
Bright Cluster Manager 5.2

Administrator Manual
Revision: 6776

Date: Fri, 27 Nov 2015



©2012 Bright Computing, Inc. All Rights Reserved. This manual or parts
thereof may not be reproduced in any form unless permitted by contract
or by written permission of Bright Computing, Inc.

Trademarks
Linux is a registered trademark of Linus Torvalds. Pathscale is a regis-
tered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks
are trademarks or registered trademarks of Red Hat, Inc. SUSE is a reg-
istered trademark of Novell, Inc. PGI is a registered trademark of The
Portland Group Compiler Technology, STMicroelectronics, Inc. SGE is a
trademark of Sun Microsystems, Inc. FLEXlm is a registered trademark
of Globetrotter Software, Inc. Maui Cluster Scheduler is a trademark of
Adaptive Computing, Inc. ScaleMP is a registered trademark of ScaleMP,
Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical informa-
tion contained herein are current or planned as of the date of publication
of this document. They are reliable as of the time of this writing and are
presented without warranty of any kind, expressed or implied. Bright
Computing, Inc. shall not be liable for technical or editorial errors or
omissions which may occur in this document. Bright Computing, Inc.
shall not be liable for any damages resulting from the use of this docu-
ment.

Limitation of Liability and Damages Pertaining to
Bright Computing, Inc.
The Bright Cluster Manager product principally consists of free software
that is licensed by the Linux authors free of charge. Bright Computing,
Inc. shall have no liability nor will Bright Computing, Inc. provide any
warranty for the Bright Cluster Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third par-
ties provide the program as is without any warranty, either expressed or
implied, including, but not limited to, marketability or suitability for a
specific purpose. The user of the Bright Cluster Manager product shall
accept the full risk for the quality or performance of the product. Should
the product malfunction, the costs for repair, service, or correction will be
borne by the user of the Bright Cluster Manager product. No copyright
owner or third party who has modified or distributed the program as
permitted in this license shall be held liable for damages, including gen-
eral or specific damages, damages caused by side effects or consequential
damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing
of data, losses that must be borne by you or others, or the inability of the
program to work together with any other program), even if a copyright
owner or third party had been advised about the possibility of such dam-
ages unless such copyright owner or third party has signed a writing to
the contrary.



Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . i
0.1 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
0.2 About This Manual . . . . . . . . . . . . . . . . . . . . . . . vii
0.3 Getting Administrator-Level Support . . . . . . . . . . . . vii

1 Introduction 1
1.1 What Is Bright Cluster Manager? . . . . . . . . . . . . . . . 1
1.2 Cluster Structure . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Bright Cluster Manager Administrator And User Environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization Of This Manual . . . . . . . . . . . . . . . . . 3

2 Installing Bright Cluster Manager 5
2.1 Minimal Hardware Requirements . . . . . . . . . . . . . . . 5
2.2 Supported Hardware . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Head Node Installation . . . . . . . . . . . . . . . . . . . . . 6

3 Cluster Management With Bright Cluster Manager 25
3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Modules Environment . . . . . . . . . . . . . . . . . . . . . 28
3.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Cluster Management GUI . . . . . . . . . . . . . . . . . . . 33
3.5 Cluster Management Shell . . . . . . . . . . . . . . . . . . . 38
3.6 Cluster Management Daemon . . . . . . . . . . . . . . . . . 52

4 Configuring The Cluster 55
4.1 Installing A License . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Network Settings . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Configuring InfiniBand Interfaces . . . . . . . . . . . . . . . 73
4.4 Configuring IPMI Interfaces . . . . . . . . . . . . . . . . . . 77
4.5 Configuring Switches And PDUs . . . . . . . . . . . . . . . 80
4.6 Disk Layouts: Disked, Semi-Diskless, And Diskless Node

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Configuring NFS Volume Exports And Mounts . . . . . . . 84
4.8 Managing And Configuring Services . . . . . . . . . . . . . 91
4.9 Managing And Configuring A Rack . . . . . . . . . . . . . 94

5 Power Management 105
5.1 Configuring Power Parameters . . . . . . . . . . . . . . . . 105
5.2 Power Operations . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Monitoring Power . . . . . . . . . . . . . . . . . . . . . . . . 113



ii Table of Contents

6 Node Provisioning 115
6.1 Before The Kernel Loads . . . . . . . . . . . . . . . . . . . . 115
6.2 Provisioning Nodes . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 The Kernel Image, Ramdisk And Kernel Modules . . . . . 121
6.4 Node-Installer . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Node States . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.6 Updating Running Nodes . . . . . . . . . . . . . . . . . . . 152
6.7 Adding New Nodes . . . . . . . . . . . . . . . . . . . . . . 156
6.8 Troubleshooting The Node Boot Process . . . . . . . . . . . 158

7 User Management 167
7.1 Managing Users And Groups With cmgui . . . . . . . . . . 167
7.2 Managing Users And Groups With cmsh . . . . . . . . . . . 169
7.3 Using An External LDAP Server . . . . . . . . . . . . . . . 174
7.4 Using Kerberos Authentication . . . . . . . . . . . . . . . . 178
7.5 Tokens And Profiles . . . . . . . . . . . . . . . . . . . . . . . 180

8 Workload Management 183
8.1 Workload Managers Choices . . . . . . . . . . . . . . . . . 183
8.2 Forcing Jobs To Run In A Workload Management System . 184
8.3 Installation Of Workload Managers . . . . . . . . . . . . . . 185
8.4 Enabling, Disabling, And Monitoring Workload Managers 188
8.5 Configuring And Running Individual Workload Managers 194
8.6 Using cmgui With Workload Management . . . . . . . . . . 202
8.7 Using cmsh With Workload Management . . . . . . . . . . 206
8.8 Examples Of Workload Management Assignment . . . . . 212
8.9 Power Saving Features . . . . . . . . . . . . . . . . . . . . . 214

9 Post-Installation Software Management 217
9.1 Bright Cluster Manager RPM Packages And Their Naming

Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2 Managing Packages On The Head Node . . . . . . . . . . . 219
9.3 Kernel Management On A Head Node Or Image . . . . . . 221
9.4 Managing An RPM Package In A Software Image And

Running It On Nodes . . . . . . . . . . . . . . . . . . . . . . 226
9.5 Managing Non-RPM Software In A Software Image And

Running It On Nodes . . . . . . . . . . . . . . . . . . . . . . 227
9.6 Creating A Custom Software Image . . . . . . . . . . . . . 230
9.7 Making All Nodes Function Differently From Normal

Cluster Behavior With FrozenFile . . . . . . . . . . . . . . 238
9.8 Making Some Nodes Function Differently By Image . . . . 239
9.9 Making Some Nodes Function Differently By Configura-

tion Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 240

10 Cluster Monitoring 245
10.1 A Basic Example Of How Monitoring Works . . . . . . . . 245
10.2 Monitoring Concepts And Definitions . . . . . . . . . . . . 249



Table of Contents iii

10.3 Monitoring Visualization With cmgui . . . . . . . . . . . . . 254
10.4 Monitoring Configuration With cmgui . . . . . . . . . . . . 261
10.5 Overview Of Monitoring Data For Devices . . . . . . . . . 275
10.6 Event Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10.7 The monitoring Modes Of cmsh . . . . . . . . . . . . . . . . 277
10.8 Obtaining Monitoring Data Values . . . . . . . . . . . . . . 292
10.9 The User Portal . . . . . . . . . . . . . . . . . . . . . . . . . 297

11 Day-to-day Administration 299
11.1 Parallel Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
11.2 Getting Support With Cluster Manager Issues . . . . . . . . 301
11.3 Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
11.4 BIOS Configuration And Updates . . . . . . . . . . . . . . . 306
11.5 Hardware Match Check . . . . . . . . . . . . . . . . . . . . 308

12 Third Party Software 311
12.1 Modules Environment . . . . . . . . . . . . . . . . . . . . . 311
12.2 Shorewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
12.3 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
12.4 Intel Cluster Checker . . . . . . . . . . . . . . . . . . . . . . 315
12.5 CUDA For GPUs . . . . . . . . . . . . . . . . . . . . . . . . 320
12.6 OFED Software Stack . . . . . . . . . . . . . . . . . . . . . . 327
12.7 Lustre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
12.8 ScaleMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

13 High Availability 339
13.1 HA Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 339
13.2 HA Setup Procedure Using cmha-setup . . . . . . . . . . . 346
13.3 Managing HA . . . . . . . . . . . . . . . . . . . . . . . . . . 352

A Generated Files 361
A.1 Files Generated Automatically On Head Nodes . . . . . . . 362
A.2 Files Generated Automatically In Software Images . . . . . 363
A.3 Files Generated Automatically On Regular Nodes . . . . . 363

B Bright Computing Public Key 365

C CMDaemon Configuration File Directives 367

D Disk Partitioning 377
D.1 Structure Of Partitioning Definition . . . . . . . . . . . . . 377
D.2 Example: Default Node Partitioning . . . . . . . . . . . . . 381
D.3 Example: Software RAID . . . . . . . . . . . . . . . . . . . . 382
D.4 Example: Software RAID With Swap . . . . . . . . . . . . . 383
D.5 Example: Logical Volume Manager . . . . . . . . . . . . . . 384
D.6 Example: Diskless . . . . . . . . . . . . . . . . . . . . . . . . 385
D.7 Example: Semi-diskless . . . . . . . . . . . . . . . . . . . . 386
D.8 Example: Preventing Accidental Data Loss . . . . . . . . . 387



iv Table of Contents

D.9 Example: Using Custom Assertions . . . . . . . . . . . . . 388

E Example initialize And finalize Scripts 391
E.1 When Are They Used? . . . . . . . . . . . . . . . . . . . . . 391
E.2 Accessing From cmgui And cmsh . . . . . . . . . . . . . . . 391
E.3 Analogous Scripts That Run During imageupdate . . . . . 392
E.4 Environment Variables Available To initialize And

finalize Scripts . . . . . . . . . . . . . . . . . . . . . . . . 392
E.5 Using Environment Variables Stored In Multiple Variables 395
E.6 Storing A Configuration To A Filesystem . . . . . . . . . . 396

F Quickstart Installation Guide 399
F.1 Installing Head Node . . . . . . . . . . . . . . . . . . . . . . 399
F.2 First Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
F.3 Booting Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 401
F.4 Running Cluster Management GUI . . . . . . . . . . . . . . 403

G Workload Managers Quick Reference 405
G.1 SLURM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
G.2 Sun Grid Engine . . . . . . . . . . . . . . . . . . . . . . . . . 406
G.3 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
G.4 PBS Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

H Metrics, Health Checks, And Actions 409
H.1 Metrics And Their Parameters . . . . . . . . . . . . . . . . . 409
H.2 Health Checks And Their Parameters . . . . . . . . . . . . 417
H.3 Actions And Their Parameters . . . . . . . . . . . . . . . . 420

I Metric Collections 423
I.1 Metric Collections Added Using cmsh . . . . . . . . . . . . 423
I.2 Metric Collections Initialization . . . . . . . . . . . . . . . . 423
I.3 Metric Collections Output During Regular Use . . . . . . . 424
I.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . 424
I.5 Environment Variables . . . . . . . . . . . . . . . . . . . . . 425
I.6 Metric Collections Examples . . . . . . . . . . . . . . . . . . 426
I.7 iDataPlex And Similar Units . . . . . . . . . . . . . . . . . . 426

J Changing The Network Parameters Of The Head Node 429
J.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
J.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
J.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

K Bright Cluster Manager Python API 433
K.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
K.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
K.3 Methods And Properties . . . . . . . . . . . . . . . . . . . . 435



Table of Contents v

L Workload Manager Configuration Files Updated By CMDaemon443
L.1 Slurm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
L.2 Grid Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
L.3 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
L.4 PBS Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

M Linux Distributions That Require Registration 445
M.1 Registering A Red Hat Enterprise Linux Based Cluster . . 445
M.2 Registering A SUSE Linux Enterprise Server Based Cluster 448

N Burning Nodes 451
N.1 Test Scripts Deployment . . . . . . . . . . . . . . . . . . . . 451
N.2 Burn Configurations . . . . . . . . . . . . . . . . . . . . . . 451
N.3 Running A Burn Configuration . . . . . . . . . . . . . . . . 453





Preface

Welcome to the Administrator Manual for the Bright Cluster Manager 5.2 clus-
ter environment.

0.1 Quickstart
For readers who want to get a cluster up and running as quickly as pos-
sible with Bright Cluster Manager, Appendix F is a quickstart installation
guide.

0.2 About This Manual
The rest of this manual is aimed at helping system administrators install,
understand, and manage a cluster running Bright Cluster Manager so as
to get the best out of it.

The Administrator Manual covers administration topics which are spe-
cific to the Bright Cluster Manager environment. Readers should already
be familiar with basic Linux system administration, which the manual
does not generally cover. Aspects of system administration that require
a more advanced understanding of Linux concepts for clusters are ex-
plained appropriately.

This manual is not intended for users interested only in interacting
with the cluster to run compute jobs. The User Manual is intended to get
such users up to speed with the user environment and workload man-
agement system.

Updated versions of the Administrator Manual, as well as the User Man-
ual, are always available on the cluster at /cm/shared/docs/cm.

The manuals constantly evolve to keep up with the development of
the Bright Cluster Manager environment and the addition of new hard-
ware and/or applications.

The manuals also regularly incorporate customer feedback. Adminis-
trator and user input is is greatly valued at Bright Computing, so that any
comments, suggestions or corrections will be very gratefully accepted at
manuals@brightcomputing.com.

0.3 Getting Administrator-Level Support
If the Bright Cluster Manager software was obtained through a reseller or
system integrator, then the first line of support is provided by the reseller
or system integrator. The reseller or system integrator in turn contacts
the Bright Computing support department if 2nd or 3rd level support is
required.

If the Bright Cluster Manager software was purchased directly from
Bright Computing, then support@brightcomputing.com can be contacted
for all levels of support.

Section 11.2 has more details on working with support.

support@brightcomputing.com




1
Introduction

1.1 What Is Bright Cluster Manager?
Bright Cluster Manager 5.2 is a cluster management application built on
top of a major Linux distribution. It is available for:

• Scientific Linux 5 and 6 (x86_64 only)

• Red Hat Enterprise Linux Server 5 and 6 (x86_64 only)

• CentOS 5 and 6 (x86_64 only)

• SUSE Enterprise Server 11 (x86_64 only)

This chapter introduces some basic features of Bright Cluster Manager
and describes a basic cluster in terms of its hardware.

1.2 Cluster Structure
In its most basic form, a cluster running Bright Cluster Manager contains:

• One machine designated as the head node

• Several machines designated as compute nodes

• One or more (possibly managed) Ethernet switches

• One or more power distribution units (Optional)

The head node is the most important machine within a cluster be-
cause it controls all other devices, such as compute nodes, switches and
power distribution units. Furthermore, the head node is also the host
that all users (including the administrator) log in to. The head node is
the only machine that is connected directly to the external network and
is usually the only machine in a cluster that is equipped with a monitor
and keyboard. The head node provides several vital services to the rest
of the cluster, such as central data storage, workload management, user
management, DNS and DHCP service. The head node in a cluster is also
frequently referred to as the master node.

A cluster typically contains a considerable number of non-head, or
(regular) nodes, also referred to simply as nodes.

Most of these nodes are compute nodes. Compute nodes are the ma-
chines that will do the heavy work when a cluster is being used for large

© Bright Computing, Inc.



2 Introduction

computations. In addition to compute nodes, larger clusters may have
other types of nodes as well (e.g. storage nodes and login nodes). Nodes
can be easily installed through the (network bootable) node provision-
ing system that is included with Bright Cluster Manager. Every time a
compute node is started, the software installed on its local hard drive is
synchronized automatically against a software image which resides on
the head node. This ensures that a node can always be brought back to
a “known state”. The node provisioning system greatly eases compute
node administration and makes it trivial to replace an entire node in the
event of hardware failure. Software changes need to be carried out only
once (in the software image), and can easily be undone. In general, there
will rarely be a need to log on to a compute node directly.

In most cases, a cluster has a private internal network, which is usu-
ally built from one or multiple managed Gigabit Ethernet switches. The
internal network connects all nodes to the head node and to each other.
Compute nodes use the internal network for booting, data storage and
interprocess communication. In more advanced cluster setups, there may
be several dedicated networks. Note that the external network (which
could be a university campus network, company network or the Inter-
net) is not normally directly connected to the internal network. Instead,
only the head node is connected to the the external network.

Figure 1.1 illustrates a typical cluster network setup.

Figure 1.1: Cluster network

Most clusters are equipped with one or more power distribution units.
These units supply power to all compute nodes and are also connected to
the internal cluster network. The head node in a cluster can use the power
control units to switch compute nodes on or off. From the head node, it is
straightforward to power on/off a large number of compute nodes with
a single command.

1.3 Bright Cluster Manager Administrator And User
Environment

Bright Cluster Manager contains several tools and applications to facili-
tate the administration and monitoring of a cluster. In addition, Bright
Cluster Manager aims to provide users with an optimal environment for

© Bright Computing, Inc.



1.4 Organization Of This Manual 3

developing and running applications that require extensive computational
resources.

1.4 Organization Of This Manual
The following chapters of this manual describe all aspects of Bright Clus-
ter Manager from the perspective of a cluster administrator.

Chapter 2 gives step-by-step instructions to installing Bright Cluster
Manager on the head node of a cluster. Readers with a cluster that was
shipped with Bright Cluster Manager pre-installed may safely skip this
chapter.

Chapter 3 introduces the main concepts and tools that play a central
role in Bright Cluster Manager, laying down groundwork for the remain-
ing chapters.

Chapter 4 explains how to configure and further set up the cluster
after software installation of Bright Cluster Manager on the head node.

Chapter 5 describes how power management within the cluster works.
Chapter 6 explains node provisioning in detail.
Chapter 7 explains how accounts for users and groups are managed.
Chapter 8 explains how workload management is implemented and

used.
Chapter 9 demonstrates a number of techniques and tricks for work-

ing with software images and keeping images up to date.
Chapter 10 explains how the monitoring features of Bright Cluster

Manager can be used.
Chapter 11 summarizes several useful tips and tricks for day to day

monitoring.
Chapter 12 describes a number of third party software packages that

play a role in Bright Cluster Manager.
Chapter 13 gives details and setup instructions for high availability

features provided by Bright Cluster Manager. These can be followed to
build a cluster with redundant head nodes.

The appendices generally give supplementary details to the main text.

© Bright Computing, Inc.





2
Installing Bright Cluster

Manager
This chapter describes the installation of Bright Cluster Manager onto the
head node of a cluster. Sections 2.1 and 2.2 list hardware requirements
and supported hardware, while section 2.3 gives step-by-step instructions
on installing Bright Cluster Manager from a DVD onto a head node.

2.1 Minimal Hardware Requirements
The following are minimal hardware requirements:

2.1.1 Head Node
• Intel Xeon or AMD Opteron CPU (64-bit)

• 2GB RAM

• 80GB diskspace

• 2 Gigabit Ethernet NICs

• DVD drive

2.1.2 Compute Nodes
• Intel Xeon or AMD Opteron CPU (64-bit)

• 1GB RAM (at least 4GB is recommended for diskless nodes)

• 1 Gigabit Ethernet NIC

2.2 Supported Hardware
The following hardware is supported:

2.2.1 Compute Nodes
• SuperMicro

• Cray

• Dell

• IBM

© Bright Computing, Inc.



6 Installing Bright Cluster Manager

• Asus

• Hewlett Packard

Other brands are unsupported, but are also expected to work.

2.2.2 Ethernet Switches
• HP Procurve

• Nortel

• Cisco

• Dell

• SuperMicro

• Netgear

Other brands are unsupported, but are also expected to work.

2.2.3 Power Distribution Units
• APC (American Power Conversion) Switched Rack PDU

Other brands are unsupported, but are also expected to work.

2.2.4 Management Controllers
• IPMI 1.5/2.0

• HP iLO 1/2/3

2.2.5 InfiniBand
• Mellanox HCAs, and most other InfiniBand HCAs

• Mellanox InfiniBand switches, and most other InfiniBand switches

2.3 Head Node Installation
This section describes the steps in installing a Bright Cluster Manager
head node. To start the install, the time in the BIOS of the head node is set
to local time and the head node is set to boot from DVD. The head node
is then booted from the Bright Cluster Manager DVD.

2.3.1 Welcome Screen
The welcome screen (figure 2.1) displays version and license information.
Two installation modes are available, normal mode and express mode.
Selecting the express mode installs the head node with the predefined
configuration that the DVD was created with. The administrator pass-
word automatically set when express mode is selected is: system. Click-
ing on the Continue button brings up the Bright Cluster Manager soft-
ware license screen, described next.

© Bright Computing, Inc.



2.3 Head Node Installation 7

Figure 2.1: Installation welcome screen for Bright Cluster Manager

2.3.2 Software License
The “Bright Computing Software License” screen (figure 2.2) explains
the applicable terms and conditions that apply to use of the Bright Cluster
Manager software.

Accepting the terms and conditions, and clicking on the Continue but-
ton leads to the Base Distribution EULA (End User License Agreement)
(figure 2.3).

Accepting the terms and conditions of the base distribution EULA,
and clicking on the Continue button leads to two possibilities.

1. If express mode was selected earlier, then the installer skips ahead
to the Summary screen (figure 2.24), where it shows an overview
of the predefined installation parameters, and awaits user input to
start the install.

2. Otherwise, if normal installation mode was selected earlier, then
the “Kernel Modules” configuration screen is displayed, described
next.

© Bright Computing, Inc.



8 Installing Bright Cluster Manager

Figure 2.2: Bright Cluster Manager Software License

Figure 2.3: Base Distribution End User License Agreement

2.3.3 Kernel Modules Configuration
The Kernel Modules screen (figure 2.4) shows the kernel modules recom-
mended for loading based on hardware auto-detection. Clicking the ©+
button opens an input box for entering the module name and optional
module parameters. Clicking the Add button in the input box adds the
kernel module. The ©- button removes a selected module from the list,
and the arrow buttons move a kernel module up or down in the list. Ker-
nel module loading order decides the exact name assigned to a device

© Bright Computing, Inc.



2.3 Head Node Installation 9

(e.g. sda, sdb, eth0, eth1).
After optionally adding or removing kernel modules, clicking

Continue leads to the “Hardware Information” overview screen, de-
scribed next.

Figure 2.4: Kernel Modules Recommended For Loading After Probing

2.3.4 Hardware Overview
The “Hardware Information” screen (figure 2.5) provides an overview
of detected hardware depending on the kernel modules that have been
loaded. If any hardware is not detected at this stage, the “Go Back” but-
ton is used to go back to the “Kernel Modules” screen (figure 2.4) to add
the appropriate modules, and then the “Hardware Information” screen
is returned to, to see if the hardware has been detected. Clicking Continue

in this screen leads to the Nodes configuration screen, described next.

© Bright Computing, Inc.



10 Installing Bright Cluster Manager

Figure 2.5: Hardware Overview Based On Loaded Kernel Modules

2.3.5 Nodes Configuration
The Nodes screen (figure 2.6) configures the number of racks, the number
of nodes, the node basename, the number of digits for nodes, and the
hardware manufacturer.

The maximum number of digits is 5, to keep the hostname reasonably
readable.

The “Node Hardware Manufacturer” selection option initializes any
monitoring parameters relevant for that manufacturer’s hardware. If the
manufacturer is not known, then Other is selected from the list.

Clicking Continue in this screen leads to the “Network Topology” se-
lection screen, described next.

© Bright Computing, Inc.



2.3 Head Node Installation 11

Figure 2.6: Nodes Configuration

2.3.6 Network Topology
The “Network Topology” screen allows selection of one of three different
network topologies.

A type 1 network (figure 2.7), with nodes connected on a private internal
network. It is the default network setup.

A type 2 network (figure 2.8), with nodes connected on a public network.

A type 3 network (figure 2.9), with nodes connected on a routed public
network.

Selecting the network topology helps decide the predefined networks
on the Networks settings screen later (figure 2.11). Clicking Continue here
leads to the “Additional Network Configuration” screen, described
next.

© Bright Computing, Inc.



12 Installing Bright Cluster Manager

Figure 2.7: Networks Topology: nodes connected on a private internal
network

Figure 2.8: Networks Topology: nodes connected on a public network

© Bright Computing, Inc.



2.3 Head Node Installation 13

Figure 2.9: Network Topology: nodes connected on a routed public net-
work

2.3.7 Additional Network Configuration
The “Additional Network Configuration” screen (figure 2.10) allows
InfiniBand and IPMI/iLO networks to be configured. The IPMI password
is set to a random value if IPMI is to be used. Retrieving and changing an
IPMI password is covered in section 4.4.

Clicking Continue in figure 2.10 leads to the Networks configuration
screen, described next.

Figure 2.10: Additional Network Configuration

© Bright Computing, Inc.



14 Installing Bright Cluster Manager

2.3.8 Networks Configuration
The Networks configuration screen (figure 2.11) displays the predefined
list of networks, based on the selected network topology. IPMI and Infini-
Band networks are defined based on selections made in the “Additional
Network Configuration” screen earlier (figure 2.10).

The parameters of the network interfaces can be configured in this
screen.

For a type 1 setup, an external network and an internal network are al-
ways defined.

For a type 2 setup only an internal network is defined and no external
network is defined.

For a type 3 setup, an internal network and a management network are
defined.

Clicking Continue in this screen validates all network settings. Invalid
settings for any of the defined networks cause an alert to be displayed,
explaining the error. A correction is then needed to proceed further.

If all settings are valid, the installation proceeds on to the Nameservers
screen, described in the next section.

Figure 2.11: Networks Configuration

2.3.9 Nameservers And Search Domains
Search domains and external name servers can be added or removed us-
ing the Nameservers screen (figure 2.12). Using an external name server is
recommended. Clicking on Continue leads to the “Network Interfaces”
configuration screen, described next.

© Bright Computing, Inc.



2.3 Head Node Installation 15

Figure 2.12: Nameservers and search domains

2.3.10 Network Interfaces Configuration
The “Network Interfaces” screens (figures 2.13 and 2.14) show the list of
network interfaces that have been predefined for type 1 and type 3 setups
respectively. Each screen has a network configuration section for the head
node and for the regular nodes.

For node network interfaces, the IP offset can be modified. The offset
is used to calculate the IP address assigned to the interface on the se-
lected network. For example, a different offset might be desirable when
no IPMI network has been defined, but nodes do have IPMI. In this case
the BOOTIF and ipmi0 interfaces have IP addresses assigned on the same
network, but if a different offset is entered for the ipmi0 interface, then
the assigned IP address starts from the offset specified.

