAGE:too cold" > /var/spool/cmd/eventbucket'

yields these states:

cmsh -c "device ; status bright91"
bright91 (too hot) [UP]
cmsh -c "device ; status node001"
node001 (too cold) [UP]

The added text can be cleared with echoing a blank message to that device. For example, for node001
that could be:

echo "STATE.USERMESSAGE.node001:" > /var/spool/cmd/eventbucket

Using An Event Bucket During The Node-installer Stage
The node-installer runs before systemd is up on the node that is being provisioned. This means that CM-
Daemon is also not yet running on that node, so that the regular event bucket features are not available
during that time. However, a simplified event bucket—the node-installer event bucket—is available
during this stage.

The node-installer event bucket can be particularly useful if debugging larger initialize and finalize
scripts (Appendix E).

To use it, text is echoed to /tmp/eventbucket within the node or category scripts. The text will show
up (if permitted) within the sessions of cmsh, and within the events viewer of Bright View.

There are two different modes for the node-installer event bucket:

1. Device status info-message updater mode:

Example

echo "info-message: this text will be shown in the device status" > /tmp/eventbucket

2. Warning event mode:

Example

echo "Some text that will become an event" > /tmp/eventbucket

© Bright Computing, Inc.

14
Monitoring: Job Monitoring

14.1 Job Metrics Introduction
Most HPC administrators set up device-centric monitoring to keep track of cluster node resource use.
This means that metrics are selected for devices, and the results can then be seen over a period of time.
The results can be viewed as a graph or data table, according to the viewing option chosen. This is
covered in Chapter 13.

The administrator can also select a job that is currently running, or that has recently run, and get
metrics for nodes, memory, CPU, storage, and other resource use for the job. This is known as job
monitoring, which is, as the term suggests, about job-centric rather than device-centric monitoring. Job
monitoring is covered in this chapter, and uses job metrics.

For perspective, monitoring as discussed until now has been based on using devices or jobs as the
buckets for which resource use values are gathered. Administrators can also gather, for resources con-
sumed by jobs, the resources used by users (or any other aggregation entity) as the buckets for the
values. This is typically useful for watching over the resources used by a user (or other aggregation en-
tity) when jobs are run on the cluster. User-centric monitoring—or more generally, aggregation-centric
monitoring—for jobs is termed job accounting and is covered in Chapter 15.

14.2 Job Metrics With Cgroups
Job metrics collection uses control groups (cgroups), (section 7.10). Each job is associated with a spe-
cific cgroup that is created in each of the three base cgroups that are associated with particular cgroup
controllers. The cgroup controllers are kernel components that allow metrics to be collected for pro-
cesses. The PIDs of these processes are in the cgroups tasks file.

Bright Cluster Manager 9.1 uses the following cgroup controllers:

• blkio: provides block device metrics,

• cpuacct: provides CPU usage metrics,

• memory: provides memory usage metrics.

In Bright Cluster Manager before version 9.1, each job had to be put by a workload manager into
a unique cgroup. However, with Bright Cluster Manager 9.1 onwards, this no longer necessary. By
default, Bright Cluster Manager still configures all supported workload managers to run jobs in cgroups,
but it is now CMDaemon that manages the cgroup life cycle. Thus, CMDaemon ensures that:

• the necessary cgroups are created per job

• ensures that the cgroups are removed after the job is finished

• and that the last values of the metrics are collected.

© Bright Computing, Inc.

t

614 Monitoring: Job Monitoring

Even if the administrator completely disables cgroups management in the workload manager, CMDae-
mon can still create and remove the three cgroups associated with the job, with each of those cgroups
associated with one of the three previously-mentioned cgroup controllers.

If the workload manager creates some (or all three) cgroups for a job, then CMDaemon does not try
to recreate the cgroup, but does take charge of the removal of cgroups.

In Bright Cluster Manager before version 9.1, cm-wlm-setup configured systemd to use a joined
cgroup with the following parameter settings:

Example

[root@node001 ~]# grep JoinControllers /etc/systemd/system.conf
JoinControllers=blkio,cpuacct,memory,freezer
[root@node001 ~]#

Currently this is not needed. However, if this setting remains, then CMDaemon can still collect job
metrics. In order to reset the cgroup layout to the default one, the administrator can run:

cm-wlm-setup --reset-cgroups

This command removes the JoinControllers parameter and regenerates initrd. A reboot of the
nodes is required after this.

When a job is started CMDaemon detects all the job processes. CMDaemon then ensures that the
required cgroups are created, and allocates the detected processes to those cgroups. CMDaemon does
not configure the cgroups in any way—this is the responsibility of the workload manager.

The tables in Appendix G.1.5 list the job metrics that Bright Cluster Manager can monitor and visu-
alize.

If job metrics are set up (section 14.4), then:

1. on virtual machines, block device metrics may be unavailable because of virtualization.

2. for now, the metrics are retrieved from cgroups created by the workload manager for each job.
When the job is finished the cgroup is removed from the filesystem along with all the collected
data. Retrieving the jobs metric data therefore means that CMDaemon must sample the cgroup
metrics before the job is finished. If CMDaemon is not running during a time period for any reason,
then the metrics for that time period cannot be collected, even if CMDaemon starts later.

3. block device metrics are collected for each block device by default. Thus, if there are N block
devices, then there are N collected block device metrics. The monitored block devices can be
excluded by configuration as indicated in section 14.4.

14.3 Job Information Retention
Each job adds a set of metric values to the monitoring data. The longer a job runs, the more data is
added to the data. By default, old values are cleaned up from the database in order to limit its size. In
Bright Cluster Manager 9.1 there are several advanced configuration directives to control the job data
retention, with names and default values as follows:

Advanced Configuration Directive Default value Unit

JobInformationDisabled 0

JobInformationKeepDuration 2419200 s

JobInformationKeepCount 8192

JobInformationMinimalJobDuration 0 s

JobInformationFlushInterval 600 s

These directives are described in detail in Appendix C, page 802.

© Bright Computing, Inc.

14.4 Job Metrics Sampling Configuration 615

14.4 Job Metrics Sampling Configuration
Job metrics sampling can be configured to varying degrees. For clusters where hundreds of thousands
of jobs are run in a day it often makes little sense to monitor jobs, and it is often helpful to disable the
JobSampler and JobMetadataSampler data producers:

Example

[bright91]% monitoring setup
[bright91->monitoring->setup]% set jobsampler disabled yes
[bright91->monitoring->setup]% set jobmetadatasampler disabled yes
[bright91->monitoring->setup]% commit

An alternative is to use the equivalent CMDaemon directive JobInformationDisabled, as explained
on page 597.

If however CMDaemon is to keep the monitoring data, then the collection of job metrics is carried
out from the cgroups in which a job runs. The administrator can tune some low level metric collection
options for the JobSampler data producer in the jobmetricsettings submode:

Example

[bright91]% monitoring setup
[bright91->monitoring->setup]% use jobsampler
[bright91->monitoring->setup[JobSampler]% jobmetricsettings
[bright91->monitoring->setup[JobSampler]->jobmetricsettings]% show
Parameter Value
-------------------------------- ---
CGroup base directory /sys/fs/cgroup
CGroup search freezer
Enable Advanced Metrics no
Exclude Devices loop,sr
Exclude Metrics
Include Devices
Include Metrics
Keep alive sleep 8w
No GPUs is all GPUs no
Pickup interval 5s
Pickup priority 50
Pickup times 12
Sampling Type Both

The configuration parameters are:

Parameter Name Description

CGroup base directory Cgroup base directory (default: /sys/fs/cgroup)

CGroup search Search field for finding the workload manager cgroup (de-
fault: freezer)

...continues

© Bright Computing, Inc.

616 Monitoring: Job Monitoring

...continued

Parameter Name Description

Enable Advanced Metrics Enables advanced metrics

Exclude Devices Block devices for which job metrics will not collect metrics

Include Devices If the list is not empty then only block device metrics for
these devices will be collected, while for other devices the
metrics will be skipped

Enable Advanced Indicates whether advanced job metrics should be enabled
(options: true, false)

Exclude Metrics List of metric names that should not be collected

Include Metrics List of metric names that should be added to metric
collection

Keep alive sleep Time the cgroup keepalive process sleeps (default: 8
weeks)

No GPUs is all GPUs Include data from all GPUs even if the job has no GPUs
defined (default: no)

Pickup interval Initially higher pickup interval (default: 5s). By default
this settles down to the normal pickup interval (with a
default of 120s) after the value of Pickup times has been
exceeded.

Pickup priority Priority of the pickup interval change (default: 50)

Pickup times Number of times to apply the initially higher pickup inter-
val (default: 12)

Sampling Type Type of metric sampling (default: Both)

The amount of monitoring data gathered can also be reduced by reducing the Maximal age and
Maximal samples for data producers (section 13.4.1) to smaller, but still non-zero values. A way to do
this is described in section 17.8.4.

14.4.1 The Job Metrics Collection Processing Mechanism
The cm-cgroup-job-keepalive Process
From Bright Cluster Manager 9.0 onwards, when a WLM job starts, CMDaemon tracks the moment it
starts and finishes, and is able to collect metrics for it. As part of this enhanced jobs metrics collection, a
keepalive process, cm-cgroup-job-keepalive, is run for each job. Each keepalive process is a temporary
process, and is added by CMDaemon to the same cgroup that the original job was placed in by the WLM.

The process cm-cgroup-job-keepalive itself does no work. It sleeps, and by existing it prevents its

© Bright Computing, Inc.

14.5 Job Monitoring In cmsh 617

cgroup being deleted.
After a job is finished, the workload manager would normally remove the related cgroup. However

the existence of the cm-cgroup-job-keepalive process prevents the deletion. This allows CMDaemon
to collect the very last metrics data for the job from the cgroup when the job finishes. The CMDaemon
then stops the cm-cgroup-job-keepalive process, and the cgroup is then removed because it is no
longer needed.

When CMDaemon starts the cm-cgroup-job-keepalive process for a job, it passes the appropri-
ate job ID, and how long it can run, in its command line options. Those values are not used by the
cm-cgroup-job-keepalive process itself, but they are convenient for seeing what job the process is run-
ning for, and how long the job has run since it was started. For example, for a Slurm job with id 2 the
running cgroup keeper process could look like:

Example

[root@node001 ~]# ps auxf | tail -n 10 | cut -b18-45 --complement
root 1954 0 Sl 18:12 0:03 _ /cm/local/apps/cmd/sbin/cmd -s -n -P /var/run/cmd.pid
root 2632 0 Ss 18:15 0:00 _ /cm/local/apps/cmd/sbin/cm-cgroup-job-keepalive --job 2 8w
root 2241 0 S 18:13 0:00 /cm/shared/apps/slurm/18.08.4/sbin/slurmd
root 2627 0 Sl 18:15 0:00 slurmstepd: [2.batch]
cmsuppo+ 2631 0 S 18:15 0:00 _ /bin/bash /cm/local/apps/slurm/var/spool/job00002/slurm_script
cmsuppo+ 2642 0 S 18:15 0:00 _ /cm/shared/apps/stresscpu/current/stresscpu2
cmsuppo+ 2643 0 S 18:15 0:00 _ /cm/shared/apps/stresscpu/current/stresscpu2
cmsuppo+ 2644 98 R 18:15 4:46 _ /cm/shared/apps/stresscpu/current/stresscpu2
[root@node001 ~]#

(The cut command is just used in the example to cut out the middle bits of the output so that it fits
the page format well).

The Keep Alive Sleep Time
By default the cgroup keeper process stops after 8 weeks. This value should be increased if the jobs
that are expected to run will take longer than 8 weeks. The value can be set in the Keep Alive Sleep
parameter of the job metrics settings. If a job runs for longer than the value of Keep Alive Sleep,
then CMDaemon cannot collect the very last metrics (from around the time that the job has finished).
However all other metrics will be collected for the job as expected, even if the job running time exceeds
the Keep Alive Sleep time.

The OOB intervals Parameter
When metric collection for a new job has just started, CMDaemon samples more frequently than later
on. This more frequent sampling behaviour is defined by the parameter OOB intervals (out of band
sampling interval) in the data producer configuration. In the case of job metrics collection this more
frequent sampling behaviour is in JobSampler.

By default, the sampling interval retuns to the standard Interval value (with a default value of
120s), as defined in the data producer settings, after the value of Pickup times (with a default value of
12) has been exceeded.

The parameter Exclude Metrics can be used to exclude metrics that are currently enabled. For
example, if advanced metrics collection is enabled then Exclude Metrics allows either default or ad-
vanced metrics to be excluded by name.

14.5 Job Monitoring In cmsh

The following commands are associated with monitoring job measurables within jobs submode
(cmsh→wlm<[workload manager]>→jobs, section 7.7):

© Bright Computing, Inc.

618 Monitoring: Job Monitoring

The measurables Command
A list of job-associated measurables can be seen in the jobs submode (cmsh→[<workload
manager]>→jobs) using the measurables command with a job ID. For example (much output elided):

Example

[bright91->wlm[slurm]->jobs]% measurables 26
blkio.io_service_bytes_total
...
memory.usage
[bright91->wlm[slurm]->jobs]%

A list of node-associated measurables can also be seen if the -n option is used (much output elided):

Example

[bright91->wlm[slurm]->jobs]% measurables -n 26
...
gpu_power_usage:gpu0
...
memory.usage

The filter Command
The filter command provides filtered historic job-related information. It does not provide measurables
data. The command and its options can be used to:

• retrieve running, pending, failed or finished jobs information

• select job data using regular expressions to filter by job ID

• list jobs by user name, user group, or workload manager

The --limit option can be used to limit the number of results displayed

Example

[bright91->wlm[slurm]->jobs]% filter -n mgbench --ended --limit 2
Job ID Job name User Queue Submit time Start time End time Nodes Exit code
------ -------- ----- ----- --------------- --------------- --------------- ------- ---------
26 mgbench alice defq May 14 11:21:41 May 14 11:36:36 May 14 11:50:24 node001 0
27 sleep bob defq May 14 11:23:00 May 14 11:50:24 May 14 12:00:25 node001 0
[bright91->wlm[slurm]->jobs]%

The data shown is retrieved from the running workload manager, as well as from the accounting file
or database maintained by the workload manager.

Further details on the options to filter can be seen by running help filter.

The info Command
A handy command to obtain job information is info, followed by the job number:

Example

[bright91->wlm[slurm]->jobs]% info 26
Parameter Value
-------------------------------- --
Revision
WlmCluster slurm
Job ID 26
Job name mgbench

© Bright Computing, Inc.

14.5 Job Monitoring In cmsh 619

Persistent no
Queue defq
User alice
Group alice
Account
Parent ID
CGroup slurm/uid_1002/job_26
Nodes node001
Submit time 14/05/2020 11:21:41
Start time 14/05/2020 11:36:36
End time 14/05/2020 11:50:24
Exit code 0
Status COMPLETED
[bright91->wlm[slurm]->jobs]%

The dumpmonitoringdata Command
The dumpmonitoringdata command displays data for measurables in the jobs submode
(cmsh→[<workload manager]>→jobs). It is a very similar to the dumpmonitoringdata command for mea-
surables in device mode (section 13.6.4). The main difference in the behavior of dumpmonitoringdata
for these modes is that:

• In the jobs submode it shows monitoring data over a period of time for a specified job ID

• In device mode (cmsh→device) it shows monitoring data over a period of time for a specified
device.

A less obvious difference is that:

• In the jobs submode the start and end time for the monitoring data for the job does not need to be
specified. By default the start and end time of the job is assumed.

• In device mode the start and end time for the monitoring data for the device must be specified

The usage of the dumpmonitoringdata command for job measurables is:

dumpmonitoringdata [OPTIONS] [<start-time> <end-time>] <measurable> <job ID>

Options allow measurables to be retrieved and presented in various ways, including by maximum
value, raw or interpolated data, and human-friendly forms. The user can also specify custom periods
for the options.

For example, the historical job with job ID 26 might display output for the job-associated measurable
memory.usage as follows (output elided):

Example

[bright91->wlm[slurm]->jobs]% dumpmonitoringdata memory.usage 26
Start: Thu May 14 11:36:36 2020
End: Thu May 14 11:50:24 2020
Nodes: node001
Timestamp Value Info
-------------------------- ---------- ----------
2020/05/14 11:36:37 708 KiB
2020/05/14 11:36:38 117 MiB
2020/05/14 11:36:39 29.8 MiB
...
2020/05/14 11:50:24 86.6 MiB
[bright91->wlm[slurm]->jobs]%

© Bright Computing, Inc.

620 Monitoring: Job Monitoring

The start and end times are optional, so specifying them is typically unnecessary. If they are not speci-
fied, then the data values over the entire period of the job run are displayed.

That job with ID 26, for the example used in this section 14.5, happens to be mgbench, a GPU bench-
marking program. So displaying output for the device-associated measurable, gpu_power_usage, dur-
ing the job run can also be useful:

Example

[bright91->wlm[slurm]->jobs]% dumpmonitoringdata gpu_power_usage:gpu0 26
Start: Thu May 14 11:36:36 2020
End: Thu May 14 11:50:24 2020
Nodes: node001
Timestamp Value Info
-------------------------- ---------- ----------
2020/05/14 11:36:36 no data
2020/05/14 11:37:03.883 195.58 W
...
2020/05/14 11:50:23.887 22.224 W
2020/05/14 11:50:24 22.2241 W
[bright91->wlm[slurm]->jobs]%

The data is shown per node if the job uses several nodes.
Further details of the options to dumpmonitoringdata for job metrics can be seen by running help

dumpmonitoringdata within jobs mode.

The statistics Command
The statistics command shows basic statistics for historical job information. It allows statistics to be
filtered per user or user group, and workload manager. The statistics can be grouped by hour, day, week
or a custom interval.

Example

[bright91->wlm[slurm]->jobs]% statistics
Pending Running Finished Error Nodes
---------- ---------- ---------- ---------- ----------
0 0 31 0 31
[bright91->wlm[slurm]->jobs]%

Further details of the options to statistics can be seen by running help statistics.

© Bright Computing, Inc.

15
Monitoring: Job Accounting

15.1 Introduction
In addition to the concept of metrics for devices (Chapter 13), or the concept of metrics for jobs (Chap-
ter 14), there is also the concept of metrics for aggregations, for resources used during jobs. This last one
is typically metrics aggregated per user, for resources used during jobs. Aggregation-based metrics for
jobs is more conveniently called job accounting, since it ressembles the idea of an accountant watching
over users to track their resource use while they carry out their jobs.

The concept and implementation of aggregation-based metrics for jobs, or job accounting, are de-
scribed in this Chapter.

Typically in Bright Cluster Manager for jobs, resource usage can be presented per user. For example,
if there are jobs in a queue that are being processed, the jobs can be listed:

Example

[bright91->wlm[slurm]->jobs]% list | head
Type Job ID User Queue Running time Status Nodes
------------ ------------ ------ ------- ------------ ---------- -------------------
Slurm 1325 tim defq 1m 2s COMPLETED node001..node003
Slurm 1326 tim defq 1m 1s COMPLETED node001..node003
Slurm 1327 tim defq 1m 2s COMPLETED node001..node003
Slurm 1328 tim defq 32s RUNNING node001..node003
Slurm 1329 tim defq 0s PENDING

The resource usage statistics gathered per user, for example a user tim, can then be analyzed and
visualized using the job accounting interface of Bright View (section 15.5).

15.2 Labeled Entities
In job accounting, job metrics during a run are tagged with extra labels, such as the job ID, host name,
and the user running the job. The modified job metrics object that is tagged in this way then becomes a
job accounting-related object, called a labeled entity.

Administrators interested in using job accounting can simply skip ahead and start reading about
the Bright View job accounting interface in 15.5, and just explore it directly. Those who would prefer
some background on how job accounting is integrated with Bright Cluster Manager and PromQL, can
continue reading this section (15.2) and the next one (15.3).

15.2.1 Dataproducers For Labeled Entities
To view labeled entities in cmsh, the path to the labeledentity submode is:

cmsh→monitoring→labeledentity
The labeledentity submode allows job accounting-related objects, called labeled entities, to be

viewed. The labels are in the form <key>="<value>", for example: hostname="node001", or user="alice".

© Bright Computing, Inc.

622 Monitoring: Job Accounting

The default, existing labeled entities are created from the built-in JobSampler and
JobMetadataSampler dataproducers when a job is run. Custom samplers, of type prometheus,
can be used to create further custom labeled entities. A custom sampler dataproducer, for example
customsamplerextras, can be created from the monitoring setup mode of cmsh as follows:

Example

[bright91]% monitoring setup
[bright91->monitoring->setup]% add prometheus customsamplerextras
[bright91->monitoring->setup*[customsamplerextras*]]%

The customsamplerextras dataproducer can now have its properties configured and committed as
described in section 13.5.4.

15.2.2 PromQL And Labeled Entities
Labeled entities can be used by administrators to help create and debug job-related queries in the
Prometheus query language, PromQL. PromQL is a part of the Prometheus monitoring and alerting
toolkit (https://prometheus.io). Basic PromQL documentation is available at https://prometheus.
io/docs/prometheus/latest/querying/basics/.

15.2.3 Job IDs And Labeled Entities
Each job ID has a number of labeled entities associated with it. Since the number of labeled entities
scales with the number of nodes and jobs, the number of labeled entities can be very large. Therefore,
if examining these entities using the CMDaemon front ends such as cmsh or Bright View, then filtering
or sorting the output is useful. For example, labeled entities associated with node001, and with the
JobSampler data producer, and with job 1329 from the preceding output, could be viewed by filtering
the full list of labeled entities as follows (output truncated and ellipsized):

Example

[bright91->monitoring->labeledentity]% list|head -2; list|grep 'job_id="1329"' |grep node001 |grep JobSampler
Index Name (key) ...
------ --...
45446 hostname="node001",job="JobSampler",job_id="1329",wlm="slurm" ...
45447 device="vda",hostname="node001",job="JobSampler",job_id="1329",wlm="slurm" ...
45448 device="vda",hostname="node001",job="JobSampler",job_id="1329",mode="read",wlm="slurm"...
...

15.2.4 Measurables And Labeled Entities
The measurables (metrics) for an entity can be listed with the measurables (metrics) command. For
a particular entity with a JobSampler property and index value of 45447, the command can be run as
follows:

[bright91->monitoring->labeledentity]% measurables 45447
Type Name Parameter Class Producer
------- ---------------------------------- -------------- ----------- --------------
Metric job_blkio_sectors Prometheus JobSampler
Metric job_blkio_time_seconds Prometheus JobSampler
[bright91->monitoring->labeledentity]%

In the labeledentity mode of cmsh, the measurables listing command, which lists the measurables
for labeled entities, should not be confused with the measurable navigation command, which brings
the administrator to the measurable submode under the main monitoring mode.

© Bright Computing, Inc.

https://prometheus.io
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

15.3 PromQL Queries 623

15.3 PromQL Queries
15.3.1 The Default PromQL Queries...
By default there are several predefined PromQL queries already available. The queries can be listed
from the query submode:

Example

[bright91->monitoring->query]% list
Name (key) Start time End time Interval Class
-- ---------- -------- -------- ------------------
account_job_effective_cpu_seconds_1w now 0s accounting
account_job_io_bytes_1w now 0s accounting
account_job_memory_usage_bytes_1w now 0s accounting
account_job_running_count_1w now 0s accounting
account_job_waiting_seconds_1w now 0s accounting
account_job_wall_clock_seconds_1w now 0s accounting
account_job_wasted_cpu_seconds_1w now 0s accounting
cluster_cpu_usage_percent now-1d now 15m cluster
cpu_usage_by_cluster now-1d now 1h kubernetes
cpu_usage_by_deployment now-1d now 1h kubernetes
cpu_usage_by_namespace now-1d now 1h kubernetes
fs_usage_by_cluster now-1d now 1h kubernetes
fs_usage_by_deployment now-1d now 1h kubernetes
fs_usage_by_namespace now-1d now 1h kubernetes
job_information_by_account now 0s drilldown/level/0
job_information_by_job_id_for_account_and_
user_and_job_name now 0s drilldown/level/3
job_information_by_job_id_for_user now 0s drilldown/level/1
job_information_by_job_id_for_user_and_job_name now 0s drilldown/level/2
job_information_by_job_name_for_account now 0s drilldown/level/1
job_information_by_job_name_for_account_and_user now 0s drilldown/level/2
job_information_by_job_name_for_user now 0s drilldown/level/1
job_information_by_user now 0s drilldown/level/0
job_information_by_user_for_account now 0s drilldown/level/1
job_information_by_user_for_account_and_job_name now 0s drilldown/level/2
memory_usage_by_cluster now-1d now 1h kubernetes
memory_usage_by_deployment now-1d now 1h kubernetes
memory_usage_by_namespace now-1d now 1h kubernetes
net_usage_by_cluster now-1d now 1h kubernetes
net_usage_by_deployment now-1d now 1h kubernetes
net_usage_by_namespace now-1d now 1h kubernetes
storage_ceph_host_apply_latency now-1d now 15m ceph
storage_ceph_host_commit_latency now-1d now 15m ceph
storage_ceph_host_cpu_usage now-1d now 15m ceph
storage_ceph_osd_bytes_used now-1d now 15m ceph
storage_ceph_osd_op_ratio now-1d now 15m ceph
users_job_allocated_nodes now-1d now 15m jobs
users_job_cpu_usage now-1d now 15m jobs
users_job_effective_cpu_seconds_1w now 0s accounting
users_job_io_bytes_1w now 0s accounting
users_job_io_bytes_per_second now-1d now 15m jobs
users_job_memory_bytes now-1d now 15m jobs
users_job_memory_usage_bytes_1w now 0s accounting
users_job_running_count_1w now 0s accounting
users_job_waiting now-1d now 15m jobs

© Bright Computing, Inc.

624 Monitoring: Job Accounting

users_job_waiting_seconds_1w now 0s accounting
users_job_wall_clock_seconds_1w now 0s accounting
users_job_wasted_cpu_seconds_1w now 0s accounting

The queries can be conceptually divided into their classes, which at the time of writing (November
2019) are: accounting, ceph, cluster, jobs, kubernetes, along with various drilldown levels which
aggregates the queries according to various groups.

By default, queries of all classes are sampled over a period, except for the accounting and drilldown
metrics.

A metric in the accounting class query is evaluated (interpolated) from existing values. These exist-
ing values are raw samples gathered from 1 week ago, up to the time when the query is evaluated. The
_1w ending to the name indicates the 1 week period.

15.3.2 ...And A Short Description Of Them
The description of each query can be listed with a little cmsh and unix text utility juggling:

Example

[bright91->monitoring->query]% foreach * (get name; get description) | paste - - | expand -t 60

This yields the following table:
Table 15.3: PromQL Query Descriptions

Name Description

users_job_wall_clock_seconds_1w Wall clock time used by users for the past 7 days

users_job_wasted_cpu_seconds_1w CPU seconds allocated but not used by users for the past 7 days

users_job_effective_cpu_seconds_1w CPU seconds effectively used by users for the past 7 days

users_job_running_count_1w Number of jobs running by users during the past 7 days

users_job_waiting_seconds_1w Total waiting time for users jobs in seconds during the past 7 days

users_job_memory_usage_bytes_1w Total memory usage by users during the last week in Byte sec-
onds

users_job_io_bytes_1w Total I/O by users during the last week in Bytes

account_job_effective_cpu_seconds_1w CPU seconds effectively used by account for the past 7 days

account_job_io_bytes_1w Total I/O by account during the last week in Bytes

account_job_memory_usage_bytes_1w Total memory usage by account during the last week in Byte sec-
onds

...continues

© Bright Computing, Inc.

15.3 PromQL Queries 625

Table 15.3: PromQL Query Descriptions...continued

Name Description

account_job_running_count_1w Number of jobs running by account during the past 7 days

account_job_waiting_seconds_1w Total waiting time for account jobs in seconds during the past 7
days

account_job_wall_clock_seconds_1w Wall clock time used by account for the past 7 days

account_job_wasted_cpu_seconds_1w CPU seconds allocated but not used by account for the past 7
days

users_job_allocated_nodes Number of nodes allocated by users

users_job_cpu_usage Effective CPU usage by users

users_job_waiting Number of jobs currently waiting for every user

users_job_memory_bytes Current memory consumption for user jobs in Bytes

users_job_io_bytes_per_second Current I/O for user jobs in B/s

cluster_cpu_usage_percent CPU usage percentage over all nodes up

storage_ceph_osd_bytes_used The amount of disk space used across all OSDs

storage_ceph_host_apply_latency The average apply latency on each host running Ceph OSDs

storage_ceph_host_commit_latency The average commit latency on each host running Ceph OSDs

storage_ceph_host_cpu_usage CPU usage on each host running Ceph OSDs

storage_ceph_osd_op_ratio The number of operations per second on each Ceph OSD

memory_usage_by_deployment Total memory usage by deployment during the last week in Bytes
per second

memory_usage_by_namespace Total memory usage by namespace during the last week in Bytes
per second

fs_usage_by_deployment Current FS I/O by deployment in Bytes

fs_usage_by_cluster Current FS I/O by cluster in Bytes

fs_usage_by_namespace Current FS I/O by namespace in Bytes

net_usage_by_deployment Network usage by deployment in Bytes per second

net_usage_by_cluster Network usage by cluster in Bytes per second

net_usage_by_namespace Network usage by namespace in Bytes per second

cpu_usage_by_deployment CPU usage by deployment in nr. of cores

...continues

© Bright Computing, Inc.

626 Monitoring: Job Accounting

Table 15.3: PromQL Query Descriptions...continued

Name Description

cpu_usage_by_cluster CPU usage by cluster in nr. of cores

cpu_usage_by_namespace CPU usage by namespace in nr. of cores

job_information_by_job_id_for_ Generic job information drill down query grouped by job_id
account_and_user_and_job_name for a specific account, user and job_name

job_information_by_job_name_for_ Generic job information drill down query grouped by job_name
account_and_user for a specific account and user

job_information_by_user_for_account_ Generic job information drill down query grouped by user for a
and_job_name specific account and job_name

job_information_by_job_id_for_user_ Generic job information drill down query grouped by job_id
and_job_name for a specific user and job_name

job_information_by_user_for_account Generic job information drill down query grouped by user for a
specific account

job_information_by_job_name_for_ Generic job information drill down query grouped by job_name
account for a specific account

job_information_by_job_name_for_user Generic job information drill down query grouped by job_name
for a specific user

job_information_by_job_id_for_user Generic job information drill down query grouped by job_id for
a specific user

job_information_by_account Generic job information drill down query grouped by account

job_information_by_user Generic job information drill down query grouped by user

jobs_wasted_allocated_gpus Average % of allocated GPUs wasted for jobs that ran in the spec-
ified period, averaged and grouped by job_id

users_wasted_allocated_gpus Average % of allocated GPUs wasted for jobs that ran in the spec-
ified period, averaged and grouped by user

wasted_allocated_gpus_for_user Average % of allocated GPUs wasted for jobs that ran in the spec-
ified period, averaged and grouped by job_id, for a particular
user

used_gpu_job_name_for_user Used GPUs, for values of use greater than or equal to 0.1%, aver-
aged and grouped by job names that ran on them in the specified
period, for a particular user

...continues

© Bright Computing, Inc.

15.3 PromQL Queries 627

Table 15.3: PromQL Query Descriptions...continued

Name Description

users_used_gpu Used GPUs, for values of use greater than or equal to 0.1%, aver-
aged and grouped by users using them in the specified period

unused_gpu_job_name_for_user Unused GPUs, for values of use less than 0.1%, averaged and
grouped by job names using them in the specified period, for a
particular user

users_unused_gpu Unused GPUs, for values of use less than 0.1%, averaged and
grouped by users using them in the specified period

The listings give an idea of what the query does.
For example, for the users_job_cpu_usage utility, the idea is that it shows the CPU usage for jobs

for each user.

15.3.3 Modifying The Default PromQL Query Properties
The properties of a particular query can be shown and modified:

Example

[bright91->monitoring->query]% use users_job_cpu_usage
[bright91->monitoring->query[users_job_cpu_usage]]% show
Parameter Value
-------------------------------- --
Access Public
Class jobs
Description Effective CPU usage by users
End time now
Interval 15m
Name users_job_cpu_usage
Notes <0 bytes>
PromQL Query <131 bytes>
Revision
Start time now-1d
Unit CPU

The PromQL query code itself is typically a few lines long, and can also be viewed and modified
using get, and set.

15.3.4 An Example PromQL Query, Properties, And Disassembly
The users_job_cpu_usage query is a standard predefined query, and is used as an example here. The
query shows the CPU usage by a user around the time the sample was taken. It is sometimes called an
“instantaneous” value. However it is not that instantaneous, because its value is calculated by taking
samples of the CPU usage over the last 10 minutes of the job run rather than at the query time. The code
for the query can be viewed with:

Example

[bright91->monitoring->query]% get users_job_cpu_usage promqlquery
sum by(user) (

irate(job_cpuacct_usage_seconds[10m])
* on(job_id, hostname) group_right()

(job_metadata_is_running)
)

© Bright Computing, Inc.

628 Monitoring: Job Accounting

For those unfamiliar with PromQL, some disassembly of the users_job_cpu_usage query is helpful.
Terminology used by PromQL and Bright Cluster Manager, for the pieces used to build the query, is

listed in the following table:

PromQL Terminology Example Bright Cluster Manager Terminology

Query users_job_cpu_usage PromQL query

Instant query job_cpuacct_usage_seconds Metric (from JobSampler datapro-
ducer, belonging to the Prometheus
class)

Range vector job_cpuacct_usage_seconds[10m] Metric samples over a time span

As was mentioned before: job account metrics, unlike traditional metrics, are not directly associated
with the device-related objects. For such metrics, the monitoring data command dumpmonitoringdata
is therefore not accessed in cmsh from device mode or category mode.

Instead, the Prometheus metric job_cpuacct_usage_seconds, for example, is accessed via the
labeledentities mode.

The properties and interpolated values at a particular instant of time for the metric can be accessed
via an instantquery such as (some output excised for clarity):

Example

[bright91->monitoring->labeledentity]% instantquery job_cpuacct_usage_seconds
__name__ hostname job job_id uid user wlm Timestamp Value
-------------------------- -------- ----------- ------- ---- ----- ----- --------- -----
job_cpuacct_usage_seconds node001 JobSampler 623 1002 tony slurm 15:52:15 129
job_cpuacct_usage_seconds node002 JobSampler 624 1002 tony slurm 15:52:15 71
...

The properties and interpolated values of the metric over a range of time can be accessed via a
rangequery such as (some output excised for clarity):

Example

[bright91->monitoring->labeledentity]% rangequery --start now-2h --end now job_cpuacct_usage_seconds
__name__ hostname job job_id uid user wlm Timestamp Value
-------------------------- -------- ----------- ------- ---- ----- ----- --------- -----
job_cpuacct_usage_seconds node001 JobSampler 623 1002 tony slurm 13:52:15 82
job_cpuacct_usage_seconds node001 JobSampler 623 1002 tony slurm 14:52:15 97
job_cpuacct_usage_seconds node001 JobSampler 623 1002 tony slurm 15:52:15 129
job_cpuacct_usage_seconds node002 JobSampler 624 1002 tony slurm 13:52:15 46
job_cpuacct_usage_seconds node002 JobSampler 624 1002 tony slurm 14:52:15 23
...

The association of the instantquery and rangequery output with job accounts is because its dat-
aproducer is JobSampler.

Further options for the instantquery and rangequery commands can be found in their help texts
within cmsh.

15.3.5 Aside: Getting Raw Values For A Prometheus Class Metric
The PromQL language is aimed at providing an overall view of jobs and resource usage. The actual
individual raw values that Prometheus metrics are built on—the entries in the Time Series Database
(TSDB)—are not regarded as being important for the end user. The emphasis in PromQL is on seeing
the values as seen by statistical reworking.

© Bright Computing, Inc.

15.3 PromQL Queries 629

This section, which is about the raw TSDB values, is thus provided as background information for
administrators who would anyway like to see what the raw values look like.

Raw values of the metric for a job ID can be accessed by using the index of the labeled identity that is
associated with that job ID. For example, job ID 624 can have its index found with some grepping (some
output elided or excised for clarity):

Example

[bright91->monitoring->labeledentity]% list|head -2; list|grep ' hostname='| grep 'job_id="624"'
Index Name (key) Introduction Last used
------ --- ------------ ---------
4060 hostname="node001",job="JobSampler",job_id="624", ... 13:30:03 16:00:03
[bright91->monitoring->labeledentity]%

The index for the job ID 624 is 4060. The job ID can be used by the dumpmonitoringdata command
to show the series raw values along with their time stamps:

Example

[bright91->monitoring->labeledentity]% dumpmonitoringdata -24h now job_cpuacct_usage_seconds 4060
Timestamp Value Info
-------------------------- ---------- ----------
2019/08/01 16:08:03.255 10s
2019/08/01 16:10:03.255 2m 10s
2019/08/01 16:12:03.255 4m 9s
2019/08/01 16:14:03.255 6m 9s
2019/08/01 16:16:03.255 8m 8s
2019/08/01 16:18:03.255 10m 8s
2019/08/01 16:20:03.255 12m 7s
2019/08/01 16:22:03.255 14m 6s
2019/08/01 16:24:03.255 16m 6s
2019/08/01 16:26:03.255 18m 5s
2019/08/01 16:28:03.255 20m 5s
2019/08/01 16:30:03.255 no data
[bright91->monitoring->labeledentity]%

These raw values are the values that are used for interpolation during PromQL queries.
The label names for job samples can be seen using the index:

[bright91->monitoring->labeledentity]% show 4060
Parameter Value
----------------- --
Index 4060
Introduction Thu, 01 Aug 2019 16:08:03 CEST
Last used Thu, 01 Aug 2019 16:30:03 CEST
Name hostname="node001",job="JobSampler",job_id="624",uid="1002",user="tony",wlm="slurm"
Permanent no
Revision

15.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued)
Getting back from the aside about raw values, and continuing on with the example PromQL query from
the start of this section (page 627), the query code for the query users_job_cpu_usage was:

© Bright Computing, Inc.

630 Monitoring: Job Accounting

sum by(user) (
irate(job_cpuacct_usage_seconds[10m])
* on(job_id, hostname) group_right()

(job_metadata_is_running)
)

With the necessary background explanations having been carried out, the disassembly of this query
can now be done:

The core of the query is built around the job sampler metric job_cpuacct_usage_seconds.
The irate measurement in this case calculates the rate of change based on the last two most recent

values in the Prometheus range vector.
The Prometheus range vector is formed from the Prometheus instant query by using the square

brackets with a time value enclosed (job_cpuacct_usage_seconds[10m]). The Prometheus instant
query is, as the terminology table earlier pointed out, the Prometheus version of the job sampler metric.

Getting back to the range vector, a range vector in general is a series of values formed from the
corresponding Prometheus instant query. With the instant query being job_cpuacct_usage_seconds
here, the range vector is formed over a span of 10 minutes.

After the irate function has taken the average, the resultant is what in PromQL is called an instant
vector value. This consists of data in the form {CPU seconds consumed during period, timestamp as-
sociated with time period sample}. The instant vector value is then joined against each vector element
of the pair job_id, hostname to generate the labeled identifier for the job running on the node. The
group_right of the result uses the job_id and hostname as the leading labels in the label identifiers.
The job_metadata_is_running function means that values are generated only while job_metadata is
running. The sum by(user) function means that sum of the result is aggregated per user.

Visualisation based on the result is most easily carried out by plotting job CPU usage for each user
against time in the period specified, which can be done in a more user-friendly way with Bright View.

The users_job_wall_clock_seconds_1w query, is similar, and can be used to plot wall clock seconds
consumed by a user over the last week:

Example

[bright91->monitoring->query]% get users_job_wall_clock_seconds_1w promqlquery
sum by(user) (
max_over_time(job_metadata_running_seconds[1w])

* on(job_id) group_right()
max_over_time(job_metadata_num_cpus[1w])

)
[bright91->monitoring->query]%

Predefined queries can be executed in the labeledentity mode with the -q option:

[bright91->monitoring->labeledentity]% instantquery -q users_job_wall_clock_seconds_1w
user Timestamp Value
--------- ------------------------- -------------------
alice Mon Jun 24 10:19:34 2019 28.787
charline Mon Jun 24 10:19:34 2019 102.83
eve Mon Jun 24 10:19:34 2019 58.574
frank Mon Jun 24 10:19:34 2019 59.575

If Bright View is used instead of cmsh, then Prometheus queries can be accessed via the clickpath:
Monitoring→PromQL Queries

© Bright Computing, Inc.

15.4 Parameterized PromQL Queries 631

15.4 Parameterized PromQL Queries
It is also possible to create parameterized queries using the <key>="<value>" labels in the labeled entities.

This is handy for running the same query with different parameters.
For example, an existing unparameterized query
users_job_wall_clock_seconds_1w

can be used as a starting point:

[bright91->monitoring->query]% get users_job_wall_clock_seconds_1w promqlquery
sum by(user) (

max_over_time(job_metadata_running_seconds[1w])
* on(job_id) group_right()

max_over_time(job_metadata_num_cpus[1w])
)

The original query can be cloned over to a new, soon-to-be-parameterized, query called
users_job_wall_clock_per_account_seconds_1w

for convenient development:

[bright91->monitoring->query]% clone users_job_wall_clock_seconds_1w promqlquery users_job_wal\
l_clock_per_account_seconds_1w promqlquery

One or more ${parameter} fields can then be added to the query. All fields in
users_job_wall_clock_per_account_seconds_1w can be replaced verbatim. So any part of the query can
be made into a parameter.

[bright91->monitoring->query]% get users_job_wall_clock_per_account_seconds_1w promqlquery
sum by(user) (

max_over_time(job_metadata_running_seconds{account="${account}"}[1w])
* on(job_id) group_right()

max_over_time(job_metadata_num_cpus{account="${account}"}[1w])
)

The new query is then committed and can be run by the administrator on demand.
The original query sums over all accounts:

[bright91->monitoring->labeledentity]% instantquery -q users_job_wall_clock_seconds_1w
user Timestamp Value
--------- ------------------------- -------------------
alice Mon Jun 24 10:25:20 2019 28.787
bob Mon Jun 24 10:25:20 2019 26.787
charline Mon Jun 24 10:25:20 2019 102.83
eve Mon Jun 24 10:25:20 2019 58.574
frank Mon Jun 24 10:25:20 2019 85.362

The parameterized query lets the administrator run the same query for specific accounts. For ex-
ample, if there are slurm accounts for physics phys and mathematics math, then here account=phys
and account=math, are the <key>="<value>" format options. The query can then be run with the
-p|--parameter option as follows:

[bright91->monitoring->labeledentity]% instantquery -q users_job_wall_clock_per_account_second\
s_1w -p account=phys
user Timestamp Value
--------- ------------------------- --------
alice Mon Jun 24 10:25:22 2019 28.787
charline Mon Jun 24 10:25:22 2019 29.787
frank Mon Jun 24 10:25:22 2019 30.788

© Bright Computing, Inc.

632 Monitoring: Job Accounting

[bright91->monitoring->labeledentity]% instantquery -q users_job_wall_clock_per_account_second\
s_1w -p account=math
user Timestamp Value
--------- ------------------------- --------
bob Mon Jun 24 10:25:37 2019 26.787
charline Mon Jun 24 10:25:37 2019 73.049
eve Mon Jun 24 10:25:37 2019 30.787

15.5 Job Accounting In Bright View
Job accounting can be viewed within Bright View’s accounting mode by clicking on the calculator icon

at the top right hand corner of the Bright View standard display (figure 13.5). An accounting panel
is then displayed (figure 15.1), within a dashboard:

6

Toggle
for plot

6

Toggle
for row

6

Gear icon for dashboard

6

Gear icon for accounting panel
Figure 15.1: Job Accounting: Panel

15.5.1 Management And Use Of The Accounting Panel
A new panel can be added by clicking on the©+ button in the dashboard panel.

By clicking on the gear icon in the dashboard panel, the accounting panel layout can be changed to
allow other arrangements of the panels, or to allow more panels, with other queries.

An accounting panel itself allows a previously-created query to be selected and executed. A PromQL
query can be executed with default parameters by just clicking on the Run button.

The box to the right of the Run button shows the query name, and its description.
How to run and view PromQL queries in the Bright View accounting panel is described in this section

(15.5). The query specification in Bright View is described in more detail in section 15.6.

PromQL Queries Input In The Accounting Panel
Predefined PromQL queries (page 623) can be viewed via the dropdown list that appears under Saved
queries. By default the panel has the query

account_job_effective_cpu_seconds_1w
selected.

© Bright Computing, Inc.

15.5 Job Accounting In Bright View 633

• In the default Basic mode of the panel, multiple queries of the same class can be ticked per panel
(figure 15.2). To tick a new class of query in the same panel, all the queries that do not match the
new class must first be unticked. In the panel of figure 15.2 the class is accounting.

Figure 15.2: Job Accounting: Saved Queries

PromQL queries in Basic mode can only be run as instant queries. The results of such a run are
then displayed in that single panel.

• In Advanced mode (section 15.6) only one query can be selected and run per panel if an instant
query is run.

However, Advanced mode does allow PromQL range queries to be run, in addition to instant
queries.

PromQL Queries Run Results Display In The Accounting Panel
Run results can be displayed using the row toggle or the plot toggle.

• The row toggle toggles displaying the result as rows of data per user, cluster, account, or other
aggregate (figure 15.1)

• The plot toggle toggles displaying the result as a pie chart, or as a standard x-y plot:

– The pie chart, or doughnut chart, is available for a PromQL Instant mode query (figure 15.3).
The chart shows how much of the resource is used at that instant per user, or per cluster, or
per account, or per other aggregate.
How much of the resource is used can be displayed upon the chart in figures, either as the
amount itself, or as a percentage of the total aggregate amount.
The chart can display aggregates using a maximum of 10 slices, by default. If needed, the
right amount of the smallest extra slices are grouped together as one slice, others, so that the
maximum number is not exceeded.

© Bright Computing, Inc.

634 Monitoring: Job Accounting

Figure 15.3: Job Accounting: Doughnut Display At An Instant

– The x-y plot is available for a PromQL Range mode query (figure 15.4).
The plot shows resource use versus time. The plot can be per user, cluster, account, or other
aggregate.
A particular user or other aggregate can be highlighted on the plot by placing the mouse
pointer over the appropriate legend color icon. The time scale can be zoomed in or out with
the mouse scrollbar.

© Bright Computing, Inc.

15.6 PromQL Query Modes And Specification In Bright View 635

Figure 15.4: Job Accounting: Resource Versus Time Display

How Bright View is used to take PromQL query inputs, and present PromQL query results, has been
covered in this section without going into much detail on PromQL specification. PromQL specification
is covered in more detail in the next section.

15.6 PromQL Query Modes And Specification In Bright View
Clicking on the gear icon for the Accounting Panel (figure 15.1) allows the Accounting widget mode to
be toggled to Advanced. Options that can then be modified include:

• the Query Type: This can be either Instant or Range.

An Instant Query Type

is executed at a particular instant. It outputs a single number for each entity (usually a user). The
number is the interpolated data value for the PromQL query at that time. Each data value obtained
by the PromQL query is typically an aggregate of the data values over a preceding time period,
where the preceding time period is defined in the PromQL query.

The single number obtained by the query for each entity is typically used to summarize a value at
that instant for that entity.

An example of the Instant query type is users_job_waiting_seconds_1w. This provides the total
waiting time, in seconds, for each user, for the jobs the users ran during the past week. The waiting
time is caculated at the instant specified for the query.

If the Time parameter for the query is kept as the default value of now, then the query provides the
latest value for each user.

If the Time parameter is set to a time in the past, then the query picks up the value at that time in
the past, or provides an interpolated value for that time in the past, for each user.

The display can be presented in rows of user, value pairs. As a plot, the display can be presented
as a pie chart, which each slice being proportional to the value for the particular user compared

© Bright Computing, Inc.

636 Monitoring: Job Accounting

with the total value for all the users. Instead of a pie chart, the visualization can instead be a ring
(or doughnut) chart, which is really just a pie chart with a hole in the centre.

PromQL allows a variety of time specifications. The interface validates whatever the interface user
types in, and there is a calendar widget that allows an absolute time to be specified. Some useful
time specifications are:

Example

Time specification What time is meant
now at the time it is run

now-30m 30 minutes ago

now-1h one hour ago

now-1h/h an hour ago, starting at the start of that hour

now-2d 48 hours ago

now-0d/d today’s midnight (the most recently-passed midnight)∗

now-1d/d yesterday’s midnight∗∗

now-2d/d day before yesterday’s midnight

Thursday, July 11, 2019 17:00:00 an absolute time (as set by the calendar widget)
∗The meaning can be understood by looking at how /d operates. It rounds off the day by truncation, which
in the case of now-0d/d means the midnight prior to now.
∗∗Similarly, yesterday’s midnight is the midnight immediately prior to 24 hours ago.

The time units for PromQL are (https://prometheus.io/docs/prometheus/latest/querying/
basics/#range-vector-selectors):

– s - seconds

– m - minutes

– h - hour

– d - day

– w - week

– M - month (31 days). M is not a PromQL unit, so it cannot be used inside a query. But it is a
handy alias in Bright Cluster Manager for an invariant time of 31 days.

– y - year

The - operator in Prometheus is an offset operator, used only after now in the time specification
field. The /<time unit> syntax implies a start at that unit of time.

Thus if, for example, now-1d/d is set as the end time, then when the query runs, it picks up the
values at “yesterday’s midnight.” For each user, the value is the number of seconds the job of
the user was in a wait state for the week prior to yesterday’s midnight. It rounds off the day by
truncation, which in the case of now-1d/d means the midnight prior to 24 hours ago. Varying the
user means that the number of seconds varies accordingly.

The results of a run can be

– displayed in rows as values in Bright View itself (figure 15.5)

– downloaded as a CSV file

– downloaded as an Excel spreadsheet.

© Bright Computing, Inc.

https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors

15.7 Access Control For Workload Accounting And Reporting 637

A Range Query Type

This query is executed over a time period. It fetches a value for each interval within that time
range, and then plots these values.

An example of the Range query type is users_job_memory_bytes. This fetches the instantaneous
memory usage for jobs over intervals, grouped per user during that interval (figure 15.5). The
query submitter can set the Start Time and End Time parameters. However, very long ranges
can be computationally expensive, and the graph resolution may not be ideal when zoomed in.

Figure 15.5: Job Accounting: User Values Over A Range

• the PromQL Query: Within advanced mode, the PromQL query itself can be edited.

• the Interval: When editing a Range query type via the Saved query option, the interval for a
range query run can be set. Lower numbers lead to smaller intervals, hence higher resolution
and higher execution times. A value of 0 means that a reasonable default interval is attempted.
Choosing a interval that is less than the sampling time of the metric is a bit pointless, and tends to
lead to data values that display non-smooth behaviour.

15.7 Access Control For Workload Accounting And Reporting
The ability to view jobs is controlled by four tokens defined in a user’s profile:

1. GET_JOB_TOKEN: Allows all running jobs to be seen.

2. GET_OWN_JOB_TOKEN: Allows owned running jobs to be seen.

3. GET_JOBINFO_TOKEN: Allows all cached historic and running jobs to be seen.

4. GET_OWN_JOBINFO_TOKEN: Allows owned cached historic and running jobs to be seen.

To retrieve monitoring data for the job, the token PLOT_TOKEN must also be defined for the profile.
A job is always owned by the user that runs it. Ownership of a job can also be shared with other

users by defining project managers. This establishes a 2-level hierarchy, with project managers above
the subordinates, who are users that are assigned to the project manager. One or more accounts, can be
assigned to project managers.

© Bright Computing, Inc.

638 Monitoring: Job Accounting

15.7.1 Defining Project Managers Using Internal User Management
Any user can be turned into a project manager. If the Bright Cluster Manager LDAP server is being
used, then the project manager can be configured via cmsh.

Example

alice can be made the project manager of bob and charlie. This allows her access to the job data of her
subordinates:

[bright91->user]% projectmanager alice
[bright91->user*[alice*]->projectmanager*]% set users bob charlie
[bright91->user*[alice*]->projectmanager*]% commit

Example

albert can be made the manager of the physics account. This gives him access to all jobs running under
that account:

[bright91->user]% projectmanager albert
[bright91->user[albert*]->projectmanager*]% set accounts physics
[bright91->user[albert*]->projectmanager*]% commit

Both mechanisms, users and accounts, can be combined to provide access control.

Example

To limit access to jobs that are running under the physics account to a specific set of users:

[bright91->user]% projectmanager albert
[bright91->user*[albert*]->projectmanager*]% set accounts physics
[bright91->user*[albert*]->projectmanager*]% set users niels richard
[bright91->user*[albert*]->projectmanager*]% set operator and
[bright91->user*[albert*]->projectmanager*]% commit

15.7.2 Defining Project Managers Using External User Management
If an external user management server is used instead of the Bright Cluster Manager LDAP server,
then project managers cannot be defined in cmsh. Instead, a script has to be written that provides the
definitions for project managers in the form of a JSON object.

The full path of the script, for example /path/to/the/script, has to be set as a value to the
ProjectManagerScript parameter in cmd.conf. This is done by adding it to the AdvancedConfig di-
rective (page 794):

Example

AdvancedConfig = { "ProjectManagerScript=/path/to/the/script" }

The directive becomes active after restarting CMDaemon.
An example of a project manager script can be found at /cm/local/apps/cmd/scripts/

cm-project-managers.py. It gives users access to each other’s jobs if they share at least one group.
The easiest way to use the script is use a mapping to inform CMDaemon which of the other user’s

jobs each user has access to.

Example

So if frank can access data belonging to bob and dennis, while bob can access data belonging to dennis,
while dennis can only access his own data, then the project manager configurations can be set up as:

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/cm-project-managers.py
/cm/local/apps/cmd/scripts/cm-project-managers.py

15.8 Drilldown Queries For Workload Accounting And Reporting 639

{
"frank": ["bob", "dennis"],
"bob": ["dennis"],
"dennis": []

}

Account access control can also be included in the output of the script, by setting values for the
users, accounts, and the boolean operator (and, or) options:

Example

{
"alice": {
"users": ["charline", "eve"],
"accounts": ["math, "chem"],
"and": True

},
"eve": {
"accounts": ["chem"]

}
}

After restarting CMDaemon, it automatically runs this script when committing a change for a device
or data producer. It is also possible to manually trigger the script to be run on the active head, by
executing:

[root@bright91 ~]# echo "PROJECT.MANAGERS.UPDATE" > /var/spool/cmd/eventbucket

The script must not take more than a few seconds to process.

Workaround For Project Manager Script That Takes Too Long
If the script takes longer to run, then it must be run outside of CMDaemon, and its output should be
saved as a file. If the output file is located at /path/to/the/file, then its path can be set as an input
to the ProjectManagerFile parameter in cmd.conf. This is done by adding it to the AdvancedConfig
directive (page 794):

Example

AdvancedConfig = { "ProjectManagerFile=/path/to/the/file" }

The project manager definitions become active after CMDaemon is restarted.

15.8 Drilldown Queries For Workload Accounting And Reporting
Metrics can be aggregated in various ways. Common ways are by:

• device: A typical hardware device is a node. Each node can then have its metrics, which are CPU
usage, memory, storage, and other resource use, displayed over time. Device metrics are largely
covered in this chapter in the sections up to and including section 13.8.

• job: With this aggregation, each job that is run by a workload manager can have its metrics, which
are CPU usage, memory, storage and other resource use, displayed over time. Job metrics are
covered in Chapter 14.

Other ways of metrics aggregation are part of workload accounting. With workload accounting, a
workload manager runs jobs, and a job metric can be aggregated and filtered by:

• user

© Bright Computing, Inc.

640 Monitoring: Job Accounting

• job (job ID)

• account

• job name

The aggregation types can be applied singly. However, they can also be applied at the same time,
like filters. For example:

• each user could have a particular job metric aggregated
or

• a particular user could have a particular job metric
or

• a particular user could have a particular job metric aggregated for a particular job ID only
or

• a particular user could have a particular job metric aggregated for that particular job ID only for a
particular account only

A cluster administrator that uses several filters to get to the “bottom” of how resources are being
used, functions in a manner reminiscent of someone drilling to the bottom to find something. This type
of filtering is therefore called drilldown. Each filter corresponds to a level of drilldown.

Drilldown is a bit like how in cmsh the use of the filter command within jobs mode can narrow
down what is displayed:

Example

[bright91->wlm[slurm]->jobs]% filter -n iozone -u edgar -a projecty
Job ID Job name User Queue Submit time Start time End time Nodes Exit code
------ -------- ------ ----- ----------- ---------- -------- ----- ---------
15 iozone edgar defq 14:22:05 14:50:22 15:00:24 node001 0
19 iozone edgar defq 14:26:07 15:10:25 15:20:19 node001 0
25 iozone edgar defq 14:34:57 15:30:20 15:40:39 node001 0
36 iozone edgar defq 14:43:54 16:10:15 16:19:57 node001 0
41 iozone edgar defq 14:47:24 16:19:57 16:29:42 node001 0

except that in cmsh the value of the job metric is not specified or shown by the filter command.
Drilldown is also rather similar in concept to how pivot tables are used in Excel spreadsheets. Pivot

tables are particular selections (like the filtered choices in drilldown). The selections are applied to a
great deal of raw data. A function (like the metric in drilldown) is applied to the selection, to present
the information more clearly to the end viewer.

In contrast with the filter output of cmsh, in Bright View the job metric value is made visible in a table
or in graphs over the period.

© Bright Computing, Inc.

16
Monitoring: Job Chargeback

16.1 Introduction
16.1.1 The Word “Chargeback”
In a non-IT context, the term chargeback is commonly used with credit cards, in a situation where a
cardholder disputes a payment that was made to a merchant. When the credit card company pays back
the disputed payment to the card holder, that is called a chargeback.

In an IT context, the term chargeback still has to do with money, and the idea of getting money back.
However, in practice the intention ideally is not about disputing costs, but rather about measuring what
the costs are of the IT resources that have been requested. Measurement of requested resources means
that there is a potential to charge back the users or groups of users who requested these resources.

So, for example, an IT department for an organization may be allocated a budget to run a cluster,
meant for the benefit of the organization. The IT department may make the cluster available to many
other departments. These other departments request cluster resources. The IT department measures the
requested resources and charges back the associated costs.

If a cluster is used by several different departments in the organization, then a simple way to pay
for resource requests is to spread the entire cost as a general overhead expense over all departments
equally. That may make matters easy for the cluster administrator, but can be harmful to the organi-
zation, because without a fair resource request management, there is a tendency for resource request
abuse.

If however the resource requests per department are measured, it means that department managers
can be kept aware of how resource requests are being divided up. Being able to measure requested re-
sources per department, and thus being able to charge back the department for the requested resources,
means that the organization using the cluster can plan and manage resource request budgets efficiently
and fairly.

16.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring
Measurements

Monitoring measurements in Bright Cluster Manager in general can be considered to be:

• Monitoring of devices (Chapter 13), which is about monitoring devices in a cluster.

• Job monitoring (Chapter 14), which is about using monitoring to measure the resources used by
jobs that actually run.

• Job accounting (Chapter 15), which is about using monitoring to measure the resources used by a
user, a group, or other aggregation entity.

• Job chargeback (this chapter), which is about using monitoring to measure the resources requested
for a job, whether the resources are used or not. This allows the requester to be charged the costs
of requesting those resources.

© Bright Computing, Inc.

642 Monitoring: Job Chargeback

The difference between actual resource use and requested resource use can be illustrated by a thought
experiment:

First, a job is run that runs the CPU at 100% for 10 minutes. After that job is completed, a second job
is run that runs a sleep command that lasts 10 minutes.

If these two jobs are considered from the point of view of CPU resource usage, then according to the
workload manager:

The first job actually uses the CPU for 10 minutes, and the administrator can work out from the job
monitoring system what user that ran that job, and charge the user for CPU usage.

For the second job, the administrator cannot use the job monitoring system to charge the user for the
CPU usage because there was no significant usage measured. However, resources were used up during
this time, because the request for the job blocked the availability of that CPU during this period for
other users. The administrator would like to charge the user for preventing others from accessing the
resources during that period. To do that requires measuring the resources requested during that period,
rather than resources that were really used.

Thus, the aim of job chargeback monitoring is to provide a way to track resource requests, which
typically differs a little from resource usage.

16.2 Job Chargeback Measurement
16.2.1 Predefined Job Chargebacks
Some predefined chargebacks can be listed and configured under the chargeback submode of the wlm
mode.

The predefined list is short:

[bright91->wlm[slurm]]% chargeback
[bright91->wlm[slurm]->chargeback]% list
Name (key) Group by user Group by account Price per CPU second
-- ------------- ---------------- --------------------
Jobs completed last month grouped by user yes no 8.64$/d
Jobs completed this month grouped by user yes no 8.64$/d
Jobs completed this year grouped by user yes no 8.64$/d

Setting A Price For Resource Requests
The pricing can be set per resource requests over a specified time period. In the preceding list, the period
is a month or a year. The resource and associated resource request consumption can be the following
pairs:

Resource And Resource Request Consumption Pairs

Resource Resource Request Consumption

CPU CPU second

GPU GPU second

CPU core CPU core second

slot slot second

memory bytes byte-second

Different workload managers use different resources for resource measurement, which is why there
is a variety in the resources that can be used for pricing.

© Bright Computing, Inc.

16.2 Job Chargeback Measurement 643

16.2.2 Setting A Custom Job Chargeback
In addition to the predefined job chargebacks, more chargebacks can be added. For example, the number
of jobs completed so far today can be set up as follows:

Example

[bright91->wlm[slurm]->chargeback]% add "Jobs completed this day grouped by user"
[bright91->...ck*[Jobs completed this day grouped by user*]]% show
Parameter Value
-------------------------------- --
Name Jobs completed this day grouped by user
Revision
Notes <0B>
Group by user no
Group by group no
Group by account no
Group by job name no
Group by job ID no
Group by parent ID no
Users
Groups
Accounts
Job names
Job IDs
Parent IDs
Price per CPU second 0.00$/s
Price per CPU core second 0.00$/s
Price per GPU second 0.00$/s
Price per memory byte-second 0$/B*s
Price per slot second 0$/slot*s
Currency $
Start time
End time
UTC no
Include running no
Calculate prediction no

[bright91->...ck*[Jobs completed this day grouped by user*]]% set pricepercpusecond 0.0001$/s
[bright91->...ck*[Jobs completed this day grouped by user*]]% set groupbyuser yes
[bright91->...ck*[Jobs completed this day grouped by user*]]% set starttime now/d
[bright91->...ck*[Jobs completed this day grouped by user*]]% set endtime now/d
[bright91->...ck*[Jobs completed this day grouped by user*]]% commit

Chargeback Groupings
The grouping for the new chargeback Jobs completed this day grouped by user is set to be Group
by user. Grouping by user is a common grouping, because finding resource use by an individual user
is typically the most useful case. Grouping is possible by:

• user

• group

• account

• job name

• job ID

© Bright Computing, Inc.

644 Monitoring: Job Chargeback

• parent ID

After setting up chargebacks to suit the needs of the cluster administrator, queries can be made and
reports can be generated using chargebacks. The report and request commands (section 16.2.3) are
used for this.

16.2.3 The report And request Commands
Continuing on with the chargeback jobs completed this day grouped by user created in sec-
tion 16.2.2, the report and request commands can be used after CPU request data values have been
gathered on the jobs being run.

The report Command And Its Options
The report command displays a table of the number of jobs that were run per grouping for a chargeback,
alongside the resource use and cost for each grouping.

Thus, some time after running jobs in Slurm, the report output for the chargeback created earlier,
jobs completed this day grouped by user, might look as follows (some columns elided for clarity):

Example

[bright91->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% report
Start - Tue Sep 8 00:00:00 2020 CEST (1599516000)
End - Tue Sep 8 23:59:59 2020 CEST (1599602399)
User Jobs Runtime (s) CPU (s) CPU ($) ... Price ($)
------------ ------------ ------------ ------------ ---------- ... ----------
alice 17 7,806 7,806 0.78 ... 0.78
bob 20 8,775 8,775 0.88 ... 0.88
charlie 19 7,007 7,007 0.7 ... 0.7
david 10 5,122 5,122 0.51 ... 0.51
edgar 25 10,502 10,502 1.05 ... 1.05
frank 21 8,289 8,289 0.83 ... 0.83

The help text for report command lists formatting options:

[bright91->wlm[slurm]->chargeback]% help report
Name:

report - Create charge back report

Usage:
report [options] <name>

Options:
-d, --delimiter

Set default row separator

-v, --verbose
Be more verbose: multiline table

--start
Pagination start offset

--limit
Pagination result limit

The request Command And Its Options
The request command lists the chargeback resources requested for a workload manager.

The request command can be run without options. In that case the output shows the resource
request consumption for the chargeback, for the jobs over the period associated with that chargeback:

© Bright Computing, Inc.

16.2 Job Chargeback Measurement 645

Example

[bright91->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request
Start - Sun Sep 13 00:00:00 2020 CEST (1599948000)
End - Sun Sep 13 23:59:59 2020 CEST (1600034399)
Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)
------------ ------------ ------------ ------------ ------------ ------------ ------------
5 1,765 1,765 0 0 0 0

The help text for request lists formatting, grouping, pricing, and filtering options:

[bright91->wlm[slurm]->chargeback]% help request
Name:

request - Chargeback report for workload

Usage:

request [options]

Options:
-u, --group-by-user

group by username

--filter-user <user>[,<user>,...]
filter on specified users

-g, --group-by-group
group by group name

--filter-group <group>[,<group>,...]
filter on specified groups

-a, --group-by-account
group by account

--filter-account <account>[,<account>,...]
filter on specified accounts

-j, --group-by-job-name
group by job name

--filter-job-name <job-name>[,<job-name>,...]
filter on specified job names

-i, --group-by-job-id
group by job id

--filter-job-id <job-id>[,<job-id>,...]
filter on specified job ids

-p, --group-by-parentid
group by parent id

--filter-parent-id <parent-id>[,<parent-id>,...]
filter on specified parent-ids

--price-per-cpu-second

© Bright Computing, Inc.

646 Monitoring: Job Chargeback

Price per CPU second

--price-per-cpu-core-second
Price per CPU core second

--price-per-gpu-second
Price per GPU second

--price-per-gpu-second
Price per GPU second

--price-per-memory-byte-second
Price per memory byte * second

--price-per-slot-second
Price per slot second

--currency
Change the currency in which the price is displayed (default $)

--include-running
include running jobs in charge back report (prices will not be final)

--calculate-prediction
calculate a prediction for an incomplete time frame

-d, --delimiter
Set default row separator

--sort <field1>[,<field2>,...]
Override default sort order

--start-time, -s <time>
Start time in Prometheus format

--end-time, -e <time>
End time in Prometheus format, falls back to start-time if not specified

--utc
Use UTC instead of local time

--start
Pagination start offset

--limit
Pagination result limit

-v, --verbose
Be more verbose

Examples:
request Chargeback report for workload for the current WLM
request default Chargeback report for workload for default

For example, using epoch times to specify the start and end times, and grouping by user:

© Bright Computing, Inc.

16.2 Job Chargeback Measurement 647

Example

[bright91->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request -s 1599948000 -e
1600034399 -u
Start - Sun Sep 13 00:00:00 2020 CEST (1599948000)
End - Sun Sep 13 23:59:59 2020 CEST (1600034399)
User Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)
--------- ----- ------------ ------------ --------- ---------- ------------ ------------
alice 1 398 398 0 0 0 0
david 2 1,041 1,041 0 0 0 0
edgar 1 325 325 0 0 0 0
frank 1 1 1 0 0 0 0

Another way of duplicating the output of request without options, is to explicitly specify the de-
fault values. For the chargeback jobs completed this day grouped by user, which was set up in
section 16.2.2. it corresponds to a start time of now/d and an end time of now/d:

Example

[bright91->...eback[jobs completed this day grouped by user]]% request
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)
------------ ------------ ------------ ------------ ------------ ------------ ------------
56 72,374 72,374 0 0 0 0
[bright91->...eback[jobs completed this day grouped by user]]% request -s now/d -e now/d
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)
------------ ------------ ------------ ------------ ------------ ------------ ------------
56 72,374 72,374 0 0 0 0

Users can be added to the table with the -u option (some output is truncated here for clarity in the
examples that follow):

Example

[bright91->...eback[jobs completed this day grouped by user]]% request -u
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
User Jobs Runtime (s) CPU (s) Core (s) GPU (s)
------------ ------------ ------------ ------------ ------------ ------------
alice 16 19,538 19,538 0 0
bob 7 15,158 15,158 0 0
charlie 6 6,056 6,056 0 0
david 3 1,636 1,636 0 0
edgar 15 16,475 16,475 0 0
frank 9 13,511 13,511 0 0

A jobs drilldown can be carried out with -j.

Example

[bright91->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request -j
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)

© Bright Computing, Inc.

648 Monitoring: Job Chargeback

-------------- ------------ ------------ ------------ ------------ ------------
data-transfer 15 49,248 49,248 0 0
iozone 19 9,918 9,918 0 0
sleep 22 13,208 13,208 0 0

The jobs drilldown can be carried out for a particular user, alice, using the filter option:

Example

[bright91->...grouped by user]]% request -j --filter-user alice
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)
-------------- ------------ ------------ ------------ ------------ ------------
data-transfer 5 13,404 13,404 0 0
iozone 6 3,132 3,132 0 0
sleep 5 3,002 3,002 0 0

This can have the user fields added for the case when several users are specified, as follows:

Example

[bright91->...grouped by user]]% request -s now/d -e now/d -u -j --filter-user alice,bob,charlie
Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)
End - Tue Sep 15 23:59:59 2020 CEST (1600207199)
User Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)
------------ -------------- ------------ ------------ ------------ ------------ ------------
alice data-transfer 5 13,404 13,404 0 0
alice iozone 6 3,132 3,132 0 0
alice sleep 5 3,002 3,002 0 0
bob data-transfer 3 12,842 12,842 0 0
bob iozone 1 516 516 0 0
bob sleep 3 1,800 1,800 0 0
charlie data-transfer 1 3,212 3,212 0 0
charlie iozone 2 1,044 1,044 0 0
charlie sleep 3 1,800 1,800 0 0
[bright91->wlm[slurm]->chargeback[jobs completed this day grouped by user]]%

As the help text for request suggests, there are many more combinations possible.

16.3 Job Chargeback Background Information
Because users can run large numbers of jobs per day, the storage requirement for chargeback records
can be very large indeed. For this reason, a cache is kept in memory, and flushed to storage in a MySQL
database.

CMDaemon AdvancedConfig directives for configuring the MySQL storage for chargebacks are:

• JobInformationChargeBackKeepDuration (page 803)

• JobInformationChargeBackKeepCount (page 803)

• JobInformationChargeBackRemoveInterval (page 804)

© Bright Computing, Inc.

17
Day-to-day Administration

This chapter discusses several tasks that may come up in day-to-day administration of a cluster running
Bright Cluster Manager.

Section 17.1 discusses running shell commands in parallel over the cluster.
Section 17.2 discusses how a cluster administrator can ask the help of the Bright Cluster Manager

support team for guidance with an issue. optimum manner for a cluster administrator.
Section 17.3 discusses how backups can be implemented for Bright Cluster Manager.
Section 17.4 discusses revision control for images.
Section 17.5 discusses BIOS configuration with Bright Cluster Manager.
Section 17.6 discusses checking hardware matching across the nodes of the cluster.
Section 17.7 discusses Serial Over LAN console access.
Section 17.8 discusses administrative aspects of handling the large amounts of raw monitoring data.
Section 17.9 discusses node replacement.
Section 17.10 discusses using Ansible to configure the cluster via Ansible collections and playbooks.

17.1 Parallel Shells: pdsh And pexec

What pdsh And pexec Do
The cluster management tools include two parallel shell execution commands:

• pdsh (parallel distributed shell, section 17.1.1), runs from within the OS shell. That is, pdsh exe-
cutes its commands from within bash by default.

• pexec (parallel execute, section 17.1.2, runs from within CMDaemon. That is, pexec executes its
commands from within the cmsh front end.

A one-time execution of pdsh or pexec can run one or more shell commands on a group of nodes in
parallel.

A Warning About Power Surge Risks With pdsh And pexec
Some care is needed when running pdsh or pexec with commands that affect power consumption. For
example, running commands that power-cycle devices in parallel over a large number of nodes can be
risky because it can put unacceptable surge demands on the power supplies.

Within cmsh, executing a power reset command from device mode to power cycle a large group of
nodes is much safer than running a parallel command to do a reset using pdsh or pexec. This is because
the CMDaemon power reset powers up nodes after a deliberate delay between nodes (section 4.2).

Which Command To Use Out Of pdsh And pexec
The choice of using pdsh or pexec commands is mostly up to the administrator. The only time that run-
ning pdsh from bash is currently required instead of running pexec from within cmsh, is when stopping

© Bright Computing, Inc.

650 Day-to-day Administration

and restarting CMDaemon on a large number of regular nodes (section 2.6.1). This is because a com-
mand to stop CMDaemon on a regular node, that itself relies on being run from a running CMDaemon
on a regular node, can obviously give unexpected results.

