Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. SUSE is a registered trademark of Novell, Inc. PGI is a registered trademark of NVIDIA Corporation. FLEXlm is a registered trademark of Flexera Software, Inc. PBS Professional, PBS Pro, and Green Provisioning are trademarks of Altair Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current or planned as of the date of publication of this document. They are reliable as of the time of this writing and are presented without warranty of any kind, expressed or implied. Bright Computing, Inc. shall not be liable for technical or editorial errors or omissions which may occur in this document. Bright Computing, Inc. shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to Bright Computing, Inc.
The Bright Cluster Manager product principally consists of free software that is licensed by the Linux authors free of charge. Bright Computing, Inc. shall have no liability nor will Bright Computing, Inc. provide any warranty for the Bright Cluster Manager to the extent that is permitted by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is without any warranty, either expressed or implied, including, but not limited to, marketability or suitability for a specific purpose. The user of the Bright Cluster Manager product shall accept the full risk for the quality or performance of the product. Should the product malfunction, the costs for repair, service, or correction will be borne by the user of the Bright Cluster Manager product. No copyright owner or third party who has modified or distributed the program as permitted in this license shall be held liable for damages, including general or specific damages, damages caused by side effects or consequential damages, resulting from the use of the program or the un-usability of the program (including, but not limited to, loss of data, incorrect processing of data, losses that must be borne by you or others, or the inability of the program to work together with any other program), even if a copyright owner or third party had been advised about the possibility of such damages unless such copyright owner or third party has signed a writing to the contrary.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>0.1 About This Manual</td>
<td>iii</td>
</tr>
<tr>
<td>0.2 About The Manuals In General</td>
<td>iii</td>
</tr>
<tr>
<td>0.3 Getting Administrator-Level Support</td>
<td>iv</td>
</tr>
<tr>
<td>0.4 Getting Professional Services</td>
<td>iv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Cloud Computing Vs Edge Computing</td>
<td>1</td>
</tr>
<tr>
<td>1.2 High Speed Monitoring And Local Processing</td>
<td>1</td>
</tr>
<tr>
<td>2 Bright Edge</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Bright Edge</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Defining The Edge Site</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Adding Nodes To Pre-existing Edge Sites With cmsh</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Viewing Edge Sites Using cmsh</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4 Viewing Edge Sites Using Bright View</td>
<td>9</td>
</tr>
<tr>
<td>2.1.5 Create Edge ISO</td>
<td>10</td>
</tr>
<tr>
<td>2.1.6 Edge ISO Node Installer</td>
<td>11</td>
</tr>
<tr>
<td>2.1.7 Edge Directors</td>
<td>14</td>
</tr>
<tr>
<td>2.1.8 Edge Nodes</td>
<td>15</td>
</tr>
</tbody>
</table>
Preface

Welcome to the *Edge Manual* for Bright Cluster Manager 8.2.

0.1 About This Manual

This manual is aimed at helping cluster administrators install, understand, configure, and manage the edge computing capabilities of Bright Cluster Manager. The administrator is expected to be reasonably familiar with the *Administrator Manual*.

0.2 About The Manuals In General

Regularly updated versions of the Bright Cluster Manager 8.2 manuals are available on updated clusters by default at `/cm/shared/docs/cm`. The latest updates are always online at http://support.brightcomputing.com/manuals.

- The *Installation Manual* describes installation procedures for the basic cluster.
- The *Administrator Manual* describes the general management of the cluster.
- The *User Manual* describes the user environment and how to submit jobs for the end user.
- The *Cloudbursting Manual* describes how to deploy the cloud capabilities of the cluster.
- The *Developer Manual* has useful information for developers who would like to program with Bright Cluster Manager.
- The *OpenStack Deployment Manual* describes how to deploy OpenStack with Bright Cluster Manager.
- The *Machine Learning Manual* describes how to install and configure machine learning capabilities with Bright Cluster Manager.