A different network can be selected for each interface using the drop-
down box in the Network column. Selecting Unassigned disables a net-
work interface.

If the corresponding network settings are changed (e.g., base address
of the network) the IP address of the head node interface needs to be mod-
ified accordingly. If IP address settings are invalid, an alert is displayed,
explaining the error.

Clicking Continue on a “Network Interfaces” screen validates IP
address settings for all node interfaces, and if all setting are correct, and if
InfiniBand networks have been defined, leads to the “Subnet Managers”
screen (figure 2.15), described in the next section. If no InfiniBand net-
works are defined, or if InfiniBand networks have not been enabled on
the networks settings screen, then clicking Continue instead leads to the
CD/DVD ROMs selection screen (figure 2.16).

© Bright Computing, Inc.



16 Installing Bright Cluster Manager

Figure 2.13: Network Interface Configuration: type 1

Figure 2.14: Network Interface Configuration: type 3

2.3.11 Select Subnet Managers
The “Subnet Managers” screen in figure 2.15 is only displayed if an In-
finiBand network was defined, and lists all the nodes that can run the
InfiniBand subnet manager. The nodes assigned the role of a subnet man-
ager are ticked, and the Continue button is clicked to go on to the “CD/DVD
ROMs” selection screen, described next.

© Bright Computing, Inc.



2.3 Head Node Installation 17

Figure 2.15: Subnet Manager Nodes

2.3.12 Select CD/DVD-ROM
The “CD/DVD ROMs” screen in figure 2.16 lists all detected CD/DVD-ROM
devices. If multiple drives are found, then the drive with the Bright Clus-
ter Manager DVD needs to be selected by the administrator. Clicking on
Continue then brings up the “Workload Management” setup screen, de-
scribed next.

Figure 2.16: DVD Selection

© Bright Computing, Inc.



18 Installing Bright Cluster Manager

2.3.13 Workload Management Configuration
The “Workload Management” configuration screen (figure 2.17) allows se-
lection from a list of supported workload managers. A workload man-
agement system is highly recommended to run multiple compute jobs on
a cluster.

To prevent a workload management system from being set up, select
None. If a workload management system is selected, then the number
of slots per node can be set, otherwise the slots setting is ignored. If no
changes are made, then the number of slots defaults to the CPU count on
the head node.

The head node can also be selected for use as a compute node, which
can be a sensible choice on small clusters. The setting is ignored if no
workload management system is selected.

Clicking Continue on this screen leads to the “Disk Partitioning

and Layouts” screen, described next.

Figure 2.17: Workload Management Setup

2.3.14 Disk Partitioning And Layouts
The “Disk Partitioning and Layouts” configuration screen (figure 2.18):

• selects the drive that the cluster manager is installed onto on the
head node.

• sets the disk partitioning layout for the head node and regular
nodes with the two options: “Head node disk layout” and “Node
disk layout”.

– A partitioning layout other than the default can be selected for
installation from the drop-down boxes.

– A text editor pops up when an option’s edit button is clicked
(figure 2.19). This can be used to view and change values. The
Save and Reset buttons are enabled on editing, and save or

© Bright Computing, Inc.



2.3 Head Node Installation 19

undo the text editor changes. Once saved, the changes cannot
be reverted automatically in the text editor, but must be done
manually.

– A partitioning layout is the only installation setting that can-
not easily be changed after the completion (section 2.3.20) of
installation. It should therefore be decided upon with care.

Figure 2.18: Disk Partitioning And Layouts

Figure 2.19: Edit Head Node Disk Partitioning

© Bright Computing, Inc.



20 Installing Bright Cluster Manager

Clicking Continue on this screen leads to the “Time Configuration”
screen, described next.

2.3.15 Time Configuration
The “Time Configuration” screen (figure 2.20) displays a predefined list
of time servers. Timeservers can be removed by selecting a time server
from the list and clicking the ©- button. Additional time servers can be
added by entering the name of the time server and clicking the©+ button.
A timezone can be selected from the drop-down box if the default is incor-
rect. Clicking Continue leads to the “Cluster Access” screen, described
next.

Figure 2.20: Time Configuration

2.3.16 Cluster Access
The “Cluster Access” screen (figure 2.21) sets the existence of a cluster
management web portal service, and also sets network access to several
services.

© Bright Computing, Inc.



2.3 Head Node Installation 21

Figure 2.21: Cluster Access

These services are the web portal, ssh, and the cluster management
daemon.

If restricting network access for a service is chosen, then an editable
list of networks that may access the service is displayed. By default the
list has no members. The screen will not move on to the next screen until
the list contains at least one CIDR-format network IP address.

If the conditions for this screen are satisfied, then clicking Continue

leads to the Authentication screen, described next.

2.3.17 Authentication
The Authentication screen (figure 2.22) requires the password to be set
twice for the cluster administrator. The cluster name and the head node
hostname can also be set in this screen. Clicking Continue validates the
passwords that have been entered, and if successful, leads to the Console
screen, described next.

© Bright Computing, Inc.



22 Installing Bright Cluster Manager

Figure 2.22: Authentication

2.3.18 Console
The Console screen (figure 2.23) allows selection of a graphical mode or a
text console mode for when the head node or regular nodes boot. Clicking
Continue leads to the Summary screen, described next.

Figure 2.23: Console

2.3.19 Summary
The Summary screen (figure 2.24), summarizes some of the installation set-
tings and parameters configured during the previous stages. If the ex-
press mode installation was chosen, then it summarizes the predefined

© Bright Computing, Inc.



2.3 Head Node Installation 23

settings and parameters. Changes to the values on this screen are made
by navigating to previous screens and correcting the values there.

When the summary screen displays the right values, clicking on the
Start button leads to the “Installation Progress” screen, described
next.

Figure 2.24: Summary of Installation Settings

2.3.20 Installation
The “Installation Progress” screen (figure 2.25) shows the progress of
the installation. It is not possible to navigate back to previous screens once
the installation has begun. When the installation is complete (figure 2.26),
the installation log can be viewed in detail by clicking on “Install Log”.

The Reboot button restarts the machine. The BIOS boot order may
need changing or the DVD should be removed, in order to boot from the
hard drive on which Bright Cluster Manager has been installed.

© Bright Computing, Inc.



24 Installing Bright Cluster Manager

Figure 2.25: Installation Progress

Figure 2.26: Installation Completed

After rebooting, the system starts and presents a login prompt. After
logging in as root using the password that was set during the installa-
tion procedure, the system is ready to be configured. If express installa-
tion mode was chosen earlier as the install method, then the password is
preset to system.

Next, in Chapter 3, some of the tools and concepts that play a central
role in Bright Cluster Manager are introduced. Chapter 4 then explains
how to configure and further set up the cluster.

© Bright Computing, Inc.



3
Cluster Management With

Bright Cluster Manager
This chapter introduces cluster management with Bright Cluster Man-
ager. A cluster running Bright Cluster Manager exports a cluster manage-
ment interface to the outside world, which can be used by any application
designed to communicate with the cluster.

Section 3.1 introduces a number of concepts which are key to cluster
management using Bright Cluster Manager.

Section 3.2 gives a short introduction on how the modules environ-
ment can be used by administrators. The modules environment provides
facilities to control aspects of a users’ interactive sessions and also the
environment used by compute jobs.

Section 3.3 introduces how authentication to the cluster management
infrastructure works and how it is used.

Section 3.4 and section 3.5 introduce the cluster management GUI
(cmgui) and cluster management shell (cmsh) respectively. These are the
primary applications that interact with the cluster through its manage-
ment infrastructure.

Section 3.6 describes the basics of the cluster management daemon,
CMDaemon, running on all nodes of the cluster.

3.1 Concepts
In this section some concepts central to cluster management with Bright
Cluster Manager are introduced.

3.1.1 Devices
A device in the Bright Cluster Manager cluster management infrastructure
represents physical hardware components of a cluster. A device can be
any of the following types:

• Head Node

• Node

• Virtual SMP Node1

1a hardware component because it is fundamentally made up of several physical nodes,
even though it is seen by the end user as virtual nodes

© Bright Computing, Inc.



26 Cluster Management With Bright Cluster Manager

• GPU Unit

• Ethernet Switch

• InfiniBand Switch

• Myrinet Switch

• Power Distribution Unit

• Rack Sensor Kit

• Generic Device

A device can have a number of properties (e.g. rack position, host-
name, switch port) which can be set in order to configure the device. Us-
ing the cluster management infrastructure, operations (e.g. power on)
may be performed on a device. The property changes and operations
that can be performed on a device depend on the type of device. For ex-
ample, it is possible to mount a new filesystem to a node, but not to an
Ethernet switch.

Every device that is present in the cluster management infrastructure
has a device state associated with it. The table below describes the most
important states for devices:

Device State Description

UP device is reachable

DOWN device is not reachable

CLOSED device has been taken offline by administrator

There are a number of other states which are described in detail in sec-
tion 6.5.

DOWN and CLOSED states have an important difference. In the case of
DOWN, the device was intended to be available, but instead is down. In the
case of CLOSED, the device is intentionally unavailable.

3.1.2 Software Images
A software image is a blueprint for the contents of the local file-systems on
a regular node. In practice, a software image is a directory on the head
node containing a full Linux file-system. When an regular node boots,
the node provisioning system (Chapter 6) sets up the node with a copy of
the software image, which by default is called default-image.

Once the node is fully booted, it is possible to instruct the node to re-
synchronize its local filesystems with the software image. This procedure
can be used to distribute changes to the software image without rebooting
nodes (section 6.6.2).

Software images can be changed using regular Linux tools and com-
mands (such as rpm and chroot). More details on making changes to
software images and doing image package management can be found in
Chapter 9.

© Bright Computing, Inc.



3.1 Concepts 27

3.1.3 Node Categories
The collection of settings in Bright Cluster Manager that can apply to a
node is called the configuration of the node. The administrator usually
configures nodes using the cmgui (section 3.4) and cmsh (section 3.5) front
end tools, and the configurations are managed internally with a database.

A node category is a group of regular nodes that share the same con-
figuration. Node categories allow efficiency, allowing an administrator
to:

• configure a large group of nodes at once. For example, to set up a
group of nodes with a particular disk layout.

• operate on a large group of nodes at once. For example, to carry out
a reboot on an entire category.

A node is in exactly one category at all times, which is default by
default.

Nodes are typically divided into node categories based on the hard-
ware specifications of a node or based on the task that a node is to per-
form. Whether or not a number of nodes should be placed in a separate
category depends mainly on whether the configuration—for example:
monitoring setup, disk layout, role assignment—for these nodes differs
from the rest of the nodes.

A node inherits values from the category it is in. Each value is treated
as the default property value for a node, and is overruled by specifying
the node property value for the node.

One configuration property value of a node category is its software
image (section 3.1.2). However, there is no requirement for a one-to-one
correspondence between node categories and software images. Therefore
multiple node categories may use the same software image, and multiple
images may be used in the same node category.

By default, all nodes are placed in the default category. Alternative
categories can be created and used at will, such as:

Example

Node Category Description

nodes-ib nodes with InfiniBand capabilities

nodes-highmem nodes with extra memory

login login nodes

storage storage nodes

3.1.4 Node Groups
A node group consists of nodes that have been grouped together for conve-
nience. The group can consist of any mix of all kinds of nodes, irrespec-
tive of whether they are head nodes or regular nodes, and irrespective
of what (if any) category they are in. A node may be in 0 or more node
groups at one time. I.e.: a node may belong to many node groups.

Node groups are used mainly for carrying out operations on an entire
group of nodes at a time. Since the nodes inside a node group do not
necessarily share the same configuration, configuration changes cannot
be carried out using node groups.

© Bright Computing, Inc.



28 Cluster Management With Bright Cluster Manager

Example

Node Group Members

broken node087, node783, node917

headnodes mycluster-m1, mycluster-m2

rack5 node212..node254

top node084, node126, node168, node210

3.1.5 Roles
A role is a task that can be performed by a node. By assigning a certain
role to a node, an administrator activates the functionality that the role
represents on this node. For example, a node can be turned into provi-
sioning node, or a storage node by assigning the corresponding roles to
the node.

Roles can be assigned to individual nodes or to node categories. When
a role has been assigned to a node category, it is implicitly assigned to all
nodes inside of the category.

Some roles allow parameters to be set that influence the behavior of
the role. For example, the SLURM Client Role (which turns a node into
a SLURM client) uses parameters to control how the node is configured
within SLURM in terms of queues and the number of GPUs.

When a role has been assigned to a node category with a certain set of
parameters, it is possible to override the parameters for a node inside the
category. This can be done by assigning the role again to the individual
node with a different set of parameters. Roles that have been assigned to
nodes override roles that have been assigned to a node category.

Examples of role assignment are given in sections 6.2.2 and 6.2.3.

3.2 Modules Environment
The modules environment is a third-party software (section 12.1) that al-
lows users to modify their shell environment using pre-defined modules.
A module may, for example, configure the user’s shell to run a certain
version of an application.

Details of the modules environment from a user perspective are dis-
cussed in the User Manual. However some aspects of it are relevant for
administrators and are therefore discussed here.

3.2.1 Adding And Removing Modules
Modules may be loaded and unloaded, and also be combined for greater
flexibility.

Modules currently installed are listed with:

module list

The modules available for loading are listed with:

module avail

Loading and removing specific modules is done with module load

and module remove, using this format:

module load <MODULENAME1> [<MODULENAME2> ...]

© Bright Computing, Inc.



3.2 Modules Environment 29

Loading the shared module (section 3.2.2), the gcc compiler, the
openmpi parallel library, and the gotoblas/opteron 64-bit library, then
allows an MPI application to be compiled with Opteron GOTOBLAS op-
timizations.

Example

module add shared

module add gcc

module add openmpi/gcc

module add gotoblas/opteron/64

mpicc -o myapp myapp.c

Specifying version numbers explicitly is typically only necessary
when multiple versions of an application are installed and available.
When there is no ambiguity, module names without a further path speci-
fication may be used.

3.2.2 Using Local And Shared Modules
Applications and their associated modules are divided into local and
shared groups. Local applications are installed on the local file-system,
whereas shared applications reside on a shared (i.e. imported) file-
system.

It is recommended that the shared module be loaded by default for or-
dinary users. Loading it gives access to the modules belonging to shared
applications, and allows the module avail command to show these extra
modules.

Loading the shared module automatically for root is not recom-
mended on a cluster where shared storage is not on the head node itself,
because root logins could be obstructed if this storage is unavailable.

On clusters without external shared storage, root can safely load the
shared module automatically at login. This can be done by running the
following command as root:

module initadd shared

Other modules can also be set to load automatically by the user at lo-
gin by using “module initadd” with the full path specification. With the
initadd option, individual users can customize their own default mod-
ules environment.

Modules can be combined in meta-modules. By default, the
default-environment meta-module exists, which allows the loading of
several modules at once by a user. Cluster administrators are encour-
aged to customize the default-environment meta-module to set up a
recommended environment for their users. The default-environment

meta-module is empty by default.

3.2.3 Setting Up A Default Environment For All Users
The administrator can set up a default modules environment for all users.

To illustrate this, the following case may be considered, where all
users currently have just the following modules:

Example

© Bright Computing, Inc.



30 Cluster Management With Bright Cluster Manager

[fred@bright52 ~]$ module list

Currently Loaded Modulefiles:

1) null 2) shared 3) gcc/4.4.6

Two ways in which the Torque and Maui modules can then be set up
by the administrator as a default for all users are:

• Loading up the required modules in the standard user skeleton file
for .bashrc at /etc/skel/.bashrc (some output omitted):

Example

[root@bright52 ~]# cat /etc/skel/.bashrc

...

# User specific aliases and functions

module load torque

module load maui

• Alternatively, if /cm/shared/modulefiles/default-environment

is specified as:

Example

[root@bright52 ~]# cat /cm/shared/modulefiles/default-environment

#%Module1.0######################################################

## default modulefile

##

proc ModulesHelp { } {

puts stderr "\tLoads default environment modules for thi\

s cluster"

}

module-whatis "adds default environment modules"

# Add any modules here that should be added by when a user loads\

the 'default-environment' module

module add torque maui

then the last lines of /etc/skel/.bashrc can be specified as this
instead:

Example

[root@bright52 ~]# cat /etc/skel

...

# User specific aliases and functions

module load default-environment

More details on the modules environment from an administrator’s
perspective are given in section 12.1.

© Bright Computing, Inc.

/cm/shared/modulefiles/default-environment
/etc/skel/.bashrc


3.3 Authentication 31

3.3 Authentication
3.3.1 Changing Administrative Passwords On The Cluster
How to set up or change regular user passwords is not discussed here,
but in Chapter 7 on user management.

Amongst the administrative passwords associated with the cluster
are:

1. The root password of the head node: This allows a root login to the
head node.

2. The root password of the software images: This allows a root login
to a regular node, and is stored in the image file.

3. The root password of the node-installer: This allows a root login
to the node when the node-installer, a stripped-down operating sys-
tem, is running. The node-installer stage prepares the node for the
final operating system when the node is booting up. Section 6.4
discusses the node-installer in more detail.

4. The root password of mysql: This allows a root login to the mysql
server.

5. The administrator certificate password: This decrypts the
/root/admin.pfx file so that the administrator certificate can be
presented to cmdaemon when administrator tasks require running.
Section 3.3.2 discusses certificates in more detail.

To avoid having to remember the disparate ways in which to change
these 5 passwords, the cm-change-passwd command runs a dialog prompt-
ing the administrator on which of them, if any, should be changed, as in
the following example:

[root@bright52 ~]# cm-change-passwd

With this utility you can easily change the following passwords:

* root password of head node

* root password of slave images

* root password of node-installer

* root password of mysql

* administrator certificate for use with cmgui (/root/admin.pfx)

Note: if this cluster has a high-availability setup with 2 head nodes,

be sure to run this script on both head nodes.

Change password for root on head node? [y/N]: y

Changing password for root on head node.

Changing password for user root.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

Change password for root in default-image [y/N]: y

Changing password for root in default-image.

Changing password for user root.

New UNIX password:

Retype new UNIX password:

© Bright Computing, Inc.



32 Cluster Management With Bright Cluster Manager

passwd: all authentication tokens updated successfully.

Change password for root in node-installer? [y/N]: y

Changing password for root in node-installer.

Changing password for user root.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

Change password for MYSQL root user? [y/N]: y

Changing password for MYSQL root user.

Old password:

New password:

Re-enter new password:

Change password for admin certificate file? [y/N]: y

Enter old password:

Enter new password:

Verify new password:

Password updated

3.3.2 Certificates
While a Bright Cluster Manager cluster accepts ordinary ssh based logins
for cluster usage, the cluster management infrastructure requires public
key authentication using X509v3 certificates. Public key authentication
using X509v3 certificates means in practice that the person authenticating
to the cluster management infrastructure must present their certificate (i.e
the public key) and in addition must have access to the private key that
corresponds to the certificate. There are two main file formats in which
certificates and private keys are stored:

• PEM: In this, the certificate and private key are stored as plain text
in two separate PEM-encoded files.

• PFX (also known as PKCS12): In this, the certificate and private key
are stored in one encrypted file.

Although both formats are supported, the PFX format is preferred
since it is more convenient (a single file instead of two files) and allows
the private key data to be encrypted conveniently with a password.

By default, one administrator certificate is created to interact with the
cluster management infrastructure. The certificate and corresponding
private key can be found on a newly installed Bright Cluster Manager
cluster in both PFX and PEM format in the following locations:

/root/.cm/cmgui/admin.pfx

/root/.cm/cmsh/admin.pem

/root/.cm/cmsh/admin.key

The administrator password provided during Bright Cluster Manager
installation encrypts the admin.pfx file generated as part of the installa-
tion. The same password is also used as the initial root password of all
nodes, as well as for the other passwords discussed in section 3.3.1.

© Bright Computing, Inc.



3.4 Cluster Management GUI 33

The GUI utility cmgui (section 3.4) connects to the head node if the
user types in the password to the admin.pfx file. If the root login pass-
word to head node is changed, typically by typing the unix passwd com-
mand in the root shell of the node, then the administrator PFX password,
remains unchanged unless it, too, is changed explicitly.

The password of the PFX file can be changed with the passwdpfx

utility. This is besides the cm-change-passwd utility discussed in sec-
tion 3.3.1. The passwdpfx utility is part of cmd, a module that includes
CMDaemon and associated utilities (section 3.6):

[root@mycluster ~]# module load cmd

[root@mycluster ~]# passwdpfx

Enter old password: ******

Enter new password: *******

Verify new password: *******

Password updated

[root@mycluster ~]#

If the admin.pfx password is forgotten, then a new admin.pfx certificate
can be created using a CMDaemon option:

[root@mycluster ~]# service cmd stop

[root@mycluster ~]# cmd -c secretpa55word

[root@mycluster ~]# service cmd start

3.3.3 Profiles
Certificates that authenticate to the cluster management infrastructure
contain a profile.

A profile determines which cluster management operations the cer-
tificate holder may perform. The administrator certificate is created with
the admin profile, which is a built-in profile that allows all cluster man-
agement operations to be performed. In this sense it is similar to the root
account on unix systems. Other certificates may be created with differ-
ent profiles giving certificate owners access to a pre-defined subset of the
cluster management functionality (section 7.5).

3.4 Cluster Management GUI
This section introduces the basics of the cluster management GUI (cmgui).
This is the graphical interface to cluster management in Bright Cluster
Manager. It may be run on the head node or on a login node of the cluster
using X11-forwarding:

Example

user@desktop:~> ssh -X root@mycluster cmgui

However, typically it is installed and run on the administrator’s desk-
top computer. This saves user-discernable lag time if the user is hundreds
of kilometers away from the head node.

3.4.1 Installing Cluster Management GUI
To install cmgui on a desktop computer running Linux or Windows, the
installation package must be downloaded first. These are available on
any Bright Cluster Manager cluster in the directory:

© Bright Computing, Inc.



34 Cluster Management With Bright Cluster Manager

/cm/shared/apps/cmgui/dist

Installation packages are available for Linux and for Windows
XP/Vista, and a MacOS X version will be available in the future.

On a Windows desktop, cmgui is installed by running the installer
and following the installation procedure. After the installation, cmgui is
started through the Start menu or through the desktop shortcut.

For a Linux desktop, cmgui is installed by:

• untarring the tar.bz2 file

• reading the accompanying README file to determine what pack-
ages are required for the build to complete successfully

• installing any required packages

• compiling the cmgui executable with build.sh

After building the cmgui executable, it can be run from the cmgui di-
rectory.

Example

user@desktop:~> tar -xjf cmgui-5.2-r2510-src.tar.bz2

user@desktop:~> cd cmgui-5.2-r2510

user@desktop:~/cmgui-5.2-r2510> ./build.sh

[...]

user@desktop:~/cmgui-5.2-r2510> cd cmgui

user@desktop:~/cmgui-5.2-r2510/cmgui> ./cmgui

If running cmgui reports unresolved symbols, then additional pack-
ages from the Linux distribution need to be installed, and recompilation
done.

At least the following software libraries must be installed in order to
run cmgui:

• OpenSSL library

• GTK library

• GLib library

• Boost library (at least the thread and signals components)

3.4.2 Connecting To A Cluster
As explained in section 3.3.2, a certificate and private key are required
to connect to the cluster management infrastructure. Both are available
when running cmgui on the cluster. However, before making the initial
connection from a desktop computer running cmgui, a PFX file containing
both the certificate and private key must be copied from the cluster and
stored in a secure location on the local filesystem.

Example

user@desktop:~> mkdir ~/cmgui-keys

user@desktop:~> chmod 700 ~/cmgui-keys

user@desktop:~> scp root@mycluster:/root/.cm/cmgui/admin.pfx ~/cmgui-ke\

ys/mycluster-admin.pfx

© Bright Computing, Inc.



3.4 Cluster Management GUI 35

Figure 3.1: Cluster Management GUI welcome screen

When cmgui is started for the first time, the welcome screen (figure 3.1)
is displayed. To configure cmgui for connections to a new Bright Cluster
Manager cluster, the cluster is added to cmgui by clicking the �+ button
in the welcome screen. Figure 3.2 shows the dialog window in which the
connection parameters can be entered.

Figure 3.2: Edit Cluster dialog window

The host can be a name or an IP address. If the port on the host is not
specified, then port 8081 is added automatically. The certificate location
entry is where the administrator certificate admin.pfx file is located. The
password is the password to the administrator certificate. Section 3.3 has
details on the admin.pfx file, as well as on how to change the password
used in the dialog with the passwdpfx or cm-change-passwd utilities.

After the cluster is added, the screen displays the connection parame-
ters for the cluster (figure 3.3).

© Bright Computing, Inc.



36 Cluster Management With Bright Cluster Manager

Figure 3.3: Connecting to a cluster

Clicking on the Connect button establishes a connection to the cluster,
and cmgui by default then displays a tabbed pane overview screen of the
cluster (figure 3.4):

Figure 3.4: Cluster Overview

3.4.3 Navigating The Cluster Management GUI
Aspects of the cluster can be managed by administrators using cmgui (fig-
ure 3.4).

The resource tree, displayed on the left side of the window, consists of
hardware resources such as nodes and switches as well as non-hardware
resources such as Users & Groups and Workload Management. Selecting
a resource opens an associated tabbed pane on the right side of the win-
dow that allows tab-related parameters to be viewed and managed.

The number of tabs displayed and their contents depend on the re-
source selected. The following standard tabs are available for most re-
sources:

© Bright Computing, Inc.



3.4 Cluster Management GUI 37

• Overview: provides an overview containing the most important sta-
tus details for the resource.

• Tasks: accesses tasks that operate on the resource.

• Settings: allows configuration of properties of the resource.

Figure 3.5: Node Settings

For example, the Settings tab of the node001 resource (figure 3.5)
displays properties, such as the hostname, that can be changed. The Save
button on the bottom of the tab makes the changes active and permanent,
while the Revert button undoes all unsaved changes.

Figure 3.6: Node Tasks

© Bright Computing, Inc.



38 Cluster Management With Bright Cluster Manager

Figure 3.6 shows the Tasks tab of the node001 resource. The tab dis-
plays operations that can be performed on the node001 resource. Details
on setting these up, their use, and meaning are provided in the remaining
chapters of this manual.