17.1.1 pdsh In The OS Shell
Packages Required For pdsh
By default, the following packages must be installed from the Bright Cluster Manager repositories to the
head node for pdsh to function fully:

• pdsh

• genders

• pdsh-mod-cmupdown

• pdsh-mod-genders

• pdsh-rcmd-exec

• pdsh-ssh

The pdsh utility is modular, that is, it gets extra functionality through the addition of modules.
The genders package is used to generate a default /etc/genders configuration file. The file is used to

decide what and how nodes are to be used or excluded by default, when used with pdsh. Configuration
details can be found in man pdsh(1). The configuration can probably best be understood by viewing the
file itself and noting that Bright Cluster Manager in the default configuration associates the following
genders with a list of nodes:

• all: all the nodes in the cluster, head and regular nodes.

• category=default: the nodes that are in the default category

• computenode: regular nodes

• headnode: node or nodes that are head nodes.

In a newly-installed cluster using default settings, the genders category=default and computenode
have the same list of nodes to begin with.

The default /etc/genders file has a section that is generated and maintained by CMDaemon, but
the file can be altered by the administrator outside the CMDaemon-maintained section. However, it is
not recommended to change the file manually frequently. For example, tracking node states with this
file is not recommended. Instead, the package pdsh-mod-cmupdown provides the -v option for node state
tracking functionality, and how to use this and other pdsh options is described in the next section.

pdsh Options
In the OS shell, running pdsh -h displays the following help text:

Usage: pdsh [-options] command ...
-S return largest of remote command return values
-h output usage menu and quit
-V output version information and quit
-q list the option settings and quit
-b disable ^C status feature (batch mode)
-d enable extra debug information from ^C status
-l user execute remote commands as user
-t seconds set connect timeout (default is 10 sec)
-u seconds set command timeout (no default)

© Bright Computing, Inc.

17.1 Parallel Shells: pdsh And pexec 651

-f n use fanout of n nodes
-w host,host,... set target node list on command line
-x host,host,... set node exclusion list on command line
-R name set rcmd module to name
-M name,... select one or more misc modules to initialize first
-N disable hostname: labels on output lines
-L list info on all loaded modules and exit
-v exclude targets if they are down
-g query,... target nodes using genders query
-X query,... exclude nodes using genders query
-F file use alternate genders file `file'
-i request alternate or canonical hostnames if applicable
-a target all nodes except those with "pdsh_all_skip" attribute
-A target all nodes listed in genders database
available rcmd modules: ssh,exec (default: ssh)

Further options and details are given in man pdsh(1).

Examples Of pdsh Use
For the examples in this section, a cluster can be considered that is set up with two nodes, with the state
of node001 being UP and that of node002 being DOWN:

[root@bright91 ~]# cmsh -c "device status"
node001 [UP]
node002 [DOWN]
bright91 [UP]

In the examples, the outputs for pdsh could be as follows for the pdsh options considered:

-A: With this pdsh option an attempt is made to run the command on all nodes, regardless of the node
state:

Example

[root@bright91 ~]# pdsh -A hostname
node001: node001
node002: ssh: connect to host node002 port 22: No route to host
pdsh@bright91: node002: ssh exited with exit code 255
bright91: bright91

-v: With this option an attempt is made to run the command only on nodes nodes that are in the state
UP:

Example

[root@bright91 ~]# pdsh -A -v hostname
node001: node001
bright91: bright91

-g: With this option, and using, for example, computenode as the genders query, only nodes within
computenode in the /etc/genders file are considered for the command. The -v option then further
ensures that the command runs only on a node in computenode that is up. In a newly-installed cluster,
regular nodes are assigned to computenode by default, so the command runs on all regular nodes that
are up in a newly-installed cluster:

Example

[root@bright91 ~]# pdsh -v -g computenode hostname
node001: node001

© Bright Computing, Inc.

652 Day-to-day Administration

-w: This option allows a node list (man pdsh(1)) to be specified on the command line itself:

Example

[root@bright91 ~]# pdsh -w node00[1-2] hostname
node001: node001
node002: ssh: connect to host node002 port 22: No route to host
pdsh@bright91: node002: ssh exited with exit code 255

-x: This option is the converse of -w, and excludes a node list that is specified on the command line
itself:

Example

[root@bright91 ~]# pdsh -x node002 -w node00[1-2] hostname
node001: node001

The dshbak Command
The dshbak (distributed shell backend formatting filter) command is a filter that reformats pdsh output.
It comes with the pdsh package.

Running dshbak with the -h option displays:

[root@bright91 ~]# dshbak -h
Usage: dshbak [OPTION]...
-h Display this help message
-c Coalesce identical output from hosts
-d DIR Send output to files in DIR, one file per host
-f With -d, force creation of DIR

Further details can be found in man dshbak(1).
For the examples in this section, it is assumed that all the nodes in the cluster are now up. That is,

node002 used in the examples of the preceding section is now also up. Some examples to illustrate how
dshbak works are then the following:

Without dshbak:

Example

[root@bright91 ~]# pdsh -A ls /etc/services /etc/yp.conf
bright91: /etc/services
bright91: /etc/yp.conf
node001: /etc/services
node001: ls: cannot access /etc/yp.conf: No such file or directory
pdsh@bright91: node001: ssh exited with exit code 2
node002: /etc/services
node002: /etc/yp.conf

With dshbak, with no dshbak options:

Example

[root@bright91 ~]# pdsh -A ls /etc/services /etc/yp.conf | dshbak
node001: ls: cannot access /etc/yp.conf: No such file or directory
pdsh@bright91: node001: ssh exited with exit code 2

bright91

© Bright Computing, Inc.

17.1 Parallel Shells: pdsh And pexec 653

/etc/services
/etc/yp.conf

node001

/etc/services

node002

/etc/services
/etc/yp.conf
[root@bright91 ~]#

With dshbak, with the -c (coalesce) option:

Example

[root@bright91 ~]# pdsh -A ls /etc/services /etc/yp.conf | dshbak -c
node001: ls: cannot access /etc/yp.conf: No such file or directory
pdsh@bright91: node001: ssh exited with exit code 2

node002,bright91

/etc/services
/etc/yp.conf

node001

/etc/services
[root@bright91 ~]#

The dshbak utility is useful for creating human-friendly output in clusters with larger numbers of
nodes.

17.1.2 pexec In cmsh
In cmsh, the pexec command is run from device mode:

Example

[bright91->device]% pexec -n node001,node002 "cd ; ls"

[node001] :
anaconda-ks.cfg
install.log
install.log.syslog

[node002] :
anaconda-ks.cfg
install.log
install.log.syslog

17.1.3 pexec In Bright View
In Bright View, pexec is hidden, but executed in a GUI wrapper, using the clickpath Cluster→Run
command.

© Bright Computing, Inc.

654 Day-to-day Administration

For large numbers of nodes, rendering the output into the node subpanes (little boxes) can take a
long time. To improve the Bright View experience, selecting the Single text view icon instead of the
Grouped view icon speeds up the rendering significantly, but at the cost of removing the borders of the
subpanes.

Ticking the Join output checkbox places output that is the same for particular nodes, into the same
subpane.

Running parallel shell commands from cmsh instead of in Bright View is faster in most cases, due to
less graphics rendering overhead.

17.1.4 Using The -j|--join Option Of pexec In cmsh
The output of the pexec command by default can come out in a sequence depending on node response
time. To make it more useful for an administrator, order can be imposed on the output. Checking
consistency across nodes is then easier.

For example, in a cluster with 2 nodes, the /etc/resolv.conf files for each node could be displayed
as:

Example

[bright91->device]% pexec -c default "cat /etc/resolv.conf"

[node001] :
This file was generated by the Node Installer.
search cm.cluster eth.cluster brightcomputing.com
nameserver 10.141.255.254

[node002] :
This file was generated by the Node Installer.
search cm.cluster eth.cluster brightcomputing.com
nameserver 10.141.255.254

More order can be imposed on the preceding output by using the -j|--join option. This joins
identical fields together in a way similar to the standard unix text utility, join, which makes the result
easier to view:

Example

[bright91->device]% pexec -j -c default "cat /etc/resolv.conf"
[node001,node002]
This file was generated by the Node Installer.
search cm.cluster eth.cluster brightcomputing.com
nameserver 10.141.255.254

In the following example, a cluster with 10 nodes is inspected. In the cluster, node002 is down, and
the idea is to see if the remaining nodes have the same mounts:

Example

[bright91->device]% pexec -j -c default "mount|sort"
Nodes down: node002
[node002]
Node down

[node001,node003..node010]
/dev/hda1 on / type ext3 (rw,noatime,nodiratime)
/dev/hda2 on /var type ext3 (rw,noatime,nodiratime)

© Bright Computing, Inc.

17.2 Getting Support With Cluster Manager Issues, And Notifications For Release Updates 655

/dev/hda3 on /tmp type ext3 (rw,nosuid,nodev,noatime,nodiratime)
/dev/hda6 on /local type ext3 (rw,noatime,nodiratime)
master:/cm/shared on /cm/shared type nfs
(rw,rsize=32768,wsize=32768,hard,intr,addr=10.141.255.254)
master:/home on /home type nfs
(rw,rsize=32768,wsize=32768,hard,intr,addr=10.141.255.254)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
none on /proc type proc (rw,nosuid)
none on /sys type sysfs (rw)

Here, even more order is imposed by sorting the output of each mount command within bash before
the -j option operates from cmsh. The -c option executes the command on the default category of
nodes.

17.1.5 Other Parallel Commands
Besides pexec, CMDaemon has several other parallel commands:

pkill: parallel kill
Synopsis:
pkill [OPTIONS] <tracker> [<tracker> . . .]

plist: List the parallel commands that are currently running, with their tracker ID
Synopsis:
plist

pping: ping nodes in parallel
Synopsis:
pping [OPTIONS]

pwait: wait for parallel commands that are running to complete
Synopsis:
pwait [OPTIONS] <tracker> [<tracker> . . .]

Details on these parallel commands, including examples, can be seen by executing the help com-
mand within the device mode of cmsh for a parallel command, <pcommand>, as follows:

[bright91->device]%help <pcommand>

17.2 Getting Support With Cluster Manager Issues, And Notifications For
Release Updates

Bright Cluster Manager is constantly undergoing development. While the result is a robust and well-
designed cluster manager, it is possible that the administrator may run into a feature that requires tech-
nical help from Bright Computing or Bright Computing’s resellers, or a release update. This section
describes how to get support for technical issues, and notifications for release updates.

17.2.1 Support Via E-mail
If the reseller from whom Bright Cluster Manager was bought offers direct support, then the reseller
should be contacted.

Otherwise the primary means of support is e-mail. The e-mail exchanges begin via the Bright web-
site. The website allows the administrator to submit a support request via a web form, and opens up a

© Bright Computing, Inc.

656 Day-to-day Administration

trouble ticket.

• A useful indirect starting point that can be used for all technical support is at:

https://support.brightcomputing.com

• Cluster administrators that have a Bright customer portal account can click on the Request Support
link in the navigation menu on the left-hand column of the portal page. A direct URL for this is:

https://customer.brightcomputing.com/Customer-Portal?p=requestsupport

• Cluster administrators that do not have a Bright customer portal account can use the web form at:

https://customer.brightcomputing.com/support?p=submitSupportRequest

The correct, up-to-date, product key (section 4.3.2 of the Installation Manual) for the cluster should
be entered in the web form to allow tickets to be dealt with smoothly. If the product key for the cluster
has been registered (section 4.3 of the Installation Manual), then all tickets associated with the key can be
viewed after logging in.

When opening up the ticket, it is a good idea to try to use a clear subject header, since that is used
as part of a reference tag as the ticket progresses. Also helpful is a good description of the issue. The
followup communication for this ticket goes via standard e-mail.

Putting obviously different problems into one ticket results in a slower resolution. Issues that are
clearly independent of each other should be submitted as separate tickets. This ensures the quickest
processing by the support team.

The document “How To Ask Questions The Smart Way” at http://www.catb.org/esr/faqs/
smart-questions.html is quite readable, and explains how to submit a good technical query on on-
line forums. While the document is not entirely relevant to the support provided by Bright Computing,
it is true that many of the principles covered there are also useful when sending a query to Bright Com-
puting when trying to resolve an issue. A read through the document may therefore be helpful before
submitting a query to Bright Computing.

If the issue appears to be a bug, then a bug report should be submitted. It is helpful to include as
many details as possible to ensure the development team is able to reproduce the apparent bug. The
policy at Bright Computing is to welcome such reports, to provide feedback to the reporter, and to
resolve the problem.

If there is apparently no response from Bright Computing over e-mail, checking the spam folder is
advised. Mail providers have been known to flag mails as spam, even in mid-thread. Users in China
should also be aware that mails from Bright Computing may be deleted by accident by the Golden
Shield Project (the “Great Firewall”) operated by the Chinese Ministry of Public Security.

As a supplement to e-mail support, Bright Computing also provides the cm-diagnose (section 17.2.2)
and the request-remote-assistance (section 17.2.3) utilities to help resolve issues. The use of third-
party screen-sharing utilities (section 17.2.4) is also possible.

17.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose
The diagnostic utility cm-diagnose is run from the head node and gathers data on the system that
may be of use in diagnosing issues. To view its options, capabilities, and defaults, it can be run as
“cm-diagnose --help”. For particular issues it may be helpful to change some of the default values to
gather data in a more targeted way.

© Bright Computing, Inc.

https://support.brightcomputing.com
https://customer.brightcomputing.com/Customer-Portal?p=requestsupport
https://customer.brightcomputing.com/support?p=submitSupportRequest
http://www.catb.org/esr/faqs/smart-questions.html
http://www.catb.org/esr/faqs/smart-questions.html

17.2 Getting Support With Cluster Manager Issues, And Notifications For Release Updates 657

When run without any options, it runs interactively, and allows the administrator to send the resul-
tant diagnostics file to Bright Computing directly. The output of a cm-diagnose session looks something
like the following (the output has been made less verbose for easy viewing):

Example

[root@bright91 ~]# cm-diagnose
To be able to contact you about the issue, please provide
your e-mail address (or support ticket number, if applicable):
franknfurter@example.com

To diagnose any issue, it would help if you could provide a description
about the issue at hand.
Do you want to enter such description? [Y/n]

End input with ctrl-d
I tried X, Y, and Z on the S2464 motherboard. When that didn't work, I
tried A, B, and C, but the florbish is grommicking.
Thank you.

If issues are suspected to be in the cmdaemon process, a gdb trace of
that process is useful.
In general such a trace is only needed if Bright Support asks for this.
Do you want to create a gdb trace of the running CMDaemon? [y/N]

Proceed to collect information? [Y/n]

Processing master
Processing commands
Processing file contents
Processing large files and log files
Collecting process information for CMDaemon
Executing CMSH commands
Finished executing CMSH commands

Processing default-image
Processing commands
Processing file contents

Creating log file: /root/bright91_609.tar.gz

Cleaning up

Automatically submit diagnostics to
http://support.brightcomputing.com/cm-diagnose/ ? [Y/n] y

Uploaded file: bright91_609.tar.gz
Remove log file (/root/bright91_609.tar.gz)? [y/N] y
[root@bright91 ~]

17.2.3 Requesting Remote Support With request-remote-assistance
The life-cycle of solving a ticket begins with opening a ticket, and then establishing that both the cluster
administrator and the support engineer have a basic grasp of the issue at hand. This is best done via an
e-mail exchange.

From this stage onward there are many possible paths. The support engineer may offer a solution,
or ask for more details, or may ask for some tests to be run. Most of the time e-mail remains the most

© Bright Computing, Inc.

658 Day-to-day Administration

efficient way to troubleshoot an issue.
However at times it may be more appropriate for the cluster administrator to allow remote support

from the Bright Computing support engineer in order to resolve the issue. The support engineer may in
that case suggest that the request-remote-assistance utility be run.

The request-remote-assistance utility allows a Bright Computing engineer to securely tunnel into
the cluster, often without a change in firewall or ssh settings of the cluster.

With request-remote-assistance:

• It must be allowed to access the www and ssh ports of Bright Computing’s internet servers.

• For some problems, the engineer may wish to power cycle a node. In that case, indicating what
node the engineer can power cycle should be added to the option for entering additional informa-
tion.

• Administrators familiar with screen may wish to run it within a screen session and detach it so
that they can resume the session from another machine. A very short reminder of the basics of how
to run a screen session is: run the screen command, then run the request-remote-assistance
command, then ctrl-a d to detach. To resume, run screen -r, and exit to exit.

The request-remote-assistance command itself is run as follows:

Example

[root@bright91 ~]# request-remote-assistance

This tool helps securely set up a temporary ssh tunnel to
sandbox.brightcomputing.com.

Allow a Bright Computing engineer ssh access to the cluster? [Y/n]

Enter additional information for Bright Computing (eg: related
ticket number, problem description)? [Y/n]

End input with ctrl-d
Ticket 1337 - the florbish is grommicking

Thank you.

Added temporary Bright public key.

After the administrator has responded to the Enter additional information... entry, and has
typed in the ctrl-d, the utility tries to establish the connection. The screen clears, and the secure tunnel
opens up, displaying the following notice:

REMOTE ASSISTANCE REQUEST
##
A connection has been opened to Bright Computing Support.
Closing this window will terminate the remote assistance
session.
--

Hostname: bright91.NOFQDN
Connected on port: 7000

ctrl-c to terminate this session

© Bright Computing, Inc.

17.2 Getting Support With Cluster Manager Issues, And Notifications For Release Updates 659

Bright Computing support automatically receives an e-mail alert that an engineer can now securely
tunnel into the cluster. The session activity is not explicitly visible to the administrator. Whether an
engineer is logged in can be viewed with the w command, which shows a user running the ssh tunnel,
and—if the engineer is logged in—another user session, other than whatever sessions the administrator
may be running:

Example

[root@bright91 ~]# w
13:35:00 up 97 days, 17 min, 2 users, load average: 0.28, 0.50, 0.52
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 10.2.37.101 12:24 1:10m 0.14s 0.05s ssh -q -R :7013:127.0.0.1:22\
remote@sandbox.brightcomputing.com bright91
root pts/1 localhost.locald 12:54 4.00s 0.03s 0.03s -bash

When the engineer has ended the session, the administrator may remove the secure tunnel with a
ctrl-c, and the display then shows:

Tunnel to sandbox.brightcomputing.com terminated.
Removed temporary Bright public key.
[root@bright91 ~]#

The Bright Computing engineer is then no longer able to access the cluster.
The preceding tunnel termination output may also show up automatically, without a ctrl-c from

the administrator, within seconds after the connection session starts. In that case, it typically means that
a firewall is blocking access to SSH and WWW to Bright Computing’s internet servers.

17.2.4 Requesting Remote Support With A Shared Screen Utility
If the request-remote-assistance utility (section 17.2.3) is restricted or otherwise disallowed by the site
policy, then it may be permitted to allow a Bright support engineer to access the site using a third party
shared screen utility that the administrator is comfortable with. In that case, possible options include:

• Zoom (https://zoom.us) (preferred)

• WebEx (https://www.webex.com)

• join.me (https://www.join.me)

Other screensharing options may also be possible. The support engineer and the administrator need to
agree upon the option to be used, and decide upon a time (and time zone) for the shared screen session.

17.2.5 Getting Notified About Updates
Updates for the various Bright Cluster Manager releases continue for some time after the initial release
is made public. The updates typically containing bugfixes and improvements, and an administrator
may wish to install an update when it becomes publicly available.

An administrator can sign up to be notified about an update by logging into the customer portal
at https://customer.brightcomputing.com/, and then clicking on Edit Account from the navigation
menu in the left panel (figure 17.1). An e-mail address can be set in the account details, and the ver-
sions for which the administrator would like to receive notifications can be selected by ticking on the
appropriate Notify on releases for: checkboxes.

After submitting the request, an e-mail is sent to the address when a new release is made public for
the selected versions.

© Bright Computing, Inc.

https://zoom.us
https://www.webex.com/
https://www.join.me
http://timeanddate.com
https://customer.brightcomputing.com/

660 Day-to-day Administration

Figure 17.1: Signing up for release notification at the customer portal

17.3 Backups
17.3.1 Cluster Installation Backup
Bright Cluster Manager does not include facilities to create backups of a cluster installation. The cluster
administrator is responsible for deciding on the best way to back up the cluster, out of the many possible
choices.

A backup method is strongly recommended, and checking that restoration from backup actually
works is also strongly recommended.

One option that may be appropriate for some cases is simply cloning the head node. A clone can be
created by PXE booting the new head node, and following the procedure in section 18.4.8.

When setting up a backup mechanism, it is recommended that the full filesystem of the head node
(i.e. including all software images) is backed up. Unless the regular node hard drives are used to store
important data, it is not necessary to back them up.

If no backup infrastructure is already in place at the cluster site, the following open source (GPL)
software packages may be used to maintain regular backups:

• Bacula: Bacula is a mature network based backup program that can be used to backup to a remote
storage location. If desired, it is also possible to use Bacula on nodes to back up relevant data that
is stored on the local hard drives. More information is available at http://www.bacula.org

Bacula requires ports 9101-9103 to be accessible on the head node. Including the following lines
in the Shorewall rules file for the head node allows access via those ports from an IP address of

© Bright Computing, Inc.

http://www.bacula.org

17.3 Backups 661

93.184.216.34 on the external network:

Example

ACCEPT net:93.184.216.34 fw tcp 9101
ACCEPT net:93.184.216.34 fw tcp 9102
ACCEPT net:93.184.216.34 fw tcp 9103

The Shorewall service should then be restarted to enforce the added rules.

• rsnapshot: rsnapshot allows periodic incremental filesystem snapshots to be written to a local
or remote filesystem. Despite its simplicity, it can be a very effective tool to maintain frequent
backups of a system. More information is available at http://www.rsnapshot.org.

Rsnapshot requires access to port 22 on the head node.

17.3.2 Local Database And Data Backups And Restoration
The CMDaemon database is stored in the MySQL cmdaemon database, and contains most of the stored
settings of the cluster.

Monitoring data values are stored as binaries in the filesystem, under /var/spool/cmd/monitoring.
The administrator is expected to run a regular backup mechanism for the cluster to allow restores of

all files from a recent snapshot. As an additional, separate, convenience:

• For the CMDaemon database, the entire database is also backed up nightly on the cluster filesys-
tem itself (“local rotating backup”) for the last 7 days.

• For the monitoring data, the raw data records are not backed up locally, since these can get very
large. However, the configuration of the monitoring data, which is stored in the CMDaemon
database, is backed up for the last 7 days too.

Database Corruption Messages
A corrupted MySQL database is commonly caused by an improper shutdown of the node. To deal with
this, when starting up, MySQL checks itself for corrupted tables, and tries to repair any such by itself.

When there is database corruption, InfoMessages in the /var/log/cmdaemon log may mention:

• “Unexpected eof found” in association with a table in the database,

• “can’t find file” when referring to an entire missing table,

• locked tables,

• error numbers from table handlers,

• “Error while executing” a command.

A restoration from backup can be carried out to repair the database, as explained in the next section.

Restoring From The Local Backup
If the MySQL InnoDB repair tools do not fix the problem, then, for a failover configuration, the dbreclone
option (section 18.4.2) should normally provide a CMDaemon and Slurm database that is current. The
dbreclone option does not clone the monitoring data.

© Bright Computing, Inc.

http://www.rsnapshot.org
/var/spool/cmd/monitoring

662 Day-to-day Administration

Cloning extra databases: The file /cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.
template can be used as a template to create a file extradbclone.xml in the same directory. The
extradbclone.xml file can then be used to define additional databases to be cloned. Running the
/cm/local/apps/cmd/scripts/cm-update-mycnf script then updates /etc/my.cnf. The database can
then be cloned with this new MySQL configuration by running

cmha dbreclone <passive>
where <passive> is the hostname of the passive head node.

If the head node is not part of a failover configuration, then a restoration from local backup can be
done. The local backup directory is /var/spool/cmd/backup, with contents that look like (some text
elided):

Example

[root@solaris ~]# cd /var/spool/cmd/backup/
[root@solaris backup]# ls -l
total 280
...
-rw------- 1 root root 33804 Oct 10 04:02 backup-Mon.sql.gz
-rw------- 1 root root 33805 Oct 9 04:02 backup-Sun.sql.gz
-rw------- 1 root root 33805 Oct 11 04:02 backup-Tue.sql.gz
...

The CMDaemon database snapshots are stored as backup-<day of week>.sql.gz In the example,
the latest backup available in the listing for CMDaemon turns out to be backup-Tue.sql.gz

The latest backup can then be ungzipped and piped into the MySQL database for the user cmdaemon.
The password, <password>, can be retrieved from /cm/local/apps/cmd/etc/cmd.conf, where it is con-
figured in the DBPass directive (Appendix C).

Example

gunzip backup-Tue.sql.gz
service cmd stop #(just to make sure)
mysql -ucmdaemon -p<password> cmdaemon < backup-Tue.sql

Running “service cmd start” should have CMDaemon running again, this time with a restored
database from the time the snapshot was taken. That means, that any changes that were done to the
cluster manager after the time the snapshot was taken are no longer implemented.

Monitoring data values are not kept in a database, but in files (section 17.8).

17.4 Revision Control For Images
Bright Cluster Manager 7 introduced support for the implementations of Btrfs provided by the distribu-
tions. Btrfs makes it possible to carry out revision control for images efficiently.

17.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images
Btrfs, often pronounced “butter FS”, is a Linux implementation of a copy-on-write (COW) filesystem.

A COW design for a filesystem follows the principle that, when blocks of old data are to be mod-
ified, then the new data blocks are written in a new location (the COW action), leaving the old, now
superseded, copy of the data blocks still in place. Metadata is written to keep track of the event so that,
for example, the new data blocks can be used seamlessly with the contiguous old data blocks that have
not been superseded.

© Bright Computing, Inc.

/cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.template
/cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.template
/cm/local/apps/cmd/scripts/cm-update-mycnf
/etc/my.cnf
/cm/local/apps/cmd/etc/cmd.conf

17.4 Revision Control For Images 663

This is in contrast to the simple overwriting of old data that a non-COW filesystem such as Ext3fs
carries out.

A result of the COW design means that the old data can still be accessed with the right tools, and
that rollback and modification become a natural possible feature.

“Cheap” revision control is thus possible.
Revision control for the filesystem is the idea that changes in the file system are tracked and can

be rolled back as needed. “Cheap” here means that COW makes tracking changes convenient, take up
very little space, and quick. For an administrator of Bright Cluster Manager, cheap revision control is
interesting for the purpose of managing software images.

This is because for a non-COW filesystem such as Ext3fs, image variations take a large amount of
space, even if the variation in the filesystem inside the image is very little. On the other hand, image
variations in a COW filesystem such as Btrfs take up near-minimum space.

Thus, for example, the technique of using initialize and finalize scripts to generate such image vari-
ations on the fly (section 3.15.4) in order to save space, can be avoided by using a Btrfs partition to save
the full image variations instead.

“Expensive” revision control on non-COW filesystems is also possible. It is merely not recom-
mended, since each disk image takes up completely new blocks, and hence uses up more space. The
administrator will then have to consider that the filesystem may become full much earlier. The degree
of restraint on revision control caused by this, as well as the extra consumption of resources, means
that revision control on non-COW filesystems is best implemented on test clusters only, rather than on
production clusters.

17.4.2 Btrfs Availability And Distribution Support
Btrfs has been part of the Linux kernel since kernel 2.6.29-rc1. Depending on which Linux distribution
is being used on a cluster, it may or may not be a good idea to use Btrfs in a production environment, as
in the worst case it could lead to data loss.

Btrfs was made available from Red Hat as a technology preview release in RHEL7, but has been
deprecated since RHEL7.4, and is not officially supported by Red Hat in any case. It has been officially
removed from RHEL8.

Btrfs is also available from SUSE. SLES12 uses a 3.12 series kernel, which has a fully stable and
supported implementation of Btrfs.

While Bright Computing has not experienced any problems with storing software images on Btrfs
using RHEL7, it is highly advisable to keep backups of important software images on a non-Btrfs filesys-
tems when Btrfs is used on these Linux distributions.

An issue with using cm-clone-install with Btrfs is described on page 726.

17.4.3 Installing Btrfs To Work With Revision Control Of Images In Bright Cluster Manager
Installation Of btrfs-progs
To install a Btrfs filesystem, the btrfs-progs packages must be installed from the distribution repository
first (some lines elided):

Example

[root@bright91 ~]# yum install btrfs-progs
...
Resolving Dependencies
--> Running transaction check
---> Package btrfs-progs.x86_64 0:4.9.1-1.el7 will be installed
...
Total download size: 678 k
Installed size: 4.0 M
...
Complete!

© Bright Computing, Inc.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.4_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.4_Release_Notes-Deprecated_Functionality.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.4_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.4_Release_Notes-Deprecated_Functionality.html

664 Day-to-day Administration

Creating A Btrfs Filesystem
The original images directory can be moved aside first, and a new images directory created to serve as
a future mount point for Btrfs:

Example

[root@bright91 ~]# cd /cm/
[root@bright91 cm]# mv images images2
[root@bright91 cm]# mkdir images

A block device can be formatted as a Btrfs filesystem in the usual way by using the mkfs.btrfs
command on a partition, and then mounted to the new images directory:

Example

[root@bright91 cm]# mkfs.btrfs /dev/sdc1
[root@bright91 cm]# mount /dev/sdc1 /cm/images

If there is no spare block device, then, alternatively, a file with zeroed data can be created, formatted
as a Btrfs filesystem, and mounted as a loop device like this:

Example

[root@bright91 cm]# dd if=/dev/zero of=butter.img bs=1G count=20
20+0 records in
20+0 records out
21474836480 bytes (21 GB) copied, 916.415 s, 23.4 MB/s
[root@bright91 cm]# mkfs.btrfs butter.img

WARNING! - Btrfs Btrfs v0.20-rc1 IS EXPERIMENTAL
WARNING! - see http://btrfs.wiki.kernel.org before using

fs created label (null) on butter.img
nodesize 4096 leafsize 4096 sectorsize 4096 size 20.00GB

Btrfs Btrfs v0.20-rc1
[root@bright91 cm]# mount -t btrfs butter.img images -o loop
[root@bright91 cm]# mount
...
/cm/butter.img on /cm/images type btrfs (rw,loop=/dev/loop0)

Migrating Images With cm-migrate-images
The entries inside the /cm/images/ directory are the software images (file trees) used to provision nodes.

Revision tracking of images in a Btrfs filesystem can be done by making the directory of a specific
image a subvolume. Subvolumes in Btrfs are an extension of standard unix directories with versioning.
The files in a subvolume are tracked with special internal Btrfs markers.

To have this kind of version tracking of images work, image migration cannot simply be done with a
cp -a or a mv command. That is, moving images from theimages2 directory in the traditional filesystem,
over to images in the images directory in the Btrfs filesystem command with the standard cp or mv
command is not appropriate. This is because the images are to be tracked once they are in the Btrfs
system, and are therefore not standard files any more, but instead extended, and made into subvolumes.

The migration for Bright Cluster Manager software images can be carried out with the utility
cm-migrate-image, which has the usage:

cm-migrate-image <path to old image> <path to new image>

where the old image is a traditional directory, and the new image is a subvolume.

© Bright Computing, Inc.

17.4 Revision Control For Images 665

Example

[root@bright91 cm]# cm-migrate-image /cm/images2/default-image /cm/images/default-image

The default-image directory, or more exactly, subvolume, must not exist in the Btrfs filesystem
before the migration. The subvolume is created only for the image basename that is migrated, which is
default-image in the preceding example.

In the OS, the btrfs utility is used to manage Btrfs. Details on what it can do can be seen in the
btrfs(8) man page. The state of the loop filesystem can be seen, for example, with:

Example

[root@bright91 cm]# btrfs filesystem show /dev/loop0
Label: none uuid: 6f94de75-2e8d-45d2-886b-f87326b73474

Total devices 1 FS bytes used 3.42GB
devid 1 size 20.00GB used 6.04GB path /dev/loop0

Btrfs Btrfs v0.20-rc1
[root@bright91 cm]# btrfs subvolume list /cm/images
ID 257 gen 482 top level 5 path default-image

The filesystem can be modified as well as merely viewed with btrfs. However, instead of using the
utility to modify image revisions directly, it is recommended that the administrator use Bright Cluster
Manager to manage image version tracking, since the necessary functionality has been integrated into
cmsh and Bright View.

17.4.4 Using cmsh For Revision Control Of Images
Revision Control Of Images Within softwareimage Mode
The following commands and extensions can be used for revision control in the softwareimage mode
of cmsh:

• newrevision <parent software image name> "textual description"
Creates a new revision of a specified software image. For that new revision, a revision number is
automatically generated and saved along with time and date. The new revision receives a name
of the form:

<parent software image name>@<revision number>

A new Btrfs subvolume:

/cm/images/<parent software image name>-<revision number>

is created automatically for the revision. From now on, this revision is a self-contained software
image and can be used as such.

• revisions [-a|--all] <parent software image name>
Lists all revisions of specified parent software image in the order they ware created, and associates
the revision with the revision number under the header ID. The option -a|--all also lists revisions
that have been removed.

• list [-r|--revisions]
The option -r|--revisions has been added to the list command. It lists all revisions with their
name, path, and kernel version. A parent image is the one at the head of the list of revisions, and
does not have @<revision number> in its name.

© Bright Computing, Inc.

666 Day-to-day Administration

• setparent [parent software image name] <revision name>
Sets a revision as a new parent. The action first saves the image directory of the current, possibly
altered, parent directory or subvolume, and then attempts to copy or snapshot the directory or
subvolume of the revision into the directory or subvolume of the parent. If the attempt fails, then
it tries to revert all the changes in order to get the directory or subvolume of the parent back to the
state it was in before the attempt.

• remove [-a|--all] [-d|--data] <parent software image name>
Runnning remove without options removes the parent software image. The option -a|--all re-
moves the parent and all its revisions. The option -d|--data removes the actual data. To run the
remove command, any images being removed should not be in use.

Revision Control Of Images Within category Mode
The category mode of cmsh also supports revision control.

Revision control can function in 3 kinds of ways when set for the softwareimage property at category
level.

To explain the settings, an example can be prepared as follows: It assumes a newly-installed cluster
with Btrfs configured and /cm/images migrated as explained in section 17.4.3. The cluster has a default
software image default-image, and two revisions of the parent image are made from it. These are
automatically given the paths default-image@1 and default-image@2. A category called storage is
then created:

Example

[bright91->softwareimage]% newrevision default-image "some changes"
[bright91->softwareimage]% newrevision default-image "more changes"
[bright91->softwareimage]% revisions default-image
ID Date Description
----- ------------------------------ ------------------------------
1 Fri, 04 Oct 2019 11:19:33 CEST some changes
2 Fri, 04 Oct 2019 11:19:52 CEST more changes
[bright91->softwareimage]% list -r
Name (key) Path Kernel version
---------------- -------------------------- --------------------------
default-image /cm/images/default-image 3.10.0-957.1.3.el7.x86_64
default-image@1 /cm/images/default-image-1 3.10.0-957.1.3.el7.x86_64
default-image@2 /cm/images/default-image-2 3.10.0-957.1.3.el7.x86_64
[bright91->softwareimage]% category add storage; commit

With the cluster set up like that, the 3 kinds of revision control functionalities in category mode can
be explained as follows:

1. Category revision control functionality is defined as unset
If the administrator sets the softwareimage property for the category to an image without any
revision tags:

Example

[bright91->category]% set storage softwareimage default-image

then nodes in the storage category take no notice of the revision setting for the image set at
category level.

© Bright Computing, Inc.

17.4 Revision Control For Images 667

2. Category revision control sets a specified revision as default

If the administrator sets the softwareimage property for the category to a specific image, with a
revision tag, such as default-image@1:

Example

[bright91->category]% set storage softwareimage default-image@1

then nodes in the storage category use the image default-image@1 as their image if nothing is
set at node level.

3. Category revision control sets the latest available revision by default
If the administrator sets the softwareimage property for the category to a parent image, but tagged
with the reserved keyword tag latest:

Example

[bright91->category]% set storage softwareimage default-image@latest

then nodes in the storage category use the image default-image@2 if nothing is set at node level.
If a new revision of default-image is created later on, with a later tag (@3, @4, @5...) then the
property takes the new value for the revision, so that nodes in the category will use the new
revision as their image.

Revision Control For Images—An Example Session
This section uses a session to illustrate how image revision control is commonly used, with commentary
along the way. It assumes a newly installed cluster with Btrfs configured and /cm/images migrated as
explained in section 17.4.3.

First, a revision of the image is made to save its initial state:

[bright91->softwareimage]% newrevision default-image "Initial state"

A new image default-image@1 is automatically created with a path /cm/images/default-image-1.
The path is also a subvolume, since it is on a Btrfs partition.

The administrator then makes some modifications to the parent image /cm/images/default-image,
which can be regarded as a “trunk” revision, for those familiar with SVN or similar revision control
systems. For example, the administrator could install some new packages, edit some configuration files,
and so on. When finished, a new revision is created by the administrator:

[bright91->softwareimage]% newrevision default-image "Some modifications"

This image is then automatically called default-image@2 and has the path
/cm/images/default-image-2. If the administrator then wants to test the latest revision on nodes in
the default category, then this new image can be set at category level, without having to specify it for
every node in that category individually:

[bright91->category]% set default softwareimage default-image@2

At this point, the content of default-image is identical to default-image@2. But changes done in
default-image will not affect what is stored in revision default-image@2.

After continuing on with the parent image based on the revision default-image@2, the administrator
might conclude that the modifications tried are incorrect or not wanted. In that case, the administrator
can roll back the state of the parent image default-image back to the state that was previously saved as
the revision default-image@1:

© Bright Computing, Inc.

668 Day-to-day Administration

[bright91->softwareimage]% setparent default-image default-image@1

The administrator can thus continue experimenting, making new revisions, and trying them
out by setting the softwareimage property of a category accordingly. Previously created revisions
default-image@1 and default-image@2 will not be affected by these changes. If the administrator
would like to completely purge a specific unused revision, such as default-image@2 for example, then
it can be done with the -d|--data option:

[bright91->softwareimage]% remove -d default-image@2

The -d does a forced recursive removal of the default-image-2 directory, while a plain remove
without the -d option would simply remove the object from CMDaemon, but leave default-image-2
alone. This CMDaemon behavior is not unique for Btrfs—it is true for traditional filesystems too. It is
however usually very wasteful of storage to do this with non-COW systems.

17.5 BIOS Configuration And Updates
17.5.1 BIOS Configuration Via CMDaemon And Redfish
Bright Cluster Manager uses a CMDaemon API to manage the BIOS of nodes in userspace.

In Bright Cluster Manager version 9.0 and earlier, the implementation varied according to the pro-
prietary vendor implementation.

Starting with Bright Cluster Manager version 9.1, BIOS management is carried out by CMDaemon
making use of the Redfish standard. The Redfish standard is an industry API standard intended for
RESTful management of large numbers of nodes. It is supported by Dell, HPE, Intel, and others.

Redfish uses a pluggable framework architecture with JSON. This makes adding new properties
easier, and also makes isolating, debugging, and fixing issues easier.

Bright Cluster Manager JSON Configuration Templates In Redfish
The JSON configuration is specified per vendor. In Bright Cluster Manager, the files are kept under:

/cm/local/apps/cm-bios-tools/templates/

By default, Bright Cluster Manager ships with the following configuration file templates:

• dell_r730.json

• dell_r740.json

• hpe_dl380.json

Example

[root@bright91 ~]# cd /cm/local/apps/cm-bios-tools/templates/
[root@bright91 templates]# ls -al
total 32
drwxr-xr-x 2 root root 50 Jul 21 20:59 .
drwxr-xr-x 4 root root 34 Jul 21 20:59 ..
-rw-r--r-- 1 root root 5674 Jul 21 20:59 dell_r730.json
-rw-r--r-- 1 root root 5674 Jul 21 20:59 dell_r740.json
-rw-r--r-- 1 root root 23208 Jul 21 20:59 hpe_dl380.json
[root@bright91 templates]# cat dell_r730.json

{
"displayName": "Dell Inc. - PowerEdge R730",
"description": "Dell Inc. - PowerEdge R730 - BIOS settings template - v1.0.0",
"properties": [

© Bright Computing, Inc.

/cm/local/apps/cm-bios-tools/templates/

17.5 BIOS Configuration And Updates 669

{
"name": "BootMode",
"displayName": "Boot Mode",
"description": "This field determines the boot mode of the system.\n\nSelecting 'UEFI' enables\
booting to Unified Extensible Firmware Interface (UEFI) capable operating systems.\n\nSelecting\
'BIOS' (the default) ensures compatibility with operating systems that do not support UEFI.",
"type": "Enumeration",
"options": [

{
"displayName": "BIOS",
"value": "Bios"

},
{
"displayName": "UEFI",
"value": "Uefi"

}
],
"pos": {

"g": 0,
"r": 0,
"o": 0,
"w": 6

}
},
{
"name": "NodeInterleave",
"displayName": "Node Interleaving",
"description": "When set to Enabled, memory interleaving is supported if a symmetric memory\
configuration is installed. When set to Disabled, the system supports Non-Uniform Memory Access\
(NUMA) (asymmetric) memory configurations.\n\nOperating Systems that are NUMA-aware understand the\
distribution of memory in a particular system and can intelligently allocate memory in an optimal\
manner. Operating Systems that are not NUMA aware could allocate memory to a processor that is not\
local resulting in a loss of performance. Node Interleaving should only be enabled for Operating\
Systems that are not NUMA aware.\n\nDefault: Disabled",
"type": "Enumeration",
"options": [

{
"displayName": "Enabled",
"value": "Enabled"

},
{
"displayName": "Disabled",
"value": "Disabled"

}
],
"pos": {

"g": 0,
"r": 0,
"o": 1,
"w": 6

}
},
{
"name": "SnoopMode",
"displayName": "Snoop Mode",

© Bright Computing, Inc.

670 Day-to-day Administration

"description": "Allows tuning of memory performances under different memory bandwidths. The optimal\
Snoop Mode setting is highly dependent on workload type.\n\nEarly Snoop is best used for latency sensitive\
workloads. This setting offers the best balance between workload effects.\n\nHome Snoop is best used for\
NUMA workloads that need maximum local and remote memory bandwidth.\n\nCluster on Die is best used for\
highly NUMA optimized workloads. This setting offers the best case local memory latency, but worst case\
remote latency.\n\nCluster On Die is only available when Node Interleaving is Disabled.\n\nOpportunistic\
Snoop Broadcast, available on select processor models, works well for workloads of mixed NUMA optimization.\
It offers a good balance of latency and bandwidth.\n\nDefault: Early Snoop",
"type": "Enumeration",
"options": [

{
"displayName": "Early Snoop",
"value": "EarlySnoop"

},
...

Bright Cluster Manager BIOS Configuration States And Operations Overview
In Bright Cluster Manager, a BIOS configuration of a node or category can be thought of as being in one
of 4 possible states, with 3 possible operations that apply the changes to the states. This is shown by the
following schematic:

cmsh or commit bios apply reboot
Bright -------------> CMDaemon database -----------> BIOS (pending) -----------> BIOS (live)
View

For example, the cluster administrator might adjust the BIOS configuration for the node or category
in cmsh. The state set within cmsh then becomes a state stored within the CMDaemon database after the
commit operation of cmsh is carried out.

The cluster administrator can then apply the BIOS configuration that is stored in the CMDaemon
database by running the bios apply operation from within cmsh. The BIOS configuration is then taken
up as the “BIOS (pending)”state stored in the BIOS firmware of the node (or category).

Finally, the cluster administrator can implement the BIOS that is stored in the firmware, so that it
runs on the live node (or category). This happens when carrying out a reboot operation for that node
(or category). The BIOS configuration that was a pending BIOS setting then becomes a live BIOS setting.

The details of how these changes can be carried out are explained in the following sections.

Example BIOS Configuration Session In cmsh
In cmsh, the BIOS settings can be viewed, compared, and applied at the device mode level or category
mode level.

The BIOS settings for the various states can alternatively be managed using the cm-bios-manage
utility (page 673). However the cmsh or Bright View front ends to cm-bios-manage are easier to use.

Model: The model must be set for the BIOS settings before other BIOS settings can be managed. If it
is not set, then the status command in biossettings displays an error, as indicated by the following
cmsh session:

Example

[bright91->device[node002]->biossettings]% status
Parameter Configured Pending Live
-------------------------------- ---------- ------- ----
Pending errors:
No model defined

© Bright Computing, Inc.

17.5 BIOS Configuration And Updates 671

It can be set with the help of tab-completion:

Example

[bright91->device[node002]->biossettings]% set model<tab><tab>
dell_r730 hpe_dl380
[bright91->device[node002]->biossettings]% set model hpe_dl380
[bright91->device*[node002*]->biossettings*]% commit

Viewing BIOS Parameters: Each BIOS parameter can now have its value listed and compared by state.
The status command shows a list of the parameters, and their values are displayed for each state.

So, the state columns show:

1. the BIOS parameter as stored in the CMDaemon database (the Configured column),

2. the BIOS parameter as stored on the node itself (the Pending column),

3. the BIOS parameter as implemented on the node itself (the Live column)

Example

[bright91->device[node002]]% biossettings
[bright91->device[node002]->biossettings]% status
Parameter Configured Pending Live
--- -------------- ------- -----------------------------
High Precision Event Timer (HPET) ACPI Support < default > - Enabled
Adjacent Sector Prefetch < default > - Enabled
Boot Mode < default > - UEFI Mode
Boot Order Policy < default > - Retry Boot Order Indefinitely
Channel Interleaving < default > - Enabled
Collaborative Power Control < default > - Enabled
Consistent Device Naming < default > - CDN Support for LOMs and Slots
Custom POST Message < default > -
LLC Prefetch < default > - Disabled
Local/Remote Threshold < default > - Auto
Maximum Memory Bus Frequency < default > - Auto
Maximum PCI Express Speed < default > - Per Port Control
Memory Mirroring Mode < default > - Full Mirror
Memory Patrol Scrubbing < default > - Enabled
Memory Refresh Rate < default > - 1x Refresh
Minimum Processor Idle Power Package C-State < default > - Package C6 (retention) State
Minimum Processor Idle Power Core C-State < default > - C6 State
Mixed Power Supply Reporting < default > - Enabled
Network Boot Retry Support < default > - Enabled
Node Interleaving < default > - Disabled
NUMA Group Size Optimization < default > - Flat
Embedded NVM Express Option ROM < default > - Enabled
NVMe PCIe Resource Padding < default > - Normal
Persistent Memory Address Range Scrub < default > - Enabled
POST Verbose Boot Progress < default > - Disabled
Power-On Delay < default > - No Delay
Server Asset Tag < default > -
Network Boot Retry Count < default > - 20

In the preceding example, each parameter of the configured column has a setting of < default >.
This means that the value for the configured setting is a null value, as achieved by running the clear
command for that setting. A BIOS setting configured with < default > as a value does nothing based

© Bright Computing, Inc.

672 Day-to-day Administration

on that configuration setting when doing BIOS management operations. Thus, for example, the setting
for Boot Mode in the Configured column can only be made to cause a change in the Pending or Live
columns if it takes a value that is not default.

Changing And Checking Changes For BIOS Parameters: Thus, if the states for a node are as follows
for the Boot Mode parameter:

Example

[bright91->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"
Parameter Configured Pending Live
--- ---------------- --------------- ----------------
Boot Mode < default > - UEFI Mode

then have the Live state value change from UEFI Mode to Legacy BIOS Mode:

1. the first step is to change the Configured state:

Example

[bright91->device[node002]->biossettings]% set boot mode<tab><tab>
legacy bios mode uefi mode
[bright91->device[node002]->biossettings]% set boot mode legacy bios mode
[bright91->device*[node002]->biossettings*]% commit
[bright91->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"
Parameter Configured Pending Live
--- ---------------- --------------- ----------------
Boot Mode Legacy BIOS Mode - UEFI Mode

• Beside using the status command within the biossettings submode, the existing BIOS
states that are configured (in CMDaemon) and detected (on the live node) can also be checked
with the bios check command at node or category level:

Example

[bright91->device[node002]->biossettings]% ..
[bright91->device[node002]]% bios check
Result Parameter Configured Detected
---------- -------------------------------- -------------------------------- ----------
different BootMode LegacyBios Uefi

The bios check command shows a result if there is a difference between the configured (CM-
Daemon) and detected (live) configuration.

2. The next step is to apply the configuration change to the Pending BIOS state:

Example

[bright91->device[node002]]% bios apply
Node Result Output Error
---------------- -------- -------------------------------- --------------------------------
node002 good
[bright91->device[node002]]% biossettings
[bright91->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"
Parameter Configured Pending Live
--- ---------------- ---------------- ---------------
Boot Mode Legacy BIOS Mode Legacy BIOS Mode UEFI Mode

© Bright Computing, Inc.

17.5 BIOS Configuration And Updates 673

3. Finally, a reboot causes the Pending value to be made live:

Example

[bright91->device[node002]->biossettings]% ..
[bright91->device[node002]]% reboot
[cluster administrator waits for the node to finish rebooting]

The BIOS change to the Live state is then complete. The Pending and Configured state values are
cleared automatically too, so that the states for the Boot Mode parameter now show:

Example

[bright91->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"
Parameter Configured Pending Live
--- ---------------- --------------- ----------------
Boot Mode < default > - Legacy BIOS Mode

BIOS Configuration Via cm-bios-manage
This section can usually be skipped because the administrator is not expected to use the cm-bios-manage
utility directly.

This is because the easiest way for a cluster administrator to manage the BIOS of a cluster via Redfish
is usually via the cmsh (page 670) or Bright View front ends.

The cm-bios-manage help text is:

[root@bright91 ~]# /cm/local/apps/cm-bios-tools/bin/cm-bios-manage -h
usage: cm-bios-manage [-h]

[-a | -c | -f VENDOR_MODEL | -p VENDOR_MODEL | -P VENDOR_MODEL PROFILE | -t |
-T VENDOR_MODEL] [-l] [-d]

Script used by cmd to manage BIOS settings.

optional arguments:
-h, --help show this help message and exit
-a, --apply apply settings.
-c, --check check defined settings.
-f VENDOR_MODEL, --fetch VENDOR_MODEL

fetch settings based on JSON template of specified model.
-p VENDOR_MODEL, --profiles VENDOR_MODEL

list all profiles for the specified model.
-P VENDOR_MODEL PROFILE, --profile VENDOR_MODEL PROFILE

display profile for the specified model and specified profile.
-t, -m, --vendor-types, --models

list all supported HW models.
-T VENDOR_MODEL, --template VENDOR_MODEL

display JSON template of specified HW model.
-l, --live fetch live settings, instead of pending settings.

used with --fetch and --check options.
-d, --debug enable debug messages.

A session with options might run as follows:

Example

© Bright Computing, Inc.

674 Day-to-day Administration

[root@bright91 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -t
[

"dell_r730",
"hpe_dl380"

]
[root@bright91 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -p hpe_dl380
[

"test"
]
[root@bright91 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -P hpe_dl380 test
{

"test": "xyz"
}
[root@bright91 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -T hpe_dl380
[

{
"displayName": "High Precision Event Timer (HPET) ACPI Support",
"name": "AcpiHpet",
"pos": {
"w": 12,
"r": 0,
"o": 0,
"g": 0

},
...

17.5.2 Updating BIOS Versions
Upgrading the BIOS to a new version involves using the DOS tools that were supplied with the BIOS.
The flash tool and the BIOS image must be copied to a DOS image. The file autoexec.bat should
be altered to invoke the flash utility with the correct parameters. In case of doubt, it can be useful to
boot the DOS image and invoke the BIOS flash tool manually. Once the correct parameters have been
determined, they can be added to the autoexec.bat.

After a BIOS upgrade, the contents of the NVRAM may no longer represent a valid BIOS config-
uration because different BIOS versions may store a configuration in different formats. It is therefore
recommended to also write updated NVRAM settings immediately after flashing a BIOS image.

The next section describes how to boot the DOS image.

Booting DOS Image
To boot the DOS image over the network, it first needs to be copied to software image’s /boot directory,
and must be world-readable.

Example

cp flash.img /cm/images/default-image/boot/bios/flash.img
chmod 644 /cm/images/default-image/boot/bios/flash.img

An entry is added to the PXE boot menu to allow the DOS image to be selected. This can easily
be achieved by modifying the contents of /cm/images/default-image/boot/bios/menu.conf, which
is by default included automatically in the PXE menu. By default, one entry Example is included in the
PXE menu, which is however invisible as a result of the MENU HIDE option. Removing the MENU HIDE
line will make the BIOS flash option selectable. Optionally the LABEL and MENU LABEL may be set to an
appropriate description.

The option MENU DEFAULT may be added to make the BIOS flash image the default boot option. This
is convenient when flashing the BIOS of many nodes.

© Bright Computing, Inc.

/cm/images/default-image/boot/bios/menu.conf

17.6 Hardware Match Check With The hardware-profile Data Producer 675

Example

LABEL FLASHBIOS
KERNEL memdisk
APPEND initrd=bios/flash.img
MENU LABEL ^Flash BIOS

MENU HIDE
MENU DEFAULT

The bios/menu.conf file may contain multiple entries corresponding to several DOS images to allow
for flashing of multiple BIOS versions or configurations.

17.6 Hardware Match Check With The hardware-profile Data Producer
Often a large number of identical nodes may be added to a cluster. In such a case it is a good practice to
check that the hardware matches what is expected. This can be done easily as follows:

1. The new nodes, say node129 to node255, are committed to a newly-created category newbunch as
follows (output truncated):

[root@bright91 ~]# cmsh -c "category add newbunch; commit"
[root@bright91 ~]# for i in {129..255}
> do
> cmsh -c "device; set node00$i category newbunch; commit"
> done
Successfully committed 1 Devices
Successfully committed 1 Devices

The preceding loop is easy to construct, and works, but it is quite slow for larger clusters, due to
the time wasted in opening up cmsh and carrying out a commit command during each iteration of
the for loop.

For larger clusters the offending for loop can be replaced with a more elegant:

(echo device;
for i in {129..255}; do
echo "set node00$i category newbunch"
done
echo "commit") | cmsh

2. The hardware profile of one of the new nodes, say node129, is saved into the category newbunch.
This is done using the node-hardware-profile health check script:

Example

[root@bright91 ~]# /cm/local/apps/cmd/scripts/healthchecks/node-hardware-pr\
ofile -n node129 -s newbunch

The profile is intended to be the reference hardware against which all the other nodes should
match, and is saved under the directory /cm/shared/apps/cmd/hardware-profiles/, and further
under the directory name specified by the -s option, which in this case is newbunch.

3. The hardware-profile data producer (section 13.2.10) can then be enabled, and the sampling
frequency set as follows:

© Bright Computing, Inc.

/cm/shared/apps/cmd/hardware-profiles/

676 Day-to-day Administration

[root@bright91 ~]# cmsh
[bright91]% monitoring setup use hardware-profile
[bright91->monitoring->setup[hardware-profile]]% set interval 600; set disabled no; commit

The hardware-profile data producer should also be set to the category newbunch created in the
earlier step. This can be done by creating a category group within the nodeexecutionfilters
submode. Within that group, categories can be set for where the hardware check is to run. For the
example, it is just run on one category, newbunch:

[bright91->monitoring->setup[hardware-profile]]% nodeexecutionfilters
[bright91->...-profile]->nodeexecutionfilters]% add category filterhwp
[bright91->...-profile]->nodeexecutionfilters*[filterhwp*]]% set categories newbunch
[bright91->...-profile]->nodeexecutionfilters*[filterhwp*]]% commit

4. CMDaemon then automatically alerts the administrator if one of the nodes does not match the
hardware of that category during the first automated check. In the unlikely case that the reference
node is itself faulty, then that will also be obvious because all—or almost all, if more nodes are
faulty—of the other nodes in that category will then be reported “faulty” during the first check.

17.7 Serial Over LAN Console Access
Direct console access to nodes is not always possible. Other possibilities to access the node are:

1. SSH access via an ssh client. This requires that an ssh server runs on the node and that it is
accessible via the network. Access can be via one of the following options:

• a regular SSH client, run from a bash shell

• via an ssh command run from the device mode of cmsh

• via an ssh terminal launched from Bright View via the clickpath:
Devices→Nodes→node→Connect→ssh.

2. Remote shell via CMDaemon. This is possible if CMDaemon is running on the node and accessi-
ble via Bright View or cmsh.

• In Bright View, An interactive root shell session can be started up on a node via the clickpath:
Devices→Nodes→node→Connect→Root shell.
This session is connected to the node via CMDaemon, and runs bash by default.

• For cmsh, in device mode, running the command rshell node001 launches an interactive
bash session connected to node001 via CMDaemon.

3. Connecting via a serial over LAN console. If a serial console is configured, then a serial over LAN
(SOL) console can be accessed from cmsh (rconsole).

Item 3 in the preceding list, SOL access, is a useful low-level access method that is covered next more
thoroughly with:

• some background notes on serial over LAN console access (section 17.7.1)

• the configuration of SOL with Bright View (section 17.7.2)

• the configuration of SOL with cmsh (section 17.7.3)

• the conman SOL logger and viewer (section 17.7.4)

© Bright Computing, Inc.

17.7 Serial Over LAN Console Access 677

17.7.1 Background Notes On Serial Console And SOL
Serial ports are data ports that can usually be enabled or disabled for nodes in the BIOS.

If the serial port of a node is enabled, it can be configured in the node kernel to redirect a console
to the port. The serial port can thus provide what is called serial console access. That is, the console
can be viewed using a terminal software such as minicom (in Linux) or Hyperterminal (in Windows)
on another machine to communicate with the node via the serial port, using a null-modem serial cable.
This has traditionally been used by system administrators when remote access is otherwise disabled, for
example if ssh access is not possible, or if the TCP/IP network parameters are not set up right.

While traditional serial port console access as just described can be useful, it is inconvenient, because
of having to set arcane serial connection parameters, use the relatively slow serial port and use a special
serial cable. Serial Over LAN (SOL) is a more recent development of serial port console access, which
uses well-known TCP/IP networking over a faster Ethernet port, and uses a standard Ethernet cable.
SOL is thus generally more convenient than traditional serial port console access. The serial port DB-9 or
DB-25 connector and its associated 16550 UART chip rarely exist on modern servers that support SOL,
but they are nonetheless usually implied to exist in the BIOS, and can be “enabled” or “disabled” there,
thus enabling or disabling SOL.

SOL is a feature of the BMC (Baseboard Management Controller) for IPMI 2.0 and iLO. For DRAC,
CIMC, and Redfish, SOL via IPMI is used. SOL is enabled by configuring the BMC BIOS. When enabled,
data that is going to the BMC serial port is sent to the BMC LAN port. SOL clients can then process the
LAN data to display the console. As far as the node kernel is concerned, the serial port is still just
behaving like a serial port, so no change needs to be made in kernel configuration in doing whatever
is traditionally done to configure serial connectivity. However, the console is now accessible to the
administrator using the SOL client on the LAN.

SOL thus allows SOL clients on the LAN to access the Linux serial console if

1. SOL is enabled and configured in the BMC BIOS

2. the serial console is enabled and configured in the node kernel

3. the serial port is enabled and configured in the node BIOS

The BMC BIOS, node kernel, and node BIOS therefore all need to be configured to implement SOL
console access.

Background Notes: BMC BIOS Configuration
The BMC BIOS SOL values are usually enabled and configured as a submenu or pop-up menu of the
node BIOS. These settings must be manually made to match the values in Bright Cluster Manager, or
vice versa.

During a factory reset of the node, it is likely that a SOL configuration in the cluster manager will
no longer match the configuration on the node BIOS after the node boots. This is because the cluster
manager cannot configure these. This is in contrast to the IP address and user authentication settings of
the BMC (section 3.7), which the cluster manager is able to configure on reboot.

Background Notes: Node Kernel Configuration
Sections 17.7.2 and 17.7.3 explain how SOL access configuration is set up for the node kernel using
Bright View or cmsh. SOL access configuration on the node kernel is serial access configuration on the
node kernel as far as the system administrator is concerned; the only difference is that the word “serial”
is replaced by “SOL” in Bright Cluster Manager’s Bright View and cmsh front ends to give a cluster
perspective on the configuration.

Background Notes: Node BIOS Configuration
Since BIOS implementations vary, and serial port access is linked with SOL access in various ways by
the BIOS designers, it is not possible to give short and precise details on how to enable and configure

© Bright Computing, Inc.

678 Day-to-day Administration

them. The following rules-of-thumb, if followed carefully, should allow most BMCs to be configured for
SOL access with Bright Cluster Manager:

• Serial access, or remote access via serial ports, should be enabled in the BIOS, if such a setting
exists.

• The node BIOS serial port settings should match the node configuration SOL settings (sec-
tion 17.7.3). That means, items such as “SOL speed”, “SOL Flow Control”, and “SOL port” in
the node configuration must match the equivalent in the node BIOS. Reasonable values are:

– SOL speed: 115200bps. Higher speeds are sometimes possible, but are more likely to have
problems.

– SOL flow control: On. It is however unlikely to cause problems if flow control is off in both.

– SOL port: COM1 (in the BIOS serial port configuration), corresponding to ttyS0 (in the node
kernel serial port configuration). Alternatively, COM2, corresponding to ttyS1. Sometimes,
the BIOS configuration display indicates SOL options with options such as: “COM1 as SOL”,
in which case such an option should be selected for SOL connectivity.

– Terminal type: VT100 or ANSI.

• If there is an option for BIOS console redirection after BIOS POST, it should be disabled.

• If there is an option for BIOS console redirection before or during BIOS POST, it should be enabled.

• The administrator should be aware that the BMC LAN traffic, which includes SOL traffic, can
typically run over a dedicated NIC or over a shared NIC. The choice of dedicated or shared is
toggled, either in the BIOS, or via a physical toggle, or both. If BMC LAN traffic is configured to
run on the shared NIC, then just connecting a SOL client with an Ethernet cable to the dedicated
BMC NIC port shows no console.

• The node BIOS values should manually be made to match the values in Bright Cluster Manager,
or vice versa.

17.7.2 SOL Console Configuration With Bright View
In Bright View, SOL configuration settings can be carried out per image via the clickpath
Provisioning→Software Images→image→Edit→Settings

If the Enable SOL option is set to Yes then the kernel option to make the Linux serial console acces-
sible is used after the node is rebooted.

This means that if the serial port and SOL are enabled for the node hardware, then after the node
reboots the Linux serial console is accessible over the LAN via an SOL client.

If SOL is correctly configured in the BIOS and in the image, then access to the Linux serial console
is possible via the minicom serial client running on the computer (from a bash shell for example), or via
the rconsole serial client running in cmsh.

17.7.3 SOL Console Configuration And Access With cmsh
In cmsh, the serial console kernel option for a software image can be enabled within the softwareimage
mode of cmsh. For the default image of default-image, this can be done as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% softwareimage use default-image

[bright91->softwareimage[default-image]]% set enablesol yes
[bright91->softwareimage*[default-image*]]% commit

© Bright Computing, Inc.

17.7 Serial Over LAN Console Access 679

The SOL settings for a particular image can be seen with the show command:

[bright91->softwareimage[default-image]]% show | grep SOL
Parameter Value
------------------------------ --------------
Enable SOL yes
SOL Flow Control yes
SOL Port ttyS1
SOL Speed 115200

Values can be adjusted if needed with the set command.
On rebooting the node, the new values are used.
To access a node via an SOL client, the node can be specified from within the device mode of cmsh,

and the rconsole command run on cmsh on the head node:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node001
[bright91->device[node001]]% rconsole
screen cleared and the following conman output is displayed:
===
conman
To exit IPMI SOL, type <ENTER> "&" "."
===

<ConMan> Connection to console [node001] opened.

If at this point, there is no further response in conman on the console after pressing the <ENTER> key,
then there is a communication failure, probably due to a misconfigured communication parameter. This
could happen, for example, if the serial port ttyS1 has been set, but the node is connected on ttyS0.
Setting the value of SOL Port to ttyS0 and rebooting the node to pick up the new value, would solve
that issue, so that pressing the <ENTER> key, would display the node console:

Example

Ubuntu 18.04.2 LTS node001 ttyS0

node001 login:

17.7.4 The conman Serial Console Logger And Viewer
In Bright Cluster Manager, the console viewer and logger service conman is used to connect to an SOL
console and log the console output.

If the “Enable SOL” option in Bright View, or if the enablesol in cmsh is enabled for the software
image, then the conman configuration is written out and the conman service is started.

Logging The Serial Console
The data seen at the serial console is then logged via SOL to the head node after reboot. For each node
that has logging enabled, a log file is kept on the head node. For example, for node001 the log file would
be at /var/log/conman/node001.log. To view the logged console output without destroying terminal
settings, using less with the -R option is recommended, as in: less -R /var/log/conman/node001.log.

Using The Serial Console Interactively
Viewing quirk during boot: In contrast to the logs, the console viewer shows the initial booting stages
of the node as it happens. There is however a quirk the system administrator should be aware of:

© Bright Computing, Inc.

/var/log/conman/node001.log

680 Day-to-day Administration

Normally the display on the physical console is a copy of the remote console. However, during boot,
after the remote console has started up and been displaying the physical console for a while, the physical
console display freezes. For the Linux 2.6 kernel series, the freeze occurs just before the ramdisk is run,
and means that the display of the output of the launching init.d services is not seen on the physical
console (figure 17.2).

Figure 17.2: Physical Console Freeze During SOL Access

The freeze is only a freeze of the display, and should not be mistaken for a system freeze. It occurs
because the kernel is configured during that stage to send to only one console, and that console is the
remote console. The remote console continues to display its progress (figure 17.3) during the freeze of
the physical console display.

© Bright Computing, Inc.

17.7 Serial Over LAN Console Access 681

Figure 17.3: Remote Console Continues During SOL Access During Physical Console Freeze

Finally, just before login is displayed, the physical console once more (figure 17.4) starts to display
what is on the remote console (figure 17.5).

© Bright Computing, Inc.

682 Day-to-day Administration

Figure 17.4: Physical Console Resumes After Freeze During SOL Access

Figure 17.5: Remote Console End Display After Boot

The physical console thus misses displaying several parts of the boot progress.

© Bright Computing, Inc.

17.8 Managing Raw Monitoring Data 683

Exit sequence: The conman console viewer session can be exited with the sequence &. (the last entry
in the sequence being a period). Strictly speaking, the &. sequence must actually be preceded by an
<ENTER>.

The console buffer issue when accessing the remote console: A feature of SOL console clients is that
the administrator is not presented with any text prompt from the node that is being accessed. This is
useful in some cases, and can be a problem in others.

An example of the issue is the case where the administrator has already logged into the console and
typed in a command in the console shell, but has no intention of pressing the <ENTER> key until some
other tasks are first carried out. If the connection breaks at this point, then the command typed in is
held in the console shell command buffer, but is not displayed when a remote serial connection is re-
established to the console—the previously entered text is invisible to the client making the connection.
A subsequent <ENTER> would then attempt to execute the command. This is why an <ENTER> is not
sent as the last key sequence during automated SOL access, and it is left to the administrator to enter
the appropriate key strokes.

To avoid commands in the console shell buffer inadvertently being run when taking over the console
remotely, the administrator can start the session with a <CTRL>-u to clear out text in the shell before
pressing <ENTER>.

17.8 Managing Raw Monitoring Data
From Bright Cluster Manager version 8.0 onwards, the raw monitoring data values are stored as binary
data under /var/spool/cmd/monitoring instead of as binary data within MySQL or MariaDB. The
reason behind this change was to significantly increase performance. The monitoring subsystem in
Bright Cluster Manager was thoroughly rewritten for this change.

17.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option
The disk usage by the monitoring subsystem can be viewed using the monitoringinfo command with
the --storage option:

Example

[bright91->device]% monitoringinfo master --storage
Storage Elements Disk size Usage Free disk
--------------------------- ---------- ------------ -------- ------------
Mon::Storage::Engine 1,523 1.00 GiB 1.28% 14.1 GiB
Mon::Storage::Message 1 16.0 MiB 0.000% -
Mon::Storage::RepositoryId 1,528 47.7 KiB 100.0% -

The Engine component stores the raw monitoring data. It grows in 1GB increments each time its
usage reaches 100%.

17.8.2 Estimating The Required Size Of The Storage Device
The final size of the monitoring directory can be estimated with the Bright Cluster Manager script,
cm-bright-monitoring-usage.py.

The size estimate assumes that there are no changes in configuration, such as enabling advanced
metrics for jobs, or increasing the maximum number of labeled entities, or large numbers of running
jobs.

The size estimate value is the maximum value it will take if the cluster runs forever. It is therefore an
over-estimate in practice.

Example

© Bright Computing, Inc.

/var/spool/cmd/monitoring
cm-bright-monitoring-usage.py

684 Day-to-day Administration

[root@bright91 ~]# /cm/local/apps/cmd/scripts/monitoring/cm-bright-monitoring-usage.py
Number of used entities: 6
Number of used measurables: 231
Number of measurables: 231
Number of data producers: 95
Number of consolidators: 2

Current monitoring directory: /var/spool/cmd/monitoring
Monitoring directory size: 1.024 GB
Maximal directory size: 1.125 GB

17.8.3 Moving Monitoring Data Elsewhere
A procedure to move monitoring data from the default /var/spool/cmd/monitoring/ directory to a
new directory is as follows:

1. A new directory in which monitoring should be saved is picked.

The block storage device for the directory should not be a shared DAS (Direct Attached Storage,
such as a locally attached drive) or a NAS (Network Attached Storage, such as NFS or Lustre
which work over a network connection). That is because if there is an outage, then:

• If such a DAS storage becomes unavailable at some time, then CMDaemon assumes that no
monitoring data values exist, and creates an empty data file on the local storage. If the DAS
storage comes back and is mounted again, then it hides the underlying files, which would
lead to discontinuous values and related issues.

• If such a NAS storage is used, then an outage of the NAS can make CMDaemon unresponsive
as it waits for input and output. In addition, when CMDaemon starts with a NAS storage,
and if the NAS is unavailable for some reason, then an inappropriate mount may happen as
in the DAS storage case, leading to discontinuous values and related issues.

2. The MonitoringPath directive (page 796) is given the new directory as its value.

3. CMDaemon is stopped (service cmd stop).

4. The /var/spool/cmd/monitoring/ directory is moved to the new directory.

5. CMDaemon is restarted (service cmd start).

17.8.4 Reducing Monitoring Data By Reducing Samples
Options to reduce the amount of monitoring data gathered include reducing the Maximal age and
Maximal samples for data producers (section 13.4.1) to smaller, but still non-zero values. After
re-initializing the monitoring data, so that existing data is removed, the values reported by the
cm-bright-monitoring-usage.py script (section 17.8.2) then show the new storage estimates for the
monitoring data.

17.8.5 Deleting All Monitoring Data
A procedure to delete all monitoring data from the default /var/spool/cmd/monitoring/ directory is
as follows:

1. The CMDaemon service on all nodes can be stopped by running the following on the active head
node:
pdsh -g all service cmd stop

2. On both head nodes, the monitoring data is removed with:

© Bright Computing, Inc.

/var/spool/cmd/monitoring/
/var/spool/cmd/monitoring/
/var/spool/cmd/monitoring/

17.8 Managing Raw Monitoring Data 685

rm -f /var/spool/cmd/monitoring/*
rm -f /var/spool/cmd/backup/*/var/spool/cmd/monitoring/*

3. On both head nodes, the associated database tables for the CMDaemon user are cleared with a
mySQL session run on each head node.

The CMDaemon database user is cmdaemon by default, but the value can be checked with a grep
on the cmd.conf file:

[root@bright91 ~]# grep ^DBUser /cm/local/apps/cmd/etc/cmd.conf
DBUser = "cmdaemon"

Similarly, the password for the cmdaemon user can be found with a grep as follows:

[root@bright91 ~]# grep ^DBPass /cm/local/apps/cmd/etc/cmd.conf
DBPass = "slarti8813bartfahrt"

The monitoring measurables can then be deleted by running a session on each head node as fol-
lows:

Example

[root@bright91 ~]# mysql -ucmdaemon -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 2909
Server version: 5.5.56-MariaDB MariaDB Server

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use cmdaemon;
Database changed
MariaDB [cmdaemon]> truncate MonitoringMeasurables;
MariaDB [cmdaemon]> truncate MonitoringMeasurableMetrics;
MariaDB [cmdaemon]> truncate MonitoringMeasurableHealthChecks;
MariaDB [cmdaemon]> truncate MonitoringMeasurableEnums;
MariaDB [cmdaemon]> truncate EntityMeasurables;
MariaDB [cmdaemon]> truncate EnumMetricValues;
MariaDB [cmdaemon]> truncate LabeledEntities;
MariaDB [cmdaemon]> truncate JobInformation;
MariaDB [cmdaemon]> exit
repeat on other head node

4. On both head nodes, CMDaemon can then be restarted with:
service cmd start

5. On the active head node, after the command:
cmha status
shows all is OK, the CMDaemon service can be started on all regular nodes again. The OK state
should be achieved in about 15 seconds.

The CMDaemon service is started with, for example:
pdsh -g computenode service cmd start

© Bright Computing, Inc.

686 Day-to-day Administration

17.9 Node Replacement
To replace an existing node with a new node, the node information can be updated via cmsh.

If the new MAC address is known, then it can set that for the node. If the MAC address is not known,
then the existing entry can be cleared.