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking on a cross-reference in one manual that refers to a section in another manual opens and displays that section in the second manual. Navigating back and forth between documents is usually possible with keystrokes or mouse clicks.

For example: `<Alt>-<Backarrow>` in Acrobat Reader, or clicking on the bottom leftmost navigation button of xpdf, both navigate back to the previous document.

The manuals constantly evolve to keep up with the development of the Bright Cluster Manager environment and the addition of new hardware and/or applications. The manuals also regularly incorporate customer feedback. Administrator and user input is greatly valued at Bright Computing. So any comments, suggestions or corrections will be very gratefully accepted at manuals@brightcomputing.com.

There is also a feedback form available via Bright View, via the Account icon, 🛠️, following the clickpath:

Account→Help→Feedback
0.3 Getting Administrator-Level Support

If the reseller from whom Bright Cluster Manager was bought offers direct support, then the reseller should be contacted.

Otherwise the primary means of support is via the website https://support.brightcomputing.com. This allows the administrator to submit a support request via a web form, and opens up a trouble ticket. It is a good idea to try to use a clear subject header, since that is used as part of a reference tag as the ticket progresses. Also helpful is a good description of the issue. The followup communication for this ticket goes via standard e-mail. Section 13.2 of the Administrator Manual has more details on working with support.

0.4 Getting Professional Services

Bright Computing normally differentiates between professional services (customer asks Bright Computing to do something or asks Bright Computing to provide some service) and support (customer has a question or problem that requires an answer or resolution). Professional services can be provided after consulting with the reseller, or the Bright account manager.
1

Introduction

1.1 Cloud Computing Vs Edge Computing

Cloud computing is traditionally about the concept of end users using resources that are located in a cloud elsewhere. The cloud is the central coordinator, and end users use the resources that are in the cloud rather than using their local resources.

As computing power has become cheaper over time, and resource use has grown, it has in many cases become more financially attractive to shift the emphasis of resource coordination, from the center of the cloud (core of the cloud), over to the local resources which are at the edge.

A strong case for edge computing is when the following resource requirements are easier to provide locally via local devices, than via central processing in the cloud:

- low latency
- high bandwidth consumption
- high CPU cycle consumption

For example, a self-driving car requires a low latency, high bandwidth, and high CPU cycle consumption in order to ensure a speedy and safe response to traffic requirements. Attempting to run a self-driving car via central processing in the cloud would be impractically slow or prohibitively dangerous.

Generally, edge computing is regarded as a way to have a geographically spread-out cluster make more local use of its computing resources. A geographically spread-out cluster typically already has plenty of CPU cycles, bandwidth, and low latency at its regular nodes. So, for such a geographically spread-out cluster, making more local use of its computing resources tends to mean granting extra autonomy to the edge computing devices, and making them more independent of the head node.

To achieve this greater autonomy, Bright Cluster Manager uses an edge director. This is somewhat similar to the cloud director, but is required to be geographically close to the regular nodes, and is also optimized for edge requirements.

1.2 High Speed Monitoring And Local Processing

The importance of being local and autonomous is often due to the environment that the regular nodes are in. The environment is typically under high speed monitoring by many sensors linked to the regular nodes. The data values obtained by the sensors are processed very quickly by the nodes. Such high speed processing of the monitoring data values can typically only reasonably be achieved by the nodes managing the processing locally as much as possible, rather than having the nodes managed by a head node a large distance away.
2

Bright Edge

2.1 Bright Edge

The Bright Edge feature of Bright Cluster Manager allows a single cluster to span many geographical locations ("one cluster, multiple locations"). Typical use cases are:

- HPC: organizations that have compute resources located in different cities or countries
- IoT: companies that have "edge" locations with the required compute resources at each location

Bright Cluster Manager can be used to deploy and manage resources at edge locations from the central head node.

Bright Edge sites comprise an edge director and edge nodes.