It is also possible to select a resource folder (rather than a resource
item) in the tree. For example: Node Categories, Nodes, and Networks.
Selecting a resource folder in the tree by default opens an Overview tab,
which displays a list of resource items inside the folder. These are dis-
played in the resource tree and in the tabbed pane. Resource items in
the tabbed pane can be selected, and operations carried out on them by
clicking on the buttons at the bottom of the tabbed pane. For example, for
Nodes, one or more nodes can be selected, and the Open, Add, Clone and
Remove buttons can be clicked to operate on the selection (figure 3.7).

Figure 3.7: Nodes Overview

3.5 Cluster Management Shell
This section introduces the basics of the cluster management shell, cmsh.
This is the command-line interface to cluster management in Bright Clus-
ter Manager. Since cmsh and cmgui give access to the same cluster man-
agement functionality, an administrator need not become familiar with
both interfaces. Administrators intending to manage a cluster with only
cmgui may therefore safely skip this section.

Usually cmsh is invoked from an interactive session (e.g. through ssh)
on the head node, but it can also be used to manage the cluster from
outside.

3.5.1 Invoking cmsh

From the head node, cmsh can be invoked as follows:

[root@mycluster ~]# cmsh

[mycluster]%

Running cmsh without arguments starts an interactive cluster manage-
ment session. To go back to the unix shell, a user enters quit:

[mycluster]% quit

[root@mycluster ~]#

The -c flag allows cmsh to be used in batch mode. Commands may be
separated using semi-colons:

[root@mycluster ~]# cmsh -c "main showprofile; device status apc01"

admin

apc01 ............... [ UP ]

[root@mycluster ~]#

© Bright Computing, Inc.



3.5 Cluster Management Shell 39

Alternatively, commands can be piped to cmsh:

[root@mycluster ~]# echo device status | cmsh

apc01 ............... [ UP ]

mycluster ........... [ UP ]

node001 ............. [ UP ]

node002 ............. [ UP ]

switch01 ............ [ UP ]

[root@mycluster ~]#

In a similar way to unix shells, cmsh sources ∼/.cm/cmsh/.cmshrc upon
start-up in both batch and interactive mode. This is convenient for defin-
ing command aliases which may subsequently be used to abbreviate longer
commands. For example, putting the following in .cmshrc allows the ds

command to be used as an alias for device status:

Example

alias ds device status

The options usage information for cmsh is obtainable with cmsh -h (fig-
ure 3.8).

Usage: cmsh [options] ................ Connect to localhost using default port

cmsh [options] <--certificate|-i certfile> <--key|-k keyfile> <host[:port]>

Connect to a cluster using certificate and key in PEM format

cmsh [options] <--certificate|-i certfile> [-password|-p password] <uri[:port]>

Connect to a cluster using certificate in PFX format

Valid options:

--help|-h ..................... Display this help

--noconnect|-u ................ Start unconnected

--controlflag|-z .............. ETX in non-interactive mode

--noredirect|-r ............... Do not follow redirects

--norc|-n ..................... Do not load cmshrc file on start-up

--command|-c <"c1; c2; ..."> .. Execute commands and exit

--file|-f <filename> .......... Execute commands in file and exit

--echo|-x ..................... Echo all commands

--quit|-q ..................... Exit immediately after error

Figure 3.8: Usage information for cmsh

3.5.2 Levels, Modes, Help, And Commands Syntax In cmsh

The top-level of cmsh is the level that cmsh is in when entered without any
options.

To avoid overloading a user with commands, cluster management
functionality has been grouped and placed in separate cmsh modes. Modes
and their levels are a hierarchy available below the top-level, and there-
fore to perform cluster management functions, a user switches and de-
scends into the appropriate mode.

Figure 3.9 shows the top-level commands available in cmsh. These
commands are displayed when help is typed in at the top-level of cmsh:

© Bright Computing, Inc.



40 Cluster Management With Bright Cluster Manager

alias ......................... Set aliases

category ...................... Enter category mode

cert .......................... Enter cert mode

color ......................... Manage console text color settings

connect ....................... Connect to cluster

delimiter ..................... Display/set delimiter

device ........................ Enter device mode

disconnect .................... Disconnect from cluster

events ........................ Manage events

exit .......................... Exit from current object or mode

export ........................ Display list of aliases current list formats

help .......................... Display this help

history ....................... Display command history

jobqueue ...................... Enter jobqueue mode

jobs .......................... Enter jobs mode

list .......................... List state for all modes

main .......................... Enter main mode

modified ...................... List modified objects

monitoring .................... Enter monitoring mode

network ....................... Enter network mode

nodegroup ..................... Enter nodegroup mode

partition ..................... Enter partition mode

process ....................... Enter process mode

profile ....................... Enter profile mode

quit .......................... Quit shell

rack .......................... Enter rack mode

refresh ....................... Refresh all modes

run ........................... Execute cmsh commands from specified file

session ....................... Enter session mode

softwareimage ................. Enter softwareimage mode

unalias ....................... Unset aliases

user .......................... Enter user mode

Figure 3.9: Top level commands in cmsh

All levels inside cmsh provide these top-level commands.
Passing a command as an argument to help gets details for it:

Example

[myheadnode]% help run

Name:

run - Execute all commands in the given file(s)

Usage:

run [OPTIONS] <filename> [<filename2> ...]

Options:

-x, --echo

Echo all commands

-q, --quit

Exit immediately after error

© Bright Computing, Inc.



3.5 Cluster Management Shell 41

[myheadnode]%

In the general case, invoking help at any level without an argument
provides the list of top-level commands, followed by commands that may
be used at that level (list of top-level commands elided in example below):

Example

[myheadnode]% session

[myheadnode->session]% help

================================= Top ==================================

...

=============================== session ================================

id ............................ Display current session id

killsession ................... Kill a session

list .......................... Provide overview of active sessions

[myheadnode->session]%

In the preceding example, session mode is entered, and help without
any argument lists the possible commands at that level.

To enter a mode, a user enters the mode name at the cmsh prompt.
The prompt changes to indicate that cmsh is in the requested mode, and
commands for that mode can then be run. To leave a mode, and go back
up a level, the exit command is used. At the top-level, exit has the same
effect as the quit command, that is, the user leaves cmsh and returns to
the unix shell.

Example

[bright52]% device

[bright52->device]% list

Type Hostname (key) MAC Category

---------------------- ---------------- ------------------ ------------

EthernetSwitch switch01 00:00:00:00:00:00

MasterNode bright52 00:0C:29:5D:55:46

PhysicalNode node001 00:0C:29:7A:41:78 default

PhysicalNode node002 00:0C:29:CC:4F:79 default

[bright52->device]% exit

[bright52]%

A command can also be executed in a mode without entering that
mode. This is done by specifying the mode before the command. Most
commands also accept arguments after the command. Multiple com-
mands can be executed in one line by separating commands with semi-
colons.

A cmsh input line has the following syntax:

<mode> <cmd> <arg> . . . <arg>; . . . ; <mode> <cmd> <arg> . . . <arg>

where <mode> and <arg> are optional. 2

Example

2 A more precise synopsis is:
[<mode>] <cmd> [<arg> ... ] [; ... ; [<mode>] <cmd> [<arg> ... ]]

© Bright Computing, Inc.



42 Cluster Management With Bright Cluster Manager

[bright52->network]% device status master; list

bright52 ............ [ UP ]

Name (key) Netmask bits Base address Domain name

---------------- ---------------- ---------------- --------------------

externalnet 16 192.168.1.0 clustervision.com

internalnet 16 10.141.0.0 cm.cluster

[bright52->network]%

In the preceding example, while in network mode, the status com-
mand is executed in device mode and passed the argument master, mak-
ing it display the status of the head node. The list command on the same
line after the semi-colon still runs in network mode, as expected, and dis-
plays a list of networks.

3.5.3 Working With Objects
Modes in cmsh work with associated groupings of data called objects. For
instance, device mode works with device objects, and network mode
works with network objects. The commands used to deal with objects are
the same in all modes, although generally not all of them function with
an object:

Command Description

use Use the specified object. I.e.: Make the specified ob-
ject the current object

add Create the object and use it

assign Assign a new object

unassign Unassign an object

clone Clone the object and use it

remove Remove the object

commit Commit local changes done to an object to the clus-
ter management infrastructure

refresh Undo local changes done to the object

list List all objects at current level

format Set formatting preferences for list output

foreach Execute a set of commands on several objects

show Display all properties of the object

get Display specified property of the object

set Set a specified property of the object

clear Set empty value for a property of the object. If no
property is specified, clear every value of the object

append Append a value to a property of the object, for a
multi-valued property

removefrom Remove a value from a specific property of the ob-
ject, for a multi-valued property

...continues

© Bright Computing, Inc.



3.5 Cluster Management Shell 43

...continued

Command Description

modified List objects with uncommitted local changes

usedby List objects that depend on the object

validate Do a validation check on the properties of the object

Working with objects with these commands is demonstrated with several
examples in this section.

Working With Objects: use
Example

[mycluster->device]% use node001

[mycluster->device[node001]]% status

node001 ............. [ UP ]

[mycluster->device[node001]]% exit

[mycluster->device]%

In the preceding example, use node001 issued from within device

mode makes node001 the current object. The prompt changes accordingly.
The status command, without an argument, then returns status informa-
tion just for node001, because making an object the current object makes
all subsequent commands apply only to that object. Finally, the exit com-
mand unsets the current object.

Working With Objects: add, commit
Example

[mycluster->device]% add physicalnode node100 10.141.0.100

[mycluster->device*[node100*]]% category add test-category

[mycluster->category*[test-category*]]% device; use node100

[mycluster->device*[node100*]]% set category test-category

[mycluster->device*[node100*]]% commit

[mycluster->device[node100]]% exit

[mycluster->device]%

In the preceding example, within device mode, a new object node100
is added, of type physicalnode, and with IP address 10.141.0.100. The
category test-category is then added, and the test-category object level
within category mode is automatically dropped into when the command
is executed. This is usually convenient, but not in this example, where
it is assumed a property still needs to be set at the device node object
level. To return to device mode again, at the level it was left, a multiple
command “device; use node100” is executed. The multiple command
can actually be run here with the “;” character removed, because the use

command implies the existence of “;” character. The category property of
the the node100 object is set to the newly created category test-category

and the object is then committed to store it permanently. Until the newly
added object has been committed, it remains a local change that is lost
when cmsh is exited.

Asterisk tags in the prompt are a useful reminder of a modified state,
with each asterisk indicating a tagged object that has an unsaved, modi-
fied property.

© Bright Computing, Inc.



44 Cluster Management With Bright Cluster Manager

In most modes the add command takes only one argument, namely
the name of the object that is to be created. However, in device mode an
extra object-type, in this case physicalnode, is also required as argument,
and an optional extra IP argument may also be specified. The response to
“help add” while in device mode gives details:

[myheadnode->device]% help add

Name:

add - Create a new device of the given type with specified hostname

Usage:

add <type> <hostname>

add <type> <hostname> <ip>

Arguments:

type

physicalnode, virtualsmpnode, masternode, ethernetswitch,

ibswitch, myrinetswitch, powerdistributionunit, genericdevice,

racksensor, chassis, gpuunit

Working With Objects: clone, modified, remove
Continuing on with the node object node100 that was created in the pre-
vious example, it can be cloned to node101 as follows:

Example

[mycluster->device]% clone node100 node101

Warning: The Ethernet switch settings were not cloned, and have to be

set manually

[mycluster->device*[node101*]]% exit

[mycluster->device*]% modified

State Type Name

------ ------------------------ -------------------------------------

+ Cloned node101

[mycluster->device*]% commit

[mycluster->device]%

[mycluster->device]% remove node100

[mycluster->device*]% commit

[mycluster->device]%

The modified command is used to check what objects have uncom-
mitted changes, and the new object node101 that is seen to be modified,
is saved with a commit. The device node100 is then removed by using the
remove command. A commit executes the removal.

The modified command corresponds roughly to the functionality of
the List of Changes menu option under the View menu of cmgui’s main
menu bar.

The “+” entry in the State column in the output of the modified com-
mand in the preceding example indicates the object is a newly added one,
but not yet committed. Similarly, a “-” entry indicates an object that is to
be removed on committing, while a blank entry indicates that the object
has been modified without an addition or removal involved.

Cloning an object is a convenient method of duplicating a fully con-
figured object. When duplicating a device object, cmsh will attempt to
automatically assign a new IP address using a number of heuristics. In
the preceding example, node101 is assigned IP address 10.141.0.101.

© Bright Computing, Inc.



3.5 Cluster Management Shell 45

Working With Objects: get, set, refresh, revision
The get command is used to retrieve a specified property from an object,
and set is used to set it:

Example

[mycluster->device]% use node101

[mycluster->device[node101]]% get category

test-category

[mycluster->device[node101]]% set category default

[mycluster->device*[node101*]]% get category

default

[mycluster->device*[node101*]]% modified

State Type Name

------ ------------------------ -------------------------------

Device node101

[mycluster->device*[node101*]]% refresh

[mycluster->device[node101]]% modified

No modified objects of type device

[mycluster->device[node101]]% get category

test-category

[mycluster->device[node101]]%

Here, the category property of the node101 object is retrieved by us-
ing the get command. The property is then changed using the set com-
mand. Using get confirms that the value of the property has changed,
and the modified command reconfirms that node101 has local uncom-
mitted changes. The refresh command undoes the changes made, and
the modified command confirms that no local changes exist. Finally the
get command reconfirms that no local changes exist.

A string can be set as a revision label for any object:

Example

[mycluster->device[node101]]% set revision "changed on 10th May"

[mycluster->device*[node101*]]% get revision

[mycluster->device*[node101*]]% changed on 10th May 2011

This can be useful when using shell scripts with an input text to label
and track revisions when sending commands to cmsh. How to send com-
mands from the shell to cmsh is introduced in section 3.5.1.

Some properties are booleans. For these, the values “yes”, “1”, “on”
and “true” are equivalent to each other, as are their opposites “no”, “0”,
“off” and “false”. These values are case-insensitive.

Working With Objects: clear
Example

[mycluster->device]% set node101 mac 00:11:22:33:44:55

[mycluster->device*]% get node101 mac

00:11:22:33:44:55

[mycluster->device*]% clear node101 mac

[mycluster->device*]% get node101 mac

00:00:00:00:00:00

[mycluster->device*]%

© Bright Computing, Inc.



46 Cluster Management With Bright Cluster Manager

The get and set commands are used to view and set the MAC ad-
dress of node101 without running the use command to make node101 the
current object. The clear command then unsets the value of the property.
The result of clear depends on the type of the property it acts on. In the
case of string properties, the empty string is assigned, whereas for MAC
addresses the special value 00:00:00:00:00:00 is assigned.

Working With Objects: list, format
The list command is used to list all device objects. The -f flag takes
a format string as argument. The string specifies what properties are
printed for each object, and how many characters are used to display
each property in the output line. In following example a list of objects is
requested, displaying the hostname, ethernetswitch and ip properties
for each object.

Example

[bright52->device]% list -f hostname:14,ethernetswitch:15,ip

hostname (key) ethernetswitch ip

-------------- --------------- --------------------

apc01 10.142.254.1

bright52 switch01:46 10.142.255.254

node001 switch01:47 10.142.0.1

node002 switch01:45 10.142.0.2

switch01 10.142.253.1

[bright52->device]%

Running the list command with no argument uses the current for-
mat string for the mode.

Running the format command without arguments displays the cur-
rent format string, and also displays all available properties including a
description of each property. For example (output truncated):

Example

[bright52->device]% format

Current list printing format:

-----------------------------

hostname:[10-14]

Valid fields:

-------------

Type : The type of the device

activation : Date on which node was defined

banks : Number of banks

burnconfig : Burning configuration

burning : Indicates that the node is in burn mode

category : Category to which this node belongs

...

To change the current format string, a new format string can be passed
as an argument to format.

The format print specification uses the delimiter “:” to separate the
parameter and the value for the width of the parameter column. For ex-
ample, a width of 10 can be set with:

© Bright Computing, Inc.



3.5 Cluster Management Shell 47

Example

[bright52->device]% format hostname:10

[bright52->device]% list

hostname (

----------

apc01

bright60

node001

node002

switch01

A range of widths can be set, from a minimum to a maximum, using
square brackets. A single minimum width possible is chosen from the
range that fits all the characters of the column. If the number of characters
in the column exceeds the maximum, then the maximum value is chosen.
For example:

Example

[bright52->device]% format hostname:[10-14]

[bright52->device]% list

hostname (key)

--------------

apc01

bright60

node001

node002

switch01

The parameters to be viewed can be chosen from a list of valid fields
by running the format command without any options, as shown earlier.

Multiple parameters can be specified as a comma-separated list (with
a colon-delimited width specification for each parameter). For example:

Example

[bright52->device]% format hostname:[10-14], ethernetswitch:14, ip:20

[bright52->device]% list

hostname (key) ethernetswitch ip

-------------- -------------- --------------------

apc01 10.142.254.1

bright52 switch01:46 10.142.255.254

node001 switch01:47 10.142.0.1

node002 switch01:45 10.142.0.2

switch01 10.142.253.1

The default parameter settings can be restored with the -r|�reset

option:

Example

[bright52->device]% format -r

[bright52->device]% format | head -3

Current list printing format:

-----------------------------

type:22, hostname:[16-32], mac:18, category:16, ip:15, network:14, powe\

rdistributionunits:16

[bright52->device]%

© Bright Computing, Inc.



48 Cluster Management With Bright Cluster Manager

Working With Objects: append, removefrom
When dealing with a property of an object that can take more than one
value at a time—a list of values—the append and removefrom commands
can be used to respectively append to and remove elements from the list.
However, the set command may also be used to assign a new list at once.
In the following example values are appended and removed from the
powerdistributionunits properties of device node001. The powerdi-

stributionunits properties represents the list of ports on power distri-
bution units that a particular device is connected to. This information is
relevant when power operations are performed on a node. Chapter 5 has
more information on power settings and operations.

Example

[mycluster->device]% use node001

[mycluster->device[node001]]% get powerdistributionunits

apc01:1

[mycluster->device[node001]]% append powerdistributionunits apc01:5

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:1 apc01:5

[mycluster->device*[node001*]]% append powerdistributionunits apc01:6

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:1 apc01:5 apc01:6

[mycluster->device*[node001*]]% removefrom powerdistributionunits apc01:5

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:1 apc01:6

[mycluster->device*[node001*]]% set powerdistributionunits apc01:1 apc01:02

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:1 apc01:2

[mycluster->device*[node001*]]%

Working With Objects: usedby
Removing a specific object is only possible if other objects do not have
references to it. To help the administrator discover a list of objects that
depend on (“use”) the specified object, the usedby command may be
used. In the following example, objects depending on device apc01 are
requested. The usedby property of powerdistributionunits indicates
that device objects node001 and node002 contain references to (“use”) the
object apc01. In addition, the apc01 device is itself displayed as being in
the up state, indicating a dependency of apc01 on itself. If the device is to
be removed, then the 2 references to it first need to be removed, and the
device also first has to be brought to the closed state by using the close

command.

Example

[mycluster->device]% usedby apc01

Device used by the following:

Type Name Parameter

---------------- ---------- ----------------------

Device apc01 Device is up

Device node001 powerDistributionUnits

Device node002 powerDistributionUnits

[mycluster->device]%

© Bright Computing, Inc.



3.5 Cluster Management Shell 49

Working With Objects: validate
Whenever committing changes to an object, the cluster management in-
frastructure checks the object to be committed for consistency. If one or
more consistency requirements are not met, then cmsh reports the vio-
lations that must be resolved before the changes are committed. The
validate command allows an object to be checked for consistency with-
out committing local changes.

Example

[mycluster->device]% use node001

[mycluster->device[node001]]% clear category

[mycluster->device*[node001*]]% commit

Code Field Message

----- ------------------------ ---------------------------

1 category The category should be set

[mycluster->device*[node001*]]% set category default

[mycluster->device*[node001*]]% validate

All good

[mycluster->device*[node001*]]% commit

[mycluster->device[node001]]%

3.5.4 Accessing Cluster Settings
The management infrastructure of Bright Cluster Manager is designed to
allow cluster partitioning in the future. A cluster partition can be viewed
as a virtual cluster inside a real cluster. The cluster partition behaves as
a separate cluster while making use of the resources of the real cluster in
which it is contained. Although cluster partitioning is not yet possible in
the current version of Bright Cluster Manager, its design implications do
decide how some global cluster properties are accessed through cmsh.

In cmsh there is a partition mode which will, in a future version,
allow an administrator to create and configure cluster partitions. Cur-
rently, there is only one fixed partition, called base. The base partition
represents the physical cluster as a whole and cannot be removed. A
number of properties global to the cluster exist inside the base partition.
These properties are referenced and explained in remaining parts of this
manual.

Example

[root@myheadnode ~]# cmsh

[myheadnode]% partition use base

[myheadnode->partition[base]]% show

Parameter Value

------------------------------ ------------------------------------------------

Administrator e-mail

Burn configs <2 in submode>

Cluster name My Cluster

Default burn configuration default

Default category default

Default software image default-image

External network externalnet

Failover not defined

IPMI Password *********

IPMI User ID 2

© Bright Computing, Inc.



50 Cluster Management With Bright Cluster Manager

IPMI User name ADMIN

Management network internalnet

Masternode myheadnode

Name base

Name servers 192.168.101.1

Node basename node

Node digits 3

Notes <0 bytes>

Revision

Search domains clustervision.com

Time servers pool.ntp.org

Time zone America/Los_Angeles

3.5.5 Advanced cmsh Features
This section describes some advanced features of cmsh and may be skipped
on first reading.

Command Line Editing
Command line editing and history features from the readline library are
available. See http://tiswww.case.edu/php/chet/readline/rluserman.
html for a full list of key-bindings.

The most useful features provided by readline are tab-completion of
commands and arguments, and command history using the arrow keys.

Mixing cmsh And Unix Shell Commands
Occasionally it can be useful to be able to execute unix commands while
performing cluster management. For this reason, cmsh allows users to
execute unix commands by prefixing the command with a “!” character:

Example

[mycluster]% !hostname -f

mycluster.cm.cluster

[mycluster]%

Executing the ! command by itself will start an interactive login sub-
shell. By exiting the sub-shell, the user will return to the cmsh prompt.

Besides simply executing commands from within cmsh, the output of
unix shell commands can also be used within cmsh. This is done by using
the “backtick syntax” available in most unix shells.

Example

[mycluster]% device use `hostname`

[mycluster->device[mycluster]]% status

mycluster ................ [ UP ]

[mycluster->device[mycluster]]%

Output Redirection
Similar to unix shells, cmsh also supports output redirection to the shell
through common operators such as >, >> and |.

Example

© Bright Computing, Inc.

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html


3.5 Cluster Management Shell 51

[mycluster]% device list > devices

[mycluster]% device status >> devices

[mycluster]% device list | grep node001

Type Hostname (key) MAC (key) Category

-------------- -------------- ------------------- ----------

PhysicalNode node001 00:E0:81:2E:F7:96 default

Looping Over Objects With foreach

It is frequently convenient to be able to execute a cmsh command on sev-
eral objects at once. The foreach command is available in a number of
cmsh modes for this purpose. A foreach command takes a list of space-
separated object names (the keys of the object) and a list of commands
that must be enclosed by parentheses, i.e.: “(” and “)”. The foreach com-
mand will then iterate through the objects, executing the list of commands
on the iterated object each iteration.
The foreach syntax is:

foreach <obj> · · · <obj> ( <cmd>; · · · ; <cmd> )

Example

[mycluster->device]% foreach node001 node002 (get hostname; status)

node001

node001 ............. [ UP ]

node002

node002 ............. [ UP ]

[mycluster->device]%

With the foreach command it is possible to perform set commands
on groups of objects simultaneously, or to perform an operation on a
group of objects.

For extra convenience, device mode in cmsh supports a number of
additional flags (-n, -g and -c) which can be used for selecting devices.
Instead of passing a list of objects to foreach directly, the flags may be
used to select the nodes to loop over. The -g and -c flags take a node
group and category argument respectively. The -n flag takes a node-list
argument. Node-lists may be specified using the following syntax:

<node>,. . .,<node>,<node>..<node>

Example

[demo->device]% foreach -c default (status)

node001 ............. [ DOWN ]

node002 ............. [ DOWN ]

[demo->device]% foreach -g rack8 (status)

...

[demo->device]% foreach -n node001,node008..node016,node032..node080 (status)

...

[demo->device]%

The -o (--clone) option allows the cloning (section 3.5.3) of objects in
a loop. In the following example, from device mode, node001 is used as
the base object from which other nodes from node022 up to node024 are
cloned:

Example

© Bright Computing, Inc.



52 Cluster Management With Bright Cluster Manager

[bright52->device]% foreach --clone node001 -n node022..node024 ()

[bright52->device*]% list | grep node

Type Hostname (key) MAC Category Ip

------------ -------------- ----------------- -------- -----------

PhysicalNode node001 00:0C:29:EF:40:24 default 10.141.0.1

PhysicalNode node022 00:00:00:00:00:00 default 10.141.0.22

PhysicalNode node023 00:00:00:00:00:00 default 10.141.0.23

PhysicalNode node024 00:00:00:00:00:00 default 10.141.0.24

[bright52->device*]% commit

To avoid possible confusion: the cloned objects are merely objects
(placeholder schematics and settings, with some different values for some
of the settings, such as IP addresses, decided by heuristics). So it is explic-
itly not the software disk image of node001 that is duplicated by object
cloning to the other nodes.

Finally, the wildcard character * with foreach implies all the objects
that the list command lists for that mode. It is used without flags:

Example

[myheadnode->device]% foreach * (get ip; status)

10.141.253.1

switch01 ............ [ DOWN ]

10.141.255.254

myheadnode .......... [ UP ]

10.141.0.1

node001 ............. [ CLOSED ]

10.141.0.2

node002 ............. [ CLOSED ]

[myheadnode->device]%

3.6 Cluster Management Daemon
The cluster management daemon or CMDaemon is a server process that runs
on all nodes of the cluster (including the head node). The cluster man-
agement daemons work together to make the cluster manageable. When
applications such as cmsh and cmgui communicate with the cluster man-
agement infrastructure, they are actually interacting with the cluster man-
agement daemon running on the head node. Cluster management appli-
cations never communicate directly with cluster management daemons
running on non-head nodes.

The CMDaemon application starts running on any node automatically
when it boots, and the application continues running until the node shuts
down. Should CMDaemon be stopped manually for whatever reason, its
cluster management functionality becomes unavailable, making it hard
for administrators to manage the cluster. However, even with the daemon
stopped, the cluster remains fully usable for running computational jobs
using a workload manager.