If the MAC address is not known ahead of time, then the node name for the machine should be
selected when it is provisioning for the first time. The steps for a new node node031 would be as follows:

Example

[root@bright91 ~]# cmsh
[bright91]% device use node0031
if new mac address is known, then:
[bright91->device[node031]]% set mac <new mac address>
else if new mac address is not known:
[bright91->device[node031]]% clear mac
the changed setting in either case must be committed:
[bright91->device[node031]]% commit

If the disk is the same size as the one that is being replaced, and everything else matches up, then
this should be all that needs to be done

There is more information on the node installing system in section 5.4. How to add a large number
of nodes at a time efficiently is described in that section. The methods used can include the newnodes
command of cmsh (page 185) and the Nodes Identification resource of Bright View (page 189).

17.10 Ansible
17.10.1 Introduction
Ansible is a popular automated configuration management software.

A Bright Cluster Manager administrator is expected to have some experience already with Ansible.
The basic concepts are covered in the official Ansible documentation at https://docs.ansible.com/
ansible/latest/user_guide/basic_concepts.html, and further details are accessible from that site
too.

As a reminder, Ansible is designed to administrator groups of machines from an inventory of ma-
chines.

An Ansible module is code, usually in Python, that is executed by Ansible to carry out Ansible tasks,
usually on a remote node. The module returns values.

An Ansible playbook is a YAML file. The file declares a configuration that is to be executed (“the
playbook is followed”) on selected machines. The execution is usually carried out over SSH, by placing
modules on the remote machine.

Traditionally, official Ansible content was obtained as a part of milestone releases of Ansible Engine,
(the Red Hat version of Ansible for the enterprise).

Since Ansible version 2.10, the official way to distribute content is via Ansible content collections.
Collections are a packaged collection of Ansible playbooks, modules, module utilities and plugins. The
collection is a formatted set of tools that users use to create automation in Ansible.

The official Ansible list of collections is at https://docs.ansible.com/ansible/latest/
collections/index.html#list-of-collections. At the time of writing of this section (October 2022)
there were 105 of them.

Picking Up The Bright Ansible Collections
In particular, the web interface at https://galaxy.ansible.com/brightcomputing shows the updated
list of Bright Cluster Manager Ansible collections.

From version 9.1 onward of Bright, the Bright Ansible collection naming scheme has been changed
so that the name now indicates the Bright version number. This now makes it simpler for the cluster
administrator to choose the right Ansible collection.

© Bright Computing, Inc.

https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#inventory
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#modules
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#tasks
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
https://galaxy.ansible.com/brightcomputing

17.10 Ansible 687

For example, to install the latest version of the Bright Ansible collection for a 9.1 cluster, the following
command can now be run:

[root@bright91 ~]# ansible-galaxy collection install brightcomputing.bcm91

17.10.2 A Simple Playbook Example
In this section, a playbook from the Bright Cluster Manager collection is run.

Preparations
To start with, Python is loaded, and Ansible installed:

[root@bright91 ~]# module load python3
[root@bright91 ~]# pip install ansible

Running A Simple Playbook
The directory /cm/local/examples/cmd/ansible has several Bright Cluster Manager Ansible playbook
examples.

The Ansible playbook to add a user can be run. The playbook is simply:

[root@bright91 ~]# cat /cm/local/examples/cmd/ansible/add-user.yaml

- hosts: all

gather_facts: false

tasks:
- name: create test-user
brightcomputing.bcm91.user:

name: test-user
password: test-user-password
profile: readonly

The latest Bright 9.1-compatible version of the Bright Ansible collection is at https://galaxy.
ansible.com/brightcomputing/bcm91. It can be installed with the ansible-galaxy tool from the
galaxy.ansible.com repository directly with:

[root@bright91 ~]# ansible-galaxy collection install brightcomputing.bcm91

Documentation For The Bright Cluster Manager Collection
The brightcomputing.bcm91 documentation for modules can be explored using ansible-doc in the
usual way, using the namespace. For example, for the user module in the brightcomputing.bcm91
namespace, this would be (output truncated):

[root@bright91 ~]# ansible-doc brightcomputing.bcm91.user
> BRIGHTCOMPUTING.BCM91.USER
> (/root/.ansible/collections/ansible_collections/brightcomputing/bcm91/plugins/modules/user.py)

User

ADDED IN: version 9.2.0 of brightcomputing.bcm91

* note: This module has a corresponding action plugin.

OPTIONS (= is mandatory):

- ID
User ID number

© Bright Computing, Inc.

/cm/local/examples/cmd/ansible
https://galaxy.ansible.com/brightcomputing/bcm91
https://galaxy.ansible.com/brightcomputing/bcm91
https://galaxy.ansible.com/brightcomputing/bcm91
https://galaxy.ansible.com/brightcomputing/bcm91

688 Day-to-day Administration

[Default: (null)]
type: str

- cloneFrom
The id or name of the entity that the new entity will be cloned from.
(take effect only at entity creation)
[Default:]
type: str

- cloudJob
Create a certificate with the cloudjob profile for cmjob
[Default: False]
type: bool

- email
...

The list of modules in the brightcomputing.bcm91 collection can be viewed with ansible-doc -l
brightcomputing.bcm91.

Almost all the modules are available as a pair. For such a pair, one module out of the pair is to query
the attributes of the entity being dealt with by the pair, while the other module is to set the attributes.

Running The Ansible Playbook
The add-user playbook can now be run with:

Example

[root@bright91 ~]# ansible-playbook -ilocalhost, /cm/local/examples/cmd/ansible/add-user.yaml

PLAY [all]

TASK [create test-user]

changed: [localhost]

PLAY RECAP

localhost : ok=1 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

The YAML code shows a user should be created after execution of the playbook. If unsure, the
playbook can be run again. This should do no harm since well-formed playbooks are idempotent.

The new list of users can be verified with:

[root@bright91 ~]# cmsh -c "user list"
Name (key) ID (key) Primary group Secondary groups
---------------- ---------------- ---------------- ----------------
cmsupport 1000 cmsupport
test-user 1001 test-user

17.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration
Purposes

The simple playbook in the preceding section has the advantage of being a quick way for the adminis-
trator to be reasonably sure that Ansible is running as it should be.

© Bright Computing, Inc.

17.10 Ansible 689

An adminstrator who is intending to use Ansible is typically going to need to be more familiar with
how Ansible playbooks can be used to define Bright Cluster Manager infrastructure.

This section (17.10.3) and the next (17.10.4) aim to provide this familiarity. They should be a guide
for users when they go about defining their own Bright Cluster Manager infrastructure with Ansible, as
well as a model for how to carry out Ansible tasks for Bright Cluster Manager.

The example session in this section (section 17.10.3) is about a cluster administrator who wishes to
prepare a playbook so that the default image is updated, and then have the cluster set up some new
objects with default values. This is useful for testing out changes in the new objects. The idea being
that the adminstrator has up-to-date nodes with default settings in the new objects, and which work
to begin with. That makes the new objects suitable for demonstrations and for making changes to see
how it affects the standard settings. It also provides the convenience of being able to refer back to the
working defaults in the original objects if things go wrong with the demonstration objects.

The tasks to bring the cluster to the “demo” state are described next.

Cloning The Image
The administrator now clones the default image. The idea being that further changes can be made
on the cloned image later on, with the default image instance remaining unchanged, and available for
comparison.

The YAML example clone-software-image.yaml provided with Bright Cluster Manager can be
displayed and used to carry out the cloning as shown in the following session:

[root@bright91 ~]# cat /cm/local/examples/cmd/ansible/clone-software-image.yaml

- hosts: all

gather_facts: false
tasks:
- name: clone a software image
brightcomputing.bcm91.software_image:

name: cloned-image
cloneFrom: default-image
path: /cm/images/cloned-image

[root@bright91 ~] ansible-playbook -i localhost, /cm/local/examples/cmd/ansible/clone-software-image.yaml

Cloning The Category
A clone of the default category, democategory, can be built with the brightcomputing.bcm91.category
module:

[root@bright91 ~]# cat clonedefaultcat.yaml
- hosts: all

gather_facts: false

tasks:
- name: clone category
brightcomputing.bcm91.category:

name: democategory
cloneFrom: default

[root@bright91 ~] ansible-playbook -i localhost, clonedefaultcat.yaml

Setting The Software Image In The Cloned Category To Be The Cloned Image
The software image in the cloned category can then be set to the cloned-image from earlier with:

[root@bright91 ~]# cat setimageincat.yaml
- hosts: all

gather_facts: false

© Bright Computing, Inc.

690 Day-to-day Administration

tasks:
- name: set image in category
brightcomputing.bcm91.category:

name: democategory
softwareImageProxy:
parentSoftwareImage: cloned-image

[root@bright91 ~] ansible-playbook -i localhost, setimageincat.yaml

Setting The Regular Nodes To Be In The Cloned Category
The regular nodes node001 and node002 can be placed in the cloned category with:

[root@bright91 ~]# cat setcatofnodes.yaml
- hosts: all

gather_facts: false

tasks:
- name: list all nodes
brightcomputing.bcm91.node_info:

format: dict
include_id: false
for_update: true

register: result

- name: set head_node
set_fact:

all_nodes: "{{ result.nodes }}"

- name: assign compute nodes to cloned category
brightcomputing.bcm91.physical_node:

hostname: "{{ item }}"
mac: "{{ all_nodes[item].mac }}"
category: democategory

loop:
- node001
- node002

[root@bright91 ~] ansible-playbook -i localhost, setcatofnodes.yaml

Without using Ansible, and using cmsh directly instead, the preceding placement could be carried
out with:

[root@bright91 ~] for i in {001..002}
do cmsh -c "device use node$i; set category democategory; commit"
done

17.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related
Properties

This section provides a more complicated Bright Ansible collection-based playbook, and elaborates
upon how it is used.

The collection is first shown as a whole in the following section. Then less obvious portions from it
are explained, with the help of number labels, in the sections after that, starting on page 693.

The Collection
The full collection is as follows:

© Bright Computing, Inc.

17.10 Ansible 691

- hosts: all
gather_facts: false
vars:
site:
name: test-site
secret: SECRET

director:
hostname: test-site-director
mac: 00:11:22:33:44:55
eth0_ip: 10.152.0.254
eth1_ip: 10.161.0.254

nodes:
- hostname: edge-node-01

mac: 00:11:22:33:44:01
eth0_ip: 10.161.0.1

- hostname: edge-node-02
mac: 00:11:22:33:44:02
eth0_ip: 10.161.0.2

- hostname: edge-node-03
mac: 00:11:22:33:44:03
eth0_ip: 10.161.0.3

pre_tasks:

- name: set compute nodes for site
set_fact:

site_compute_nodes: "{{nodes | map(attribute='hostname') | list}}"

- name: set nodes for site
set_fact:

site_nodes: "{{[director.hostname] + site_compute_nodes}}"

tasks:
Network creation
- name: create an external network
brightcomputing.bcm91.network:

state: present
name: test-site-external_network
type: EDGE_EXTERNAL
baseAddress: 10.152.0.0
broadcastAddress: 10.152.255.255
netmaskBits: 16
domainName: test-site-external_network
management: true

- name: create an internal network
brightcomputing.bcm91.network:

state: present
type: EDGE_INTERNAL
name: test-site-internal_network
baseAddress: 10.161.0.0

© Bright Computing, Inc.

692 Day-to-day Administration

broadcastAddress: 10.161.255.255
dynamicRangeStart: 10.161.16.0
dynamicRangeEnd: 10.161.19.255
netmaskBits: 16
domainName: test-site-internal_network
management: true
bootable: true

- name: create edge site software image
brightcomputing.bcm91.software_image:

name: my-software-image
path: /cm/images/my-software-image
cloneFrom: default-image

- name: create edge director category
brightcomputing.bcm91.category:

name: edge_director_category
softwareImageProxy:
parentSoftwareImage: my-software-image

fsmounts:
- device: $localnfsserver:/cm/shared

mountpoint: /cm/shared
filesystem: nfs

- device: $localnfsserver:/home
mountpoint: /home
filesystem: nfs

state: present

Edge Director
- name: create director physical node
brightcomputing.bcm91.physical_node:

state: present
hostname: "{{director.hostname}}"
partition: base
interfaces_NetworkPhysicalInterface:
- name: eth0

ip: "{{ director.eth0_ip }}"
network: test-site-external_network

- name: eth1
ip: "{{ director.eth1_ip }}"
network: test-site-internal_network

category: edge_director_category
mac: "{{director.mac}}"
managementNetwork: test-site-external_network
provisioningInterface: eth0
installBootRecord: true
roles_EdgeDirectorRole:
- name: edge_director_role

openTCPPortsOnHeadNode: [636]
externallyVisibleIp: 0.0.0.0
externallyVisibleHeadNodeIp: 0.0.0.0

roles_BootRole:
- name: boot_role

allowRamdiskCreation: true

© Bright Computing, Inc.

17.10 Ansible 693

roles_StorageRole:
- name: storage_role

roles_ProvisioningRole:
- name: provisioning_role

allImages: LOCALDISK

Edge Nodes
- name: create edge nodes
brightcomputing.bcm91.physical_node:

hostname: "{{item.hostname}}"
softwareImageProxy:
parentSoftwareImage: default-image

interfaces_NetworkPhysicalInterface:
- name: eth0

ip: "{{item.eth0_ip}}"
network: test-site-internal_network

category: default
mac: "{{item.mac}}"
managementNetwork: test-site-internal_network
installBootRecord: false
provisioningInterface: eth0
partition: base

loop: "{{ nodes }}"

- name: add test edge site
brightcomputing.bcm91.edge_site:

name: "{{site.name}}"
secret: "{{site.secret}}"
address: Springfield
adminEmail: admin-west@email.com
city: San Francisco
contact: Admin
country: USA
notes: Note about the site
state: present
nodes: "{{site_nodes}}"

Topmost Part
- hosts: all #(1)

gather_facts: false #(2)

1. This is a standard Ansible playbook configuration item. It defines the group or host that the
playbook is run on.

2. Fact gathering is skipped here, because there is no need to use any facts that Ansible usually
gathers pre-playbook-run. As a bonus, skipping it makes execution faster.

Pre_tasks Part
The pre_tasks section could have been made a part of the tasks section. However, making it a separate
section has the benefit of separating real action from simple fact definition:

- name: set compute nodes for site
set_fact:

site_compute_nodes: "{{nodes | map(attribute='hostname') | list}}" #(1)

- name: set nodes for site

© Bright Computing, Inc.

694 Day-to-day Administration

set_fact:
site_nodes: "{{[director.hostname] + site_compute_nodes}}" #(2)

1. In the preceding code, the Ansible templating capability is used to get the list of compute_nodes for
the site that is to be created. The hostname attribute is extracted from every element of the nodes
variable and then transformed into a list, and assigned to the site_compute_nodes variable.

2. The list that is created has all the nodes that are part of the site, which means the compute nodes
as well as the director.

The Tasks Part
External and internal networks configuration: The tasks section starts with networking definitions
(tagged here with (1) and (2)). These are the external and internal networks that are needed for the edge
site that is to be created.

- name: create an external network #(1)
brightcomputing.bcm91.network:

state: present
name: test-site-external_network
type: EDGE_EXTERNAL
baseAddress: 10.152.0.0
broadcastAddress: 10.152.255.255
netmaskBits: 16
domainName: test-site-external_network
management: true

- name: create an internal network #(2)
brightcomputing.bcm91.network:

state: present
type: EDGE_INTERNAL
name: test-site-internal_network
baseAddress: 10.161.0.0
broadcastAddress: 10.161.255.255
dynamicRangeStart: 10.161.16.0
dynamicRangeEnd: 10.161.19.255
netmaskBits: 16
domainName: test-site-internal_network
management: true
bootable: true

The possible values for each entity attribute can be seen by running the ansible-doc command:

Example

$ ansible-doc brightcomputing.bcm91.network

Director creation: A category must exist for the edge director, or must be created before the director
can be created. The following snippet takes care of that:

- name: create edge site software image
brightcomputing.bcm91.software_image:

name: my-software-image
path: /cm/images/my-software-image
cloneFrom: default-image #(1)

- name: create edge director category

© Bright Computing, Inc.

17.10 Ansible 695

brightcomputing.bcm91.category:
name: edge_director_category
softwareImageProxy:
parentSoftwareImage: my-software-image #(2)

fsmounts: #(3)
- device: $localnfsserver:/cm/shared

mountpoint: /cm/shared
filesystem: nfs

- device: $localnfsserver:/home
mountpoint: /home
filesystem: nfs

state: present #(4)

1. The cloneFrom attribute is used to create the new software image from the existing one, to avoid
copying over all the values that are part of the original image. The default-image is used here,
since it is guaranteed to be defined in a new cluster.

The cloneFrom attribute only takes effect when the resource is not defined. This means that if the
software image is already present, then using cloneFrom has no effect. Removing the image allows
it to be re-created again using the cloneFrom attribute.

2. The declared software image (here it is my-software-image) is then used to define the director
category.

3. The edge directory category attributes in the snippet are standard values that are normally as-
signed to a director category that is to be used by director nodes.

4. The default value for state is present, so the task has the same behavior if the state field is left
out.

Values for the director node: The edge director node values can now be set

- name: create director physical node
brightcomputing.bcm91.physical_node:

state: present
hostname: "{{director.hostname}}"
partition: base
interfaces_NetworkPhysicalInterface:
- name: eth0

ip: "{{ director.eth0_ip }}"
network: test-site-external_network

- name: eth1
ip: "{{ director.eth1_ip }}"
network: test-site-internal_network

category: edge_director_category
mac: "{{director.mac}}"
managementNetwork: test-site-external_network
provisioningInterface: eth0
installBootRecord: true
roles_EdgeDirectorRole: # (1)
- name: edge_director_role

openTCPPortsOnHeadNode: [636]
externallyVisibleIp: 0.0.0.0
externallyVisibleHeadNodeIp: 0.0.0.0

roles_BootRole:

© Bright Computing, Inc.

696 Day-to-day Administration

- name: boot_role
allowRamdiskCreation: true

roles_StorageRole:
- name: storage_role

roles_ProvisioningRole:
- name: provisioning_role

allImages: LOCALDISK

In the preceding snippet, values are set for the physical node so that it functions correctly as a director
on an edge site.

1. The director, just like the edge nodes, is just a physical node, with the role EdgeDirectorRole
assigned to it, along with other relevant roles.

The edge (compute) nodes definition:

1. In the following snippet, the looping mechanism defines a physical node that corresponds to each
declared compute node.

Each edge node belongs to the correct network.

- name: create edge nodes
brightcomputing.bcm91.physical_node:

hostname: "{{item.hostname}}"
softwareImageProxy:
parentSoftwareImage: default-image

interfaces_NetworkPhysicalInterface:
- name: eth0

ip: "{{item.eth0_ip}}"
network: test-site-internal_network

category: default
mac: "{{item.mac}}"
managementNetwork: test-site-internal_network
installBootRecord: false
provisioningInterface: eth0
partition: base

loop: "{{ nodes }}" #(1)

Edge site object creation: The last part of the playbook creates the edge site object.

- name: add test edge site
brightcomputing.bcm91.edge_site:

name: "{{site.name}}"
secret: "{{site.secret}}"
address: Springfield
adminEmail: admin-west@email.com
city: San Francisco
contact: Admin
country: USA
notes: Note about the site
state: present
nodes: "{{site_nodes}}" #(1)

The site_nodes variable, defined by the set_fact task, is assigned to the nodes attribute of an edge_site
action.

© Bright Computing, Inc.

17.10 Ansible 697

Running this playbook on a fresh cluster should be enough to create a new edge site with the declared
properties, even if the nodes are not physically present.

The state of the edge site can be checked with cmsh queries. It should be noted that the image creation
step may take a few minutes, depending on how big default-image is.

© Bright Computing, Inc.

18
High Availability

18.0 Introduction
18.0.1 Why Have High Availability?
In a cluster with a single head node, the head node is a single point of failure for the entire cluster. It is
often unacceptable that the failure of a single machine can disrupt the daily operations of a cluster.

18.0.2 High Availability Is Possible On Head Nodes, And Also On Regular Nodes
The high availability (HA) feature of Bright Cluster Manager therefore allows clusters to be set up with
two head nodes configured as a failover pair, with one member of the pair being the active head. The
purpose of this design is to increase availability to beyond that provided by a single head node.

Especially with smaller clusters, it is often convenient to run all services on the head node. However,
an administrator may want or need to run a service on a regular node instead. For example, a workload
manager, or NFS could be run on a regular node. If a service disruption is unacceptable here, too, then
HA can be configured for regular nodes too. For regular nodes, HA is done differently compared with
head nodes.

By default, in this and other chapters, HA is about a head node failover configuration. When it
is otherwise, then it is made explicitly clear in the manuals that it is regular node HA that is being
discussed.

18.0.3 High Availability Usually Uses Shared Storage
HA is typically configured using shared storage (section 18.1.5), such as from an NFS service, which
typically provides the /home directory on the active (section 18.1.1) head, and on the regular nodes.

18.0.4 Organization Of This Chapter
The remaining sections of this chapter are organized as follows:

• HA On Head Nodes

– Section 18.1 describes the concepts behind HA, keeping the Bright Cluster Manager configu-
ration in mind.

– Section 18.2 describes the normal user-interactive way in which the Bright Cluster Manager
implementation of a failover setup is configured.

– Section 18.3 describes the implementation of the Bright Cluster Manager failover setup in a
less user-interactive way, which avoids using the Ncurses dialogs of section 18.2

– Section 18.4 describes how HA is managed with Bright Cluster Manager after it has been set
up.

• HA On Regular Nodes

© Bright Computing, Inc.

700 High Availability

– Section 18.5 describes the concepts behind HA for regular nodes, and how to configure HA
for them.

• HA And Workload Manager Jobs

– Section 18.6 describes the support for workload manager job continuation during HA failover.

18.1 HA Concepts
18.1.1 Primary, Secondary, Active, Passive
Naming: In a cluster with an HA setup, one of the head nodes is named the primary head node and
the other head node is named the secondary head node.

Mode: Under normal operation, one of the two head nodes is in active mode, whereas the other is in
passive mode.

The difference between naming versus mode is illustrated by realizing that while a head node which
is primary always remains primary, the mode that the node is in may change. Thus, the primary head
node can be in passive mode when the secondary is in active mode. Similarly the primary head node
may be in active mode while the secondary head node is in passive mode. As an aside: the definition for
primary in HA for Bright Cluster Manager should not be confused with the definition for primary that
is used by workload managers such as Slurm and PBS Pro when a failover mechanism is configured by
the workload manager (section 7.2.4).

The difference between active and passive is that the active head takes the lead in cluster-related
activity, while the passive follows it. Thus, for example, with MySQL transactions, CMDaemon car-
ries them out with MySQL running on the active, while the passive trails the changes. This naturally
means that the active corresponds to the master, and the passive to the slave, in the MySQL master-slave
replication mode that MySQL is run as.

18.1.2 Monitoring The Active Head Node, Initiating Failover
In HA the passive head node continuously monitors the active head node. If the passive finds that the
active is no longer operational, it will initiate a failover sequence. A failover sequence involves taking over
resources, services and network addresses from the active head node. The goal is to continue providing
services to compute nodes, so that jobs running on these nodes keep running.

18.1.3 Services In Bright Cluster Manager HA Setups
There are several services being offered by a head node to the cluster and its users.

Services Running On Both Head Nodes
One of the design features of the HA implementation in Bright Cluster Manager is that whenever pos-
sible, services are offered on both the active as well as the passive head node. This allows the capacity
of both machines to be used for certain tasks (e.g. provisioning), but it also means that there are fewer
services to move in the event of a failover sequence.

On a default HA setup, the following key services for cluster operations are always running on both
head nodes:

• CMDaemon: providing certain functionality on both head nodes (e.g. provisioning)

• DHCP: load balanced setup

• TFTP: requests answered on demand, under xinetd

• LDAP: running in replication mode (the active head node LDAP database is pulled by the passive)

• MySQL: running in master-slave replication mode (the active head node MySQL database is
pulled by the passive)

© Bright Computing, Inc.

18.1 HA Concepts 701

• NTP

• DNS

• Workload Management: For each of the Slurm, PBS, LSF services, one server is active on one head
node, while the other server is a passive standby on the other head node

When an HA setup is created from a single head node setup, the above services are automatically
reconfigured to run in the HA environment over two head nodes.

Provisioning role runs on both head nodes In addition, both head nodes also take up the provisioning
role, which means that nodes can be provisioned from both head nodes. As the passive head node is then
also provisioned from the active, and the active can switch between primary and secondary, it means
both heads are also given a value for provisioninginterface (section 5.4.7).

For a head node in a single-headed setup, there is no value set by default. For head nodes in an HA
setup, the value of provisioninginterface for each head node is automatically set up by default to the
interface device name over which the image can be received when the head node is passive.

The implications of running a cluster with multiple provisioning nodes are described in detail in
section 5.2. One important aspect described in that section is how to make provisioning nodes aware of
image changes.

From the administrator’s point of view, achieving awareness of image changes for provisioning
nodes in HA clusters is dealt with in the same way as for single-headed clusters. Thus, if using cmsh, the
updateprovisioners command from within softwareimage mode is used, whereas if Bright View is
used, then the clickpath Provisioning→Provisioning requests→Update provisioning nodes can
be followed (section 5.2.4).

Services That Migrate To The Active Node
Although it is possible to configure any service to migrate from one head node to another in the event
of a failover, in a typical HA setup only the following services migrate:

• NFS

• The User Portal

• Workload management: The SGE/UGE server (sgemaster)

18.1.4 Failover Network Topology
A two-head failover network layout is illustrated in figure 18.1.

© Bright Computing, Inc.

702 High Availability

head1 head2

External
network

Internal
network

Virtual shared eth1:0
external IP address

Virtual shared eth0:0
internal IP address

Dedicated failover
network link

eth0 eth0
eth0

eth
0

eth1
eth1

eth1
eth1

10.141.255.254

10.50.0.1
eth2

10.141.255.252

eth2
10.50.0.2

10.1
41.2

55.2
53

10.141.255.254

192.168.32.10

192.168.32.11 192.168.32.12
192.168.32.10______________

Figure 18.1: High Availability: Two-Head Failover Network Topology

In the illustration, the primary head1 is originally a head node before the failover design is imple-
mented. It is originally set up as part of a Type 1 network (section 3.3.9 of the Installation Manual), with
an internal interface eth0, and an external interface eth1.

When the secondary head is connected up to help form the failover system, several changes are
made.

HA: Network Interfaces
Each head node in an HA setup typically has at least an external and an internal network interface, each
configured with an IP address.

In addition, an HA setup uses two virtual IP interfaces, each of which has an associated virtual IP
address: the external shared IP address and the internal shared IP address. These are shared between
the head nodes, but only one head node can host the address and its interface at any time.

In a normal HA setup, a shared IP address has its interface hosted on the head node that is operating
in active mode. On failover, the interface migrates and is hosted on the head node that then becomes
active.

When head nodes are also being used as login nodes, users outside of the cluster are encouraged

© Bright Computing, Inc.

18.1 HA Concepts 703

to use the shared external IP address for connecting to the cluster. This ensures that they always reach
whichever head node is active. Similarly, inside the cluster, nodes use the shared internal IP address
wherever possible for referring to the head node. For example, nodes mount NFS filesystems on the
shared internal IP interface so that the imported filesystems continue to be accessible in the event of a
failover.

Shared interfaces are implemented as alias interfaces on the physical interfaces (e.g. eth0:0). They
are activated when a head node becomes active, and deactivated when a head node becomes passive.

HA: Dedicated Failover Network
In addition to the normal internal and external network interfaces on both head nodes, the two head
nodes are usually also connected using a direct dedicated network connection, eth2 in figure 18.1. This
connection is used between the two head nodes to monitor their counterpart’s availability. It is called a
heartbeat connection because the monitoring is usually done with a regular heartbeat-like signal between
the nodes such as a ping, and if the signal is not detected, it suggests a head node is dead.

To set up a failover network, it is highly recommended to simply run a UTP cable directly from the
NIC of one head node to the NIC of the other, because not using a switch means there is no disruption
of the connection in the event of a switch reset.

18.1.5 Shared Storage
Almost any HA setup also involves some form of shared storage between two head nodes to preserve
state after a failover sequence. For example, user home directories must always be available to the
cluster in the event of a failover.

In the most common HA setup, the following two directories are shared:

• /home, the user home directories

• /cm/shared, the shared tree containing applications and libraries that are made available to the
nodes

The shared filesystems are only available on the active head node. For this reason, it is generally
recommended that users login via the shared IP address, rather than ever using the direct primary
or secondary IP address. End-users logging into the passive head node by direct login may run into
confusing behavior due to unmounted filesystems.

Although Bright Cluster Manager gives the administrator full flexibility on how shared storage is
implemented between two head nodes, there are generally two types of storage used: NAS, DAS.

NAS
In a Network Attached Storage (NAS) setup, both head nodes mount a shared volume from an external
network attached storage device. In the most common situation this would be an NFS server either
inside or outside of the cluster. Lustre or GPFS storage are other popular choices.

Because imported mounts can typically not be re-exported (which is true at least for NFS), nodes
typically mount filesystems directly from the NAS device.

DAS
In a Direct Attached Storage (DAS) setup, both head nodes share access to a block device, often accessed
through a SCSI interface. This could be a disk-array that is connected to both head nodes, or it could be
a block device that is exported by a corporate SAN infrastructure.

Although the block device is visible and can physically be accessed simultaneously on both head
nodes, the filesystem that is used on the block device is typically not suited for simultaneous access.
Simultaneous access to a filesystem from two head nodes must therefore be avoided because it generally
leads to filesystem corruption. Only special purpose parallel filesystems such as GPFS and Lustre are
capable of being accessed by two head nodes simultaneously.

© Bright Computing, Inc.

704 High Availability

Custom Shared Storage With Mount And Unmount Scripts
The cluster management daemon on the two head nodes deals with shared storage through a mount
script and an unmount script. When a head node is moving to active mode, it must acquire the shared
filesystems. To accomplish this, the other head node first needs to relinquish any shared filesystems that
may still be mounted. After this has been done, the head node that is moving to active mode invokes
the mount script which has been configured during the HA setup procedure. When an active head node
is requested to become passive (e.g. because the administrator wants to take it down for maintenance
without disrupting jobs), the unmount script is invoked to release all shared filesystems.

By customizing the mount and unmount scripts, an administrator has full control over the form of
shared storage that is used. Also an administrator can control which filesystems are shared.

Mount scripts paths can be set via cmsh or Bright View (section 18.4.6).

18.1.6 Guaranteeing One Active Head At All Times
Because of the risks involved in accessing a shared filesystem simultaneously from two head nodes, it is
vital that only one head node is in active mode at any time. To guarantee that a head node that is about
to switch to active mode will be the only head node in active mode, it must either receive confirmation
from the other head node that it is in passive mode, or it must make sure that the other head node is
powered off.

What Is A Split Brain?
When the passive head node determines that the active head node is no longer reachable, it must also
take into consideration that there could be a communication disruption between the two head nodes.
Because the “brains” of the cluster are communicatively “split” from each other, this is called a split brain
situation.

Since the normal communication channel between the passive and active may not be working cor-
rectly, it is not possible to use only that channel to determine either an inactive head or a split brain with
certainty. It can only be suspected.

Thus, on the one hand, it is possible that the head node has, for example, completely crashed, be-
coming totally inactive and thereby causing the lack of response. On the other hand, it is also possible
that, for example, a switch between both head nodes is malfunctioning, and that the active head node is
still up and running, looking after the cluster as usual, and that the head node in turn observes that the
passive head node seems to have split away from the network.

Further supporting evidence from the dedicated failover network channel is therefore helpful. Some
administrators find this supporting evidence an acceptable level of certainty, and configure the cluster
to decide to automatically proceed with the failover sequence, while others may instead wish to exam-
ine the situation first before manually proceeding with the failover sequence. The implementation of
automatic vs manual failover is described in section 18.1.7. In either implementation, fencing, described
next, takes place until the formerly active node is powered off.

Going Into Fencing Mode
To deal with a suspected inactive head or split brain, a passive head node that notices that its active
counterpart is no longer responding, first goes into fencing mode from that time onwards. While a node
is fencing, it will try to obtain proof via another method that its counterpart is indeed inactive.

Fencing, incidentally, does not refer to a thrust-and-parry imagery derived from fencing swordplay.
Instead, it refers to the way all subsequent actions are tagged and effectively fenced-off as a backlog of
actions to be carried out later. If the head nodes are able to communicate with each other before the
passive decides that its counterpart is now inactive, then the fenced-off backlog is compared and synced
until the head nodes are once again consistent.

Ensuring That The Unresponsive Active Is Indeed Inactive
There are two ways in which “proof” can be obtained that an unresponsive active is inactive:

1. By asking the administrator to manually confirm that the active head node is indeed powered off

© Bright Computing, Inc.

18.1 HA Concepts 705

2. By performing a power-off operation on the active head node, and then checking that the power
is indeed off to the server. This is also referred to as a STONITH (Shoot The Other Node In The
Head) procedure

It should be noted that just pulling out the power cable is not the same as a power-off operation
(section 18.2.4).

Once a guarantee has been obtained that the active head node is powered off, the fencing head node
(i.e. the previously passive head node) moves to active mode.

Improving The Decision To Initiate A Failover With A Quorum Process
While the preceding approach guarantees one active head, a problem remains.

In situations where the passive head node loses its connectivity to the active head node, but the
active head node is communicating without a problem to the entire cluster, there is no reason to initiate
a failover. It can even result in undesirable situations where the cluster is rendered unusable if, for
example, a passive head node decides to power down an active head node just because the passive
head node is unable to communicate with any of the outside world (except for the PDU feeding the
active head node).

One technique used by Bright Cluster Manager to reduce the chances of a passive head node pow-
ering off an active head node unnecessarily is to have the passive head node carry out a quorum proce-
dure. All nodes in the cluster are asked by the passive node to confirm that they also cannot communi-
cate with the active head node. If more than half of the total number of nodes confirm that they are also
unable to communicate with the active head node, then the passive head node initiates the STONITH
procedure and moves to active mode.

18.1.7 Automatic Vs Manual Failover
Administrators have a choice between creating an HA setup with automatic or manual failover.

• In the case of an automatic failover, an active head node is powered off when it is no longer
responding at all, and a failover sequence is initiated automatically.

• In the case of a manual failover, the administrator is responsible for initiating the failover when the
active head node is no longer responding. No automatic power off is done, so the administrator is
asked to confirm that the previously active node is powered off.

For automatic failover to be possible, power control must be defined for both head nodes. If power
control is defined for the head nodes, then automatic failover is attempted by default.

The administrator may disable automatic failover. In cmsh this is done by setting the
disableautomaticfailover property, which is a part of the HA-related parameters (section 18.4.6):

[root@bright91 ~]# cmsh
[bright91]% partition failover base
[bright91->partition[base]->failover]% set disableautomaticfailover yes
[bright91->partition*[base*]->failover*]% commit

With Bright View it is carried out via the clickpath Cluster→Partition[base]→Settings
→Failover→Disable automatic failover

If no power control has been defined, or if automatic failover has been disabled, or if the power
control mechanism is not working (for example due to inappropriate, broken or missing electronics or
hardware), then a failover sequence must always be initiated manually by the administrator.

Sometimes, if automatic failover is enabled, but the active head is still slightly responsive (the so-
called mostly dead state, described in section 18.4.2), then the failover sequence must also be initiated
manually by the administrator.

© Bright Computing, Inc.

706 High Availability

18.1.8 HA And Cloud Nodes
As far as the administrator is concerned, HA setup remains the same whether a Cluster Extension (Chap-
ter 3 of the Cloudbursting Manual) is configured or not, and whether a Cluster On Demand (Chapter 2 of
the Cloudbursting Manual) is configured or not. Behind the scenes, on failover, any networks associated
with the cloud requirements are taken care of by Bright Cluster Manager.

18.1.9 HA Using Virtual Head Nodes
Two physical servers are typically used for HA configurations. However, each head node can also be a
virtual machine (VM). The use case for this might be to gain experience with an HA configuration.

Failover Network Considerations With HA VMs
With physical head nodes in an HA configuration, the failover network, used for HA heartbeats, is
typically provided by running a network cable directly between the ethernet port on each machine. Not
having even a switch in between is a best practice. Since the head nodes are typically in the same, or
adjacent racks, setting this up is usually straightforward.

With VMs as head nodes in an HA configuration, however, setting up the failover network can be
more complex:

• The cluster administrator may need to consider if HA is truly improved by, for example, connect-
ing the failover network of the physical node to a switch, and then plumbing all that into all the
hypervisors as a vnic (in the case of VMware).

• Often a virtual switch would be used between the virtual head nodes, just because it is often easier.

• Not using a failover network is also an option, just as in the physical case.

• If one head node is on one hypervisor, and another is on a second hypervisor, then a standard
Bright Cluster Manager setup cannot have one head node carry out an automated failover STONITH
because it cannot contact the other hypervisor. So powering off the VM in the other hypervisor
would have to be done manually. An alternative to this, if automated failover is required, is to
create custom power scripts.

Bright Cluster Manager has no specific guidelines for the network configuration of HA with VMs. The
process of configuration is however essentially the same as for a physical node.

Size Considerations With HA VMs
A virtual head node in practice may be configured with fewer CPUs and memory than a physical head
node, just because such configurations are more common options in a VM setup than for a physical
setup, and cheaper to run. However, the storage requirement is the same as for a physical node. The
important requirement is that the head nodes should have sufficient resources for the cluster.

18.2 HA Setup Procedure Using cmha-setup

After installation (Chapter 3 of the Installation Manual) and license activation (Chapter 4 of the Installation
Manual) an administrator may wish to add a new head node, and convert Bright Cluster Manager from
managing an existing single-headed cluster to managing an HA cluster.

Is An HA-Enabled License Required?
To convert a single-headed cluster to an HA cluster, the existing cluster license should first be checked
to see if it allows HA. The verify-license command run with the info option can reveal this in the
MAC address field:

Example

verify-license info | grep ^MAC

© Bright Computing, Inc.

18.2 HA Setup Procedure Using cmha-setup 707

HA-enabled clusters display two MAC addresses in the output. Single-headed clusters show only one.
If an HA license is not present, it should be obtained from the Bright Cluster Manager reseller, and

then be activated and installed (Chapter 4 of the Installation Manual).

Existing User Certificates Become Invalid
Installing the new license means that any existing user certificates will lose their validity (page 62 of the
Installation Manual) on Bright View session logout. This means:

• If LDAP is managed by Bright Cluster Manager, then on logout, new user certificates are gener-
ated, and a new Bright View login session picks up the new certificates automatically.

• For LDAPs other than that of Bright Cluster Manager, the user certificates need to be regenerated.

It is therefore generally good practice to have an HA-enabled license in place before creating user cer-
tificates and profiles if there is an intention of moving from a single-headed to an HA-enabled cluster
later on.

The cmha-setup Utility For Configuring HA
The cmha-setup utility is a special tool that guides the administrator in building an HA setup from a
single head cluster. It is not part of the cluster manager itself, but is a cluster manager tool that interacts
with the cluster management environment by using cmsh to create an HA setup. Although it is in theory
also possible to create an HA setup manually, using either Bright View or cmsh along with additional
steps, this is not supported, and should not be attempted as it is error-prone.

A basic HA setup is created in three stages:

1. Preparation (section 18.2.1): the configuration parameters are set for the shared interface and for
the secondary head node that is about to be installed.

2. Cloning (section 18.2.2): the secondary head node is installed by cloning it from the primary head
node.

3. Shared Storage Setup (section 18.2.3): the method for shared storage is chosen and set up.

An optional extra stage is:

4. Automated Failover Setup (section 18.2.4): Power control to allow automated failover is set up.

18.2.1 Preparation
The following steps prepare the primary head node for the cloning of the secondary. The preparation is
done only on the primary, so that the presence of the secondary is not actually needed during this stage.

0. It is recommended that all nodes except for the primary head node are powered off, in order to
simplify matters. The nodes should in any case be power cycled or powered back on after the
basic HA setup stages (sections 18.2.1-18.2.3, and possibly section 18.2.4) are complete.

1. If bonding (section 3.5) is to be used on the head node used in an HA setup, then it is recommended
to configure and test out bonding properly before carrying out the HA setup.

2. To start the HA setup, the cmha-setup command is run from a root shell on the primary head
node.

3. Setup is selected from the main menu (figure 18.2).

4. Configure is selected from the Setup menu.

5. A license check is done. Only if successful does the setup proceed further. If the cluster has no HA-
enabled license, a new HA-enabled license must first be obtained from the Bright Cluster Manager
reseller, and activated (section 4.3 of the Installation Manual).

© Bright Computing, Inc.

708 High Availability

Figure 18.2: cmha-setup Main menu

6. The virtual shared internal alias interface name and virtual shared internal IP alias address are set.

7. The virtual shared external alias interface name and virtual shared external IP alias address are
set. For the external shared virtual IP address as well as for the external regular IP addresses,
each head node external interface address must be a static IP addresses for the HA configuration.
Attempting to use DHCP for external addresses in HA is not going to work.

8. The host name of the passive is set.

9. Failover network parameters are set. The failover network physical interface should exist, but the
interface need not be up. The network name, its base address, its netmask, and domain name are
set. This is the network used for optional heartbeat monitoring.

10. Failover network interfaces have their name and IP address set for the active and passive nodes.

11. The primary head node may have other network interfaces (e.g. InfiniBand interfaces, a BMC
interface, alias interface on the BMC network). These interfaces are also created on the secondary
head node, but the IP address of the interfaces still need to be configured. For each such interface,
when prompted, a unique IP address for the secondary head node is configured.

12. The network interfaces of the secondary head node are reviewed and can be adjusted as required.
DHCP assignments on external interfaces can be set by setting the value DHCP. If the primary head
node has a DHCP-assigned IP address, then the input field for the secondary head node is set by
default to the value DHCP.

13. A summary screen displays the planned failover configuration. If alterations need to be made,
they can be done via the next step.

14. The administrator is prompted to set the planned failover configuration. If it is not set, the main
menu of cmha-setup is re-displayed.

15. If the option to set the planned failover configuration is chosen, then a password for the MySQL
root user is requested. The procedure continues further after the password is entered.

16. Setup progress for the planned configuration is displayed (figure 18.3).

© Bright Computing, Inc.

18.2 HA Setup Procedure Using cmha-setup 709

Figure 18.3: cmha-setup Setup Progress For Planned Configuration

17. Instructions on what to run on the secondary to clone it from the primary are displayed (fig-
ure 18.4).

Figure 18.4: cmha-setup Instructions To Run On Secondary For Cloning

18.2.2 Failover Cloning (Replacing A Passive Head)
In the IT industry, if an image is made of a computer, then it means making a copy of the drive. In Bright
Cluster Manager the word “image” is normally used for the software that can be placed on regular
nodes. So, Bright Cluster Manager uses the word “cloning” to describe making a very similar, or even
identical, copy of a head node, using the /cm/cm-clone-install command.

There are actually two kinds of cloning possible with the /cm/cm-clone-install command:

• Failover cloning: With this, a passive head node can be created from the active head node. This
uses the --failover option to create a copy that is very similar to the active head node, but with
changes to make it a passive head, ready for failover purposes, and replacing a head that has just
failed.

© Bright Computing, Inc.

710 High Availability

• Re-cloning: An active head node can be created from the active head node. This uses the --clone
option to create an exact copy (re-clone) of the head node. This might be useful if for some reason
the administrator would like to take a snapshot of the head node at that moment. Using this
snapshot to have a plug-in replacement head node—that is, a head node kept aside, and ready to
replace a failed production head node later on—is not recommended, due to how impractical it is
to update the snapshot.

The process described in this section PXE boots the passive from the active, thereby loading a special
rescue image from the active that allows cloning from the active to the passive to take place. This section
is therefore about failover cloning. How to carry out re-cloning is described in section 18.4.8.

After the preparation has been done by configuring parameters as outlined in section 18.2.1, the
failover cloning of the head nodes is carried out. In the cloning instructions that follow, the active node
refers to the primary node and the passive node refers to the secondary node. However this correlation
is only true for when an HA setup is created for the first time, and it is not necessarily true if head nodes
are replaced later on by cloning.

These cloning instructions may also be repeated later on if a passive head node ever needs to be
replaced, for example, if the hardware is defective (section 18.4.8). In that case the active head node can
be either the primary or secondary.

1. The passive head node is PXE booted off the internal cluster network, from the active head node.
It is highly recommended that the active and passive head nodes have identical hardware configu-
rations. The BIOS clock of the head nodes should match and be set to the local time. Typically, the
BIOS of both head nodes is also configured so that a hard disk boot is attempted first, and a PXE
boot is attempted after a hard disk boot failure, leading to the Cluster Manager PXE Environment
menu of options. This menu has a 5s time-out.

2. In the Cluster Manager PXE Environment menu of the node that is to become a clone, before
the 5s time-out, “Start Rescue Environment” is selected to boot the node into a Linux ramdisk
environment.

3. Once the rescue environment has finished booting, a login as root is done. No password is required
(figure 18.5).

4. The following command is executed (figure 18.6) on the node that is to become a failover clone:
/cm/cm–clone–install --failover

When doing a re-clone as in section 18.4.8, instead of a failover clone, then it is the --clone option
that is used instead of the --failover option.

5. When prompted to enter a network interface to use, the interface that was used to boot from
the internal cluster network (e.g. eth0, eth1, ...) is entered. There is often uncertainty about
what interface name corresponds to what physical port. This can be resolved by switching to
another console and using “ethtool -p <interface>”, which makes the NIC corresponding to
the interface blink.

6. If the provided network interface is correct, a root@master’s password prompt appears. The
administrator should enter the root password.

7. An opportunity to view or edit the master disk layout is offered.

8. A confirmation that the contents of the specified disk are to be erased is asked for.

9. The cloning takes place. The “syncing” stage usually takes the most time. Cloning progress can
also be viewed on the active by selecting the “Install Progress” option from the Setup menu.
When viewing progress using this option, the display is automatically updated as changes occur.

© Bright Computing, Inc.

18.2 HA Setup Procedure Using cmha-setup 711

Figure 18.5: Login Screen After Booting Passive Into Rescue Mode From Active

10. After the cloning process has finished, a prompt at the console of the passive asks if a reboot is to
be carried out. A “y” is typed in response to this. The passive node should be set to reboot off its
hard drive. This may require an interrupt during reboot, to enter a change in the BIOS setting, if
for example, the passive node is set to network boot first.

11. Continuing on now on the active head node, Finalize is selected from the Setup menu of
cmha-setup.

12. The MySQL root password is requested. After entering the MySQL password, the progress of the
Finalize procedure is displayed, and the cloning procedure continues.

13. The cloning procedure of cmha-setup pauses to offer the option to reboot the passive. The ad-
ministrator should accept the reboot option. After reboot, the cloning procedure is complete. The
administrator can then go to the main menu and quit from there or go on to configure “Shared
Storage” (section 18.2.3) from there.

A check can already be done at this stage on the failover status of the head nodes with the cmha
command, run from either head node:

Example

[root@bright91 ~]# cmha status
Node Status: running in active master mode

Failover status:
bright91* -> master2

failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

master2 -> bright91*
failoverping [OK]

© Bright Computing, Inc.

712 High Availability

Figure 18.6: Cloning The Passive From The Active Via A Rescue Mode Session

mysql [OK]
ping [OK]
status [OK]

Here, the mysql, ping and status states indicate that HA setup completed successfully. The
failoverping state uses the dedicated failover network route for its checks, and starts working as soon
as the passive head node has been rebooted.

18.2.3 Shared Storage Setup
After cloning the head node (section 18.2.2), the last basic stage of creating an HA setup is setting up
shared storage. The available shared storage forms are NAS and DAS.

NAS
1. In the cmha-setup main menu, the “Shared Storage” option is selected.

2. NAS is selected.

3. The parts of the head node filesystem that are to be copied to the NAS filesystems are selected. By
default, these are /home and /cm/shared as suggested in section 18.1.5. The point in the filesys-
tem where the copying is done is the future mount path to where the NAS will share the shared
filesystem.

An already-configured export that is not shared is disabled in /etc/exports by cmha-setup. This
is done to prevent the creation of stale NFS file handles during a failover. Sharing already-existing
exports is therefore recommended. Storage can however be dealt with in a customized manner
with mount and unmount scripts (page 704).

4. The NFS host name is configured. Also, for each head node filesystem that is to be copied to the
NAS filesystem, there is an associated path on the NAS filesystem where the share is to be served
from. These NFS volume paths are now configured.

5. If the configured NFS filesystems can be correctly mounted from the NAS server, the process of
copying the local filesystems onto the NAS server begins.

© Bright Computing, Inc.

/etc/exports

18.2 HA Setup Procedure Using cmha-setup 713

DAS
A prerequisite to the DAS configuration steps that follow is that the partitions exist on the DAS device
that is to be used for shared storage. These should be created manually if required, before running
cmha-setup.

1. In the cmha-setup main menu, the “Shared Storage” option is selected.

2. DAS is selected.

3. The filesystems that are to be shared over the cluster are selected by the administrator. The filesys-
tems that are shared are typically /cm/shared and /home, but this is not mandatory.

4. The filesystems that are to be shared are assigned DAS partitions by the administrator. For exam-
ple, the administrator may specify these as /dev/sdc1 for /home and /dev/sdd3 for /cm/shared.

5. The administrator can choose to create a filesystem on the proposed DAS device.

• Creating the filesystem on the device means any existing filesystems and files on the device
are wiped during creation.

• Otherwise, the existing filesystem and files on the DAS device remain.

6. A filesystem type is set from a choice of ext3, ext4, xfs.

7. A summary screen is presented showing the proposed changes.

8. After filesystems have been created, the current contents of the shared directories are copied onto
the shared filesystems and the shared filesystems are mounted over the old non-shared filesys-
tems.

9. The administrator should check that the partitions are visible from both head nodes using, for ex-
ample, the fdisk -l command on the device. If the partitions on the DAS are created or modified,
or appear only after the passive head is running due to a hardware-related reason after the passive
head is powered on, then the kernel on the passive head may not have reread the partition table.
A power cycle of the head nodes is recommended if the partitions are not seen properly.

18.2.4 Automated Failover And Relevant Testing
A power-off operation on the active head node server does not mean the same as just pulling out the
power cable to the active head node. These actions typically have different effects, and should therefore
not be confused with each other. During the power-off operation, the BMC remains up. However, in
the case of pulling out the power cable, the BMC is typically turned off too. If the BMC is not reachable,
then it means that verifying that the active head has been terminated is uncertain. This is because the
data that CMDaemon can access implies a logical possibility that there is a network failure rather than
a head node failure. CMDaemon therefore does not carry out an automatic failover if the power cable is
pulled out.

For automatic failover to work, the two head nodes must be able to power off their counterpart. This
is done by setting up power control (Chapter 4).

Testing If Power Control Is Working
The “device power status” command in cmsh can be used to verify that power control is functional:

Example

[master1]% device power status -n mycluster1,mycluster2
apc03:21 [ON] mycluster1
apc04:18 [ON] mycluster2

© Bright Computing, Inc.

/cm/shared
/home
/dev/sdc1
/home
/dev/sdd3
/cm/shared

714 High Availability

Testing The BMC Interface Is Working
If a BMC (Baseboard Management Controller, section 3.7) such as IPMI or iLO is used for power control,
it is possible that a head node is not able to reach its own BMC interface over the network. This is
especially true when no dedicated BMC network port is used. In this case, cmsh -c "device power
status" reports a failure for the active head node. This does not necessarily mean that the head nodes
cannot reach the BMC interface of their counterpart. Pinging a BMC interface can be used to verify that
the BMC interface of a head node is reachable from its counterpart.

Example

Verifying that the BMC interface of mycluster2 is reachable from mycluster1:

[root@mycluster1 ~]# ping -c 1 mycluster2.bmc.cluster
PING mycluster2.bmc.cluster (10.148.255.253) 56(84) bytes of data.
64 bytes from mycluster2.bmc.cluster (10.148.255.253): icmp_seq=1
ttl=64 time=0.033 ms

Verifying that the BMC interface of mycluster1 is reachable from mycluster2:

[root@mycluster2 ~]# ping -c 1 mycluster1.bmc.cluster
PING mycluster1.bmc.cluster (10.148.255.254) 56(84) bytes of data.
64 bytes from mycluster1.bmc.cluster (10.148.255.254): icmp_seq=1
ttl=64 time=0.028 ms

Testing Automated Failover Against A Simulated Crash
A normal (graceful) shutdown of an active head node, does not cause the passive to become active,
because HA assumes a graceful failover means there is no intention to trigger a failover. To carry out
testing of an HA setup with automated failover, it is therefore useful to simulate a kernel crash on one
of the head nodes. The following command crashes a head node instantly:

echo c > /proc/sysrq-trigger

After the active head node freezes as a result of the crash, the passive head node powers off the ma-
chine that has frozen and switches to active mode. A hard crash like this can cause a database replication
inconsistency when the crashed head node is brought back up and running again, this time passively,
alongside the node that took over. This is normally indicated by a FAILED status for the output of cmha
status for MySQL (section 18.4). Database administration with the dbreclone command (section 18.4)
may therefore be needed to synchronize the databases on both head nodes to a consistent state. Because
dbreclone is a resource-intensive utility, it is best used during a period when there are few or no users.
It is generally only used by administrators when they are instructed to do so by Bright support.

A passive node can also be made active without a crash of the active-until-then node, by using the
“cmha makeactive” command on the passive (section 18.4.2). Manually running this is not needed in
the case of a head node crash in a cluster where power management has been set up for the head nodes,
and the automatic failover setting is not disabled.

18.3 Running cmha-setup Without Ncurses, Using An XML Specification
18.3.1 Why Run It Without Ncurses?
The text-based Ncurses GUI for cmha-setup is normally how administrators should set up a failover
configuration.

The express mode of cmha-setup allows an administrator to skip the GUI. This is useful, for example,
for scripting purposes and speeding deployment. A further convenience is that this mode uses a human-
editable XML file to specify the network and storage definitions for failover.

Running cmha-setup without the GUI still requires some user intervention, such as entering the
root password for MySQL. The intervention required is scriptable with, for example, Expect, and is
minimized if relevant options are specified for cmha-setup from the -x options.

© Bright Computing, Inc.

18.3 Running cmha-setup Without Ncurses, Using An XML Specification 715

18.3.2 The Syntax Of cmha-setup Without Ncurses
The express mode (-x) options are displayed when “cmha-setup -h” is run. The syntax of the -x op-
tions is indicated by:

cmha-setup [-x -c <configfile> [-s <type>] <-i|-f[-r]> [-p <mysqlrootpassword>]]

The -x options are:

• -c|--config <configfile>: specifies the location of <configfile>, which is the failover configuration
XML file for cmha-setup. The file stores the values to be used for setting up a failover head node.
The recommended location is at /cm/local/apps/cluster-tools/ha/conf/failoverconf.xml.

• -i|--initialize: prepares a failover setup by setting values in the CMDaemon database to the
values specified in the configuration file. This corresponds to section 18.2.1. The administrator is
prompted for the MySQL root password unless the -p option is used. The -i option of the script
then updates the interfaces in the database, and clones the head node in the CMDaemon database.
After this option in the script is done, the administrator normally carries clones the passive node
from the active, as described in steps 1 to 10 of section 18.2.2.

• -f|--finalize: After the passive node is cloned as described in steps 1 to 10 of section 18.2.2,
the finalize option is run on the active node to run the non-GUI finalize procedure. This is the
non-GUI version of steps 11 to 13 of section 18.2.2.

◦ -r|--finalizereboot: makes the passive reboot after the finalize step completes.

• -s|--sharedstorage <type>: specifies the shared storage <type> out of a choice of nas, das.

• -p|--pass <mysqlrootpassword>: specifies the MySQL root password. Leaving this out means the
administrator is prompted to type in the password during a run of the cmha-setup script when
using the -x options.

There is little attempt at validation with the express mode, and invalid entries can cause the com-
mand to hang.

18.3.3 Example cmha-setup Run Without Ncurses
Preparation And Initialization:
After shutting down all nodes except for the active head node, a configuration is prepared by the ad-
ministrator in /cm/local/apps/cluster-tools/ha/conf/failoverconf.xml. The administrator then
runs cmha-setup with the initialization option on the active:

[root@bright91 ~]# cd /cm/local/apps/cluster-tools/ha/conf
[root@bright91 conf]# cmha-setup -x -c failoverconf.xml -i
Please enter the mysql root password:

Initializing failover setup on master [OK]
Updating shared internal interface [OK]
Updating shared external interface [OK]

Updating extra shared internal interfaces [OK]
Updating failover network [OK]

Updating primary master interfaces [OK]
Cloning master node [OK]

Updating secondary master interfaces [OK]
Updating failover network interfaces [OK]

Updating Failover Object [OK]

The preceding corresponds to the steps in section 18.2.1.

© Bright Computing, Inc.

/cm/local/apps/cluster-tools/ha/conf/failoverconf.xml
/cm/local/apps/cluster-tools/ha/conf/failoverconf.xml

716 High Availability

PXE Booting And Cloning The Passive:
The passive head node is then booted up via PXE and cloned as described in steps 1 to 10 of sec-
tion 18.2.2.

Finalizing On The Active And Rebooting The Passive:
Then, back on the active head node the administrator continues the session there, by running the final-
ization option with a reboot option:

[root@bright91 conf]# cmha-setup -x -c failoverconf.xml -f -r
Please enter the mysql root password:

Updating secondary master mac address [OK]
Initializing failover setup on master2 [OK]

Cloning database [OK]
Update DB permissions [OK]

Checking for dedicated failover network [OK]
A reboot has been issued on master2

The preceding corresponds to steps 11 to 13 of section 18.2.2.

Adding Storage:
Continuing with the session on the active, setting up a shared storage could be done with:

[root@bright91 conf]# cmha-setup -x -c failoverconf.xml -s nas

The preceding corresponds to carrying out the NAS procedure of section 18.2.3.

18.4 Managing HA
Once an HA setup has been created, the tools in this section can be used to manage the HA aspects of
the cluster.

18.4.1 Changing An Existing Failover Configuration
Changing an existing failover configuration is usually done most simply by running through the HA
setup procedure of section 18.2 again, with one exception. The exception is that the existing failover
configuration must be removed by using the “Undo Failover” menu option between steps 3 and 4 of
the procedure described in section 18.2.1.

18.4.2 cmha Utility
A major command-line utility for interacting with the HA subsystem, for regular nodes as well as for
head nodes, is cmha. It is part of the Bright Cluster Manager cluster-tools package. Its usage infor-
mation is:

[root@mycluster1 ~]# cmha
Usage: cmha < status | makeactive [node] | dbreclone <host> |

nodestatus [name] >

status Retrieve and print high availability status
of head nodes.

nodestatus [groups] Retrieve and print high availability status
of failover [groups] (comma separated list of group
names. If no argument is given, then the status of
all available failover groups is printed.

makeactive [node] Make the current head node the active head node. If

© Bright Computing, Inc.

18.4 Managing HA 717

[node] is specified, then make [node] the active
node in the failover group that [node] is part of.

dbreclone <host> Clone MySQL database from this head node to
<host> (hostname of failover head node).

Some of the information and functions of cmha can also be carried out via CMDaemon:

• For cmsh, the following commands can be run from within the base object in partition mode:

– For the head node, the status and makeactive commands are run from within the failover
submode.

– For regular nodes the nodestatus and makeactive [node] commands are run from within
the failovergroups submode.

The dbreclone option cannot be carried out in Bright View or cmsh because it requires stopping
CMDaemon.

The cmha options status, makeactive, and dbreclone are looked at in greater detail next:

cmha status: Querying HA Status
Information on the failover status is displayed thus:

Example

[root@mycluster1 ~]# cmha status
Node Status: running in active master mode

Failover status:
mycluster1* -> mycluster2
failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

mycluster2 -> mycluster1*
failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

The * in the output indicates the head node which is currently active. The status output shows 4
aspects of the HA subsystem from the perspective of each head node:

HA Status Description

failoverping the other head node is reachable via the dedicated failover network. This failover
ping uses the failover route instead of the internal net route. It uses ICMP ping

mysql MySQL replication status

ping the other head node is reachable over the primary management network. It uses
ICMP ping.

status CMDaemon running on the other head node responds to REST calls

By default, Bright Cluster Manager prepares to carry out the failover sequence (the sequence that
includes a STONITH) when all three of ping, failoverping and status are not OK on a head node. If
these three are not OK, then the active node is all dead according to cmha. One way of initiating failover
is thus by causing a system crash (section 18.2.4).

© Bright Computing, Inc.

718 High Availability

It can typically take about 30s for the cmha status command to output its findings in the case of a
recently crashed head node.

cmha makeactive: Initiate Failover
If automatic failover is enabled (section 18.1.7), then the failover sequence attempts to complete auto-
matically if power management is working properly, and the cmha status shows ping, failoverping
and status as failed.

If automatic failover is disabled, then a manual failover operation must be executed to have a failover
operation take place. A manual failover operation can be carried out with the “cmha makeactive” com-
mand:

Example

To initiate a failover manually:

[root@mycluster2 ~]# cmha makeactive
Proceeding will initiate a failover sequence which will make this node
(mycluster2) the active master.

Are you sure ? [Y/N]
y
Your session ended because: CMDaemon failover, no longer master
mycluster2 became active master, reconnecting your cmsh ...

On successful execution of the command, the former active head node simply continues to run as a
passive head node.

The cmha makeactive command assumes both head nodes have no problems preventing the execu-
tion of the command.

One possible problem that can halt manual failover is if nodes are being provisioned by the pro-
visioning subsystem at that time (section 5.2.4). In that case, provisioning should be cancelled by the
cluster administrator before the cmha makeactive command can continue, for example, with cmsh -c
"softwareimage cancelprovisioningrequest -a" (page 202).

For automatic failover no such intervention takes place—provisioning requests are killed when the
active head node is powered off.

Another slightly similar problem that can occur for automatic failover, as well as manual failover,
is the “mostly dead” edge case. This case requires careful consideration before the Are you sure ?
prompt is answered by the cluster adminstrator.

cmha makeactive edge case—the mostly dead active:

• For a manual failover operation, if the execution of the cmha makeactive command has problems,
then it can mean that there is a problem with the initially active head node being in a sluggish
state. That is, neither fully functioning, nor all dead. The active head node is thus in a state that is
still powered on, but what can be called mostly dead. Mostly dead means slightly alive (not all of
ping, failoverping, and status are FAILED), while all dead means there is only one thing that
can sensibly be done to make sure the cluster keeps running—that is, to make the old passive the
new active.

Making an old passive the new active is only safe if the old active is guaranteed to not come back
as an active head node. This guarantee is set by a STONITH (page 705) for the old active head
node, and results in a former active that is now all dead. STONITH thus guarantees that head
nodes are not in conflict about their active and passive states. STONITH can however still fail in
achieving a clean shutdown when acting on a mostly dead active head node, which can result in
unclean filesystem or database states.

© Bright Computing, Inc.

18.4 Managing HA 719

Thus, the mostly dead active head node may still be in the middle of a transaction, so that shut-
ting it down may cause filesystem or database corruption. Making the passive node also active
then in this case carries risks such as mounting filesystems accidentally on both head nodes, or
carrying out database transactions on both nodes. This can also result in filesystem and database
corruption.

It is therefore left to the administrator to examine the situation for corruption risk. The decision is
either to power off a mostly dead head node, i.e. STONITH to make sure it is all dead, or whether
to wait for a recovery to take place. When carrying out a STONITH on the mostly dead active head
node, the administrator must power it off before the passive becomes active for a manual failover
to take place with minimal errors. The cmha dbreclone option may still be needed to restore a
corrupted database after such a power off, after bringing the system back up.

• For an automated failover configuration, powering off the mostly dead active head node is not
carried out automatically due to the risk of filesystem and database corruption. A mostly dead
active node with automatic failover configuration therefore stays mostly dead either until it recov-
ers, or until the administrator decides to do a STONITH manually to ensure it is all dead. Here,
too, the cmha dbreclone option may still be needed to restore a corrupted database after such a
power off, after bringing the system back up.

cmha dbreclone: Cloning The CMDaemon Database
The dbreclone option of cmha clones the CMDaemon state database from the head node on which cmha
runs to the head node specified after the option. It is normally run in order to clone the database from the
active head node to the passive—running it from the passive to the active can cause a loss of database
entries. Running the dbreclone option can be used to retrieve the MySQL CMDaemon state database
tables, if they are, for example, unsalvageably corrupted on the destination node, and the source node
has a known good database state. Because it is resource intensive, it is best run when there are few or
no users. It is typically only used by administrators after being instructed to do so by Bright support.

Example

[root@bright91 ~]# cmha status
Node Status: running in active master mode

Failover status:
bright91* -> head2

failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

head2 -> bright91*
failoverping [OK]
mysql [FAILED] (11)
ping [OK]
status [OK]

[root@bright91 ~]# cmha dbreclone head2
Proceeding will cause the contents of the cmdaemon state database on he\
ad2 to be resynchronized from this node (i.e. bright91 -> head2)

Are you sure ? [Y/N]
Y
Waiting for CMDaemon (3113) to terminate...
[OK]
Waiting for CMDaemon (7967) to terminate...

[OK]

© Bright Computing, Inc.

720 High Availability

cmdaemon.dump.8853.sql 100% 253KB 252.9KB/s 00:00
slurmacctdb.dump.8853.sql 100% 11KB 10.7KB/s 00:00
Waiting for CMDaemon to start... [OK]
Waiting for CMDaemon to start...[OK]
[root@bright91 ~]# cmha status
Node Status: running in active master mode

Failover status:
bright91* -> head2

failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

head2 -> bright91*
failoverping [OK]
mysql [OK]
ping [OK]
status [OK]

18.4.3 States
The state a head node is in can be determined in three different ways:

1 By looking at the message being displayed at login time.

Example

Node Status: running in active master mode

2 By executing cmha status.

Example

[root@mycluster ~]# cmha status
Node Status: running in active master mode
...

3 By examining /var/spool/cmd/state.

There are a number of possible states that a head node can be in:

State Description

INIT Head node is initializing

FENCING Head node is trying to determine whether it should try to become
active

ACTIVE Head node is in active mode

PASSIVE Head node is in passive mode

BECOMEACTIVE Head node is in the process of becoming active

BECOMEPASSIVE Head node is in the process of becoming passive

UNABLETOBECOMEACTIVE Head node tried to become active but failed

ERROR Head node is in error state due to unknown problem

© Bright Computing, Inc.

18.4 Managing HA 721

Especially when developing custom mount and unmount scripts, it is quite possible for a head node to
go into the UNABLETOBECOMEACTIVE state. This generally means that the mount and/or unmount script
are not working properly or are returning incorrect exit codes. To debug these situations, it is helpful
to examine the output in /var/log/cmdaemon. The “cmha makeactive” shell command can be used to
instruct a head node to become active again.

18.4.4 Failover Action Decisions
A table summarizing the scenarios that decide when a passive head should take over is helpful:

Event on active
Reaction

Reason
on passive

Reboot Nothing Event is usually an administrator action action.
To make the passive turn active, an administra-
tor would run “cmha makeactive” on it.

Shutdown Nothing As above.

Unusably sluggish or
freezing system by state
pingable with ICMP
packets

Nothing 1. Active may still unfreeze. 2. Shared filesys-
tems may still be in use by the active. Concurrent
use by the passive taking over therefore risks
corruption. 3. Mostly dead head can be pow-
ered off by administrator after examining situa-
tion (section 18.4.2).

Become passive in
response to “cmha
makeactive” run on
passive

Become active when
former active becomes
passive

As ordered by administrator

Active dies Quorum called, may
lead to passive becom-
ing new active

Confirms if active head is dead according to
other nodes too. If so, then a “power off” com-
mand is sent to it. If the command is succesful,
the passive head becomes the new active head.

18.4.5 Keeping Head Nodes In Sync
What Should Be Kept In Sync?

• It is a best practice to carry out a manual updateprovisioners command on the active head node,
immediately after a regular node software image change has been made.

A successful run of the updateprovisioners command means that in the event of a failover, the
formerly passive head node already has up-to-date regular node software images, which makes
further administration simpler.

The background behind why it is done can be skipped, but it is as follows:

An image on the passive head node, which is a node with a provisioning role, is treated as an
image on any other provisioning node. This means that it eventually synchronizes to a changed
image on the active head node. By default the synchronization happens at midnight, which means
images may remain out-of-date for up to 24 hours. The images being in an out-of-date state should

© Bright Computing, Inc.

722 High Availability

be viewed as normal, because the timeout period associated with being in an updated state is only
5 minutes by default.

Since the passive head is a provisioning node, it also means that an attempt to provision regular
nodes from it with the changed image will not succeed if it happens too soon after the image
change event on the active head. “Too soon” means within the autoupdate period defined by the
parameter provisioningnodeautoupdatetimeout (page 169).

If on the other hand the autoupdate timeout is exceeded, then by itself this does not lead to the
image on the passive head node becoming synchronized with an image from the active head node.
Such synchronization only takes place as part of regular housekeeping (at midnight by default).
Or it takes place if a regular node sends a provisioning request to the passive head node, which
can take place during the reboot of the regular node.

This means that the provisioningstatus command commonly shows that the passive head node
image is “out of date”. This may sound alarming to a cluster administrator. However, before the
image gets to be used, it is synced, so in practice the “out of date” warning is not something to be
concerned about.

The synchronization logic just described is followed to reduce the load on the head node. The only
pitfall in this is the case when an administrator changes an image on the active head node, and then
soon after that the passive head node becomes active as part of a failover, without the images hav-
ing had enough time to synchronize. In that case the formerly passive node ends up with out-of-
date software images. That is why it is a best practice to carry out a manual updateprovisioners
command on the active head immediately after a regular node software image change has been
made.

• Changes controlled by CMDaemon are synchronized automatically between the CMDaemon
databases to the required extent during failover to the active node.

If the output of cmha status is not OK, then it typically means that the CMDaemon databases
of the active head node and the passive head node are not synchronized. This situation may be
resolved by waiting, typically for several minutes. If the status does not resolve on its own, then
this indicates a more serious problem which should be investigated further.

• By default, software images are not stored on shared storage, and are synchronized between the
head nodes by CMDaemon.

However, if images are kept on shared storage, then, within the provisioning role (section 5.2.1),
the image-related parameters such as allimages, localimages, and sharedimages, must be ad-
justed according to the configuration used.

• If filesystem changes are made on an active head node without using CMDaemon (cmsh or Bright
View), and if the changes are outside the shared filesystem, then these changes should normally
also be made by the administrator on the passive head node. For example:

– RPM installations/updates (section 12.2)

– Applications installed locally

– Files (such as drivers or values) placed in the /cm/node-installer/ directory and referred
to by initialize (section 5.4.5) and finalize scripts (section 5.4.11)

– Any other configuration file changes outside of the shared filesystems

The reason behind not syncing everything automatically is to guarantee that a change that breaks a
head node is not accidentally propagated to the passive. This way there is always a running head node.
Otherwise, if automated syncing is used, there is a risk of ending up with two broken head nodes at the
same time.

© Bright Computing, Inc.

18.4 Managing HA 723

If the cluster is being built on bare metal, then a sensible way to minimize the amount of work to
be done is to install a single head cluster first. All packages and applications should then be placed,
updated and configured on that single head node until it is in a satisfactory state. Only then should
HA be set up as described in section 18.2, where the cloning of data from the initial head node to the
secondary is described. The result is then that the secondary node gets a well-prepared system with the
effort to prepare it having only been carried out once.

Avoiding Encounters With The Old Filesystems
It should be noted that when the shared storage setup is made, the contents of the shared directories (at
that time) are copied over from the local filesystem to the newly created shared filesystems. The shared
filesystems are then mounted on the mountpoints on the active head node, effectively hiding the local
contents.

Since the shared filesystems are only mounted on the active machine, the old filesystem contents
remain visible when a head node is operating in passive mode. Logging into the passive head node
may thus confuse users and is therefore best avoided.

Updating Services On The Head Nodes And Associated Syncing
The services running on the head nodes described in section 18.1.3 should also have their packages
updated on both head nodes.

For the services that run simultaneously on the head nodes, such as CMDaemon, DHCP, LDAP,
MySQL, NTP and DNS, their packages should be updated on both head nodes at about the same time.
A suggested procedure is to stop the service on both nodes around the same time, update the service
and ensure that it is restarted.

The provisioning node service is part of the CMDaemon package. The service updates images from
the active head node to all provisioning nodes, including the passive head node, if the administrator
runs the command to update provisioners. How to update provisioners is described in section 18.1.3.

For services that migrate across head nodes during failover, such as NFS, or the sgemaster it is
recommended (but not mandated) to carry out this procedure: the package on the passive node (called
the secondary for the sake of this example) is updated to check for any broken package behavior. The
secondary is then made active with cmha makeactive (section 18.4.2), which automatically migrates
users cleanly off from being serviced by the active to the secondary. The package is then updated on
the primary. If desired, the primary can then be made active again. The reason for recommending this
procedure for services that migrate is that, in case the update has issues, the situation can be inspected
somewhat better with this procedure.

18.4.6 High Availability Parameters
There are several HA-related parameters that can be tuned. Accessing these via Bright View is described
in section 18.4.6. In cmsh the settings can be accessed in the failover submode of the base partition.