- The edge director must be reachable from the central head node. The edge director forwards requests from the edge nodes to the central head node when required.
- The edge nodes are similar to regular nodes, and are provisioned by them PXE booting off the edge director. Unlike with regular nodes, no direct connection is required between the central head node and the edge nodes.
Items to check before creating edge sites:

- The Bright Cluster Manager license must allow edge site creation
- The to-be-provisioned edge director must have an IP address that can be reached from the central head node
- Conversely, the central head node must have an IP address that can be reached by the edge director

Creating and deploying edge sites involve the following steps:

- Create the edge site using `cm-edge-setup`
- Create an edge ISO for provisioning the edge director
- Provision the edge director using the edge ISO
- Provision the edge nodes off the edge director

The following sections explain each of the preceding steps in further detail:

2.1.1 Defining The Edge Site

Edge sites are defined in Bright Cluster Manager using the Ncurses-based `cm-edge-setup`. This section goes through a `cm-edge-setup` session on the central head node that creates an edge site definition.

Running `cm-edge-setup` In Interactive Mode

Running `cm-edge-setup` without any options brings up the main edge setup screen (figure 2.2):

```
Edge operations
[  create new Edge site ]
[  Remove Edge site(s) ]
[  Exit ]

< Return to the command line
```

Figure 2.2: Edge setup main screen

A new edge site can be created by entering a series of parameters (figure 2.3):
Please enter site details below. Not specifying a site secret will require certificate requests to be processed manually from the head node when the edge nodes are booted for the first time. Entering a site secret will require the site secret to be entered on the console of the edge director when it is booted for the first time. Alternatively the site secret can also be added to the edge director's installation media to allow for non-interactive installation.

Figure 2.3: Entry of edge site parameters

A secret for the site should be entered (figure 2.4):

Figure 2.4: Entry of site secret

The site secret entry is reconfirmed by the administrator in a subsequent entry screen.

The next screen after that asks how the external network for the edge director should be set (figure 2.5):

Figure 2.5: Selection of edge external network

- If networks defined as type EdgeExternal are found, then these networks are presented for selection (figure 2.6).
- If no networks of type EdgeExternal are found, then the only option is to create a new network (figure 2.7).
Similarly to the external network configuration for the edge director, a screen comes up next that asks how the internal network for the edge director (figure 2.8):

Similarly to the external network configuration, the configuration for trusted internal network for the edge director presents the following similar options:

- If networks defined as type EdgeInternal are found, then these networks are presented for selection.
- If no networks of type EdgeInternal are found, then the only option is to create a new network (figure 2.9).
2.1 Bright Edge

Figure 2.9: Creation of a new edge internal network

The next screen allows edge director parameters to be entered:

Figure 2.10: Entry of edge director parameters

The edge nodes can now be configured. Individual nodes (figure 2.11), or a range of nodes (figure 2.12), can be configured:

Figure 2.11: Definition of single edge node

Figure 2.12: Define multiple edge nodes

Running `cm-edge-setup` In Batch Mode

In the preceding section `cm-edge-setup` was used interactively to define edge sites. It can also be used non-interactively for the same purpose. This is done by saving a site configuration file at the end of the interactive setup. This is a YAML file, and it can be used to re-create the edge sites, or it can be used as a template to create new sites.

Example

```
[root@headnode ~]# cat /root/cm/edge/ams-west.yaml
```

© Bright Computing, Inc.
This config file should be used with cm-edge-setup tool
Example:
cm-edge-setup -c <filename>
Generated by:
cm-edge-setup
cluster-tools-8.2-112301_cm8.2_b7ed6dbd8a
cmdline: /cm/local/apps/cm-setup/bin/cm-edge-setup
Generate on host:
smcluster
Date of generation:
Thu Dec 6 11:05:29 2018
MD5 checksum of everything after the closing comment:
5ca8aef31f8a047677c220824474e747
to compare: grep -v '##' <this_file> | md5sum