The only route of communication with the cluster management dae-
mon is through TCP port 8081. The cluster management daemon ac-
cepts only SSL connections, thereby ensuring all communications are en-
crypted. Authentication is also handled in the SSL layer using client-side
X509v3 certificates (section 3.3).

© Bright Computing, Inc.



3.6 Cluster Management Daemon 53

On the head node, the cluster management daemon uses a MySQL
database server to store all of its internal data. Monitoring data is also
stored in a MySQL database.

3.6.1 Controlling The Cluster Management Daemon
It may be useful to shut down or restart the cluster management daemon.
For instance, a restart may be necessary to activate changes when the clus-
ter management daemon configuration file is modified. The cluster man-
agement daemon operation can be controlled through the following init
script arguments to /etc/init.d/cmd:

Init Script Operation Description

stop stop the cluster management daemon

start start the cluster management daemon

restart restart the cluster management daemon

status report whether cluster management daemon
is running

full-status report detailed statistics about cluster man-
agement daemon

upgrade update database schema after version up-
grade (expert only)

debugon enable debug logging (expert only)

debugoff disable debug logging (expert only)

Example

To restart the cluster management daemon on the head node of a cluster:

[root@mycluster ~]# /etc/init.d/cmd restart

Waiting for CMDaemon (2916) to terminate...

[ OK ]

Waiting for CMDaemon to start... [ OK ]

[root@mycluster ~]#

3.6.2 Configuring The Cluster Management Daemon
Some cluster configuration changes can be done by modifying the cluster
management daemon configuration file. For the head node, this is located
at:

/cm/local/apps/cmd/etc/cmd.conf

For regular nodes, it is located inside of the software image that the node
uses.

Appendix C describes all recognized configuration file directives and
how they can be used. Normally there is no need to modify the default
settings.

After modifying the configuration file, the cluster management dae-
mon must be restarted to activate the changes.

3.6.3 Configuration File Generation
As part of its tasks, the cluster management daemon writes out a number
of system configuration files. Some configuration files are written out in

© Bright Computing, Inc.



54 Cluster Management With Bright Cluster Manager

their entirety, whereas other configuration files only contain sections that
have been inserted by the cluster management daemon. Appendix A lists
all system configuration files that are generated.

A file that has been generated by the cluster management daemon
contains a header:

# This file was automatically generated by cmd. Do not edit manually!

Sections of files that have been generated by the cluster management dae-
mon will read as follows:

# This section of this file was automatically generated by cmd. Do not edit manually!

# BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

...

# END AUTOGENERATED SECTION -- DO NOT REMOVE

When generated files or sections of files are modified manually, the
changes are automatically overwritten the next time the content is ac-
cessed, an event is generated, and the manually modified configuration
file is backed up to:

/var/spool/cmd/saved-config-files

Sometimes, overriding the automatically generated configuration file
contents may be necessary. The FrozenFile configuration file directive in
cmd.conf allows this.

Example

FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }

3.6.4 Configuration File Conflicts Between The Standard
Distribution And Bright

While Bright Cluster Manager changes as little as possible of the standard
distributions that it manages, there can sometimes be unavoidable issues.
In particular, sometimes a standard distribution utility or service gener-
ates configuration files that conflict with what the Bright Cluster Manager
configuration files listed in Appendix A carry out.

For example, the Red Hat security configuration tool
system-config-securitylevel can conflict with what shorewall

(section 12.2) does, while the Red Hat Authentication Configuration Tool
authconfig can conflict with what the LDAP and PAM configuration
settings of Bright Cluster Manager achieve.

In such cases the configuration generated by Bright Cluster Manager
must be given precedence, and the generation of configuration files from
the standard distribution tools should be avoided. Sometimes using fully
or partial frozen configuration files (section 3.6.3) allow a workaround.
Otherwise, the functionality of the Bright Cluster Manager version usu-
ally allows the required configuration function to be implemented.

© Bright Computing, Inc.



4
Configuring The Cluster

After Bright Cluster Manager software has been installed on the head
node, the cluster must be configured. This chapter goes through a num-
ber of basic cluster configuration aspects that are important to get all the
hardware up and running.

Section 4.1 explains how a Bright Cluster Manager license is viewed,
verified, requested, and installed.

Section 4.2 details how the internal and external network parameters
of the cluster can be changed.

Section 4.3 covers how InfiniBand is set up.
Section 4.4 describes how IPMI is set up.
Section 4.5 describes how switches are set up.
Section 4.6 explains how disk layouts are configured, as well as how

diskless nodes are set up.
Section 4.7 describes how NFS volumes are exported from an NFS

server and mounted to nodes using the integrated approach of Bright
Cluster Manager.

Section 4.8 describes how services can be run from Bright Cluster
Manager.

Section 4.9 describes how a rack can be configured and managed with
Bright Cluster Manager.

More elaborate aspects of cluster configuration such as power man-
agement, user management, package management, and workload man-
agement are covered in later chapters.

4.1 Installing A License
Any Bright Cluster Manager installation requires a license file to be present
on the head node. The license file specifies the conditions under which a
particular Bright Cluster Manager installation has been licensed.

Example

• the “Licensee” details, which include the name of the organization,
is an attribute of the license file that specifies the condition that only
the specified organization may use the software

• the “Licensed nodes” attribute specifies the maximum number of
nodes that the cluster manager may manage. Head nodes are re-
garded as nodes too for this attribute.

© Bright Computing, Inc.



56 Configuring The Cluster

• the “Expiration date” of the license is an attribute that sets when
the license expires. It is sometimes set to a date in the near future so
that the cluster owner effectively has a trial period. A new license
with a longer period can be requested (section 4.1.3) after the owner
decides to continue using the cluster with Bright Cluster Manager

A license file can only be used on the machine for which it has been
generated and cannot be changed once it has been issued. This means
that to change licensing conditions, a new license file must be issued.

The license file is sometimes referred to as the cluster certificate, be-
cause it is the X509v3 certificate of the head node, and is used throughout
cluster operations. Section 3.3 has more information on certificate based
authentication.

4.1.1 Displaying License Attributes
Before starting the configuration of a cluster, it is important to verify that
the attributes included in the license file have been assigned the correct
values. The license file is installed in the following location:

/cm/local/apps/cmd/etc/cert.pem

and the associated private key file is in:

/cm/local/apps/cmd/etc/cert.key

To verify that the attributes of the license have been assigned the correct
values, the License tab of the GUI can be used to display license details
(figure 4.1):

Figure 4.1: License Information

Alternatively the licenseinfo in cmsh main mode may be used:

Example

[root@52-centos5 ~]# cmsh

[52-centos5]% main licenseinfo

License Information

------------------- ----------------------------------------------------

Licensee /C=US/ST=California/L=San Jose/O=BC/OU=Development/C\

N=Bright 5.2 Cluster

Serial Number 5657

Start Time Tue Apr 5 00:00:00 2011

© Bright Computing, Inc.



4.1 Installing A License 57

End Time Tue Mar 30 23:59:59 2038

Version 5.2

Edition Advanced

Licensed Nodes 3

Node Count 3

MAC Address ??:??:??:??:??:??

The license in the example above allows just 3 nodes to be used. It
is not tied to a specific MAC address, so it can be used anywhere. For
convenience, the Node Count field in the output of licenseinfo shows
the current number of nodes used.

4.1.2 Verifying A License—The verify-license Utility
The verify-license utility is used to check licenses independent of
whether the cluster management daemon is running.

When an invalid license is used, the cluster management daemon can-
not start. The license problem is logged in the cluster management dae-
mon logfile:

Example

[root@bright52 ~]# /etc/init.d/cmd start

Waiting for CMDaemon to start...

CMDaemon failed to start please see log file.

[root@bright52 ~]# tail -1 /var/log/cmdaemon

Dec 30 15:57:02 bright52 CMDaemon: Fatal: License has expired

but further information cannot be obtained with, for example, cmgui and
cmsh , because these clients themselves obtain their information from the
cluster management daemon.

In such a case, the verify-license utility is meant for troubleshoot-
ing license issues, using the following options:

The info option of verify-license prints license details:

Example

[root@bright52 ~]# verify-license

Usage: verify-license <path to certificate> <path to keyfile> <verify|info>

[root@bright52 ~]# cd /cm/local/apps/cmd/etc/

[root@bright52 etc]# verify-license cert.pem cert.key info

========= Certificate Information ========

Version: 5.2

Edition: Advanced

Common name: Bright 5.2 Cluster

Organization: Bright Computing

Organizational unit: Development

Locality: San Jose

State: California

Country: US

Serial: 5657

Starting date: 5 Apr 2011

Expiration date: 30 Mar 2038

MAC address: ??:??:??:??:??:??

Licensed nodes: 3

==========================================

[root@bright52 etc]#

© Bright Computing, Inc.



58 Configuring The Cluster

The verify option of verify-license checks the validity of the li-
cense:

• If the license is valid then no output is produced, and the utility
exits with exit-code 0.

• If the license is invalid then output is produced indicating what is
wrong. Messages such as these are then displayed:

– If the license is old:

[root@bright52 etc]# verify-license cert.pem cert.key verify

License has expired

License verification failed.

– If the certificate is not from Bright Computing:

[root@bright52 etc]# verify-license cert.pem cert.key verify

Invalid license: This certificate was not signed by Bright

Computing

License verification failed.

4.1.3 Requesting And Installing A License Using A Product Key
Verifying License Attributes
It is important to verify that the license attributes are correct before pro-
ceeding with cluster configuration. In particular, the license date should
be checked to make sure that the license has not expired.

If the attributes of the license are correct, the remaining parts of this
section (4.1.3) may safely be skipped.

Requesting A License
If the license has expired, or if the license attributes are otherwise not
correct, a new license file must be requested.

The request for a new license file is made using a product key with the
request-license command.

The product key: The product key entitles the user to request a license,
and is a sequence of digits similar to the following:

000354-515786-112224-207441-186713

A product key is obtained from any Bright Cluster Manager reseller,
and is activated by the user when obtaining the license. A product key
can obtain a license only once. Upon product key activation, the license
obtained permits the cluster to work with particular settings for, amongst
others, the period of use and the number of nodes.

The request-license command: The request-license command re-
quests a license, and works most conveniently with a cluster that is able
to access the internet. The request can also be made regardless of cluster
connectivity to outside networks.

There are four options to use the product key to get the license:

1. If the cluster has access to the WWW port, the product key is acti-
vated immediately on successfully completing the dialog started by
the request-license command.

© Bright Computing, Inc.



4.1 Installing A License 59

• If the cluster uses a web-proxy, then the environment variable
http_proxy must be set before request-license is run. From
a bash prompt this is set with:

export http_proxy=<proxy>

where <proxy> is the hostname or IP address of the proxy.

2. If the cluster does not have access to the WWW port, the adminis-
trator may activate the product key by pointing an off-cluster web-
browser to:

http://support.brightcomputing.com/licensing

The CSR (Certificate Sign Request) data generated by running the
request-license command on the cluster is entered in the web
form at that URL, and a (signed) license will be returned. This li-
cense is in the form of a plain text certificate.

As the web form response explains, it is to be saved to the head
node as a file, and saving it directly is possible from most browsers.
Cutting and pasting it into an editor and saving it on the head node
as a file will do the job too, since it is plain text.

The license certificate is then installed by running the command

install-license <filename>

on the head node, where <filename> is the name of the signed li-
cense file that was saved.

3. If no web access is available to the administra-
tor, then the point at which the request-license

command prompts “Submit certificate request to

http://support.brightcomputing.com/licensing/ ?” should
be answered negatively. CSR data generated is then conveniently
displayed on the screen as well as saved, and it may be sent by
email to ca@brightcomputing.com. A certificate will be emailed
back from the Bright Cluster Manager License Desk. This certificate
can then be handled further as described in option 2.

4. If no internet access is available at all to the administrator, the CSR
data may be faxed or sent by postal mail to any Bright Cluster Man-
ager reseller. A certificate will be faxed or sent back in response.
This certificate can then be handled further as described in option 2.

Example

[root@bright52 ~]# request-license

Product Key (XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX):

000354-515786-112224-207440-186713

Country Name (2 letter code): US

State or Province Name (full name): California

Locality Name (e.g. city): San Jose

© Bright Computing, Inc.

http://support.brightcomputing.com/licensing


60 Configuring The Cluster

Organization Name (e.g. company): Bright Computing, Inc.

Organizational Unit Name (e.g. department): Development

Cluster Name: My Cluster

Private key data saved to /cm/local/apps/cmd/etc/cert.key.new

MAC Address of primary head node (bright52) for eth0 [00:0C:29:87:B8:B3]:

Will this cluster use a high-availability setup with 2 head nodes? [y/N] n

Certificate request data saved to /cm/local/apps/cmd/etc/cert.csr.new

Submit certificate request to http://support.brightcomputing.com/licensing/ ?

[Y/n] y

Contacting http://support.brightcomputing.com/licensing/...

License granted.

License data was saved to /cm/local/apps/cmd/etc/cert.pem.new

Install license ? [Y/n] n

Use "install-license /cm/local/apps/cmd/etc/cert.pem.new" to install the

license.

Installing A License
Referring to the preceding example:

After the certificate request is sent to Bright Computing and approved,
the license is granted.

If the prompt “Install license ?” is answered with a “Y” (the de-
fault), the install-license script is run.

If the prompt is answered with an “n” then the install-license

script must be run separately in order to complete installation of the li-
cense.

The install-license script takes the temporary location of the new
license file generated by request-license as its argument, and installs
related files on the head node. Running it completes the license installa-
tion on the head node.

Example

Assuming the new certificate is saved as cert.pem.new:

[root@bright52 ~]# install-license /cm/local/apps/cmd/etc/cert.pem.new

========= Certificate Information ========

Version: 5.2

Edition: Advanced

Common name: My Cluster

Organization: Bright Computing, Inc.

Organizational unit: Development

Locality: San Jose

State: California

Country: US

Serial: 5310

Starting date: 22 Mar 2011

Expiration date: 16 Mar 2038

MAC address: 00:0C:29:87:B8:B3

Licensed nodes: 2048

==========================================

Is the license information correct ? [Y/n] y

© Bright Computing, Inc.

cert.pem.new


4.1 Installing A License 61

In order to authenticate to the cluster using the Cluster Management GUI

(cmgui), one must hold a valid certificate and a corresponding key. The

certificate and key are stored together in a password-protected PFX (a.k.a.

PKCS#12) file.

Please provide a password that will be used to password-protect the PFX file

holding the administrator certificate (/root/.cm/cmgui/admin.pfx).

Password:

Verify password:

Installed new license

Waiting for CMDaemon to stop: OK

Installing admin certificates

Waiting for CMDaemon to start: OK

New license was installed. In order to allow nodes to obtain a new

node certificate, all nodes must be rebooted.

Please issue the following command to reboot all nodes:

pexec reboot

Rebooting Nodes After An Install
The first time a product key is used: After using a product key with
the command request-license during a cluster installation, and then
running install-license, a reboot is required of all nodes in order for
them to pick up and install their new certificates. The install-license

script has at this point already renewed the administrator certificates for
use with cmsh and cmgui on the head node. The parallel execution com-
mand pexec reboot suggested towards the end of the install-license

script output is what can be used to reboot all other nodes. Since such
a command is best done by an administrator manually, pexec reboot is
not scripted.

The subsequent times that a product key is used: On running the com-
mand request-license for the cluster, the administrator is prompted on
whether to re-use the existing keys and settings from the existing license.
If the existing keys are kept, a pexec reboot is not required. This is be-
cause these keys are X509v3 certificates issued from the head node. Any
user or node certificates generated using the same certificate are therefore
still valid and so regenerating them for nodes via a reboot is not required,
allowing users to continue working uninterrupted.

After the license is installed, verifying the license attribute values is a
good idea. This can be done using the licenseinfo command in cmsh, or
the License tab in cmgui’s cluster resource tabbed pane (section 4.1.1).

© Bright Computing, Inc.



62 Configuring The Cluster

4.2 Network Settings
A simplified quickstart guide to setting up the external head node net-
work configuration on a vendor-prepared cluster is given in Appendix J.
This section (4.2) covers network configuration more thoroughly.

After the cluster is set up with the correct license, the next configura-
tion step is to define the networks that are present (sections 4.2.1 and 4.2.2).

During the Bright Cluster Manager installation at least two default
network objects were created:

internalnet: the primary internal cluster network, or management net-
work. This is used for booting non-head nodes and for all cluster
management communication. In the absence of other internal net-
works, internalnet it is also used for storage and communication
between compute jobs. Changing the configuration of this network
is described on page 70 under the subheading “Changing Internal
Network Parameters For The Cluster”.

externalnet: the network connecting the cluster to the outside world
(typically a corporate or campus network). Changing the configu-
ration of this network is described on page 67 under the subheading
“Changing External Network Parameters For The Cluster”.

For a Type 1 cluster (section 2.3.6) this is illustrated conceptually by
figure 4.2.

External 

Head

n
o
d
e
0

0
1

n
o
d
e
0

0
2

n
o
d
e
0

0
3

n
o
d
e
0

0
4

n
o
d
e
0

0
5

n
o
d
e
0

0
6

Internal

Network

Network

= Network Interface

Figure 4.2: Network Settings Concepts

The configuration of network settings is completed when, after hav-
ing configured the general network settings, specific IP addresses are
then also assigned to the interfaces of devices connected to the networks.
Changing the configuration of the head node external interface is de-
scribed on page 68 under the subheading “The IP address of the cluster”.
Changing the configuration of the internal network interfaces is described

© Bright Computing, Inc.



4.2 Network Settings 63

on page 72 under the subheading “The IP addresses and other interface
values of the internal network”.

4.2.1 Configuring Networks
The network mode in cmsh gives access to all network-related opera-
tions using the standard object commands. Section 3.5.3 introduces cmsh
modes and working with objects.

In cmgui, a network can be configured by selecting the Networks item
in the resource tree (figure 4.3).

Figure 4.3: Networks

In the context of the OSI Reference Model, each network object rep-
resents a layer 3 (i.e. Network Layer) IP network, and several layer 3
networks can be layered on a single layer 2 network (e.g. routes on an
Ethernet segment).

Selecting a network such as internalnet or externalnet in the re-
source tree displays its tabbed pane. By default, the tab displayed is
the Overview tab. This gives a convenient overview of the IP addresses
of items assigned in the selected network, grouped as nodes, switches,
Power Distribution Units, GPU units, and other devices (figure 4.4).

Figure 4.4: Network Overview

Selecting the Settings tab allows a number of network properties to
be changed (figure 4.5).

© Bright Computing, Inc.



64 Configuring The Cluster

Figure 4.5: Network Settings

The properties of figure 4.5 are introduced in table 4.2.1.
Table 4.2.1: Network Configuration Settings

Property Description

Name Name of this network.

Domain name DNS domain associated with the network.

Management network Switch to treat the network as having nodes
managed by the head node.

External network Switch to treat the network as an external net-
work.

Base address Base address of the network (also known as
the network address)

Gateway Default route IP address

Netmask bits Prefix-length, or number of bits in netmask.
The part after the “/” in CIDR notation.

MTU Maximum Transmission Unit. The maximum
size of an IP packet transmitted without frag-
menting.

Dynamic range

start/end

Start/end IP addresses of the DHCP range
temporarily used by nodes during PXE boot.

Allow node booting Nodes set to boot from this network (useful
in the case of nodes on multiple networks).

Don't allow new

nodes to boot from

this network

New nodes are not offered a PXE DHCP IP
address from this network.

In basic networking concepts, a network is a range of IP addresses.
The first address in the range is the base address. The length of the range,
i.e. the subnet, is determined by the netmask, which uses CIDR nota-
tion. CIDR notation is the so-called / (“slash”) representation, in which,
for example, a CIDR notation of 192.168.0.1/28 implies an IP address of
192.168.0.1 with a traditional netmask of 255.255.255.240 applied to the
192.168.0.0 network. The netmask 255.255.255.240 implies that bits 28–32

© Bright Computing, Inc.



4.2 Network Settings 65

of the 32-bit dotted-quad number 255.255.255.255 are unmasked, thereby
implying a 4-bit-sized host range of 16 (i.e. 24) addresses.

The sipcalc utility installed on the head node is a useful tool for cal-
culating or checking such IP subnet values (man sipcalc or sipcalc -h

for help on this utility):

Example

user@brightcluster:~$ sipcalc 192.168.0.1/28

-[ipv4 : 192.168.0.1/28] - 0

[CIDR]

Host address - 192.168.0.1

Host address (decimal) - 3232235521

Host address (hex) - C0A80001

Network address - 192.168.0.0

Network mask - 255.255.255.240

Network mask (bits) - 28

Network mask (hex) - FFFFFFF0

Broadcast address - 192.168.0.15

Cisco wildcard - 0.0.0.15

Addresses in network - 16

Network range - 192.168.0.0 - 192.168.0.15

Usable range - 192.168.0.1 - 192.168.0.14

Every network has an associated DNS domain which can be used to
access a device through a particular network. For internalnet, the de-
fault DNS domain is set to cm.cluster, which means that the hostname
node001.cm.cluster can be used to access device node001 through the
primary internal network. If a dedicated storage network has been added
with DNS domain storage.cluster, then node001.storage.cluster can
be used to reach node001 through the storage network. Internal DNS
zones are generated automatically based on the network definitions and
the defined nodes on these networks. For networks marked as external,
no DNS zones are generated.

4.2.2 Adding Networks
The Add button in the networks overview tab of figure 4.3 can be used to
add a new network. After the new network has been added, the Settings
tab (figure 4.5) can be used to further configure the newly added network.

After a network has been added, it can be used in the configuration of
network interfaces for devices.

The default assignment of networks (internalnet to Management

network and externalnet to External network) can be changed in the
Settings tab of the cluster object (figure 4.6).

© Bright Computing, Inc.

node001.storage.cluster


66 Configuring The Cluster

Figure 4.6: Cluster Settings

4.2.3 Changing Network Parameters
After both internal and external networks are defined, it may be neces-
sary to change network-related parameters from their original or default
installation settings.

Changing Head Node Hostname
Normally the name of a cluster is used as the hostname of the head node.
To reach the head node from inside the cluster, the alias master may be
used at all times. Setting the hostname of the head node itself to master

is not recommended.
To change the hostname of the head node, the device object corre-

sponding to the head node must be modified.

• In cmgui, the device listed under Head Nodes in the resource tree
is selected and its Settings tab selected from the tabbed pane (fig-
ure 4.7). The hostname is changed by modifying the Hostname prop-
erty and clicking on Save. When setting a hostname, a domain is not
included.

© Bright Computing, Inc.



4.2 Network Settings 67

Figure 4.7: Head Node Settings

• The hostname of the head node can also be changed via cmsh:

Example

[root@bright52 ~]# cmsh

[bright52]% device use master

[bright52->device[bright52]]% set hostname foobar

[foobar->device*[foobar*]]% commit

[foobar->device[foobar]]% quit

[root@bright52 ~]# sleep 30; hostname -f

foobar.cm.cluster

[root@bright52 ~]#

The prompt string shows the new hostname when a new shell is
started.

Changing External Network Parameters For The Cluster
The external network parameters of the cluster: When a cluster inter-
acts with an external network, such as a company or a university net-
work, its connection behavior is determined by the settings of two ob-
jects: firstly, the external network settings of the Networks resource, and
secondly, by the cluster network settings.

1. The external network object contains the network settings for all
objects configured to connect to the external network, for example,
a head node. Network settings are configured in the Settings tab
of the Networks resource of cmgui. Figure 4.5 shows a settings tab
for when the internalnet item has been selected, but in the current
case the externalnet item must be selected instead. The following
parameters can then be configured:

• the IP network parameters of the cluster (but not the IP address
of the cluster):

© Bright Computing, Inc.



68 Configuring The Cluster

– Base address: the network address of the external net-
work (the “IP address of the external network”). This is
not to be confused with the IP address of the cluster, which
is described shortly after this.

– Netmask bits: the netmask size, or prefix-length, of the
external network, in bits.

– Gateway: the default route for the external network.
– Dynamic range start and Dynamic range end: the start

and end respectively of the DHCP range, if using DHCP
to set the IP address of the cluster on the external network.

• the Domain name: the network domain (LAN domain, i.e. what
domain machines on the external network use as their do-
main),

• network name (what the external network itself is called), by
default this is externalnet on a newly installed Type 1 cluster,

• the External network checkbox: this is checked for a Type 1
cluster,

• and MTU size (the maximum value for a TCP/IP packet be-
fore it fragments on the external network—the default value is
1500).

2. The cluster object contains other network settings used to connect
to the outside. These are configured in the Settings tab of the clus-
ter object resource in cmgui (figure 4.6):

• the external name servers used by the cluster to resolve exter-
nal host names,

• the DNS search domain (what the cluster uses as its domain),

• and NTP time servers (used to synchronize the time on the
cluster with standard time) and time zone settings.

Changing the networking parameters of a cluster (apart from the IP
address of the cluster) therefore requires making changes in the settings
of the two preceding objects.

The IP address of the cluster: The cluster object itself does not contain
an IP address value. This is because it is the cluster network topology
type that determines whether a direct interface exists from the cluster to
the outside world. Thus, the IP address of the cluster in the Type 1, Type 2,
and Type 3 configurations (section 2.3.6) is defined by the cluster interface
that faces the outside world. For Type 1, this is the interface of the head
node to the external network (figure 4.2). For Type 2 and Type 3 interfaces
the cluster IP address is effectively that of an upstream router, and thus
not a part of Bright Cluster Manager configuration. Thus, logically, the IP
address of the cluster is not a part of the cluster object or external network
object configuration.

For a Type 1 cluster, the head node IP address can be set in Bright
Cluster Manager, separately from the cluster object settings. This is then
the IP address of the cluster according to the outside world.

© Bright Computing, Inc.



4.2 Network Settings 69

Setting the network parameters of the cluster and the head node IP ad-
dress: These values can be set using cmgui or cmsh:

With cmgui: The associated cluster network settings tabs are ac-
cessed as shown in figure 4.8 for the external network object, and as
shown in figure 4.6 for the cluster object.

Figure 4.8: Network Settings For External Network

Setting the static IP address of the head node can be done by select-
ing the head node from the Head Nodes resources tab, then selecting
the Network Setup tabbed pane, then selecting the interface for the
address. Clicking on the Edit button opens up an editor that allows
the IP address to be changed (figure 4.9).

Figure 4.9: Setting The IP Address On A Head Node In cmgui

With cmsh: The preceding cmgui configuration can also be done
in cmsh, using the network, partition and device modes, as in the

© Bright Computing, Inc.