Example

[mycluster1]% partition failover base
[mycluster1->partition[base]->failover]% show
Parameter Value
------------------------------ ----------------------------
Dead time 10
Disable automatic failover no
Failover network failovernet
Init dead 30
Keep alive 1
Mount script
Postfailover script
Prefailover script

© Bright Computing, Inc.

724 High Availability

Quorum time 60
Revision
Secondary headnode
Unmount script
Warn time 5

Dead time
When a passive head node determines that the active head node is not responding to any of the periodic
checks for a period longer than the Dead time seconds, the active head node is considered dead and
a quorum procedure starts. Depending on the outcome of the quorum, a failover sequence may be
initiated.

Disable automatic failover
Setting this to yes disables automated failover. Section 18.1.7 covers this further.

Failover network
The Failover network setting determines which network is used as a dedicated network for the
failoverping heartbeat check. The heartbeat connection is normally a direct cable from a NIC on one
head node to a NIC on the other head node. The network can be selected via tab-completion sugges-
tions. By default, without a dedicated failover network, the possibilities are nothing, externalnet and
internalnet.

Init dead
When head nodes are booted simultaneously, the standard Dead time might be too strict if one head
node requires a bit more time for booting than the other. For this reason, when a head node boots (or
more exactly, when the cluster management daemon is starting), a time of Init dead seconds is used
rather than the Dead time to determine whether the other node is alive.

Keep alive
The Keep alive value is the time interval, in seconds, over which the passive head node carries out a
check that the active head node is still up. If a dedicated failover network is used, 3 separate heartbeat
checks are carried out to determine if a head node is reachable.

Mount script
The script pointed to by the Mount script setting is responsible for bringing up and mounting the
shared filesystems.

Postfailover script
The script pointed to by the Postfailover script setting is run by cmdaemon on both head nodes. The
script first runs on the head that is now passive, then on the head that is now active. It runs as soon as
the former passive has become active. It is typically used by scripts mounting an NFS shared storage so
that no more than one head node exports a filesystem to NFS clients at a time.

Prefailover script
The script pointed to by the Prefailover script setting is run by cmdaemon on both head nodes. The
script first runs on the (still) active head, then on the (still) passive head. It runs as soon as the decision
for the passive to become active has been made, but before the changes are implemented. It is typically
used by scripts unmounting an NFS shared storage so that no more than one head node exports a
filesystem to NFS clients at a time. When unmounting shared storage, it is very important to ensure
that a non-zero exit code is returned if unmounting has problems, or the storage may become mounted
twice during the Postfailover script stage, resulting in data corruption.

© Bright Computing, Inc.

18.4 Managing HA 725

Quorum time
When a node is asked what head nodes it is able to reach over the network, the node has Quorum time
seconds to respond. If a node does not respond to a call for quorum within that time, it is no longer
considered for the results of the quorum check.

Secondary headnode
The Secondary headnode setting is used to define the secondary head node to the cluster.

Unmount script
The script pointed to by the Unmount script setting is responsible for bringing down and unmounting
the shared filesystems.

Warn time
When a passive head node determines that the active head node is not responding to any of the periodic
checks for a period longer than Warn time seconds, a warning is logged that the active head node might
become unreachable soon.

18.4.7 Viewing Failover Via Bright View
Accessing cmsh HA Parameters (partition failover base) Via Bright View
The Bright View equivalents of the cmsh HA parameters in section 18.4.6 are accessed from the clickpath
Cluster→Partition[base]→Settings
→Failover

18.4.8 Re-cloning A Head Node
Some time after an HA setup has gone into production, it may become necessary to re-install one of the
head nodes, for example if one of the head nodes were replaced due to hardware failure.

To re-clone a head node from an existing active head node, the head node hardware that is going to
become the clone can be PXE-booted into the rescue environment, as described in section 18.2.2. Instead
of running the cm-clone-install --failover command as in that section, the following command can
be run:

[root@bright91 ~]# /cm/cm-clone-install --clone --hostname=<new host name>

The new host name can be the same as the original, because the clone is not run at the same time
as the original anyway. The clone should not be run after cloning on the same network segment as the
original, in order to prevent IP address conflicts.

If the clone is merely intended as a backup, then the clone hardware does not have to match the head
node. For a backup, typically the most important requirement is then that a clone drive should not run
out of space—that is, its drive should be as large as, or larger than the matching drive of the head node.

If the clone is to be put to work as a head node, then, if the MAC address of one of the head nodes
has changed, it is typically necessary to request that the product key is unlocked, so that a new license
can be obtained (section 4.3 of the Installation Manual).

Also, for a clone that is to be put to work as a head node, the CMDaemon database should first be
synchronized from the active head node to the clone. This can be done by running cmha dbreclone on
the active head node (page 719) before carrying out tasks with cmsh or Bright View.

Exclude Lists And Cloning
Some files are normally excluded from being copied across from the head node to the clone, because
syncing them is not appropriate.

The following exclude files are read from inside the directory /cm/ on the clone node when the
cm-clone-install command is run (step 4 in section 18.2.2).

• excludelistnormal: used to exclude files to help generate a clone of the other head node. It is
read when running the cm-clone-install command without the --failover option.

© Bright Computing, Inc.

/cm/
excludelistnormal

726 High Availability

• excludelistfailover: used to exclude files to help generate a passive head node from an active
head node. It is read when running the cm-clone-install --failover command.

In a default cluster, there is no need to alter these exclude files. However some custom head node
configurations may require appending a path to the list.

The cloning that is carried out is logged in /var/log/clone-install-log.

Exclude Lists In Perspective
The exclude lists excludelistfailover and excludelistnormal described in the preceding paragraphs
should not be confused with the exclude lists of section 5.6.1. The exclude lists of section 5.6.1:

• excludelistupdate

• excludelistfullinstall

• excludelistsyncinstall

• excludelistgrabnew

• excludelistgrab

• excludelistmanipulatescript

are Bright View or cmsh options, and are maintained by CMDaemon. On the other hand, the exclude
lists introduced in this section (18.4.8):

• excludelistfailover

• excludelistnormal

are not Bright View or cmsh options, are not modified with excludelistmanipulatescript, are not
maintained by CMDaemon, but are made use of when running the cm-clone-install command.

Btrfs And cm-clone-install
If a partition with Btrfs (section 17.4.1) is being cloned using cm-clone-install, then by default only
mounted snapshots are cloned.

If all the snapshots are to be cloned, then the --btrfs-full-clone flag should be passed to the
cm-clone-install command. This flag clones all the snapshots, but it is carried out with duplication
(bypassing the COW method), which means the filesystem size can increase greatly.

18.5 HA For Regular Nodes
HA for regular nodes is available from Bright Cluster Manager version 7.0 onwards.

18.5.1 Why Have HA On Regular Nodes?
HA for regular nodes can be used to add services to the cluster and make them HA. Migrating the
default existing HA services that run on the head node is not recommended, since these are optimized
and integrated to work well as is. Instead, good candidates for this feature are other, extra, services that
can run, or are already running, on regular nodes, but which benefit from the extra advantage of HA.

18.5.2 Comparing Head And Regular Node HA
Many of the features of HA for regular nodes are as for head nodes. These include:

© Bright Computing, Inc.

excludelistfailover
/var/log/clone-install-log

18.5 HA For Regular Nodes 727

Head And Regular Node HA: Some Features In Common

Power control is needed for all HA nodes, in order to carry out automatic failover (section 18.1.7).

Warn time and dead time parameters can be set (section 18.4.6).

Mount and unmount scripts (page 704).

Pre- and post- failover scripts (section 18.4.6).

Disabling or enabling automatic failover (section 18.1.7).

A virtual shared IP address that is presented as the virtual node that is always up (section 18.1.4).

Some differences between head and regular node HA are:

Head And Regular Node HA: Some Features That Differ

Head Node HA Regular Node HA

Only one passive node. Multiple passive nodes defined by failover
groups.

Can use the optional failover network and
failoverping heartbeat.

No failover network. Heartbeat checks done
via regular node network.

Configured within failover submode of
partition mode (section 18.4.6).

Configured within failovergroups submode
of partition mode (section 18.5.3).

Installed with cmha-setup (section 18.2). Installed by administrator using a procedure
similar to section 18.5.3.

A quorum procedure (section 18.1.6). If more
than half the nodes can only connect to the pas-
sive, then the passive powers off the active and
becomes the new active.

Active head node does checks. If active reg-
ular node is apparently dead, it is powered
off (STONITH). Another regular node is then
made active.

Failover Groups
Regular nodes use failover groups to identify nodes that are grouped for HA. Two or more nodes are
needed for a failover group to function. During normal operation, one member of the failover group is
active, while the rest are passive. A group typically provides a particular service.

18.5.3 Setting Up A Regular Node HA Service
In cmsh a regular node HA service, CUPS in this example, can be set up as follows:

Making The Failover Group
A failover group must first be made, if it does not already exist:

Example

[bright91->partition[base]->failovergroups]% status
No active failover groups
[bright91->partition[base]->failovergroups]% add cupsgroup
[bright91->partition*[base*]->failovergroups*[cupsgroup*]]% list
Name (key) Nodes
------------------------ ------------------------

© Bright Computing, Inc.

728 High Availability

cupsgroup

By default, CUPS is provided in the standard image, in a stopped state. In Bright View a failover
group can be added via the clickpath Cluster→Partition[base]→Settings→Failover groups
→Add

Adding Nodes To The Failover Group
Regular nodes can then be added to a failover group. On adding, Bright Cluster Manager ensures that
one of the nodes in the failover group becomes designated as the active one in the group (some text
elided):

Example

[bright91->...[cupsgroup*]]% set nodes node001..node002
[bright91->...[cupsgroup*]]% commit
[bright91->...[cupsgroup]]%
...Failover group cupsgroup, make node001 become active
...Failover group cupsgroup, failover complete. node001 became active
[bright91->partition[base]->failovergroups[cupsgroup]]%

Setting Up A Server For The Failover Group
The CUPS server needs to be configured to run as a service on all the failover group nodes. The usual
way to configure the service is to set it to run only if the node is active, and to be in a stopped state if the
node is passive:

Example

[bright91->partition[base]->failovergroups[cupsgroup]]% device
[bright91->device]% foreach -n node001..node002 (services; add cups; \
set runif active; set autostart yes; set monitored yes)
[bright91->device]% commit
Successfully committed 2 Devices
[bright91->device]%
Mon Apr 7 08:45:54 2014 [notice] node001: Service cups was started

The runif options are described in section 3.11.1.

Setting And Viewing Parameters And Status In The Failover Group
Knowing which node is active: The status command shows a summary of the various failover groups
in the failovergroups submode, including which node in each group is currently the active one:

Example

[bright91->partition[base]->failovergroups]% status
Name State Active Nodes
------------ ------------ ------------ --------------------------
cupsgroup ok node001 node001,node002 [UP]

Making a node active: To set a particular node to be active, the makeactive command can be used
from within the failover group:

Example

[bright91->partition[base]->failovergroups]% use cupsgroup
[bright91->...]->failovergroups[cupsgroup]]% makeactive node002
node002 becoming active ...
[bright91->partition[base]->failovergroups[cupsgroup]]%

© Bright Computing, Inc.

18.5 HA For Regular Nodes 729

... Failover group cupsgroup, make node002 become active

...node001: Service cups was stopped

...node002: Service cups was started

...Failover group cupsgroup, failover complete. node002 became active

An alternative is to simply use the cmha utility (section 18.4.2):

Example

[root@bright91 ~]# cmha makeactive node002

Parameters for failover groups: Some useful regular node HA parameters for the failover group ob-
ject, cupsgroup in this case, can be seen with the show command:

Example

[bright91->partition[base]->failovergroups]% show cupsgroup
Parameter Value
-- ---------------------
Automatic failover after graceful shutdown no
Dead time 10
Disable automatic failover no
Mount script
Name cupsgroup
Nodes node001,node002
Postfailover script
Prefailover script
Revision
Unmount script
Warn time 5

Setting Up The Virtual Interface To Make The Server An HA Service
The administrator then assigns each node in the failover group the same alias interface name and IP
address dotted quad on its physical interface. The alias interface for each node should be assigned to
start up if the node becomes active.

Example

[bright91->device]% foreach -n node001..node002 (interfaces; add alias \
bootif:0 ; set ip 10.141.240.1; set startif active; set network internalnet)
[bright91->device*]% commit
Successfully committed 2 Devices
[bright91->device]% foreach -n node001..node002 (interfaces; list)
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
alias BOOTIF:0 10.141.240.1 internalnet
physical BOOTIF [prov] 10.141.0.1 internalnet
Type Network device name IP Network
------------ -------------------- ---------------- ----------------
alias BOOTIF:0 10.141.240.1 internalnet
physical BOOTIF [prov] 10.141.0.2 internalnet

Optionally, each alias node interface can conveniently be assigned a common arbitrary additional
host name, perhaps associated with the server, which is CUPS. This does not result in duplicate names
here because only one alias interface is active at a time. Setting different additional hostnames for the
alias interface to be associated with a unique virtual IP address is not recommended.

© Bright Computing, Inc.

730 High Availability

Example

[bright91->...interfaces*[BOOTIF:0*]]% set additionalhostnames cups
[bright91->...interfaces*[BOOTIF:0*]]% commit

The preceding can also simply be included as part of the set commands in the foreach statement
earlier when the interface was created.

The nodes in the failover group should then be rebooted.
Only the virtual IP address should be used to access the service when using it as a service. Other

IP addresses may be used to access the nodes that are in the failover group for other purposes, such as
monitoring or direct access.

Service Configuration Adjustments
A service typically needs to have some modifications in its configuration done to serve the needs of the
cluster.

CUPS uses port 631 for its service and by default it is only accessible to the local host. Its default
configuration is modified by changing some directives within the cupsd.conf file. For example, some
of the lines in the default file may be:

Only listen for connections from the local machine.
Listen localhost:631
...
Show shared printers on the local network.
...
BrowseLocalProtocols

...
<Location />

Restrict access to the server...
Order allow,deny

</Location>
...

Corresponding lines in a modified cupsd.conf file that accepts printing from hosts on the internal
network could be modified and end up looking like:

Allow remote access
Port 631
...
Enable printer sharing and shared printers.
...
BrowseAddress @LOCAL
BrowseLocalProtocols CUPS dnssd
...
<Location />

Allow shared printing...
Order allow,deny
Allow from 10.141.0.0/16

</Location>
...

The operating system that ends up on the failover group nodes should have the relevant service
modifications running on those nodes after these nodes are up. In general, the required service modifi-
cations could be done:

© Bright Computing, Inc.

18.6 HA And Workload Manager Jobs 731

• with an initialize or finalize script, as suggested for minor modifications in section 3.15.4

• by saving and using a new image with the modifications, as suggested for greater modifications
in section 3.15.2, page 139.

Testing Regular Node HA
To test that the regular node HA works, the active node can have a simulated crash carried out on it like
in section 18.2.4.

Example

ssh node001
echo c > /proc/sysrq-trigger
~.

A passive node then takes over.

18.5.4 The Sequence Of Events When Making Another HA Regular Node Active
The active head node tries to initiate the actions in the following sequence, after the makeactive com-
mand is run (page 728):

Sequence Of Events In Making Another HA Regular Node Active

All Run pre-failover script

Active Stop service

Run umount script (stop and show exit>0 on error)

Stop active IP address

Start passive IP address

Start services on passive.

Active is now passive

Passive Stop service

Run mount script

Stop passive IP address.

Start active IP address.

Start service.

Passive is now active.

All Post-failover script

The actions are logged by CMDaemon.
The following conditions hold for the sequence of actions:

• The remaining actions are skipped if the active umount script fails.

• The sequence of events on the initial active node is aborted if a STONITH instruction powers it off.

• The actions for All nodes is done for that particular failover group, for all nodes in that group.

18.6 HA And Workload Manager Jobs
Workload manager jobs continue to run through a failover handover if conditions allow it.

The 3 conditions that must be satisfied are:

© Bright Computing, Inc.

732 High Availability

1. The workload manager setup must have been carried out

(a) during initial installation
or

(b) during a run of cm-wlm-setup

2. The HA storage setup must support the possibility of job continuity for that workload manager.
This support is possible for the workload manager and HA storage pairings indicated by the fol-
lowing table:

Table 18.6: HA Support For Jobs Vs Shared Filesystems

WLM DAS NAS

Slurm
Y Y

OGS Y Y

UGE Y Y

PBSPro N Y

LSF N Y

As the table shows, PBS Pro, and LSF are not able to support HA for jobs on DAS filesystems.
This is because they require daemons to run on the passive and active nodes at the same time, in
order to provide access to /cm/shared at all times. During failover the daemons normally cannot
run on the node that has failed, which means that the DAS storage types cannot provide access
to /cm/shared during this time. Job continuity cannot therefore be supported for these workload
manager and storage type combinations.

3. Jobs must also not fail due to the shared filesystem being inaccessible during the short period that
it is unavailable during failover. This usually depends on the code in the job itself, rather than
the workload manager, since workload manager clients by default have timeouts longer than the
dead time during failover.

Already-submitted jobs that are not yet running continue as they are, and run when the resources
become available after the failover handover is complete, unless they fail as part of the Bright
Cluster Manager pre-job health check configuration.

© Bright Computing, Inc.

19
The Jupyter Notebook

Environment Integration
19.1 Introduction
This chapter covers the installation and usage of the Jupyter Notebook environment in Bright Cluster
Manager.

An updated list of the supported Linux distributions and Jupyter functionalities can be found in
the feature matrix at https://support.brightcomputing.com/feature-matrix/, under the Feature
column, in the section for Jupyter features.

An overview of the concepts and terminology follows.

What Is Jupyter Notebook?
Jupyter Notebook (https://jupyter-notebook.readthedocs.io/), or Jupyter, is a client-server open-
source application that provides a convenient way for a cluster user to write and execute notebook docu-
ments in an interactive environment.

In Jupyter, a notebook document, or notebook, is content that can be managed by the application.
Notebooks are organized in units called cells and can contain both executable code, as well as items that
are not meant for execution.

Items not meant for execution can be, for example: explanatory text, figures, formulas, or tables.
Notebooks can also store the inputs and outputs of an interactive session.

Notebooks can thus serve as a complete record of a user session, interleaving code with rich repre-
sentations of resulting objects.

These documents are encoded as JSON files and saved with the .ipynb extension. Since JSON is a
plain text format, notebooks can be version-controlled, shared with other users and exported to other
formats, such as HTML, LATEX, PDF, and slide shows.

What Is A Notebook Kernel?
A notebook kernel (often shortened to kernel) is a computational engine that handles the various types of
requests in a notebook (e.g. code execution, code completions, inspection) and provides replies to the
user (https://jupyter.readthedocs.io/en/latest/projects/kernels.html). Usually kernels only
allow execution of a single language. There are kernels available for many languages, of varying quality
and features.

What Is JupyterHub?
Jupyter on its own provides a single user service. JupyterHub (https://jupyterhub.readthedocs.io/)
allows Jupyter to provide a multi-user service, and is therefore commonly installed with it. JupyterHub
is an open-source project that supports a number of authentication protocols, and can be configured in
order to provide access to a subset of users.

© Bright Computing, Inc.

https://support.brightcomputing.com/feature-matrix/
https://jupyter-notebook.readthedocs.io/
https://jupyter.readthedocs.io/en/latest/projects/kernels.html
https://jupyterhub.readthedocs.io/

734 The Jupyter Notebook Environment Integration

What Is JupyterLab?
JupyterLab (https://jupyterlab.readthedocs.io/) is a modern and powerful interface for Jupyter. It
enables users to work with notebooks and other applications, such as terminals or file browsers. It is
open-source, flexible, integrated, and extensible.

JupyterLab works out of the box with JupyterHub. It can be used to arrange the user interface to
support a wide range of workflows in data science, scientific computing, and machine learning.

JupyterLab is extensible with plugins that can customize or enhance any part of the interface. Plugins
exist for themes, file editors, keyboard shortcuts, as well as for other components.

What Is A Jupyter Extension?
Several components of the Jupyter environment can be customized in different ways with extensions.
Some types of extensions are:

• IPython extensions (https://ipython.readthedocs.io/en/stable/config/extensions/
#ipython-extensions)

• Jupyter Notebook server extensions (https://jupyter-notebook.readthedocs.io/en/stable/
examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.
html)

• JupyterLab extensions (https://jupyterlab.readthedocs.io/en/stable/user/extensions.
html)

Extensions are usually developed, bundled, released, installed, and enabled in different ways.
Each extension provides a new functionality for a specific component. For example, JupyterLab

extensions can customize or enhance any part of the JupyterLab user interface. Extensions can provide
new themes, file viewers, editors and renderers for rich output in notebooks. They can also add settings,
add keyboard shortcuts, or add items to the menu or command palette.

What Is Jupyter Enterprise Gateway?
By default, Jupyter runs kernels locally, which can exhaust server resources. A resource manager can
be used to deal with this issue. Jupyter Enterprise Gateway (https://jupyter-enterprise-gateway.
readthedocs.io/) (JEG) is a pluggable open-source framework that leverages local underlying resource
managers, such as Slurm or Kubernetes, to distribute kernels across the compute cluster. In addition to
scalability, JEG also provides an improved multi-user support, and more granular security for Jupyter.
This makes Jupyter more useful for enterprise, scientific, and academic implementations.

In Bright Cluster Manager, all the technologies mentioned in these sections are combined to provide
a powerful, customizable and user-friendly Jupyter Notebook web interface running on a lightweight,
multi-tenant, multi-language, scalable and secure environment, ready for a wide range of enterprise
scenarios.

For convenience, in the following sections, Jupyter is generally used to collectively refer to Jupyter
Notebook, JupyterHub, JupyterLab and Jupyter Enterprise Gateway.

19.2 Jupyter Environment Installation
Bright distributes Jupyter via two packages: cm-jupyter and cm-jupyter-local.

cm-jupyter is installed in the /cm/shared directory, which is by default exported over NFS. As
a result, Jupyter kernels can run on all the compute nodes, without a separate installation to those
nodes. cm-jupyter provides Jupyter Notebook, JupyterHub, JupyterLab, Jupyter Enterprise Gateway
and some extensions.

cm-jupyter-local provides the JupyterHub system service (cm-jupyterhub.service), and is there-
fore designed to be installed only on the node exposing users to the web login page for Jupyter. For

© Bright Computing, Inc.

https://jupyterlab.readthedocs.io/
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyter-enterprise-gateway.readthedocs.io/
https://jupyter-enterprise-gateway.readthedocs.io/
/cm/shared

19.2 Jupyter Environment Installation 735

convenience, this node is called the login node. A login node is typically the head node, but any cluster
node can be used.

Since compute nodes are not reachable via a web interface by default, it is the responsibility of the
cluster administrator to configure access to these nodes if they are configured to be login nodes while
Jupyter runs. That is, login nodes that are compute nodes must have their access configured by assigning
IP addresses, configuring the firewall, opening Jupyter ports, and so on. However, if the Jupyter login
node is the head node, then Bright Cluster Manager takes care of configuring the firewall to open the
required ports and of ensuring that the resulting environment is working out of the box.

Bright Jupyter Extensions
For a default deployment of Jupyter, Bright installs and enables the following extensions to the Jupyter
environment:

• Jupyter Addons: A Jupyter Notebook server extension that performs API calls to CMDaemon and
manages other server extensions;

• Jupyter Kernel Creator (section 19.5): A Jupyter Notebook server extension that provides a new
interactive and user-friendly way to create kernels;

• Jupyter VNC (section 19.7): A Jupyter Notebook server extension that enables remote desktops
with VNC from notebooks;

• JupyterLab Tools: A JupyterLab extension that exposes Bright server extensions functionalities to
the users and shows the Cluster View section;

• Jupyter WLM Magic (section 19.8): An IPython extension that simplifies scheduling of workload
manager jobs from the notebook.

19.2.1 Jupyter Setup
The cm-jupyter-setup script can be run on the head node of the cluster to deploy a working Jupyter
environment with minimal effort. The script comes with Bright Cluster Manager’s cm-setup package.
It has no prerequisites, and can be run before or after configuring any resource manager, such as Kuber-
netes or Slurm.

The cm-jupyter-setup script installs the two packages cm-jupyter and cm-jupyter-local. By de-
fault, the Jupyter environment initially contains only Jupyter’s default Python 3 kernel, which runs on
the login node.

During setup, an administrator can deploy the Jupyter login interface on multiple nodes to evenly
distribute the load across them. In this case the administrator must configure a load balancer to route
users’ requests across those nodes.

These login nodes become members of the same configurationoverlay, and therefore share the
same Jupyter configuration, such as port numbers, authenticator, and so on.

By default, the Jupyter configuration file points to local SSL certificates. This means that if there are
multiple Jupyter login interfaces, then each node uses its own SSL certificate.

19.2.2 Jupyter Architecture
The default Jupyter architecture deployed by cm-jupyter-setup is shown in figure 19.1.

© Bright Computing, Inc.

736 The Jupyter Notebook Environment Integration

Browser

Legend

name1 name2 name3

Bright	Cluster	Manager

Compute	Node

root	process

user	process

port

 link	secured	by	Jupyter

 link	secured	by	Bright

Login	Node

 /hub/ 	

 /user/name1/lab/ 	

 /user/name2/lab/ 	

 /user/name3/lab/ 	

Compute	Node
Configurable	HTTP	Proxy

c.JupyterHub.port	(8000)

c.ConfigurableHTTPProxy.port	(8902)

c.JupyterHub.hub_port	(8901)

JupyterHub

Authenticator
User	Database

Spawner

JupyterLab	Notebook

JupyterLab	Notebook

JupyterLab	Notebook Jupyter	Enterprise	Gateway

Jupyter	Enterprise	Gateway

Jupyter	Enterprise	Gateway

Kernel	(name3)

Kernel	(name2)

Kernel	(name1)

PBS Pro
LSF
UGE

Figure 19.1: Jupyter architecture

In this architecture, the cm-jupyterhub.service provided by cm-jupyter-local starts JupyterHub
on the port specified by c.JupyterHub.hub_port (default: 8901) on a login node (typically the head
node).

JupyterHub then automatically spawns a dynamic proxy to route HTTP requests via Bright’s
cm-npm-configurable-http-proxy package.

The proxy is the only process that listens for clients’ requests on Jupyter’s public interface, as speci-
fied by c.JupyterHub.port (default: 8000).

JupyterHub instructs the proxy on how requests should be dispatched by using its REST API. This
is exposed at the port specified by c.ConfigurableHTTPProxy.port (default: 8902), typically defined
within c.ConfigurableHTTPProxy.api_url.

At this stage, users accessing Jupyter with their browsers are either redirected to the shared Hub (e.g.
for authentication), or to their dedicated single-user servers to run notebooks.

By default, single-user servers are accessed at /user/<username>, while JupyterHub is accessed at
/hub (https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html).

The cm-jupyter-setup script automatically installs JupyterLab and sets /lab as the default URL
(c.Spawner.default_url) to redirect users to the new interface.

Finally, Jupyter Enterprise Gateway is integrated to spawn kernels on different nodes
by configuring jupyterhub.spawner.LocalProcessSpawner as the default spawning mechanism
(c.JupyterHub.spawner_class), and jupyterhub-singleuser-gw as the default spawning command
(c.Spawner.cmd). When a new notebook is started, JEG scans for an available port, and spawns a kernel
chosen by the user on an appropriate cluster node. This process is then connected to JupyterLab.

JupyterHub and its HTTP proxy are run as two root processes, while JupyterLab and Jupyter Enter-
prise Gateway are run as user processes.

The privileges of the kernels spawned by Jupyter Enterprise Gateway can be configured by cluster
administrators, and depend on the underlying computational engine (e.g. Kubernetes). By default, all

© Bright Computing, Inc.

https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html

19.2 Jupyter Environment Installation 737

the kernels configurable by Bright are run as user processes, and no privilege escalation is possible.
Communication between users’ browsers, JupyterHub, its HTTP proxy, and JupyterLab, is secured

by default by JupyterHub. On the other hand, communication between JupyterLab, Jupyter Enterprise
Gateway, and kernels, is secured by Bright.

Administrators can customize their Jupyter integration by setting some of the aforementioned op-
tions when the cm-jupyter-setup script runs. New values are automatically handled by Bright Cluster
Manager and written to Jupyter configuration files.

Other configuration options can be found in /cm/local/apps/jupyter/current/conf/jupyterhub_
config.py.

19.2.3 Verifying Jupyter Installation
The cm-jupyter-setup script automatically starts the cm-jupyterhub service.

Any user (not necessarily root) can then verify the installation is working as expected. Here an
ordinary user, jupyterhubuser runs the checks.

It can take some time until the service is fully up and running, even if systemctl status cm-jupyterhub
-l shows that the service is active:

Example

[jupyterhubuser@bright91 ~]$ systemctl status cm-jupyterhub -l

cm-jupyterhub.service - JupyterHub
Loaded: loaded (/usr/lib/systemd/system/cm-jupyterhub.service; static; vendor preset: disabled)
Active: active (running) since Fri 2021-07-02 11:58:49 CEST; 2h 42min ago

Main PID: 6011 (run.sh)
Tasks: 40 (limit: 23379)
Memory: 267.6M
CGroup: /system.slice/cm-jupyterhub.service

|- 6011 /bin/bash /cm/shared/apps/jupyter/12.2.0/bin/run.sh
|- 6025 /cm/local/apps/python37/bin/python3 /cm/shared/apps/jupyter/12.2.0/bin/jupyterhub --Jupyter>
|- 6026 tee -a /var/log/jupyterhub.log
|- 6035 node /cm/shared/apps/jupyter/12.2.0/bin/configurable-http-proxy --ip --port 8000 --api-ip 1>
|-71482 /bin/bash /cm/shared/apps/jupyter/12.2.0/bin/jupyterhub-singleuser-gw --port=48913 --Single>
|-71720 /cm/local/apps/python37/bin/python3 /cm/shared/apps/jupyter/12.2.0/bin/jupyter-enterprisega>
'-71921 /cm/local/apps/python37/bin/python3 /cm/shared/apps/jupyter/12.2.0/bin/jupyter-labhub --con>

A check can then be done to see that the Jupyter extensions provided by Bright are installed and
enabled:

Example

[jupyterhubuser@bright91 ~]$ module load jupyter
Loading jupyter/12.2.0
Loading requirement: python37

[root@bright91 ~]# jupyter serverextension list
config dir: /cm/shared/apps/jupyter/12.2.0/etc/jupyter

jupyterlab enabled
- Validating...
jupyterlab 3.1.18 OK

cm_jupyter_kernel_creator enabled
- Validating...
cm_jupyter_kernel_creator 1.1.dev127+g8be4e4f OK

cm_jupyter_addons enabled
- Validating...
cm_jupyter_addons 1.1.dev15+g0eea4a4 OK

© Bright Computing, Inc.

/cm/local/apps/jupyter/current/conf/jupyterhub_config.py
/cm/local/apps/jupyter/current/conf/jupyterhub_config.py

738 The Jupyter Notebook Environment Integration

cm_jupyter_vnc enabled
- Validating...
cm_jupyter_vnc 1.1.dev52+g3ccf8d5 OK

[jupyterhubuser@bright91 ~]$ jupyter labextension list
JupyterLab v3.1.18
/cm/shared/apps/jupyter/12.2.0/share/jupyter/labextensions

@brightcomputing/jupyterlab-tools v0.2.7 enabled OK (python, brightcomputing_jupyterlab_tools)

19.2.4 Login Configuration
User Access To JupyterHub With The Default Configuration
Once functioning, the Jupyter web interface is accessible with a browser using the HTTPS protocol on
the specified port (figure 19.2):

Figure 19.2: JupyterHub login screen

Running as root under JupyterHub is not recommended, so logging in to JupyterHub as root is not
allowed by default.

Any other PAM user can log in to JupyterHub.
If needed, a test user jupyterhubuser with password jupyterhubuser can be created with, for ex-

ample:

Example

[root@bright91 ~]# cmsh -c "user; add jupyterhubuser; set password jupyterhubuser; commit"

Restricting User Access To JupyterHub
JupyterHub logins can be limited to members of particular groups.

For example, alice could be made a member of the group jupyterusers:

Example

[root@bright91 ~]# cmsh
[bright91]% group
[bright91->group]% add jupyterusers
[bright91->group]*[jupyterusers*]% append members alice
[bright91->group]*[jupyterusers*]% commit

The group jupyterusers could then be set to be allowed to authenticate to JupyterHub with an
authentication policy:

© Bright Computing, Inc.

19.2 Jupyter Environment Installation 739

Example

[root@bright91 ~]# cmsh
[bright91]% configurationoverlay
[bright91->configurationoverlay]% use jupyterhub
[bright91->configurationoverlay[jupyterhub]]% roles
[bright91->configurationoverlay[jupyterhub]->roles]% use jupyterhub
[bright91->configurationoverlay[jupyterhub]->roles[jupyterhub]]% configs
[bright91->...roles[jupyterhub]->configs]% add c.BrightAuthenticator.groups_allow
[bright91->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.groups_allow*]]% set value [\"jupyterusers\"]
[bright91->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.groups_allow*]]% commit

Similarly, restricting authentication to JupyterHub to a specific group of users can be done by con-
figuring c.BrightAuthenticator.groups_deny.

Another way to restrict user access is based on the CMDaemon profile set for the user. In that
case the JupyterHub configuration settings are c.BrightAuthenticator.cmd_profiles_allow and
c.BrightAuthenticator.cmd_profiles_deny.

In the following example, users with a readonly profile are not allowed to authenticate for Jupyter-
Hub.

Example

[bright91->...roles[jupyterhub]->configs[c.BrightAuthenticator.groups_allow]]% ..
[bright91->...roles[jupyterhub]->configs]% add c.BrightAuthenticator.cmd_profiles_deny]]%
[bright91->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.cmd_profiles_deny*]]% set value [\"readonly\"]
[bright91->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.cmd_profiles_deny*]]% commit

A table summarizing the authentication policies is:

Key Value

c.BrightAuthenticator.groups_allow users in the specified groups can authenticate

c.BrightAuthenticator.groups_deny users in the specified groups cannot authenticate

c.BrightAuthenticator.cmd_profiles_allow users with the specified profiles can authenticate

c.BrightAuthenticator.cmd_profiles_deny users with the specified profiles cannot authenticate

19.2.5 JupyterHub Screen After Login
After the first login, a new single-user server is spawned (figure 19.3):

Figure 19.3: JupyterHub starting single-user server

© Bright Computing, Inc.

740 The Jupyter Notebook Environment Integration

Users are redirected to the JupyterLab interface and have access to Jupyter’s default Python 3 kernel
(figure 19.4):

Figure 19.4: JupyterLab Launcher

If using Kubernetes under Jupyter, then a user registered under the Linux-PAM system must be
added separately via Kubernetes with cm-kubernetes-setup (section 19.5.1).

19.3 Jupyter Notebook Examples
The cm-jupyter package (section 19.2.1) provides a number of machine learning notebook examples
that can be executed with Jupyter.

The notebooks include some applications developed with TensorFlow, PyTorch, MXNet, and other
frameworks. The applications can be found in the /cm/shared/examples/jupyter/notebooks/ direc-
tory:

[jupyterhubuser@bright91 ~]$ ls /cm/shared/examples/jupyter/notebooks/
Keras+TensorFlow2-addition.ipynb R-iris.ipynb TensorFlow-minigo.ipynb
MXNet-superresolution.ipynb Spark-pipeline.ipynb
Pytorch-cartpole.ipynb Spark+XGBoost-mortgage.ipynb

The datasets needed to execute these notebooks can be found in the /cm/shared/examples/jupyter/
datasets/ directory:

© Bright Computing, Inc.

/cm/shared/examples/jupyter/notebooks/
/cm/shared/examples/jupyter/datasets/
/cm/shared/examples/jupyter/datasets/

19.4 Jupyter Kernels 741

[jupyterhubuser@bright91 ~]$ ls /cm/shared/examples/jupyter/datasets/
880f8b8a6fd-mortgage-small.tar.gz kaggle-iris.csv

Users can copy these examples to their home directories, create or choose appropriate kernels to
execute them, and interactively run them from Jupyter. In order to edit notebooks, the write permissions
must be kept during the copy.

The distributed examples typically only require the packages provided by Bright with the Data Sci-
ence Add-on, such as TensorFlow, PyTorch, and MXNet.

It is the responsibility of users to make sure that the required modules are loaded by their Jupyter
kernels. The list of frameworks and libraries required to run an example is usually available at the
beginning of each notebook.

19.4 Jupyter Kernels
In Jupyter, kernels are defined as JSON files.

Any user that the cluster administrator has registered in the Linux-PAM system can list the available
Jupyter kernels via the command line. The following example is run in the initial Jupyter environment:

Example

[jupyterhubuser@bright91 ~]$ module load jupyter
Loading jupyter/12.2.0

Loading requirement: python37
[jupyterhubuser@bright91 ~]$ jupyter kernelspec list
Available kernels:

python3 /cm/shared/apps/jupyter/12.2.0/share/jupyter/kernels/python3

Each kernel directory contains a kernel.json file describing how Jupyter spawns that kernel:

Example

[jupyterhubuser@bright91 ~]$ ls /cm/shared/apps/jupyter/current/share/jupyter/kernels/*/kernel.json
/cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

In addition to specifications for shared kernels, each user can define new personal ones in the home
directory. By default, the Jupyter data directory for a user is located at $HOME/.local/share/jupyter.

This path can be verified with Jupyter by using the --paths option:

Example

[jupyterhubuser@bright91 ~]$ jupyter --paths
config:

/home/jupyterhubuser/.jupyter
/cm/local/apps/python37/etc/jupyter
/cm/shared/apps/jupyter/12.2.0/etc/jupyter
/etc/jupyter

data:
/home/jupyterhubuser/.local/share/jupyter
/cm/local/apps/python37/share/jupyter
/cm/shared/apps/jupyter/12.2.0/share/jupyter
/usr/share/jupyter

runtime:
/home/jupyterhubuser/.local/share/jupyter/runtime

The simplest definition for a Python3 kernel designed to run on the login node is:

© Bright Computing, Inc.

742 The Jupyter Notebook Environment Integration

{
"argv": ["python",

"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"

],
"display_name": "Python 3",
"language": "python"
}

In the preceding kernel definition:

• argv: is the command to be executed to locally spawn the kernel

• "display_name": is the name to be displayed in the JupyterLab interface

• "language": is the supported programming language ("language")

• "{connection_file}" (https://jupyter-client.readthedocs.io/en/stable/kernels.html#
connection-files) is a placeholder, and is replaced by Jupyter with the actual path to the con-
nection file before starting the kernel.

The following kernel is Jupyter’s default Python 3 kernel distributed by Bright in the initial environ-
ment:

Example

[jupyterhubuser@bright91 ~]$ cat /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

{
"argv": [
"/cm/local/apps/python37/bin/python3.7",
"-m",
"ipykernel_launcher",
"--InteractiveShellApp.extra_extension=cm_jupyter_wlm_magic",
"--TerminalIPythonApp.extra_extension=cm_jupyter_wlm_magic",
"-f",
"{connection_file}"

],
"display_name": "Python 3",
"language": "python",
"env": {
"PYTHONPATH": "/cm/shared/apps/jupyter/12.2.0/lib64/python3.7/site-packages:/cm/shared/apps/jupyter/

12.2.0/lib/python3.7/site-packages"
}

}

The two kernels are not very different. They differ from each other in the Python 3 binary path, the
IPython extension (Jupyter WLM Magic), and the exported PYTHONPATH environment variable ("env").

19.4.1 Jupyter Enterprise Gateway Kernels
Jupyter is designed to run both the kernel processes, as well as the user interface (JupyterLab or
Jupyter Notebook) on the same host. The kernel {connection_file} is therefore stored in the
~/.local/share/jupyter/runtime directory, or in the /run directory.

© Bright Computing, Inc.

https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files
https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files

19.5 Jupyter Kernel Creator Extension 743

JupyterLab can delegate the task of spawning kernels to another component. In the Bright Cluster
Manager installation it is Jupyter Enterprise Gateway (JEG) that takes on this role, performing a com-
plete lifecycle management of the kernel. That is: start, status monitoring, and termination.

JEG requires an extended kernel.json definition to describe a particular process-proxy module to
handle the kernel.

A simple definition for a Python3 kernel designed to be scheduled via JEG is:

{
"argv": ["python",
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"

],
"display_name": "Python 3",
"language": "python",
"metadata": {
"process_proxy": {

"class_name": "enterprise_gateway.services.processproxies.processproxy.LocalProcessProxy",
"config": {}

}
}

}

In this example, the "metadata" entry has been added. It includes "class_name", which defines
a path to a Python class compatible with the JEG API; and "config", an initial arguments dictionary
passed to the JEG process.

JEG can use several pluggable modules that are included in the Bright environment to interact with
a wide range of resource managers, such as Kubernetes or Slurm. By doing so, kernels can be scheduled
across compute nodes.

Bright recommends that JEG kernels are created and used with the Jupyter Kernel Creator (sec-
tion 19.5) extension.

19.5 Jupyter Kernel Creator Extension
Creating or editing kernels can be cumbersome and error-prone for users, depending on the features of
the execution context desired for their notebooks.

To provide a more user-friendly experience, Bright includes the Jupyter Kernel Creator extension in
JupyterLab. This extension is accessed from the navigation pane in the JupyterLab interface, by clicking
on the Bright icon.

Jupyter Kernel Creator allows users to create kernels using the JupyterLab interface, without the
need to directly edit JSON files. With this interface users can create kernels by customizing an available
template according to their needs.

A template can be considered to be the skeleton of a kernel, with several preconfigured options, and
others options that are yet to be specified. Common customizations for templates include environment
modules to be loaded, workload manager queues to be used, number and type of GPUs to acquire, and
so on.

Templates are usually defined by administrators according to cluster capabilities, programming lan-
guages and user requirements. Each template can provide different options for customizations.

Administrators often create different templates to take advantage of different workload managers,
programming languages and hardware resources. For example, an administrator may define a template
for scheduling Python kernels via Kubernetes, another one for R kernels via Slurm, and yet another one
for Bash kernels via Platform LSF.

© Bright Computing, Inc.

744 The Jupyter Notebook Environment Integration

To simplify Jupyter configuration for administrators, Bright also distributes a number of templates
within Jupyter Kernel Creator. These templates can be used for default configurations of Bright work-
load managers, and can be customized and extended for more advanced use.

Kernel templates defined by Bright can be found in the Jupyter Kernel Creator installation direc-
tory:

[jupyterhubuser@bright91 ~]$ ls /cm/shared/apps/jupyter/current/lib/python3.7/site-packages/\
cm_jupyter_kernel_creator/kerneltemplates/
jupyter-eg-kernel-k8s-bash jupyter-eg-kernel-lsf-bash jupyter-eg-kernel-slurm-bash
jupyter-eg-kernel-k8s-py jupyter-eg-kernel-lsf-py37 jupyter-eg-kernel-slurm-py37
jupyter-eg-kernel-k8s-py-spark jupyter-eg-kernel-pbspro-bash jupyter-eg-kernel-uge-bash
jupyter-eg-kernel-k8s-r jupyter-eg-kernel-pbspro-py37 jupyter-eg-kernel-uge-py37

Users can view available templates in the Jupyter web browser interface, within the KERNEL TEMPLATES
section of the dedicated Bright extensions panel (figure 19.5):

Figure 19.5: JupyterLab Bright extensions section with kernel templates

If the associated workload manager has not been deployed on the cluster, then by default, templates
provided by Bright are not listed in the panel.

Users can instantiate a template to create an actual kernel from the dedicated Bright extensions sec-
tion (+ button).

A dialog is dynamically generated for the template being instantiated, and users are asked to fill a
number of customization options defined by administrators (figure 19.6):

© Bright Computing, Inc.

19.5 Jupyter Kernel Creator Extension 745

Figure 19.6: Jupyter kernel template customization screen

Once the template is completely customized, the kernel can be created. It automatically appears in
the JupyterLab Launcher screen (figure 19.7) and can be used to run notebooks.

© Bright Computing, Inc.

746 The Jupyter Notebook Environment Integration

Figure 19.7: JupyterLab Launcher screen with new kernel

A user who lists available Jupyter kernels via the command line now sees the newly-created kernel:

[jupyterhubuser@bright91 ~]$ module load jupyter
Loading jupyter/12.2.0

Loading requirement: python37
[jupyterhubuser@bright91 ~]$ jupyter kernelspec list
Available kernels:
jupyter-eg-kernel-k8s-py-1f8verf93 /home/jupyterhubuser/.local/share/jupyter/kernels/jupyter-eg-kernel\
-k8s-py-1f8verf93
python3 /cm/shared/apps/jupyterhubuser/12.2.0/share/jupyter/kernels/python3

The new kernel directory will contain the JSON definition generated by the Jupyter Kernel Creator:

[jupyterhubuser@bright91 ~]$ cat .local/share/jupyter/kernels/jupyter-eg-kernel-k8s-py-1f8verf93/
kernel.json

{
"language": "python",
"display_name": "Python on Kubernetes 210624185005",
"metadata": {
"process_proxy": {

© Bright Computing, Inc.

19.5 Jupyter Kernel Creator Extension 747

"class_name": "cm_jupyter_kernel_creator.eg_processproxies.extk8s.ExternalKubernetesProcessProxy",
"config": {

"k8s_env_module": "kubernetes",
"pod_template": "templates/pod.yaml.j2",
"service_template": "templates/service.yaml.j2",
"secret_template": "templates/secret.yaml.j2",
"config_map_template": "templates/config_map.yaml.j2",
"image": "brightcomputing/jupyter-kernel-sample:k8s-py36-1.1.1",
"namespace": "default",
"suffix": "jupyter",
"gpu_limit": 0

}
}

},
"argv": [
"/usr/bin/python3",
"/ipykernel-k8s.py",
"{kernel_id}"

]
}

Jupyter kernel names need not be unique. Users should therefore choose meaningful and distin-
guishable display names for their kernels. Doing so makes the JupyterLab Launcher screen easier to
use.

For convenience, a summary of the available kernel templates and their requirements is shown in
table 19.1:

Table 19.1: Available Jupyter kernel templates for Bright and their requirements

Template name Requirement Description

jupyter-eg-kernel-k8s-bash Kubernetes1 Bash via Kubernetes

jupyter-eg-kernel-k8s-py Kubernetes1 Python 3.6 via Kubernetes

jupyter-eg-kernel-k8s-py-spark Kubernetes2 Python 3.7 + Spark 3 via Kubernetes

jupyter-eg-kernel-k8s-r Kubernetes3 R 3.4 via Kubernetes

jupyter-eg-kernel-lsf-bash Platform LSF Bash via Platform LSF

jupyter-eg-kernel-lsf-py37 Platform LSF Python 3.7 via Platform LSF

jupyter-eg-kernel-pbspro-bash PBS Pro Bash via PBS Pro

jupyter-eg-kernel-pbspro-py37 PBS Pro Python 3.7 via PBS Pro

jupyter-eg-kernel-slurm-bash Slurm Bash via Slurm

...continues

© Bright Computing, Inc.

748 The Jupyter Notebook Environment Integration

Table 19.1: Available Jupyter kernel templates...continued

Template name Requirement Description

jupyter-eg-kernel-slurm-py37 Slurm Python 3.7 via Slurm

jupyter-eg-kernel-uge-bash UGE Bash via UGE

jupyter-eg-kernel-uge-py37 UGE Python 3.7 via UGE
1 Docker image: brightcomputing/jupyter-kernel-sample:k8s-py36-1.1.1
2 Docker image: brightcomputing/jupyter-kernel-sample:k8s-spark-py37-1.2.1
3 Docker image: brightcomputing/jupyter-kernel-sample:k8s-r-1.0.0
DockerHub kernels page: https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags

19.5.1 Running Jupyter Kernels With Kubernetes
The following Bright templates allow users to create and run Jupyter Enterprise Gateway kernels on
compute nodes via Kubernetes:

Table 19.2: Bright templates for creating and running Jupyter Enterprise Gateway kernels on cluster nodes via Kubernetes

Template Description

jupyter-eg-kernel-k8s-bash Custom kernel with Bash

jupyter-eg-kernel-k8s-py Custom kernel with Python 3.6

jupyter-eg-kernel-k8s-py-spark Custom kernel with Python 3.7 and Spark 3

jupyter-eg-kernel-k8s-r Custom kernel with R 3.4

An administrator has to make sure that Kubernetes is correctly configured on the cluster, and that
Pod Security Policy (PSP) is enabled (section 9.3.10).

Details on Kubernetes installation are provided in section 9.3.
The default configuration proposed by cm-kubernetes-setup is usually sufficient to run Kubernetes

kernels created from Bright’s templates. However, it is the responsibility of the administrator to add
users registered in the Linux-PAM system to Kubernetes.

For example, a test user jupyterhubuser can be added to Kubernetes with:

Example

[root@bright91 ~]# cm-kubernetes-setup --add-user jupyterhubuser

For every new user added, cm-kubernetes-setup automatically generates a dedicated namespace
with a name in the form <user>-restricted. For instance, the command in the example above, creates the
namespace: jupyterhubuser-restricted.

Cluster administrators are strongly recommended to review pods security policies for these dedi-
cated namespaces.

In order to speed up kernel creation for the first user logging into JupyterLab, Bright recommends
that all the relevant Kubernetes images are pre-loaded on the compute nodes that Jupyter Enterprise
Gateway can contact.

Jupyter notebooks using Kubernetes kernels cannot natively use machine learning libraries and
frameworks provided by Bright, even if installed on the software image used by Kubernetes. The ma-
chine learning libraries and frameworks have to be included in the chosen Kubernetes image.

19.5.2 Running Jupyter Kernels With Workload Managers
Bright’s Jupyter Enterprise Gateway kernels can be created and run by users on compute nodes via
workload managers (WLMs). For convenience, Slurm is used as an example in this section. However,
the same instructions are valid for the other WLMs listed in table 19.1.

The templates used to create Slurm kernels are Bright’s

© Bright Computing, Inc.

https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags

19.6 Jupyter Kernel Creator Extension Customization 749

• jupyter-eg-kernel-slurm-bash and

• jupyter-eg-kernel-slurm-py37,

which offer a Bash and a Python 3.7 environment respectively.
The administrator has to make sure that Slurm is correctly configured on the cluster. Slurm installa-

tion is described in section 7.3.
The default configuration that cm-wlm-setup suggests in Express mode is usually sufficient to run

Slurm kernels created from Bright’s templates. If Slurm is configured to automatically detect GPUs, they
will be listed as available resources while instantiating Slurm templates.

The Jupyter login node must be authorized to submit Slurm jobs. This is typically the case, since
the JupyterHub login node is by default the head node, and cm-wlm-setup by default assigns the
slurmsubmit role to the head node.

Finally, the administrator must make sure that relevant dependency packages are installed on the
software image used by Slurm clients. The image used is typically for the compute nodes. Missing
packages may cause kernels to fail at startup or at run time.

In particular, administrators need to install cm-python37 to use kernels based on the
jupyter-eg-kernel-slurm-py37 template.

Jupyter notebooks using Slurm kernels can natively use the machine learning libraries and frame-
works provided by Bright on Slurm clients, if these are available. Further details on machine learning
packages installation on both the head node and the compute nodes are given in section 1.4 of the Ma-
chine Learning Manual.

19.6 Jupyter Kernel Creator Extension Customization
The Jupyter kernel templates described in section 19.5 are stored under the directory /cm/shared/apps/
jupyter/current/lib/python3.7/site-packages/cm_jupyter_kernel_creator/kerneltemplates/.

The template of a particular Jupyter kernel in Bright’s Jupyter Kernel Creator extension is a directory
containing at least two files: meta.yaml and kernel.json.j2. The kernel template can also require other
files placed in the same directory, such as icons. These files are copied to the target user kernels directory
upon kernel creation, after the template is instantiated.

The meta.yaml file includes all the parameters that can be substituted into kernel.json.j2 and is
defined with the YAML format (https://yaml.org/).

The kernel.json.j2 file is a skeleton of the kernel.json file to be generated. It can contain some
placeholders, and is defined with the Jinja2 format (https://jinja.palletsprojects.com/).

19.6.1 Kernel Template Parameters Definition
The kernel template meta.yaml file defines all the parameters that can be used in kernel.json.j2.

It should contain three entries:

• display_name: the name that will be displayed for the kernel in the JupyterLab Launcher;

• features: a list of features that must be available on the cluster to show this kernel template to
JupyterLab users in the Bright extensions panel;

• parameters: the variables for kernel.json.j2.

The display_name entry is an arbitrary string:

[...]
display_name: "A simple kernel"
[...]

The features entry is a list of strings. The only possible values for these strings are:

• "kubernetes"

© Bright Computing, Inc.

/cm/shared/apps/jupyter/current/lib/python3.7/site-packages/cm_jupyter_kernel_creator/kerneltemplates/
/cm/shared/apps/jupyter/current/lib/python3.7/site-packages/cm_jupyter_kernel_creator/kerneltemplates/
https://yaml.org/
https://jinja.palletsprojects.com/

750 The Jupyter Notebook Environment Integration

• "lsf"

• "pbspro"

• "slurm"

• "uge"

For example, a kernel template that only requires Kubernetes to work contains this line in its meta.yaml:

[...]
features: ["kubernetes"]
[...]

The same principle applies to the other workload managers. If multiple features are listed, then the
kernel template is displayed if at least one of them is available.

Finally, the parameters entry contains a dictionary of kernel parameters. The keys of the dictionary
are parameter names that are used in kernel.json.j2. The values of the dictionary are options that
help users choose a correct value for the parameter. Parameter options are also dictionaries.

A kernel template meta.yaml is thus structured as:

[...]
parameters:
<parameter_name1>:

<option_key>: <option_value>
...
<option_key>: <option_value>

<parameter_name2>:
<option_key>: <option_value>
...
<option_key>: <option_value>

...
<parameter_nameN>:

<option_key>: <option_value>
...
<option_key>: <option_value>

[...]

Parameter names are arbitrary strings.
Option keys are strings. The only possible values for these strings are:

• type

• definition

• limits

The option keys type and definition are mandatory. The option key limits is optional.
For example, a kernel template with two parameters foo and bar looks as follows:

Example

[...]
parameters:
foo:

type: <option_value>
definition: <option_value>
limits: <option_value>

bar:

© Bright Computing, Inc.

19.6 Jupyter Kernel Creator Extension Customization 751

type: <option_value>
definition: <option_value>
limits: <option_value>

[...]

The type Option
The type option key defines the type of the kernel parameter.

The type option key only accepts one of the following string values:

• num: for numeric values (both float and integer are supported);

• str: for arbitrary strings;

• bool: for boolean values (a checkbox is presented in the user interface);

• list: for lists of pre-defined or dynamically-generated settings;

• uri: for interactive RESTful endpoints (only /kernelcreator/envmodules is currently supported).

The definition Option
The definition option key defines how the parameter value is retrieved and displayed.

The definition option key accepts dictionary-like values. Allowed string keys for the dictionary
are:

• display_name: the name that is displayed for the parameter in the kernel customization dialog. It
accepts an arbitrary string as a value;

• getter: how parameter values are retrieved. It only accepts as value one of the following strings:

– static: the values for the parameter are pre-defined;

– shell: the values for the parameter are the output of the shell script;

– python: the values for the parameter are the output of a Python script;

• values: possible values for the parameter that are displayed in the kernel customization dialog. It
accepts a list of arbitrary values;

• default: default value for the parameter. It accepts a value from values;

• exec: the script to be executed to fill values when getter is shell or python. It accepts a
shell/Python script.

If type option value is list, then every line of getter with a setting of shell or python is treated as
an element of the list.

The limits Option
The limits option key offers a way to apply bounds on values provided by users. This usually reduces
the chances of making mistakes and helps users defining correct kernels before actually running them.

The limits option key accepts dictionary-like values according to the value chosen for the type
option key.

If num is the type, then limits can contain:

• min: the minimum numeric value;

• max: the maximum numeric value.

If str or list is the type, then limits can contain:

• min_len: the minimum length of the string or the list;

© Bright Computing, Inc.

752 The Jupyter Notebook Environment Integration

• max_len: the maximum length of the string or the list.

For example, if every node in the cluster has no more than 4 GPUs, then the upper limit on the
requested GPU number can be set to 4:

[...]
parameters:

gpus:
type: num
definition: <option_value>
limits:
min: 1
max: 4

[...]

These limits are not a security measure. They should be considered as convenient sanity checks
for values entered while instantiating a kernel template. This is because users are always able to later
directly edit the generated kernel.json, thereby ignoring such limits.

19.6.2 Kernel Template Parameters Usage
In the kernel.json.j2 file of a kernel template, two types of variables can be defined: Jinja2
variables (https://jinja.palletsprojects.com/en/master/templates/#variables) and Python for-
matted string literals (also known as f-strings) (https://docs.python.org/3/reference/lexical_
analysis.html#f-strings).

They should not be mixed as they work on different steps of the template lifecycle:

• {{..}} and {%..%}: These formats are used to specify Jinja2 expressions and statements. Jinja2
expressions and statements are substituted or computed once, when the user creates a kernel with
Bright’s Jupyter Kernel Creator extension. The actual values will be those specified in the kernel
customization dialog;

• {..}: This format is used to specify Python f-strings. F-strings are substituted every time a user
starts the kernel for a Jupyter notebook. The actual values will be a path to the kernel connection
file, a job ID in a WLM, a UID of the running kernel process, a unique name for a Kubernetes pod,
etc.

Some process-proxies in Jupyter Enterprise Gateway may require another type of variables template.
For example, the Kubernetes process-proxy requires multiple objects to be set up in its API. Several
unique configuration files need to be created at runtime. Templates for such objects are located in the
templates/ directory, along with the meta.yaml and kernel.json.j2 files. These templates are ren-
dered every time a Kubernetes kernel is started for a Jupyter notebook. Variables for these templates are
located inside the config section of the kernel.json file.

19.6.3 Kernel Template Creation Example
To illustrate the kernel variables syntax described in sections 19.6.1 and 19.6.2, a kernel template is now
created from Jupyter’s default Python 3 kernel.

The new kernel template has to be placed in a suitable directory for Bright’s Jupyter Kernel Creator
extension. This directory is the kerneltemplates/ directory in the extension’s Python module:

[root@bright91 ~]# ls /cm/shared/apps/jupyter/current/lib/python3.7/site-packages/\
cm_jupyter_kernel_creator/kerneltemplates/
jupyter-eg-kernel-k8s-bash jupyter-eg-kernel-lsf-bash jupyter-eg-kernel-slurm-bash
jupyter-eg-kernel-k8s-py jupyter-eg-kernel-lsf-py37 jupyter-eg-kernel-slurm-py37
jupyter-eg-kernel-k8s-py-spark jupyter-eg-kernel-pbspro-bash jupyter-eg-kernel-uge-bash
jupyter-eg-kernel-k8s-r jupyter-eg-kernel-pbspro-py37 jupyter-eg-kernel-uge-py37

© Bright Computing, Inc.

https://jinja.palletsprojects.com/en/master/templates/#variables
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

19.6 Jupyter Kernel Creator Extension Customization 753

The content of the original Jupyter kernel directory, including its images, is copied. The kernel.json
file is then renamed to kernel.json.j2 to make it a Jinja2 template:

[root@bright91 ~]# cd /cm/shared/apps/jupyter/current/lib/python3.7/site-packages/\
cm_jupyter_kernel_creator/kerneltemplates/
[root@bright91 kerneltemplates]# cp -pr /cm/shared/apps/jupyter/current/share/jupyter/kernels/\
python3 python3-test
[root@bright91 kerneltemplates]# mv python3-test/kernel.json{,.j2}

The next step is to create the meta.yaml file with the kernel template parameters. In this example a
request is made to have Slurm deployed on the cluster:

[root@bright91 kerneltemplates]# cat << EOF >python3-test/meta.yaml

display_name: "Python 3 demo kernel"
features: ["slurm"]
EOF

The new kernel template is now available in JupyterLab (figure 19.8):

Figure 19.8: New kernel template in the JupyterLab interface

The next step is to define kernel template parameters. The first one being added is kernel_name,
which is the name of the kernel in the JupyterLab Launcher. The meta.yaml file is updated:

display_name: "Python 3 demo kernel"
features: ["slurm"]
parameters:

kernel_name:
type: str
definition:
getter: static
default: "Demo kernel"
display_name: "Display name of the kernel"

The display_name definition in the kernel.json.j2 is now changed to a Jinja2 placeholder matching
this meta.yaml parameter with the appropriate Jinja2 syntax:

{
"display_name": "{{ kernel_name }}",
[...]

}

The JupyterLab interface changes and now prompts the user to enter a value, while providing a
default option (figure 19.9):

© Bright Computing, Inc.

754 The Jupyter Notebook Environment Integration

Figure 19.9: New kernel template dialog during template instantiation

If the user clicks on the Create button, then a new directory is created in
~/.local/share/jupyter/kernels. The content of the kernel template directory, except for the
meta.yaml and kernel.json.j2 files, is copied into this new directory. The kernel name provided by
the user is substituted into the kernel.json.j2 template, and the resulting kernel.json file is written
into the new user kernel directory.

As a result, the new kernel then appears in the JupyterLab Launcher.

19.6.4 Extending Kubernetes Kernel Templates
Bright’s JEG kernel templates for Kubernetes can be extended with additional parameters.

In the following example, a Kubernetes kernel template is extended, to show a dropdown menu
with additional environment variables in the kernel customization dialog. The selected variables are
exported to the context of the running kernel and made available in the Jupyter notebook.

In order to preserve the original kernel template, the existing jupyter-eg-kernel-k8s-py template
is copied to a user directory. The new customized kernel template directory could be later copied back
to the original Bright Jupyter Kernel Creator extension templates directory, to make it available for all
the users.

[jupyterhubuser@bright91 ~]# mkdir -p ~/.local/share/jupyter/kerneltemplates
[jupyterhubuser@bright91 ~]# cd ~/.local/share/jupyter/kerneltemplates
[jupyterhubuser@bright91 kerneltemplates]# cp -pr /cm/shared/apps/jupyter/current/lib/python3.7/\
site-packages/cm_jupyter_kernel_creator/kerneltemplates/jupyter-eg-kernel-k8s-py\
./jupyter-eg-kernel-k8s-py-demo

To distinguish the new kernel template from the original one, it is convenient to change the display
name:

display_name: "Python on Kubernetes Demo"
features: ["kubernetes"]
[...]

The next step is to add a new parameter in the meta.yaml file:

[...]
parameters:
[...]
additional_vars:

type: list
definition:
getter: shell
default: []
display_name: "Additional variables to export in the pod"
exec:

© Bright Computing, Inc.

19.6 Jupyter Kernel Creator Extension Customization 755

- echo -e "VAR1=value1\nCUR_DATE=$(date +'%Y-%m-%d')"
[...]

Now, if the kernel template is instantiated, then a new parameter is displayed in the kernel cus-
tomization dialog (figure 19.10):

Figure 19.10: New environment variables dropdown menu

The kernel customization dialog also shows that every output line of the script was rendered as an
item of the menu.

To pass the selected environment variables to the actual container in the running pod, the
kernel.json.j2 and templates/pod.yaml.j2 files must both be modified. This is due to the two-step
template rendering mechanism:

1. the first rendering takes place when the user instantiates the kernel template. The kernel.json.j2
file becomes kernel.json, and kernel parameters are replaced with the values specified in the
dialog;

2. the second rendering takes place when the user starts the kernel for a Jupyter notebook. The
pod.yaml.j2 file and other Jinja2 files in the templates/ directory are rendered to the actual YAML
representations of the Kubernetes objects.

In the example that follows, the kernel.json.j2 file is extended with the "additional_vars" kernel
parameter:

{
[...]
"metadata": {
"process_proxy": {
[...]
"config": {

[...]
"additional_vars": {{ additional_vars | tojson }},
[...]

}
}

},
[...]

}

The last step requires the use of the Jinja2 loop syntax in the templates/pod.yaml.j2 file:

[...]
spec:

[...]
containers:
- name: notebook
[...]
env:
[...]

© Bright Computing, Inc.

756 The Jupyter Notebook Environment Integration

{% for env_var in additional_vars %}
{% set var, value = env_var.split("=") %}
- name: {{ var }}

value: "{{ value }}"
{% endfor %}

[...]

Now, if a kernel is instantiated with both the environment variables (figure 19.11) and then started
from a notebook, then the variables are available in the process (figure 19.12):

Figure 19.11: Environment variables are chosen in the kernel customization dialog

Figure 19.12: Environment variables are available in the running kernel

19.6.5 Extending Workload Managers Kernel Templates
Bright’s JEG kernel templates for workload managers can be extended with additional parameters. For
convenience, Slurm is used as example in this section. However, the same instructions are valid for the
other WLMs listed in table 19.1.

In the following example, a Slurm kernel template is extended, to show a dropdown menu with
additional environment variables in the kernel customization dialog. The selected variables are exported
to the context of the running kernel and made available in the Jupyter notebook.

In order to preserve the original kernel template, the existing jupyter-eg-kernel-slurm-py37 tem-
plate is copied to a user directory. The new customized kernel template directory could be later copied
back to the original Bright Jupyter Kernel Creator extension templates directory, to make it available for
all users.

[jupyterhubuser@bright91 ~]# mkdir -p ~/.local/share/jupyter/kerneltemplates
[jupyterhubuser@bright91 ~]# cd ~/.local/share/jupyter/kerneltemplates
[jupyterhubuser@bright91 kerneltemplates]# cp -pr /cm/shared/apps/jupyter/current/lib/python3.7/\
site-packages/cm_jupyter_kernel_creator/kerneltemplates/jupyter-eg-kernel-slurm-py37\
./jupyter-eg-kernel-slurm-py37-demo

To distinguish the new kernel template from the original one, it is convenient to change the display
name:

display_name: "Python 3.7 via SLURM Demo"
features: ["slurm"]
[...]

© Bright Computing, Inc.

19.6 Jupyter Kernel Creator Extension Customization 757

The next step is to add a new parameter in the meta.yaml file:

[...]
parameters:
[...]

additional_vars:
type: list
definition:
getter: shell
default: []
display_name: "Additional variables to export in the job"
exec:
- echo -e "VAR1=value1\nCUR_DATE=$(date +'%Y-%m-%d')"

[...]

Now, if the kernel template is instantiated, then a new parameter is displayed in the kernel cus-
tomization dialog (figure 19.13):

Figure 19.13: New environment variables dropdown menu

The kernel customization dialog also shows that every output line of the script was rendered as an
item of the menu.

To pass the selected environment variables to the actual workload manager job, the "submit_script"
section inside the kernel.json.j2 file must be modified to take into account the new "additional_vars"
kernel parameter:

{
[...]
"metadata": {
"process_proxy": {
[...]
"config": {

[...]
"submit_script": [
[...]
"set -xe",
"{environ}",
{% for env in additional_vars %}
"export {{ env }}",
{% endfor %}
"{kernel_cmd}"

]
}

}
},
[...]

}

Now, if a kernel is instantiated with both the environment variables (figure 19.14) and then started
from a notebook, then the variables are available in the process (figure 19.15):

© Bright Computing, Inc.

758 The Jupyter Notebook Environment Integration

Figure 19.14: Environment variables are chosen in the kernel customization dialog

Figure 19.15: Environment variables are available in the running kernel

19.7 Jupyter VNC Extension
If VNC is allowed by the cluster administrator, then the Jupyter environment configured by Bright can
be used to start and control remote desktops via VNC with the Jupyter VNC extension.

Several kernels created from Bright’s templates are capable of running VNC sessions so that users
can run GUI applications. In order to do so, the cluster nodes where kernels are executed must support
VNC. It is outside of the scope of this section to provide guidance on how to install and configure VNC
on different Linux distributions. However, it is important to note that Jupyter kernels usually work with
several types of VNC client/server.

Bright’s default choice for VNC is TigerVNC, a high-performance, platform-neutral implementation
of VNC.

For example, the administrator can install the VNC server on the head node as follows:

Example

[root@bright91]# yum install tigervnc-server #on RHEL 7 and 8

[root@bright91]# zypper install tigervnc #on SLES 15

[root@bright91]# apt-get install tightvncserver #on Ubuntu 18.04 and 20.04

The preceding command must be applied to all software images that are used to run Jupyter kernels
for VNC.

Users can start a VNC session with the button added by Jupyter VNC (figure 19.16). Additional
VNC parameters can be optionally specified.

© Bright Computing, Inc.

19.7 Jupyter VNC Extension 759

Figure 19.16: Starting Jupyter VNC session from kernel

If VNC is available and correctly configured on the node where the kernel is running, then a new
tab is automatically created by Jupyter VNC containing the new session (figure 19.17). A user can now
freely interact in JupyterLab both with the notebook and with the desktop environment.

Figure 19.17: Running Jupyter VNC session from kernel

To provide a user-friendly experience, Jupyter VNC also allows the graphical viewport to be resized,
so that the desktop application can run full-screen (figure 19.18).

© Bright Computing, Inc.

760 The Jupyter Notebook Environment Integration

Figure 19.18: Running Jupyter VNC session from kernel (full-screen)

Once the VNC session is correctly started and the new JupyterLab tab has been created, Jupyter
VNC automatically exports the DISPLAY environment variable to the running notebook (figure 19.19).
Doing so means that any application or library running in the notebook can make use of the freshly
created desktop environment. An example of such a library is OpenAI Gym, a toolkit for developing
and comparing reinforcement learning algorithms, that is distributed by Bright.

Among the examples distributed by Bright (section 19.3), a notebook running PyTorch in the OpenAI
Gym CartPole environment can be found. If executed after a VNC session has been started, a user can
then observe the model being trained in real time in the graphical environment.

Figure 19.19: Automatic configuration of DISPLAY environment variable

19.8 Jupyter WLM Magic Extension
In the Jupyter environment configured by Bright, the Jupyter WLM Magic extension can be used to sched-
ule workload manager jobs from notebooks.

The Jupyter WLM Magic extension is an IPython extension. It is designed to improve the capabilities

© Bright Computing, Inc.

19.8 Jupyter WLM Magic Extension 761

of Jupyter’s default Python 3 kernel, which runs on the login node.
The Jupyter WLM Magic extension should therefore not be used from kernels running on compute

nodes, such as those typically created with Bright’s Jupyter Kernel Creator extension (section 19.5),
and submitted via Jupyter Enterprise Gateway. Indeed, compute nodes running these kernels are often
incapable of starting workload manager jobs in many default WLM configurations.

Jupyter WLM Magic extension makes it possible for users to programmatically submit WLM jobs,
and then interact with their results. This can be done while using the Python programming language
and its libraries, which are available in the notebook.

Users submit jobs and check their progress from the login node. The actual computation is dis-
tributed by the underlying workload manager across compute nodes, which means that server resources
are spared.

Jupyter WLM Magic commands are available in the IPython kernel as magic functions (https://
ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions). A new line
magic (%) and a new cell magic (%%) are now added in the kernel, according to the workload manager:

• Platform LSF: %lsf_job and %%lsf_job

• PBS Pro: %pbspro_job and %%pbspro_job

• Slurm: %slurm_job and %%slurm_job

• UGE: %uge_job and %%uge_job

A user can list the magic functions in the kernel to see if they are available, with Jupyter’s
builtin command %lsmagic (https://ipython.readthedocs.io/en/stable/interactive/magics.
html#magic-lsmagic):

Example

In []: %lsmagic
Out []: root:

line:
automagic:"AutoMagics"
autocall:"AutoMagics"
[...]
slurm_job:"SLURMMagic"
pbspro_job:"PBSProMagic"
lsf_job:"LSFMagic"
uge_job:"UGEMagic"

cell:
js:"DisplayMagics"
javascript:"DisplayMagics"
[...]
slurm_job:"SLURMMagic"
pbspro_job:"PBSProMagic"
lsf_job:"LSFMagic"
uge_job:"UGEMagic"

The magic functions introduced by this Bright extension share a similar syntax. For convenience,
Slurm is used as an example in this section. However, the same instructions are valid for the other
WLMs.

Users can check which options are available for a WLM function with the line magic helper:

Example

© Bright Computing, Inc.

https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic

762 The Jupyter Notebook Environment Integration

In []: %slurm_job --help
Out []: usage: %slurm_job [-h] [--module MODULE] [--module-load-cmd MODULE_LOAD_CMD]

[--shell SHELL] [--submit-command SUBMIT_COMMAND]
[--cancel-command CANCEL_COMMAND]
[--control-command CONTROL_COMMAND]
[--stdout-file STDOUT_FILE] [--stderr-file STDERR_FILE]
[--preamble PREAMBLE] [--timeout TIMEOUT]
[--check-condition-var CHECK_CONDITION_VAR]
[--job-id-var JOB_ID_VAR]
[--stdout-file-var STDOUT_FILE_VAR]
[--stderr-file-var STDERR_FILE_VAR] [--dont-wait]
[--write-updates WRITE_UPDATES]
[--check-status-every CHECK_STATUS_EVERY]

optional arguments:
-h, --help show this help message and exit

[...]