edge_sites:
- address: Kings
 admin_email: admin@bright
 city: Amsterdam
 contact: admin
 country: Amsterdam
edge_director:
 category: edge-director
 hostname: ams-west-director
 interface_name_external: eth0
 interface_name_internal: eth1
 ip_address_external: 10.2.125.125
 ip_address_internal: 10.161.255.254
 mac_address: ''
edge_nodes:
- category: edge-director
 hostname: ams-west-node001
 interface_name_internal: eth1
 ip_address_internal: 10.161.0.1
 mac_address: ''
external_network:
 base_address: 10.2.0.0
 domainname: brightcomputing.com
 name: externalnet
 netmask_bits: 16
internal_network:
 base_address: 10.161.0.0
 domainname: ams-west-internal.cluster
 name: ams-west-internal
 netmask_bits: 16
 notes: ''
 secret: xxxxxx
 site_name: ams-west
meta:
 command_line: /cm/local/apps/cm-setup/bin/cm-edge-setup
 date: Thu Dec 6 11:05:29 2018
 generated_with: Edge
 hostname: smcluster

© Bright Computing, Inc.
2.1 Bright Edge

```plaintext
package_name: cluster-tools-8.2-112301_cm8.2_b7ed6dbd8a
package_version: '112301'
```

2.1.2 Adding Nodes To Pre-existing Edge Sites With `cmsh`

Edge nodes can also be added to an existing edge site. This is typically required when no edge nodes were added during `cm-edge-setup`, or if the site is being expanded by adding more nodes. The addition can be done in the usual way, which is to first add the required node object with `cmsh` (section 2.5.3 of the Administrator Manual). The nodes are then added to the relevant edge site(s).

Adding nodes to an edge site can be done as follows:

Example

```
[root@smcluster ~]# cmsh
[smcluster]% edgesite
[smcluster->edgesite]% use ams-west
[smcluster->edgesite->ams-west]% append nodes edge-node005 edge-node006
[smcluster->edgesite->ams-west]% commit
[smcluster->edgesite->ams-west]% list
Name (key) Director Nodes
----------------- ------------------ ---------------------------------------------------------------
ams-west         ams-west-director ams-west-node001, ams-west-director, edge-node005, edge-node006
dell-edge        dell-edge-director dell-edge-director
```

2.1.3 Viewing Edge Sites Using `cmsh`

Edge sites can be viewed from the `edgesite` mode of `cmsh`.

Example

```
[root@smcluster ~]# cmsh
[smcluster]% edgesite
[smcluster->edgesite]% list
Name (key) Director Nodes
----------------- ----------------- ------------------------------------------
ams-west         ams-west-director ams-west-node001, ams-west-director
dell-edge        dell-edge-director dell-edge-director
[smcluster->edgesite]% show ams-west
Parameter Value
-----------------------------------------------------------
Address Kings
Administrator e-mail admin@bright
City Amsterdam
Contact admin
Country Amsterdam
Director ams-west-director
Name ams-west
Nodes ams-west-node001, ams-west-director
Notes
Revision
Secret *********
```

2.1.4 Viewing Edge Sites Using Bright View

Edge sites can also be viewed via the clickpath `Datacenter Infrastructure → Edge Sites` (figure 2.13). Properties of an edge site can be managed via editing a particular edge site.
2.1.5 Create Edge ISO

The next step in the deployment is to create the edge ISO on the head node. Typically, the edge ISO is configured so that the edge director boots from it the first time, and carries out a FULL install using the ISO for its source of files that will be installed on the edge director. The edge director is also configured to allow a boot from the hard drive.

If booting from the ISO after the first time, and if the partitions on the edge director have not changed, then a SYNC install is carried out against the central head node. If booting after the first time, and if there is no ISO, then the edge director simply boots from its local hard drive, and no files are synced with the central head node.

There are two ways to create the edge ISO:

1. The edge ISO can be created with a site-specific auto-generated wrapper script. This is the recommended approach. When an edge site is created, CMDaemon on the head node creates a wrapper script at /var/spool/cmd/edge/create-<site-name>-iso.sh. The wrapper script then provides all the site-specific information that needs to be provided for the edge node installer.