70 Configuring The Cluster

following example:

Example

[bright52]% network use externalnet

[bright52->network[externalnet]]% set baseaddress 192.168.1.0

[bright52->network*[externalnet*]]% set netmaskbits 24

[bright52->network*[externalnet*]]% set gateway 192.168.1.1

[bright52->network*[externalnet*]]% commit

[bright52->network[externalnet]]% partition use base

[bright52->partition[base]]% set nameservers 192.168.1.1

[bright52->partition*[base*]]% set searchdomains x.com y.com

[bright52->partition*[base*]]% append timeservers ntp.x.com

[bright52->partition*[base*]]% commit

[bright52->partition[base]]% device use master

[bright52->device[bright52]]% interfaces

[bright52->device[bright52]->interfaces]% use eth1

[bright52->device[bright52]->interfaces[eth1]]% set ip 192.168.1.176

[bright52->device[bright52]->interfaces*[eth1*]]% commit

[bright52->device[bright52]->interfaces[eth1]]%

After changing the external network configurations, a reboot of the
head node is necessary to activate the changes.

Using DHCP to supply network values for the external interface: Con-
necting the cluster via DHCP on the external network is not generally rec-
ommended for production clusters. This is because DHCP-related issues
can complicate networking troubleshooting compared with using static
assignments.

For a Type 1 network, to make the cluster and head node use some
of the DHCP-supplied external network values, the base address of
externalnet and the external interface IP address of the head node must
both be set to 0.0.0.0. This can be done in cmgui, as shown in figures 4.8
and 4.9; or in cmsh, as shown in the preceding example in the network and
device modes. The gateway address, the name server(s), and the exter-
nal IP address of the head node are then obtained via a DHCP lease. Time
server configuration for externalnet is not picked up from the DHCP
server, having been set during installation (figure 2.20). The time servers
can be changed using cmgui as in figure 4.6, or using cmsh in partition

mode as in the preceding example. The time zone can be changed simi-
larly.

It is usually sensible to reboot after implementing these changes in
order to test the changes are working as expected.

Changing Internal Network Parameters For The Cluster
When a cluster interacts with the internal network that the compute nodes
and other devices are on, its connection behavior with the devices on that
network is determined by settings in:

1. the internal network of the Networks resource (page 71)

2. the cluster network for the internal network (page 72)

3. the individual device network interface (page 72)

© Bright Computing, Inc.



4.2 Network Settings 71

4. the node categories network-related items for the device (page 73),
in the case of the device being a regular node.

In more detail:

1. The internal network object: has the network settings for all devices
connecting to the internal network, for example, a login node, a head
node via its internalnet interface, or a managed switch on the inter-
nal network. For individual nodes, these settings are configured in the
Settings tab of the Networks resource of cmgui (figure 4.5) for the fol-
lowing parameters:

• the IP network parameters of the internal network (but not the in-
ternal IP address):

– “Base address”: the internal network address of the cluster
(the “IP address of the internal network”). This is not to be
confused with the IP address of the internal network interface
of the head node. The default value is 10.141.0.0.

– “Netmask bits”: the netmask size, or prefix-length, of the in-
ternal network, in bits. The default value is 16.

– Gateway:the default gateway route for the internal network. If
unset, or 0.0.0.0 (the default), then its value is decided by the
DHCP server on the head node, and nodes are assigned a de-
fault gateway route of 10.141.255.254, which corresponds to
using the head node as a default gateway route for the inter-
face of the regular node. The effect of this parameter is over-
riden by any default gateway route value set by the value of
Default gateway in the node category.

– “Dynamic range start” and “Dynamic range end”: These
are the DHCP ranges for nodes. DHCP is unset by default.
When set, the internal nodes can use the dynamic IP address
values assigned to the node by the node-installer. These values
range by default from 10.141.128.0 to 10.141.143.255.

– Allow node booting: This allows nodes to boot from the
the provisioning system controlled by CMDaemon. The
parameter is normally set for the management network
(that is the network over which CMDaemon communicates
to manage nodes) but booting can instead be carried out
over a separate physical non-management network. Boot-
ing over InfiniBand is one of the possibilities (section 6.1.3).
Only if the Allow node booting option is ticked does tick-
ing the “Don't allow new nodes to be booted from this

network” checkbox have any effect, and stop new nodes from
booting. New nodes are those nodes which are detected but
the cluster cannot identify based on CMDaemon records. De-
tails on booting, provisioning, and how a node is detected as
new are described further in chapter 6.

• the “domain name” of the network. This is the LAN domain, which
is the domain machines on this network use as their domain. By
default, set to cm.cluster.

© Bright Computing, Inc.



72 Configuring The Cluster

• the network name, or what the internal network is called. By de-
fault, set to internalnet.

• The MTU size, or the maximum value for a TCP/IP packet before it
fragments on this network. By default, set to 1500.

2. The cluster object: has other network settings that the internal net-
work in the cluster uses. These particulars are configured in the Settings
tab of the cluster object resource in cmgui (figure 4.6):

• the “Management network”. This is the name of the network
over which CMDaemon manage the nodes. By default, set to
internalnet for Type 1 and Type 2 networks, and managementnet

in Type 3 networks. This can also be set at category level.

• the “Node name” can be set to decide the prefix part of the node
name. By default, set to node.

• the “Node digits” can be set to decide the possible size of numbers
used for suffix part of the node name. By default, set to 3.

• the “Default category”. This sets the category the nodes are in by
default. By default, it is set to default.

• the “Default software image”. This sets the image the nodes use
by default, By default, it is set to default-image.

3. The internal IP addresses and other internal interface values: The
internal nodes can be configured in the “Network Setup” tab of the Nodes
object resource in cmgui, which displays options in a similar way to fig-
ure 4.9. Network configuration can be done in a similar way to that de-
scribed for external network configuration.

The items that can be set are:

• the Network device name: By default, this is set to BOOTIF for a
node that boots from the same interface as the one from which it is
provisioned.

• the Network: By default, this is set to a value of internalnet.

• the IP address: By default, this is automatically assigned a static
value, in the range 10.141.0.1 to 10.141.255.255, with the first
node being given the first address. Using a static address instead
of a DHCP-served dynamic address is recommended for busy clus-
ters for reliability, although setting 0.0.0.0 allows dynamic DHCP
addressing to be used.

When using dynamic DHCP addressing, a start and end range in
the internal network object is used, as explained earlier on page 71
in the section describing the internal network object.

The static address can be changed manually, in case there is an IP
address or node ID conflict due to an earlier inappropriate manual
intervention.

© Bright Computing, Inc.



4.3 Configuring InfiniBand Interfaces 73

• Additional Hostname: In the case of nodes this is in addition to the
default node name set during provisioning. The node name set dur-
ing provisioning takes a default form of node<3 digit number>, as
explained earlier on page 72 in the section describing the cluster
object settings.

4. Node category network values: are settings for the internal network
that can be configured for node categories using the Settings tab in
cmgui for that category of node. If there are node settings that can be
configured in cmgui or cmsh, then the node settings override the corre-
sponding category settings for those particular nodes.

The category properties involved in internal networking that can be
set include:

• Default gateway: The default gateway route for nodes in the node
category. If unset, or 0.0.0.0 (the default), then the node default gate-
way route is decided by the internal network object Gateway value.
If the default gateway is set as a node category value, then nodes
use the node category value as their default gateway route instead.

• Management network: The management network is the network used
by CMDaemon to manage devices. The default setting is a property
of the node object. It can be set as a category property.

• Name server: The default setting for the name server on all nodes
is set by the node-installer to refer to the head node, and is not con-
figurable using cmgui or cmsh. The name server can however be set
as a category property to override the default value.

• Time server: The default setting for the time server on all nodes is
set by the node-installer to refer to the head node, and is not config-
urable using cmgui or cmsh. The time server can however be set as
a category property to override the default value.

• Search domain. The default setting for the search domain on all
nodes is set by the node-installer to refer to the head node, and is not
configurable using cmgui or cmsh. The search domain can however
be set as a category property to override the default value.

After changing network configurations, a reboot of the node is neces-
sary to activate the changes.

4.3 Configuring InfiniBand Interfaces
On clusters with an InfiniBand interconnect, the InfiniBand Host Channel
Adapter (HCA) in each node must be configured before it can be used.
This section describes how to set up the InfiniBand service on the nodes
for regular use. Setting up InfiniBand for booting and provisioning pur-
poses is described in Chapter 6.

4.3.1 Installing Software Packages
On a standard Bright Cluster Manager cluster, the OFED (OpenFabrics
Enterprise Distribution) packages that are part of the Linux base distri-
bution are used. These packages provide RDMA fabric technologies such

© Bright Computing, Inc.



74 Configuring The Cluster

as InfiniBand and iWarp (RDMA over ethernet). By default, all relevant
OFED packages are installed on the head node and software images. It
is possible to replace the distribution OFED with an OFED provided by
the Bright Cluster Manager repository or another custom version. The
replacement can be for the entire cluster, or only for certain software im-
ages. Administrators may choose to switch to a different OFED version
if the HCAs used are not supported by the distribution OFED version,
or to increase performance by using an OFED version that has been opti-
mized for a particular HCA. Installing the Bright Cluster Manager OFED
packages is covered in section 12.6.

If the InfiniBand network is enabled during installation, then the rdma
script runs during the init stage of booting up for the enabled nodes. For
SLES and Linux distributions based on versions prior to Red Hat 6, the
openibd script is used instead of the rdma script.

The rdma or openibd script takes care of loading the relevant Infini-
Band HCA kernel modules. When adding an InfiniBand network after
installation, it may be necessary to use chkconfig manually to configure
the rdma or openibd script to be run at boot-time on the head node and
inside the software images.

4.3.2 Subnet Managers
Every InfiniBand subnet requires at least one subnet manager to be run-
ning. The subnet manager takes care of routing, addressing and initial-
ization on the InfiniBand fabric. Some InfiniBand switches include subnet
managers. However, on large InfiniBand networks or in the absence of a
switch-hosted subnet manager, a subnet manager needs to be started on
at least one node inside of the cluster. When multiple subnet managers
are started on the same InfiniBand subnet, one instance will become the
active subnet manager whereas the other instances will remain in passive
mode. It is recommended to run 2 subnet managers on all InfiniBand
subnets to provide redundancy in case of failure.

On a Linux machine that is not running Bright Cluster Manager, an
administrator sets a subnet manager service1 to start at boot-time with a
command such as: “chkconfig opensm on”. However, for clusters man-
aged by Bright Cluster Manager, a subnet manager is best set up using
CMDaemon. There are two ways of setting CMDaemon to start up the
subnet manager on a node at boot time:

1. by assigning a role.

In cmsh this can be done with:

[root@bright52 ~]# cmsh -c "device roles <node>; assign subnetmanager; \

commit"

where <node> is the name of a node on which it will run, for exam-
ple: bright52, node001, node002...

In cmgui the subnet manager role is assigned by selecting a head
node or regular node from the resources tree, and assigning it the
“Subnet Manager Role” from the “Roles” tab.

1usually opensm, but opensmd in SLES

© Bright Computing, Inc.



4.3 Configuring InfiniBand Interfaces 75

2. by setting the service1 up.

In cmsh this is done with:

Example

[root@bright52 ~]# cmsh

[bright52]% device services node001

[bright52->device[node001]->services]% add opensm

[bright52->device[node001]->services*[opensm*]]% set autostart yes

[bright52->device[node001]->services*[opensm*]]% set monitored yes

[bright52->device[node001]->services*[opensm*]]% commit

[bright52->device[node001]->services[opensm]]%

In cmgui the subnet manager service is configured by selecting a
head node or regular node from the resources tree, and adding the
service to it.

When the head node in a cluster is equipped with an InfiniBand HCA,
it is a good candidate to run as a subnet manager for smaller clusters.

On large clusters a dedicated node is recommended to run the subnet
manager.

4.3.3 InfiniBand Network Settings
Although not strictly necessary, it is recommended that InfiniBand inter-
faces are assigned an IP address (i.e. IP over IB). First, a network object in
the cluster management infrastructure should be created. The procedure
for adding a network is described in section 4.2.2. The following settings
are recommended as defaults:

Property Value

Name ibnet

Domain name ib.cluster

External network false

Base address 10.149.0.0

Netmask bits 16

Broadcast address 10.149.255.255

Once the network has been created all nodes must be assigned an In-
finiBand interface on this network. The easiest method of doing this is
to create the interface for one node device and then to clone that device
several times.

For large clusters, a labor-saving way to do this is using the
addinterface command (section 4.4.1) as follows:

[root@bright52 ~]# echo "device

addinterface -n node001..node150 physical ib0 ibnet 10.149.0.1

commit" | cmsh -x

When the head node is also equipped with an InfiniBand HCA, it is
important that a corresponding interface is added and configured in the
cluster management infrastructure.

© Bright Computing, Inc.



76 Configuring The Cluster

Example

Assigning an IP address on the InfiniBand network to the head node:

[bright52->device[brigh52]->interfaces]% add physical ib0

[bright52->device[bright52]->interfaces*[ib0*]]% set network ibnet

[bright52->device[bright52]->interfaces*[ib0*]]% set ip 10.149.255.254

[bright52->device[bright52]->interfaces*[ib0*]]% commit

As with any change to the network setup, the head node needs to be
restarted to make the above change active.

4.3.4 Verifying Connectivity
After all nodes have been restarted, the easiest way to verify connectivity
is to use the ping utility

Example

Pinging node015 while logged in to node014 through the InfiniBand in-
terconnect:

[root@node014 ~]# ping node015.ib.cluster

PING node015.ib.cluster (10.149.0.15) 56(84) bytes of data.

64 bytes from node015.ib.cluster (10.149.0.15): icmp_seq=1 ttl=64

time=0.086 ms

...

If the ping utility reports that ping replies are being received, the In-
finiBand is operational. The ping utility is not intended to benchmark
high speed interconnects. For this reason it is usually a good idea to
perform more elaborate testing to verify that bandwidth and latency are
within the expected range.

The quickest way to stress-test the InfiniBand interconnect is to use the
Intel MPI Benchmark (IMB), which is installed by default in /cm/shared/

apps/imb/current. The setup.sh script in this directory can be used to
create a template in a user’s home directory to start a run.

Example

Running the Intel MPI Benchmark using openmpi to evaluate perfor-
mance of the InfiniBand interconnect between node001 and node002:

[root@bright52 ~]# su - cmsupport

[cmsupport@bright52 ~]$ cd /cm/shared/apps/imb/current/

[cmsupport@bright52 current]$ ./setup.sh

[cmsupport@bright52 current]$ cd ~/BenchMarks/imb/3.2.2

[cmsupport@bright52 3.2.2]$ module load openmpi/gcc

[cmsupport@bright52 3.2.2]$ module initadd openmpi/gcc

[cmsupport@bright52 3.2.2]$ make -f make_mpi2

[cmsupport@bright52 3.2.2]$ mpirun -np 2 -machinefile ../nodes IMB-MPI1 PingPong

#---------------------------------------------------

# Benchmarking PingPong

# #processes = 2

#---------------------------------------------------

#bytes #repetitions t[usec] Mbytes/sec

0 1000 0.78 0.00

© Bright Computing, Inc.

/cm/shared/apps/imb/current
/cm/shared/apps/imb/current


4.4 Configuring IPMI Interfaces 77

1 1000 1.08 0.88

2 1000 1.07 1.78

4 1000 1.08 3.53

8 1000 1.08 7.06

16 1000 1.16 13.16

32 1000 1.17 26.15

64 1000 1.17 52.12

128 1000 1.20 101.39

256 1000 1.37 177.62

512 1000 1.69 288.67

1024 1000 2.30 425.34

2048 1000 3.46 564.73

4096 1000 7.37 530.30

8192 1000 11.21 697.20

16384 1000 21.63 722.24

32768 1000 42.19 740.72

65536 640 70.09 891.69

131072 320 125.46 996.35

262144 160 238.04 1050.25

524288 80 500.76 998.48

1048576 40 1065.28 938.72

2097152 20 2033.13 983.71

4194304 10 3887.00 1029.07

# All processes entering MPI_Finalize

To run on nodes other than node001 and node002, the ../nodes file
must be modified to contain different hostnames. To perform a more ex-
tensive run, the PingPong argument should be omitted.

4.4 Configuring IPMI Interfaces
Bright Cluster Manager also takes care of the initialization and configura-
tion of the baseboard management controller (BMC) that may be present
on devices. The IPMI or iLO interface that is exposed by a BMC is
treated in the cluster management infrastructure as a special type of net-
work interface belonging to a device. In the most common setup a ded-
icated network (i.e. IP subnet) is created for IPMI communication. The
10.148.0.0/16 network is used by default for IPMI interfaces by Bright
Cluster Manager.

4.4.1 IPMI And Network Settings
The first step in setting up IPMI is to add the IPMI network as a net-
work object in the cluster management infrastructure. The procedure for
adding a network is described in section 4.2.2. The following settings are
recommended as defaults:

© Bright Computing, Inc.



78 Configuring The Cluster

Property Value

Name ipminet

Domain name ipmi.cluster

External network false

Base address 10.148.0.0

Netmask bits 16

Broadcast address 10.148.255.255

Once the network has been created all nodes must be assigned an
IPMI interface on this network. The easiest method of doing this is to
create the interface for one node device and then to clone that device sev-
eral times.

For larger clusters this can be laborious, and a simple bash loop can
be used to do the job instead:

[bright52 ~]# for ((i=1; i<=150; i++)) do

echo "

device interfaces node$(printf '%03d' $i)

add ipmi ipmi0

set network ipminet

set ip 10.148.0.$i

commit"; done | cmsh -x # -x usefully echoes what is piped into cmsh

The preceding loop can conveniently be replaced with the addinterface
command, run from within the device mode of cmsh:

[bright52 ~]# echo "

device

addinterface -n node001..node150 ipmi ipmi0 ipminet 10.148.0.1

commit" | cmsh -x

The help text for addinterface gives more details on how to use it.
In order to be able to communicate with the IPMI interfaces, the head

node also needs an interface on the IPMI network. Depending on how
the IPMI interfaces are physically connected to the head node, the head
node has to be assigned an IP address on the IPMI network one way or
another. There are two possibilities for how the IPMI interface are physi-
cally connected:

• When the IPMI interfaces are connected to the primary internal net-
work, the head node should be assigned an alias interface config-
ured with an IP address on the IPMI network.

• When the IPMI interfaces are connected to a dedicated physical net-
work, the head node must also be physically connected to this net-
work. A physical interface must be added and configured with an
IP address on the IPMI network.

Example

Assigning an IP address on the IPMI network to the head node using an
alias interface:

© Bright Computing, Inc.



4.4 Configuring IPMI Interfaces 79

[bright52->device[bright52]->interfaces]% add alias eth0:0

[bright52->device[bright52]->interfaces*[eth0:0*]]% set network ipminet

[bright52->device[bright52]->interfaces*[eth0:0*]]% set ip 10.148.255.254

[bright52->device[bright52]->interfaces*[eth0:0*]]% commit

[bright52->device[bright52]->interfaces[eth0:0]]%

Mon Dec 6 05:45:05 bright52: Reboot required: Interfaces have been modified

[bright52->device[bright52]->interfaces[eth0:0]]% quit

[root@bright52 ~]# /etc/init.d/network restart

As with any change to the network setup, the head node needs to be
restarted to make the above change active, although in this particular case
restarting the network service would suffice.

4.4.2 IPMI Authentication
The node-installer described in Chapter 6 is responsible for the initial-
ization and configuration of the IPMI interface of a device. In addition
to a number of network-related settings, the node-installer also config-
ures IPMI authentication credentials. By default IPMI interfaces are con-
figured with username ADMIN and a random password that is generated
during the installation of the head node. The values can be read with the
“get” command of cmsh in partition mode.

Changing the IPMI authentication credentials is currently only possi-
ble through cmsh.

For example, the current values of the IPMI username and password
for the entire cluster can be obtained and changed as follows:

Example

[bright52]% partition use base

[bright52->partition[base]]% get ipmiusername

ADMIN

[bright52->partition[base]]% get ipmipassword

Za4ohni1ohMa2zew

[bright52->partition[base]]% set ipmiusername ipmiadmin

[bright52->partition*[base*]]% set ipmipassword

enter new password: ******

retype new password: ******

[bright52->partition*[base*]]% commit

[bright52->partition[base]]%

It is possible to change the authentication credentials cluster-wide or
by category. Category settings override cluster-wide settings. The rele-
vant properties are:

Property Description

IPMI User ID User type. Normally set to 2 for administra-
tor access.

IPMI User Name User name

IPMI Password Password for specified user name

...continues

© Bright Computing, Inc.



80 Configuring The Cluster

...continued

Property Description

The cluster management infrastructure stores the configured IPMI
username and password not just to configure the IPMI interface from the
node-installer. The information is also used to authenticate to the IPMI
interface once it has been brought up, in order to perform IPMI man-
agement operations (e.g. power cycling nodes and collecting hardware
metrics).

4.5 Configuring Switches And PDUs
4.5.1 Configuring With The Manufacturer’s Configuration

Interface
Network switches and PDUs that will be used as part of the cluster should
be configured with the PDU/switch configuration interface described in
the PDU/switch documentation supplied by the manufacturer. Typically
the interface is accessed by connecting via a web browser or telnet to an
IP address preset by the manufacturer.

The IP settings of the PDU/switch must be configured to match the
settings of the device in the cluster management software.

• In cmgui this is done by selecting the Switches resource, selecting
the particular switch from within that resource, then selecting the
associated Settings tab (figure 4.10). The IP address can then be
set and saved.

• In cmsh this can be done in device mode, with a set command:

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright5522->device]% set switch01 ip 10.141.253.2

[bright52->device*]% commit

4.5.2 Configuring SNMP
Moreover, in order to allow the cluster management software to commu-
nicate with the switch or PDU, SNMP must be enabled and the SNMP
community strings should be configured correctly. By default, the SNMP
community strings for switches and PDUs are set to public and private

for respectively read and write access. If different SNMP community
strings have been configured in the switch or PDU, the readstring and
writestring properties of the corresponding switch device should be
changed.

Example

[bright52]% device use switch01

[bright52->device[switch01]]% get readstring

public

[bright52->device[switch01]]% get writestring

private

[bright52->device[switch01]]% set readstring public2

[bright52->device*[switch01*]]% set writestring private2

[bright52->device*[switch01*]]% commit

© Bright Computing, Inc.



4.5 Configuring Switches And PDUs 81

4.5.3 Uplink Ports
Uplink ports are switch ports that are connected to other switches. CM-
Daemon must be told about any switch ports that are uplink ports, or the
traffic passing through an uplink port will lead to mistakes in what CM-
Daemon knows about port and MAC correspondence. Uplink ports are
thus ports that CMDaemon is told to ignore.

To inform CMDaemon about what ports are uplink ports, cmgui or
cmsh are used:

• In cmgui, the switch is selected from the Switches folder, and the
Settings tabbed pane is opened (figure 4.10). The port number cor-
responding to uplink port number is filled in the blank field beside
the “Uplink:” label. More uplinks can be appended by clicking on
the©+ widget. The state is saved with the Save button.

Figure 4.10: Notifying CMDaemon About Uplinks With cmgui

• In cmsh, the switch is accessed from the device mode. The uplink
port numbers can be appended one-by-one with the append com-
mand, or set in one go by using space-separated numbers.

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->device]% set switch01 uplinks 15 16

[bright52->device*]% set switch02 uplinks 01

[bright52->device*]% commit

successfully committed 3 Devices

4.5.4 The showport MAC Address-Port Matching Tool
The showport command can be used in troubleshooting network topol-
ogy issues, as well as checking and setting up new nodes (section 6.4.2).

Basic Use Of showport
In the device mode of cmsh is the showport command, which works out
which ports on which switch are associated with a specified MAC ad-
dress.

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->device]% showport 00:30:48:30:73:92

[bright52->device]% switch01:12

© Bright Computing, Inc.



82 Configuring The Cluster

When running showport, CMDaemon on the head node queries all
switches until a match is found.

If a switch is also specified using the “-s” option, then the query is
carried out for that switch first. Thus the preceding example can also be
specified as:

[bright52->device]% showport -s switch01 00:30:48:30:73:92

[bright52->device]% switch01:12

If there is no port number returned for the specified switch, then the
scan continues on other switches.

Mapping All Port Connections In The Cluster With showport

A list indicating the port connections and switches for all connected de-
vices that are up can be generated using this script:

Example

#!/bin/bash

for nodename in $(cmsh -c "device; foreach * (get hostname)")

do

macad=$(cmsh -c "device use $nodename; get mac")

echo -n "$macad $nodename "

cmsh -c "device showport $macad"

done

The script may take a while to finish its run. It gives an output like:

Example

00:00:00:00:00:00 switch01: No ethernet switch found connected to this m\

ac address

00:30:48:30:73:92 bright52: switch01:12

00:26:6C:F2:AD:54 node001: switch01:1

00:00:00:00:00:00 node002: No ethernet switch found connected to this ma\

c address

4.6 Disk Layouts: Disked, Semi-Diskless, And
Diskless Node Configuration

Configuring the disk layout for head and regular nodes is done as part of
the initial setup (section 2.3.14). The disk layout can also be re-configured
for regular nodes once the cluster is running.

4.6.1 Disk Layouts
A disk layout is specified using an XML schema (appendix D.1). Possible
disk layouts include the following:

• Default layout (appendix D.2)

• RAID setup (appendix D.3)

• LVM setup (appendix D.5)

• Diskless setup (appendix D.6)

• Semi-diskless setup (appendix D.7)

© Bright Computing, Inc.



4.6 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 83

4.6.2 Disk Layout Assertions
Disk layouts can be set to assert

• that particular hardware be used, using XML element tags such as
vendor or requiredSize (appendix D.8)

• custom assertions using an XML assert element tag to run scripts
placed in CDATA sections (appendix D.9)

4.6.3 Changing Disk Layouts
A disk layout applied to a category of nodes is inherited by default by
the nodes in that category. A disk layout that is then applied to an in-
dividual node within that category overrides the category setting. This
is an example of the standard behavior for categories, as mentioned in
section 3.1.3.