Line magic functions are typically used to set options with a global scope in the notebook. By doing
so, a user will not need to specify the same option every time a job will be submitted via cell magic. For
example, if two Slurm instances are deployed on the cluster and their associated environment modules
are slurm-primary and slurm-secondary, a user could run the following line magic once to configure
the Jupyter WLM Magic extension to always use the second deployment:

Example

In []: %slurm_job --module slurm-secondary
Out []:

Now, jobs will always be submitted to slurm-secondary. This is more convenient than repeatedly
defining the same module option for every cell magic upon scheduling a job:

Example

In []: %%slurm_job --module slurm-secondary
<WLM JOB DEFINITION>

Out []: <WLM JOB OUTPUT>
In []: %%slurm_job --module slurm-secondary

<WLM JOB DEFINITION>
Out []: <WLM JOB OUTPUT>

It should be noted that line magic functions cannot be used to submit WLM jobs. Cell magic func-
tions have to be used instead.

A well-defined cell contains the WLM cell magic function provided by the extension, followed by
the traditional job definition. For example, a simple MPI job running on two nodes can be submitted to
Slurm by defining and running this cell:

Example

In []: %%slurm_job
#SBATCH -J mpi-job-example
#SBATCH -N 2
module load openmpi
mpirun hostname

Out []: COMPLETED
STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-1.out

© Bright Computing, Inc.

19.9 Jupyter Environment Removal 763

node001
node001
node002
node002

Users can take advantage of the Jupyter WLM Magic extension to store some information into Python
variables about the job being submitted. The information could be the ID or the output file name, for
example. Users can then later programmatically interact with them in Python. This feature is conve-
nient when a user wants to, for example, programmatically carry out new actions depending on the job
output:

Example

In []: %%slurm_job --job-id-var my_job_id --stdout-file-var my_job_out
#SBATCH -J mpi-job-example
#SBATCH -N 2
module load openmpi
mpirun hostname

Out []: COMPLETED
STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-2.out
node001
node001
node002
node002

In []: print(f"Job id {my_job_id} was written to {my_job_out}")
print(f"Output lines: {open(my_job_out).readlines()}")

Out []: Job id 2 was written to /home/demo/.jupyter/wlm_magic/slurm-2.out
Output lines: ['node001\n', 'node001\n', 'node002\n', 'node002\n']

Users can also exploit Python variables to define the behavior of the Jupyter WLM Magic extension.
For example, they can define a Python boolean variable to submit a WLM job only if a condition is true:

Example

In []: run_job = 1 == 2
Out []:

In []: %%slurm_job --check-condition-var run_job
#SBATCH -J mpi-job-example
#SBATCH -N 2
module load openmpi
mpirun hostname

Out []: Variable run_job is 'False'. Skipping submit.

19.9 Jupyter Environment Removal
Before removing Jupyter, the administrator should ensure that all kernels have been halted, and that no
user is still logged onto the web interface. Stopping the cm-jupyterhub service with users that are still
logged in, or with running kernels, has undefined behavior.

To remove Jupyter, the script cm-jupyter-setup must be run, either in interactive mode, or with the
option --remove.

Removing Jupyter does not remove or affect Kubernetes or WLM deployments.
For a more complete cleanup, the following packages must be manually removed

from the nodes involved in the Jupyter deployment: cm-jupyter, cm-jupyter-local, and
cm-npm-configurable-http-proxy.

© Bright Computing, Inc.

A
Generated Files

This appendix contains lists of system configuration files that are managed by CMDaemon, and system
configuration files that are managed by node-installer. These are files created or modified on the head
nodes (section A.1), in the software images (section A.2), and on the regular nodes (section A.3). These
files should not be confused with configuration files that are merely installed (section A.4).

Section 2.6.5 describes how system configuration files on all nodes are written out using the Cluster
Management Daemon (CMDaemon). CMDaemon is introduced in section 2.6.5 and its configuration
directives are listed in Appendix C.

All of these configuration files may be listed as Frozen Files in the CMDaemon configuration file
to prevent them from being modified further by CMDaemon. The files can be frozen for the head node
by setting the directive at /cm/local/apps/cmd/etc/cmd.conf. They can also be frozen on the regular
nodes by setting the directive in the software image, by default at /cm/images/default-image/cm/
local/apps/cmd/etc/cmd.conf.

A.1 System Configuration Files Created Or Modified By CMDeamon On Head
Nodes

The more important head node files that are managed by CMDaemon are listed here for a plain in-
stallation on the various distributions. The list excludes the files managed by CMDaemon in the soft-
ware images used for regular nodes (section A.2), which are by default located on the head node under
/cm/images/:

Files generated or modified automatically on the head node by CMDaemon In RHEL7, CENTOS7, RHEL8,
CENTOS8, Ubuntu 18.04, Ubuntu 20.04, SLES12, SLES15

File Part Comment

/cm/local/apps/openldap/etc/
slapd.conf

Section

/cm/local/apps/<PBS>/var/cm/
cm-pbs.conf

Section <PBS> can be one of openpbs pbspro

. . . continues

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf
/cm/images/
/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/<PBS>/var/cm/cm-pbs.conf
/cm/local/apps/<PBS>/var/cm/cm-pbs.conf

766 Generated Files

...continued

File Part Comment

/cm/node-installer/etc/
sysconfig/clock

Section

/etc/aliases Section

/etc/bind/named.conf Entire file Ubuntu only. For zone additions use /etc/
bind/named.conf.include1. For options ad-
ditions, use /etc/bind/named.conf.global.
options.include.

/etc/chrony.conf Section RHEL8 only

/etc/dhcpd.conf Entire file

/etc/dhcp/dhclient.conf Section RHEL7,8, CentOS7,8, Ubuntu 18.04, Ubuntu
20.04

/etc/dhcpd.internalnet.conf Entire file For internal networks other than internalnet,
corresponding files are generated if node boot-
ing (table 3.2.1) is enabled

/etc/exports Section

/etc/fstab Section

/etc/genders Section

/etc/hosts Section

/etc/localtime Symlink

/etc/logrotate.d/slurm Entire file

/etc/logrotate.d/slurmdbd Entire file

/etc/named.conf Entire file Non-Ubuntu distributions only. For zone addi-
tions use /etc/named.conf.include1. For op-
tions additions, use /etc/named.conf.global.
options.include.

/etc/ntp.conf Section RHEL7 only

/etc/ntp/step-tickers Section RHEL7 only

/etc/postfix/canonical Section

/etc/postfix/generic Section

/etc/postfix/main.cf Section

/etc/resolv.conf Section

/etc/shorewall6/interfaces Section

/etc/shorewall6/policy Section

. . . continues

© Bright Computing, Inc.

/cm/node-installer/etc/sysconfig/clock
/cm/node-installer/etc/sysconfig/clock
/etc/aliases
/etc/bind/named.conf
/etc/bind/named.conf.include
/etc/bind/named.conf.include
/etc/bind/named.conf.global.options.include
/etc/bind/named.conf.global.options.include
/etc/chrony.conf
/etc/dhcpd.conf
/etc/dhcp/dhclient.conf
/etc/dhcpd.internalnet.conf
/etc/exports
/etc/fstab
/etc/genders
/etc/hosts
/etc/localtime
/etc/logrotate.d/slurm
/etc/logrotate.d/slurmdbd
/etc/named.conf
/etc/named.conf.include
/etc/named.conf.global.options.include
/etc/named.conf.global.options.include
/etc/ntp.conf
/etc/ntp/step-tickers
/etc/postfix/canonical
/etc/postfix/generic
/etc/postfix/main.cf
/etc/resolv.conf
/etc/shorewall6/interfaces
/etc/shorewall6/policy

A.2 System Configuration Files Created Or Modified By CMDaemon In Software Images: 767

...continued

File Part Comment

/etc/shorewall6/rules Section

/etc/shorewall6/snat Section

/etc/shorewall6/zones Section

/etc/shorewall/interfaces Section

/etc/shorewall/netmap Section

/etc/shorewall/policy Section

/etc/shorewall/rules Section

/etc/shorewall/snat Section

/etc/shorewall/zones Section

/etc/snmp/snmptrapd.conf Section

/etc/sysconfig/bmccfg Entire file BMC configuration

/etc/sysconfig/clock Section

/etc/sysconfig/dhcpd Entire file

/etc/sysconfig/network-scripts/
ifcfg-*

Section

/tftpboot/mtu.conf Entire file Bright Computing configuration

/tftpboot/pxelinux.cfg/category.
default

Entire file Bright Computing configuration

/var/lib/named/*.zone1 Entire file For SLES distributions only. For custom addi-
tions use /var/lib/named/*.zone.include

/var/named/*.zone1 Entire file For non-SLES distributions only. For custom ad-
ditions use /var/named/*.zone.include

1 User-added zone files ending in *.zone that are placed for a corresponding zone statement in the

include file /etc/[bind/]named.conf.include are wiped by CMDaemon activity. Another pattern,

eg: *.myzone, must therefore be used instead

A.2 System Configuration Files Created Or Modified By CMDaemon In
Software Images:

The following is a list of CMDaemon-managed system configuration files in the software images, that
is, under /cm/images/<image>:

© Bright Computing, Inc.

/etc/shorewall6/rules
/etc/shorewall6/snat
/etc/shorewall6/zones
/etc/shorewall/interfaces
/etc/shorewall/netmap
/etc/shorewall/policy
/etc/shorewall/rules
/etc/shorewall/snat
/etc/shorewall/zones
/etc/snmp/snmptrapd.conf
/etc/sysconfig/bmccfg
/etc/sysconfig/clock
/etc/sysconfig/dhcpd
/etc/sysconfig/network-scripts/ifcfg-*
/etc/sysconfig/network-scripts/ifcfg-*
/tftpboot/mtu.conf
/tftpboot/pxelinux.cfg/category.default
/tftpboot/pxelinux.cfg/category.default
/var/lib/named/*.zone
/var/lib/named/*.zone.include
/var/named/*.zone
/var/named/*.zone.include

768 Generated Files

System configuration files created or modified by CMDaemon in software images in RHEL7, CentOS7,
RHEL8, CentOS8, SLES12, SLES15, Ubuntu18.04, Ubuntu 20.04

File Part Comment

/etc/aliases Section

/etc/hosts Section

/etc/mkinitrd_cm.conf Section Not for Ubuntu

/etc/initramfs-tools/modules Section Only for Ubuntu

/etc/modprobe.d/bright-cmdaemon.conf Section

/etc/postfix/main.cf Section

/etc/rsyslog.conf Section

/etc/securetty Section

/etc/shorewall/rules Section

/etc/shorewall/snat Section

/etc/shorewall6/rules Section

/etc/shorewall6/snat Section

/etc/sysconfig/clock Section

A.3 Files Created On Regular Nodes By The Node-Installer
The list of files on the regular node that are generated or modified by the node-installer can be viewed
in the logs at /var/log/modified-by-node-installer.log on the node. For a default installation in
RHEL7, RHEL8 the list is as shown in the following table:

© Bright Computing, Inc.

/var/log/modified-by-node-installer.log

A.4 Files Not Generated, But Installed In RHEL/CentOS 769

System configuration files created or modified on regular nodes by the node-installer in RHEL7

File Part Comment

/etc/sysconfig/network-scripts/ifcfg-* Entire file not ifcfg-log

/etc/sysconfig/network Section

/etc/resolv.conf Entire file

/etc/hosts Section

/etc/postfix/main.cf Section

/etc/chrony.conf Entire file RHEL8 only

/etc/ntp.conf Entire file RHEL7 only

/etc/ntp/step-tickers Entire file RHEL7 only

/etc/hostname Section

/cm/local/apps/cmd/etc/cert.pem Section

/cm/local/apps/cmd/etc/cert.key Section

/cm/local/apps/openldap/etc/certs/ldap.pem Section

/cm/local/apps/openldap/etc/certs/ldap.key Section

/var/spool/cmd/disks.xml Section

/cm/local/apps/cmd/etc/cluster.pem Section

/var/log/rsyncd.log Section

/var/log/node-installer Section

/var/log/modified-by-node-installer.log Section

A.4 Files Not Generated, But Installed In RHEL/CentOS
This appendix (Appendix A) is mainly about generated configuration files. This section (A.4) of the
appendix discusses a class of files that is not generated, but may still be confused with generated files.
The discussion in this section clarifies the issue, and explains how to check if non-generated installed
files differ from the standard distribution installation.

A design goal of Bright Cluster Manager is that of minimal interference. That is, to stay out of the
way of the distributions that it works with as much as is reasonable. Still, there are inevitably cluster
manager configuration files that are not generated, but installed from a cluster manager package. A
cluster manager configuration file of this kind overwrites the distribution configuration file with its
own special settings to get the cluster running, and the file is then not maintained by the node-installer
or CMDaemon. Such files are therefore not listed on any of the tables in this chapter.

Sometimes the cluster file version may differ unexpectedly from the distribution version. To look
into this, the following steps may be followed:

Is the configuration file a Bright Cluster Manager version or a distribution version? A convenient
way to check if a particular file is a cluster file version is to grep for it in the packages list for the cluster
packages. For example, for nsswitch.conf:

[root@bright91 ~]# repoquery -l $(repoquery -a | grep -F _cm9.1) | grep nsswitch.conf$

The inner repoquery displays a list of all the packages. By grepping for the cluster manager version
string, for example _cm9.1 for Bright Cluster Manager 9.1, the list of cluster manager packages is found.
The outer repoquery displays the list of files within each package in the list of cluster manager pack-
ages. By grepping for nsswitch.conf$, any file paths ending in nsswitch.conf in the cluster manager
packages are displayed. The output is:

© Bright Computing, Inc.

770 Generated Files

/cm/conf/etc/nsswitch.conf

Files under /cm/conf are placed by Bright Cluster Manager packages when updating the head node.
From there they are copied over during the post-install section of the RPM to where the distribution
version configuration files are located by the cluster manager, but only during the initial installation of
the cluster. The distribution version file is overwritten in this way to prevent RPM dependency conflicts
of the Bright Cluster Manager version with the distribution version. The configuration files are not
copied over from /cm/conf during subsequent reboots after the initial installation. The cm/conf files
are however updated when the Bright Cluster Manager packages are updated. During such a Bright
Cluster Manager update, a notification is displayed that new configuration files are available.

Inverting the cluster manager version string match displays the files not provided by Bright Cluster
Manager. These are normally the files provided by the distribution:

[root@bright91 ~]# repoquery -l $(repoquery -a | grep -F -v _cm9.1) | grep nsswitch.conf$
/usr/share/factory/etc/nsswitch.conf
/usr/share/factory/etc/nsswitch.conf
/usr/share/authselect/default/minimal/nsswitch.conf
/usr/share/authselect/default/nis/nsswitch.conf
/usr/share/authselect/default/sssd/nsswitch.conf
/usr/share/authselect/default/winbind/nsswitch.conf
/var/lib/authselect/nsswitch.conf
/usr/share/authselect/default/minimal/nsswitch.conf
/usr/share/authselect/default/nis/nsswitch.conf
/usr/share/authselect/default/sssd/nsswitch.conf
/usr/share/authselect/default/winbind/nsswitch.conf
/var/lib/authselect/nsswitch.conf
/usr/share/rear/skel/default/etc/nsswitch.conf
/etc/nsswitch.conf
/etc/nsswitch.conf
/usr/share/doc/yp-tools/nsswitch.conf

Which package provides the file in Bright Cluster Manager and in the distribution? The packages
that provide these files can be found by running the “yum whatprovides *” command on the paths
given by the preceding output, for example:

~# yum whatprovides */cm/conf/etc/nsswitch.conf
...
cm-config-ldap-client<various types and versions are seen>

This reveals that some Bright Cluster Manager LDAP packages can provide an nsswitch.conf file.
The file is a plain file provided by the unpacking and placement that takes place when the package is
installed. The file is not generated or maintained periodically after placement, which is the reason why
this file is not seen in the tables of sections A.1, A.2, and A.3 of this appendix.

Similarly, looking through the output for the less specific case:

~# yum whatprovides */etc/nsswitch.conf
...
cm-config-ldap-client*
glibc*
rear*
systemd*

shows that glibc provides a distribution version of the nsswitch.conf file, that the rear package from
the distribution provides a version of it, and that there is also a systemd version of this file available
from the distribution packages. The glob * in the output in this manual represents a variety of types and
versions. The actual display that is seen on the screen is an expansion of the glob.

© Bright Computing, Inc.

A.4 Files Not Generated, But Installed In RHEL/CentOS 771

Similar Ubuntu queries: For Ubuntu, a query of the form dpkg -S <filename> shows the packages
that provide a file with the pattern <filename>.

Example

root@head:~# dpkg -S "nsswitch.conf"
cm-config-ldap-client-master: /cm/conf/etc/nsswitch.conf
manpages: /usr/share/man/man5/nsswitch.conf.5.gz
libc-bin: /usr/share/libc-bin/nsswitch.conf

To work out which Ubuntu package is a distribution package and which is a Bright Cluster Manager
package, queries similar to the following can be run:

Example

root@head:~# dpkg-query -W -f='${binary:Package} ${Version}\n' $(dpkg -S "nsswitch.conf" | cut -f1 -d:) |\
grep cm9.1
cm-config-ldap-client-master 9.1-131-cm9.1
root@head:~# dpkg-query -W -f='${binary:Package} ${Version}\n' $(dpkg -S "nsswitch.conf" | cut -f1 -d:) |\
grep -v cm9.1
libc-bin 2.27-3ubuntu1
manpages 4.15-1

What are the differences between the Bright Cluster Manager version and the distribution versions of
the file? Sometimes it is helpful to compare a distribution version and cluster version of nsswitch.conf
to show the differences in configuration. The versions of the RPM packages containing the nsswitch.conf
can be downloaded, their contents extracted, and their differences compared as follows:

~# mkdir yumextracted ; cd yumextracted
~# yumdownloader glibc-2.17
~# rpm2cpio glibc-2.17-292.el7.x86_64.rpm | cpio -idmv
~# yumdownloader cm-config-ldap-client-9.1
~# rpm2cpio cm-config-ldap-client-9.1-114_cm9.1.noarch.rpm
~# diff etc/nsswitch.conf cm/conf/etc/nsswitch.conf
...

What are the configuration files in an RPM package? An RPM package allows files within it to be
marked as configuration files. Files marked as configuration files can be listed with rpm -qc <package>.
Optionally, piping the list through “sort -u” filters out duplicates.

Example

~# rpm -qc glibc | sort -u
/etc/gai.conf
/etc/ld.so.cache
/etc/ld.so.conf
/etc/nsswitch.conf
/etc/rpc
/usr/lib64/gconv/gconv-modules
/usr/lib/gconv/gconv-modules
/var/cache/ldconfig/aux-cache

© Bright Computing, Inc.

772 Generated Files

How does an RPM installation deal with local configuration changes? Are there configuration files or
critical files that Bright Cluster Manager misses? Whenever an RPM installation detects a file with
local changes, it can treat the local system file as if:

1. the local system file is frozen1. The installation does not interfere with the local file, but places the
updated file as an .rpmnew file in the same directory.

2. the local system file is not frozen. The installation changes the local file. It copies the local file to
an .rpmsave file in the same directory, and installs a new file from the RPM package.

When building the Bright Cluster Manager packages, the package builders can specify which of
these two methods apply. When dealing with the built package, the system administrator can use an
rpm query method to determine which of the two methods applies for a particular file in the package.
For example, for glibc, the following query can be used and grepped:

rpm -q --queryformat '[%{FILENAMES}\t%{FILEFLAGS:fflags}\n]' glibc | egrep '[[:space:]].*(c|n).*$' | sort -u
/etc/gai.conf cmng
/etc/ld.so.cache cmng
/etc/ld.so.conf cn
/etc/nsswitch.conf cn
/etc/rpc cn
/usr/lib64/gconv/gconv-modules cn
/usr/lib/gconv/gconv-modules cn
/var/cache/ldconfig/aux-cache cmng

Here, the second column of the output displayed shows which of the files in the package have a
configuration (c) flag or a noreplace (n) flag. The c flag without the n flag indicates that an .rpmsave file
will be created, while a c flag together with an n flag indicates that an .rpmnew file will be created.

In any case, files that are not marked as configuration files are overwritten during installation.
So:

• If a file is not marked as a configuration file, and it has been customized by the system administra-
tor, and this file is provided by an RPM package, and the RPM package is updated on the system,
then the file is overwritten silently.

• If a file is marked as a configuration file, and it has been customized by the system administrator,
and this file is provided by an RPM package, and the RPM package is updated on the system, then
it is good practice to look for .rpmsave and .rpmnew versions of that file, and run a comparison
on detection.

Bright Cluster Manager should however mark all critical files as configuration files in the Bright
Cluster Manager packages.

Sometimes, RPM updates can overwrite a particular file that the administrator has changed locally
and then would like to keep frozen.

To confirm that this is the problem, the following should be checked:

• The --queryformat option should be used to check that file can indeed be overwritten by updates.
If the file has an n flag (regardless of whether it is a configuration file or not) then overwriting due
to RPM updates does not happen, and the local file remains frozen. If the file has no n flag, then
replacement occurs during RPM updates.

For files with no n flag, but where the administrator would still like to freeze the file during updates, the
following can be considered:

1This freezing should not be confused with the FrozenFile directive (Appendix C), where the file or section of a file is being
maintained by CMDaemon, and where freezing the file prevents CMDaemon from maintaining it.

© Bright Computing, Inc.

A.4 Files Not Generated, But Installed In RHEL/CentOS 773

• The file text content should be checked to see if it is a CMDaemon-maintained file (section 2.6.5),
or checked against the list of generated files (Appendix A). This is just to make sure to avoid
confusion about how changes are occurring in such a file.

– If it is a CMDaemon-maintained file, then configuration changes put in by the administra-
tor will also not persist in the maintained section of the file unless the FrozenFile directive
(section C) is used to freeze the change.

– If it is only a section that CMDaemon maintains, then configuration changes can be placed
outside of the maintained section.

Wherever the changes are placed in such a file, these changes are in any case by default overwritten
on RPM updates if the file has no n flag.

• Some regular node updates can effectively be maintained in a desired state with the help of a
finalize script (Appendix E).

• Updates can be excluded from YUM/zypper (section 12.3.2), thereby avoiding the overwriting of
that file by the excluded package.

A request to change the package build flag may be sent to Bright Computing if the preceding suggested
options are unworkable.

© Bright Computing, Inc.

B
Bright Computing Public Key

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.0 (GNU/Linux)

mQGiBEqtYegRBADStdQjn1XxbYorXbFGncF2IcMFiNA7hamARt4w7hjtwZoKGHbC
zSLsQTmgZO+FZs+tXcZa50LjGwhpxT6qhCe8Y7zIh2vwKrKlaAVKj2PUU28vKj1p
2W/OIiG/HKLtahLiCk0L3ahP0evJHh8B7elClrZOTKTBB6qIUbC5vHtjiwCgydm3
THLJsKnwk4qZetluTupldOEEANCzJ1nZxZzN6ZAMkIBrct8GivWClT1nBG4UwjHd
EDcGlREJxpg/OhpEP8TY1e0YUKRWvMqSVChPzkLUTIsd/O4RGTw0PGCo6Q3TLXpM
RVoonYPR1tRymPNZyW8VJeTUEn0kdlCaqZykp1sRb3jFAiJIRCmBRc854i/jRXmo
foTPBACJQyoEH9Qfe3VcqR6+vR2tX9lPvkxS7A5AnJIRs3Sv6yM4oV+7k/HrfYKt
fyl6widtEbQ1870s4x3NYXmmne7lz1nGxBfAxzPG9rtjRSXyVxc+KGVd6gKeCV6d
o7kS/LJHRi0Lb5G4NZRFy5CGqg64liJwp/f2J4uyRbC8b+/LQbQ7QnJpZ2h0IENv
bXB1dGluZyBEZXZlbG9wbWVudCBUZWFtIDxkZXZAYnJpZ2h0Y29tcHV0aW5nLmNv
bT6IXgQTEQIAHgUCSq1h6AIbAwYLCQgHAwIDFQIDAxYCAQIeAQIXgAAKCRDvaS9m
+k3m0JO0AKC0GLTZiqoCQ6TRWW2ijjITEQ8CXACgg3o4oVbrG67VFzHUntcA0YTE
DXW5Ag0ESq1h6xAIAMJiaZI/0EqnrhSfiMsMT3sxz3mZkrQQL82Fob7s+S7nnMl8
A8btPzLlK8NzZytCglrIwPCYG6vfza/nkvyKEPh/f2it941bh7qiu4rBLqr+kGx3
zepSMRqIzW5FpIrUgDZOL9J+tWSSUtPW0YQ5jBBJrgJ8LQy9dK2RhAOLuHfbOSVB
JLIwNKxafkhMRwDoUNS4BiZKWyPFu47vd8fM67IPT1nMl0iCOR/QBn29MYuWnBcw
61344pd/IjOu3gM6YBqmRRU6yBeVi0TxxbYYnWcts6tEGAlTjHUOQ7gxVp4RDia2
jLVtbee8H464wxkkC3SSkng216RaBBAoaAykhzcAAwUH/iG4WsJHFw3+CRhUqy51
jnmb1FTFO8KQXI8JlPXM0h6vv0PtP5rw5D5V2cyVe2i4ez9Y8XMVfcbf60lptKyY
bRUjQq+9SNjt12ESU67YyLstSN68ach9Af03PoSZIKkiNwfA0+VBILv2Mhn7xd74
5L0M/eJ7lHSpeJA2Rzs6szc234Ob/VxGfGWjogaK3NElSYOzQo+/k0VMdMWsQm/8
Ras19IA9P5jlSbcZQlHlPjndS4x4XQ8P41ATczsIDyWhsJC51rTuw9/QO7fqvvPn
xsRz1pFmiiN7I4JLjw0nAlXexn4EaeVa7Eb+uTjvxJZNdShs7Td74OmlF7RKFccI
wLuISQQYEQIACQUCSq1h6wIbDAAKCRDvaS9m+k3m0C/oAJsHMmKrLPhjCdZyHbB1
e19+5JABUwCfU0PoawBN0HzDnfr3MLaTgCwjsEE=
=WJX7
-----END PGP PUBLIC KEY BLOCK-----

© Bright Computing, Inc.

C
CMDaemon Configuration File

Directives
This appendix lists all configuration file directives that may be used in the cluster management daemon
configuration file. If a change is needed, then the directives are normally changed on the head node, or
on both head nodes in the high availability configuration, in:

/cm/local/apps/cmd/etc/cmd.conf

The directives can also be set in some cases for the regular nodes, via the software image in /cm/
images/default-image/cm/local/apps/cmd/etc/cmd.conf on the head node. Changing the defaults
already there is however not usually needed, and is not recommended.

Only one directive is valid per cmd.conf file.
To activate changes in a cmd.conf configuration file, the cmd service associated with it must be

restarted.

• For the head node this is normally done with the command:

service cmd restart

• For regular nodes, cmd running on the nodes is restarted. Often, the image should be updated
before cmd is restarted. How to carry out these procedures for a directive is described with an
example where the FrozenFile directive is activated on a regular node on page 789.

Master directive
Syntax: Master = hostname
Default: Master = master

The cluster management daemon treats the host specified in the Master directive as the head node. A
cluster management daemon running on a node specified as the head node starts in head mode. On a
regular node, it starts in node mode.

Port directive
Syntax: Port = number
Default: Port = 8080

The number used in the syntax above is a number between 0 and 65535. The default value is 8080.
The Port directive sets the value of the port of the cluster management daemon to listen

for non-SSL HTTP calls. By default, this happens only during init. All other communication

© Bright Computing, Inc.

/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

778 CMDaemon Configuration File Directives

with the cluster management daemon is carried out over the SSL port. Pre-init port adjustment
can be carried out in the node-installer.conf configuration. Shorewall may need to be modified
to allow traffic through for a changed port (https://kb.brightcomputing.com/knowledge-base/
how-do-i-change-the-default-port-cmdaemon-uses/).

SSLPort directive
Syntax: SSLPort = number
Default: SSLPort = 8081

The number used in the syntax above is a number between 0 and 65535. The default value is 8081.
The SSLPort directive sets the value of the SSL port of the cluster management daemon to listen for

SSL HTTP calls. By default, it is used for all communication of CMDaemon with Bright View and cmsh,
except for when CMDaemon is started up from init.

SSLPortOnly directive
Syntax: SSLPortOnly = yes|no
Default: SSLPortOnly = no

The SSLPortOnly directive allows the non-SSL port to be disabled. By default, during normal running,
both SSL and non-SSL ports are listening, but only the SSL port is used. Also by default, the non-SSL
port is only used during CMDaemon start up.

If bootloaderprotocol (section 5.1.6) is set to HTTP, then SSLPortOnly must be set to no. The HTTPS
protocol is unsupported by most bootloaders.

CertificateFile directive
Syntax: CertificateFile = filename
Default: CertificateFile = "/cm/local/apps/cmd/etc/cert.pem"

The CertificateFile directive specifies the PEM-format certificate which is to be used for authentica-
tion purposes. On the head node, the certificate used also serves as a software license.

PrivateKeyFile directive
Syntax: PrivateKeyFile = filename
Default: PrivateKeyFile = "/cm/local/apps/cmd/etc/cert.key"

The PrivateKeyFile directive specifies the PEM-format private key which corresponds to the certificate
that is being used.

CACertificateFile directive
Syntax: CACertificateFile = filename
Default: CACertificateFile = "/cm/local/apps/cmd/etc/cacert.pem"

The CACertificateFile directive specifies the path to the Bright Cluster Manager PEM-format root
certificate. It is normally not necessary to change the root certificate.

ClusterCertificateFile directive
Syntax: ClusterCertificateFile = filename

© Bright Computing, Inc.

https://kb.brightcomputing.com/knowledge-base/how-do-i-change-the-default-port-cmdaemon-uses/
https://kb.brightcomputing.com/knowledge-base/how-do-i-change-the-default-port-cmdaemon-uses/

779

Default: ClusterCertificateFile = "/cm/local/apps/cmd/etc/cluster.pem"

The ClusterCertificateFile directive specifies the path to the Bright Cluster Manager PEM-format
cluster certificate file used as a software license, and to sign all client certificates

ClusterPrivateKeyFile directive
Syntax: ClusterPrivateKeyFile = filename
Default: ClusterPrivateKeyFile = "/cm/local/apps/cmd/etc/cluster.key"

The ClusterPrivateKeyFile directive specifies the path to the Bright Cluster Manager PEM-format
private key which corresponds to the cluster certificate file.

RandomSeedFile directive
Syntax: RandomSeedFile = filename
Default: RandomSeedFile = "/dev/urandom"

The RandomSeedFile directive specifies the path to a source of randomness for a random seed.

RandomSeedFileSize directive
Syntax: RandomSeedFileSize = number
Default: RandomSeedFileSize = 8192

The RandomSeedFileSize directive specifies the size of the random seed.

DHParamFile directive
Syntax: DHParamFile = filename
Default: DHParamFile = "/cm/local/apps/cmd/etc/dh1024.pem"

The DHParamFile directive specifies the path to the Diffie-Hellman parameters.

SSLHandshakeTimeout directive
Syntax: SSLHandshakeTimeout = number
Default: SSLHandshakeTimeout = 10

The SSLHandShakeTimeout directive controls the time-out period (in seconds) for SSL handshakes.

SSLSessionCacheExpirationTime directive
Syntax: SSLSessionCacheExpirationTime = number
Default: SSLSessionCacheExpirationTime = 300

The SSLSessionCacheExpirationTime directive controls the period (in seconds) for which SSL sessions
are cached. Specifying the value 0 can be used to disable SSL session caching.

DBHost directive
Syntax: DBHost = hostname
Default: DBHost = "localhost"

© Bright Computing, Inc.

780 CMDaemon Configuration File Directives

The DBHost directive specifies the hostname of the MySQL database server.

DBPort directive
Syntax: DBPort = number
Default: DBHost = 3306

The DBPort directive specifies the TCP port of the MySQL database server.

DBUser directive
Syntax: DBUser = username
Default: DBUser = cmdaemon

The DBUser directive specifies the username used to connect to the MySQL database server.

DBPass directive
Syntax: DBPass = password
Default: DBPass = "<random string set during installation>"

The DBPass directive specifies the password used to connect to the MySQL database server.

DBName directive
Syntax: DBName = database
Default: DBName = "cmdaemon"

The DBName directive specifies the database used on the MySQL database server to store CMDaemon
related configuration and status information.

DBUnixSocket directive
Syntax: DBUnixSocket = filename
Default: DBUnixSocket = "/var/lib/mysql/mysql.sock"

The DBUnixSocket directive specifies the named pipe used to connect to the MySQL database server if
it is running on the same machine.

DBUpdateFile directive
Syntax: DBUpdateFile = filename
Default: DBUpdateFile = "/cm/local/apps/cmd/etc/cmdaemon_upgrade.sql"

The DBUpdateFile directive specifies the path to the file that contains information on how to upgrade
the database from one revision to another.

EventBucket directive
Syntax: EventBucket = filename
Default: EventBucket = "/var/spool/cmd/eventbucket"

© Bright Computing, Inc.

"/cm/local/apps/cmd/etc/cmdaemon_upgrade.sql"

781

The EventBucket directive (section 13.10.3) specifies the path to the named pipe that is created to listen
for incoming events from a user.

EventBucketFilter directive
Syntax: EventBucketFilter = filename
Default: EventBucketFilter = "/cm/local/apps/cmd/etc/eventbucket.filter"

The EventBucketFilter directive (section 13.10.3) specifies the path to the file that contains regular
expressions used to filter out incoming messages on the event-bucket.

LDAPHost directive
Syntax: LDAPHost = hostname
Default: LDAPHost = "localhost"

The LDAPHost directive specifies the hostname of the LDAP server to connect to for user management.

LDAPUser directive
Syntax: LDAPUser = username
Default: LDAPUser = "root"

The LDAPUser directive specifies the username used when connecting to the LDAP server.

LDAPPass directive
Syntax: LDAPPass = password
Default: LDAPPass = "<random string set during installation>"

The LDAPPass directive specifies the password used when connecting to the LDAP server. It can be
changed following the procedure described in Appendix I.

LDAPReadOnlyUser directive
Syntax: LDAPReadOnlyUser = username
Default: LDAPReadOnlyUser = "readonlyroot"

The LDAPReadOnlyUser directive specifies the username that will be used when connecting to the LDAP
server during LDAP replication. The user is a member of the "rogroup" group, whose members have a
read-only access to the whole LDAP directory.

LDAPReadOnlyPass directive
Syntax: LDAPReadOnlyPass = password
Default: LDAPReadOnlyPass = "<random string set during installation>"

The LDAPReadOnlyPass directive specifies the password that will be used when connecting to the LDAP
server during LDAP replication.

LDAPSearchDN directive
Syntax: LDAPSearchDN = dn

© Bright Computing, Inc.

"/cm/local/apps/cmd/etc/eventbucket.filter"

782 CMDaemon Configuration File Directives

Default: LDAPSearchDN = "dc=cm,dc=cluster"

The LDAPSearchDN directive specifies the Distinguished Name (DN) used when querying the LDAP
server.

LDAPProtocol directive
Syntax: LDAPProtocol = ldap|ldaps
Default: LDAPProtocol = "ldaps"

The LDAPProtocol directive specifies the LDAP protocol to be used when querying the LDAP server.

LDAPPort directive
Syntax: LDAPPort = number
Default: LDAPPort = 636

The LDAPPort directive specifies the port to be used when querying the LDAP server.

LDAPCACertificate directive
Syntax: LDAPCACertificate = filename
Default: LDAPCACertificate = "/cm/local/apps/openldap/etc/certs/ca.pem"

The LDAPCACertificate directive specifies the CA certificate to be used when querying the LDAP
server.

LDAPCertificate directive
Syntax: LDAPCertificate = filename
Default: LDAPCertificate = "/cm/local/apps/openldap/etc/certs/ldap.pem"

The LDAPCertificate directive specifies the LDAP certificate to be used when querying the LDAP
server.

LDAPPrivateKey directive
Syntax: LDAPPrivateKey= filename
Default: LDAPPrivateKey= "/cm/local/apps/openldap/etc/certs/ldap.key"

The LDAPPrivateKey directive specifies the LDAP key to be used when querying the LDAP server.

HomeRoot directive
Syntax: HomeRoot = path
Default: HomeRoot = "/home"

The HomeRoot directive specifies the default user home directory used by CMDaemon. It is used for
automatic mounts, exports, and when creating new users.

DocumentRoot directive
Syntax: DocumentRoot = path

© Bright Computing, Inc.

783

Default: DocumentRoot = "/cm/local/apps/cmd/etc/htdocs"

The DocumentRoot directive specifies the directory mapped to the web-root of the CMDaemon. The
CMDaemon acts as a HTTP-server, and can therefore in principle also be accessed by web-browsers.

SpoolDir directive
Syntax: SpoolDir = path
Default: SpoolDir = "/var/spool/cmd"

The SpoolDir directive specifies the directory which is used by the CMDaemon to store temporary and
semi-temporary files.

EnableShellService directive
Syntax: EnableShellService = true|false
Default: EnableShellService = true

The EnableShellService directive allows shells to be started from Bright View.
The connection runs over CMDaemon, which is running over SSL, which means that between Bright

View and the device, the connection is encrypted.
The directive does not affect cmsh’s rshell, rconsole telnet, and ssh commands.

EnableWebSocketService directive
Syntax: EnableWebSocketService = true|false
Default: EnableWebSocketService = true

The EnableWebSocketService directive allows the use of CMDaemon Lite (section 2.6.7).

EnablePrometheusMetricService directive
Syntax: EnablePrometheusMetricService = true|false
Default: EnablePrometheusMetricService = true

If true, the EnablePrometheusMetricService directive creates an HTTP endpoint for Prometheus-style
exporters that do not have their own HTTP endpoint.

PrometheusMetricServicePath directive
Syntax: PrometheusMetricServicePath = path
Default: PrometheusMetricServicePath = SCRIPTS_DIR"metrics/prometheus"

The PrometheusMetricServicePath directive is the path from which CMDaemon can serve Prometheus
metrics. SCRIPTS_DIR is the stem path /cm/local/apps/cmd/scripts by default.

CMDaemonAudit directive
Syntax: CMDaemonAudit = yes|no
Default: CMDaemonAudit = no

When the CMDaemonAudit directive is set to yes, and a value is set for the CMDaemon auditor file with

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts

784 CMDaemon Configuration File Directives

the CMDaemonAuditorFile directive, then CMDaemon actions are time-stamped and logged in the CM-
Daemon auditor file.

CMDaemonAuditorFile directive
Syntax: CMDaemonAuditorFile = path to audit.log file
or
Syntax: CMDaemonAuditorFile = path to audit.json file
or
Syntax: CMDaemonAuditorFile = http(s) path to JSON server

Default: CMDaemonAuditorFile = "/var/spool/cmd/audit.log"

The CMDaemonAuditorFile directive sets where the audit logs for CMDaemon actions are logged. The
log format for a .log file in a standard directory path is:
(time stamp) profile [IP-address] action (unique key)

Example

(Mon Jan 31 12:41:37 2011) Administrator [127.0.0.1] added Profile: arbitprof(4294967301)

The directive can be set in the following kinds of formats:

• CMDaemonAuditorFile = "/var/spool/cmd/audit.log"

• CMDaemonAuditorFile = "/var/spool/cmd/audit.json"

• CMDaemonAuditorFile = "http://<IP address>:<port>/some/path"

• CMDaemonAuditorFile = "https://<IP address>:<port>/some/path"

A simple POST web service can be faked using netcat:

Example

nc -l 1234 -k

The JSON file always contains a valid array. An RPC call looks like this:

Example

...

"entity": "node001",
"rpc":
"address": "127.0.0.1",
"call": "updateDevice",
"service": "cmdevice",
"timestamp": 1579185696,
"user": "Administrator.root"

,
"task_id": 0,
"updated": true

,
...

© Bright Computing, Inc.

785

DisableAuditorForProfiles directive
Syntax: DisableAuditorForProfiles = {profile [, profile] ...}
Default: DisableAuditorForProfiles = {NODE}

The DisableAuditorForProfiles directive sets the profile for which an audit log for CMDaemon ac-
tions is disabled. A profile (section 2.3.4) defines the services that CMDaemon provides for that profile
user. More than one profile can be set as a comma-separated list. Out of the profiles that are avail-
able on a newly-installed system: node, admin, cmhealth, and readonly; only the profile node is en-
abled by default. New profiles can also be created via the profile mode of cmsh or via the clickpath
Identity Management→Profiles→ of Bright View, thus making it possible to disable auditing for ar-
bitrary groups of CMDaemon services.

EventLogger directive
Syntax: EventLogger = true|false
Default: EventLogger = false

The EventLogger directive sets whether to log events. If active, then by default it logs events to /var/
spool/cmd/events.log on the active head. If a failover takes place, then the event logs on both heads
should be checked and merged for a complete list of events.

The location of the event log on the filesystem can be changed using the EventLoggerFile directive
(page 785).

Whether events are logged in files or not, events are cached and accessible using cmsh or Bright
View. The number of events cached by CMDaemon is determined by the parameter MaxEventHistory
(page 785).

EventLoggerFile directive
Syntax: EventLoggerFile = filename
Default: EventLogger = "/var/spool/cmd/events.log"

The EventLogger directive sets where the events seen in the event viewer (section 13.10.1) are logged.

MaxEventHistory directive
Syntax: AdvancedConfig = {"MaxEventHistory=number", ...}
Default: MaxEventHistory=8192
MaxEventHistory is a parameter of the AdvancedConfig (page 794) directive.

By default, when not explicitly set, the maximum number of events that is retained by CMDaemon
is 8192. Older events are discarded.

The parameter can take a value from 0 to 1000000. However, CMDaemon is less responsive with
larger values, so in that case, setting the EventLogger directive (page 785) to true, to activate logging to
a file, is advised instead.

TimingOverview directive
Syntax: TimingOverview = filename
Default: TimingOverview = true|false

If set to true, the TimingOverview directive records timing information for CMDaemon.

© Bright Computing, Inc.

/var/spool/cmd/events.log
/var/spool/cmd/events.log

786 CMDaemon Configuration File Directives

TimingOverviewFile directive
Syntax: TimingOverviewFile = filename
Default: TimingOverviewFile = "/var/spool/cmd/timing.overview.log"

The TimingOverviewFile directive sets the file where the timing data values for CMDaemon go.

PublicDNS directive
Syntax: PublicDNS = true|false
Default: PublicDNS = false

By default, internal hosts are resolved only if requests are from the internal network. Setting PublicDNS
to true allows the head node name server to resolve internal network hosts for any network, including
networks that are on other interfaces on the head node. Separate from this directive, port 53/UDP must
also be opened up in Shorewall (section 7.2 of the Installation Manual) if DNS is to be provided for queries
from an external network.

MaximalSearchDomains directive
Syntax: GlobalConfig = {"MaximalSearchDomains = number", ...}
Default: none

The MaximalSearchDomains directive is a parameter of the GlobalConfig (page 795) directive.
By default, the number of names that can be set as search domains used by the cluster has a maxi-

mum limit of 6. This is a hardcoded limit imposed by the Linux operating system in older versions.
More recent versions of glibc (glibc > 2.17-222.el7 in RHEL7) no longer set a limit. How-

ever using more than 6 search domains currently requires the use of the GlobalConfig directive,
MaximalSearchDomains. For example, to set 30 domains, the directive setting would be: GlobalConfig
= { "MaximalSearchDomains=30" }

LockDownDhcpd directive
Syntax: LockDownDhcpd = true|false
Default: LockDownDhcpd = false

LockDownDhcpd is a deprecated legacy directive. If set to true, a global DHCP “deny unknown-clients”
option is set. This means no new DHCP leases are granted to unknown clients for all networks. Un-
known clients are nodes for which Bright Cluster Manager has no MAC addresses associated with the
node. The directive LockDownDhcpd is deprecated because its globality affects clients on all networks
managed by Bright Cluster Manager, which is contrary to the general principle of segregating the net-
work activity of networks.

The recommended way now to deny letting new nodes boot up is to set the option for specific
networks by using cmsh or Bright View (section 3.2.1, figure 3.5, table 3.2.1). Setting the cmd.conf
LockDownDhcpd directive overrides lockdowndhcpd values set by cmsh or Bright View.

MaxNumberOfProvisioningThreads directive
Syntax: MaxNumberOfProvisioningThreads = number
Default: MaxNumberOfProvisioningThreads = 10000

The MaxNumberOfProvisioningThreads directive specifies the cluster-wide total number of nodes that
can be provisioned simultaneously. Individual provisioning servers typically define a much lower

© Bright Computing, Inc.

787

bound on the number of nodes that may be provisioned simultaneously.

SetupBMC directive
Syntax: SetupBMC = true|false
Default: SetupBMC = true

Configure the username and password for the BMC interface of the head node and regular nodes auto-
matically. (This should not be confused with the setupBmc field of the node-installer configuration file,
described in section 5.8.7.)

BMCSessionTimeout directive
Syntax: BMCSessionTimeout = number
Default: BMCSessionTimeout = 2000

The BMCSessionTimeout specifies the time-out for BMC calls in milliseconds.

BMCIdentifyScript directive
Syntax: AdvancedConfig = {"BMCIdentify=filename", ...}
Default: unset
BMCIdentifyScript is a parameter of the AdvancedConfig (page 794) directive.

The parameter takes a full file path to a script that can be used for identification with a BMC (sec-
tion 3.7.4).

BMCIdentifyScriptTimeout directive
Syntax: AdvancedConfig = {"BMCIdentifyScriptTimeout=number from 1 to 360", ...}
Default: 60
BMCIdentifyScriptTimeout is a parameter of the AdvancedConfig (page 794) directive.

CMDaemon waits at the most BMCIdentifyScriptTimeout seconds for the script used by the
BMCIdentify directive to complete.

BMCIdentifyCache directive
Syntax: AdvancedConfig = {"BMCIdentifyCache=0|1", ...}
Default: 1
BMCIdentifyCache is a parameter of the AdvancedConfig (page 794) directive.

If set to 1, then CMDaemon remembers the last value of the output of the script used by the
BMCIdentify directive.

SnmpSessionTimeout directive
Syntax: SnmpSessionTimeout = number
Default: SnmpSessionTimeout = 500000

The SnmpSessionTimeout specifies the time-out for SNMP calls in microseconds.

PowerOffPDUOutlet directive
Syntax: PowerOffPDUOutlet = true|false
Default: PowerOffPDUOutlet = false

© Bright Computing, Inc.

788 CMDaemon Configuration File Directives

Enabling the PowerOffPDUOutlet directive allows PDU ports to be powered off for clusters that have
both PDU and IPMI power control. Section 4.1.3 has more on this.

PowerThreadPoolSize directive
Syntax: AdvancedConfig = {"PowerThreadPoolSize=<integer>", ...}
Default: PowerThreadPoolSize=32

PowerThreadPoolSize is a parameter of the AdvancedConfig (page 794) directive.
The parameter can take positive integer values. Increasing its value increases the number of threads

that are used to power up the nodes in a cluster (section 4.2.3), so that the cluster is fully operational
quicker. The administrator should however take into account the power surge due to increasing the
number of threads (number of subprocesses) before increasing the value beyond its default.

DisableBootLogo directive
Syntax: DisableBootLogo = true|false
Default: DisableBootLogo = false

When DisableBootLogo is set to true, the Bright Cluster Manager logo is not displayed on the first boot
menu when nodes PXE boot.

StoreBIOSTimeInUTC directive
Syntax: StoreBIOSTimeInUTC = true|false
Default: StoreBIOSTimeInUTC = false

When StoreBIOSTimeInUTC is set to true, the system relies on the time being stored in BIOS as being
UTC rather than local time.

FreezeChangesTo<wlm>Config directives:
FreezeChangesToPBSPro directive
FreezeChangesToUGEConfig directive
FreezeChangesToSlurmConfig directive
FreezeChangesToLSFConfig directive
Syntax: FreezeChangesTo<wlm>Config= true|false
Default: FreezeChangesTo<wlm>Config = false

When FreezeChangesTo<wlm>Config is set to true, the CMDaemon running on that node does not
make any modifications to the workload manager configuration for that node. Workload managers for
which this value can be set are:

• PBSPro

• UGE

• Slurm

• LSF

Monitoring of jobs, and workload accounting and reporting continues for frozen workload man-
agers.

© Bright Computing, Inc.

789

Upgrades to newer workload manager versions may still require some manual adjustments of the
configuration file, typically if a newer version of the workload manager configuration changes the syn-
tax of one of the options in the file.

FrozenFile directive
Syntax: FrozenFile = { filename[, filename]... }
Example: FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }
The FrozenFile directive is used to prevent the CMDaemon-maintained sections of configuration files
from being automatically generated. This is useful when site-specific modifications to configuration files
have to be made.

To avoid problems, the file that is frozen should not be a symlink, but should be the ultimate destina-
tion file. The readlink -f <symlinkname> command returns the ultimate destination file of a symlink
called <symlinkname>. This is also the case for an ultimate destination file that is reached via several
chained symlinks.

FrozenFile directive for regular nodes
FrozenFile directive for regular nodes for CMDaemon
The FrozenFile directive can be used within the cmd.conf file of the regular node.

Example

To freeze the file /etc/named.conf on the regular nodes running with the image default-image, the file:

/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

can have the following directive set in it:

FrozenFile = { "/etc/named.conf" }

The path of the file that is to be frozen on the regular node must be specified relative to the root of
the regular node.

The running node should then have its image updated. This can be done with the imageupdate
command in cmsh (section 5.6.2), or the Update node button in Bright View (section 5.6.3). After the
update, CMDaemon should be restarted within that category of nodes:

Example

[root@bright91 ~]# pdsh -v -g category=default service cmd restart
node002: Waiting for CMDaemon (25129) to terminate...
node001: Waiting for CMDaemon (19645) to terminate...
node002: [OK]
node001: [OK]
node002: Waiting for CMDaemon to start...[OK]
node001: Waiting for CMDaemon to start...[OK]

FrozenFile regex specification
The FrozenFile directive allows regexes to be used for a path, if the path begins with the | character:

Example

[root@head current]# egrep -e '^FrozenFile' /cm/local/apps/cmd/etc/cmd.conf
FrozenFile = { "/etc/postfix/main.cf", "|/cm/images/.*?/etc/postfix/main.cf" }

In the preceding entry, all image directories under /cm/images/ are matched for the path
etc/postfix/main.cf.

© Bright Computing, Inc.

790 CMDaemon Configuration File Directives

FrozenFile directive for regular nodes for the node-installer
CMDaemon directives only affect files on a regular node after CMDaemon starts up on the node during
the init stage. So files frozen by the CMDaemon directive stay unchanged by CMDaemon after this
stage, but they may still be changed before this stage.

Freezing files so that they also stay unchanged during the pre-init stage—that is during the node-
installer stage—is possible with node-installer directives.

Node-installer freezing is independent of CMDaemon freezing, which means that if a file freeze is
needed for the entire startup process as well as beyond, then both a node-installer as well as a CMDae-
mon freeze are sometimes needed.

Node-installer freezes can be done with the node-installer directives in /cm/node-installer/
scripts/node-installer.conf, introduced in section 5.4:

• frozenFilesPerNode

• frozenFilesPerCategory

For the node-installer.conf file in multidistro and multiarch (section 12.7) configurations, the direc-
tory path /cm/node-installer takes the form:

/cm/node-installer-<distribution>-<architecture>
The values for <distribution> and <architecture> can take the values outlined on page 521.

Example

Per node:

frozenFilesPerNode = "*:/localdisk/etc/ntp.conf", "node003:/localdisk/etc/hosts"

Here, the * wildcard means that no restriction is set. Setting node003 means that only node003 is
frozen.

Example

Per category:

frozenFilesPerCategory = "mycategory:/localdisk/etc/sysconfig/network-scripts/ifcfg-eth1"

Here, the nodes in the category mycategory are prevented from being changed by the node-installer.

The Necessity Of A FrozenFile Directive
In a configuration file after a node is fully up, the effect of a statement earlier on can often be overridden
by a statement later in the file. So, the following useful behavior is independent of whether FrozenFile
is being used for a configuration file or not: A configuration file, for example /etc/postfix/main.cf,
with a configuration statement in an earlier CMDaemon-maintained part of the file, for example:

mydomain = eth.cluster

can often be overridden by a statement later on outside the CMDaemon-maintained part of the file:

mydomain = eth.gig.cluster

Using FrozenFile in CMDaemon or the node-installer can thus sometimes be avoided by the use of
such overriding statements later on.

Whether overriding later on is possible depends on the software being configured. It is true for Post-
fix configuration files, for example, but it may not be so for the configuration files of other applications.

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf

791

EaseNetworkValidation directive
Syntax: EaseNetworkValidation = 0|1|2
Default: EaseNetworkValidation = 0

CMDaemon enforces certain requirements on network interfaces and management/node-booting net-
works by default. In heavily customized setups, such as is common in Type 3 networks (section 3.3.9 of
the Installation Manual), the user may wish to disable these requirements.

• 0 enforces all requirements.

• 1 allows violation of the requirements, with validation warnings. This value should never be set
except under instructions from Bright support.

• 2 allows violation of the requirements, without validation warnings. This value should never be
set except under instructions from Bright support.

CustomUpdateConfigFileScript directive
Syntax: CustomUpdateConfigFileScript = filename
Default: commented out in the default cmd.conf file

Whenever one or more entities have changed, the custom script at filename, specified by a full path, is
called 30s later. Python bindings can be used to get information on the current setup.

ConfigDumpPath directive
Syntax: ConfigDumpPath = filename
Default: ConfigDumpPath = /var/spool/cmd/cmdaemon.config.dump

The ConfigDumpPath directive sets a dump file for dumping the configuration used by the power control
script /cm/local/apps/cmd/scripts/pctl/pctl. The pctl script is a fallback script to allow power
operations if CMDaemon is not running.

• If no directive is set (ConfigDumpPath = ""), then no dump is done.

• If a directive is set, then the administrator must match the variable cmdconfigfile in the
powercontrol configuration file /cm/local/apps/cmd/scripts/pctl/config.py to the value of
ConfigDumpPath. By default, the value of cmdconfigfile is set to /var/spool/cmd/cmdaemon.
config.dump.

SyslogHost directive
Syntax: SyslogHost = hostname
Default: SyslogHost = "localhost"

The SyslogHost directive specifies the hostname of the syslog host.

SyslogFacility directive
Syntax: SyslogFacility = facility
Default: SyslogFacility = "LOG_LOCAL6"

The default value of LOG_LOCAL6 is set in:

• /etc/syslog.conf in Red Hat 5 and variants

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/pctl/pctl
/cm/local/apps/cmd/scripts/pctl/config.py
/var/spool/cmd/cmdaemon.config.dump
/var/spool/cmd/cmdaemon.config.dump
/etc/syslog.conf

792 CMDaemon Configuration File Directives

• /etc/rsyslog.conf in Red Hat 6 and variants

• /etc/syslog-ng/syslog-ng.conf in SLES versions

These are the configuration files for the default syslog daemons syslog, rsyslog, and syslog-ng, re-
spectively, that come with the distribution. Bright Cluster Manager redirects messages from CMDaemon
to /var/log/cmdaemon only for the default syslog daemon that the distribution provides. So, if another
syslog daemon other than the default is used, then the administrator has to configure the non-default
syslog daemon facilities manually.

The value of facility must be one of: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG_SYSLOG or LOG_LOCAL0..7

NameServerLocalhostLocation directive
Syntax: AdvancedConfig = {"NameServerLocalhostLocation=0|1", ...}
Default: NameServerLocalhostLocation=0

NameServerLocalhostLocation is a parameter of the AdvancedConfig (page 794) directive.
When set to 1, the location of the localhost as specified by the nameserver directive in

/etc/resolv.conf is moved to the bottom of the list of nameserver entries. The default value of 0
places it at the top of those entries.

ResolveToExternalName directive
Syntax: ResolveToExternalName = true|false
Default: ResolveToExternalName = false

The value of the ResolveToExternalName directive determines under which domain name the primary
and secondary head node hostnames are visible from within the head nodes, and to which IP addresses
their hostnames are resolved. Enabling this directive resolves the head nodes’ hostnames to the IP
addresses of their external interfaces.

Thus, on head nodes and regular nodes in both single-head and failover clusters

• with ResolveToExternalName disabled, the master hostname and the actual hostname of the head
node (e.g. head1, head2) by default always resolve to the internal IP address of the head node.

• with ResolveToExternalName enabled, the master hostname and the actual hostname of the head
node (e.g. head1, head2) by default always resolve to the external IP address of the head node.

The resolution behavior can be summarized by the following table:

ResolveToExternalName Directive Effects

on simple head, on failover head, on regular node, Using

resolving: resolving: resolving: the

master head master head1 head2 master head(s) DNS?

ResolveToExternalName = False

I I I I I I I No

I I I I I I I Yes

ResolveToExternalName = True

E E E E E E E No

E E E E E E E Yes

© Bright Computing, Inc.

/etc/rsyslog.conf
/etc/syslog-ng/syslog-ng.conf

793

Key: I: resolves to internal IP address of head

E: resolves to external IP address of head

The system configuration files on the head nodes that get affected by this directive include /etc/hosts
and, on SLES systems, also the /etc/HOSTNAME. Also, the DNS zone configuration files get affected.

Additionally, in both the single-head and failover clusters, using the “hostname -f” command on
a head node while ResolveToExternalName is enabled results in the host’s Fully Qualified Domain
Name (FQDN) being returned with the host’s external domain name. That is, the domain name of the
network that is specified as the "External network" in the base partition in cmsh (the output of “cmsh -c
"partition use base; get externalnetwork"”).

Modifying the value of the ResolveToExternalName directive and restarting the CMDaemon while
important system services (e.g. Slurm) are running should not be done. Doing so is likely to cause
problems with accessing such services due to them then running with a different domain name than the
one with which they originally started.

On a tangential note that is closely, but not directly related to the ResolveToExternalName direc-
tive: the cluster can be configured so that the “hostname -f” command executed on a regular node
returns the FQDN of that node, and so that the FQDN in turn resolves to an external IP for that
regular node. The details on how to do this are in the Bright Cluster Manager Knowledge Base at
http://kb.brightcomputing.com/. A search query for FQDN leads to the relevant entry.

ResolveMasterToExternalName directive
Syntax: AdvancedConfig = {"ResolveMasterToExternalName=0|1", ...}
Default: ResolveMasterToExternalName = 1

ResolveMasterToExternalName is a parameter of the AdvancedConfig (page 794) directive.
ResolveMasterToExternalName can only be used if ResolveToExternalName (page 792) is active.
If set to 1 (the default), then the master head node, as specified by the name master, resolves to the

IP address as set by ResolveToExternalName.
If set to 0 then the master head node resolves to the internal shared IP address.

ResolveMasterToExternalDomainName directive
Syntax: AdvancedConfig = {"ResolveMasterToExternalDomainName=0|1", ...}
Default: ResolveMasterToExternalDomainName = 1

ResolveMasterToExternalDomainName is a parameter of the AdvancedConfig (page 794) directive.
ResolveMasterToExternalDomainName can only be used if ResolveToExternalName (page 792) is

active.
The external domain name as defined for the external network, in the form master.<external do-

main>, can be used in /etc/hosts during name resolution.
If set to 1 (the default), then the external domain name is used in /etc/hosts.
If set to 0, then the external domain name is not used in /etc/hosts.
Resolution occurs as shown in the following table:

© Bright Computing, Inc.

/etc/hosts
/etc/hosts
/etc/hosts

794 CMDaemon Configuration File Directives

ResolveMasterToExternalDomainName Directive Effects

on simple head, on failover head, on regular node, Using

resolving: resolving: resolving: the

master head master head1 head2 master head(s) DNS?

ResolveToExternalName = False

I I I I I I I No

I I I I I I I Yes

ResolveToExternalName = True

E E I E E I I No

E E I E E I E Yes

Key: I: resolves to internal IP address of head

E: resolves to external IP address of head

DisableLua directive
Syntax: DisableLua = true|false
Default: DisableLua = false

The value of the DisableLua directive determines if Lua code (section L.6) used in monitoring expres-
sions can be executed.

AdvancedConfig directive
Syntax: AdvancedConfig = { "<key1>=<value1>", "<key2>=<value2>", ... }
Default: Commented out in the default cmd.conf file
The AdvancedConfig directive is not part of the standard directives. It takes a set of key/value pairs

as parameters, with each key/value pair allowing a particular functionality, and is quite normal in
that respect. However, the functionality of a parameter to this directive is often applicable only under
restricted conditions, or for non-standard configurations. The AdvancedConfig parameters are therefore
generally not recommended for use by the administrator, nor are they generally documented.

Like for the other directives, only one AdvancedConfig directive line is used. This means that what-
ever functionality is to be enabled by this directive, its corresponding parameters must be added to that
one line. These key/value pairs are therefore added by appending them to any existing AdvancedConfig
key/value pairs, which means that the directive line can be a long list of key/value pairs to do with a
variety of configurations.

Managing Key/Value Pairs With The cm-manipulate-advanced-config.py Utility
The cm-manipulate-advanced-config.py utility can be used to make it easier to manage AdvancedConfig
key/value pairs,

For example, to add a key/value pair key8=value8:

[root@bright91 ~]# cm-manipulate-advanced-config.py key8=value8
Updated: /cm/local/apps/cmd/etc/cmd.conf

To show the current state of the AdvancedConfig, the -s|--show option can be used:

[root@bright91 ~]# cm-manipulate-advanced-config.py -s
=== /cm/local/apps/cmd/etc/cmd.conf ===
VirtualCluster=1
key8=value8

A key/value pair can be removed by specifying its key with the -r|--remove option:

© Bright Computing, Inc.

795

[root@bright91 ~]# cm-manipulate-advanced-config.py -r key8
Updated: /cm/local/apps/cmd/etc/cmd.conf
[root@bright91 ~]# cm-manipulate-advanced-config.py -s
=== /cm/local/apps/cmd/etc/cmd.conf ===
VirtualCluster=1

The utility can be used on cmd.conf in node images too, using the -i|--image option.

[root@bright91 ~]# cm-manipulate-advanced-config.py -i /cm/images/default-image
Updated: /cm/images/default-image//cm/local/apps/cmd/etc/cmd.conf

The -q option causes the utility to exit with code 1 if cmd.conf has changed.
Further options can be seen with the -h|--help option.

GlobalConfig directive
Syntax: GlobalConfig = { "<key1>=<value1>", "<key2>=<value2>", ... }
Default: not in the default cmd.conf file
The GlobalConfig directive is not part of the standard directives. It takes a set of key/value pairs as

parameters, with each key/value pair allowing a particular functionality, and is quite normal in that
respect. However, the parameter to this directive only needs to be specified on the head node. The
non-head node CMDaemons take this value upon connection, which means that the cmd.conf file on
the non-head nodes do not need to have this specified.

This allows nodes to set up, for example, their search domains using the MaximalSearchDomains
GlobalConfig directive (page 786).

Like for the other directives, only one GlobalConfig directive line is used. This means that whatever
functionality is to be enabled by this directive, its corresponding parameters must be added to that
one line. These key/value pairs are therefore added by appending them to any existing GlobalConfig
key/value pairs, which means that the directive line can be a long list of key/value pairs to do with a
variety of configurations.

ScriptEnvironment directive
Syntax: ScriptEnvironment = { "CMD_ENV1=<value1>", "CMD_ENV2=<value2>", ... }
Default: Commented out in the default cmd.conf file

The ScriptEnvironment directive sets extra environment variables for CMDaemon and child processes.
For example, if CMDaemon is running behind a web proxy, then the environment variable

http_proxy may need to be set for it. If, for example, the proxy is the host brawndo, and it is accessed
via port 8080 using a username/password pair of joe/electrolytes, then the directive becomes:

ScriptEnvironment = { "http_proxy=joe:electrolytes@brawndo:8080" }

BurnSpoolDir directive
Syntax: BurnSpoolDir = path
Default: BurnSpoolDir = "/var/spool/burn/"

The BurnSpoolDir directive specifies the directory under which node burn log files are placed (Chap-
ter 8 of the Installation Manual). The log files are logged under a directory named after the booting MAC
address of the NIC of the node. For example, for a MAC address of 00:0c:29:92:55:5e the directory is
/var/spool/burn/00-0c-29-92-55-5e.

© Bright Computing, Inc.

/var/spool/burn/00-0c-29-92-55-5e

796 CMDaemon Configuration File Directives

IdleThreshold directive
Syntax: IdleThreshold = number
Default: IdleThreshold = 1.0

The IdleThreshold directive sets a threshold value for loadone. If loadone exceeds this value, then
data producers that have Only when idle (page 549) set to true (enabled), will not run. If the data
producer is sampled on a regular node rather than on the head node, then cmd.conf on the regular node
should be modified and its CMDaemon restarted.

MonitoringPath directive
Syntax: AdvancedConfig = {"MonitoringPath=path", ...}
Default: Implicit value: "MonitoringPath=/var/spool/cmd/monitoring/"

MonitoringPath is a parameter of the AdvancedConfig (page 794) directive.
Its value determines the path of the directory in which monitoring data is saved (section 17.8).

MaxServiceFailureCount directive
Syntax: AdvancedConfig = {"MaxServiceFailureCount=number", ...}
Default: Implicit value: "MaxServiceFailureCount=10"

MaxServiceFailureCount is a parameter of the AdvancedConfig (page 794) directive.
Its value determines the number of times a service failure event is logged (page 123). Restart attempts

on the service still continue when this number is exceeded.

InitdScriptTimeout directive
Syntax: AdvancedConfig = {"InitdScriptTimeout[.service]=timeout", ...}
Default: Implicit value: "InitdScriptTimeout=30"

InitdScriptTimeout is a parameter of the AdvancedConfig (page 794) directive. It can be set globally
or locally:

• Global (all services)
InitdScriptTimeout can be set as a global value for init scripts, by assigning timeout as a period
in seconds. If an init script fails to start up its service within this period, then CMDaemon kills the
service and attempts to restart it.

– If InitdScriptTimeout has a value for timeout set, then all init scripts have a default timeout
of timeout seconds.

– If InitdScriptTimeout has no timeout value set, then all init scripts have a default timeout of
30 seconds.

• Local (for a specific service)
If InitdScriptTimeout.service is assigned a timeout value, then the init script for that service times
out in timeout seconds. This timeout overrides, for that service only, any existing global default
timeout.

When a timeout happens for an init script attempting to start a service, the event is logged. If the
number of restart attempts exceeds the value determined by the MaxServiceFailureCount directive
(page 796), then the event is no longer logged, but the restart attempts continue.

Example

© Bright Computing, Inc.

797

An fhgfs startup takes a bit longer than 30 seconds, and therefore times out with the default timeout
value of 30s. This results in the following logs in /var/log/cmdaemon:

cmd: [SERVICE] Debug: ProgramRunner: /etc/init.d/fhgfs-client restart
[DONE] 0 9
cmd: [SERVICE] Debug: /etc/init.d/fhgfs-client restart, exitcode = 0,
signal = 9

Here, service is fhgfs-client, so setting the parameter can be done with:

AdvancedConfig = { ..., "initdScriptTimeout.fhgfs-client=60", ...}

This allows a more generous timeout of 60 seconds instead.
Restarting CMDaemon then should allow the fhgs startup to complete

service cmd restart

A more refined approach that avoids a complete CMDaemon restart would be to execute a reset
(page 123) on the fhgfs-client from within CMDaemon, as follows:

[bright91->category[default]->services[fhgfs-client]]% reset fhgfs-client
Successfully reset service fhgfs-client on: node001,node002
[bright91->category[default]->services[fhgfs-client]]%

CMDaemonListenOnInterfaces directive
Syntax: AdvancedConfig = {"CMDaemonListenOnInterfaces=<interfaces>", ...}
Default: all interfaces listening to port 8081

CMDaemonListenOnInterfaces is a parameter of the AdvancedConfig (page 794) directive.
When set explicitly, CMDaemon listens only to the interfaces listed in <interfaces>. The form of <in-

terfaces> is a comma-separated list of interface device names:

Example

CMDaemonListenOnInterfaces=eth0,eth1,eth0:0,eth0:1

If the interface list item lo is omitted from the list of names, it will still be listened to. This is because
CMDaemon must always be able to talk to itself on the loopback interface.

CookieCooldownTime directive
Syntax: AdvancedConfig = {"CookieCooldownTime=number from 60 to 86400", ...}
Default: 900

CookieCooldownTime is a parameter of the AdvancedConfig (page 794) directive.
It defines the number of seconds until the Bright View connection to CMDaemon times out, if there

is no user activity at the Bright View client side.

DHCPMaxleaseTime directive
Syntax: AdvancedConfig = {"DHCPMaxleaseTime=number", ...}
Default: client default

DHCPMaxleaseTime is a parameter of the AdvancedConfig (page 794) directive.
DHCPMaxleaseTime sets max-lease-time in DHCPOFFER. This is the maximum lease time, in sec-

onds, that the DHCP server on the head node allows to the DHCP client on the node.

© Bright Computing, Inc.

/var/log/cmdaemon

798 CMDaemon Configuration File Directives

SlurmDisableAccountingParsing directive
Syntax: AdvancedConfig = {"SlurmDisableAccountingParsing=0|1", ...}
Default: 0

SlurmDisableAccountingParsing is a parameter of the AdvancedConfig (page 794) directive. If set to
1, it disables collection of accounting information for the Slurm workload manager.

SlurmDrainReasonPolicy directive
Syntax: AdvancedConfig = {"SlurmDrainReasonPolicy=<policy>", ...}
Default: SlurmDrainReasonPolicy=replace

The SlurmDrainReasonPolicy directive is a parameter of the AdvancedConfig (page 794) directive.
The drain command (section 7.7.3) can be used by a user to drain a node, or a monitoring trig-

ger (section 13.4.5) can make CMDaemon carry out a drain action if, for example, a health check fails.
Outside of CMDaemon control, Slurm’s own scontrol command (man(1) scontrol) can be used.

A drain reason can be specified. By default, the policy is that if a node is already drained, then a
second drain command with a new drain reason replaces the old drain reason.

The policy can be modified by changing <policy> to one of the following values:

• replace: the old drain reason(s) is replaced by a new one

• append: the new drain reason is separated by a comma, and appended to the existing one(s).

• skip:

– If a drain reason already exists, then setting the new drain reason is skipped.

– If no drain reason already exists, then the new drain reason is applied.

Capitalization does not matter for the value of <policy>.
Beyond the cluster manager version 10 release, the advanced configuration directive SlurmDrainReasonPolicy

is replaced by a cmsh Slurm WLM parameter, drainreasonpolicy.

JobsSamplingMetricsInterval directive
Syntax: AdvancedConfig = {"JobsSamplingMetricsInterval=<number>", ...}
Default: 60

JobsSamplingMetricsInterval is a parameter of the AdvancedConfig (page 794) directive. Its value
is a time period, in seconds, and it applies only to metrics associated with job queues. Such metric
sampling is carried out with this time period if job queues are added, or if job queues are re-created
after disappearing.

MembershipQueryInterval directive
Syntax: AdvancedConfig = {"MembershipQueryInterval=<number>", ...}
Default: 4
MembershipQueryInterval is a parameter of the AdvancedConfig (page 794) directive. Its value is a
time period, in seconds. This time period value elapses between the checks that CMDaemon makes to
determine the node states (section 5.5) in a cluster. If the network is very congested, then a larger value
can be used to reduce the network load caused by these checks.

© Bright Computing, Inc.

799

AddUserScript directive
Syntax: AdvancedConfig = {"AddUserScript=<path>", ...}
Default: none

AddUserScript is a parameter of the AdvancedConfig (page 794) directive. If this parameter is set to
a path leading to a script, and if a new user is added using cmsh or Bright View, then the script is
automatically run by CMDaemon, with the username of the new user automatically passed as the first
argument to the script. The script has a default timeout of 5 seconds.

AddUserScriptPasswordInEnvironment directive
Syntax: AdvancedConfig = {"AddUserScriptPasswordInEnvironment=0|1", ...}
Default: 0

AddUserScriptPasswordInEnvironment is a parameter of the AdvancedConfig (page 794) directive. If
this parameter is set to 1, then CMDaemon passes the CMD_USER_PASSWORD environment variable to the
script defined by the AddUserScript directive.

RemoveUserScript directive
Syntax: AdvancedConfig = {"RemoveUserScript=<path>", ...}
Default: none

RemoveUserScript is a parameter of the AdvancedConfig (page 794) directive. If this parameter is set to
a path leading to a script, and if an existing user is removed using cmsh or Bright View, then the script is
automatically run by CMDaemon. The script has a default timeout of 5 seconds.

AddUserScriptTimeout directive
Syntax: AdvancedConfig = {"AddUserScriptTimeout=<number>", ...}
Default: 5

AddUserScriptTimeout is a parameter of the AdvancedConfig (page 794) directive. It sets the timeout
value in seconds, for the script set by AddUserScript.

RemoveUserScriptTimeout directive
Syntax: AdvancedConfig = {"RemoveUserScriptTimeout=<number>", ...}
Default: 5

RemoveUserScriptTimeout is a parameter of the AdvancedConfig (page 794) directive. It sets the time-
out value in seconds, for the script set by RemoveUserScript.

AdditionalSubmitHosts directive
AdditionalExecHosts directive
Syntax:

AdvancedConfig = {"AdditionalSubmitHosts=<host1>,<host2>,...", ...}
or
AdvancedConfig = {"AdditionalExecHosts=<host1>,<host2>,...", ...}

Default: none

© Bright Computing, Inc.