Example

```
[root@headnode ~]# cat /var/spool/cmd/edge/create-dell-edge-iso.sh
#!/bin/bash
#
# Written by CMDaemon, do not edit.
# Copy or freeze this file to make modifications.
#
export CMD_EDGE_SITE_SECRET="edge site secret"
/cm/local/apps/cluster-tools/bin/create-edge-iso
```
2.1.6 Edge ISO Node Installer

The edge ISO is used to provision the edge director. The node installer displays the following screens when booting from the edge ISO:

Example

```
[root@headnode ~]# create-edge-iso --help
              [-e EDGEDIRECTORIP] [-m HEADNODEIP] [-g DEFAULTGATEWAY]
              [-k KERNELIMAGE] [-i IMAGENAME] [-s] [-p PATHTOISOFILE]
              [-n]

Create edge iso

optional arguments:
  -h, --help          show this help message and exit
  -v, --verbose       Turn on verbose logging
  -d, --debug         Turn on debug mode, iso work directory will not be cleaned up
  -c, --includecmshared
                      Include /cm/shared on iso
  -f EDGEINTERFACE, --edgeinterface EDGEINTERFACE
                      Name of interface on edge node
  -e EDGEDIRECTORIP, --edgedirectorip EDGEDIRECTORIP
                      IP[/Netmask bits] of edge director
                      If Netmask bits is not specified, defaults to /16
  -m HEADNODEIP, --headnodeip HEADNODEIP
                      IP[:port] of head node
                      If port is not specified, defaults to :8081
  -g DEFAULTGATEWAY, --defaultgateway DEFAULTGATEWAY
                      Gateway for edge director to reach central head node
  -k KERNELIMAGE, --kernelimage KERNELIMAGE
                      Name of image whose kernel will be used for booting iso
  -i IMAGENAME, --imagename IMAGENAME
                      Name of software image to include on iso
  -s, --sitesecret    Prompt user to enter Edge site secret
  -p PATHTOISOFILE, --pathtoisofile PATHTOISOFILE
                      Path to iso file name
  -n, --donotstoresecret
                      Inform node-installer not to store the secret on the edge director
```

2. Alternatively, the edge site ISO can be created manually by setting the options to `create-edge-iso`:

```bash
-m 10.2.186.243
-f eno1
-e 10.2.126.126/16
-k "edge-director-image"
-p "/var/spool/cmd/edge/dell-edge.iso"
-g 10.2.202.202
-s
```
Figure 2.14: Edge node-installer ISO boot menu

Figure 2.15: Edge node-installer select interface
Figure 2.16: Edge director IP Static/DHCP selection

Figure 2.17: Edge director IP address and netmask

Figure 2.18: Central head node IP address and port

© Bright Computing, Inc.
2.1.7 Edge Directors

Edge directors can be provisioned from the head node, but are normally provisioned using the software image on the edge ISO/USB. This means:

- The ISO/USB should have a software image included in it
- The ISO/USB should have `/cm/shared` included in it

If the edge director is booting from the ISO/USB, it means that:

- There is a minimal overhead when only updates, rather than an entire firestorm, are synced from the head node to the edge director
- A FULL install of the edge director only takes place during the first installation of that director, or if the director disk partitions have changed.
- If the edge director has already been installed previously, and its disk partitions are unchanged, then a SYNC install is carried out, so that local files on the edge director can get updated against the head node
2.1 Bright Edge

If there is no ISO/USB available to the edge director, then the director simply boots off its local drive, and no SYNC install is followed. An explicit imageupdate can however be carried out afterwards when needed, if connectivity is there, to update the software image.

Once the edge director is in the UP state, it is responsible for the following local operations:

- Ramdisk creation for the edge nodes
- Power control for itself and the edge nodes
- Monitoring for the edge nodes

2.1.8 Edge Nodes

Edge nodes must PXE boot off the edge internal network. The edge director provisions edge nodes in the same way that the head node provisions regular nodes.