By default, the cluster is configured with a standard layout specified
in section D.2. The layouts can be accessed from cmgui or cmsh, as is
illustrated by the example in section 4.6.4, which covers changing a node
from disked to diskless mode:

4.6.4 Changing A Disk Layout From Disked To Diskless
The XML schema for a node configured for diskless operation is shown
in appendix D.6. This can often be deployed as is, or it can be modified
during deployment using cmgui or cmsh as follows:

Changing A Disk Layout Using cmgui

To change a disk layout with cmgui, the current disk layout is accessed by
selecting a node category or a specific node from the resource tree. The
“Disk Setup” tab is then selected. Clicking on the Load button shows
several possible configurations that can be loaded up, and if desired,
edited to suit the situation (figure 4.11). To switch from the existing disk

Figure 4.11: Changing A Disked Node To A Diskless Node With cmgui

layout to a diskless one, the diskless XML configuration is loaded and
saved to the node or node category.

Changing A Disk Layout Using cmsh

To edit an existing disk layout from within cmsh, the existing XML con-
figuration is accessed by editing the disksetup property in device mode

© Bright Computing, Inc.



84 Configuring The Cluster

for a particular node, or by editing the disksetup property in category

mode for a particular category. Editing is done using the set command,
which opens up a text editor:

Example

[root@bright52 ~]# cmsh

[bright52]% device use node001

[bright52->device[node001]]% set disksetup

After editing and saving the XML configuration, the change is then
committed to CMDaemon with the commit command.

Instead of editing an existing disk layout, another XML configuration
can also be assigned. A diskless configuration may be chosen and set as
follows:

Example

[bright52->device[node001]]% set disksetup /cm/shared/apps/cmgui/disk-s\

etup/slave-diskless.xml

In this example, after committing the change and rebooting the node,
the node then functions without using its own disk.

4.7 Configuring NFS Volume Exports And Mounts
NFS allows unix NFS clients shared access to a file system on an NFS
server. The accessed file system is called an NFS volume by remote ma-
chines. The NFS server exports the filesystem to selected hosts or net-
works, and the clients can then mount the exported volume locally.

An unformatted filesystem cannot be used. The drive must be parti-
tioned beforehand with fdisk or similar partitioning tools, and its filesys-
tem formatted with mkfs or similar before it can be exported.

In Bright Cluster Manager, the head node is typically used to export
an NFS volume to the regular nodes, and the regular nodes then mount
the volume locally.

If auto-mounting is used, then the configuration files for exporting
should be set up on the NFS server, and the mount configurations set up
on the software images. The service “autofs” or the equivalent can be set
up using cmgui via the “Services” tab (section 4.8) on the head node.

The rest of this section describes the configuration of NFS for static
mounts, using cmgui or cmsh.

4.7.1 Exporting A Filesystem Using cmgui And cmsh

Exporting A Filesystem Using cmgui

As an example, if an NFS volume exists at “bright52:/modeldata” it can
be exported using cmgui as follows:

The head node is selected from under the “Head Nodes” resource, and
the “FS Exports” tab is then selected. This shows the list of exports (fig-
ure 4.12).

© Bright Computing, Inc.



4.7 Configuring NFS Volume Exports And Mounts 85

Figure 4.12: NFS Exports From A Head Node Viewed Using cmgui

Using the Add button, a new entry (figure 4.13) can be configured with
values:

Figure 4.13: Setting Up An NFS Export Using cmgui

For this example, the value for “Name” is set arbitrarily to “Fluid
Model Data”, the value for Path is set to /modeldata, and the value for
“Allowed hosts” is set from the selection menu to allowing access to
internalnet (this is by default 10.141.0.0/16 in CIDR notation).

By leaving the Write option disabled, read-only access is kept. Saving
this means the NFS server now provides NFS access to this file system for
internalnet.

The network can be set to other values using CIDR notation, and also
to particular hosts such as just node001 and node002, by specifying a
value of “node001 node002” instead. Other settings and options are also
possible and are given in detail in the man pages for exports(5).

Exporting A Filesystem Using cmsh

The equivalent to the preceding cmgui NFS export procedure can be done
in cmsh by using the fsexports submode on the head node (some output
elided):

Example

[root@bright52 ~]# cmsh

[bright52]% device use bright52

[bright52->device[bright52]]% fsexports

[...->fsexports]% add "Fluid Model Data"

[...->fsexports*[Fluid Model Data*]]% set path /modeldata

© Bright Computing, Inc.



86 Configuring The Cluster

[...[Fluid Model Data*]]% set hosts 10.141.0.0/16

[...[Fluid Model Data*]]% commit

[...->fsexports[Fluid Model Data]]% list | grep Fluid

Name (key) Path Hosts Write

------------------- ------------- --------------- ------

Fluid Model Data /modeldata 10.141.0.0/16 no

4.7.2 Mounting A Filesystem Using cmgui And cmsh

Continuing on with the export example from the preceding section, the
administrator decides to mount the remote filesystem over the default
category of nodes. Nodes can also mount the remote filesystem individ-
ually, but that is usually not a common requirement in a cluster. The
administrator also decides not to re-use the exported name from the head
node. That is, the remote mount name modeldata is not used locally,
even though NFS allows this and many administrators prefer to do this.
Instead, a local mount name of /modeldatagpu is used, perhaps because
it avoids confusion about which filesystem is local to a person who is
logged in, and perhaps to emphasize the volume is being mounted by
nodes with GPUs.

Mounting A Filesystem Using cmgui

Thus, in cmgui, values for the remote mount point
(bright52:/modeldata), the file system type (nfs), and the local
mount point (/modeldatagpu) can be set in category mode, while the
remaining options stay at their default values (figure 4.14).

Figure 4.14: Setting Up NFS Mounts On A Node Category Using cmgui

Clicking on the Ok button saves the values, creating the local mount
point, and the volume can now be accessed by nodes in that category.

Mounting A Filesystem Using cmsh

The equivalent to the preceding cmgui NFS mount procedure can be done
in cmsh by using the fsmounts submode, for example on the default cat-
egory. The add method under the fsmounts submode sets the mountpoint
path, in this case /modeldatagpu (some output elided):

© Bright Computing, Inc.



4.7 Configuring NFS Volume Exports And Mounts 87

Example

[root@bright52 ~]# cmsh

[bright52]% category use default

[bright52->category[default]]% fsmounts

[bright52->category[default]->fsmounts]% add /modeldatagpu

[bright52->...*[/modeldatagpu*]]% set device bright52:/modeldata

[bright52->...*[/modeldatagpu*]]% set filesystem nfs

[bright52->category*[default*]->fsmounts*[/modeldatagpu*]]% commit

[bright52->category[default]->fsmounts[/modeldatagpu]]%

Device Mountpoint (key) Filesystem

--------------------- ------------------ ----------

...

bright52:/modeldata /modeldatagpu nfs

[bright52->category[default]->fsmounts[/modeldatagpu]]% show

Parameter Value

------------------- ---------------------

Device bright52:/modeldata

Dump no

Filesystem nfs

Filesystem Check 0

Mount options defaults

Mountpoint /modeldatagpu

General Considerations On Mounting A Filesystem
There may be a requirement to segregate the access of nodes. For exam-
ple, in the case of the preceding, because some nodes have no associated
GPUs.

Besides the “Allowed hosts” options of NFS exports mentioned ear-
lier in section 4.7.1, Bright Cluster Manager offers two more methods to
fine tune node access to mount points:

• Nodes can be placed in another category that does not have the
mount point.

• Nodes can have the mount point set, not by category, but per device
within the Nodes resource. For this, the administrator must ensure
that nodes that should have access have the mount point explicitly
set.

Other considerations on mounting are that:

• When adding a mount point object:

– The settings take effect right away by default on the nodes or
node categories.

– If noauto is set as a mount option, then the option only takes
effect on explicitly mounting the filesystem.

– If “AutomaticMountAll=0” is set as a CMDaemon option, then
/etc/fstab is written, but the mount -a command is not run
by CMDaemon. However, since mount -a is run by the distri-
bution init script system during boot, a reboot of the node will
implement a mount change.

© Bright Computing, Inc.



88 Configuring The Cluster

• While a mount point object may have been removed, umount does
not take place until reboot, to prevent mount changes outside of the
cluster manager.

• When manipulating mount points, the administrator should be
aware which mount points are inherited by category, and which are
set for the individual node.

– In cmgui, viewing category-inherited mount points for an in-
dividual node requires checking the checkbox for “Display
category inherited mounts” in the FS Mounts tabbed view
for that node (figure 4.15).

Figure 4.15: Display Of Category Inherited Mounts In cmgui

– In cmsh, the category a mount belongs to is displayed in brack-
ets. This is displayed from within the fsmounts submode of
the device mode for a specified node:

Example

[root@bright52 ~]# cmsh -c "device; fsmounts node001; list"

Device Mountpoint (key) Filesystem

------------------------ -------------------- ----------

[default] none /dev/pts devpts

[default] none /proc proc

[default] none /sys sysfs

[default] none /dev/shm tmpfs

[default] $localnfsserv+ /cm/shared nfs

[default] bright52:/home /home nfs

bright52:/cm/shared/exa+ /home/examples nfs

[root@bright52 ~]#

To remove a mount point defined at category level for a node, it
must be removed from within the category, and not from the specific
node.

Mount Order Considerations
Care is sometimes needed in deciding the order in which mounts are car-
ried out.

• For example, if both /usr/share/doc and a replacement directory
subtree /usr/share/doc/compat-gcc-34-3.4.6java are to be used,
then the stacking order should be that /usr/share/doc is mounted
first. This order ensures that the replacement directory subtree over-
lays the first mount. If, instead, the replacement directory were the
first mount, then it would be overlaid, inaccessible, and inactive.

© Bright Computing, Inc.



4.7 Configuring NFS Volume Exports And Mounts 89

• There may also be dependencies between the subtrees to consider,
some of which may prevent the start up of applications and ser-
vices until they are resolved. In some cases, resolution may be quite
involved.

The order in which such mounts are mounted can be modified with
the up and down commands within the fsmounts submode of cmsh, or by
using the arrow buttons at the bottom of the FS Mounts tabbed pane.

4.7.3 Mounting A Filesystem Subtree For A Diskless Node Over
NFS

NFS Vs tmpfs For Diskless Nodes
For diskless nodes (appendix D.6), the software image (section 3.1.2) is
typically installed from a provisioning node by the node-installer during
the provisioning stage, and held as a filesystem in RAM on the diskless
node with the tmpfs filesystem type.

It can be worthwhile to replace subtrees under the diskless node
filesystem held in RAM with subtrees provided over NFS. This can be
particularly worthwhile for less frequently accessed parts of the diskless
node filesystem. This is because, although providing the files over NFS is
much slower than accessing it from RAM, it has the benefit of freeing up
RAM for tasks and jobs that run on diskless nodes, thereby increasing the
cluster capacity.

An alternative “semi-diskless” way to free up RAM is to use a local
disk on the node itself for supplying the subtrees. This is outlined in
appendix D.7.

Moving A Filesystem Subtree Out Of tmpfs To NFS
To carry out subtree provisioning over NFS, the subtrees are exported and
mounted using the methods outlined in the previous examples in sec-
tions 4.7.1 and 4.7.2. For the diskless case, the exported filesystem subtree
is thus a particular path under /cm/images/<image>2 on the provision-
ing node, and the subtree is mounted accordingly under / on the diskless
node.

These paths cannot be mounted in Bright Cluster Manager 5.2:

/bin, /dev, /etc, /proc, /sbin, /sys, /tmp, and /var.

When cmgui or cmsh are used to manage the NFS export and mount of
the subtree filesystem, then tmpfs on the diskless node is automatically
reduced in size due to automatically excluding the subtree from tmpfs

during provisioning.
An example might be to export /cm/images/default-image from the

head node, and mount the directory available under it, usr/share/doc
at a mount point /usr/share/doc on the diskless node. In cmsh, such
an export can be done by creating a software image object defaultimage
with the following indicated properties (some output elided):

Example

[root@bright52 ~]# cmsh

2by default <image> is default-image on a newly-installed cluster

© Bright Computing, Inc.



90 Configuring The Cluster

[bright52]% device use bright52; fsexports

[bright52->device[bright52]->fsexports]% add defaultimage

[br...defaultimage*]]% set path /cm/images/default-image

[br...defaultimage*]]% set hosts 10.141.0.0/16

[br...defaultimage*]]% commit

[br...defaultimage]]% list | grep defaultimage

Name (key) Path Hosts Write

---------------- ------------------------ ------------- -----

defaultimage /cm/images/default-image 10.141.0.0/16 no

As the output to list shows, the NFS export should be kept read-
only, which is the default. Appropriate parts of the export can then be
mounted by a node or node category. The mount is defined by setting
the mount point, the nfs filesystem property, and the export device. For
example, for a node category (some output elided):

[br...defaultimage]]% category use default

[bright52->category[default]]% fsmounts

[bright52->category[default]->fsmounts]% add /usr/share/doc

[bright52->...*[/usr/share/doc*]]% set device bright52:/cm/images/defau\

lt-image/user/share/doc

[bright52->...*[/usr/share/doc*]]% set filesystem nfs

[bright52->category*[default*]->fsmounts*[/usr/share/doc*]]% commit

[bright52->category[default]->fsmounts[/usr/share/doc]]% list

Device Mountpoint (key) Filesystem

--------------------- ------------------ ----------

... ... ...

bright52:/cm/images/usr/share/doc /usr/share/doc nfs

[bright52->category[default]->fsmounts[/usr/share/doc]]% show

Parameter Value

---------------- -----------------------------------------------

Device bright52:/cm/images/default-image/usr/share/doc

Dump no

Filesystem nfs

Filesystem Check 0

Mount options defaults

Mountpoint /usr/share/doc

Other mount points can be also be added according to the judgment
of the system administrator. Some consideration of mount order may be
needed, as discussed on page 88 under the subheading “Mount Order
Considerations”.

An Example Of Several NFS Subtree Mounts
The following mounts save about 500MB from tmpfs on a diskless node
with CentOS 6, as can be worked out from the following subtree sizes:

[root@bright52 ~]# cd /cm/images/default-image/

[root@bright52 default-image]# du -sh usr/share/locale usr/java usr/sha\

re/doc usr/src

262M usr/share/locale

78M usr/java

107M usr/share/doc

45M usr/src

© Bright Computing, Inc.



4.8 Managing And Configuring Services 91

The filesystem mounts can then be created using the techniques in this
section. After doing that, the result is then something like (some lines
omitted):

[root@bright52 default-image]# cmsh

[bright52]% category use default; fsmounts

[bright52->category[default]->fsmounts]% list -f device:53,mountpoint:17

device mountpoint (key)

-------------------------------------------------- -----------------

... ...

master:/cm/shared /cm/shared

master:/home /home

bright52:/cm/images/default-image/usr/share/locale /usr/share/locale

bright52:/cm/images/default-image/usr/java /usr/java

bright52:/cm/images/default-image/usr/share/doc /usr/share/doc

bright52:/cm/images/default-image/usr/src /usr/src

[bright52->category[default]->fsmounts]%

Diskless nodes that have NFS subtree configuration carried out on
them can be rebooted to start them up with the new configuration.

4.8 Managing And Configuring Services
4.8.1 Why Use The Cluster Manager For Services?
Unix services can be managed from the command line using the standard
distribution tools, chkconfig and /etc/init.d/<service name>, where
<service name> indicates a service such as mysql, nfs, postfix and so on.

The services can also be managed using Bright Cluster Manager’s
cmgui and cmsh tools. An additional convenience that comes with the
cluster manager tools is that some functions useful for cluster manage-
ment are very easily configured, whether on the head node, a regular
node, or for a node category. These functions are:

• monitoring: monitoring a service so that information is displayed
and logged about whether it is running or not

• autostart: restarting a service on failure

• runif: (only honored for head nodes) whether the service should
run with a state of:

– active: run on the active node only

– passive: run on the passive only

– always: run both on the active and passive

– preferpassive: preferentially run on the passive if it is avail-
able

The details of a service configuration remain part of the configuration
methods of the service software itself. Bright Cluster Manager configura-
tion handles general services only at the generic service level to which all
unix services conform.

4.8.2 Managing And Configuring Services—An Example
After having installed the CUPS software, with, for example, “yum install

cups”, the CUPS service can be started up in several ways:

© Bright Computing, Inc.



92 Configuring The Cluster

From The Regular Shell, Outside Of CMDaemon
Standard unix commands from the bash prompt work, as shown by this
session:

[root@bright52 ~]# chkconfig cups on

[root@bright52 ~]# /etc/init.d/cups start

Using cmsh

The following session illustrates adding the CUPS service from within
device mode and the services submode. The device in this case is a
regular node, node001, but a head node can also be chosen. Monitoring
and autostarting are also set in the session:

[bright52]% device services node001

[bright52->device[node001]->services]% add cups

[bright52->device*[node001*]->services*[cups*]]% show

Parameter Value

------------------------------ -----------------------------------

Autostart no

Belongs to role no

Monitored no

Revision

Run if ALWAYS

Service cups

[bright52->device*[node001*]->services*[cups*]]% set monitored on

[bright52->device*[node001*]->services*[cups*]]% set autostart on

[bright52->device*[node001*]->services*[cups*]]% commit

[bright52->device[node001]->services[cups]]%

Tue Jul 26 16:42:17 2011 [notice] node001: Service cups was started

[bright52->device[node001]->services[cups]]%

Within cmsh, the start, stop, restart, and reload options to the
“/etc/init.d/<service name>” command can be used to manage the
service at the services submode level. For example, continuing with the
preceding session, stopping the CUPS service can be done by running the
cups service command with the stop option as follows:

[bright52->device[node001]->services[cups]]% stop

Wed Jul 27 14:42:41 2011 [notice] node001: Service cups was stopped

Successfully stopped service cups on: node001

[bright52->device[node001]->services[cups]]%

The reset option is not a service option in the regular shell, but is
used by CMDaemon (cmsh and cmgui) to clear a Failed state of a service
as seen by the monitoring system.

The monitoring system sets the state of a service to Failed if 10 restarts
of the service in a row fail. CMDaemon then no longer attempts to restart
the service until the reset option is executed.

The CUPS service can also be added for a node category from
category mode:

[root@bright52 ~]# cmsh

[bright52]% category services default

[bright52->category[default]->services]% add cups

© Bright Computing, Inc.



4.8 Managing And Configuring Services 93

As before, after adding the service, the monitoring and autostart func-
tions can be set for the service. Also as before, the options to the
“init.d/<service name>” command and also the reset option can be
used to manage the service at the services submode level. The settings
apply to the entire node category:

Example

[bright52->category*[default*]->services*[cups*]]% show

[bright52->category*[default*]->services*[cups*]]% set autostart yes

[bright52->category*[default*]->services*[cups*]]% set monitored yes

[bright52->category*[default*]->services*[cups*]]% commit

[bright52->category[default]->services[cups]]%

Tue Aug 23 12:23:17 2011 [notice] node001: Service cups was started

Tue Aug 23 12:23:17 2011 [notice] node002: Service cups was started

Tue Aug 23 12:23:17 2011 [notice] node003: Service cups was started

Tue Aug 23 12:23:17 2011 [notice] node004: Service cups was started

[bright52->category[default]->services[cups]]% status

cups [ UP ]

Using cmgui

Using cmgui, a service can be managed from a Services tab. The tab is
accessible from a “Head Nodes” item, from a “Node Categories” item, or
from a Nodes item.

Figure 4.16 shows the Services tab accessed from the default soft-
ware image, which is an item within the “Node Categories” folder.

The “init.d/<service name>” command options start, stop,
reload, and so on, are displayed as buttons in the Services tab.

Figure 4.16: A Services Tab In cmgui

The existence of the service itself can be managed using the Edit, Add,
and Remove buttons. The change can be saved or reverted with the Save

and Revert buttons.
Figure 4.17 shows CUPS being set up from an Add dialog in the

Services tab, accessed by clicking on the Add button in the Services tab
of figure 4.16.

Figure 4.17: Setting Up A Service Using cmgui

© Bright Computing, Inc.



94 Configuring The Cluster

For a service in the Services tab, clicking on the Status button in
figure 4.16 displays a grid of the state of services on a running node as
either Up or Down (figure 4.18). If the node is not running, it shows blank
service entries.

Figure 4.18: Displaying The Status Of Services Across Nodes Using cmgui

4.9 Managing And Configuring A Rack
4.9.1 Racks
A cluster may have local nodes grouped physically into racks. A rack
is 42 units in height by default, and nodes normally take up one unit.

Racks Overview
Racks overview in cmgui: Selecting the Racks resource in cmgui opens
up the Overview tabbed pane (figure 4.19). Racks can then be added,
removed, or edited from that pane.

Figure 4.19: Racks Resource Overview Using cmgui

Within the Overview tabbed pane:

• a new rack item can be added with the Add button.

• an existing rack item can be edited by selecting it and clicking on the
Open button, or by double clicking on the item itself in the tabbed
pane.

An existing rack item can also be edited by simply selecting its name
in the resource tree pane. This brings up its Settings tabbed pane (fig-
ure 4.20) by default.

Racks overview in cmsh: The rack mode in cmsh allows racks defined
in the cluster manager to be listed:

[bright52->rack]% list

Name (key) Room x-Coordinate y-Coordinate Height

-------------- ------------- ------------- ------------- ------

racknroll 1 0 42

rack2 skonk works 2 0 42

© Bright Computing, Inc.



4.9 Managing And Configuring A Rack 95

Rack Configuration Settings
Rack configuration settings in cmgui: The Settings tabbed pane for
editing a rack item selected from the Racks resource is shown in fig-
ure 4.20.

Figure 4.20: Rack Configuration Settings Using cmgui

The rack item configuration settings are:

• Name: A unique name for the rack item. Names such as rack001,
rack002 are a sensible choice

• Room: A unique name for the room the rack is in.

• Position: The x- and y-coordinates of the rack in a room. In the rack
view visualization (section 4.9.2), the racks are displayed in one row,
with nodes ordered so that the lowest x-value is the leftmost node
for nodes with the same y-value. These coordinates are meant to
be a hint for the administrator about the positioning of the racks in
the room, and as such are optional, and can be arbitrary. The Notes

tabbed pane can be used as a supplement or as an alternative for
hints.

• Height: by default this is the standard rack size of 42U.

• Bottom of rack is position 1: Normally, a rack uses the num-
ber 1 to mark the top and 42 to mark the bottom position for
the places that a device can be positioned in a rack. However,
some manufacturers use 1 to mark the bottom instead. Ticking the
checkbox displays the numbering layout accordingly for all racks in
Rackview (section 4.9.2), if the checkboxed rack is the first rack seen
in Rackview.

Rack configuration settings in cmsh: In cmsh, tab-completion sugges-
tions for the set command in rack mode display the racks available for
configuration. On selecting a particular rack (for example, rack2 as in the
following example), tab-completion suggestions then display the config-
uration settings available for that rack:

Example

[bright52->rack]% set rack

rack1 rack2 rack3

© Bright Computing, Inc.



96 Configuring The Cluster

[bright52->rack]% set rack2

height inverted name notes room

x-coordinate y-coordinate

The configuration settings for a particular rack obviously match with
the parameters associated with and discussed in figure 4.20. The only
slightly unobvious match is the boolean parameter inverted in cmsh,
which simply corresponds directly to “Bottom of rack is position 1”
in cmgui.

Setting the values can be done as in this example:

Example

[bright52->rack]% use rack2

[bright52->rack[rack2]]% set room "skonk works"

[bright52->rack*[rack2*]]% set x-coordinate 2

[bright52->rack*[rack2*]]% set y-coordinate 0

[bright52->rack*[rack2*]]% set inverted no

[bright52->rack*[rack2*]]% commit

[bright52->rack[rack2]]%

4.9.2 Rack View
The Rackview tab is available within cmgui after selecting the cluster re-
source item (figure 4.21).

Figure 4.21: Rack View Using cmgui

Using Rack View
The Rackview pane of cmgui is a visualization of the layout of the racks,
and also a visualization of the layout of devices such as nodes, switches,
and chassis within a rack.

A device can be visually located in a rack clicking on the “Locate in

rack” button in Tasks tabbed pane of that device. Clicking on the button
opens up the Rackview pane with the device highlighted in red.

Some of the Racks configuration settings of figure 4.20 can also be
visualized within rack view.

An additional visualization that can be set up from within the
Rackview pane itself, is that a metric value can be displayed as a cali-
brated color. Set up details are given soon (page 97).

In the Rackview pane, the color associated with a metric value is dis-
played upon a box representing a device in the rack such as a switch or a
node. This can be useful in getting an idea of the spread of values across
a cluster at a glance. In some cases patterns related to the physical posi-
tioning of devices in the rack and of the physical positioning of the racks
can become obvious.

© Bright Computing, Inc.



4.9 Managing And Configuring A Rack 97

For example, if ventilation is not working well in one part of the room,
then metrics for the rack devices in that part may show a higher tempera-
ture compared to devices that are beter ventilated. Mapped out as colors
in the Rackview pane, the discrepancy would be noticed at a glance.

Rack View Configuration
In rack view:

• The rack name is displayed at the top of the rack.

• Items such as nodes can be assigned to particular positions within
racks (section 4.9.3).

• The remaining items that are not assigned to a rack are kept in a
space labeled “’No rack”.

• Tooltip text above a node assigned to a rack shows useful informa-
tion about that particular node and any rack-view-associated clus-
ter metrics from the “Rack Setup” window (figure 4.22).

• The View buttons at the bottom allow two kinds of rack views to be
displayed:

– “Detailed view” shows the node names assigned to the rack,
along with colored boxes associated with each of up to 4 (the
first 4 if there are more than 4) metrics assigned to the cluster.
The color of the boxes correspond to the retrieved metric value.

– “Simple view” does not show node names, it displays the color
associated with the value of only the first metric (if it exists),
and also has a more “zoomed out” visualization of the racks in
the cluster.

• The Refresh button does a manual refresh of the rack view.

• The Setup button opens up the “Rack Setup” window (figure 4.22).

Figure 4.22: Rack Setup, Showing Drag-And-Drop Of CPUWait Metric

© Bright Computing, Inc.



98 Configuring The Cluster

The “Rack Setup” window allows the racks to be configured with
metrics. Rack view then displays the metrics in “Detailed View”
and “Simple View” according to an automatically calibrated color
scale.

In the “Rack Setup” window

– The metrics can be configured by drag-and-drop.

– The Apply button applies a change.

– The Ok button applies any changes, and closes the “Rack Setup”
screen.

– The “Refresh Rate” selection sets the time interval between
metric measurement retrieval.

– A checkmark in the “Live sampling” checkbox instructs that
the selected metrics be measured and displayed at the refresh
interval. Scripts that take longer than about a second to run
can be used, but are best avoided because the display is not
very “live” in that case.