800 CMDaemon Configuration File Directives

The AdditionalSubmitHosts and AdditionalExecHosts directives are parameters of the
AdvancedConfig (page 794) directive.

These directives can be used to make Bright Cluster Manager aware of the existence of a submit host
or execution host that is outside of Bright Cluster Manager control. The directives can be used with
the SGE and UGE workload managers only, so that CMDaemon does not remove such hosts from the
workload manager configuration file during a configuration file maintenance run. An example of their
use is given on page 293.

AutomaticMountAll directive
Syntax: AutomaticMountAll=0|1
Default: 1

If the AutomaticMountAll directive is set to the default of 1, then a mount -a operation is carried out
when a mount change is carried out by CMDaemon.

The mount -a operation is to do with attempting to mount devices listed in /etc/fstab. It should
not be confused with auto-mounting of filesystems, which is to do with mounting an arbitrary device to
a filesystem automatically.

If the AutomaticMountAll directive is set to 0, then /etc/fstab is written, but the mount -a com-
mand is not run by CMDaemon. However, the administrator should be aware that since mount -a is
run by the distribution during booting, a node reboot implements the mount change.

AllowImageUpdateWithAutoMount directive
Syntax: AdvancedConfig = {"AllowImageUpdateWithAutoMount=0|1|2|3", ...}
Default: 0

The AllowImageUpdateWithAutoMount directive is a parameter of the AdvancedConfig (page 794)
directive. The values it takes decide how an auto-mounted filesystem should be dealt with during
image updates (section 5.6.2) or grab image (section 12.5.2). It must be set per software image or per
node.

Value Description

0 If auto-mount is running, abort provisioning (default)

1 If auto-mount is running, warn but continue

2 Do not check auto-mount status. This saves a little time, but it risks data loss,
unless the automounted filesystem has been added to excludelistupdate. If the
automounted filesystem is not added to excludelistupdate, then if the auto-
mounted filesystem happens to be unavailable at the time that an imageupdate
is issued, then the rsync process can end up deleting the automounted filesystem
contents during the rsync, because it assumes that content should not be there.

3 Pretend auto-mount is running. This prevents an image update

How an auto-mounted filesystem can be configured using the autofs service in Bright Clus-
ter Manager is discussed in section 3.10. The need for adding the automounted filesystem to
excludelistupdate is discussed on page 214.

DNS::options_allow-query directive
Syntax: AdvancedConfig = {"DNS::options_allow-query=<subnet1>, <subnet2>, ...", ...}
Default: unset

© Bright Computing, Inc.

801

The DNS::options_allow-query directive is a parameter of the AdvancedConfig (page 794) directive. If
a subnet value is specified, in CIDR notation, then that subnet can query the DNS running on the head
node. Setting a subnet places an entry within the allow-query section of /etc/named.conf.

The standard directive PublicDNS (page 786) simply adds the entry 0.0.0.0/0 to the allow-query
section and can be used if no specific subnet needs to be added.

CipherList directive
Syntax: AdvancedConfig = {"CipherList=<ciphers>", ...}
Default: CipherList=ALL:!aNULL:!eNULL

The CipherList directive is a parameter of the AdvancedConfig (page 794) directive. It sets the cipher
list of the OpenSSL suite that CMDaemon negotiates with clients. Ciphers in the cipher list can be
viewed with:

Example

[root@bright91 ~]# openssl ciphers -v
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
...

The columns are: the cipher name, SSL protocol, key exchange used, authentication mechanism,
encryption used, and MAC digest algorithm.

Ciphers can be specified for the CipherList directive according to the specification described in man
(1) ciphers. For example, as:

Example

AdvancedConfig = {"CipherList=ALL:!aNULL:!ADH:!eNULL:!LOW:!EXP:RC4+RSA:+HIGH:+MEDIUM"}

An analogous non-CMDaemon directive is found in LDAP client-server negotiation, where
TLSCipherSuite can be set in the slapd.conf file, described in man(5) slapd.conf.

SSLServerMethod directive (with TLS masking)
Syntax: AdvancedConfig = {"SSLServerMethod=TLS <versionnumber>", ...}
Syntax: GlobalConfig = {"SSLServerMethod=TLS <versionnumber>", ...}
Masking syntax: AdvancedConfig = {"TLS <versionnumber>=<boolean>", ...}
Masking syntax: GlobalConfig = {"TLS <versionnumber>=<boolean>", ...}
Default: GlobalConfig = { "TLS 1.2=1", "TLS 1.3=1", ... }

The SSLServerMethod directive is a parameter of the AdvancedConfig (page 794) directive, as well as the
GlobalConfig (page 795) directive. It sets the SSL server method for the OpenSSL suite that CMDaemon
negotiates with clients. Possible values for <versionnumber> are:

• 1

• 1.1

• 1.2

© Bright Computing, Inc.

802 CMDaemon Configuration File Directives

• 1.3

By default, with no SSLServerMethod directive, TLS versions 1.2 and 1.3 are enabled.
This is because there are still some SSL clients that require a TLS 1.2 cipher and have no TLS 1.3

cipher negotiation ability.
If the SSLServerMethod directive is specified, then only that TLS version is negotiated. For example,

to allow only TLS 1.2 negotiation:

Example

GlobalConfig = { "SSLServerMethod=TLS 1.2", ... }

The SSLServerMethod directive is implied by the TLS masking syntax. The TLS masking syntax al-
lows TLS negotiation methods to be set concurrently. For example, TLS 1 and TLS1.1 could be disabled,
and TLS 1.2 and TLS 1.3 could be enabled, with:

Example

GlobalConfig = { "TLS 1=0", "TLS 1.1=0", "TLS 1.2=1", "TLS 1.3=1", ... }

The GlobalConfig value is the directive that the cluster administrator should set in most cases. It
only needs to be set on cmd.conf on the head node (or head nodes in a high availability configuration),
in order to configure the same TLS negotiation settings for the regular nodes.

The GlobalConfig value is overridden by the AdvancedConfig value. The AdvancedConfig value
needs to be set on cmd.conf on the head node(s), but also needs to be set on the non-head nodes that
are to be disabled. Setting the AdvancedConfig directive allows custom configuration of the TLS nego-
tiations to be carried out per node, and if the negotiations do not match with the other end, then other
settings are tried. This does mean that sometimes nodes with the extra settings end up running extra
processes for no reason. Running the directive as an AdvancedConfig is therefore suboptimal for most
reasonable use cases.

Reverting to the TLS 1.1 fallback cipher availability of earlier versions of CMDaemon is possible by
setting:
AdvancedConfig = { "TLS 1.1=1", "TLS 1.2=1", "TLS 1.3=1" }

Setting this brings with it the risk of allowing cryptographic downgrade attacks. It is therefore not

recommended, and is also why it is disabled by default.

JobInformationDisabled directive
Syntax: AdvancedConfig = {"JobInformationDisabled=0|1", ...}
or Syntax: GlobalConfig = {"JobInformationDisabled=0|1", ...}
Default: JobInformationDisabled=0

The JobInformationDisabled directive is a parameter of the AdvancedConfig (page 794) directive, as
well as the GlobalConfig (page 795) directive. If set to 1 it disables job-based monitoring (Chapter 14).
The details of how this is done are discussed shortly.

For a cluster that is running millions of jobs at a time, job-based monitoring can typically consume
significant resources. The monitoring of data for so many small jobs is typically not useful and not of
interest. For such a case, setting this directive improves cluster performance by not having to deal with
the information on the current jobs running on the cluster.

The GlobalConfig value is the directive that the cluster administrator should set in most cases. It
only needs to be set on cmd.conf on the head node (or head nodes in a high availability configuration).
Setting it disables the collection of job information by the nodes running the jobs, and no collection of
the job information from those nodes is done by the head (monitoring) node.

© Bright Computing, Inc.

803

The GlobalConfig value is overridden by the AdvancedConfig value. The AdvancedConfig value
needs to be set on cmd.conf on the head node(s), but also needs to be set on the non-head nodes that
are to be disabled. Setting the AdvancedConfig directive still allows job information to be collected by
the nodes running the jobs, but the information is not collected from the nodes by the head (monitoring)
node. This means that nodes are running extra processes for probably no reason. Running the directive
as an AdvancedConfig is therefore suboptimal for most use cases.

JobInformationKeepDuration directive
Syntax: AdvancedConfig = {"JobInformationKeepDuration=<number>", ...}
Default: JobInformationKeepDuration=2419200

The JobInformationKeepDuration directive is a parameter of the AdvancedConfig (page 794) directive.
It takes on a value in seconds. If a job has finished more than that many seconds ago, then it will be
removed along with all its monitoring data from the database. By default it is set to 28 days (24 ×
3600× 28 seconds).

If persistent is set to yes (cmsh:wlm>jobs), then job information is not removed even after
JobInformationKeepDuration has been exceeded.

JobInformationChargeBackKeepDuration directive
Syntax: AdvancedConfig = {"JobInformationChargeBackKeepDuration=<number>", ...}
Default: JobInformationChargeBackKeepDuration=158112000

The JobInformationChargeBackKeepDuration directive is a parameter of the AdvancedConfig
(page 794) directive. It takes on a value in seconds. If a job has finished more than that many sec-
onds ago, then it will be removed along with all its monitoring data from the database. By default it is
set to a little more than 5 years (24× 3600× 366× 5 seconds).

JobInformationKeepCount directive
Syntax: AdvancedConfig = {"JobInformationKeepCount=<number>", ...}
Default: JobInformationKeepCount=8192

The JobInformationKeepCount directive is a parameter of the AdvancedConfig (page 794) directive. If
the total number of jobs is greater than (JobInformationKeepCount + 10%), then the job record and
its data content are discarded, starting from the oldest job first, until the total number of jobs remain-
ing becomes JobInformationKeepCount. If it is set to 0, then none of the job records and content are
removed.

The maximum value for this directive is 1 million.

JobInformationChargeBackKeepCount directive
Syntax: AdvancedConfig = {"JobInformationChargeBackKeepCount=<number>", ...}
Default: JobInformationChargeBackKeepCount=1048576

The JobInformationChargeBackKeepCount directive is a parameter of the AdvancedConfig (page 794)
directive. If the total number of jobs is greater than (JobInformationChargeBackKeepCount + 10%),
then the job record and its data content are discarded, starting from the oldest job first, until the total
number of jobs remaining becomes JobInformationChargeBackKeepCount. If it is set to 0, then none of
the job records and content are removed.

The default value of about 1 million corresponds to about 0.5 GB of storage.

© Bright Computing, Inc.

804 CMDaemon Configuration File Directives

The maximum value for this directive is about 1 billion (1,073,741,824), which corresponds to about
500 GB of storage.

JobInformationMinimalJobDuration directive
Syntax: AdvancedConfig = {"JobInformationMinimalJobDuration=<number>", ...}
Default: JobInformationMinimalJobDuration=0

The JobInformationMinimalJobDuration directive is a parameter of the AdvancedConfig (page 794)
directive. If set, then jobs that run for less than this number of seconds are not stored in the cache. Its
default value of 0 seconds means that all jobs are handled.

JobInformationFlushInterval directive
Syntax: AdvancedConfig = {"JobInformationFlushInterval=<number>", ...}
Default: JobInformationFlushInterval=600

The JobInformationFlushInterval directive is a parameter of the AdvancedConfig (page 794) direc-
tive. If this interval, in seconds, is set, then the cache is flushed to the database with that interval. Its
default value is 10 minutes (10× 60 seconds). Values of around 30 seconds or less will conflict with the
default CMDaemon maintenance timeout value of 30 seconds, and will mostly simply add load.

JobInformationChargeBackRemoveInterval directive
Syntax: AdvancedConfig = {"JobInformationChargeBackRemoveInterval=<number>", ...}
Default: JobInformationChargeBackRemoveInterval=600

The JobInformationChargeBackRemoveInterval directive is a parameter of the AdvancedConfig (page 794)
directive. If this interval, in seconds, is set, then the cache is flushed to the database with that interval.
Its default value is 10 minutes (10× 60 seconds). Values of around 30 seconds or less will conflict with
the default CMDaemon maintenance timeout value of 30 seconds, and will mostly simply add load.

The maximum remove interval is 1 day (86400 seconds).

ActionLoggerFile directive
Syntax: AdvancedConfig = {"ActionLoggerFile=filename", ...}
Default: /var/spool/cmd/actions.log

The directive is a parameter of the AdvancedConfig (page 794) directive. Its value overrides the default
path.

The directive needs to be implemented per node or image.

ActionLoggerOnSuccess directive
Syntax: AdvancedConfig = {"ActionLoggerOnSuccess=0|1", ...}
Default: ActionLoggerOnSuccess=0

The directive is a parameter of the AdvancedConfig (page 794) directive.
By default, only failed actions are logged. Successful actions are also logged if setting
ActionLoggerOnSuccess=1

The directive needs to be implemented per node or image.
The log file shows timestamped output with one line per run for an action script, with the script

response.

© Bright Computing, Inc.

805

Example

(time) /path/to/action/script [timeout]
(time) /path/to/action/script [failed] (exit code: 1)
(time) /path/to/action/script [success]

The success line only appears if ActionLoggerOnSuccess=1.

FailoverPowerRetries directive
Syntax: AdvancedConfig = {"FailoverPowerRetries=<number>", ...}
Default: FailoverPowerRetries=5

The FailoverPowerRetries directive is a parameter of the AdvancedConfig (page 794) directive.
After a decision to carry out the failover has been made, CMDaemon sends a power off command

to the BMC of the head node that is meant to be powered off. If the power off command fails, then on
getting the fail response, CMDaemon waits for 1 second. After that second, it sends out a power off
command again. The value of FailoverPowerRetries is the number of times that CMDaemon retries
sending the power off command to the BMC of the head node that is intended to be powered off during
the failover, if the response from the power off command remains a fail response.

The power down attempts cease, either when the BMC reports that the head node is OFF, or when
the number of attempts reaches the FailoverPowerRetries value.

FailoverPowerRetries takes a maximum value of 120.
A value of 0 means that 1 attempt to power off is carried out during failover, but no retry is attempted

after the first attempt.
Because CMDaemon waits for a period of 1s before checking for an OFF reponse, it means that the

number of retries is about the same as the number of seconds before CMDaemon decides that powering
off has failed, unless the OFF response also takes some time to get to CMDaemon.

Increasing the value for this directive can be useful for some BMC cards that take longer than about
5s to report their power status, because the power off attempt may otherwise time out.

AddUserDefaultGroupID directive
Syntax: AdvancedConfig = { "AddUserDefaultGroupID = <number>", ...}
Default: none

The AddUserDefaultGroupID directive is a parameter of the AdvancedConfig (page 794) directive.
If the AddUserDefaultGroupID is unset, then the default group ID of a new user is the same as the

User ID.
If the AddUserDefaultGroupID is set, then the set value becomes the default GUID of new users,

when new users are created via the cmsh or Bright View front ends to CMDaemon.
The directive is not intended to set a non-default group occasionally during user creation. In that

case, a non-default group ID can be set from the cmsh or Bright View front ends, by setting the groupid
value for the user.

To set a default group for a directory, while retaining the default group for the user, it may be possible
to use the setgid bit for a directory.

MaxMeasurablesPerProducer directive
Syntax: AdvancedConfig = { "MaxMeasurablesPerProducer = <number>", ...}
Default: 500

The MaxMeasurablesPerProducer directive is a parameter of the AdvancedConfig (page 794) directive.

© Bright Computing, Inc.

806 CMDaemon Configuration File Directives

By default there is a software limit of 500 measurables per data producer. If this limit is exceded,
then the CMDaemon monitoring info logs show complaints about “too many measurables”.

In that case, if the cluster hardware is not too slow, and if the measurables produced are not some
kind of hardware garbage data values, then increasing the value of this directive should allow more
measurables to be dealt with.

AzureHyperVGenMap directive
Syntax: AdvancedConfig = {"AzureHyperVGenMap=<VM size >:<Hyper-V generation >,...",... }
Default: AzureHyperVGenMap=*:V1

The AzureHyperVGenMap directive is a parameter of the AdvancedConfig (page 794) directive. It defines
the Hyper-V generation that is used for instance types (VM size) in Azure cloud extension clusters via a
comma-separated list.

Globbing (using the asterisk wildcard) for the VM size means that all VMs that have not been as-
signed a generation are assigned the value placed after the following colon. In other words, it sets the
default generation.

For example all VMs are assigned Gen1, except for the Standard_DC2s_v2 VMs, if the AdvancedConfig
is set as follows:

Example

AdvancedConfig = "AzureHyperVGenMap=Standard_DC2s_v2:V2,*:V1"

© Bright Computing, Inc.

D
Disk Partitioning And RAID

Configuration
Disk partitioning is initially configured on the head node and regular nodes during installation (section
3.3.16 of the Installation Manual).

For the head node it cannot be changed from within the Bright Cluster Manager after implementa-
tion, and the head node is therefore not considered further in this section.

For regular nodes, partitioning can be changed after the initial configuration, by specifying a partic-
ular set of values according to the XML partitioning schema described in section D.1.

For example, for regular nodes, changing the value set for the XML tag of:

<xs:element name='filesystem'>

decides which filesystem type out of ext2, ext3, ext4, xfs, and so on, is used. The changes are imple-
mented during the node partitioning stage of the node-installer (section 5.4.6).

Diskless operation can also be implemented by using an appropriate XML file. This is introduced in
section 3.9.1.

Software or hardware RAID configuration can also be set for the regular nodes. The layouts
must be specified following the XML schema files stored on the head node in the directory /cm/
node-installer/scripts/:

• Software RAID configuration is set in the global partitioning XML schema file disks.xsd (sec-
tion D.1).

• Hardware RAID configuration is set in the separate hardware RAID XML schema file raid.xsd
(section D.2).

D.1 Structure Of Partitioning Definition—The Global Partitioning XML
Schema File

In Bright Cluster Manager, regular node partitioning setups have their global structure defined using an
XML schema, which is installed on the head node in /cm/local/apps/cmd/etc/htdocs/xsd/disks.xsd.

This schema does not include a hardware RAID description. The hardware RAID schema is defined
separately in the file raid.xsd (section D.2).

Examples of schemas in use, with and without hardware RAID, are given in sections D.3 and beyond.
An XML file can be validated against a schema using the xmllint tool:

Example

[root@bright91 ~]# xmllint --noout --schema /cm/local/apps/cmd/etc/htdocs/xsd/disks.xsd \
/cm/local/apps/cmd/etc/htdocs/disk-setup/slave-diskless.xml
/cm/local/apps/cmd/etc/htdocs/disk-setup/slave-diskless.xml validates
[root@bright91 ~]#

© Bright Computing, Inc.

/cm/node-installer/scripts/
/cm/node-installer/scripts/

808 Disk Partitioning And RAID Configuration

XML schema for partitioning

<?xml version='1.0'?>

<!--
#
Copyright (c) 2004-2017 Bright Computing, Inc. All Rights Reserved.
#
This software is the confidential and proprietary information of
Bright Computing, Inc.("Confidential Information"). You shall not
disclose such Confidential Information and shall use it only in
accordance with the terms of the license agreement you entered into
with Bright Computing, Inc.

This is the XML schema description of the partition layout XML file.
It can be used by software to validate partitioning XML files.
There are however a few things the schema does not check:
- There should be exactly one root mountpoint (/), unless diskless.
- There can only be one partition with a 'max' size on a particular device.
- Something similar applies to logical volumes.
- The 'auto' size can only be used for a swap partition.
- Partitions of type 'linux swap' should not have a filesystem.
- Partitions of type 'linux raid' should not have a filesystem.
- Partitions of type 'linux lvm' should not have a filesystem.
- Partitions of type 'unspecified' should not have a filesystem.
- If a raid is a member of another raid then it can not have a filesystem.
- Partitions, which are listed as raid members, should be of type 'linux raid'.
- If diskless is not set, there should be at least one device.
- The priority tag is only valid for partitions which have type set to
"linux swap".

-->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' elementFormDefault='qualified'>

<xs:element name='diskSetup'>

<xs:complexType>
<xs:sequence>

<xs:element name='diskless' type='diskless' minOccurs='0' maxOccurs='1'/>
<xs:element name='device' type='device' minOccurs='0' maxOccurs='unbounded'/>
<xs:element name='raid' type='raid' minOccurs='0' maxOccurs='unbounded'/>
<xs:element name='volumeGroup' type='volumeGroup' minOccurs='0' maxOccurs='unbounded'/>
<xs:element name='subVolumes' type='subVolumes' minOccurs='0' maxOccurs='unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:key name='partitionAndRaidIds'>
<xs:selector xpath='.//raid|.//partition'/>
<xs:field xpath='@id'/>

</xs:key>

<xs:keyref name='raidMemberIds' refer='partitionAndRaidIds'>
<xs:selector xpath='.//raid/member'/>
<xs:field xpath='.'/>

</xs:keyref>

© Bright Computing, Inc.

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema File 809

<xs:keyref name='volumeGroupPhysicalVolumes' refer='partitionAndRaidIds'>
<xs:selector xpath='.//volumeGroup/physicalVolumes/member'/>
<xs:field xpath='.'/>

</xs:keyref>

<xs:keyref name='subVolumeIds' refer='partitionAndRaidIds'>
<xs:selector xpath='.//subVolumes'/>
<xs:field xpath='@parent'/>

</xs:keyref>

<xs:unique name='raidAndVolumeMembersUnique'>
<xs:selector xpath='.//member'/>
<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='deviceNodesUnique'>
<xs:selector xpath='.//device/blockdev'/>
<xs:field xpath='.'/>
<xs:field xpath='@mode'/>

</xs:unique>

<xs:unique name='mountPointsUnique'>
<xs:selector xpath='.//mountPoint'/>
<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='assertNamesUnique'>
<xs:selector xpath='.//assert'/>
<xs:field xpath='@name'/>

</xs:unique>

</xs:element>

<xs:complexType name='diskless'>
<xs:attribute name='maxMemSize' type='memSize' use='required'/>
<xs:attribute name='mountOptions' type='xs:string'/>

</xs:complexType>

<xs:simpleType name='memSize'>
<xs:restriction base='xs:string'>
<xs:pattern value='([0-9]+[MG])|100%|[0-9][0-9]%|[0-9]%|0'/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name='stripeSize'>
<xs:restriction base='xs:string'>
<xs:pattern value='4|8|16|32|64|128|256|512|1024|1K|2048|2K|4096|4K'/>
<xs:pattern value='8192|8K|16384|16K|32768|32K|65536|64K|131072|128K'/>
<xs:pattern value='262144|256K|524288|512K|1048576|1024K|1M'/>
<xs:pattern value='2097152|2048K|2M|4194304|4096K|4M'/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name='size'>

© Bright Computing, Inc.

810 Disk Partitioning And RAID Configuration

<xs:restriction base='xs:string'>
<xs:pattern value='max|auto|[0-9]+[MGT]'/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name='relativeOrAbsoluteSize'>
<xs:restriction base='xs:string'>
<xs:pattern value='max|auto|[0-9]+[MGT]|[0-9]+([.][0-9]+)?%|[0-9]+/[0-9]+'/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name='extentSize'>
<xs:restriction base='xs:string'>
<xs:pattern value='([0-9])+M'/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name='blockdevName'>
<xs:restriction base='xs:string'>
<xs:pattern value='/dev/.+'/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name='blockdev'>
<xs:simpleContent>
<xs:extension base="blockdevName">

<xs:attribute name="mode" default='normal'>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="normal|cloud|both"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<xs:complexType name='device'>
<xs:sequence>
<xs:element name='blockdev' type='blockdev' minOccurs='1' maxOccurs='unbounded'/>
<xs:element name='vendor' type='xs:string' minOccurs='0' maxOccurs='1'/>
<xs:element name='requiredSize' type='size' minOccurs='0' maxOccurs='1'/>
<xs:element name='assert' minOccurs='0' maxOccurs='unbounded'>
<xs:complexType>
<xs:simpleContent>

<xs:extension base='xs:string'>
<xs:attribute name='name' use='required'>
<xs:simpleType>
<xs:restriction base='xs:string'>
<xs:pattern value='[a-zA-Z0-9-_]+'/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name='args' type='xs:string'/>

</xs:extension>

© Bright Computing, Inc.

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema File 811

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name='alignMiB' type='xs:boolean' minOccurs='0' maxOccurs='1'/>
<xs:element name="partitionTable" minOccurs='0' maxOccurs='1'>
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="gpt|msdos"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name='partition' type='partition' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>
<xs:attribute name='origin' type='xs:string'/>

</xs:complexType>

<xs:complexType name='partition'>
<xs:sequence>
<xs:element name='cephosdassociation' type='xs:string' minOccurs='0' maxOccurs='1'/>
<xs:element name='size' type='relativeOrAbsoluteSize'/>
<xs:element name='type'>
<xs:simpleType>
<xs:restriction base='xs:string'>
<xs:enumeration value='linux'/>
<xs:enumeration value='linux swap'/>
<xs:enumeration value='linux raid'/>
<xs:enumeration value='linux lvm'/>
<xs:enumeration value='unspecified'/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>
<xs:element name='priority' minOccurs='0' maxOccurs='1'>
<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="32767"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>
<xs:attribute name='id' type='xs:string' use='required'/>
<xs:attribute name='partitiontype' type='xs:string'/>

</xs:complexType>

<xs:group name='filesystem'>
<xs:sequence>

<xs:element name='filesystem'>
<xs:simpleType>
<xs:restriction base='xs:string'>
<xs:enumeration value='ext2'/>
<xs:enumeration value='ext3'/>
<xs:enumeration value='ext4'/>
<xs:enumeration value='xfs'/>
<xs:enumeration value='btrfs'/>

© Bright Computing, Inc.

812 Disk Partitioning And RAID Configuration

<xs:enumeration value='zfs'/>
<xs:enumeration value='fat32'/>
<xs:enumeration value='fat'/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name='mkfsFlags' type='xs:string' minOccurs='0' maxOccurs='1'/>
<xs:element name='mountPoint' type='xs:string' minOccurs='0' maxOccurs='1'/>
<xs:element name='mountOptions' type='xs:string' default='defaults' minOccurs='0'/>

</xs:sequence>
</xs:group>

<xs:complexType name='raid'>
<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='2' maxOccurs='unbounded'/>
<xs:element name='level' type='xs:int'/>
<xs:choice minOccurs='0' maxOccurs='1'>
<xs:group ref='filesystem'/>
<xs:sequence>
<xs:element name='swap'><xs:complexType /></xs:element>
<xs:element name='priority' minOccurs='0' maxOccurs='1'>
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="32767"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:choice>
</xs:sequence>
<xs:attribute name='id' type='xs:string' use='required'/>

</xs:complexType>

<xs:complexType name='volumeGroup'>
<xs:sequence>

<xs:element name='name' type='xs:string'/>
<xs:element name='extentSize' type='extentSize'/>
<xs:element name='physicalVolumes'>
<xs:complexType>
<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='1' maxOccurs='unbounded'/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name='logicalVolumes'>
<xs:complexType>
<xs:sequence>

<xs:element name='volume' type='logicalVolume' minOccurs='1' maxOccurs='unbounded'/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

© Bright Computing, Inc.

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema File 813

<xs:complexType name='logicalVolume'>
<xs:sequence>
<xs:element name='name' type='xs:string'/>
<xs:element name='size' type='size'/>
<xs:element name='pool' type='xs:string' minOccurs='0' maxOccurs='1'/>
<xs:element name='stripes' minOccurs='0' maxOccurs='1'>
<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxInclusive value="32768"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name='stripeSize' type='stripeSize' minOccurs='0' maxOccurs='1'/>
<xs:element name='swap' minOccurs='0' maxOccurs='1'/>
<xs:element name='priority' minOccurs='0' maxOccurs='1'>
<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
<xs:maxInclusive value="32767"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>

</xs:sequence>
<xs:attribute name="thinpool">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="1"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="metadatasize">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="([1-9][MGT])|([1-9][0-9]+[MGT])"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

<xs:complexType name='subVolumes'>
<xs:sequence>

<xs:element name='subVolume' type='subVolume' minOccurs='1' maxOccurs='unbounded'/>
</xs:sequence>
<xs:attribute name='parent' type='xs:string' use='required'/>

</xs:complexType>

<xs:complexType name='subVolume'>
<xs:sequence>

<xs:element name='mountPoint' type='xs:string'/>
<xs:element name='mountOptions' type='xs:string'/>

</xs:sequence>
</xs:complexType>

© Bright Computing, Inc.

814 Disk Partitioning And RAID Configuration

</xs:schema>

Examples Of Element Types In XML Schema

Name Of Type Example Values

size 10G, 128M, 1T, 2.5T, 1/3, 33.333%, auto, max

device /dev/sda, /dev/hda, /dev/cciss/c0d0

partition linux, linux raid, linux swap, unspecified

filesystem ext2, ext3, ext4, xfs

D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML
Schema File

If a hardware RAID has already been created outside of the cluster manager, then no XML definition is
needed. This assumes that required kernel modules for the device load, so that the operating system
ends up treating the RAID as a standard block device, which can therefore have its layout configured as
described in section 3.9.

If, instead, hardware RAID is to be created and managed by the cluster manager, then it can be
specified using an XML schema, stored on the head node in /cm/local/apps/cmd/etc/htdocs/xsd/
raid.xsd. The full schema specification is listed next, while schema examples are listed in section D.4.1.

Configuration using the cluster manager is currently limited to MegaRAID hardware. It may not
work for newer controllers that do not support MegaCLI, or its successor StorCLI. It may also not work
for controllers by vendors that do not use MegaCLI or StorCLI.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!--
#
Copyright (c) 2004-2014 Bright Computing, Inc. All Rights Reserved.
#
This software is the confidential and proprietary information of
Bright Computing, Inc.("Confidential Information"). You shall not
disclose such Confidential Information and shall use it only in
accordance with the terms of the license agreement you entered into
with Bright Computing, Inc.

This is the XML schema description of the hardware RAID layout XML file.
It can be used by software to validate partitioning XML files.
There are however a few things the schema does not check:
- All of the spans (drive groups) in an raidArray must have the same number of drives.
- There can only be one volume with a 'max' size on a particular array, and this
must be the last volume in the array.
- If there is only one enclosure defined for a particular RAID controller the actual
enclosureID can be omitted, by using "auto" instead. Otherwise, the actual enclosureID
must be specified.
-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="raidLevel">
<xs:restriction base="xs:nonNegativeInteger">

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/htdocs/xsd/raid.xsd
/cm/local/apps/cmd/etc/htdocs/xsd/raid.xsd

D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema File 815

<xs:pattern value="0|1|5|10|50"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="volumeSize">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{1,5}[MGT]|max"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="stripeSize">
<xs:restriction base="xs:string">
<xs:pattern value="8K|16K|32K|64K|128K|256K|512K|1024K"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="cachePolicy">
<xs:restriction base="xs:string">
<xs:pattern value="Cached|Direct"/>

</xs:restriction>
</xs:simpleType>

<!--
NORA : No Read Ahead
RA : Read Ahead
ADRA : Adaptive Read

-->
<xs:simpleType name="readPolicy">

<xs:restriction base="xs:string">
<xs:pattern value="NORA|RA|ADRA"/>

</xs:restriction>
</xs:simpleType>

<!--
WT : Write Through
WB : Write Back

-->
<xs:simpleType name="writePolicy">

<xs:restriction base="xs:string">
<xs:pattern value="WT|WB"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="enclosureID">
<xs:restriction base="xs:string">
<xs:pattern value="auto|[0-9]{1,4}"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="slotNumber">
<xs:restriction base="xs:nonNegativeInteger">
<xs:pattern value="[0-9]{1,2}"/>

</xs:restriction>
</xs:simpleType>

© Bright Computing, Inc.

816 Disk Partitioning And RAID Configuration

<xs:element name="raidSetup">
<xs:complexType>
<xs:sequence>

<xs:element name="raidArray" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="level" type="raidLevel"/>

<xs:element name="raidVolume" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="stripeSize" type="stripeSize"/>

<xs:element name="cachePolicy" type="cachePolicy"/>

<xs:element name="readPolicy" type="readPolicy"/>

<xs:element name="writePolicy" type="writePolicy"/>

<xs:element name="size" type="volumeSize"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:choice>

<xs:element name="device" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="enclosureID" type="enclosureID"/>

<xs:element name="slotNumber" type="slotNumber"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="span" minOccurs="2" maxOccurs="8">
<xs:complexType>
<xs:sequence>

<xs:element name="device" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="enclosureID" type="enclosureID"/>

<xs:element name="slotNumber" type="slotNumber"/>

© Bright Computing, Inc.

D.3 Example: Default Node Partitioning 817

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

D.3 Example: Default Node Partitioning
The following example follows the schema specification of section D.1, and shows the default layout
used for regular nodes:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<device>
<blockdev>/dev/sda</blockdev>
<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>
<blockdev>/dev/nvme0n1</blockdev>
<blockdev mode="cloud">/dev/sdb</blockdev>
<blockdev mode="cloud">/dev/hdb</blockdev>
<blockdev mode="cloud">/dev/vdb</blockdev>
<blockdev mode="cloud">/dev/xvdb</blockdev>
<!-- the following for paravirtual rhel6: -->
<blockdev mode="cloud">/dev/xvdf</blockdev>
<!-- the following for nvme volumes -->
<blockdev mode="cloud">/dev/nvme1n1</blockdev>

<partition id="a0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>
<mountPoint>/boot/efi</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">
<size>20G</size>

© Bright Computing, Inc.

818 Disk Partitioning And RAID Configuration

<type>linux</type>
<filesystem>xfs</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a2">
<size>6G</size>
<type>linux</type>
<filesystem>xfs</filesystem>
<mountPoint>/var</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a3">
<size>2G</size>
<type>linux</type>
<filesystem>xfs</filesystem>
<mountPoint>/tmp</mountPoint>
<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</partition>

<partition id="a4">
<size>12G</size>
<type>linux swap</type>

</partition>

<partition id="a5">
<size>max</size>
<type>linux</type>
<filesystem>xfs</filesystem>
<mountPoint>/local</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>
</diskSetup>

The example assumes a single disk. Another disk can be added by adding another pair of
<device><device> tags and filling in the partitioning specifications for the next disk. Because multi-
ple blockdev tags are used, the node-installer first tries to use /dev/sda, then /dev/hda, then /dev/vda
(virtio disks), then /dev/xvda (xen disks), and so on. Cloud devices can also be accessed using the
mode="cloud" option. Removing block devices from the layout if they are not going to be used does no
harm.

For each partition, a size tag is specified. Sizes can be specified using megabytes (e.g. 500M),
gigabytes (e.g. 50G) or terabytes (e.g. 2T or 4.5T). Relative sizes, without units, can be used in the form
of fractions (e.g. 2/3) or percentages (e.g. 70%), which can be useful for disk sizes that are not known in
advance.

Small differences in size do not trigger a full install for existing relative partitions.
For swap partitions, a size of auto sets a swap partition to twice the node memory size. If there is

more than one swap partition, then the priority tag can be set so that the partition with the higher
priority is used first.

For a device, the attribute max for a size tag forces the last device in the partition to use all remaining
space, and if needed, adjusts the implementation of the sequence of size tags in the remaining partitions
accordingly. The use of max for a partition is convenient.

© Bright Computing, Inc.

D.4 Example: Hardware RAID Configuration 819

In the example, all non-boot filesystems are specified as xfs. One of the valid alternatives is ext4.
The mount man page has more details on mount options. If the mountOptions tag is left empty, its

value defaults to defaults.

D.4 Example: Hardware RAID Configuration
A prerequisite with hardware RAID is that it must be enabled and configured properly in the BIOS.

If it is enabled and configured correctly, then the hardware RAID configuration can be defined or
modified by setting the hardwareraidconfiguration parameter in device or category mode:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% set hardwareraidconfiguration

This opens up an editor in which the XML file can be specified according to the schema in section D.2.
XML validation is carried out.

D.4.1 RAID level 0 And RAID 10 Example
In the following configuration the node has two RAID arrays, one in a RAID 0 and the other in a RAID
10 configuration:

• The RAID 0 array contains three volumes and is made up of two hard disks, placed in slots 0 and
1. The volumes have different values for the options and policies.

• The RAID 10 array consists of just one volume and has two spans, in slots 2 and 3. Each span has
two hard disks.

Example

<raidSetup>
<raidArray>
<level>0</level>

<raidVolume>
<stripeSize>64K</stripeSize>
<cachePolicy>Direct</cachePolicy>
<readPolicy>NORA</readPolicy>
<writePolicy>WT</writePolicy>
<size>40G</size>

</raidVolume>

<raidVolume>
<stripeSize>128K</stripeSize>
<cachePolicy>Direct</cachePolicy>
<readPolicy>RA</readPolicy>
<writePolicy>WB</writePolicy>
<size>80G</size>

</raidVolume>

<raidVolume>
<stripeSize>256K</stripeSize>
<cachePolicy>Cached</cachePolicy>
<readPolicy>ADRA</readPolicy>
<writePolicy>WT</writePolicy>

© Bright Computing, Inc.

820 Disk Partitioning And RAID Configuration

<size>100G</size>
</raidVolume>

<device>
<enclosureID>auto</enclosureID>
<slotNumber>0</slotNumber>

</device>

<device>
<enclosureID>32</enclosureID>
<slotNumber>1</slotNumber>

</device>
</raidArray>

<raidArray>
<level>10</level>

<raidVolume>
<stripeSize>64K</stripeSize>
<cachePolicy>Direct</cachePolicy>
<readPolicy>NORA</readPolicy>
<writePolicy>WT</writePolicy>
<size>40G</size>

</raidVolume>

<device>

<enclosureID>auto</enclosureID>
<slotNumber>2</slotNumber>

</device>

<device>
<enclosureID>auto</enclosureID>
<slotNumber>3</slotNumber>

</device>

<device>

<enclosureID>auto</enclosureID>
<slotNumber>4</slotNumber>

</device>

<device>
<enclosureID>auto</enclosureID>
<slotNumber>5</slotNumber>

</device>

</raidArray>
</raidSetup>

D.5 Example: Software RAID
The following example shows a simple software RAID setup:

Example

© Bright Computing, Inc.

D.6 Example: Software RAID With Swap 821

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schema.xsd">

<device>
<blockdev>/dev/sda</blockdev>
<partition id="a1">
<size>25G</size>
<type>linux raid</type>

</partition>
</device>

<device>
<blockdev>/dev/sdb</blockdev>
<partition id="b1">
<size>25G</size>
<type>linux raid</type>

</partition>
</device>

<raid id="r1">
<member>a1</member>
<member>b1</member>
<level>1</level>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

The level tag specifies the RAID level used. The following are supported:

• 0 (striping without parity)

• 1 (mirroring)

• 4 (striping with dedicated parity drive)

• 5 (striping with distributed parity)

• 6 (striping with distributed double parity)

The member tags must refer to an id attribute of a partition tag, or an id attribute of a another raid
tag. The latter can be used to create, for example, RAID 10 configurations.

The administrator must ensure that the correct RAID kernel module is loaded (section 5.3.2). In-
cluding the appropriate module from the following is usually sufficient: raid0, raid1, raid4, raid5,
raid6.

D.6 Example: Software RAID With Swap
The <swap></swap> tag is used to indicate a swap partition in a RAID device specified in the XML
schema of section D.1. For example, the following marks a 1GB RAID 1 partition as being used for
swap, and the second partition for an ext3 filesystem:

<?xml version="1.0" encoding="UTF-8"?>

© Bright Computing, Inc.

822 Disk Partitioning And RAID Configuration

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<device>
<blockdev>/dev/sda</blockdev>
<partition id="a1">
<size>1G</size>
<type>linux raid</type>

</partition>
<partition id="a2">
<size>max</size>
<type>linux raid</type>

</partition>
</device>
<device>
<blockdev>/dev/sdb</blockdev>
<partition id="b1">
<size>1G</size>
<type>linux raid</type>

</partition>
<partition id="b2">
<size>max</size>
<type>linux raid</type>

</partition>
</device>
<raid id="r1">
<member>a1</member>
<member>b1</member>
<level>1</level>
<swap></swap>

</raid>
<raid id="r2">
<member>a2</member>
<member>b2</member>
<level>1</level>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
</diskSetup>

As in section D.5, the appropriate RAID modules must be loaded beforehand.

D.7 Example: Logical Volume Manager
This example shows a simple LVM setup:

Example

<?xml version="1.0" encoding="UTF-8"?>
<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>
<blockdev>/dev/sda</blockdev>
<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>

© Bright Computing, Inc.

D.8 Example: Logical Volume Manager With RAID 1 823

<blockdev mode="cloud">/dev/sdb</blockdev>
<blockdev mode="cloud">/dev/hdb</blockdev>
<blockdev mode="cloud">/dev/vdb</blockdev>
<blockdev mode="cloud">/dev/xvdb</blockdev>
<blockdev mode="cloud">/dev/xvdf</blockdev>
<partition id="a1">
<size>512M</size>
<type>linux</type>
<filesystem>ext2</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>
<partition id="a2">
<size>16G</size>
<type>linux swap</type>

</partition>
<partition id="a3">
<size>max</size>
<type>linux lvm</type>

</partition>
</device>
<volumeGroup>
<name>vg01</name>
<extentSize>8M</extentSize>
<physicalVolumes>
<member>a3</member>

</physicalVolumes>
<logicalVolumes>
<volume>

<name>lv00</name>
<size>max</size>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>
<volume>

<name>lv01</name>
<size>8G</size>
<filesystem>ext3</filesystem>
<mountPoint>/tmp</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>
</logicalVolumes>

</volumeGroup>
</diskSetup>

The member tags must refer to an id attribute of a partition tag, or an id attribute of a raid tag.
The administrator must ensure that the dm-mod kernel module is loaded when LVM is used.

D.8 Example: Logical Volume Manager With RAID 1
This example shows an LVM setup, but with the LVM partitions mirrored using RAID 1:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

© Bright Computing, Inc.

824 Disk Partitioning And RAID Configuration

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:no\
NamespaceSchemaLocation="schema.xsd">

<device>
<blockdev>/dev/sda</blockdev>
<partition id="a1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="a2">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<device>
<blockdev>/dev/sdb</blockdev>
<partition id="b1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="b2">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<raid id="r1">
<member>a1</member>
<member>b1</member>
<level>1</level>
<filesystem>ext3</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">
<member>a2</member>
<member>b2</member>
<level>1</level>

</raid>

<volumeGroup>
<name>vg01</name>
<extentSize>8M</extentSize>
<physicalVolumes>
<member>r2</member>

</physicalVolumes>

<logicalVolumes>
<volume>
<name>lv00</name>
<size>50G</size>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>

© Bright Computing, Inc.

D.9 Example: Diskless 825

<mountOptions>defaults,noatime,nodiratime</mountOptions>
</volume>
<volume>
<name>lv01</name>
<size>25G</size>
<filesystem>ext3</filesystem>
<mountPoint>/tmp</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>
<volume>
<name>lv02</name>
<size>25G</size>
<filesystem>ext3</filesystem>
<mountPoint>/var</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>
</logicalVolumes>

</volumeGroup>

</diskSetup>

D.9 Example: Diskless
This example shows a node configured for diskless operation:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<diskless maxMemSize="90%"></diskless>

</diskSetup>

An example of the implementation of a diskless configuration is given in section 3.9.3.
In diskless mode the software image is transferred by the node-installer to a RAM-based filesystem

on the node called tmpfs.
The obvious advantage of running from RAM is the elimination of the physical disk, cutting power

consumption and reducing the chance of hardware failure. On the other hand, some of the RAM on the
node is then no longer available for user applications.

Special considerations with diskless mode:

• Recommended minimum RAM size: The available RAM per node should be sufficient to run the
OS and the required tasks. At least 4GB is recommended for diskless nodes.

• The tmpfs size limit: The maximum amount of RAM that can be used for a filesystem is set with
the maxMemSize attribute. A value of 100% allows all of the RAM to be used. The default value is
90%. A value of 0, without the % sign, removes all restrictions.

A limit does not however necessarily prevent the node from crashing, as some processes might
not deal properly with a situation when there is no more space left on the filesystem.

• Persistence issues: While running as a diskless node, the node is unable to retain any non-shared
data each time it reboots. For example the files in /var/log/*, which are normally preserved by
the exclude list settings for disked nodes, are lost from RAM during diskless mode reboots. The
installmode NOSYNC setting cannot be used with diskless nodes during a node reboot.

© Bright Computing, Inc.

826 Disk Partitioning And RAID Configuration

• Leftover disk issues: Administrators in charge of sensitive environments should be aware that
the disk of a node that is now running in diskless mode still contains files from the last time the
disk was used, unless the files are explicitly wiped.

• Reducing the software image size in tmpfs on a diskless node: To make more RAM available for
tasks, the software image size held in RAM can be reduced:

– by removing unnecessary software from the image.

– by mounting parts of the filesystem in the image over NFS during normal use. This is espe-
cially worthwhile for less frequently accessed parts of the image (section 3.10.3).

D.10 Example: Semi-diskless
Diskless operation (section D.9) can also be mixed with certain parts of the filesystem on the local physi-
cal disk. This frees up RAM which the node can then put to other use. In this example all data in /local
is on the physical disk, the rest in RAM.

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schema.xsd">

<diskless maxMemSize="0"></diskless>
<device>
<blockdev>/dev/sda</blockdev>
<partition id="a1">
<size>max</size>
<type>linux</type>
<filesystem>ext3</filesystem>
<mountPoint>/local</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>
</device>

</diskSetup>

When nodes operate in semi-diskless mode the node-installer always uses excludelistfullinstall
(section 5.4.7) when synchronizing the software image to memory and disk.

An alternative to using a local disk for freeing up RAM is to use NFS storage, as is described in
section 3.10.3.

D.11 Example: Preventing Accidental Data Loss
Optional tags, vendor and requiredSize, can be used to prevent accidentally repartitioning the wrong
drive. Such a tag use is shown in the following example.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schema.xsd">

<device>
<blockdev>/dev/sda</blockdev>
<vendor>Hitachi</vendor>
<requiredSize>200G</requiredSize>

© Bright Computing, Inc.

D.12 Example: Using Custom Assertions 827

<partition id="a1">
<size>max</size>
<type>linux</type>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>
<device>
<blockdev>/dev/sdb</blockdev>
<vendor>BigRaid</vendor>
<requiredSize>2T</requiredSize>

<partition id="b1">
<size>max</size>
<type>linux</type>
<filesystem>ext3</filesystem>
<mountPoint>/data</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>
</diskSetup>

If a vendor or a requiredSize element is specified, it is treated as an assertion which is checked
by the node-installer. The node-installer reads the drive vendor string from /sys/block/<drive
name>/device/vendor. For the assertion to succeed, the ratio of actual disk size to the value specified
by requiredSize, should be at least 0.85:1, and at most 1:0.85.

That is: to be able to get past the requiredSize assertion, the actual drive size as seen from fdisk
-l should be 85% to about 118% of the asserted size.

If any assertion fails, no partitioning changes will be made to any of the specified devices.
For assertions with drives that are similar or identical in size, and are from the same vendor, the

requiredSize and vendor elements are not enough to differentiate between the drives. In such cases,
custom assertions (section D.12) can be set for particular drives.

Specifying device assertions is recommended for nodes that contain important data because it pro-
tects against a situation where a drive is assigned to an incorrect block device. This can happen, for
example, when the first drive, for example /dev/sda, in a multi-drive system is not detected (e.g. due to
a hardware failure, or a BIOS update) which could cause the second drive to become known as /dev/sda,
potentially causing much woe.

As an aside, CMDaemon does offer another way, outside of assertions, to avoid wiping out drive
data automatically. This is done in cmsh by setting the value of datanode to yes (section 5.4.4).

D.12 Example: Using Custom Assertions
The following example shows the use of the assert tag, which can be added to a device definition:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

© Bright Computing, Inc.

/sys/block/
/device/vendor

828 Disk Partitioning And RAID Configuration

<blockdev>/dev/sda</blockdev>
<assert name="modelCheck" args="WD800AAJS">
<![CDATA[

#!/bin/bash
if grep -q $1 /sys/block/$ASSERT_DEV/device/model; then
exit 0

else
exit 1

fi
]]>

</assert>

<partition id="a1">
<size>max</size>
<type>linux</type>
<filesystem>ext3</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>
<device>
<blockdev>/dev/sdb</blockdev>
<vendor>BigRaid</vendor>
<requiredSize>2T</requiredSize>

<partition id="b1">
<size>max</size>
<type>linux</type>
<filesystem>ext3</filesystem>
<mountPoint>/data</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>
</diskSetup>

The assert tag is similar to the vendor and size tags described in section D.11.
It can be used to define custom assertions. The assertions can be implemented using any script

language.
The script can access the environment variables ASSERT_DEV (eg: sda) and ASSERT_NODE (eg:

/dev/sda) during the node-installer stage.
Each assert needs to be assigned an arbitrary name and can be passed custom parameters. A non-

zero exit code in the assertion causes the node-installer to halt.

D.13 Example: Software RAID1 With One Big Partition
The following example shows a head node hard drive that uses one big partition with software RAID 1.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<device>
<blockdev>/dev/sda</blockdev>

© Bright Computing, Inc.

D.13 Example: Software RAID1 With One Big Partition 829

<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>
<blockdev>/dev/nvme0n1</blockdev>
<partition id="a0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>
<mountPoint>/boot/efi</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>
<partition id="a1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="a2">
<size>16G</size>
<type>linux raid</type>

</partition>
<partition id="a3">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<device>
<blockdev>/dev/sdb</blockdev>
<blockdev>/dev/hdb</blockdev>
<blockdev>/dev/vdb</blockdev>
<blockdev>/dev/xvdb</blockdev>
<blockdev>/dev/cciss/c0d1</blockdev>
<blockdev>/dev/nvme1n1</blockdev>
<partition id="b0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>
<partition id="b1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="b2">
<size>16G</size>
<type>linux raid</type>

</partition>
<partition id="b3">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<raid id="r1">
<member>a1</member>
<member>b1</member>

© Bright Computing, Inc.

830 Disk Partitioning And RAID Configuration

<level>1</level>
<filesystem>ext2</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">
<member>a2</member>
<member>b2</member>
<level>1</level>
<swap/>

</raid>

<raid id="r3">
<member>a3</member>
<member>b3</member>
<level>1</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
</diskSetup>

D.14 Example: Software RAID5 With One Big Partition
The following example shows a head node hard drive that uses one big partition with software RAID 5.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<device>
<blockdev>/dev/sda</blockdev>
<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>
<blockdev>/dev/nvme0n1</blockdev>
<partition id="a0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>
<mountPoint>/boot/efi</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>
<partition id="a1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="a2">
<size>16G</size>
<type>linux raid</type>

</partition>
<partition id="a3">
<size>max</size>

© Bright Computing, Inc.

D.14 Example: Software RAID5 With One Big Partition 831

<type>linux raid</type>
</partition>

</device>

<device>
<blockdev>/dev/sdb</blockdev>
<blockdev>/dev/hdb</blockdev>
<blockdev>/dev/vdb</blockdev>
<blockdev>/dev/xvdb</blockdev>
<blockdev>/dev/cciss/c0d1</blockdev>
<blockdev>/dev/nvme1n1</blockdev>
<partition id="b0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>
<partition id="b1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="b2">
<size>16G</size>
<type>linux raid</type>

</partition>
<partition id="b3">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<device>
<blockdev>/dev/sdc</blockdev>
<blockdev>/dev/hdc</blockdev>
<blockdev>/dev/vdc</blockdev>
<blockdev>/dev/xvdc</blockdev>
<blockdev>/dev/cciss/c0d2</blockdev>
<blockdev>/dev/nvme2n1</blockdev>
<partition id="c0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>
<partition id="c1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="c2">
<size>16G</size>
<type>linux raid</type>

</partition>
<partition id="c3">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

© Bright Computing, Inc.

832 Disk Partitioning And RAID Configuration

<raid id="r1">
<member>a1</member>
<member>b1</member>
<member>c1</member>
<level>1</level>
<filesystem>ext2</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">
<member>a2</member>
<member>b2</member>
<member>c2</member>
<level>5</level>
<swap/>

</raid>

<raid id="r3">
<member>a3</member>
<member>b3</member>
<member>c3</member>
<level>5</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
</diskSetup>

D.15 Example: Software RAID1 With Standard Partitioning
The following example shows a head node hard drive that uses the standard partitioning with software
RAID 1.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<device>
<blockdev>/dev/sda</blockdev>
<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>
<blockdev>/dev/nvme0n1</blockdev>

<partition id="a0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>
<mountPoint>/boot/efi</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

© Bright Computing, Inc.

D.15 Example: Software RAID1 With Standard Partitioning 833

<partition id="a1">
<size>512M</size>
<type>linux raid</type>

</partition>

<partition id="a2">
<size>16G</size>
<type>linux raid</type>

</partition>

<partition id="a3">
<size>8G</size>
<type>linux raid</type>

</partition>

<partition id="a4">
<size>30G</size>
<type>linux raid</type>

</partition>

<partition id="a5">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<device>
<blockdev>/dev/sdb</blockdev>
<blockdev>/dev/hdb</blockdev>
<blockdev>/dev/vdb</blockdev>
<blockdev>/dev/xvdb</blockdev>
<blockdev>/dev/cciss/c0d1</blockdev>
<blockdev>/dev/nvme1n1</blockdev>

<partition id="b0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>

<partition id="b1">
<size>512M</size>
<type>linux raid</type>

</partition>

<partition id="b2">
<size>16G</size>
<type>linux raid</type>

</partition>

<partition id="b3">
<size>8G</size>
<type>linux raid</type>

</partition>

© Bright Computing, Inc.

834 Disk Partitioning And RAID Configuration

<partition id="b4">
<size>30G</size>
<type>linux raid</type>

</partition>

<partition id="b5">
<size>max</size>
<type>linux raid</type>

</partition>
</device>

<raid id="r1">
<member>a1</member>
<member>b1</member>
<level>1</level>
<filesystem>ext2</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">
<member>a2</member>
<member>b2</member>
<level>1</level>
<swap/>

</raid>

<raid id="r3">
<member>a3</member>
<member>b3</member>
<level>1</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/tmp</mountPoint>
<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</raid>

<raid id="r4">
<member>a4</member>
<member>b4</member>
<level>1</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/var</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r5">
<member>a5</member>
<member>b5</member>
<level>1</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

© Bright Computing, Inc.

D.16 Example: Software RAID5 With Standard Partitioning 835

D.16 Example: Software RAID5 With Standard Partitioning
The following example shows a head node hard drive that uses the standard partitioning with software
RAID 5.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>
<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>
<blockdev>/dev/sda</blockdev>
<blockdev>/dev/hda</blockdev>
<blockdev>/dev/vda</blockdev>
<blockdev>/dev/xvda</blockdev>
<blockdev>/dev/cciss/c0d0</blockdev>
<blockdev>/dev/nvme0n1</blockdev>
<partition id="a0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>
<mountPoint>/boot/efi</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="a2">
<size>6G</size>
<type>linux raid</type>

</partition>
<partition id="a3">
<size>8G</size>
<type>linux raid</type>

</partition>
<partition id="a4">
<size>30G</size>
<type>linux raid</type>

</partition>
<partition id="a5">
<size>max</size>
<type>linux raid</type>

</partition>
</device>
<device>
<blockdev>/dev/sdb</blockdev>
<blockdev>/dev/hdb</blockdev>
<blockdev>/dev/vdb</blockdev>
<blockdev>/dev/xvdb</blockdev>
<blockdev>/dev/cciss/c0d1</blockdev>
<blockdev>/dev/nvme1n1</blockdev>
<partition id="b0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>

© Bright Computing, Inc.

836 Disk Partitioning And RAID Configuration

<partition id="b1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="b2">
<size>6G</size>
<type>linux raid</type>

</partition>
<partition id="b3">
<size>8G</size>
<type>linux raid</type>

</partition>
<partition id="b4">
<size>30G</size>
<type>linux raid</type>

</partition>
<partition id="b5">
<size>max</size>
<type>linux raid</type>

</partition>
</device>
<device>
<blockdev>/dev/sdc</blockdev>
<blockdev>/dev/hdc</blockdev>
<blockdev>/dev/vdc</blockdev>
<blockdev>/dev/xvdc</blockdev>
<blockdev>/dev/cciss/c0d2</blockdev>
<blockdev>/dev/nvme2n1</blockdev>
<partition id="c0" partitiontype="esp">
<size>100M</size>
<type>linux</type>
<filesystem>fat</filesystem>

</partition>
<partition id="c1">
<size>512M</size>
<type>linux raid</type>

</partition>
<partition id="c2">
<size>6G</size>
<type>linux raid</type>

</partition>
<partition id="c3">
<size>8G</size>
<type>linux raid</type>

</partition>
<partition id="c4">
<size>30G</size>
<type>linux raid</type>

</partition>
<partition id="c5">
<size>max</size>
<type>linux raid</type>

</partition>
</device>
<raid id="r1">

© Bright Computing, Inc.

D.16 Example: Software RAID5 With Standard Partitioning 837

<member>a1</member>
<member>b1</member>
<member>c1</member>
<level>1</level>
<filesystem>ext2</filesystem>
<mountPoint>/boot</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
<raid id="r2">
<member>a2</member>
<member>b2</member>
<member>c2</member>
<level>5</level>
<swap/>

</raid>
<raid id="r3">
<member>a3</member>
<member>b3</member>
<member>c3</member>
<level>5</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/tmp</mountPoint>
<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</raid>
<raid id="r4">
<member>a4</member>
<member>b4</member>
<member>c4</member>
<level>5</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/var</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
<raid id="r5">
<member>a5</member>
<member>b5</member>
<member>c5</member>
<level>5</level>
<filesystem>__FSTYPE__</filesystem>
<mountPoint>/</mountPoint>
<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>
</diskSetup>

© Bright Computing, Inc.

E
Example initialize And

finalize Scripts
The node-installer executes any initialize and finalize scripts at particular stages of its 13-step run
during node-provisioning (section 5.4). They are sometimes useful for troubleshooting or workarounds
during those stages. The scripts are stored in the CMDaemon database, rather than in the filesystem
as plain text files, because they run before the node’s init process takes over and establishes the final
filesystem.

Default iniitialize and finalize scripts are provided with the default category:

[bright91->category[default]]% show | grep ize
Initialize script <1.46KiB>
Finalize script <3.4KiB>

E.1 When Are They Used?
The iniitialize and finalize scripts are sometimes used as an alternative configuration option out of
a choice of other possible options (section 3.15.1). As a solution it can be a bit of a hack, but sometimes
there is no reasonable alternative other than using an initialize or finalize script.

An initialize script: is used well before the init process starts, to execute custom commands before
partitions and mounting devices are checked. Typically, initialize script commands are related to
partitioning, mounting, or initializing special storage hardware. Often an initialize script is needed
because the commands in it cannot be stored persistently anywhere else.

A finalize script: (also run before init, but shortly before init starts) is used to set a file configu-
ration or to initialize special hardware, sometimes after a hardware check. It is run in order to make
software or hardware work before, or during the later init stage of boot. Thus, often a finalize script
is needed because its commands must be executed before init, and the commands cannot be stored
persistently anywhere else, or it is needed because a choice between (otherwise non-persistent) config-
uration files must be made based on the hardware before init starts.

E.2 Accessing From Bright View And cmsh

The initialize and finalize scripts are accessible for viewing and editing:

• In Bright View, via the Node Categories or Nodes window, under the Settings window. The
clickpaths for these are:

– Grouping→Node categories[default]→Edit→Settings

© Bright Computing, Inc.

840 Example initialize And finalize Scripts

– Devices→Nodes[node001]→Edit→Settings

• In cmsh, using the category or device modes. The get command is used for viewing the script,
and the set command to start up the default text editor to edit the script. Output is truncated in
the two following examples at the point where the editor starts up:

Example

[root@bright91 ~]# cmsh
[bright91]% category use default
[bright91->category[default]]% show | grep script
Parameter Value
------------------------------ --
Finalize script <1367 bytes>
Initialize script <0 bytes>
[bright91->category[default]]% set initializescript

Example

[bright91]% device use node001
[bright91->device[node001]]%
[bright91->device[node001]]% set finalizescript

E.3 Environment Variables Available To initialize And finalize Scripts
For the initialize and finalize scripts, node-specific customizations can be made from a script using
environment variables.

The environment variables can be listed using the following script as a finalizescript:

Example

[bright91->device[node001]]% get finalizescript
#!/bin/bash
#
All cluster manager environment variables are prefixed with CMD_
The root / of the running node is always mounted on /localdisk
#

set | grep CMD_ > /localdisk/var/log/node-installer-finalize.env

After the node comes up, the contents of the saved file on that node are the available variables:

Example

[root@node001 ~]# cat /var/log/node-installer-finalize.env
CMD_ACTIVE_MASTER_IP=10.141.255.254
CMD_CATEGORY=default
CMD_CHASSIS=
CMD_CHASSIS_IP=0.0.0.0
CMD_CHASSIS_PASSWORD=
CMD_CHASSIS_SLOT=
CMD_CHASSIS_USERNAME=
...

The following table shows the available variables with some example values:

© Bright Computing, Inc.

E.3 Environment Variables Available To initialize And finalize Scripts 841

Table E: Environment Variables For The initialize And Finalize Scripts

Variable Example Value

CMD_ACTIVE_MASTER_IP 10.141.255.254

CMD_CATEGORY default

CMD_CHASSIS chassis01

CMD_CHASSIS_IP 10.141.1.1

CMD_CHASSIS_PASSWORD ADMIN

CMD_CHASSIS_SLOT 1

CMD_CHASSIS_USERNAME ADMIN

CMD_CLUSTERNAME Bright 9.1 Cluster

CMD_DEVICE_HEIGHT 1

CMD_DEVICE_POSITION 10

CMD_DEVICE_TYPE SlaveNode

CMD_ETHERNETSWITCH switch01:1

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_ALLOWWRITE no

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_HOSTS 10.141.0.0/16

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_PATH /cm/node-installer

CMD_FSEXPORTS _SLASH_cm_SLASH_node-installer

CMD_FSMOUNT__SLASH_cm_SLASH_shared_DEVICE master:/cm/shared

CMD_FSMOUNT__SLASH_cm_SLASH_shared_FILESYSTEM nfs

CMD_FSMOUNT__SLASH_cm_SLASH_shared_MOUNTPOINT /cm/shared

CMD_FSMOUNT__SLASH_cm_SLASH_shared_OPTIONS rsize=32768,wsize=32768,\
hard,intr,async

CMD_FSMOUNT__SLASH_dev_SLASH_pts_DEVICE none

CMD_FSMOUNT__SLASH_dev_SLASH_pts_FILESYSTEM devpts

CMD_FSMOUNT__SLASH_dev_SLASH_pts_MOUNTPOINT /dev/pts

CMD_FSMOUNT__SLASH_dev_SLASH_pts_OPTIONS gid=5,mode=620

CMD_FSMOUNT__SLASH_dev_SLASH_shm_DEVICE none

CMD_FSMOUNT__SLASH_dev_SLASH_shm_FILESYSTEM tmpfs

CMD_FSMOUNT__SLASH_dev_SLASH_shm_MOUNTPOINT /dev/shm

CMD_FSMOUNT__SLASH_dev_SLASH_shm_OPTIONS defaults

CMD_FSMOUNT__SLASH_home_DEVICE master:/home

CMD_FSMOUNT__SLASH_home_FILESYSTEM nfs

CMD_FSMOUNT__SLASH_home_MOUNTPOINT home

CMD_FSMOUNT__SLASH_home_OPTIONS rsize=32768,wsize=32768,\
hard,intr,async

CMD_FSMOUNT__SLASH_proc_DEVICE none

CMD_FSMOUNT__SLASH_proc_FILESYSTEM proc

...continues

© Bright Computing, Inc.

842 Example initialize And finalize Scripts

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

CMD_FSMOUNT__SLASH_proc_MOUNTPOINT /proc

CMD_FSMOUNT__SLASH_proc_OPTIONS defaults,nosuid

CMD_FSMOUNT__SLASH_sys_DEVICE none

CMD_FSMOUNT__SLASH_sys_FILESYSTEM sysfs

CMD_FSMOUNT__SLASH_sys_MOUNTPOINT /sys

CMD_FSMOUNT__SLASH_sys_OPTIONS defaults

CMD_FSMOUNTS ∗ _SLASH_dev_SLASH_pts
_SLASH_proc _SLASH_sys
_SLASH_dev_SLASH_shm
_SLASH_cm_SLASH_shared
_SLASH_home

CMD_GATEWAY 10.141.255.254

CMD_HOSTNAME node001

CMD_INSTALLMODE AUTO

CMD_INTERFACE_eth0_IP ∗∗ 10.141.0.1

CMD_INTERFACE_eth0_MTU ∗∗ 1500

CMD_INTERFACE_eth0_NETMASK ∗∗ 255.255.0.0

CMD_INTERFACE_eth0_TYPE ∗∗ physical

CMD_INTERFACES ∗ eth0 eth1 eth2 ipmi0

CMD_IP 10.141.0.1

CMD_MAC 00:00:00:00:00:01

CMD_PARTITION base

CMD_PASSIVE_MASTER_IP 10.141.255.253

CMD_PDUS

CMD_POWER_CONTROL custom

CMD_RACK rack01

CMD_RACK_HEIGHT 42

CMD_RACK_ROOM serverroom

CMD_ROLES sgeclient storage

CMD_SHARED_MASTER_IP 10.141.255.252

CMD_SOFTWAREIMAGE_PATH /cm/images/default-image

CMD_SOFTWAREIMAGE default-image

CMD_TAG 00000000a000

CMD_USERDEFINED1 var1

CMD_USERDEFINED2 var2

* The value for this variable is a string with spaces, not an array. Eg:

CMD_FSMOUNTS="_SLASH_dev_SLASH_pts _SLASH_proc _SLASH_sys _SLASH_dev_SLASH_shm ..."

** The name of this variable varies according to the interfaces available. So,

eth0 can be replaced by eth1, eth2, ipmi0, and so on.

© Bright Computing, Inc.

E.4 Using Environment Variables Stored In Multiple Variables 843

E.4 Using Environment Variables Stored In Multiple Variables
Some data values, such as those related to interfaces (CMD_INTERFACES_*), mount points
(CMD_FSMOUNT__SLASH_*) and exports (CMD_FSEXPORT__SLASH_cm__SLASH_node-installer_*) are
stored in multiple variables. The following finalize script set for node001 shows how they can be used:

Example

[head->device*[node001*]]% get finalizescript
#!/bin/bash
echo "These are the interfaces:" >> /localdisk/env
CMD_ENV=`env`
function parser {

for s in TYPE IP NETMASK; do
echo $((grep CMD_INTERFACE_${1/:/-}_${s} | grep -Po "[\w.]+$") <<< "${CMD_ENV[@]}")

done
}
for interface in $CMD_INTERFACES
do

read -r type ip mask <<< $(parser $interface)

echo $interface type=$type >> /localdisk/env
echo $interface ip=$ip >> /localdisk/env
echo $interface netmask=$mask >> /localdisk/env

done

The technique of storage of values in a file under the path within the node of /localdisk/ is de-
scribed later on in section E.5.2. When the node boots up and runs the finalize script, then files stored
under /localdisk/, end up under the path of / after the node is fully up.

The detailed workings of the parser function in the preceding bash script are not easy, but the re-
sult is that the parser function returns output so that the interface type, IP address, and netmask are
listed for each interface. The parser works for physical interfaces, VLAN interfaces, and alias interfaces.
For example, if there are two interfaces, eth0 and eth0:1, then the file env might be seen to have the
following data:

Example

[root@head ~]# ssh node001 cat /env
These are the interfaces:
eth0 type=physical
eth0 ip=10.141.0.1
eth0 netmask=255.255.0.0
eth0:1 type=alias
eth0:1 ip=10.141.0.2
eth0:1 netmask=255.255.0.0

For remotely mounted devices, the name of the environment variables for mount entries have the
following naming convention:

Description Naming Convention

volume CMD_FSMOUNT_<x>_DEVICE

mount point CMD_FSMOUNT_<x>_MOUNTPOINT

filesystem type CMD_FSMOUNT_<x>_FILESYSTEM

mount point options CMD_FSMOUNT_<x>_OPTIONS

© Bright Computing, Inc.

844 Example initialize And finalize Scripts

For the names, the entries <x> are substituted with the local mount point path, such as
“/cm/shared”, but with the “/” character replaced with the text “_SLASH_”. So, for a local
mount point path “/cm/shared”, the name of the associated volume environment variable becomes
CMD_FSMOUNT__SLASH_cm_SLASH_shared_DEVICE.

A similar naming convention is applicable to the names of the environment variables for the export
entries:

Description Naming Convention

exported system writable? CMD_FSEXPORT_<y>_ALLOWWRITE

allowed hosts or networks CMD_FSEXPORT_<y>_HOSTS

path on exporter CMD_FSMOUNT_<y>_PATH

Here, the entry <y> is replaced by the file path to the exported filesystem on the exporting node. This
is actually the same as the value of “CMD_FSMOUNT_<y>_PATH”, but with the “/” character replaced with
the text “_SLASH_”.

The entries for the local mount values and the export values in the table in section E.3 are the default
values for a newly installed cluster. If the administrator wishes to add more devices and mount entries,
this is done by configuring fsexports on the head node, and fsmounts on the regular nodes, using
Bright View or cmsh (section 3.10).

E.5 Storing A Configuration To A Filesystem
E.5.1 Storing With Initialize Scripts
The initialize script (section 5.4.5) runs after the install-mode type and execution have been deter-
mined (section 5.4.4), but before unloading specific drivers and before partitions are checked and filesys-
tems mounted (section 5.4.6). Data output cannot therefore be written to a local drive. It can however be
written by the script to the tmpfs, but data placed there is lost quite soon, namely during the pivot_root
process that runs when the node-installer hands over control to the init process running from the local
drive. However, if needed, the data can be placed on the local drive later by using the finalize script
to copy it over from the tmpfs.

Due to this, and other reasons, a finalize script is easier to use for an administrator than an
initialize script, and the use of the finalize script is therefore preferred.

E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes
Basic Example—Copying A File To The Image
For a finalize script (section 5.4.11), which runs just before switching from using the ramdrive to using
the local hard drive, the local hard drive is mounted under /localdisk. Data can therefore be written to
the local hard drive if needed, but is only persistent until a reboot, when it gets rewritten. For example,
predetermined configuration files can be written from the NFS drive for a particular node, or they can
be written from an image prepared earlier and now running on the node at this stage, overwriting a
node-installer configuration:

Example

#!/bin/bash
cp /etc/myapp.conf.overwrite /localdisk/etc/myapp.conf

This technique is used in a finalize script example in section 3.15.4, except that an append operation
is used instead of a copy operation, to overcome a network issue by modifying a network configuration
file slightly.

There are three important considerations for most finalize scripts:

1. Running A Finalize Script Without exit 0 Considered Harmful

© Bright Computing, Inc.

E.5 Storing A Configuration To A Filesystem 845

Failed Finalize Script Logic Flow: For a default configuration without a finalize script, if PXE
boot fails from the network during node provisioning, the node then goes on to attempt booting
from the local drive via iPXE (section 5.1.2).

However, if the configuration has a finalize script, such as in the preceding example, and if the
finalize script fails, then the failure is passed to the node installer.

Avoiding Remote Node Hang During A Finalize Script: exit 0 Recommended: If the node-
installer fails, then no attempt is made to continue booting, and the node remains hung at that
stage. This is usually undesirable, and can also make remote debugging of a finalize script annoy-
ing.

Adding an exit 0 to the end of the finalize script is therefore recommended, and means that an
error in the script will still allow the node-installer to continue with an attempt to boot from the
local drive.

Debugging Tips When A Node Hangs During A Finalize Script: If there is a need to understand
the failure, then if the node-installer hangs, the administrator can ssh into the node into the node-
installer environment, and run the finalize script manually to debug it. Once the bug has been
understood, the script can be copied over to the appropriate location in the head node, for nodes
or categories.

Additional aid in understanding a failure may be available by looking through the node-
installer logs. The debug mode for the node-installer can be enabled by setting debug=true in-
stead of debug=false in the file /cm/node-installer/scripts/node-installer.conf (for mul-
tiarch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf).

Another way to help debug a failure could be by setting custom event messages in the script, as
explained on page 611.

2. Protecting A Configuration File Change From Provisioning Erasure With excludelistupdate

In the preceding example, the finalize script saves a file /etc/myapp.conf to the destination nodes.

To protect such a configuration file from erasure, its file path must be covered in the second sublist
in the excludelistupdate list (section 5.6.1).

3. Finalize scripts cannot modify /proc, /sys, and /dev filesystems of end result on node directly.

The /proc, /sys, and /dev filesystems are unmounted after the finalize script is run before pivoting
into the root filesystem under the /localdisk directory, which means any changes made to them
are simply discarded. To change values under these filesystems on the node, an rc.local file
inside the software image can be used.

For example, if swappiness is to be set to 20 via the /proc filesystem, one way to do it is to set it in
the rc.local file:

Example

cat /cm/images/<image-name>/etc/rc.local | grep -v ˆ# | grep .
echo 20 > /proc/sys/vm/swappiness
exit 0
chmod 755 /cm/images/<image-name>/etc/rc.d/rc.local # must be made executable

The preceding way of using rc.local set to run a command to modify the image just for illustra-
tion. A better way to get the same result in this case would be to not involve rc.local, but to add

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf
/etc/myapp.conf

846 Example initialize And finalize Scripts

a line within the /cm/images/<image-name>/etc/sysctl.conf file:

vm.swappiness = 20

Copying A File To The Image—Decision Based On Detection
Detection within a basic finalize script is useful extra technique. The finalize script example of
section 3.15.4 does detection too, to decide if a configuration change is to be done on the node or not.