4.9.3 Assigning Devices To A Rack
Devices such as nodes, switches, and chassis, can be assigned to racks.

By default, no devices such as nodes, switches, and chassis are as-
signed to a rack. All devices are thus originally shown as part of the “No
rack” grouping in the Rackview tabbed pane.

Devices can be assigned to a particular rack and to a particular posi-
tion within the rack as follows:

Assigning Devices To A Rack Using cmgui

Using cmgui, the assignments of a device such as a node to a rack can
be done from the Settings tabbed pane of the device, within the Rack

section (figure 4.23):

Figure 4.23: Rack Assignment Using cmgui

Assigning Devices To A Rack Using cmsh

Using cmsh, the assignment can be done to a rack as follows:

[bright52->device]% foreach -n node001..node003 (set deviceheight 1; se\

t deviceposition 2; set rack rack2)

[bright52->device*]% commit

Successfully committed 3 Devices

[bright52->device]%

The Convention Of The Top Of The Device Being Its Position
Since rack manufacturers usually number their racks from top to bottom,
the position of a device in a rack (using the parameter Position in cmgui,

© Bright Computing, Inc.



4.9 Managing And Configuring A Rack 99

and the parameter deviceposition in cmsh) is always taken to be where
the top of the device is located. This is the convention followed even for
the less usual case where the rack numbering is from bottom to top.

Most devices are 1U in height, so that the top of the device is at the
same position as the bottom of the device, and no confusion is possible.
The administrator should however be aware that for any device that is
greater than 1U in height, for example, a blade enclosure chassis 4.9.4, the
convention means that it is the position of the top of the device that is
noted as being the position of the device rather than the bottom.

4.9.4 Assigning Devices To A Chassis
A Chassis As A Physical Part Of A Cluster
In a cluster, several local nodes may be grouped together physically into
a chassis. This is common for clusters using blade systems. Clusters
made up of blade systems use less space, less hardware, and less elec-
trical power than non-blade clusters with the same computating power.
In blade systems, the blades are the nodes, and the chassis is the blade
enclosure.

A blade enclosure chassis is typically 6 to 10U in size, and the node
density is typically 2 blades per unit with current (2012) technology.

Chassis Configuration And Node Assignment
Chassis configuration and node assignment with cmgui: General chas-
sis configuration in cmgui is done from the Chassis resource. Within
the Chassis resource is the chassis Members tabbed pane, which allows
assignment of nodes to a chassis, and which is described in detail soon
(page 101).

If the Chassis resource is selected from the resource tree, then a new
chassis item can be added, or an existing chassis item can be opened.

The chassis item can then be configured from the available tabs, some
of which are:

• The Tasks tab (figure 4.24).

Figure 4.24: Chassis Tasks Tab

The Tasks tab for a chassis item allows:

– Individual member nodes of the chassis to be powered on and
off, or reset.

© Bright Computing, Inc.



100 Configuring The Cluster

– All the member nodes of the chassis to be powered on and off,
or reset.

Miscellaneous tasks in the Tasks tab are:

– The ability to start a telnet session, if possible, with the chassis
operating system.

– The ability to locate the chassis in the visual representation of
rack view.

– The ability to open or close the chassis state. States are de-
scribed in section 6.5.

• The Settings tab (figure 4.25).

Figure 4.25: Chassis Settings Tab

Amongst other options, the Settings tab for a chassis item allows
selection of:

– A rack from the set of defined racks.

– A position within the rack (typically between 1 and 42 units).

– The height of the chassis (typically between 6 and 10 units).
Because the typical numbering of a rack is from position 1 at
the top to position 42 at the bottom, a chassis of height 6 at
position 1 will take up the space from postion 1 to 6. Effectively
the base of the chassis is then at position 6, and the space from
1 to 6 can only be used by hardware that is to go inside the
chassis.

The settings become active when the Save button is clicked.

• The Members tab (figure 4.26).

© Bright Computing, Inc.



4.9 Managing And Configuring A Rack 101

Figure 4.26: Chassis Members Tab

The Members tab for a chassis item allows the following actions:

– Nodes can be selected, then added to or removed from the
chassis.

– Multiple nodes can be selected at a time for addition or re-
moval.

– The selection can be done with standard mouse and keyboard
operations, or using the filter tool.

– The filter tool allows selection based on some useful node pa-
rameters such as the hostname, the MAC address, the category.
Several rules can made to operate together.

Chassis configuration and node assignment with cmsh: The chassis

mode in cmsh allows configuration related to a particular chassis. Tab-
completion suggestions for a selected chassis with the set command show
possible parameters that may be set:

Example

[bright52->device[chassis1]]% set

custompingscript ip powercontrol

custompingscriptargument mac powerdistributionunits

custompowerscript members rack

custompowerscriptargument model slots

deviceheight network tag

deviceposition notes userdefined1

ethernetswitch partition userdefined2

hostname password username

Whether the suggested parameters are actually supported depends on
the chassis hardware. For example, if the chassis has no network interface
of its own, then the ip and mac address settings may be set, but cannot
function.

The “positioning” parameters of the chassis within the rack can be set
as follows with cmsh:

© Bright Computing, Inc.



102 Configuring The Cluster

Example

[bright52->device[chassis1]]% set rack rack2

[bright52->device*[chassis1*]]% set deviceposition 1; set deviceheight 6

[bright52->device*[chassis1*]]% commit

The members of the chassis can be set as follows with cmsh:

Example

[bright52->device[chassis1]]% set members bright52 node001..node005

[bright52->device*[chassis1*]]% commit

An additional feature that can be configured in cmsh is that any slots in
the chassis can be assigned an arbitrary value. A chassis may physically
have slots labeled with one number per node, in which case the default
slot assignment of setting 1 to the first slot, 2 to the second node, and so
on, is probably a good start. If the numbering is not right, or if there is no
numbering, then the administrator can set their own arbitrary value. For
example:

Example

[bright52->device[chassis1]]% set slots bright60 "leftmost top"

[bright52->device*[chassis1*]]% set slots node001 "leftmost bottom"

[bright52->device*[chassis1*]]% set slots node002 "red cable tie top"

[bright52->device*[chassis1*]]% set slots node003 "red cable tie bottom"

The values set are saved with the commit command.

4.9.5 An Example Of Assigning A Device To A Rack, And Of
Assigning A Device To A Chassis

The following illustrative case explains how to set up a blade server in a
cluster. This breaks down naturally into 2 steps: firstly configuring the
chassis (the blade server device) for the rack, and secondly configuring
the nodes (the blade devices) for the chassis.

1. Assigning a chassis to a position within a rack: A position within
a rack of the cluster is first chosen for the chassis.

To assign a chassis to a rack in the cluster manager, the rack must
first exist according to the cluster manager. If the rack is not yet
known to the cluster manager, it can be configured as described in
section 4.9.

Assuming racks called rack1, rack2, and rack3 exist, it is decided
to place the chassis in rack2.

If the blade server is 10 units in height, with 20 nodes, then 10 units
of room from the rack must be available. If positions 5 to 14 are free
within rack2, then suitable positional settings are:

• rack2 for the rack value,

• 5 for the position value,

• 10 for the height value.

These values can then be set as in the example of figure 4.25, and
come into effect after saving them.

© Bright Computing, Inc.



4.9 Managing And Configuring A Rack 103

2. Assigning nodes to the chassis: The nodes of the chassis can then
be made members of the chassis, as is done in the example of fig-
ure 4.26, and saving the members settings.

The nodes of the chassis must be assigned rack, position within the
rack, and height values that are the same values as those of the chas-
sis. These values must be explicitly assigned per node, as is done in
the example of figure 4.23.

Writing out these values for 20 nodes is quicker with some cmsh

scripting within device mode:

[bright52->device]% foreach -n node001..node020 (set rack rack2; s\

et deviceposition 5; set deviceheight 10)

[bright52->device*]% commit

After the nodes rack, position within the rack, and height values
match those held by the chassis, they display correctly within the
chassis space within rack view.

© Bright Computing, Inc.





5
Power Management

Being able to control power inside a cluster through software is important
for remote cluster administration and creates opportunities for power
savings. It allows cluster burn tests to be carried out (appendix N), and
can also be useful to be able to measure power usage over time. This
chapter describes the Bright Cluster Manager power management fea-
tures.

In section 5.1 the configuration of the methods used for power opera-
tions is described.

Section 5.2 then describes the way the power operations commands
themselves are used to allow the administrator turn power on or off, reset
the power, and retrieve the power status. It explains how these operations
can be applied to devices in various ways.

Section 5.3 briefly covers monitoring power.
The integration of power saving with workload management systems

is covered in the chapter on Workload Management (section 8.9).

5.1 Configuring Power Parameters
Several methods exist to control power to devices:

• Power Distribution Unit (PDU) based power control

• IPMI-based power control (for node devices only)

• Custom power control

• HP iLO-based power control (for node devices only)

5.1.1 PDU-Based Power Control
For PDU-based power control, the power supply of a device is plugged
into a port on a PDU. The device can be a node, but also anything else
with a power supply, such as a switch. The device can then be turned on
or off by changing the state of the PDU port.

To use PDU-based power control, the PDU itself must be a device in
the cluster and be reachable over the network. The Settings tab of each
device object plugged into the PDU is then used to configure the PDU
ports that control the device. Figure 5.1 shows the Settings tab for a
head node.

© Bright Computing, Inc.



106 Power Management

Figure 5.1: Head Node Settings

Each device plugged into the PDU can have PDU ports added and
removed with the©+ and©- buttons in their Settings tab. For the APC
brand of PDUs, the “Power controlled by” property in the Settings

tab should be set to apc, or the list of PDU ports is ignored by default.
Overriding the default is described in section 5.1.3.

Since nodes may have multiple power feeds, there may be multiple
PDU ports defined for a single device. The cluster management infras-
tructure takes care of operating all ports of a device in the correct order
when a power operation is done on the device.

It is also possible for multiple devices to share the same PDU port.
This is the case for example when twin nodes are used (i.e. two nodes
sharing a single power supply). In this case, all power operations on one
device apply to all nodes sharing the same PDU port.

If the PDUs defined for a node are not manageable, then the node’s
baseboard management controllers (that is, IPMI/iLO and similar) are
assumed to be inoperative and are therefore assigned an unknown state.
This means that dumb PDUs, which cannot be managed remotely, are
best not assigned to nodes in Bright Cluster Manager. Administrators
wishing to use Bright Cluster Manager to record that a dumb PDU is as-
signed to a node can deal with it as follows:

• in cmgui the Notes tab or the “User defined 1”/“User defined

2” options in the Settings tab for that node can be used.

• in cmsh the equivalent is accessible when using the node from de-
vice mode, and running “set notes”, “set userdefined1”, or “set
userdefined2”.

For PDUs that are manageable:

• In cmgui, the Overview tab of a PDU (figure 5.2) provides an
overview of the state of PDU ports and devices that have been as-
sociated with each port.

© Bright Computing, Inc.



5.1 Configuring Power Parameters 107

Figure 5.2: PDU Overview

The power status of a node can be seen by selecting the node from
the Nodes resource, then selecting the Overview tabbed pane. The
first tile of the Overview tab displays the power state and assign-
ment of any PDUs for the node.

• In cmsh, power-related options can be accessed from device mode,
after selecting a device:

Example

[bright52]% device use node001

[bright52->device[node001]]% show | grep -i power

Custom power script argument

Ipmi/iLO power reset delay 0

Power control apc

PowerDistributionUnits apc01:6 apc01:7

The power status of a node can be accessed with:

Example

[bright52->device[node001]]% power status

If the node is up and has one or more PDUs assigned to it, then the
power status is one of ON, OFF, RESET, FAILED, or UNKNOWN:

Power Status Description

ON Power is on

OFF Power is off

RESET Shows during the short time the power is off

during a power reset. The reset is a hard power

off for PDUs, but can be a soft or hard reset for

other power control devices.

FAILED Power status script communication failure.

UNKNOWN Power status script timeout

© Bright Computing, Inc.



108 Power Management

5.1.2 IPMI-Based Power Control
IPMI-based power control relies on the baseboard management controller
(BMC) inside a node. It is therefore only available for node devices.
Blades inside a blade chassis typically use IPMI for power management.
For details on setting up networking and authentication for IPMI inter-
faces, see section 4.4.

To carry out IPMI-based power control operations, the “Power
controlled by” property in figure 5.1 must be set to the IPMI interface
through which power operations should be relayed. Normally this IPMI
interface is ipmi0. Any list of configured APC PDU ports displayed in the
GUI is ignored by default when the “Power controlled by” property is
not apc.

Example

Configuring power parameters settings for a node using cmsh:

[mycluster]% device use node001

[mycluster->device[node001]]% set powerdistributionunits apc01:6 apc01:7 apc01:8

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:6 apc01:7 apc01:8

[mycluster->device*[node001*]]% removefrom powerdistributionunits apc01:7

[mycluster->device*[node001*]]% get powerdistributionunits

apc01:6 apc01:8

[mycluster->device*[node001*]]% set powercontrol apc

[mycluster->device*[node001*]]% get powercontrol

apc

[mycluster->device*[node001*]]% commit

5.1.3 Combining PDU- and IPMI-Based Power Control
By default when nodes are configured for IPMI Based Power Control,
any configured PDU ports are ignored. However, it is sometimes useful
to change this behavior.

For example, in the CMDaemon configuration file directives in
/cm/local/apps/cmd/etc/cmd.conf (introduced in section 3.6.2 and
listed in Appendix C), the default value of PowerOffPDUOutlet is false.
It can be set to true on the head node, and CMDaemon restarted to acti-
vate it.

With PowerOffPDUOutlet set to true it means that CMDaemon, after
receiving an IPMI-based power off instruction for a node, and after pow-
ering off that node, also subsequently powers off the PDU port. Power-
ing off the PDU port shuts down the BMC, which saves some additional
power—typically a few watts per node. When multiple nodes share the
same PDU port, the PDU port only powers off when all nodes served by
that particular PDU port are powered off.

When a node has to be started up again the power is restored to the
node. It is important that the node BIOS is configured to automatically
power on the node when power is restored.

5.1.4 Custom Power Control
For a device which cannot be controlled through any of the standard ex-
isting power control options, it is possible to set a custom power manage-
ment script. This is then invoked by the cluster management daemon on
the head node whenever a power operation for the device is done.

© Bright Computing, Inc.



5.1 Configuring Power Parameters 109

Power operations are described further in section 5.2.

Using custompowerscript

To set a custom power management script for a device, the powercontrol
attribute is set to custom using either cmgui or cmsh, and the value of
custompowerscript is specified. The value for custompowerscript is the
full path to an executable custom power management script on the head
node(s) of a cluster.
A custom power script is invoked with the following mandatory argu-
ments:

myscript <operation> <device>

where <device> is the name of the device on which the power opera-
tion is done, and <operation> is one of the following:

ON

OFF

RESET

STATUS

On success a custom power script exits with exit code 0. On failure,
the script exits with a non-zero exit-code.

Using custompowerscriptargument

The mandatory argument values for <operation> and <device> are
passed to a custom script for processing. For example, in bash the po-
sitional variables $1 and $2 are typically used for a custom power script.
A custom power script can also be passed a further argument value by
setting the value of custompowerscriptargument for the node via cmsh

or cmgui. This further argument value would then be passed to the posi-
tional variable $3 in bash.

An example custom power script is located at /cm/local/examples/
cmd/custompower. In it, setting $3 to a positive integer delays the script
via a sleep command by $3 seconds.

An example that is conceivably more useful than a “sleep $3”
command is to have a “wakeonlan $3” command instead. If the
custompowerscriptargument value is set to the MAC address of the
node, that means the MAC value is passed on to $3. Using this technique,
the power operation ON can then carry out a Wake On LAN operation on
the node from the head node.

Setting the custompowerscriptargument can be done like this for all
nodes:

#!/bin/bash

for nodename in $(cmsh -c "device; foreach * (get hostname)")

do

macad=`cmsh -c "device use $nodename; get mac"`

cmsh -c "device use $nodename; set customscriptargument $macad; commit"

done

The preceding material usefully illustrates how
custompowerscriptargument can be used to pass on arbitrary pa-
rameters for execution to a custom script.

However, the goal of the task can be achieved in a simpler and quicker
way using the environment variables available in the cluster management
daemon environment. This is explained next.

© Bright Computing, Inc.

/cm/local/examples/cmd/custompower
/cm/local/examples/cmd/custompower


110 Power Management

Using Environment Variables With custompowerscript

Simplification of the steps needed for custom scripts in CMDaemon is
often possible because there are values in the CMDaemon environment
already available to the script. A line such as:

env > /tmp/env

added to the start of a custom script dumps the names and values of the
environment variables to /tmp/env for viewing.

One of the names is $CMD_MAC, and it holds the MAC address string of
the node being considered.

So, it is not necessary to retrieve a MAC value for
custompowerscriptargument with a bash script as shown in the
previous section, and then pass the argument via $3 such as done in the
command “wakeonlan $3”. Instead, custompowerscript can simply
call “wakeonlan $CMD_MAC” directly in the script when run as a power
operation command from within CMDaemon.

5.1.5 Hewlett Packard iLO-Based Power Control
If “Hewlett Packard” is chosen as the node manufacturer during instal-
lation, and the nodes have an iLO management interface, then Hewlett-
Packard’s iLO management package, hponcfg, is installed by default on
the nodes and head nodes.

The hponcfg rpm package is normally obtained and upgraded for
specific HP hardware from the HP website. Using an example of
hponcfg-3.1.1-0.noarch.rpm as the package downloaded from the HP
website, and to be installed, the installation can then be done on the head
node, the software image, and in the node-installer as follows:

rpm -iv hponcfg-3.1.1-0.noarch.rpm

rpm --root /cm/images/default-image -iv hponcfg-3.1.1-0.noarch.rpm

rpm --root /cm/node-installer -iv hponcfg-3.1.1-0.noarch.rpm

To use iLO over all nodes, the following steps are done:

1. The iLO interfaces of all nodes are set up like the IPMI interfaces
outlined in section 5.1.2. Bright Cluster Manager treats HP iLO in-
terfaces just like regular IPMI interfaces.

2. The ilo_power.pl custom power script must be configured on all
nodes. This can be done with a cmsh script. For example, for all
nodes in the default category:

Example

[mycluster]% device foreach -c default (set custompowerscript /cm/loc\

al/apps/cmd/scripts/powerscripts/ilo_power.pl)

[mycluster]% device foreach -c default (set powercontrol custom)

[mycluster]% device commit

5.2 Power Operations
Power operations may be done on devices from either cmgui or cmsh.
There are four main power operations:

© Bright Computing, Inc.



5.2 Power Operations 111

Figure 5.3: Head Node Tasks

• Power On: power on a device

• Power Off: power off a device

• Power Reset: power off a device and power it on again after a brief
delay

• Power Status: check power status of a device

5.2.1 Power Operations With cmgui

In cmgui, buttons for executing On/Off/Reset operations are located un-
der the Tasks tab of a device. Figure 5.3 shows the Tasks tab for a head
node.

The Overview tab of a device can be used to check its power status
information. In the display in figure 5.4, for a head node, the green LEDs
indicate that all three PDU ports are turned on. Red LEDs would indicate
power ports that have been turned off, while gray LEDs would indicate
an unknown power status for the device.

Performing power operations on multiple devices at once is possible
through the Tasks tabs of node categories and node groups.

It is also possible to do power operations on ad hoc groups through
the Nodes folder in the resource tree: The members of the ad hoc group
can be selected using the Overview tab, and then operated on by a task
chosen from the Tasks tab.

When doing a power operation on multiple devices, CMDaemon en-
sures a 1 second delay occurs by default between successive devices, to
avoid power surges on the infrastructure. The delay period may be al-
tered using cmsh’s “-d|�-delay” flag.

The Overview tab of a PDU object (figure 5.5), allows power opera-
tions on PDU ports by the administrator directly. All ports on a particular
PDU can have their power state changed, or a specific PDU port can have
its state changed.

5.2.2 Power Operations Through cmsh

All power operations in cmsh are done using the power command in device

mode. Some examples of usage are now given:

© Bright Computing, Inc.



112 Power Management

Figure 5.4: Head Node Overview

Figure 5.5: PDU Tasks

© Bright Computing, Inc.



5.3 Monitoring Power 113

• Powering on node001, and nodes from node018 to node033 (output
truncated):

Example

[mycluster]% device power -n node001,node018..node033 on

apc01:1 ............. [ ON ] node001

apc02:8 ............. [ ON ] node018

apc02:9 ............. [ ON ] node019

...

• Powering off all nodes in the default category with a 100ms delay
between nodes (some output elided):

Example

[mycluster]% device power -c default -d 0.1 off

apc01:1 ............. [ OFF ] node001

apc01:2 ............. [ OFF ] node002

...

apc23:8 ............. [ OFF ] node953

• Retrieving power status information for a group of nodes:

Example

[mycluster]% device power -g mygroup status

apc01:3 ............. [ ON ] node003

apc01:4 ............. [ OFF ] node004

Figure 5.6 shows usage information for the power command.

5.3 Monitoring Power
Monitoring power consumption is important since electrical power is an
important component of the total cost of ownership for a cluster. The
monitoring system of Bright Cluster Manager collects power-related data
from PDUs in the following metrics:

• PDUBankLoad: Phase load (in amperes) for one (specified) bank in a
PDU

• PDULoad: Total phase load (in amperes) for one PDU

Chapter 10 on cluster monitoring has more on metrics and how they
can be visualized.

© Bright Computing, Inc.



114 Power Management

Name:

power - Manipulate or retrieve power state of devices

Usage:

power [OPTIONS] status

power [OPTIONS] on

power [OPTIONS] off

power [OPTIONS] reset

Options:

-n, --nodes node(list)

List of nodes, e.g. node001..node015,node20..node028,node030 or ^/some/file/containing/hostnames

-g, --group group(list)

Include all nodes that belong to the node group, e.g. testnodes or test01,test03

-c, --category category(list)

Include all nodes that belong to the category, e.g. default or default,gpu

-r, --rack rack(list)

Include all nodes that are located in the given rack, e.g rack01 or rack01..rack04

-h, --chassis chassis(list)

Include all nodes that are located in the given chassis, e.g chassis01 or chassis03..chassis05

-p, --powerdistributionunitport <pdu:port>(list)

perform power operation directly on power distribution units. Use port '*' for all ports

-b, --background

Run in background, output will come as events

-d, --delay <seconds>

Wait <seconds> between executing two sequential power commands. This option is ignored for the status

command

-s, --state <states>

Only run power command on nodes in specified states, e.g. UP, "CLOSED|DOWN", "INST.*"

-f, --force

Force power command on devices which have been closed

Examples:

power status Display power status for all devices or current device

power on -n node001 Power on node001

Figure 5.6: Help Text For power Command In device Mode Of cmsh

© Bright Computing, Inc.



6
Node Provisioning

This chapter covers node provisioning. Node provisioning is the process of
how nodes obtain an image. Typically, this happens during their stages
of progress from power-up to becoming active in a cluster, but node pro-
visioning can also take place when updating a running node.

Section 6.1 describes the stages leading up to the loading of the kernel
onto the node.

Section 6.2 covers configuration and behavior of the provisioning nodes
that supply the software images.

Section 6.3 describes the configuration and loading of the kernel, the
ramdisk, and kernel modules.

Section 6.4 elaborates on how the node-installer identifies and places
the software image on the node in a 13-step process.

Section 6.5 explains node states during normal boot, as well node
states that indicate boot problems.

Section 6.6 describes how running nodes can be updated, and modifi-
cations that can be done to the update process.

Section 6.7 explains how to add new nodes to a cluster so that node
provisioning will work for these new nodes too. The cmsh and cmsh front
ends for creating new node objects and properties in CMDaemon are de-
scribed.

Section 6.8 describes troubleshooting the node provisioning process.

6.1 Before The Kernel Loads
Immediately after powering up a node, and before it is able to load up
the Linux kernel, a node starts its boot process in several possible ways:

6.1.1 PXE Booting
By default, nodes boot from the network when using Bright Cluster Man-
ager. This is called a network boot, or sometimes a PXE boot. It is recom-
mended as a BIOS setting for nodes.

6.1.2 gPXE Booting From A Disk Drive
Also by default, on disked nodes, gPXE software is placed on the drive
during node installation. If the boot instructions from the BIOS for PXE
booting fail, and if the BIOS instructions are that a boot attempt should
then be made from the hard drive, it means that a PXE network boot

© Bright Computing, Inc.



116 Node Provisioning

attempt is done again, as instructed by the bootable hard drive. This can
be a useful fallback option that works around certain BIOS features or
problems.

6.1.3 gPXE Booting Using InfiniBand
On clusters that have InfiniBand hardware, it is normally used for data
transfer as a service after the nodes have fully booted up (section 4.3). In-
finiBand can also be used for PXE booting (described here) and used for
node provisioning (section 6.3.3). However these uses are not necessary,
even if InfiniBand is used for data transfer as a service later on, because
booting and provisioning is available over Ethernet by default. This sec-
tion (about boot over InfiniBand) may therefore safely be skipped when
first configuring a cluster.

Booting over InfiniBand via PXE is enabled by carrying out these 3
steps:

1. Making the Bright Cluster Manager aware that nodes are to be
booted over InfiniBand. This can be done during the initial installa-
tion on the head node by marking the option “Allow booting over

InfiniBand” (figure 2.10). Alternatively, if the cluster is already in-
stalled, then node booting (section 4.2.3, page 71) can be set from
cmsh or cmgui as follows:

(a) From cmsh’s network mode: If the InfiniBand network name is
ibnet, then a cmsh command that will set it is:
cmsh -c "network; set ibnet nodebooting yes; commit"

(b) From cmgui’s “Settings” tab from the “Networks” resource
(figure 4.5): The network item selected must be the InfiniBand
network, “ibnet” by default, and the “Allow node booting”
option is then set and saved.

If the InfiniBand network does not yet exist, then it must be created
(section 4.2.2). The recommended default values used are described
in section 4.3.3.

The administrator should also be aware that the interface from
which a node boots, (conveniently labeled BOOTIF), must not be an
interface that is already configured for that node in CMDaemon.
For example, if BOOTIF is the device ib0, then ib0 must not already
be configured in CMDaemon . Either BOOTIF or the ib0 configura-
tion should be changed so that node installation can succeed.

2. Flashing gPXE onto the InfiniBand HCAs. (The ROM image is ob-
tained from the HCA vendor).

3. Configuring the BIOS of the nodes to boot from the InfiniBand
HCA.

Administrators who enable gPXE booting almost always wish to pro-
vision over InfiniBand too. Configuring provisioning over InfiniBand is
described in section 6.3.3.