A further variation on a finalize script with detection is a script selecting from a choice of possible
configurations. A symlink is set to one of the possible configurations based on hardware detection or
detection of an environment variable. The environment variable can be a node parameter or similar,
from the table in section E.3. If it is necessary to overwrite different nodes with different configurations,
then the previous finalize script example might become something like:

Example

#!/bin/bash
if [[$CMD_HOSTNAME = node00[1-7]]]

then ln -s /etc/myapp.conf.first /localdisk/etc/myapp.conf
fi
if [[$CMD_HOSTNAME = node01[5-8]]]

then ln -s /etc/myapp.conf.second /localdisk/etc/myapp.conf
fi
if [[$CMD_HOSTNAME = node02[3-6]]]

then ln -s /etc/myapp.conf.third /localdisk/etc/myapp.conf
fi

In the preceding example, the configuration file in the image has several versions:
/etc/myapp.conf.<first|second|third>. Nodes node001 to node007 are configured with the
first version, nodes node015 to node018 with the second version, and nodes node023 to node026 with
the third version. It is convenient to add more versions to the structure of this decision mechanism.

Copying A File To The Image—With Environment Variables Evaluated In The File
Sometimes there can be a need to use the CMDaemon environment variables within a finalize script to
specify a configuration change that depends on the environment.

For example a special service may need a configuration file, test, that requires the hostname myhost,
as a parameter=value pair:

Example

SPECIALSERVICEPARAMETER=myhost

Ideally the placeholder value myhost would be the hostname of the node rather than the fixed value
myhost. Conveniently, the CMDaemon environment variable CMD_HOSTNAME has the name of the host as
its value.

So, inside the configuration file, after the administrator changes the host name from its placeholder
name to the environment variable:

SPECIALSERVICE=${CMD_HOSTNAME}

then when the node-installer runs the finalize script, the file could be modified in-place by the finalize
script, and ${CMD_HOSTNAME} be substituted by the actual hostname.

A suitable finalize Bash script, which runs an in-line Perl substitution, is the following:

#!/bin/bash
perl -p -i -e 's/\$\{([^}]+)\}/defined $ENV{$1} ? $ENV{$1} : $&/eg' /localdisk/some/directory/file

© Bright Computing, Inc.

E.5 Storing A Configuration To A Filesystem 847

Here, /some/directory/file means that, if for example the final configuration file path for the node
is to be /var/spool/test then the file name should be set to /localdisk/var/spool/test inside the
finalize script.

The finalize script replaces all lines within the file that have environment variable names of the form:

PARAMETER=${<environment variable name>}

with the value of that environment variable. Thus, if <environment variable name> is CMD_HOSTNAME,
then that variable is replaced by the name of the host.

E.5.3 Restricting The Script To Nodes Or Node Categories
As mentioned in section 2.1.3, node settings can be adjusted within a category. So the configuration
changes to ifcfg-eth0 is best implemented per node by accessing and adjusting the finalize script
per node if only a few nodes in the category are to be set up like this. If all the nodes in a category are to
be set up like this, then the changes are best implemented in a finalize script accessed and adjusted at
the category level. Accessing the scripts at the node and category levels is covered in section E.2.

People used to normal object inheritance behavior should be aware of the following when consider-
ing category level and node level finalize scripts:

With objects, a node item value overrules a category level value. On the other hand, finalize scripts,
while treated in an analogous way to objects, cannot always inherit properties from each other in the
precise way that true objects can. Thus, it is possible that a finalize script run at the node level may not
have anything to do with what is changed by running it at the category level. However, to allow it to
resemble the inheritance behavior of object properties a bit, the node-level finalize script, if it exists, is
always run after the category-level script. This gives it the ability to “overrule” the category level.

© Bright Computing, Inc.

F
Workload Managers Quick

Reference
F.1 Slurm
Slurm is a GPL-licensed workload management system and developed largely at Lawrence Livermore
National Laboratory. The name was originally an acronym for Simple Linux Utility for Resource Man-
agement, but the acronym is deprecated because it no longer does justice to the advanced capabilities of
Slurm.

The Slurm service and outputs are normally handled using the Bright View or cmsh front end tools
for CMDaemon (section 7.4).

From the command line, direct Slurm commands that may sometimes come in useful include the
following:

• sacct: used to report job or job step accounting information about active or completed jobs.

Example

sacct -j 43 -o jobid,AllocCPUs,NCPUS,NNodes,NTasks,ReqCPUs
JobID AllocCPUS NCPUS NNodes NTasks ReqCPUS

------------ ---------- ---------- -------- -------- --------
43 1 1 1 1

• salloc: used to allocate resources for a job in real time. Typically this is used to allocate resources
and spawn a shell. The shell is then used to execute srun commands to launch parallel tasks.

• sattach used to attach standard input, output, and error plus signal capabilities to a currently
running job or job step. One can attach to and detach from jobs multiple times.

• sbatch: used to submit a job script for later execution. The script typically contains one or more
srun commands to launch parallel tasks.

• sbcast: used to transfer a file from local disk to local disk on the nodes allocated to a job. This can
be used to effectively use diskless compute nodes or provide improved performance relative to a
shared filesystem.

• scancel: used to cancel a pending or running job or job step. It can also be used to send an
arbitrary signal to all processes associated with a running job or job step.

• scontrol: the administrative tool used to view and/or modify Slurm state. Note that many scon-
trol commands can only be executed as user root.

Example

© Bright Computing, Inc.

850 Workload Managers Quick Reference

[fred@bright91 ~]$ scontrol show nodes
NodeName=bright91 Arch=x86_64 CoresPerSocket=1

CPUAlloc=0 CPUErr=0 CPUTot=1 CPULoad=0.05 Features=(null)
...

If a node, for example node001, is stuck in a CG state (“completing”), and rebooting it is not feasible,
then the following may clear it in some cases:

Example

[fred@bright91 ~]$ scontrol update nodename=node001 state=down reason=hung
[fred@bright91 ~]$ scontrol update nodename=node001 state=resume

• sinfo: reports the state of partitions and nodes managed by Slurm. It has a wide variety of filter-
ing, sorting, and formatting options.

Example

bright91:~ # sinfo -o "%9P %.5a %.10l %.6D %.6t %C %N"
PARTITION AVAIL TIMELIMIT NODES STATE CPUS(A/I/O/T) NODELIST
defq* up infinite 1 alloc 1/0/0/1 bright91

• smap: reports state information for jobs, partitions, and nodes managed by Slurm, but graphically
displays the information to reflect network topology.

• squeue: reports the state of jobs or job steps. It has a wide variety of filtering, sorting, and format-
ting options. By default, it reports the running jobs in priority order and then the pending jobs in
priority order.

Example

bright91:~ # squeue -o "%.18i %.9P %.8j %.8u %.2t %.10M %.6D %C %R"
JOBID PARTITION NAME USER ST TIME NODES CPUS NODELIST(REASON)

43 defq bash fred R 16:22 1 1 bright91
...

• srun: used to submit a job for execution or initiate job steps in real time. srun has a wide variety of
options to specify resource requirements, including: minimum and maximum node count, proces-
sor count, specific nodes to use or not use, and specific node characteristics (so much memory, disk
space, certain required features, etc.). A job can contain multiple job steps executing sequentially
or in parallel on independent or shared nodes within the job’s node allocation.

• smap: reports state information for jobs, partitions, and nodes managed by Slurm, but graphically
displays the information to reflect network topology.

• strigger: used to set, get or view event triggers. Event triggers include things such as nodes
going down or jobs approaching their time limit.

• sview: a graphical user interface to get and update state information for jobs, partitions, and nodes
managed by Slurm.

There are man pages for these commands. Full documentation on Slurm is available online at: http:
//slurm.schedmd.com/documentation.html.

© Bright Computing, Inc.

http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/documentation.html

F.2 Univa Grid Engine 851

F.2 Univa Grid Engine
Univa Grid Engine (UGE) is a workload management system that was originally derived from Sun Grid
Engine (SGE).

UGE services should be handled using CMDaemon, as explained in section 7.4.
Managing queues and jobs can be done via the cmsh or Bright View front ends, but can also be carried

out via the UGE tools.

• The sge_qmaster daemon on the head node can be started, stopped, or viewed using service
sgemaster start|stop|status, or alternatively handled at a lower, more fine-grained, level using
the -k (kill), -s (show) and -a (activate) options of qconf. Further details on these options can be
found in the qconf help text, or man qconf(1). For example, help on the -k options can be found
by running:

qconf -help | grep '\-k'

or running:

man qconf(1) and scrolling down to the interesting part by searching for shutdown).

• The sge_execd execution daemon running on each compute node accepts, manages, and returns
the results of the jobs on the compute nodes. The daemon can be managed via service sgeexecd
start|stop|status, or alternatively (de)registered from qmaster via qconf options.

• To see why a queue is in an error state, qstat -explain E shows the reason. Further details on
these options can be found in the qconf help text, or man qstat(1). Queues in an error state can
be cleared with a qmod -cq <queue name>.

UGE can be configured and managed generally with the command line utility qconf, which is what
most administrators become familiar with. UGE also provides a GUI alternative, qmon.

UGE commands are listed below. The details of these are in the man page of the command and the
UGE documentation.

• qalter: modify existing batch jobs

• qacct: show usage information from accounting data

• qconf: configure UGE

• qdel: delete batch jobs

• qhold: place hold on batch jobs

• qhost: display compute node queues, states, jobs

• qlogin: start login-based interactive session with a node

• qmake: distributed, parallel make utility

• qmod: suspend/enable queues and jobs

• qmon: configure UGE with an X11 GUI interface

• qping: check sge_qmaster and sge_execd status

• qquota: list resource quotas

• qresub: create new jobs by copying existing jobs

• qrdel: cancel advance reservations

© Bright Computing, Inc.

852 Workload Managers Quick Reference

• qrls: release batch jobs from a held state

• qrsh: start rsh-based interactive session with node

• qrstat: show status of advance reservations

• qrsub: submit advanced reservation

• qselect: select queues based on argument values

• qsh: start sh interactive session with a node

• qstat: show status of batch jobs and queues

• qsub: submit new jobs (related: qalter, qresub)

F.3 PBS Pro
The following commands can be used in PBS Pro to view queues, jobs, and server status:

qstat query queue status
qstat -a alternate display format, for all queued and running jobs
qstat -r show only running or suspended jobs
qstat -q show available queues
qstat -rn only running or suspended jobs, with list of allocated nodes
qstat -i information on queued, held, waiting jobs
qstat -B display server status
qstat -u <username> show jobs for named user

Other useful commands are:

tracejob <job id> show what happened today to <job id>
tracejob -n <number> <job id> search last <number> days for <job id>

qmgr administrator interface to batch system

qterm terminates PBS server (but Bright Cluster Manager starts pbs_server again)

pbsnodes <node> query status of compute node
pbsnodes -a query status of all compute nodes

The commands of PBS Pro are documented in the man pages, and also in the extensive documenta-
tion available at http://www.altair.com/pbs-works-documentation/

© Bright Computing, Inc.

http://www.altair.com/pbs-works-documentation/

G
Metrics, Health Checks,

Enummetrics, And Actions
This appendix describes the metrics (section G.1), health checks (section G.2), enummetrics (sec-
tion 13.2.2), and actions (section G.4), along with their parameters, in a newly-installed cluster. Met-
rics, health checks, enummetrics, and actions can each be standalone scripts, or they can be built-ins.
Standalone scripts can be those supplied with the system, or they can be custom scripts built by the
administrator. Scripts often require environment variables (as described in section 3.3.1 of the Developer
Manual. On success scripts must exit with a status of 0, as is the normal practice.

G.1 Metrics And Their Parameters
A list of metric names can be viewed, for example, for the head node, using cmsh as follows (sec-
tion 13.5.3):

[bright91 ~]# cmsh -c "monitoring measurable; list metric"

Metrics are listed in this section as four types:

• regular metrics (section G.1.1)

• NFS metrics (section G.1.2)

• monitoring system metrics (section G.1.3)

• GPU metrics (section G.1.4)

• Job metrics (section G.1.5)

• Prometheus metrics (section G.1.6)

G.1.1 Regular Metrics
Table G.1.1: List Of Metrics

Metric Description

...continues

© Bright Computing, Inc.

854 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

AlertLevel Indicates the healthiness of a device based on severity of events
(section 13.2.8). The lower it is, the better. There are 3 parameters
it can take:

• count: the number of active triggers

• maximum: the maximum alert level of all active triggers

• sum: the summed alert level of all active triggers

AvgJobDuration Average Job Duration of current jobs

BlockedProcesses Blocked processes waiting for I/O

BufferMemory System memory used for buffering

BytesRecv∗ Bytes/s received‡

BytesSent∗ Bytes/s sent‡

CPUGuest CPU time spent in guest mode.

CPUIdle CPU time spent in idle mode.

CPUIrq CPU time spent in servicing IRQ.

CPUNice CPU time spent in nice mode.

CPUSoftIrq CPU time spent in servicing soft IRQ.

CPUSteal CPU time spent in steal mode.

CPUSystem CPU time spent in system mode.

CPUUser CPU time spent in user mode.

CPUWait CPU time spent in I/O wait mode.

CacheMemory System memory used for caching.

CompletedJobs Successfully completed jobs

Cores Number of cores for a node

CoresTotal Total number of known cores for all nodes

CoresUp Number of cores for all nodes marked as UP

CtxtSwitches∗ Context switches/s

Current_1∗∗ First current seen by BMC sensor, in amps (file: sample_ipmi)

Current_2∗∗ Second current seen by BMC sensor, in amps (file: sample_ipmi)

DevicesClosed Number of devices not marked as UP or DOWN

DevicesDown Number of devices marked as DOWN

DevicesTotal Total number of devices

DevicesUp Number of devices in status UP. A node (head, regular, virtual,
cloud) or GPU Unit is not classed as a device. A device can be an
item such as a switch, PDU, chassis, or rack, if the item is enabled
and configured for management.

DropRecv∗ Packets/s received and dropped‡

DropSent∗ Packets/s sent and dropped‡

EC2SpotPrice Amazon EC2 price for spot instances

EccDBitGPU∗∗ Total number of double bit ECC errors (file: sample_gpu)

...continues

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 855

Table G.1.1: List Of Metrics...continued

Metric Description

EccSBitGPU∗∗ Total number of single bit ECC errors (file: sample_gpu)

ErrorsRecv∗ Packets/s received with error‡

ErrorsSent∗ Packets/s sent with error‡

EstimatedDelay Estimated delay time to execute jobs

FailedJobs Failed completed jobs

Forks∗ Forked processes/s

FrameErrors∗ Packet framing errors/s‡

FreeSpace Free space for non-root user. Takes mount point as a parameter

GPUUnitsClosed Number of GPU units not marked as UP or DOWN

GPUUnitsDown Number of GPU units marked as DOWN

GPUUnitsTotal Total number of GPU Units

GPUUnitsUp Number of GPU units marked as UP

HardwareCorruptedMemory Hardware corrupted memory detected by ECC

IOInProgress I/O operations in progress†

IOTime I/O operations time in milliseconds/s†

Interrupts System interrupts

IpForwDatagrams∗ Input IP datagrams/s to be forwarded

IpFragCreates∗ IP datagram fragments/s generated

IpFragFails∗ IP datagrams/s which needed to be fragmented but could not

IpFragOKs∗ IP datagrams/s successfully fragmented

IpInAddrErrors∗ Input datagrams/s discarded because the IP address in their
header was not a valid address

IpInDelivers∗ Input IP datagrams/s successfully delivered

IpInDiscards∗ Input IP datagrams/s discarded

IpInHdrErrors∗ Input IP datagrams/s discarded due to errors in their IP headers

IpInReceives∗ Input IP datagrams/s, including ones with errors, received from
all interfaces

IpInUnknownProtos∗ Input IP datagrams/s received but discarded due to an unknown
or unsupported protocol

IpOutDiscards∗ Output IP datagrams/s discarded

IpOutNoRoutes∗ Output IP datagrams/s discarded because no route could be
found

IpOutRequests∗ Output IP datagrams/s supplied to IP in requests for transmis-
sion

IpReasmOKs∗ IP datagrams/s successfully re-assembled

IpReasmReqds∗ IP fragments/s received needing re-assembly

LoadFifteen Load average on 15 minutes

LoadFive Load average on 5 minutes

LoadOne Load average on 1 minute

MajorPageFaults∗ Page faults/s that require I/O

...continues

© Bright Computing, Inc.

856 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

MemoryAvailable Available system memory

MemoryFree Free system memory

MemoryTotal Total system memory

MemoryUsed Used system memory

MemoryUsed:cmd Used system memory for process cmd

MergedReads∗ Merged reads/s†

MergedWrites∗ Merged writes/s†

NodesClosed Number of nodes not marked as UP or DOWN

NodesDown Number of nodes marked as DOWN

NodesInQueue Number of nodes in the queue

NodesTotal Total number of nodes

NodesUp Number of nodes in status UP

OccupationRate
Cluster occupation rate—a normalized cluster load percentage.
100% means all cores on all nodes are fully loaded.

The calculation is done as follows: LoadOne on each node is
mapped to a value, calibrated so that LoadOne=1 corresponds to
100% per node. The maximum allowed for a node in the map-
ping is 100%. The average of these mappings taken over all nodes
is the OccupationRate.

A high value can indicate the cluster is being used optimally.
However, a value that is 100% most of the time suggests the clus-
ter may need to be expanded.

PacketsRecv∗ Packets/s received‡

PacketsSent∗ Packets/s sent‡

PageFaults∗ Page faults/s

PageIn Number of bytes the system has paged in from disk

PageOut Number of bytes the system has paged out to disk

PageSwapIn Number of bytes the system has swapped in from disk

PageSwapOut Number of bytes the system has swapped out to disk

PDUBankLoad Total PDU bank load, in amps

PDULoad Total PDU phase load, in amps

PDUUptime∗ PDU uptime per second. I.e. ideally=1, but in practice has jitter
effects.

ProcessCount Total number of all processes in the OS. These are run-
ning processes (RunningProcesses) and blocked pro-
cesses(BlockedProcesses).

QueuedJobs Queued jobs

ReadTime∗ Read time in milliseconds/s†

Reads∗ Reads/s completed successfully†

RunningJobs Running jobs

...continues

© Bright Computing, Inc.

https://linux.die.net/lkmpg/x1052.html
https://linux.die.net/lkmpg/x1052.html
https://linux.die.net/lkmpg/x1052.html

G.1 Metrics And Their Parameters 857

Table G.1.1: List Of Metrics...continued

Metric Description

RunningProcesses Running processes

SMARTHDATemp Temperature of a Hard Disk Assembly†

SMARTReallocSecCnt SMART reallocated sectors count†

SMARTSeekErrRate SMART seek errors/s†

SMARTSeekTimePerf SMART average seek time†

SMARTSoftReadErrRate SMART software read errors/s†

SectorsRead∗ Sectors/s read successfully/s†

SectorsWritten∗ Sectors/s written successfully†

SwapFree Free swap memory

SwapTotal Total swap memory

SwapUsed Used swap memory

SystemTime:cmd System time used by CMDaemon

TcpCurrEstab TCP connections that are either ESTABLISHED or CLOSE-WAIT

TcpInErrs∗ Input IP segments/s received in error

TcpRetransSegs∗ Total number of IP segments/s re-transmitted

ThreadsUsed:cmd Threads used by CMDaemon

TotalCPUIdle Cluster-wide core usage in idle tasks (sum of all CPUIdle metric
percentages)

TotalCPUSystem Cluster-wide core usage in system mode (sum of all CPUSystem
metric percentages)

TotalCPUUser Cluster-wide core usage in user mode (sum of all CPUUser met-
ric percentages)

TotalGPUUtilization Average of gpu_utilization:average (table G.1.4) over all
nodes

TotalMemoryFree Cluster-wide total of memory free

TotalMemoryUsed Cluster-wide total of memory used

TotalSwapFree Cluster-wide total swap free

TotalSwapUsed Cluster-wide total swap used

TotalUser Total number of known users

TotalUserLogin Total number of logged in users

UdpInDatagrams∗ Input UDP datagrams/s delivered to UDP users

UdpInErrors∗ Input UDP datagrams/s received that could not be delivered/s
for other reasons (no port excl.)

UdpNoPorts∗ Received UDP datagrams/s for which there was no application
at the destination port

UniqueUserLogin Number of unique users logged in

Uptime∗ System uptime per second. Ie, ideally=1, but in practice has jitter
effects

UsedSpace Total used space by a mount point. Takes mount point as a pa-
rameter.

...continues

© Bright Computing, Inc.

858 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

UserTime:cmd User time used by CMDaemon

VirtualMemoryUsed:cmd Virtual memory used by CMDaemon

WriteTime∗ Write time in milliseconds/s†

Writes∗ Writes/s completed successfully†

* Cumulative metric. I.e. the metric is derived from cumulative raw measurements taken at two different times, according to:
metrictime2 =

measurement2−measurement1
time2−time1

** Standalone scripts, not built-ins.
If sampling from a head node, the script is in directory: /cm/local/apps/cmd/scripts/metrics/
For regular nodes, the script is in directory: /cm/images/default-image/cm/local/apps/cmd/scripts/metrics/

† Takes block device name (sda, sdc and so on) as parameter
‡ Takes interface device name (eth0, eth1 and so on) as parameter

G.1.2 NFS Metrics
The NFS metrics correspond to nfsstat output, and are shown in table G.1.2.

Table G.1.2: NFS Metrics

NFS Metric Description

nfs_client_packet_packets NFS client packets statistics: packets

nfs_client_packet_tcp NFS client package statistics: TCP/IP packets

nfs_client_packet_tcpconn NFS client package statistics: TCP/IP connections

nfs_client_packet_udp NFS client package statistics: UDP packets

nfs_client_rpc_authrefrsh NFS Client RPC statistics: authenticated refreshes to RPC
server

nfs_client_rpc_calls NFS Client RPC statistics: calls

nfs_client_rpc_retrans NFS Client RPC statistics: re-transmissions

nfs_server_file_anon NFS Server file statistics: anonymous access

nfs_server_file_lookup NFS Server file statistics: look-ups

nfs_server_file_ncachedir NFS Server file statistics: ncachedir

nfs_server_file_stale NFS Server file statistics: stale files

nfs_server_packet_packets NFS Server packet statistics: packets

nfs_server_packet_tcp NFS Server packet statistics: TCP/IP packets

nfs_server_packet_tcpconn NFS Server packet statistics: TCP/IP connections

nfs_server_packet_udp NFS Server packet statistics: UDP packets

nfs_server_reply_hits NFS Server reply statistics: hits

nfs_server_reply_misses NFS Server reply statistics: misses

nfs_server_reply_nocache NFS Server reply statistics: no cache

nfs_server_rpc_badauth NFS Server RPC statistics: bad authentication

nfs_server_rpc_badcalls NFS Server RPC statistics:bad RPC requests

nfs_server_rpc_badclnt NFS Server RPC statistics: badclnt

nfs_server_rpc_calls NFS Server RPC statistics: all calls to NFS and NLM

nfs_server_rpc_xdrcall NFS Server RPC statistics: malformed XDR calls

...continues

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 859

Table G.1.2: NFS Metrics

NFS Metric Description

nfs_v3_client_access NFSv3 client statistics: access

nfs_v3_client_fsinfo NFSv3 client statistics: static file system information

nfs_v3_client_fsstat NFSv3 client statistics: dynamic file system status

nfs_v3_client_getattr NFSv3 client statistics: file system attributes

nfs_v3_client_lookup NFSv3 client statistics: lookup

nfs_v3_client_pathconf NFSv3 client statistics: configuration path

nfs_v3_client_read NFSv3 client statistics: reads

nfs_v3_client_total NFSv3 client statistics: total

nfs_v3_server_access NFSv3 server statistics: access

nfs_v3_server_create NFSv3 server statistics: create

nfs_v3_server_fsinfo NFSv3 server statistics: static file system information

nfs_v3_server_fsstat NFSv3 server statistics: dynamic file system information

nfs_v3_server_getattr NFSv3 server statistics: file system attributes gets

nfs_v3_server_lookup NFSv3 server statistics: file name look-ups

nfs_v3_server_mkdir NFSv3 server statistics: directory creation

nfs_v3_server_null NFSv3 server statistics: null operations

nfs_v3_server_pathconf NFSv3 server statistics: retrieve POSIX information

nfs_v3_server_read NFSv3 server statistics: reads

nfs_v3_server_readdirplus NFSv3 server statistics: READDIRPLUS procedures

nfs_v3_server_readlink NFSv3 server statistics: Symbolic link reads

nfs_v3_server_setattr NFSv3 server statistics: file system attribute sets

nfs_v3_server_total NFSv3 server statistics: total

nfs_v3_server_write NFSv3 server statistics: writes

G.1.3 Monitoring System Metrics
The monitoring system metrics correspond to metrics for the monitoring data storage itself. These are
shown in table G.1.3.

Table G.1.3: Monitoring System Metrics

Monitoring System Metric Description

Mon::CacheGather::handled Cache gathers handled/s

Mon::CacheGather::miss Cache gathers missed/s

Mon::DataProcessor::handled Data processors handled/s

Mon::DataProcessor::miss Data processors missed /s

Mon::DataTranslator::handled Data translators handled/s

...continues

© Bright Computing, Inc.

860 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.3: Monitoring System Metrics...continued

Monitoring System Metric Description

Mon::DataTranslator::miss Data translators missed/s

Mon::EntityMeasurableCache::handled Measurable cache handled/s

Mon::EntityMeasurableCache::miss Measurable cache missed/s

Mon::MeasurableBroker::handled Measurable broker handled/s

Mon::MeasurableBroker::miss Measurable broker missed/s

Mon::OOB::TaskService::handled Out-of-band task service handled/s

Mon::OOB::TaskService::miss Out-of-band task service missed/s

Mon::Replicate::Collector::handled Replication collection handled/s

Mon::Replicate::Collector::miss Replication collection missed/s

Mon::Replicate::Combiner::handled Replication combiner handled/s

Mon::Replicate::Combiner::miss Replication combiner missed/s

Mon::RepositoryAllocator::handled Repository allocator handled/s

Mon::RepositoryAllocator::miss Repository allocator missed/s

Mon::RepositoryTrim::handled Repository trim handled/s

Mon::RepositoryTrim::miss Repository trim missed/s

Mon::Storage::Engine::elements Storage engine data elements, in total

Mon::Storage::Engine::size Storage engine size, in bytes

Mon::Storage::Engine::usage Storage engine usage

Mon::Storage::Message::elements Storage message data elements, in total

Mon::Storage::Message::size Storage message size in bytes

Mon::Storage::Message::usage Storage message usage

Mon::Storage::RepositoryId::elements Storage repository ID data elements, in total

Mon::Storage::RepositoryId::size Storage repository ID, size, in bytes

Mon::Storage::RepositoryId::usage Repository ID usage

Mon::TaskInitializer::handled Task initializer handled/s

Mon::TaskInitializer::miss Task initializer missed/s

Mon::TaskSampler::handled Task sampler handled/s

Mon::TaskSampler::miss Task sampler missed/s

Mon::Trigger::Actuator::handled Trigger actuators handled/s

Mon::Trigger::Actuator::miss Trigger actuators missed/s

Mon::Trigger::Dispatcher::handled Trigger dispatchers handled/s

Mon::Trigger::Dispatcher::miss Trigger dispatchers missed/s

Prometheus::DataTranslator::handled DataTranslator queries handled. The DataTrans-
lator is a translation layer between PromQL for-
mat and Bright Cluster Manager format sam-
pling.

Prometheus::DataTranslator::miss DataTranslator misses

G.1.4 GPU Metrics
The GPU metrics correspond to metrics provided by the GPU devices. The device parameter for the
GPU metric specifies the device slot number that the GPU uses. The parameter takes the form gpu0,
gpu1, and so on. It is appended to the metric with a colon character. For example, the gpu_ecc_dbe_agg

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 861

metric, if used with gpu1, is specified as:

Example

gpu_ecc_dbe_agg:gpu1

The data producer (section 13.2.10) for the GPU metrics is GPUSampler.
The available GPU metrics for the K40 and V100 GPUs are listed in table G.1.4. The available GPU

health checks for the K40 and V100 GPUs are listed in table G.2.1.

Table G.1.4: GPU Metrics

GPU Metric Description

gpu_ecc_dbe_agg Total double bit aggregate ECC errors

gpu_ecc_dbe_vol Total double bit volatile ECC errors

gpu_ecc_sbe_agg Total single bit aggregate ECC errors

gpu_ecc_sbe_vol Total single bit volatile ECC errors

gpu_enforced_power_limit GPU enforced power limit

gpu_fb_total GPU framebuffer size

gpu_fb_used Amount of GPU memory used

gpu_memory_clock GPU memory clock

gpu_power_management_limit GPU power management limit

gpu_power_usage GPU power usage

gpu_shutdown_temp GPU shutdown temperature

gpu_slowdown_temp GPU slowdown temperature

gpu_sm_clock GPU shader multiprocessor clock

gpu_temperature GPU temperature

gpu_utilization:average Average GPU utilization percentage. When the
average parameter replaces the usual device pa-
rameter, it samples the average percentage over
all the GPU devices that are in use on that node

gpu_utilization:gpu0 GPU utilization percentage for GPU using slot 0
on that node. This follows the usual format

G.1.5 Job Metrics
Job metrics are introduced in section 14.1.

Basic Job Metrics
The following table lists some of the most useful job metrics that Bright Cluster Manager can monitor
and visualize. In the table, the text <device> denotes a block device name, such as sda.

Table G.1.5.1: Basic Job Metrics

Job Metric Description Cgroup Source File

...continues

© Bright Computing, Inc.

862 Metrics, Health Checks, Enummetrics, And Actions

...continued

Job Metric Description Cgroup Source File

blkio.time:<device> Time job had I/O access to de-
vice

blkio.time_recursive

blkio.sectors:<device> Sectors transferred to or from
specific devices by a cgroup

blkio.sectors_recursive

blkio.io_service_read:<device> Bytes read blkio.io_service_bytes_recursive

blkio.io_service_write:<device> Bytes written blkio.io_service_bytes_recursive

blkio.io_service_sync:<device> Bytes transferred synchronously blkio.io_service_bytes_recursive

blkio.io_service_async:<device> Bytes transferred asyn-
chronously

blkio.io_service_bytes_recursive

blkio.io_wait_time_read:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O read operations

blkio.io_wait_time_recursive

blkio.io_wait_time_write:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O write operations

blkio.io_wait_time_recursive

blkio.io_wait_time_sync:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O synchronous operations

blkio.io_wait_time_recursive

blkio.io_wait_time_async:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O asynchronous operations

blkio.io_wait_time_recursive

cpuacct.usage Total CPU time consumed by all
job processes

cpuacct.usage

cpuacct.stat.user User CPU time consumed by all
job processes

cpuacct.stat

cpuacct.stat.system System CPU time consumed by
all job processes

cpuacct.stat

...continues

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 863

...continued

Job Metric Description Cgroup Source File

memory.usage Total current memory usage memory.usage_in_bytes

memory.memsw.usage Sum of current memory plus
swap space usage

memory.memsw.usage_in_bytes

memory.memsw.max_usage Maximum amount of memory
and swap space used

memory.memsw.max_usage_in_bytes

memory.failcnt How often the memory limit
has reached the value set in
memory.limit_in_bytes

memory.failcnt

memory.memsw.failcnt How often the memory
plus swap space limit has
reached the value set in
memory.memsw.limit_in_bytes

memory.memsw.failcnt

memory.swap Total swap usage memory

memory.cache Total page cache, including
tmpfs (shmem)

memory

memory.mapped_file Size of memory-mapped
mapped files, including tmpfs
(shmem)

memory

memory.unevictable Memory that cannot be re-
claimed

memory

The third column in the table shows the precise source file name that is used when the value is
retrieved. These files are all virtual files, and are created as the cgroup controllers are mounted to
the cgroup directory. In this case several controllers are mounted to the same directory, which means
that all the virtual files will show up in that directory, and in its associated subdirectories—job cgroup
directories—when the job runs.

Advanced Job Metrics
The metrics in the preceding table are enabled by default. There are also over 40 other advanced metrics
that can be enabled via the Enable Advanced Metrics property of the jobmetricsettings object:

[bright91->monitoring->setup[JobSampler]->jobmetricsettings]% show
Parameter Value
-------------------------------- --
Enable Advanced Metrics no
Exclude Devices loop,sr
Exclude Metrics
Include Devices
Include Metrics
Revision
Sampling Type Both
[bright91->monitoring->setup[JobSampler]->jobmetricsettings]% set enableadvancedmetrics yes
[bright91->monitoring->setup*[JobSampler*]->jobmetricsettings*]% commit

The advanced job metrics are:

© Bright Computing, Inc.

864 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.5.2: Advanced Job Metrics

Advanced Job Metric Description Cgroup Source File

blkio.io_service_time_read:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O read op-
erations

blkio.io_service_time_recursive

blkio.io_service_time_write:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O write op-
erations

blkio.io_service_time_recursive

blkio.io_service_time_sync:<device> Total time between re-
quest dispatch and request
completion according to
CFQ scheduler for I/O
synchronous operations

blkio.io_service_time_recursive

blkio.io_service_time_async:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O asyn-
chronous operations

blkio.io_service_time_recursive

blkio.io_serviced_read:<device> Read I/O operations blkio.io_serviced_recursive

blkio.io_serviced_write:<device> Write I/O operations blkio.io_serviced_recursive

blkio.io_serviced_sync:<device> Synchronous I/O opera-
tions

blkio.io_serviced_recursive

blkio.io_serviced_async:<device> Asynchronous I/O opera-
tions

blkio.io_serviced_recursive

blkio.io_merged_read:<device> Number of block I/Os
(requests) merged into
requests for I/O read
operations

blkio.io_merged_recursive

...continues

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 865

...continued

Advanced Job Metric Description Cgroup Source File

blkio.io_merged_write:<device> Number of block I/Os
(requests) merged into
requests for I/O write
operations

blkio.io_merged_recursive

blkio.io_merged_sync:<device> Number of block I/Os
(requests) merged into re-
quests for I/O synchronous
operations

blkio.io_merged_recursive

blkio.io_merged_async:<device> Number of block I/Os
(requests) merged into
requests for I/O asyn-
chronous operations

blkio.io_merged_recursive

blkio.io_queued_read:<device> Number of requests queued
for I/O read operations

blkio.io_queued_recursive

blkio.io_queued_write:<device> Number of requests queued
for I/O write operations

blkio.io_queued_recursive

blkio.io_queued_sync:<device> Number of requests queued
for I/O synchronous opera-
tions

blkio.io_queued_recursive

blkio.io_queued_async:<device> Number of requests queued
for I/O asynchronous oper-
ations

blkio.io_queued_recursive

memory.rss Anonymous and swap
cache, not including tmpfs
(shmem)

memory

memory.pgpgin Number of pages paged
into memory

memory

memory.pgpgout Number of pages paged out
of memory

memory

memory.active_anon Anonymous and swap
cache on active least-
recently-used (LRU) list,
including tmpfs (shmem)

memory

...continues

© Bright Computing, Inc.

866 Metrics, Health Checks, Enummetrics, And Actions

...continued

Advanced Job Metric Description Cgroup Source File

memory.inactive_anon Anonymous and swap
cache on inactive LRU list,
including tmpfs (shmem)

memory

memory.active_file File-backed memory on ac-
tive LRU list

memory

memory.inactive_file File-backed memory on in-
active LRU list

memory

memory.hierarchical\ Memory limit for the memory
_memory_limit Hierarchy that contains the

memory cgroup of job

memory.hierarchical\ Memory plus swap limit for memory
_memsw_limit Hierarchy that contains the

memory cgroup of job

G.1.6 Prometheus Metrics
Prometheus metrics are introduced in section 15.2.

The data producers for Prometheus metrics are JobSampler, JobMetadataSampler, and some others.
Table G.1.6: Prometheus Metrics

Prometheus Metric Description (for a job, unless asterisked)

job_blkio_io_merged Number of block I/Os (requests) merged into re-
quests for I/O operations by a cgroup

job_blkio_io_queued Number of requests queued for I/O operations
by a cgroup

job_blkio_io_service_bytes Reports the number of bytes transferred to or
from specific devices by a cgroup as seen by the
CFQ scheduler

job_blkio_io_service_bytes_total Reports the number of bytes transferred to or
from specific devices by a cgroup as seen by the
CFQ scheduler (for all jobs)∗

job_blkio_io_service_time_seconds Reports the total time in seconds between re-
quest dispatch and request completion for I/O
operations on specific devices by a cgroup as
seen by the CFQ scheduler

...continues

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 867

Table G.1.6: Prometheus Metrics...continued

Prometheus Metric Description (for a job, unless asterisked)

job_blkio_io_serviced Reports the number of I/O operations per-
formed on specific devices by a cgroup as seen
by the CFQ scheduler

job_blkio_io_wait_time_seconds Reports the total time I/O operations on specific
devices by a cgroup spent waiting for service in
the scheduler queues

job_blkio_sectors Reports the number of sectors transferred to or
from specific devices by a cgroup

job_blkio_time_seconds Reports the time that a cgroup had I/O access to
specific devices

job_cpuacct_stat_system System CPU time consumed by processes

job_cpuacct_stat_user User CPU time consumed by processes

job_cpuacct_usage_seconds CPU usage time consumed

job_memory_active_anon_bytes Anonymous and swap cache on active least-
recently-used (LRU) list, including tmpfs
(shmem), in bytes

job_memory_active_file_bytes File-backed memory on active LRU list, in bytes

job_memory_cache_bytes Page cache, including tmpfs (shmem), in bytes

job_memory_failcnt Reports the number of times that the mem-
ory limit has reached the value set in mem-
ory.limit_in_bytes

job_memory_hierarchical_memory_limit_bytes Memory limit for the hierarchy that contains the
memory cgroup, in bytes

job_memory_hierarchical_memsw_limit_bytes Memory plus swap limit for the hierarchy that
contains the memory cgroup, in bytes

job_memory_inactive_anon_bytes Anonymous and swap cache on inactive LRU
list, including tmpfs (shmem), in bytes

job_memory_inactive_file_bytes File-backed memory on inactive LRU list, in
bytes

job_memory_mapped_file_bytes Size of memory-mapped mapped files, includ-
ing tmpfs (shmem), in bytes

job_memory_memsw_failcnt Reports the number of times that the memory
plus swap space limit has reached the value set
in memory.memsw.limit_in_bytes

job_memory_memsw_max_usage_bytes Reports the maximum amount of memory and
swap space used by processes in the cgroup, in
bytes

...continues

© Bright Computing, Inc.

868 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Prometheus Metrics...continued

Prometheus Metric Description (for a job, unless asterisked)

job_memory_memsw_usage_bytes Reports the sum of current memory usage plus
swap space used by processes in the cgroup, in
bytes

job_memory_pgpgin_bytes Number of pages paged into memory

job_memory_pgpgout_bytes Number of pages paged out of memory

job_memory_rss_bytes Anonymous and swap cache, not including
tmpfs (shmem), in bytes

job_memory_swap_bytes Swap usage, in bytes

job_memory_unevictable_bytes Memory that cannot be reclaimed, in bytes,

job_memory_usage_bytes Reports the total current memory usage by pro-
cesses in the cgroup, in bytes

job_memory_usage_bytes_total Reports the total current memory usage by pro-
cesses in the cgroup, in bytes (for all jobs)∗

job_metadata_allocated_cpu_cores CPU cores used by a job by the user

job_metadata_allocated_gpus GPUs used by a job by the user

job_metadata_is_running Returns 1 if the job metadata sampler is running
a job

job_metadata_is_waiting Returns 1 if the job metadata sampler is waiting

job_metadata_num_cpus Number of CPUs that the job runs on

job_metadata_num_nodes Number of nodes that the job runs on

job_metadata_pending_jobs Number of pending jobs for the user

job_metadata_running_jobs Number of running jobs for the user

job_metadata_running_seconds Time the job has run

job_metadata_waiting_seconds Time the job has been waiting to run

users_job_effective_cpu_seconds:1w CPU seconds used by users over the past week∗

users_job_running_count:1w Number of jobs run by users over the past week∗

users_job_waiting_seconds:1w Time users have been waiting for jobs to run over
the past week∗

users_job_wall_clock_seconds:1w Time the jobs runs for users according to wall
time over the past week∗

users_job_wasted_cpu_seconds:1w CPU time wasted during users jobs over the past
week∗

∗ total in the past 7x24x60x60 seconds, as measured at the time of sampling

© Bright Computing, Inc.

G.1 Metrics And Their Parameters 869

G.1.7 Parameters For Metrics
Metrics have the parameters indicated by the left column in the following example:

Example

[bright91->monitoring->measurable[CPUUser]]% show
Parameter Value
----------------------- ----------------------------
Class CPU
Consolidator default (ProcStat)
Cumulative yes
Description CPU time spent in user mode
Disabled no (ProcStat)
Gap 0 (ProcStat)
Maximal age 0s (ProcStat)
Maximal samples 4,096 (ProcStat)
Maximum 0
Minimum 0
Name CPUUser
Parameter
Producer ProcStat
Revision
Type Metric
Unit Jiffies/s

If the value is inherited from the producer, then it is shown in parentheses next to the value. An
inherited value can be overwritten by setting it directly for the parameter of a measurable.

The meanings of the parameters are:

Class: A choice assigned to a metric. It can be an internal type, or it can be a standalone class type. A
slash (/) is used to separate class levels. A partial list of the class values is:

• CPU: CPU-related

• Disk: Disk-related

• Internal: An internal metric

• Internal/Monitoring/Service: An internal metric for monitoring a service

• Internal/Monitoring/Storage: An internal metric for monitoring storage

• Job: Job metric

• Memory: Memory-related

• Network: Network-related

• OS: Operating-system-related

• Process: Process-related

• Prometheus: Prometheus-related

• Total: Total cluster-wide-related

• Workload: Workload-related

Consolidator: This is described in detail in sections 13.4.3 and 13.5.2

Cumulative: If set to no, then the raw value is treated as not cumulative (for example, CoresUp), and
the raw value is presented as the metric value.

If set to yes, then the metric is treated as being cumulative, which means that a rate (per second)
value is presented.

© Bright Computing, Inc.

870 Metrics, Health Checks, Enummetrics, And Actions

More explicitly: When set to yes, it means that the raw sample used to calculate the metric is
expected to be cumulative, like, for example, the bytes-received counter for an Ethernet interface.
This in turn means that the metric is calculated from the raw value by taking the difference in raw
sample measurement values, and dividing it by the time period over which the raw values are
sampled. Thus, for example:

• The bytes-received raw measurements, which accumulate as the packets are received, and are
in bytes, and have Cumulative set to yes, and then have a corresponding metric, BytesRecv,
with a value in bytes/second.

• The system uptime raw measurements, which accumulate at the rate of 1 second per second,
and are in seconds, have Cumulative set to yes, and have a corresponding metric, Uptime,
with a value that uses no units. Ideally, the metric has a value of 1, but in practice the mea-
sured value varies a little due to jitter.

Description: Description of the raw measurement used by the metric. Empty by default.

Disabled: If set to no (default) then the metric runs.

Gap: The number of samples that are allowed to be missed before a value of NaN is set for the value of
the metric.

Maximal age: the maximum age of RLE samples that are kept. If Maximal age is set to 0 then the
sample age is not considered. Units can be w, d, h, m, s (weeks, days, hours, minutes, seconds),
with s as the default.

Maximal samples: the maximum number of RLE samples that are kept. If Maximal samples is set to 0
then the number of sample age is not considered.

Maximum: the default minimum value the y-axis maximum will take in graphs plotted in Bright View.1

Minimum: the default maximum value the y-axis minimum will take in graphs plotted in Bright View.1

Name: The name given to the metric.

Parameter: Parameter used for this metric. For example, eth0 with the metric BytesRecv

Producer: The data producer that produces the metric

Revision: User-definable revision number for the object

Type: This can be one of metric, healthcheck, or enummetric

Unit: A unit for the metric. For example: B/s (bytes/second) for BytesRecv metric, or unit-less for the
Uptime metric. A percent is indicated with %

1To clarify the concept, if maximum=3, minimum=0, then a data-point with a y-value of 2 is plotted on a graph with the y-axis
spanning from 0 to 3. However, if the data-point has a y-value of 4 instead, then it means the default y-axis maximum of 3 is
re-sized to 4, and the y-axis will now span from 0 to 4.

© Bright Computing, Inc.

G.2 Health Checks And Their Parameters 871

G.2 Health Checks And Their Parameters
A list of health checks can be viewed, for example, for the head node, using cmsh as follows (sec-
tion 13.5.3):

[bright91 ~]# cmsh -c "monitoring measurable; list healthcheck"

Health checks (section 13.2.4) are listed and described in this section.

G.2.1 Health Checks
Table G.2.1: List Of Health Checks

Name Query (script response is PASS/FAIL)

ManagedServicesOk∗ Are CMDaemon-monitored services all OK? If the response is FAIL,
then at least one of the services being monitored is failing. The
latesthealtdata -v command (section 13.6.3) should show which
one(s). After correcting the problem with the service, a reset of the ser-
vice is normally carried out (section 3.11, page 123).

Mon::Storage Is space available for the monitoring system metrics (section G.1.3)?

chrootprocess Are there daemon processes running using chroot in software images?
(here: yes = FAIL). On failure, kill cron daemon processes running in
the software images.

beegfs Is BeeGFS properly connected as expected to all the nodes? Unreach-
able nodes and failed routes are listed in InfoMessages.

cmsh Is cmsh available?

defaultgateway Is there a default gateway available?

dellnss If running, is the Dell NFS Storage Solution healthy?

diskspace Is there less local disk space available to non-root users than any of the
space parameters specified?
The space parameters can be specified as MB, GB, TB, or as percentages with
%. The default severity of notices from this check is 10, when one space pa-
rameter is used. For more than one space parameter, the severity decreases by
10 for each space parameter, sequentially, down to 10 for the last space param-
eter. By default a space parameter of 10% is assumed. Another, also optional,
non-space parameter, the filesystem mount point parameter, can be specified
after the last space parameter to track filesystem space, instead of disk space.
A metric-based alternative to tracking filesystem space changes is to use the
built-in metric freespace (page 855) instead.

...continued

© Bright Computing, Inc.

872 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

Examples:

• diskspace 10%

less than 10% space = FAIL, severity 10

• diskspace 10% 20% 30%

less than 30% space = FAIL, with severity levels as indicated:

space left severity

10% 30

20% 20

30% 10

• diskspace 10GB 20GB

less than 20GB space = FAIL, severity 10

less than 10GB space = FAIL, severity 20

• diskspace 10% 20% /var

For the filesystem /var:

less than 20% space = FAIL, severity 10

less than 10% space = FAIL, severity 20

...continued

© Bright Computing, Inc.

G.2 Health Checks And Their Parameters 873

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

dmesg Is dmesg output OK?
Regexes to parse the output can be constructed in the configuration file at /cm/
local/ apps/ cmd/ scripts/ healthchecks/ configfiles/ dmesg. py

docker Is Docker running OK? Checks for Docker server availability and cor-
ruption, dead containers, proper endpoints

dockerregistry Is the Docker registry running OK? Checks registry endpoint and reg-
istry availability

exports Are all filesystems as defined by the cluster management system ex-
ported?

etcd Are the core etcd processes of Kubernetes running OK? Checks end-
points and interfaces

failedprejob Are there failed prejob health checks (section 7.8.2)? Here: yes = FAIL.
By default, the job ID is saved under /cm/shared/
apps/<scheduler>/var/cm/:

• On FAIL, in failedprejobs.

• On PASS, in allprejobs

The maximum number of IDs stored is 1000 by default. The maximum
period for which the IDs are stored is 30 days by default. Both these
maxima can be set with the failedprejob health check script.

failover Is the failover status OK?

gpu_health_driver Is the Driver-related subsystem OK?

gpu_health_inforom
Is the Inforom OK?

gpu_health_mcu Is the microcontroller unit OK?

gpu_health_mem Is the memory subsystem OK?

gpu_health_nvlink Is the NVLINK system OK?

gpu_health_pcie Is the PCIe system OK?

gpu_health_pmu Is the power management unit OK?

gpu_health_power Is the power OK?

gpu_health_sm Is the streaming multiprocessor OK?

gpu_health_thermal Is the temperature OK?

hpraid Are the HP Smart Array controllers OK?

ib Is the InfiniBand Host Channel Adapter working properly?
A configuration file for this health check is at /cm/ local/ apps/ cmd/
scripts/ healthchecks/ configfiles/ ib. py

...continued

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks/configfiles/dmesg.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/dmesg.py
/cm/shared/apps/
/cm/shared/apps/
/var/cm/
/cm/local/apps/cmd/scripts/healthchecks/configfiles/ib.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/ib.py

874 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

interfaces Are the interfaces all up and OK?

ipmihealth Is the BMC (IPMI or iLO) health OK? Uses the script sample_ipmi.

kuberneteschildnode Are all Kubernetes child nodes up?

kubernetescomponen\ Are all expected agents and services up and running for active nodes?

tsstatus

kubernetesnodesstatus Is the status for all Kubernetes nodes OK?

kubernetespodsstatus Is the status for all pods OK?

ldap Can the ID of the user be looked up with LDAP?

lustre Is the Lustre filesystem running OK?

marathon Is Marathon running OK?

megaraid Are the MegaRAID controllers OK?
Either the proprietary MegaCLI software, or its successor, the proprietary Stor-
CLI software is needed for this health check. The MegaCLI software was origi-
nally provided by LSI Logic, but LSI is now part of Broadcom.
Both the MegaCLI software and the StorCLI software are now available from
the Broadcom website (http://www.broadcom.com).
For Bright Cluster Manager versions up to 9.2, the healthcheck first checks for
MegaCLI, and then StorCLI, and uses the first binary that is detected. For
versions later than 9.2, the healthcheck first checks for StorCLI, and then for
MegaCLI, and uses the first binary that is detected.

mounts Are all mounts defined in the fstab OK?

mysql Is the status and configuration of MySQL correct?

node-hardware-profile Is the specified node’s hardware configuration during health check use
unchanged?

The options to this script are described using the “-h” help option. Before this
script is used for health checks, the specified hardware profile is usually first
saved with the -s option. Eg: “node-hardware-profile -n node001 -s
hardwarenode001”

ntp Is NTP synchronization happening?

oomkiller Has the oomkiller process run? Yes=FAIL. The oomkiller health
check checks if the oomkiller process has run. The configura-
tion file /cm/local/apps/cmd/scripts/healthchecks/configfiles/
oomkiller.conf for the oomkiller health check can be configured to
reset the response to PASS after one FAIL is logged, until the next
oomkiller process runs. The processes killed by the oomkiller process
are logged in /var/spool/cmd/save-oomkilleraction.
A consideration of the causes and consequences of the killed processes is
strongly recommended. A reset of the node is generally recommended.

...continued

© Bright Computing, Inc.

http://www.broadcom.com
/cm/local/apps/cmd/scripts/healthchecks/configfiles/oomkiller.conf
/cm/local/apps/cmd/scripts/healthchecks/configfiles/oomkiller.conf
/var/spool/cmd/save-oomkilleraction

G.2 Health Checks And Their Parameters 875

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

opalinkhealth Are the quality and the integrity of the Intel OPA HFI link OK?

rogueprocess Are the processes that are running legitimate (ie, not ’rogue’)? Be-
sides the FAIL/PASS/UNKNOWN response to CMDaemon, also returns a
list of rogue process IDs to file descriptor 3 (InfoMessages), which the
killprocess action (page 878) can then go ahead and kill.
Illegitimate processes are processes that should not be running on the
node. An illegitimate process is at least one of the following, by default:

• not part of the workload manager service or its jobs

• not a root- or system-owned process

• in the state Z, T, W, or X. States are described in the ps man pages
in the section on “PROCESS STATE CODES”

Rogue process criteria can be configured in the file /cm/local/apps/
cmd/scripts/healthchecks/configfiles/rogueprocess.py within
the software image. To implement a changed criteria configuration,
the software image used by systems on which the health check is
run should be updated (section 5.6). For example, using: cmsh -c
"device; imageupdate -c default -w" for the default category of
nodes.

schedulers Are the queue instances of all schedulers on a node healthy ?

smart Is the SMART response healthy? The severities can be configured in
the file /cm/local/apps/cmd/scripts/healthchecks/configfiles/
smart.conf.
By default, if a drive does not support the SMART commands and re-
sults in a "Smart command failed" info message for that drive, then the
healthcheck is configured to give a PASS response. This is because the
mere fact that the drive is a non-SMART drive should not be a reason
to conclude that the drive is unhealthy.
The info messages can be suppressed by setting a whitelist of the disks
to be checked within /cm/local/apps/cmd/scripts/healthchecks/
smart.

...continued

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks/configfiles/rogueprocess.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/rogueprocess.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/smart.conf
/cm/local/apps/cmd/scripts/healthchecks/configfiles/smart.conf
/cm/local/apps/cmd/scripts/healthchecks/smart
/cm/local/apps/cmd/scripts/healthchecks/smart

876 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

ssh2node Is passwordless ssh root login, from head to a node that is up, working?
Some details of its behavior are:

• If root ssh login to the head node has been disabled, then the
health check fails on the head node.

• The healthcheck ssh2node fails if ssh certificate-based access, to
a regular head node that is in the UP state, fails. The UP state is
determined by whether CMDaemon is running on that node.

• If the regular node is in a DOWN state—which could be due to
CMDaemon being down, or the node having been powered off
gracefully, or the node suffering a sudden power failure—then
the health check responds with a PASS. The idea here is to check
key access, and decouple it from the node state.

swraid Are the software RAID arrays healthy?

testhealthcheck A health check script example for creating scripts, or setting a mix of
PASS/FAIL/UNKNOWN responses. The source includes examples of envi-
ronment variables that can be used, as well as configuration suggestions.

zookeeper Are Zookeeper components healthy?

* built-ins, not standalone scripts.
If sampling from a head node, a standalone script is in directory:
/cm/local/apps/cmd/scripts/healthchecks/
If sampling from a regular node, a standalone script is in directory:
/cm/images/default-image/cm/local/apps/cmd/scripts/healthchecks/

G.2.2 Parameters For Health Checks
Health checks have the parameters indicated by the left column in the example below:

Example

[myheadnode->monitoring->measurable]% show cmsh
Parameter Value
-------------------------------- --
Class Internal
Consolidator - (cmsh)
Description Checks whether cmsh is available, i.e. can we

use cmsh for the default cluster?
Disabled no (cmsh)
Gap 0 (cmsh)
Maximal age 0s (cmsh)
Maximal samples 4,096 (cmsh)
Name cmsh
Parameter
Producer cmsh
Revision
Type HealthCheck

If the value is inherited from the producer, then it is shown in parentheses next to the value. An inherited
value can be overwritten by setting it directly for the parameter of a measurable.
The parameters are a subset of the parameters for metrics described in section G.1.7.

© Bright Computing, Inc.

G.3 Enummetrics 877

G.3 Enummetrics
Table G.3: List Of Enummetrics

Name Query

DeviceStatus What is the status of the device? Possible values are:

• up

• down

• closed

• installing

• installer_failed

• installer_rebooting,

• installer_callinginit

• installer_unreachable

• installer_burning

• burning

• unknown

• opening

• going_down

• pending

• no data

© Bright Computing, Inc.

878 Metrics, Health Checks, Enummetrics, And Actions

G.4 Actions And Their Parameters
G.4.1 Actions

Table G.4.1: List Of Actions

Name Description

Drain Allows no new processes on a compute node from the workload manager.
This means that already running jobs are permitted to complete. Usage
Tip: Plan for undrain from another node becoming active

Send e-mail to
administrators

Sends mail using the mailserver that was set up during server configura-
tion. Default destination is root@localhost. The e-mail address that it is
otherwise sent to is specified by the recipient parameter for this action.

Event Send an event to users with a connected client

ImageUpdate Update the image on the node

PowerOff Powers off, hard

PowerOn Powers on, hard

PowerReset Power reset, hard

Reboot Reboot via the system, trying to shut everything down cleanly, and then
start up again

killprocess∗ Kills processes seen by CMDaemon with the KILL (-9) signal. The PIDs
are passed via the CMD_INFO_MESSAGE environmental variable. Syntax:
killprocess <PID1[,<PID2>,...]>
This action is designed to work with rogueprocess (page 875)

remount∗ remounts all defined mounts

testaction∗ An action script example for users who would like to create their own
scripts. The source has helpful remarks about the environment variables
that can be used as well as tips on configuring it generally

Shutdown Power off via system, trying to shut everything down cleanly

Undrain node Allow processes to run on the node from the workload manager

* standalone scripts, not built-ins.
If running from a head node, the script is in directory: /cm/local/apps/cmd/scripts/actions/
If running from a regular node, the script is in directory: /cm/images/default-image/cm/local/apps/
cmd/scripts/actions/

G.4.2 Parameters For A Monitoring Action
The default monitoring actions are listed in section 13.4.4.

All actions have in common the parameters shown by the left column, illustrated by the example
below for the drain action:

Example

[myheadnode->monitoring->action]% show drain
Parameter Value
------------------ -----------------------
Action Drain node from all WLM
Allowed time
Disable no
Name Drain
Revision
Run on Active
Type DrainAction

© Bright Computing, Inc.

/cm/images/default-image/cm/local/apps/

G.4 Actions And Their Parameters 879

Out of the full list of default actions, the actions with only the common parameter settings are:

• Poweron: Powers off the node

• PowerOff: Powers off the node

• PowerReset: Hard resets the node

• Drain: Drains the node (does not allow new jobs on that node)

• Undrain: Undrains the node (allows new jobs on that node)

• Reboot: Reboots node via the operating system.

• Shutdown: Shuts the node down via the operating system.

• ImageUpdate: Updates the node from the software image

• Event: Sends an event to users connected with cmsh or Bright View

Extra Parameters For Some Actions
The following actions have extra parameters:

Action of the type ScriptAction:

• killprocess: A script that kills a specified process

• testaction: A test script

• remount: A script to remount all devices

The extra parameters for an action of type ScriptAction are:

– Arguments: List of arguments that are taken by the script

– Node environment: Does the script run in the node environment?

– Script: The script path

– timeout: Time within which the script must run before giving up

Action of the type EmailAction:

• Send e-mail to administrators: Sends an e-mail out, by default to the administrators

The extra parameters for an action of type EmailAction are:

– All administrators: sends the e-mail to the list of users in the Administrator e-mail set-
ting in partition[base] mode

– Info: the body of the e-mail message

– Recipients: a list of recipients

© Bright Computing, Inc.

H
Workload Manager

Configuration Files Updated By
CMDaemon

This appendix lists workload manager configuration files changed by CMDaemon, events causing such
change, and the file or property changed.

H.1 Slurm
File/Property Updates What? Updated During

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes, hostname

<Slurm instance name>/slurm.conf change

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes, hostname

<Slurm instance name>/slurmdbd.conf change

/cm/shared/apps/slurm/var/etc/ all nodes Add/Remove/Update nodes

<Slurm instance name>/gres.conf

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes

<Slurm instance name>/topology.conf

H.2 Univa Grid Engine (UGE)

File/Property Updates What? Updated During

/cm/shared/apps/uge/var/ head node hostname/domain change, failover

<UGE instance name>/common/host_aliases

/cm/shared/apps/uge/var/ head node hostname/domain change, failover

<UGE instance name>/common/act_qmaster

H.3 PBS Pro

© Bright Computing, Inc.

/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/

882 Workload Manager Configuration Files Updated By CMDaemon

File/Property Updates What? Updated During

$PBS_CONF_FILE head node, software image hostname/domain change, failover

/cm/local/apps/<pbspro-ce or pbspro or head node hostname change, failover

pbpspro>/var/spool/mom_priv/config

The default value of $PBS_CONF_FILE in Bright Cluster Manager
is /cm/local/apps/<pbspro-ce or pbspro or openpbs>/var/etc/pbs.conf

H.4 LSF
File/Property Updates What? Updated During

$LSF_ENVDIR/lsf.conf head node hostname/domain change, failover

$LSF_ENVDIR/lsf.cluster.<clustername> head node add/remove/update nodes

$LSF_ENVDIR/lsf.sudoers head node hostname/domain change, failover

$LSF_ENVDIR/hosts cloud-director add/remove/update cloud nodes

$LSF_ENVDIR/lsbatch/<clustername>/ head node add/remove/update queues

configdir/lsb.queues

$LSF_ENVDIR/lsbatch/<clustername>/ head node add/remove/update nodes

configdir/lsb.hosts

The default value of $LSF_ENVDIR in Bright Cluster Manager
is /cm/shared/apps/lsf/var/conf/<clustername>

On each node where the lsfd service runs, CMDaemon creates a symlink /etc/lsf.conf that points
to $LSF_ENVDIR/lsf.conf. This is required by LSF daemons.

© Bright Computing, Inc.

/lsf.conf
/lsf.cluster.
/lsf.sudoers
/hosts
/lsbatch/
configdir/lsb.queues
/lsbatch/
configdir/lsb.hosts
/cm/shared/apps/lsf/var/conf/
/etc/lsf.conf
/lsf.conf

I
Changing The LDAP Password

The administrator may wish to change the LDAP root password. This procedure has two steps:

• setting a new password for the LDAP server (section I.1), and

• setting the new password in cmd.conf (section I.2).

It is also a good idea to do some checking afterwards (section I.3).

I.1 Setting A New Password For The LDAP Server
An encrypted password string can be generated as follows:

[root@bright91 ~]# module load openldap
[root@bright91 ~]# slappasswd
New password:
Re-enter new password:
SSHAJ/3wyO+IqyAwhh8Q4obL8489CWJlHpLg

The input is the plain text password, and the output is the encrypted password. The encrypted
password is set as a value for the rootpw tag in the slapd.conf file on the head node:

[root@bright91 ~]# grep ^rootpw /cm/local/apps/openldap/etc/slapd.conf
rootpw SSHAJ/3wyO+IqyAwhh8Q4obL8489CWJlHpLg

The password can also be saved in plain text instead of as an SSHA hash generated with slappasswd,
but this is considered insecure.

After setting the value for rootpw, the LDAP server is restarted:

[root@bright91 ~]# service ldap restart #Centos 6
[root@bright91 ~]# service slapd restart #Centos 7

I.2 Setting The New Password In cmd.conf

The new LDAP password (the plain text password that generated the encrypted password after entering
the slappasswd command in section I.1) is set in cmd.conf. It is kept as clear text for the entry for the
LDAPPass directive (Appendix C):

[root@bright91 ~]# grep LDAPPass /cm/local/apps/cmd/etc/cmd.conf
LDAPPass = "Mysecret1dappassw0rd"

CMDaemon is then restarted:

[root@bright91 ~]# service cmd restart

© Bright Computing, Inc.

884 Changing The LDAP Password

I.3 Checking LDAP Access
For a default configuration with user cmsupport and domain cm.cluster, the following checks can be
run from the head node (some output truncated):

• anonymous access:

[root@bright91 ~]# ldapsearch -x
extended LDIF
#
LDAPv3
base <dc=cm,dc=cluster> (default) with scope subtree
...

• root cn without a password (this should fail):

[root@bright91 ~]# ldapsearch -x -D 'cn=root,dc=cm,dc=cluster'
ldap_bind: Server is unwilling to perform (53)
additional info: unauthenticated bind (DN with no password) disallowed
[root@bright91 ~]#

• root cn with a password (this should work):

[root@bright91 ~]# ldapsearch -x -D 'cn=root,dc=cm,dc=cluster' -w Mysecret1dappassw0rd
extended LDIF
#
LDAPv3
base <dc=cm,dc=cluster> (default) with scope subtree
...

© Bright Computing, Inc.

J
Tokens

This appendix describes authorization tokens available for profiles. Profiles are introduced in Sec-
tion 6.4:

Table J: List Of Tokens

Service and token name User can...

Service: CMAuth

GET_PROFILE_TOKEN Retrieve list of profiles and profile properties

ADD_PROFILE_TOKEN Add a new profile

MODIFY_PROFILE_TOKEN Modify existing user profile

GET_CMSERVICES_TOKEN Get a list of available CMDaemon services

Service: CMCeph

GET_CEPH_TOKEN Get Ceph properties

ADD_CEPH_TOKEN Add new Ceph configuration

UPDATE_CEPH_TOKEN Update Ceph configuration

CEPH_KEYS_TOKEN Manipulate Ceph keys

CEPH_CLUSTER_SERVICES_TOKEN List Ceph services

CEPH_SET_DECOMMISSION_TOKEN Decommission Ceph nodes

CEPH_GET_DECOMMISSION_TOKEN Get decommissioning information

UPDATE_CEPH_STATE_TOKEN Update Ceph state

GENERIC_CEPH_COMMAND_TOKEN Run generic Ceph command

Service: CMCert

ISSUE_CERTIFICATE_TOKEN Accept certificate request and issue signed certificate

GET_CERTIFICATE_REQUEST_TOKEN List pending certificate requests

RECREATE_COMPONENT_CERTIFICATE Recreate component certificate
TOKEN

...continues

© Bright Computing, Inc.

886 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

REMOVE_CERTIFICATE_REQUEST_ Cancel certificate request
TOKEN

GET_CERTIFICATE_TOKEN Show certificate information

REVOKE_CERTIFICATE_TOKEN Revoke a certificate

UNREVOKE_CERTIFICATE_TOKEN Unrevoke a revoked certificate

GET_AUTOSIGN_TOKEN Get information on certificate auto-signing CMDaemon’s
private key

SET_AUTOSIGN_TOKEN Enable certificate auto-signing with CMDaemon’s private
key

Service: CMCloud

GET_CLOUD_PROVIDER_TOKEN Get cloud provider information

ADD_CLOUD_PROVIDER_TOKEN Add a new cloud provider

UPDATE_CLOUD_PROVIDER_TOKEN Update cloud provider settings

EC2_ACCESS_STRING_TOKEN Get/set Amazon EC2 access string

GET_CLOUD_REGION_TOKEN Access Amazon EC2 region

GET_CLOUD_AMI_TOKEN Access Amazon EC2 AMI

GET_CLOUD_TYPE_TOKEN Access Amazon instance type

GET_KERNEL_INITRD_MD5SUM_ Retrieve MD5 sum of
TOKEN initial ramdisk

PUT_USERDATA_TOKEN Set AWS user data in AWS

TERMINATE_NODE_TOKEN Terminate cloud nodes

GET_AWS_KEY_TOKEN Retrieve AWS key

SET_CLOUDDIRECTOR_TOKEN Modify the properties of the cloud director

CLOUD_DIRECTOR_NEW_IP_TOKEN Set the new External IP of the cloud director

GET_CONSOLE_OUTPUT_TOKEN Retrieve the console output of the cloud director for de-
bugging purposes

SET_CLOUDERRORS_TOKEN Set cloud errors

GET_CLOUD_STATIC_IPS_TOKEN Get the static IP list of the cloud nodes

GET_CLOUD_VIRTUAL_NETWORK_ Get list of EC2 VPN interfaces (e.g. tun0)
INTERFACES_TOKEN

SEND_CLOUD_STORAGE_ACTION_ Send cloud storage action
TOKEN

VPC_MAGIC_CALL_TOKEN (Internal use only)

ALLOCATE_STATIC_IP_TOKEN Allocate static IP to cloud director

UNALLOCATE_STATIC_IP_TOKEN De-allocate static IP

ALLOCATE_CLOUD_VIRTUAL_ Allocate virtual cloud network interface
NETWORK_INTERFACE_TOKEN

UNALLOCATE_CLOUD_VIRTUAL_ De-allocate virtual cloud network interface
NETWORK_INTERFACE_TOKEN

ATTACH_CLOUD_VIRTUAL_ Start a VPN tunnel to a cloud node
NETWORK_INTERFACE

...continues

© Bright Computing, Inc.

887

Table J: List Of Tokens...continued

Service and token name User can...

DETACH_CLOUD_VIRTUAL_ Stop a VPN tunnel to a cloud node
NETWORK_INTERFACE

ADD_CLOUD_JOB_DESCRIPTION_ Add cloud job description
TOKEN

GET_CLOUD_JOB_DESCRIPTION_ Get cloud job description
TOKEN

GET_ALL_CLOUD_JOB_ Get all cloud job description
JOB_DESCRIPTION_TOKEN

SUBMIT_CLOUD_JOB_ Submit cloud job description
DESCRIPTION_TOKEN

UPDATE_CLOUD_JOB_ Update cloud job description
DESCRIPTION_TOKEN

Service: CMDevice

SNMP_STRING_TOKEN Get ethernet switch SNMP public string

CHASSIS_USER_PASSWORD_TOKEN Get/set chassis username and password

BMC_USERNAME_PASSWORD_TOKEN View/set BMC (e.g. HP ilo4, IPMI) username and pass-
word

GET_DEVICE_TOKEN View all device properties

GET_DEVICE_BY_PORT_TOKEN View list of devices according to the ethernet switch port
that they are connected to

ADD_DEVICE_TOKEN Add a new device

UPDATE_DEVICE_TOKEN Update device properties

GET_CATEGORY_TOKEN Get list of categories

ADD_CATEGORY_TOKEN Create new category

UPDATE_CATEGORY_TOKEN Update a category property

GET_NODEGROUP_TOKEN Get list of nodegroups

ADD_NODEGROUP_TOKEN Add a new nodegroup

UPDATE_NODEGROUP_TOKEN Update nodegroup properties (e.g. add a new member
node)

GET_DEVICE_STATUS_TOKEN Get device status (e..g. UP as well as status string e.g.
restart required)

SET_DEVICE_STATUS_TOKEN Set device status (only via RPC API calls)

POWER_ON_TOKEN Power on a device using BMC or PDU power control

POWER_OFF_TOKEN Power off a device

POWER_CYCLE_TOKEN Power reset a device

POWER_STATUS_TOKEN Get power status e.g on or off

POWER_RESULT_TOKEN Get the result of the previous power command e.g. failed

SHUTDOWN_NODE_TOKEN Shutdown a remote node managed by CMDaemon

REBOOT_NODE_TOKEN Reboot a remote a node

FORCE_RECONNECT_TOKEN Force remote client to reconnect (RPC API)

NODE_IDENTIFY_TOKEN Identify a node (RPC API, used by node installer)

...continues

© Bright Computing, Inc.

888 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

NODE_GET_MOUNTPOINTS_TOKEN Get list of mountpoints defined for a node

PPING_TOKEN Run parallel ping

BURN_STATUS_TOKEN Get burn status

GET_BURN_LOG_TOKEN Retrieve burn log

GET_SYNC_LOG_TOKEN Get rsync provisioning log

GET_PORT_BY_MAC_TOKEN Determine to which switch port a given MAC is connected
to.

SYSINFO_COLLECTOR_TOKEN Get information about a node (executes dmidecode)

UPDATE_CONFIG_TOKEN Update node configuration

GET_LIVE_UCS_TOKEN Get UCS live status

SET_LIVE_UCS_TOKEN Set UCS live

VALIDATE_UCS_TOKEN Validate UCS configuration

START_KVM_UCS_TOKEN Start UCS KVM console

GET_UCS_LOG_TOKEN Retrieve UCS log

CLEAR_UCS_LOG_TOKEN Clear Cisco UCS log

CONVERT_XML_TO_UCS_TOKEN Parse and serialize XML UCS configuration so that CM-
Daemon can use it

GET_EXCLUDE_LIST_TOKEN Retrieve the various exclude lists

INSTALLER_REBOOT_REQUIRED_ Set restart-required flag
TOKEN (typically set by CMDaemon)

ADD_REMOTE_NODE_INSTALLER_ Add a node-installer
INTERACTION_TOKEN interaction (Used by CMDaemon)

REMOVE_REMOTE_NODE_ Remove a node installer
INSTALLER_INTERACTION_TOKEN interaction

GET_REMOTE_NODE_INSTALLER_ Get list of pending
INTERACTIONS_TOKEN installer interactions

UPDATE_REMOTE_NODE_ Update installer

INSTALLER_INTERACTIONS_TOKEN interactions (e.g. confirm full provisioning)

GET_CLUSTAT Get cluster status (RPC API, Internal)

SET_CLUSTAT Set cluster status (RPC API, Internal)

Service: CMGui

GET_CLUSTER_OVERVIEW_TOKEN Get cluster overview

GET_NODE_OVERVIEW_TOKEN Get node overview

GET_NETSWITCH_OVERVIEW_TOKEN Get switch overview

GET_PDU_OVERVIEW_TOKEN Get PDU overview

GET_NODE_STATUS_TOKEN Get node status

TOKEN

GET_CEPH_OVERVIEW_TOKEN Get Ceph overview

OVERVIEW_TOKEN overview

...continues

© Bright Computing, Inc.

889

Table J: List Of Tokens...continued

Service and token name User can...

Service: CMJob

GET_JOB_TOKEN Get list of jobs that are currently running

HOLD_JOB_TOKEN Place a job on hold

SUSPEND_JOB_TOKEN Suspend a job

RESUME_JOB_TOKEN Resume suspended job

RELEASE_JOB_TOKEN Release a held job

UPDATE_JOB_TOKEN Update job run-timer parameters

SUBMIT_JOB_TOKEN Submit a job using JSON

GET_JOBQUEUE_TOKEN Retrieve list of job queues and properties

UPDATE_JOBQUEUE_TOKEN Modify job queues

ADD_JOBQUEUE_TOKEN Add a new job queue

GET_PE_TOKEN Get list of SGE parallel environments

DRAIN_TOKEN Drain a node

DRAIN_OVERVIEW_TOKEN Obtain list of drained nodes

Service: CMMain

GET_LICENSE_INFO_TOKEN Retrieve information about BCM license

GET_VERSION_TOKEN Get CMDaemon version and revision

GET_SERVER_STATUS_TOKEN Head node status (e.g. ACTIVE, BECOMEACTIVE etc.)

GET_CLUSTER_SETUP_TOKEN Get cluster configuration

PING_TOKEN TCP SYN ping managed devices

PCOPY_TOKEN Copy a specified file in parallel to a list of nodes

READ_FILE_TOKEN Read a text file. The text file will be serialized as a JSON
object

SAVE_FILE_TOKEN Save a file on a remote node

UPDATE_SELF_TOKEN Update a category property

CMDAEMON_FAILOVER_TOKEN Set CMDaemon failover condition achieved

CMDAEMON_QUORUM_TOKEN Set CMDaemon quorum achieved

GENERIC_CALL_TOKEN Make a generic call

REPORT_CRITICAL_ERROR_TOKEN View critical error report

SET_SERVICESTATE_TOKEN Set the state of a service

GET_SERVICESTATE_TOKEN Get the state of a service

GET_BACKGROUND_TASKS_TOKEN Get background tasks

CANCEL_BACKGROUND_TASKS_TOKEN Cancel background tasks

CALL_EXTENSION_TOKEN

Service: CMMon

GET_MONCONF_TOKEN Get monitoring configuration settings

UPDATE_MONCONF_TOKEN Update monitoring configuration settings

...continues

© Bright Computing, Inc.

890 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

GET_METRIC_TOKEN Get metric settings

UPDATE_METRIC_TOKEN Update metric settings

ADD_METRIC_TOKEN Add metric settings

GET_HEALTHCHECK_TOKEN Get health check settings

UPDATE_HEALTHCHECK_TOKEN Update health check settings

ADD_HEALTHCHECK_TOKEN Add health check settings

GET_THRESHACTION_TOKEN Get threshold action settings

UPDATE_THRESHACTION_TOKEN Update threshold action settings

ADD_THRESHACTION_TOKEN Add threshold action settings

GET_MONITORING_DATA_TOKEN Get monitoring data settings

SIGNAL_THRESHOLD_EXCEEDED_ See if signal threshold
TOKEN exceeded

MONITORING_INTERNAL_TOKEN Set up internal monitoring

PREJOB_TOKEN Set up prejob check

FAKE_MONITORING_TOKEN Set up fake monitoring

ONDEMAND_TOKEN Sample on demand

ONDEMAND_RESULT_TOKEN Read sample results on demand.

GET_METRICCLASS_TOKEN Get metric class settings

Service: CMNet

GET_NETWORK_TOKEN Get network settings

ADD_NETWORK_TOKEN Add network settings

UPDATE_NETWORK_TOKEN Update network settings

Service: CMPart

GET_PARTITION_TOKEN Get partition settings

ADD_PARTITION_TOKEN Add partition settings

UPDATE_PARTITION_TOKEN Update partition settings

GET_RACK_TOKEN Get rack settings

ADD_RACK_TOKEN Add rack settings

UPDATE_RACK_TOKEN Update rack settings

GET_SOFTWAREIMAGE_TOKEN Get softwareimage settings

ADD_SOFTWAREIMAGE_TOKEN Add softwareimage settings

UPDATE_SOFTWAREIMAGE_TOKEN Update softwareimage settings

REMOVE_SOFTWAREIMAGE_TOKEN Remove softwareimage settings

UPDATE_PROVISIONERS_TOKEN Update provisioners settings

UPDATE_PROVISIONING_NODE_ Update provisioning
TOKEN node

CMDAEMON_FAILOVER_STATUS_ Obtain status of failover
TOKEN

...continues

© Bright Computing, Inc.

891

Table J: List Of Tokens...continued

Service and token name User can...

Service: CMProc

GET_PROCESS_TOKEN Retrieve list of processes that are currently running on a
device managed by CMDaemon

GET_SHARED_MEM_TOKEN Get shared memory

GET_SEMAPHORE_TOKEN Get semaphore

GET_MSGQUEUE_TOKEN Get message queue status

CLEAN_IPC_TOKEN Clear IPC state

SEND_SIGNAL_TOKEN Send signal to a process

START_SHELL_TOKEN Start SSH session

START_MINICOM_TOKEN Start minicom serial session

EXEC_COMMAND_TOKEN Execute a command on a head node

NODE_EXEC_COMMAND_TOKEN Remotely execute a command on a compute node

NODE_EXEC_COMMAND_ Execute a maintenance
MAINTENANCE_TOKEN command (used by CMDaemon)

EXEC_INTERNAL_COMMAND_TOKEN Execute internal command (defined in the source code,
RPC API, internal)

Service: CMProv

GET_FSPART_TOKEN Get FSPart (internal)

ADD_FSPART_TOKEN Set FSPart (internal)

UPDATE_FSPART_TOKEN Update FSPart (internal)

REMOVE_FSPART_TOKEN Remove FSPart (internal)

RUN_PROVISIONINGPROCESSORJOB_ Start and run a
TOKEN provisioning job (nodes with a provisioning role)

UPDATE_ Update status of running
PROVISIONINGPROCESSORJOB_TOKEN provisioning jobs (CMDaemon)

REQUEST_PROVISIONING_TOKEN Request provisioning (nodes with a provisioning role)

MANAGE_RSYNC_DAEMON_TOKEN Manage the rsync process (CMDaemon)

IMAGEUPDATE_TOKEN Send image changes to nodes

UPDATEPROVISIONERS_TOKEN Synchronize software images across provisioning systems
(requires at least two provisioners)

PROVISIONERS_STATUS_TOKEN Check status of provisioners e.g. images are in sync

CANCEL_PROVISIONING_REQUEST_ Cancel provisioning
TOKEN request

GRAB_IMAGEUPDATE_TOKEN Grab changes from node to software image and vice versa

Service: CMServ

GET_OSSERVICE_TOKEN Get system service information

START_OSSERVICE_TOKEN Start system services (service foo start)

STOP_OSSERVICE_TOKEN Stop system services

...continues

© Bright Computing, Inc.

892 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

CALLINIT_OSSERVICE_TOKEN Call init (useful for the node-installer itself)

RESTART_OSSERVICE_TOKEN Restart system services

RELOAD_OSSERVICE_TOKEN Reload system services

RESET_OSSERVICE_TOKEN Reset system services

Service: CMSession

GET_SESSION_TOKEN Retrieve session information

REGISTER_NODE_SESSION_TOKEN Register new nodes in a special CMDaemon session (node-
installer)

END_SESSION_TOKEN Terminate sessions

HANDLE_EVENT_TOKEN Handle events

GET_BROADCAST_EVENTS_TOKEN Receive broadcast events

Service: CMUser

GET_USER_TOKEN Retrieve user information

ADD_USER_TOKEN Add a new LDAP user

UPDATE_USER_TOKEN Modify an existing LDAP user

GET_GROUP_TOKEN Retrieve group information

ADD_GROUP_TOKEN Add a new LDAP group

UPDATE_GROUP_TOKEN Modify an existing LDAP group

© Bright Computing, Inc.

K
Understanding Consolidation

K.1 Introduction
Consolidation is discussed in the sections on using consolidation in the Monitoring chapter (sec-
tions 13.4.3 and 13.5.2).

However, it may be confusing to have the concept of consolidation discussed in the same place as
the use of consolidation. Also, the algebra that appears in that discussion (page 554) may not appeal
to people. There are many who would like an explanation that may be more intuitive, even if it is less
rigorous.

Therefore, in this section a more informal and visual approach is taken to explain consolidation.

K.2 What Is Consolidation?
Consolidation is the compression of data, for data values that have been measured over a fixed interval.

The compression is nothing particularly sophisticated. It is carried out by using some simple math-
ematical functions to the data points: the average, the maximum, or the minimum.

K.3 Raw Data And Consolidation
Suppose raw data is sampled every 2 minutes.

And the raw data values are consolidated every 10 minutes.
A visual representation of the data values available to the system is:

--- time --->
raw: | | | | | | | | | | | | | | | | |
consolidated: | | | | |

Here, every “|”" indicates a data point, so that the visual shows 5 times as many raw data points as
consolidated data values.

In the preceding visual it makes no sense to use consolidated data since the data values for raw data
and consolidated data overlap. I.e., the more accurate raw data values exist for the entire period.

As time passes, the intention is to start dropping old raw data, to save space on the disk.
For example, for the first 20 minutes in the following visual, there are no longer raw data values

available:

Example

--- time --->
raw: | | | | | | | | | | | | | |
consolidated: | | | | | |

© Bright Computing, Inc.

894 Understanding Consolidation

But the consolidated data points for this period are still available to the system.
When the data values are plotted in Bright View graphs, periods without raw data values automati-

cally have consolidated data values used.
So a combination of both data sources is used, which can be visually represented with:

Example

--- time --->
plot: | | | | | | | | | | | | | | | |

That behavior holds true for cmsh too.
The behavior illustrated in the last visual assumes that the cluster has been UP for long enough that

raw data is being dropped.
In this case, “long enough” means at least 7 days.
However, because RLE (Run Length Encoding) is used to compress the sampled monitoring data

values on disk, this minimal “long enough” time can be (much) longer than 7 days. It depends on how
much the measurable that is being sampled is changing as each sample is taken. if it is not changing,
then RLE can compress over a longer time period.

For example, if a node has been up and reachable without issues for 1000 days, then the ssh2node
health check raw data values would be PASS over that 1000 days. For the period from now to 7 days
ago, the raw data values of PASS are kept as they are for now. However, for the period from 7 days ago
to 1000 days ago, consolidation on the unchanging raw values means that only two values, namely the
PASS value of 1000 days and the PASS value of 7 days ago, need to be retained, in order to have a totally
accurate record of what the values were in that period.

On the other hand, the forks metric changes very quickly, and thus can do little RLE compression.
That makes it a good choice for demonstrating the kind of output that the preceding visuals imply.

K.4 A Demonstration Of The Output
So, as a demonstration, the last 7 days for forks are now shown, with the data values in the middle
elided:

Example

[bright91->device[bright91]]% dumpmonitoringdata -7d now forks
Timestamp Value Info
-------------------------- -------------------- ----------
2018/10/17 10:30:00 2.76243 processes/s
2018/10/17 11:30:00 2.52528 processes/s
2018/10/17 12:30:00 2.53972 processes/s
...
2018/10/24 10:42:00 2.66669 processes/s
2018/10/24 10:44:00 2.63333 processes/s
2018/10/24 10:46:00 2.64167 processes/s

The first part of the output shows samples listed every hour. These are the consolidated data values.
The last part of the output shows samples listed every 2 minutes. These are the raw data value

values.
I.e.: consolidated data values are used beyond a certain time in the past.
If the administrator would like to explore this further, then displaying only consolidation values is

possible in cmsh by using the --consolidationinterval option of the dumpmonitoringdata command:

Example

© Bright Computing, Inc.

K.4 A Demonstration Of The Output 895

[bright91->device[bright91]]% dumpmonitoringdata --consolidationinterval 1h -7d now forks
Timestamp Value Info
-------------------------- -------------------- ----------
2019/01/07 11:39:06 2.65704 processes/s
2019/01/07 12:30:00 2.60111 processes/s
2019/01/07 13:30:00 2.58328 processes/s
...
[bright91->device[bright91]]% dumpmonitoringdata --consolidationinterval 1d -7d now forks
Timestamp Value Info
-------------------------- -------------------- ----------
2019/01/07 18:09:06 2.59586 processes/s
2019/01/08 13:00:00 2.58953 processes/s
2019/01/09 06:06:06 2.58854 processes/s
[bright91->device[bright91]]% dumpmonitoringdata --consolidationinterval 1w -7d now forks
Timestamp Value Info
-------------------------- -------------------- ----------
2019/01/08 11:15:12.194 2.59113 processes/s

© Bright Computing, Inc.

L
Node Execution Filters And

Execution Multiplexers
Node execution filters and execution multiplexers define where data producers are executed on the
nodes of a cluster, and what nodes are targeted to obtain the data.

This appendix explains how node execution filters and execution multiplexers work with the help of
some explicit basic examples. The aim is to have the cluster administrator understand how they work
and how to use them.

The reference cluster in this section is a 5-node cluster, made up of a head node (bright91) and 4
regular nodes (node001..node004). The commands run in this appendix are carried out during a cmsh
session that continues on from the point that it left off earlier.

The terms “node execution filters” and “execution multiplexers” are commonly abbreviated to filters
and multiplexers in this appendix.

A simple custom data producer script is created and used to explain some of the more-involved
concepts of filters and multiplexers more clearly. The custom script is:

[root@bright91 ~]# cat /cm/shared/fm.sh
#!/bin/bash

echo $((RANDOM%100))
echo "Sampled on $(hostname) for $CMD_HOSTNAME" >&3

The preceding script outputs a random number, along with the host it is being run on ($(hostname)),
and the host the metric is targeting ($CMD_HOSTNAME). The hosts that it is run on can be defined by filters,
while the hosts that are targeted by the metric can be defined by multiplexers.

The Term Multiplex: The word “multiplex” can be confusing to system administrators. In electronics,
the term multiplex implies that signals are being gathered from various inputs, and going into a main
input.

Here the idea is applicable to the signals (samples) from the execution multiplexers (nodes where the
samples are). The samples are multiplexed (gathered) from those nodes, to the node (or nodes) where
the data producer is executing.

• The execution of the data producer is on the node (or nodes) defined by nodeexecutionfilter.
The data producer execution nodes are the ones listed using the nodes command of cmsh.

• The nodes where the samples are obtained from are defined by the executionmultiplexer set-
ting. Those muliplexer nodes can have their samples displayed as output using the samplenow
command (section 13.6.2, page 580) of cmsh.

© Bright Computing, Inc.

898 Node Execution Filters And Execution Multiplexers

L.1 Data Producers: Default Configuration For Running And Sampling
If there is no configuration defined for the data producer in the filters or multiplexers for that data
producer, then each node runs a data producer on itself, and that data producer targets the node that it
is running on.

For example, the existing dmesg data producer comprises the dmesg health check (section G.2.1) and
by default has no filter or multiplexer defined for it. If an attempt is made to list any filter or multiplexer
for dmesg, then by default there is no content under the table headings:

[root@bright91 ~]# cmsh
[bright91]% monitoring setup
[bright91->monitoring->setup]% nodeexecutionfilters dmesg; list; ..;..
Type Name (key) Filter Filter operation
------------ ------------------------ ------------------------ ----------------
[bright91->monitoring->setup]% executionmultiplexers dmesg; list; ..;..
Name (key)

Another way of seeing that no such filters or multiplexers have been defined for dmesg could be by
seeing that none are defined in its submodes:

[bright91->monitoring->setup]% show dmesg | grep submode
Execution multiplexer <0 in submode>
Node execution filters <0 in submode>

Most existing data producers have filters and multiplexers defined. The number of filters and multi-
plexers set per data producer can conveniently be viewed via list formatting:

Example

[bright91->monitoring->setup]% list -f name,nodeexecutionfilters,executionmultiplexer | more
name (key) nodeexecutionfilters executionmultiplexer
-------------------- -------------------- --------------------
AggregateNode <1 in submode> <1 in submode>
AggregatePDU <1 in submode> <1 in submode>
AlertLevel <1 in submode> <1 in submode>
CMDaemonState <0 in submode> <0 in submode>
Cassandra <1 in submode> <0 in submode>
ClusterTotal <1 in submode> <0 in submode>
DeviceState <1 in submode> <0 in submode>
...

L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command
The nodes command shows which nodes the data producer runs on. By default, the data producer runs
on all nodes, when nothing has been set explicitly, because each node runs the data producer for itself:

[bright91->monitoring->setup]% nodes dmesg
node001..node004,bright91

L.1.2 Nodes That Data Producers Target By Default—The samplenow Command
Nodes where samples are being obtained at can be seen using the samplenow command for the specified
nodes.

Again, by default, each node is a target, because the target is same node that the dmesg data producer
runs on:

© Bright Computing, Inc.

L.2 Data Producers: Configuration For Running And Targeting 899

[bright91->monitoring->setup]% device samplenow -t node dmesg
Entity Measurable Type Value Age Info
------------ ------------ ------------ ---------- ---------- ----------
node001 dmesg OS PASS 0.093s
node002 dmesg OS PASS 0.087s
node003 dmesg OS PASS 0.088s
node004 dmesg OS PASS 0.09s
bright91 dmesg OS PASS 0.179s

In the outputs to samplenow displayed in this appendix, some columns are omitted for the sake of
clarity.

The -t node option to samplenow expands to -n node001..node004,bright91 for this reference
cluster.

L.2 Data Producers: Configuration For Running And Targeting
Filters and multiplexers define which nodes run the data producers, and which nodes are the targets for
measurables.

The fm.sh script introduced on page 897 can be used to define several custom metrics according to
what nodes run the script and what nodes are targeted by the script.

L.2.1 Custom Metrics From The fm.sh Custom Script
Custom data producers of type metric are created in this section. These data producers comprise cus-
tom metrics, which are now set up with varying filtering and multiplexing definitions, to illustrate how
the definitions work.

The Metric all_for_self
The metric from the data producer all_for_self can be set up with no filtering or multiplexing defined,
as follows:

[bright91->monitoring->setup]% add metric all_for_self
[bright91->monitoring->setup*[all_for_self*]]% set consolidator none
[bright91->monitoring->setup*[all_for_self*]]% set script /cm/shared/fm.sh
[bright91->monitoring->setup*[all_for_self*]]% set class Test
[bright91->monitoring->setup*[all_for_self*]]% commit

The value for class is mandatory but arbitrary. It is an arbitrary grouping mechanism, which can be
useful in Bright View for grouping folders in trees.

Sampling results for the metric all_for_self: With no filtering or multiplexing, the metric just runs
everywhere by default, with the target of the running metric being itself too. The Info field output from
samplenow shows this behavior in the script output:

[bright91->monitoring->setup[all_for_self]]% exit
[bright91->monitoring->setup]% device samplenow -t node all_for_self
Entity Measurable Type Value Age Info
------------ ------------- ----- ------ ------ -----------------------------------
node001 all_for_self Test 2 0.08s Sampled on node001 for node001
node002 all_for_self Test 13 0.084s Sampled on node002 for node002
node003 all_for_self Test 97 0.08s Sampled on node003 for node003
node004 all_for_self Test 18 0.084s Sampled on node004 for node004
bright91 all_for_self Test 63 0.144s Sampled on bright91 for bright91

© Bright Computing, Inc.

900 Node Execution Filters And Execution Multiplexers

The Metric some_for_self
The metric some_for_self can be set up with filtering set up for some nodes, and no multiplexing set
up, as follows:

on node001,node002 for itself
[bright91->monitoring->setup]% add metric some_for_self
[bright91->monitoring->setup*[some_for_self*]]% set consolidator none
[bright91->monitoring->setup*[some_for_self*]]% set class Test
[bright91->monitoring->setup*[some_for_self*]]% set script /cm/shared/fm.sh
[bright91->...*[some_for_self*]]% nodeexecutionfilters
[bright91->...*[some_for_self*]->nodeexecutionfilters]% add node some_nodes
[bright91->...->nodeexecutionfilters*[some_nodes*]]% set nodes node001 node002
[bright91->...->nodeexecutionfilters*[some_nodes*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name some_nodes
Nodes node001,node002
Revision
Type Node
[bright91->...->nodeexecutionfilters*[some_nodes*]]% commit

Sampling results for the metric some_for_self: Only some filtering defined, and no multiplexing
defined at all, means that the metric just runs on the filtered nodes, and targets only the nodes defined
in filter too:

[bright91->...->nodeexecutionfilters[some_nodes]]% ..; ..; ..
[bright91->monitoring->setup]% device samplenow -t node some_for_self
Entity Measurable Type Value Age Info
------------ -------------- ----- ------ ------ -------------------------------
node001 some_for_self Test 88 0.094s Sampled on node001 for node001
node002 some_for_self Test 98 0.075s Sampled on node002 for node002

The Metric from head_for_some_others
The metric from_head_for_some_others can be set up with filtering defined for the head node, and
multiplexing defined for some other regular nodes (other than node001 and node002 here), as follows:

on active head for node003,node004
[bright91->monitoring->setup]% add metric from_head_for_some_others
[bright91->monitoring->setup*[from_head_for_some_others*]]% set consolidator none
[bright91->monitoring->setup*[from_head_for_some_others*]]% set script /cm/shared/fm.sh
[bright91->monitoring->setup*[from_head_for_some_others*]]% set class Test
[bright91->...*[from_head_for_some_others*]]% nodeexecutionfilters
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters]% active
Added active resource filter
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters]% show active head node
Parameter Value
-------------------------------- --
Filter operation Include
Name Active head node
Operator OR
Resources Active
Revision
Type Resource
[bright91->monitoring->setup*[from_head_for_some_others*]->nodeexecutionfilters]% ..
[bright91->...*[from_head_for_some_others*]]% executionmultiplexers

© Bright Computing, Inc.

L.3 Replacing A Resource With An Explicit Node Specification 901

[bright91->...*[from_head_for_some_others*]->executionmultiplexers]% add node other_nodes
[bright91->..._for_some_others*]->executionmultiplexers*[other_nodes*]]% set nodes node003 node004
[bright91->...*[from_head_for_some_others*]->executionmultiplexers*[other_nodes*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name other_nodes
Nodes node003,node004
Revision
Type Node
[bright91->..._for_some_others*]->executionmultiplexers*[other_nodes*]]% commit; ..; ..;..
[bright91->monitoring->setup]%

The filter is given a resource, Active, which is a way to set the filter for the active node only. Available
resources for a node can be seen by running the command monitoringresources for a device:

Example

[bright91->monitoring->setup]% device monitoringresources bright91
Active
CentOS7u8
Ethernet
RDO
backup
boot
...

Sampling results for the metric from head_for_some_others: With filtering defined for the active
head node, and multiplexing defined for those other nodes, it means that the metric targets those other
nodes, and the metric runs on the head node. That is, the other nodes are targeted by the head node that
is running the metric:

[bright91->monitoring->setup]% device samplenow -t node from_head_for_some_others
Entity Measurable Type Value Age Info
------------ ------------------------- ----- ----- ----- ---------------------------------
node003 from_head_for_some_others Test 20 0.084s Sampled on bright91 for node003
node004 from_head_for_some_others Test 44 0.067s Sampled on bright91 for node004

The nodes command confirms that the head node, bright91 is the filtered node, that is, the only
node(s) running the metric:

[bright91->monitoring->setup]% nodes from_head_for_some_others
bright91

L.3 Replacing A Resource With An Explicit Node Specification
Within the filter Active head node, associated with the metric from_head_for_some_others, the re-
source object Active can be replaced with a node object instead, if the node is defined as being bright91.
Doing this on a high-availability cluster where there is one active and one passive head node, would be
unwise. However, doing this on the reference cluster for teaching purposes is of course absolutely fine
because it helps make things a bit more concrete for the reader. The replacement can be carried out for
the session as follows:

[bright91->monitoring->setup]% nodeexecutionfilters from_head_for_some_others
[bright91->...[from_head_for_some_others]->nodeexecutionfilters]% list
Type Name (key) Filter Filter operation

© Bright Computing, Inc.

902 Node Execution Filters And Execution Multiplexers

------------ ------------------------ ------------------------ ----------------
Resource Active head node Active Include
[bright91->...[from_head_for_some_others]->nodeexecutionfilters]% remove active head node
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters*]% add node head
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% set nodes bright91
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% show
Parameter Value
-------------------------------- --
Filter operation Include
Name head
Nodes bright91
Revision
Type Node
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% commit
[bright91->...[from_head_for_some_others]->nodeexecutionfilters*[head]]% ..;..;..

The sample results are the same kind of output, and the filter node used is the same. The target
sample outputs are the same kind of output as before the replacement. The filter node on which the
metric runs is also seen to be the same:

[bright91->monitoring->setup]% device samplenow -t node from_head_for_some_others
Entity Measurable Type Value Age Info
------------ -------------------------- ----- ----- ------ -----------------------------------
node003 from_head_for_some_others Test 11 0.081s Sampled on bright91 for node003
node004 from_head_for_some_others Test 12 0.07s Sampled on bright91 for node004
[bright91->monitoring->setup]% nodes
bright91

L.4 Excessive Sampling
If another node is appended to the node in the filter, then a warning comes up.

[bright91->monitoring->setup]% nodeexecutionfilters from_head_for_some_others
[bright91->...[from_head_for_some_others]->nodeexecutionfilters]% append head nodes node003
[bright91->...*[from_head_for_some_others*]->nodeexecutionfilters*]% commit
========================== from_head_for_some_others ===========================
Field Message
------------------------ ---
executionMultiplexers Warning: Execution filters/multiplexers are set to run

on multiple nodes for the same target. This likely
means they are badly configured

[bright91->...[from_head_for_some_others]->nodeexecutionfilters]% show head

Parameter Value
------------------------ ---
Filter operation Include
Name head
Nodes node003,bright91
Revision
Type Node

The warning is there because the node execution filters are doing the same thing from different
nodes for an execution multiplexer target, and duplicating monitoring execution is typically a waste of
resources, and thus typically a mistake.

© Bright Computing, Inc.

L.5 Not Just For Nodes 903

However, the warnings are merely warnings, and not errors. So Bright Cluster Manager just goes
ahead with setting up the filter/muliplex system according to what the administrator has specified. The
nodes and samplingnow commands now show:

[bright91->...[from_head_for_some_others]->nodeexecutionfilters]% ..;..
[bright91->monitoring->setup]% device samplenow -t node from_head_for_some_others
Entity Measurable Type Value Age Info
------------ -------------------------- ----- ----- ------ ---------------------------------
node003 from_head_for_some_others Test 3 0.151s Sampled on bright91 for node003
node003 from_head_for_some_others Test 76 0.08s Sampled on node003 for node003
node004 from_head_for_some_others Test 25 0.08s Sampled on node003 for node004
node004 from_head_for_some_others Test 88 0.151s Sampled on bright91 for node004
[bright91->monitoring->setup]% nodes from_head_for_some_others
node003,bright91

The node node003 is now doing what the head node is, sampling the same targets, which is typically
a bad idea. However the behavior is indeed as expected for this particular configuration.

Whether running a particular configuration is actually wise, is up to the administrator—but in any
case the filter/multiplex system allows plenty of abuse of this kind.

L.5 Not Just For Nodes
Nodes are what node execution filters and execution multiplexers run on. However, sometimes it is
more convenient to execute based on other types.

The possible types can be listed with tab-completion suggestions when adding a node execution
filter or an execution multiplier:

[bright91->monitoring->setup[dmesg]->nodeexecutionfilters]% add<TAB><TAB>
category lua node overlay resource type

L.6 Lua Node Execution Filters
Lua (https://www.lua.org/) is a lightweight scripting language embedded into CMDaemon. It allows
more advanced node execution filters to be written using a Lua filter file.

Example

[bright91->monitoring->setup[<data producer>]->nodeexecutionfilters]% add lua lua-filter
[bright91->...nodeexecutionfilters*[lua-filter*]]% set code <Lua filter file name>

In the preceding example session, the name lua-filter is an arbitrary name, that is added to the
object that is associated with the Lua filter file <Lua filter file name>.

The self Lua table is passed by CMDaemon, and contains the entity for which the filter is evaluated.
Only devices have a self table that is not nil. All other entities have a self table that is nil.

For example, a filter can be created based on a regex match of the hostname:

Example

if self == nil then
return false

else
return self.hostname:match("^node[0-9]+") ~= nil)

end

The Lua filter is evaluated for all nodes:

Example

© Bright Computing, Inc.

https://www.lua.org/

904 Node Execution Filters And Execution Multiplexers

[bright91->monitoring->setup[dmesg]]% nodes
node001..node004

Development of Lua filters is best done outside of CMDaemon. Doing so requires the cluster admin-
istrator to create node environments to be evaluated by hand:

Example

[root@bright91 ~]# cat node001.lua
self = {}
self.hostname = "node001"
self.category = "default"

[root@bright91 ~]# cat bright91.lua
self = {}
self.hostname = "bright91"

This is in addition to the original filter script:

Example

[root@bright91 ~]# cat filter.lua
if self == nil then

return false
else

return self.hostname:match("^node[0-9]+") ~= nil
end

Both nodes can then be run through the filter using the lua interpreter:

Example

[root@bright91 ~]# lua
Lua 5.1.4 Copyright (C) 1994-2015 Lua.org, PUC-Rio
> dofile('bright91.lua')
> print(dofile('filter.lua'))
false
> dofile('node001.lua')
> print(dofile('filter.lua'))
true

The Lua self exported by CMDaemon contains the following:

• self: The main table object, nil for non-devices.

• self.hostname: The hostname of the device.

• self.partition: The name of the partition to which the device belongs.

• self.category: The name of the category to which the compute node belongs.

• self.nodegroups: An array with the name of node groups the node belongs to.

• self.mac: The MAC address of the device.

• self.ip: The IP of the device, only available for non-node devices.

• self.network: The IP address of the device, only available for non-node devices.

• self.interfaces: The array of interface of a node.

© Bright Computing, Inc.

L.6 Lua Node Execution Filters 905

• self.interfaces[1].name: The name of the first interface.

• self.interfaces[1].ip: The IP address of the first interface.

• self.interfaces[1].network: The name of the network of the first interface.

• self.roles: The array of roles of a node.

• self.roles[1].name: The name of the first role.

• self.roles[1].type: The type of the first role.

• self.status.status: The status of the device.

• self.status.user_message: The user message set for the device.

• self.status.info_message: The information message set for the device.

• self.status.closed: A boolean marking the node as closed.

• self.status.restart_required: A boolean marking the node needs to be rebooted.

• self.status.healthcheck_failed: A boolean marking at least one health check has returned
FAIL.

• self.status.healthcheck_unknown: A boolean marking at least one health check has returned
UNKNOWN.

• self.status.state_flapping: A boolean marking the node status transitioning often in a short
time span

• self.system.name: The name of the system.

• self.system.manufacturer: The manufacturer of the system.

• self.system.motherboard.name: The name of the motherboard.

• self.system.motherboard.manufacturer: The manufacturer of the motherboard.

• self.system.bios.version: The BIOS version.

• self.system.bios.vendor: The BIOS vendor name.

• self.system.bios.date: The BIOS date.

• self.system.os.name: The OS name.

• self.system.os.version: The OS version.

• self.system.os.flavor: The OS flavor.

Using the self environment, complex filters can easily be created. For example, the following filter
can be built to include only the nodes on the IB network, which also have a Slurm client role:

Example

[root@bright91 ~]# cat ib-slurm-filter.lua
if self == nil then
return false

end

on_ib_network = false

© Bright Computing, Inc.

906 Node Execution Filters And Execution Multiplexers

for index, interface in ipair(self.interface) do
on_ib_network = on_ib_network or (interface.network == "ibnet")

done

slurm_client = false
for index, role in ipair(self.roles) do

slurm_client = slurm_client or (role.name == "SlurmCLient")
done

return on_ib_network and slurm_client

It is also possible to use external sources, like the file system, to determine the filter for a node.

Example

[root@bright91 ~]# cat file-check-filter.lua
if self == nil then

return false
end

function file_exists(name)
local f = io.open(name, "r")
if f ~= nil then
io.close(f)
return true

else
return false

end
end

return file_exists(string.format('/opt/filter/%s', self.hostname))

It is important to understand that this Lua script is evaluated for all nodes, on the active head node.
The Lua script should therefore be fast, and return within a few milliseconds.

© Bright Computing, Inc.

M
A Tree View Of cmsh

M.1 Modes
A 3-level tree of the modes in cmsh is:

|-- category
| |-- biossettings
| |-- bmcsettings
| |-- fsexports
| |-- fsmounts
| |-- gpusettings
| |-- kernelmodules
| |-- roles
| | |-- advancedsettings
| | |-- cgroups
| | |-- commsettings
| | |-- configs
| | |-- configurations
| | |-- engines
| | |-- environments
| | |-- excludelistsnippets
| | |-- genericresources
| | |-- interfaces
| | |-- momsettings
| | |-- nodecustomizations
| | |-- openports
| | |-- osdconfigurations
| | |-- policies
| | |-- provisioningassociations
| | |-- resourceproviders
| | |-- spawner
| | |-- storagedrivers
| | |-- storagebackends
| | `-- zones
| |-- services
| `-- staticroutes
|-- ceph
| `-- pools
|-- cert
|-- cloud
| |-- extensions
| |-- images
| |-- regions

© Bright Computing, Inc.

908 A Tree View Of cmsh

| |-- types
| `-- vpcs
|-- cmjob
| |-- cloudjobs
| `-- storagenodepolicies
|-- configurationoverlay
| |-- customizations
| `-- roles
| |-- advancedsettings
| |-- cgroups
| |-- commsettings
| |-- configs
| |-- configurations
| |-- engines
| |-- environments
| |-- excludelistsnippets
| |-- genericresources
| |-- interfaces
| |-- momsettings
| |-- nodecustomizations
| |-- openports
| |-- osdconfigurations
| |-- policies
| |-- provisioningassociations
| |-- resourceproviders
| |-- spawner
| |-- storagedrivers
| |-- storagebackends
| `-- zones
|-- device
| |-- biosettings
| |-- bmcsettings
| |-- cloudsettings
| |-- fsexports
| |-- fsmounts
| |-- gpusettings
| |-- interfaces
| |-- kernelmodules
| |-- keyvaluesettings
| |-- roles
| | |-- advancedsettings
| | |-- cgroups
| | |-- commsettings
| | |-- configs
| | |-- configurations
| | |-- engines
| | |-- environments
| | |-- excludelistsnippets
| | |-- genericresources
| | |-- momsettings
| | |-- nodecustomizations
| | |-- openports
| | |-- osdconfigurations
| | |-- policies
| | |-- provisioningassociations

© Bright Computing, Inc.

M.1 Modes 909

| | |-- resourceproviders
| | |-- spawner
| | |-- storagedrivers
| | |-- storagebackends
| | `-- zones
| |-- services
| |-- snmpsettings
| `-- staticroutes
|-- edgesite
|-- etcd
|-- fspart
| `-- excludelistsnippets
|-- group
|-- hierarchy
| |-- sources
| `-- targets
|-- keyvaluestore
|-- kubernetes
| |-- appgroups
| | `-- applications
| |-- labelsets
| `-- rolebindings
|-- main
|-- monitoring
| |-- action
| |-- consolidator
| | `-- consolidators
| |-- labeledentity
| |-- measurable
| |-- query
| | `-- drilldown
| |-- setup
| | |-- executionmultiplexers
| | |-- jobmetricsettings
| | |-- nodeexecutionfilters
| | `-- rules
| |-- standalone
| `-- trigger
| `-- expression
|-- network
|-- nodegroup
|-- partition
| |-- archos
| |-- bmcsettings
| |-- burnconfigs
| |-- failover
| |-- failovergroups
| |-- resourcepools
| `-- snmpsettings
|-- process
|-- profile
|-- rack
|-- session
|-- softwareimage
| |-- kernelmodules

© Bright Computing, Inc.

910 A Tree View Of cmsh

| `-- selection
|-- task
|-- unmanagednodeconfiguration
| |-- bmcsettings
| `-- keyvaluesettings
|-- user
| `-- projectmanager
`-- wlm

|-- cgroups
|-- chargeback
|-- jobqueue
|-- jobs
|-- parallelenvironments
`-- placeholders

© Bright Computing, Inc.

N
Kubernetes User Role Bindings

Full YAML
N.1 Full YAML For The Default Role Bindings
The list of resources defined by default in the RoleBindings submode for users are introduced in sec-
tion 9.3.12. The full list is illustrated here:

Allow all users to get, list, watch nodes via a cluster role binding
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: john-nodes
rules:

- apiGroups:
- ""

resources:
- nodes
- persistentvolumes

verbs:
- get
- list
- watch

- apiGroups:
- storage.k8s.io
resources:
- storageclasses
verbs:
- get
- list
- watch

Bind the above cluster role binding to our user, this is a cluster role as it
is not related to namespaces.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: john-nodes

subjects:
- kind: User
name: john
apiGroup: rbac.authorization.k8s.io

roleRef:

© Bright Computing, Inc.

912 Kubernetes User Role Bindings Full YAML

kind: ClusterRole
name: john-nodes
apiGroup: rbac.authorization.k8s.io

N.2 Full YAML For Secure Namespace
Secure namespace for the user.
This is also enabled as the default namespace in their KubeConfig file.
apiVersion: v1
kind: Namespace
metadata:

name: {{ name | replace(".", "-") }}-restricted

apiVersion: v1
kind: ServiceAccount
metadata:

name: john
namespace: {{ name | replace(".", "-") }}-restricted

PodSecurityPolicy that restricts what is allowed in this namespace
(this will only do something as soon as the PodSecurityPolicy
AdmissionController is enabled with the Kubernetes API server)
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:

name: john-restricted
namespace: {{ name | replace(".", "-") }}-restricted

spec:
allowPrivilegeEscalation: false
privileged: false
allowedHostPaths:
- pathPrefix: "/home/john"

runAsGroup:
rule: MustRunAs
ranges:
- min: {{ gid }}

max: {{ gid }}
runAsUser:
rule: MustRunAs
ranges:
- min: {{ uid }}

max: {{ uid }}
seLinux:
rule: RunAsAny

fsGroup:
rule: RunAsAny

supplementalGroups:
rule: RunAsAny

volumes:
- secret
- hostPath
- configMap
- emptyDir
- persistentVolumeClaim

hostPorts:

© Bright Computing, Inc.

N.2 Full YAML For Secure Namespace 913

- min: 1024
max: 65535

Create a role for this user's namespace defining a set of certain privileges.
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

namespace: {{ name | replace(".", "-") }}-restricted
name: john-restricted

rules:
This role enables the bare minimum required for Jupyter
- apiGroups:

- ""
resources:
- pods/attach
- pods/exec
- pods/portforward
- pods/proxy
- secrets
- services/proxy

verbs:
- get
- list
- watch

- apiGroups:
- ""

resources:
- serviceaccounts

verbs:
- impersonate

- apiGroups:
- ""

resources:
- pods
- pods/attach
- pods/exec

verbs:
- create
- delete
- deletecollection
- patch
- update

- apiGroups:
- ""

resources:
- configmaps
- endpoints
- secrets
- services
- persistentvolumeclaims

verbs:
- create
- delete
- deletecollection
- patch

© Bright Computing, Inc.

914 Kubernetes User Role Bindings Full YAML

- update
- apiGroups:

- ""
resources:
- configmaps
- endpoints
- pods
- services
- services/status
- persistentvolumeclaims

verbs:
- get
- list
- watch

- apiGroups:
- ""

resources:
- bindings
- events
- limitranges
- namespaces/status
- pods/log
- pods/status
- resourcequotas
- resourcequotas/status

verbs:
- get
- list
- watch

- apiGroups:
- policy

resources:
- podsecuritypolicies

verbs:
- use

resourceNames:
- john-restricted

Below is granting required access for all resources part of the "kubectl
get all" command
- apiGroups:

- "apps"
resources:
- deployments
- replicasets
- daemonsets
- statefulsets

verbs:
- get
- list
- watch
- create
- delete
- deletecollection
- patch
- update

© Bright Computing, Inc.

N.2 Full YAML For Secure Namespace 915

- apiGroups:
- "autoscaling"

resources:
- horizontalpodautoscalers

verbs:
- get
- list
- watch
- create
- delete
- deletecollection
- patch
- update

- apiGroups:
- "batch"

resources:
- jobs
- cronjobs

verbs:
- get
- list
- watch
- create
- delete
- deletecollection
- patch
- update

- apiGroups:
- ""

resources:
- replicationcontrollers

verbs:
- get
- list
- watch
- create
- delete
- deletecollection
- patch
- update

Required for getting a dashboard token
- apiGroups:

- ""
resources:
- serviceaccounts

verbs:
- get

Bind the above role to the user in their restricted namespace only
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: john-restricted
namespace: {{ name | replace(".", "-") }}-restricted

subjects:

© Bright Computing, Inc.

916 Kubernetes User Role Bindings Full YAML

- kind: User
name: john
apiGroup: rbac.authorization.k8s.io

- kind: ServiceAccount
name: john
namespace: {{ name | replace(".", "-") }}-restricted

roleRef:
kind: Role
name: john-restricted
apiGroup: rbac.authorization.k8s.io

Create a cluster role to bind usage of the personal PodSecurityPolicy to
their secure namespace (and also all other namespaces! hence *Cluster*Role)
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: john-psp
rules:

- apiGroups:
- policy

resources:
- podsecuritypolicies

verbs:
- use

resourceNames:
- john-restricted

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: john-psp
subjects:

- kind: User
name: john
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: john-psp
apiGroup: rbac.authorization.k8s.io

Another PSP for user which allows to run as root,
but without hostPath volumes
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:

name: john-restricted-root
namespace: {{ name | replace(".", "-") }}-restricted

spec:
privileged: false
runAsGroup:
rule: RunAsAny

runAsUser:
rule: RunAsAny

seLinux:
rule: RunAsAny

© Bright Computing, Inc.

N.3 Full YAML For Additional Namespaces 917

fsGroup:
rule: RunAsAny

supplementalGroups:
rule: RunAsAny

volumes:
- secret
- configMap
- emptyDir
- persistentVolumeClaim

hostPorts:
- min: 1024
max: 65535

Create a cluster role to bind usage of the PSP above to
user's secure namespace
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: john-psp-root
rules:

- apiGroups:
- policy

resources:
- podsecuritypolicies

verbs:
- use

resourceNames:
- john-restricted-root

Alow user to use john-restricted-root PSP
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: john-psp-root
subjects:

- kind: User
name: john
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: john-psp-root
apiGroup: rbac.authorization.k8s.io

N.3 Full YAML For Additional Namespaces
The following example is for the edit role assigned to john in the development namespace:

Example

The namespace is expected to already exist. This creates a service account
for the user within this additional namespace.
apiVersion: v1
kind: ServiceAccount
metadata:

name: john
namespace: development

© Bright Computing, Inc.

918 Kubernetes User Role Bindings Full YAML

Assign the (default Kubernetes pre-defined) role
(edit/view/admin/cluster-admin) to the user for this additional namespace.
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: john
namespace: development

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: edit

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: john

For cluster-admin, ClusterRole and ClusterRoleBinding are used instead.

apiVersion: v1
kind: ServiceAccount
metadata:

name: john
namespace: development

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: john
namespace: development

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: john

- kind: ServiceAccount
name: john
namespace: development

© Bright Computing, Inc.

	Table of Contents
	0.1 Quickstart
	0.2 About This Manual
	0.3 About The Manuals In General
	0.4 Getting Administrator-Level Support
	0.5 Getting Professional Services
	1 Introduction
	1.1 Bright Cluster Manager Functions And Aims
	1.2 The Scope Of The Administrator Manual (This Manual)
	1.2.1 Installation
	1.2.2 Configuration, Management, And Monitoring Via Bright Cluster Manager Tools And Applications

	1.3 Outside The Direct Scope Of The Administrator Manual

	2 Cluster Management With Bright Cluster Manager
	2.1 Concepts
	2.1.1 Devices
	2.1.2 Software Images
	2.1.3 Node Categories
	2.1.4 Node Groups
	2.1.5 Roles
	2.1.6 Configuration Overlay

	2.2 Modules Environment
	2.2.1 Adding And Removing Modules
	2.2.2 Using Local And Shared Modules
	2.2.3 Setting Up A Default Environment For All Users
	2.2.4 Creating A Modules Environment Module
	2.2.5 Lua Modules Environment (LMod)

	2.3 Authentication
	2.3.1 Changing Administrative Passwords On The Cluster
	2.3.2 Logins Using ssh
	2.3.3 Certificates
	2.3.4 Profiles

	2.4 Bright View GUI
	2.4.1 Installing The Cluster Management GUI Service
	2.4.2 Navigating The Cluster With Bright View

	2.5 Cluster Management Shell
	2.5.1 Invoking cmsh
	2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh
	2.5.3 Working With Objects
	2.5.4 Accessing Cluster Settings
	2.5.5 Advanced cmsh Features

	2.6 Cluster Management Daemon
	2.6.1 Controlling The Cluster Management Daemon
	2.6.2 Configuring The Cluster Management Daemon
	2.6.3 CMDaemon Versions
	2.6.4 Configuring The Cluster Management Daemon Logging Facilities
	2.6.5 Configuration File Modification, And The FrozenFile Directive
	2.6.6 Configuration File Conflicts Between The Standard Distribution And Bright Cluster Manager For Generated And Non-Generated Files
	2.6.7 CMDaemon Lite

	3 Configuring The Cluster
	3.1 Main Cluster Configuration Settings
	3.1.1 Cluster Configuration: Various Name-Related Settings
	3.1.2 Cluster Configuration: Some Network-Related Settings
	3.1.3 Miscellaneous Settings
	3.1.4 Limiting The Maximum Number Of Open Files

	3.2 Network Settings
	3.2.1 Configuring Networks
	3.2.2 Adding Networks
	3.2.3 Changing Network Parameters
	3.2.4 Tools For Viewing Cluster Connections

	3.3 Configuring Bridge Interfaces
	3.4 Configuring VLAN interfaces
	3.4.1 Configuring A VLAN Interface Using cmsh
	3.4.2 Configuring A VLAN Interface Using Bright View

	3.5 Configuring Bonded Interfaces
	3.5.1 Adding A Bonded Interface
	3.5.2 Single Bonded Interface On A Regular Node
	3.5.3 Multiple Bonded Interface On A Regular Node
	3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes
	3.5.5 Tagged VLAN On Top Of a Bonded Interface
	3.5.6 Association Of MAC Address With A Bonded Interface
	3.5.7 Further Notes On Bonding

	3.6 Configuring InfiniBand And Omni-Path Interfaces
	3.6.1 Installing Software Packages
	3.6.2 Subnet Managers
	3.6.3 InfiniBand Network Settings
	3.6.4 Verifying Connectivity

	3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces
	3.7.1 BMC Network Settings
	3.7.2 BMC Authentication
	3.7.3 Interfaces Settings
	3.7.4 Identification With A BMC

	3.8 Configuring Switches And PDUs
	3.8.1 Configuring With The Manufacturer's Configuration Interface
	3.8.2 Configuring SNMP
	3.8.3 Uplink Ports
	3.8.4 The showport MAC Address to Port Matching Tool
	3.8.5 Disabling Port Detection
	3.8.6 The switchoverview Command

	3.9 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration
	3.9.1 Disk Layouts
	3.9.2 Disk Layout Assertions
	3.9.3 Changing Disk Layouts
	3.9.4 Changing A Disk Layout From Disked To Diskless

	3.10 Configuring NFS Volume Exports And Mounts
	3.10.1 Exporting A Filesystem Using Bright View And cmsh
	3.10.2 Mounting A Filesystem Using Bright View And cmsh
	3.10.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS
	3.10.4 Mounting The Root Filesystem For A Diskless Node Over NFS
	3.10.5 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers

	3.11 Managing And Configuring Services
	3.11.1 Why Use The Cluster Manager For Services?
	3.11.2 Managing And Configuring Services—Examples

	3.12 Managing And Configuring A Rack
	3.12.1 Racks
	3.12.2 Assigning Devices To A Rack
	3.12.3 Assigning Devices To A Chassis

	3.13 Configuring GPU Settings
	3.13.1 GPUs And GPU Units
	3.13.2 Configuring GPU Settings

	3.14 Configuring Custom Scripts
	3.14.1 custompowerscript
	3.14.2 custompingscript
	3.14.3 customremoteconsolescript

	3.15 Cluster Configuration Without Execution By CMDaemon
	3.15.1 Cluster Configuration: The Bigger Picture
	3.15.2 Making Nodes Function Differently By Image
	3.15.3 Making All Nodes Function Differently From Normal Cluster Behavior With FrozenFile
	3.15.4 Adding Functionality To Nodes Via An initialize Or finalize Script
	3.15.5 Examples Of Configuring Nodes With Or Without CMDaemon

	3.16 Saving A Backup Of Configuration Files With versionconfigfiles

	4 Power Management
	4.1 Configuring Power Parameters
	4.1.1 PDU-Based Power Control
	4.1.2 IPMI-Based Power Control
	4.1.3 Combining PDU- and IPMI-Based Power Control
	4.1.4 Custom Power Control
	4.1.5 Hewlett Packard iLO-Based Power Control
	4.1.6 Dell drac-based Power Control
	4.1.7 Redfish-Based and CIMC-Based Power Control

	4.2 Power Operations
	4.2.1 Power Operations Overview
	4.2.2 Power Operations With Bright View
	4.2.3 Power Operations Through cmsh

	4.3 Monitoring Power
	4.4 Switch Configuration To Survive Power Downs

	5 Node Provisioning
	5.1 Before The Kernel Loads
	5.1.1 PXE Booting
	5.1.2 iPXE Booting From A Disk Drive
	5.1.3 iPXE Booting Using InfiniBand
	5.1.4 Using PXE To Boot From The Drive
	5.1.5 Network Booting Without PXE On The ARMv8 Architecture
	5.1.6 Network Booting Protocol
	5.1.7 The Boot Role

	5.2 Provisioning Nodes
	5.2.1 Provisioning Nodes: Configuration Settings
	5.2.2 Provisioning Nodes: Role Setup With cmsh
	5.2.3 Provisioning Nodes: Role Setup With Bright View
	5.2.4 Provisioning Nodes: Housekeeping

	5.3 The Kernel Image, Ramdisk And Kernel Modules
	5.3.1 Booting To A ``Good State'' Software Image
	5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes
	5.3.3 InfiniBand Provisioning
	5.3.4 Omni-Path Provisioning
	5.3.5 VLAN Provisioning

	5.4 Node-Installer
	5.4.1 Requesting A Node Certificate
	5.4.2 Deciding Or Selecting Node Configuration
	5.4.3 Starting Up All Network Interfaces
	5.4.4 Determining Install-mode Type And Execution Mode
	5.4.5 Running Initialize Scripts
	5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems
	5.4.7 Synchronizing The Local Drive With The Software Image
	5.4.8 Writing Network Configuration Files
	5.4.9 Creating A Local /etc/fstab File
	5.4.10 Booting From The Local Hard Drive
	5.4.11 Running Finalize Scripts
	5.4.12 Unloading Specific Drivers
	5.4.13 Switching To The Local init Process

	5.5 Node States
	5.5.1 Node States Icons In Bright View
	5.5.2 Node States Shown In cmsh
	5.5.3 Node States Indicating Regular Start Up
	5.5.4 Node States That May Indicate Problems

	5.6 Updating Running Nodes
	5.6.1 Updating Running Nodes: Configuration With excludelistupdate
	5.6.2 Updating Running Nodes: With cmsh Using imageupdate
	5.6.3 Updating Running Nodes: With Bright View Using the Update node Option
	5.6.4 Updating Running Nodes: Considerations

	5.7 Adding New Nodes
	5.7.1 Adding New Nodes With cmsh And Bright View Add Functions
	5.7.2 Adding New Nodes With The Node Creation Wizard

	5.8 Troubleshooting The Node Boot Process
	5.8.1 Node Fails To PXE Boot
	5.8.2 Node-installer Logging
	5.8.3 Provisioning Logging
	5.8.4 Ramdisk Fails During Loading Or Sometime Later
	5.8.5 Ramdisk Cannot Start Network
	5.8.6 Node-Installer Cannot Create Disk Layout
	5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface

	6 User Management
	6.1 Managing Users And Groups With Bright View
	6.2 Managing Users And Groups With cmsh
	6.2.1 Adding A User
	6.2.2 Saving The Modified State
	6.2.3 Editing Properties Of Users And Groups
	6.2.4 Reverting To The Unmodified State
	6.2.5 Removing A User

	6.3 Using An External LDAP Server
	6.3.1 External LDAP Server Replication
	6.3.2 High Availability

	6.4 Tokens And Profiles
	6.4.1 Modifying Profiles
	6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By Bright Cluster Manager's Internal LDAP
	6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External LDAP
	6.4.4 Logging The Actions Of CMDaemon Users

	7 Workload Management
	7.1 Workload Managers Choices
	7.2 Forcing Jobs To Run In A Workload Management System
	7.2.1 Disallowing User Logins To Regular Nodes Via cmsh
	7.2.2 Disallowing User Logins To Regular Nodes Via Bright View
	7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes
	7.2.4 High Availability By Workload Managers

	7.3 Installation Of Workload Managers
	7.3.1 Running cm-wlm-setup In CLI Mode
	7.3.2 Running cm-wlm-setup In Ncurses Mode
	7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Containerized Jobs
	7.3.4 Prolog And Epilog Scripts

	7.4 Enabling, Disabling, And Monitoring Workload Managers
	7.4.1 Enabling And Disabling A WLM With Bright View
	7.4.2 Enabling And Disabling A Workload Manager With cmsh
	7.4.3 Monitoring The Workload Manager Services

	7.5 Configuring And Running Individual Workload Managers
	7.5.1 Configuring And Running Slurm
	7.5.2 Installing, Configuring, And Running UGE
	7.5.3 Configuring And Running PBS
	7.5.4 Installing, Configuring, And Running LSF

	7.6 Using Bright View With Workload Management
	7.6.1 Jobs Display And Handling In Bright View
	7.6.2 Queues Display And Handling In Bright View

	7.7 Using cmsh With Workload Management
	7.7.1 The jobs Submode In cmsh
	7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode
	7.7.3 Nodes Drainage Status And Handling In cmsh

	7.8 Examples Of Workload Management Assignment
	7.8.1 Setting Up A New Category And A New Queue For It
	7.8.2 Setting Up A Prejob Check

	7.9 Power Saving With cm-scale
	7.10 Cgroups
	7.10.1 Cgroups Settings For Workload Managers

	7.11 Custom Node Parameters

	8 Bright Cluster Manager Auto Scaler
	8.1 Introduction
	8.1.1 Use Cases
	8.1.2 Resource Constraints
	8.1.3 Setup
	8.1.4 Comparison With cm-scale-cluster

	8.2 Configuration
	8.2.1 The ScaleServer Role
	8.2.2 Resource Providers
	8.2.3 Time Quanta Optimization
	8.2.4 Fairsharing Priority Calculation And Node Management
	8.2.5 Engines
	8.2.6 Trackers

	8.3 Examples Of cm-scale Use
	8.3.1 Simple Static Node Provider Usage Example
	8.3.2 Simple Dynamic Node Provider Usage Example

	8.4 Further cm-scale Configuration And Examples
	8.4.1 Dynamic Nodes Re-purposing
	8.4.2 Pending Reasons
	8.4.3 Locations
	8.4.4 Azure Storage Accounts Assignment
	8.4.5 Mapping HPC Jobs To Particular Nodes
	8.4.6 How To Exclude Unused Nodes From Being Stopped
	8.4.7 Prolog And Epilog Scripts With Auto Scaler
	8.4.8 Queue Node Placeholders

	9 Containerization
	9.1 Docker Engine
	9.1.1 Docker Setup
	9.1.2 Integration With Workload Managers
	9.1.3 DockerHost Role
	9.1.4 Iptables
	9.1.5 Storage Backends
	9.1.6 Docker Monitoring
	9.1.7 Docker Setup For NVIDIA

	9.2 Docker Registries
	9.2.1 Docker And Harbor Registries: Introduction
	9.2.2 Docker And Harbor Registries: Setup And Configuration

	9.3 Kubernetes
	9.3.1 Reference Architecture
	9.3.2 Kubernetes Setup
	9.3.3 Using GPUs With Kubernetes: NVIDIA GPUs
	9.3.4 Using GPUs With Kubernetes: AMD GPUs
	9.3.5 Kubernetes Configuration Overlays
	9.3.6 Removing A Kubernetes Cluster
	9.3.7 Kubernetes Cluster Configuration Options
	9.3.8 EtcdCluster
	9.3.9 Kubernetes Roles
	9.3.10 Security Model
	9.3.11 Addition Of New Kubernetes Users And Kubernetes Role Bindings Configuration
	9.3.12 List Of Resources Defined For Users
	9.3.13 Pod Security Policies
	9.3.14 Providing Access To External Users
	9.3.15 Networking Model
	9.3.16 Kubernetes Monitoring
	9.3.17 Setup Of A Storage Class For Ceph
	9.3.18 Integration With Harbor

	9.4 Kubernetes Apps
	9.4.1 Providing Custom Docker Images

	9.5 Kubernetes On Edge
	9.5.1 Flags For Edge Installation

	9.6 Singularity
	9.6.1 Use Cases
	9.6.2 Package cm-singularity
	9.6.3 MPI Integration

	9.7 OpenShift Container Platform Integration With Bright Cluster Manager
	9.7.1 Prerequisites
	9.7.2 Installation
	9.7.3 Adding New Compute Nodes
	9.7.4 Validation
	9.7.5 Uninstall

	10 Ceph Installation
	10.1 Ceph Introduction
	10.1.1 Ceph Object And Block Storage
	10.1.2 Ceph Storage Backends
	10.1.3 Ceph Software Considerations Before Use
	10.1.4 Hardware For Ceph Use

	10.2 Ceph Installation With cm-ceph-setup
	10.2.1 Ceph Installation: The Configuration Stage
	10.2.2 Ceph Installation: The Deployment Stage

	10.3 Installation Of Ceph From Bright View
	10.3.1 Bright View Ceph Install: Main Details Screen
	10.3.2 Bright View Ceph Install: Nodes Selection Screen
	10.3.3 Bright View Ceph Install: Summary Screen
	10.3.4 Bright View Ceph Install: Deployment Screen

	10.4 Checking And Getting Familiar With Ceph Items After cm-ceph-setup
	10.4.1 Checking On Ceph And Ceph-related Files From The Shell
	10.4.2 Ceph Management With Bright View And cmsh

	11 BeeGFS
	11.1 BeeGFS Introduction
	11.1.1 BeeGFS Concepts
	11.1.2 BeeGFS Installation Notes And Options

	11.2 Deployment And Uninstallation Of BeeGFS With cm-beegfs-setup
	11.2.1 Deployment Of BeeGFS
	11.2.2 Uninstalling BeeGFS

	11.3 Managing The Deployed BeeGFS Instance
	11.3.1 Setup
	11.3.2 BeeGFS Objects
	11.3.3 Usage

	12 Post-Installation Software Management
	12.1 Bright Cluster Manager Packages And Their Naming Convention
	12.1.1 The packages Command

	12.2 Managing Packages On The Head Node
	12.2.1 Managing RPM Or .deb Packages On The Head Node
	12.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm Packages

	12.3 Kernel Management On A Head Node Or Image
	12.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node
	12.3.2 Excluding Kernels And Other Packages From Updates
	12.3.3 Updating A Kernel In A Software Image
	12.3.4 Setting Kernel Options For Software Images
	12.3.5 Kernel Driver Modules

	12.4 Managing A Package In A Software Image And Running It On Nodes
	12.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which The Packages Are Deployed
	12.4.2 Installing From Head Into The Image: Updating The Node
	12.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root, yum --installroot Or chroot
	12.4.4 Managing A Package In The Node-Installer Image

	12.5 Managing Non-RPM Software In A Software Image And Running It On Nodes
	12.5.1 Managing The Software Directly On An Image
	12.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image

	12.6 Creating A Custom Software Image
	12.6.1 Creating A Base Distribution Archive From A Base Host
	12.6.2 Creating The Software Image With cm-create-image
	12.6.3 Configuring Local Repositories For Linux Distributions, And For The Bright Cluster Manager Package Repository, For A Software Image
	12.6.4 Creating A Custom Image From The Local Repository

	12.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch)
	12.7.1 The cm-image Tool
	12.7.2 Multidistro Examples: Provisioning From CentOS 7 Head Node To Ubuntu 18.04 Regular Nodes
	12.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8 Architecture Regular Nodes

	13 Monitoring: Monitoring Cluster Devices
	13.1 A Basic Monitoring Example And Action
	13.1.1 Synopsis Of Basic Monitoring Example
	13.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces
	13.1.3 Using The Monitoring Basic Example

	13.2 Monitoring Concepts And Definitions
	13.2.1 Measurables
	13.2.2 Enummetrics
	13.2.3 Metrics
	13.2.4 Health Check
	13.2.5 Trigger
	13.2.6 Action
	13.2.7 Severity
	13.2.8 AlertLevel
	13.2.9 Flapping
	13.2.10 Data Producer
	13.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Bright View

	13.3 Monitoring Visualization With Bright View
	13.3.1 The Monitoring Window

	13.4 Monitoring Configuration With Bright View
	13.4.1 Monitoring Configuration: Data Producers
	13.4.2 Monitoring Configuration: Measurables
	13.4.3 Monitoring Configuration: Consolidators
	13.4.4 Monitoring Configuration: Actions
	13.4.5 Monitoring Configuration: Triggers
	13.4.6 Monitoring Configuration: Health status
	13.4.7 Monitoring Configuration: All Health Checks
	13.4.8 Monitoring Configuration: Standalone Monitored Entities

	13.5 The monitoring Mode Of cmsh
	13.5.1 The action Submode
	13.5.2 The consolidator Submode
	13.5.3 The measurable Submode
	13.5.4 The setup Submode
	13.5.5 The standalone Submode
	13.5.6 The trigger Submode

	13.6 Obtaining Monitoring Data Values
	13.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics, healthchecks And enummetrics Commands
	13.6.2 On-Demand Metric Sampling And Health Checks
	13.6.3 The Latest Data And Counter Values—The latest*data And latestmetriccounters Commands
	13.6.4 Data Values Over A Period—The dumpmonitoringdata Command
	13.6.5 Monitoring Data Health Overview–The healthoverview Command
	13.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command
	13.6.7 Dropping Monitoring Data With The monitoringdrop Command
	13.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And monitoringresume Commands
	13.6.9 Monitoring Pickup Intervals

	13.7 Offloaded Monitoring
	13.7.1 Why Offloaded Monitoring?
	13.7.2 Implementing Offloaded Monitoring
	13.7.3 Background Details

	13.8 The User Portal
	13.8.1 Accessing The User Portal
	13.8.2 Setting A Common Username/Password For The User Portal
	13.8.3 User Portal Access
	13.8.4 User Portal Home Page

	13.9 Cloud Job Tagging
	13.10 Event Viewer
	13.10.1 Viewing Events In Bright View
	13.10.2 Viewing Events In cmsh
	13.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States
	13.10.4 InfoMessages

	14 Monitoring: Job Monitoring
	14.1 Job Metrics Introduction
	14.2 Job Metrics With Cgroups
	14.3 Job Information Retention
	14.4 Job Metrics Sampling Configuration
	14.4.1 The Job Metrics Collection Processing Mechanism

	14.5 Job Monitoring In cmsh

	15 Monitoring: Job Accounting
	15.1 Introduction
	15.2 Labeled Entities
	15.2.1 Dataproducers For Labeled Entities
	15.2.2 PromQL And Labeled Entities
	15.2.3 Job IDs And Labeled Entities
	15.2.4 Measurables And Labeled Entities

	15.3 PromQL Queries
	15.3.1 The Default PromQL Queries...
	15.3.2 ...And A Short Description Of Them
	15.3.3 Modifying The Default PromQL Query Properties
	15.3.4 An Example PromQL Query, Properties, And Disassembly
	15.3.5 Aside: Getting Raw Values For A Prometheus Class Metric
	15.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued)

	15.4 Parameterized PromQL Queries
	15.5 Job Accounting In Bright View
	15.5.1 Management And Use Of The Accounting Panel

	15.6 PromQL Query Modes And Specification In Bright View
	15.7 Access Control For Workload Accounting And Reporting
	15.7.1 Defining Project Managers Using Internal User Management
	15.7.2 Defining Project Managers Using External User Management

	15.8 Drilldown Queries For Workload Accounting And Reporting

	16 Monitoring: Job Chargeback
	16.1 Introduction
	16.1.1 The Word ``Chargeback''
	16.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring Measurements

	16.2 Job Chargeback Measurement
	16.2.1 Predefined Job Chargebacks
	16.2.2 Setting A Custom Job Chargeback
	16.2.3 The report And request Commands

	16.3 Job Chargeback Background Information

	17 Day-to-day Administration
	17.1 Parallel Shells: pdsh And pexec
	17.1.1 pdsh In The OS Shell
	17.1.2 pexec In cmsh
	17.1.3 pexec In Bright View
	17.1.4 Using The -j|--join Option Of pexec In cmsh
	17.1.5 Other Parallel Commands

	17.2 Getting Support With Cluster Manager Issues, And Notifications For Release Updates
	17.2.1 Support Via E-mail
	17.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose
	17.2.3 Requesting Remote Support With request-remote-assistance
	17.2.4 Requesting Remote Support With A Shared Screen Utility
	17.2.5 Getting Notified About Updates

	17.3 Backups
	17.3.1 Cluster Installation Backup
	17.3.2 Local Database And Data Backups And Restoration

	17.4 Revision Control For Images
	17.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images
	17.4.2 Btrfs Availability And Distribution Support
	17.4.3 Installing Btrfs To Work With Revision Control Of Images In Bright Cluster Manager
	17.4.4 Using cmsh For Revision Control Of Images

	17.5 BIOS Configuration And Updates
	17.5.1 BIOS Configuration Via CMDaemon And Redfish
	17.5.2 Updating BIOS Versions

	17.6 Hardware Match Check With The hardware-profile Data Producer
	17.7 Serial Over LAN Console Access
	17.7.1 Background Notes On Serial Console And SOL
	17.7.2 SOL Console Configuration With Bright View
	17.7.3 SOL Console Configuration And Access With cmsh
	17.7.4 The conman Serial Console Logger And Viewer

	17.8 Managing Raw Monitoring Data
	17.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option
	17.8.2 Estimating The Required Size Of The Storage Device
	17.8.3 Moving Monitoring Data Elsewhere
	17.8.4 Reducing Monitoring Data By Reducing Samples
	17.8.5 Deleting All Monitoring Data

	17.9 Node Replacement
	17.10 Ansible
	17.10.1 Introduction
	17.10.2 A Simple Playbook Example
	17.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration Purposes
	17.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related Properties

	18 High Availability
	18.0 Introduction
	18.0.1 Why Have High Availability?
	18.0.2 High Availability Is Possible On Head Nodes, And Also On Regular Nodes
	18.0.3 High Availability Usually Uses Shared Storage
	18.0.4 Organization Of This Chapter

	18.1 HA Concepts
	18.1.1 Primary, Secondary, Active, Passive
	18.1.2 Monitoring The Active Head Node, Initiating Failover
	18.1.3 Services In Bright Cluster Manager HA Setups
	18.1.4 Failover Network Topology
	18.1.5 Shared Storage
	18.1.6 Guaranteeing One Active Head At All Times
	18.1.7 Automatic Vs Manual Failover
	18.1.8 HA And Cloud Nodes
	18.1.9 HA Using Virtual Head Nodes

	18.2 HA Setup Procedure Using cmha-setup
	18.2.1 Preparation
	18.2.2 Failover Cloning (Replacing A Passive Head)
	18.2.3 Shared Storage Setup
	18.2.4 Automated Failover And Relevant Testing

	18.3 Running cmha-setup Without Ncurses, Using An XML Specification
	18.3.1 Why Run It Without Ncurses?
	18.3.2 The Syntax Of cmha-setup Without Ncurses
	18.3.3 Example cmha-setup Run Without Ncurses

	18.4 Managing HA
	18.4.1 Changing An Existing Failover Configuration
	18.4.2 cmha Utility
	18.4.3 States
	18.4.4 Failover Action Decisions
	18.4.5 Keeping Head Nodes In Sync
	18.4.6 High Availability Parameters
	18.4.7 Viewing Failover Via Bright View
	18.4.8 Re-cloning A Head Node

	18.5 HA For Regular Nodes
	18.5.1 Why Have HA On Regular Nodes?
	18.5.2 Comparing Head And Regular Node HA
	18.5.3 Setting Up A Regular Node HA Service
	18.5.4 The Sequence Of Events When Making Another HA Regular Node Active

	18.6 HA And Workload Manager Jobs

	19 The Jupyter Notebook Environment Integration
	19.1 Introduction
	19.2 Jupyter Environment Installation
	19.2.1 Jupyter Setup
	19.2.2 Jupyter Architecture
	19.2.3 Verifying Jupyter Installation
	19.2.4 Login Configuration
	19.2.5 JupyterHub Screen After Login

	19.3 Jupyter Notebook Examples
	19.4 Jupyter Kernels
	19.4.1 Jupyter Enterprise Gateway Kernels

	19.5 Jupyter Kernel Creator Extension
	19.5.1 Running Jupyter Kernels With Kubernetes
	19.5.2 Running Jupyter Kernels With Workload Managers

	19.6 Jupyter Kernel Creator Extension Customization
	19.6.1 Kernel Template Parameters Definition
	19.6.2 Kernel Template Parameters Usage
	19.6.3 Kernel Template Creation Example
	19.6.4 Extending Kubernetes Kernel Templates
	19.6.5 Extending Workload Managers Kernel Templates

	19.7 Jupyter VNC Extension
	19.8 Jupyter WLM Magic Extension
	19.9 Jupyter Environment Removal

	A Generated Files
	A.1 System Configuration Files Created Or Modified By CMDeamon On Head Nodes
	A.2 System Configuration Files Created Or Modified By CMDaemon In Software Images:
	A.3 Files Created On Regular Nodes By The Node-Installer
	A.4 Files Not Generated, But Installed In RHEL/CentOS

	B Bright Computing Public Key
	C CMDaemon Configuration File Directives
	D Disk Partitioning And RAID Configuration
	D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema File
	D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema File
	D.3 Example: Default Node Partitioning
	D.4 Example: Hardware RAID Configuration
	D.4.1 RAID level 0 And RAID 10 Example

	D.5 Example: Software RAID
	D.6 Example: Software RAID With Swap
	D.7 Example: Logical Volume Manager
	D.8 Example: Logical Volume Manager With RAID 1
	D.9 Example: Diskless
	D.10 Example: Semi-diskless
	D.11 Example: Preventing Accidental Data Loss
	D.12 Example: Using Custom Assertions
	D.13 Example: Software RAID1 With One Big Partition
	D.14 Example: Software RAID5 With One Big Partition
	D.15 Example: Software RAID1 With Standard Partitioning
	D.16 Example: Software RAID5 With Standard Partitioning

	E Example initialize And finalize Scripts
	E.1 When Are They Used?
	E.2 Accessing From Bright View And cmsh
	E.3 Environment Variables Available To initialize And finalize Scripts
	E.4 Using Environment Variables Stored In Multiple Variables
	E.5 Storing A Configuration To A Filesystem
	E.5.1 Storing With Initialize Scripts
	E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes
	E.5.3 Restricting The Script To Nodes Or Node Categories

	F Workload Managers Quick Reference
	F.1 Slurm
	F.2 Univa Grid Engine
	F.3 PBS Pro

	G Metrics, Health Checks, Enummetrics, And Actions
	G.1 Metrics And Their Parameters
	G.1.1 Regular Metrics
	G.1.2 NFS Metrics
	G.1.3 Monitoring System Metrics
	G.1.4 GPU Metrics
	G.1.5 Job Metrics
	G.1.6 Prometheus Metrics
	G.1.7 Parameters For Metrics

	G.2 Health Checks And Their Parameters
	G.2.1 Health Checks
	G.2.2 Parameters For Health Checks

	G.3 Enummetrics
	G.4 Actions And Their Parameters
	G.4.1 Actions
	G.4.2 Parameters For A Monitoring Action

	H Workload Manager Configuration Files Updated By CMDaemon
	H.1 Slurm
	H.2 Univa Grid Engine (UGE)
	H.3 PBS Pro
	H.4 LSF

	I Changing The LDAP Password
	I.1 Setting A New Password For The LDAP Server
	I.2 Setting The New Password In cmd.conf
	I.3 Checking LDAP Access

	J Tokens
	K Understanding Consolidation
	K.1 Introduction
	K.2 What Is Consolidation?
	K.3 Raw Data And Consolidation
	K.4 A Demonstration Of The Output

	L Node Execution Filters And Execution Multiplexers
	L.1 Data Producers: Default Configuration For Running And Sampling
	L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command
	L.1.2 Nodes That Data Producers Target By Default—The samplenow Command

	L.2 Data Producers: Configuration For Running And Targeting
	L.2.1 Custom Metrics From The fm.sh Custom Script

	L.3 Replacing A Resource With An Explicit Node Specification
	L.4 Excessive Sampling
	L.5 Not Just For Nodes
	L.6 Lua Node Execution Filters

	M A Tree View Of cmsh
	M.1 Modes

	N Kubernetes User Role Bindings Full YAML
	N.1 Full YAML For The Default Role Bindings
	N.2 Full YAML For Secure Namespace
	N.3 Full YAML For Additional Namespaces