© Bright Computing, Inc.



6.2 Provisioning Nodes 117

6.1.4 Booting From The Drive
Besides network boot, a node can also be configured to start booting and
get to the stage of loading up its kernel entirely from its drive (section
( 6.4.4), just like a normal standalone machine.

6.2 Provisioning Nodes
The action of node provisioning is done by special nodes that do the pro-
visioning, called the provisioning nodes. In a default Bright installation
the head node is already set up as a provisioning node, and this is rec-
ommended for simple clusters. More complex clusters can have several
provisioning nodes, thereby distributing network traffic loads when many
nodes are booting.

Creating provisioning nodes is done by assigning the provisioning role
to a node or category of nodes.

6.2.1 Provisioning Nodes: Configuration Settings
The provisioning role has several parameters that can be set:

Property Description

allImages When set to “yes”, the provisioning
node provides all available images re-
gardless of any other parameters set.
By default it is set to “no”.

images A list of software images provided by
the provisioning node. These are used
only if allImages is “no”.

maxProvisioningNodes The maximum number of nodes that
can be provisioned in parallel by the
provisioning node. The optimum
number depends on the infrastructure.
The default value is 10, which is safe
for typical cluster setups. Setting it
lower may sometimes be needed to
prevent network and disk overload.

nodegroups A list of node groups. If set, the pro-
visioning node only provisions mem-
bers of the listed groups. By default,
this value is unset and the provisioning
node supplies any node. Typically, this
is used to set up a convenient hierar-
chy of provisioning, for example based
on grouping by rack and by groups of
racks.

A provisioning node keeps a copy of all the images it provisions on its
local drive, in the same directory as where the head node keeps such im-
ages. The local drive of a provisioning node must therefore have enough
space available for these images, which may require changes in its disk
layout.

© Bright Computing, Inc.



118 Node Provisioning

6.2.2 Provisioning Nodes: Role Setup With cmsh

In the following cmsh example the administrator creates a new category
called misc. The default category default already exists in a newly in-
stalled cluster.

The administrator then assigns the role called provisioning from the
list of assignable roles to nodes in the misc category.

As an aside from the topic of provisioning, from an organizational
perspective, other assignable roles include monitoring, storage, and
failover. Tab-completion prompting after the assign command has
been typed in lists all the possible roles.

The nodes in the misc category assigned the provisioning role then
have default-image set as the image that they provision to other nodes,
and have 20 set as the maximum number of other nodes to be provisioned
simultaneously (some text is elided in the following example):

Example

[bright52]% category add misc

[bright52->category*[misc*]]% roles

[bright52->category*[misc*]->roles]% assign provisioning

[brig...*]->roles*[provisioning*]]% set allimages false

[brig...*]->roles*[provisioning*]]% set images default-image

[brig...*]->roles*[provisioning*]]% set maxprovisioningnodes 20

[brig...*]->roles*[provisioning*]]% show

Parameter Value

------------------------ -----------------------------------------------

Name provisioning

Type ProvisioningRole

allImages no

images default-image

maxProvisioningNodes 20

nodegroups

[bright52->category*[misc*]->roles*[provisioning*]]% commit

[bright52->category[misc]->roles[provisioning]]%

Assigning a provisioning role can also be done for an individual
node instead, if using a category is deemed overkill:

Example

[bright52]% device use node001

[bright52->device[node001]]% roles

[bright52->device[node001]->roles]% assign provisioning

[bright52->device*[node001*]->roles*[provisioning*]]%

...

After carrying out a role change, the updateprovisioners command
described in section 6.2.4 should be run manually so that the images are
propagated to the provisioners and so that CMDaemon is able to stay
up-to-date on which nodes do provisioning. Running it manually makes
sense in order to avoid rerunning the command several times as typically
several role changes are made for several nodes when configuring the
provisioning of a cluster. The command in any case runs automatically
after some time (section 6.2.4).

© Bright Computing, Inc.



6.2 Provisioning Nodes 119

6.2.3 Provisioning Nodes: Role Setup With cmgui

The provisioning configuration outlined in cmsh mode in section 6.2.2 can
be done via cmgui too, as follows:

The provisioning category is added by clicking on the Add button in
the Overview tabbed pane in the Node Categories resource (figure 6.1).

Figure 6.1: cmgui: Adding A provisioning Category

Clicking on the provisioning category in the resource tree on the left
hand side (or alternatively, double-clicking on provisioning category in
the Overview tabbed pane of the Node Categories right hand side pane)
then opens up the provisioning category (figure 6.2).

Figure 6.2: cmgui: Configuring A provisioning Role

Selecting the Roles tab in this category displays roles that are part of
the provisioning category. Ticking the checkbox of a role assigns the
role to the category, and displays the settings that can be configured for
this role. The Provisioning slots setting (maxProvisioningNodes in
cmsh) decides how many images can be supplied simultaneously from
the provisioning node, while the Software images settings (related to
the images and allimages attributes of cmsh) decides what images the
provisioning node supplies.

The Software image in the Roles tab should not be confused with
the Software image selection possibility within the Settings tab, which
is the image the provisioning node requests for itself.

6.2.4 Provisioning Nodes: Housekeeping
The head node does housekeeping tasks for the entire provisioning sys-
tem. Provisioning is done on request for all non-head nodes on a first-
come, first-serve basis. Since provisioning nodes themselves, too, need to
be provisioned, it means that to cold boot an entire cluster up quickest,
the head node should be booted and be up first, followed by provisioning
nodes, and finally by all other non-head nodes. Following this start-up se-

© Bright Computing, Inc.



120 Node Provisioning

quence ensures that all provisioning services are available when the other
non-head nodes are started up.

Some aspects of provisioning housekeeping are discussed next:

Provisioning Node Selection
When a node requests provisioning, the head node allocates the task to a
provisioning node. If there are several provisioning nodes that can pro-
vide the image required, then the task is allocated to the provisioning
node with the lowest number of already-started provisioning tasks.

Limiting Provisioning Tasks With MaxNumberOfProvisioningThreads

Besides limiting how much simultaneous provisioning per provisioning
node is allowed with maxProvisioningNodes (section 6.2.1), the head
node also limits how many simultaneous provisioning tasks are allowed
to run on the entire cluster. This is set using the MaxNumberOfProvision-

ingThreads directive in the head node’s CMDaemon configuration file,
/etc/cmd.conf, as described in Appendix C.

A provisioning request is deferred if the head node is not able to im-
mediately allocate a provisioning node for the task. Whenever an on-
going provisioning task has finished, the head node tries to re-allocate
deferred requests.

Provisioning Role Change Notification With updateprovisioners

Whenever updateprovisioners is invoked, the provisioning system waits
for all running provisioning tasks to end before updating all images lo-
cated on any provisioning nodes by using the images on the head node.
It also re-initializes its internal state with the updated provisioning role
properties, i.e. keeps track of what nodes are provisioning nodes.

The updateprovisioners command can be accessed from the
softwareimage mode in cmsh. It can also be accessed from cmgui (fig-
ure 6.3):

Figure 6.3: cmgui: A Button To Update Provisioning Nodes

In examples in section 6.2.2, changes were made to provisioning role
attributes for an individual node as well as for a category of nodes.

The updateprovisioners command should be run after changing
provisioning role settings, to update software images on the provisioners
from the software image on the head node to the role settings changes,
and to update provisioning role changes.

The updateprovisioners command also runs automatically in two

© Bright Computing, Inc.



6.3 The Kernel Image, Ramdisk And Kernel Modules 121

other cases where CMDaemon is involved: during software image
changes and during a provision request. If on the other hand, the soft-
ware image is changed outside of the CMDaemon frontends (cmgui and
cmsh), for example by an administrator adding a file by copying it into
place from the bash prompt, then running updateprovisioners should
be run manually.

In any case, if it is not run during one of the above times, there is also
a scheduled time for it to run to ensure that it runs at least once every 24
hours.

The updateprovisioners command is in all cases subject to safe-
guards that prevent it running too often in a short period. Appendix C
has details on how the directives ProvisioningNodeAutoUpdateTimer

and ProvisioningNodeAutoUpdate in cmd.conf control aspects of how
updateprovisioners functions.

Example

[bright52]% softwareimage updateprovisioners

Provisioning nodes will be updated in the background.

Sun Dec 12 13:45:09 2010 bright52: Starting update of software image(s)\

provisioning node(s). (user initiated).

[bright52]% softwareimage updateprovisioners [bright52]%

Sun Dec 12 13:45:41 2010 bright52: Updating image default-image on prov\

isioning node node001.

[bright52]%

Sun Dec 12 13:46:00 2010 bright52: Updating image default-image on prov\

isioning node node001 completed.

Sun Dec 12 13:46:00 2010 bright52: Provisioning node node001 was updated

Sun Dec 12 13:46:00 2010 bright52: Finished updating software image(s) \

on provisioning node(s).

6.3 The Kernel Image, Ramdisk And Kernel Modules
A software image is a complete Linux file system that is to be installed on
a non-head node. Chapter 9 describes images and their management in
detail.

The head node holds the head copy of the software images.
Whenever files in the head copy are changed using CMDaemon, the
changes automatically propagate to all provisioning nodes via the
updateprovisioners command (section 6.2.4).

6.3.1 Booting To A “Good State” Software Image
When nodes boot from the network in simple clusters, the head node sup-
plies them with a known good state during node start up. The known good
state is maintained by the administrator and is defined using a software
image that is kept in a directory of the filesystem on the head node. Sup-
plementary filesystems such as /home are served via NFS from the head
node by default.

For a diskless node the known good state is copied over from the head
node, after which the node becomes available to cluster users.

For a disked node, by default, the hard disk contents on specified lo-
cal directories of the node are checked against the known good state on

© Bright Computing, Inc.



122 Node Provisioning

the head node. Content that differs on the node is changed to that of the
known good state. After the changes are done, the node becomes avail-
able to cluster users.

Each software image contains a Linux kernel and a ramdisk. These
are the first parts of the image that are loaded onto a node during early
boot. The kernel is loaded first. The ramdisk is loaded next, and contains
driver modules for the node’s network card and local storage. The rest of
the image is loaded after that, during the node-installer stage (section 6.4).

6.3.2 Selecting Kernel Driver Modules To Load Onto Nodes
Kernel Driver Modules With cmsh

In cmsh, the modules that are to go on the ramdisk can be placed using
the kernelmodules submode of the softwareimage mode. The order in
which they are listed is the attempted load order.

Whenever a change is made via the kernelmodules submode to the
kernel module selection of a software image, CMDaemon automatically
runs the createramdisk command. The createramdisk command re-
generates the ramdisk inside the initrd image and sends the updated im-
age to all provisioning nodes, to the image directory, set by default to
/cm/images/default-image/boot/. The original initrd image is saved as
a file with suffix “.orig” in that directory. An attempt is made to generate
the image for all software images that CMDaemon is aware of, regardless
of category assignment, unless the image is protected from modification
by CMDaemon with a FrozenFile directive (Appendix C).

The createramdisk command can also be run from cmsh at any time
manually by the administrator when in softwareimage mode, which is
useful if a kernel or modules build is done without using CMDaemon.

Kernel Driver Modules With cmgui

In cmgui the selection of kernel modules is done from by selecting
the Software Images resource, and then choosing the “Kernel Config”
tabbed pane (figure 6.4).

Figure 6.4: cmgui: Selecting Kernel Modules For Software Images

The order of module loading can be rearranged by selecting a mod-
ule and clicking on the arrow keys. Clicking on the “Recreate Initrd”
button runs the createramdisk command.

Implementation Of Kernel Driver Via Ramdisk Or Kernel Parameter
An example of regenerating the ramdisk is seen in section 6.8.5.

Sometimes, testing or setting a kernel driver as a kernel parameter

© Bright Computing, Inc.



6.3 The Kernel Image, Ramdisk And Kernel Modules 123

may be more convenient. How to do that is covered in section 9.3.4.

6.3.3 InfiniBand Provisioning
On clusters that have InfiniBand hardware, it is normally used for data
transfer as a service after the nodes have fully booted up (section 4.3). It
can also be used for PXE booting (section 6.1.3) and for node provisioning
(described here), but these are not normally a requirement. This section
(about InfiniBand node provisioning) may therefore safely be skipped in
almost all cases.

During node startup on a setup for which InfiniBand networking has
been enabled, the init process runs the rdma script. For SLES and dis-
tributions based on versions prior to Red Hat 6, the openib script is used
instead of the rdma script. The script loads up InfiniBand modules into
the kernel. When the cluster is finally fully up and running, the use of
InfiniBand is thus available for all processes that request it. Enabling In-
finiBand is normally set by configuring the InfiniBand network when in-
stalling the head node, during the Additional Network Configuration

screen (figure 2.10).
Provisioning nodes over InfiniBand is not implemented by default, be-

cause the init process, which handles initialization scripts and daemons,
takes place only after the node-provisioning stage launches. InfiniBand
modules are therefore not available for use during provisioning, which is
why, for default kernels, provisioning in Bright Cluster Manager is done
via Ethernet.

Provisioning at the faster InfiniBand speeds rather than Ethernet
speeds is however a requirement for some clusters. To get the cluster
to provision using InfiniBand requires both of the following two configu-
ration changes to be carried out:

1. configuring InfiniBand drivers for the ramdisk image that the nodes
first boot into, so that provisioning via InfiniBand is possible during
this pre-init stage

2. defining the provisioning interface of nodes that are to be provi-
sioned with InfiniBand. It is assumed that InfiniBand networking is
already configured, as described in section 4.3.

The administrator should be aware that the interface from which
a node boots, (conveniently labeled BOOTIF), must not be an inter-
face that is already configured for that node in CMDaemon. For
example, if BOOTIF is the device ib0, then ib0 must not already be
configured in CMDaemon. Either BOOTIF or the ib0 configuration
should be changed so that node installation can succeed.

How these two changes are carried out is described next:

InfiniBand Provisioning: Ramdisk Image Configuration
An easy way to see what modules must be added to the ramdisk for a
particular HCA can be found by running rdma (or openibd), and seeing
what modules do load up on a fully booted system.

One way to do this is to run the following three lines as root:

modlist(){ cut -f1 -d" " /proc/modules; }

IB=/etc/init.d/rdma

diff <($IB stop; modlist) <($IB start; modlist)

© Bright Computing, Inc.



124 Node Provisioning

The first line sets up a function modlist that lists the modules in use
by the system at any instant. The list is obtained by using the cut opera-
tion to extract only the first column of /proc/modules.

For the second line, the InfiniBand init script is set to using rdma.
The rdma setting should be replaced by openibd when using SLES, or
distributions based on versions of Red Hat prior to version 6.

In the third line, the diff command then finds the difference between
modlist output when starting up or stopping InfiniBand, using a bash
redirection technique called process substitution.

For rdma, the output may display something like:

Example

1c1,13

< Unloading OpenIB kernel modules: [ OK ]

---

> Loading OpenIB kernel modules: [ OK ]

> ib_ipoib

> rdma_ucm

> ib_ucm

> ib_uverbs

> ib_umad

> rdma_cm

> ib_cm

> iw_cm

> ib_addr

> ib_sa

> ib_mad

> ib_core

As suggested by the output, the modules ib_ipoib, rdma_ucm and
so on are the modules loaded when rdma starts, and are therefore the
modules that are needed for this particular HCA. Other HCAs may cause
different modules to be loaded.

The modules should then be part of the initrd image in order to allow
InfiniBand to be used during the node provisioning stage.

The initrd image for the nodes is created by adding the required Infini-
Band kernel modules to it. How to load kernel modules into a ramdisk
is covered more generally in section 6.3.2. A typical Mellanox HCA may
have it created as follows (some text elided in the following example):

Example

[root@bright52 ~]# cmsh

[bright52]% softwareimage use default-image

[bright52->softwareimage[default-image]]% kernelmodules

[b...image[default-image]->kernelmodules]% add mlx4_ib

[b...image*[default-image*]->kernelmodules*[mlx4_ib*]]% add ib_ipoib

[b...image*[default-image*]->kernelmodules*[ib_ipoib*]]% add ib_umad

[b...image*[default-image*]->kernelmodules*[ib_umad*]]% commit

[bright52->softwareimage[default-image]->kernelmodules[ib_umad]]%

Tue May 24 03:45:35 2011 bright52: Initial ramdisk for image default-im\

age was regenerated successfully.

© Bright Computing, Inc.



6.4 Node-Installer 125

InfiniBand Provisioning: Network Configuration
It is assumed that the networking configuration for the final system for
InfiniBand is configured following the general guidelines of section 4.3. If
it is not, that should be checked first to see if all is well with the InfiniBand
network.

The provisioning aspect is set by defining the provisioning interface.
An example of how it may be set up for 150 nodes with a working Infini-
Band interface ib0 in cmsh is:

Example

[root@bright52~]# cmsh

%[bright52]% device

[bright52->device]% foreach -n node001..node150 (set provisioninginter\

face ib0)

[bright52->device*]% commit

6.4 Node-Installer
After the kernel has started up, and the ramdisk kernel modules are in
place on the node, the node launches the node-installer.

The node-installer interacts with CMDaemon on the head node and
takes care of the rest of the boot process. Once the node-installer has
completed its tasks, the local drive of the node has a complete Linux sys-
tem. The node-installer ends by calling /sbin/init from the local drive
and the boot process then proceeds as a normal Linux boot.

The steps the node-installer goes through for each node are:

1. requesting a node certificate (section 6.4.1)

2. deciding or selecting node configuration (section 6.4.2)

3. starting up all network interfaces (section 6.4.3)

4. determining install-mode type and execution mode (section 6.4.4)

5. running initialize scripts (section 6.4.5)

6. checking partitions, mounting filesystems (section 6.4.6)

7. synchronizing the local drive with the correct software image (sec-
tion 6.4.7)

8. writing network configuration files to the local drive (section 6.4.8)

9. creating an /etc/fstab file on the local drive (section 6.4.9)

10. installing GRUB bootloader if configured (section 6.4.10)

11. running finalize scripts (section 6.4.11)

12. unloading specific drivers no longer needed (section 6.4.12)

13. switching the root device to the local drive and calling /sbin/init

(section 6.4.13)

These 13 node-installer steps and related matters are described in de-
tail in the corresponding sections 6.4.1–6.4.13.

© Bright Computing, Inc.



126 Node Provisioning

6.4.1 Requesting A Node Certificate
Each node communicates with the CMDaemon on the head node using
a certificate. If no certificate is found, it automatically requests one from
CMDaemon running on the head node (figure 6.5).

Figure 6.5: Certificate Request

Null Cipher Certificates
By default, a null cipher is used on internal networks such as internalnet,
to keep communications speedy. Using encryption on even these net-
works is sometimes a requirement in very unusual situations. In that case,
setting the advanced configuration flag AllowNullCipherNetwork=0 in
cmd.conf (appendix C) forces encryption on after CMDaemon is restarted.
By default, its value is 1.

Certificate Auto-signing
By default, certificate auto-signing means the cluster management daemon
automatically issues a certificate to any node that requests a certificate.

For untrusted networks it may be wiser to approve certificate requests
manually to prevent new nodes being added automatically without get-
ting noticed. Disabling certificate auto-signing can then be done by issu-
ing the autosign off command from cert mode in cmsh.

Section 3.3 has more information on certificate management in gen-
eral.

Example

Disabling certificate auto-sign mode:

[bright52]% cert autosign

on

[bright52]% cert autosign off

off

[bright52]% cert autosign

off

[bright52]%

© Bright Computing, Inc.



6.4 Node-Installer 127

Certificate Storage And Removal Implications
After receiving a valid certificate, the node-installer stores it in
/cm/node-installer/certificates/<node mac address>/ on the head
node. This directory is NFS exported to the nodes, but can only be ac-
cessed by the root user. The node-installer does not request a new certifi-
cate if it finds a certificate in this directory, valid or invalid.

If an invalid certificate is received, the screen displays a communica-
tion error. Removing the node’s corresponding certificate directory al-
lows the node-installer to request a new certificate and proceed further.

6.4.2 Deciding Or Selecting Node Configuration
Once communication with the head node CMDaemon is established, the
node-installer tries to identify the node it is running on so that it can se-
lect a configuration from CMDaemon’s record for it, if any such record
exists. It correlates any node configuration the node is expected to have
according to network hardware detected. If there are issues during this
correlation process then the administrator is prompted to select a node
configuration until all nodes finally have a configuration.

Possible Node Configuration Scenarios
The correlations process and corresponding scenarios are now covered in
more detail:

It starts with the node-installer sending a query to CMDaemon to
check if the MAC address used for net booting the node is already as-
sociated with a node in the records of CMDaemon. In particular, it checks
the MAC address for a match against the existing node configuration prop-
erties, and decides whether the node is known or new.

• the node is known if the query matches a node configuration. It
means that node has been booted before.

• the node is new if no configuration is found.

In both cases the node-installer then asks CMDaemon to find out if the
node is connected to an Ethernet switch, and if so, to which port. Setting
up Ethernet switches for port detection is covered in section 4.5.

If a port is detected for the node, the node-installer queries CMDae-
mon for a node configuration associated with the detected Ethernet switch
port. If a port is not detected for the node, then either the hardware in-
volved with port detection needs checking, or a node configuration must
be selected manually.

There are thus several scenarios:

1. The node is new, and an Ethernet switch port is detected. A pre-
vious configuration associated with the port is found. The node-
installer suggests to the administrator that the new node use this
configuration, and displays the configuration along with a confir-
mation dialog (figure 6.6). This suggestion can be interrupted, and
other node configurations can be selected manually instead through
a sub-dialog (figure 6.7). By default (in the main dialog), the original
suggestion is accepted after a timeout.

© Bright Computing, Inc.



128 Node Provisioning

Figure 6.6: Scenarios: Configuration Found, Confirm Node Configuration

Figure 6.7: Scenarios: Node Selection Sub-Dialog

2. The node is new, and an Ethernet switch port is detected. A previ-
ous configuration associated with the port is not found. The node-
installer then displays a dialog that allows the administrator to ei-
ther retry Ethernet switch port detection (figure 6.8) or to drop into
a sub-dialog to manually select a node configuration (figure 6.7). By
default, port detection is retried after a timeout.

© Bright Computing, Inc.



6.4 Node-Installer 129

Figure 6.8: Scenarios: Unknown Node, Ethernet Port Detected

3. The node is new, and an Ethernet switch port is not detected. The
node-installer then displays a dialog that allows the user to either
retry Ethernet switch port detection (figure 6.9) or to drop into a
sub-dialog to manually select a node configuration (figure 6.7). By
default, port detection is retried after a timeout.

Figure 6.9: Scenarios: Unknown Node, No Ethernet Port Detected

4. The node is known, and an Ethernet switch port is detected. The
configuration associated with the port is the same as the configu-
ration associated with the node’s MAC address. The node-installer
then displays the configuration as a suggestion along with a confir-
mation dialog (figure 6.6). The suggestion can be interrupted, and
other node configurations can be selected manually instead through
a sub-dialog (figure 6.7). By default (in the main dialog), the original
suggestion is accepted after a timeout.

5. The node is known, and an Ethernet switch port is detected. How-
ever, the configuration associated with the port is not the same as
the configuration associated with the node’s MAC address. This is

© Bright Computing, Inc.



130 Node Provisioning

called a port mismatch. This type of port mismatch situation occurs
typically during a mistaken node swap, when two nodes are taken
out of the cluster and returned, but their positions are swapped by
mistake (or equivalently, they are returned to the correct place in
the cluster, but the switch ports they connect to are swapped by
mistake). To prevent configuration mistakes, the node-installer dis-
plays a port mismatch dialog (figure 6.10) allowing the user to retry,
accept a node configuration that is associated with the detected Eth-
ernet port, or to manually select another node configuration via a
sub-dialog (figure 6.7). By default (in the main port mismatch dia-
log), port detection is retried after a timeout.

Figure 6.10: Scenarios: Port Mismatch Dialog

6. The node is known, and an Ethernet switch port is not detected.
However, the configuration associated with the node’s MAC ad-
dress does have an Ethernet port associated with it. This is also
considered a port mismatch. To prevent configuration mistakes, the
node-installer displays a port mismatch dialog similar to figure 6.10,
allowing the user to retry or to drop into a sub-dialog and manually
select a node configuration. By default (in the port mismatch dia-
log), port detection is retried after a timeout.

7. The node is known, and an Ethernet switch port is detected. How-
ever, the configuration associated with the node’s MAC address has
no Ethernet switch port associated with it. This is not considered a
port mismatch but an unset switch port configuration, and it typ-
ically occurs if switch port configuration has not been carried out,
whether by mistake or deliberately. The node-installer displays the
configuration as a suggestion along with a confirmation dialog (fig-
ure 6.11). The suggestion can be interrupted, and other node con-
figurations can be selected manually instead using a sub-dialog. By
default (in the main dialog) the configuration is accepted after a
timeout.

© Bright Computing, Inc.



6.4 Node-Installer 131

Figure 6.11: Scenarios: Port Unset Dialog

A truth table summarizing the scenarios is helpful:

Scenario
Node
known?

Switch
port de-
tected?

Switch
port
config-
uration
found?

Switch port con-
figuration conflicts
with node configu-
ration?

1 No Yes Yes No

2 No Yes No No

3 No No No No

4 Yes Yes Yes No

5 Yes Yes Yes Yes (configurations

differ)

6 Yes No Yes Yes (port expected

by MAC configura-

tion not found)

7 Yes Yes No No (port not expect-

ed by MAC config-

uration)

In these scenarios, whenever the user manually selects a node config-
uration in the prompt dialog, an attempt to detect an Ethernet switch port
is repeated. If a port mismatch still occurs, it is handled by the system as
if the user has not made a selection.

Summary Of Behavior During Hardware Changes
The logic of the scenarios means that an unpreconfigured node always
boots to a dialog loop requiring manual intervention during a first install
(scenarios 2 and 3). For subsequent boots the behavior is:

• If the node MAC hardware has changed (scenarios 1, 2, 3):

– if the node is new and the detected port has a configuration,

© Bright Computing, Inc.



132 Node Provisioning

the node automatically boots to that configuration (scenario 1).

– else manual intervention is needed (scenarios 2, 3)

• If the node MAC hardware has not changed (scenarios 4, 5, 6, 7):

– if there is no port mismatch, the node automatically boots to
its last configuration (scenarios 4, 7).

– else manual intervention is needed (scenarios 5, 6).

The newnodes Command
newnodes basic use: New nodes that have not been configured yet can
be detected using the newnodes command from within the device mode
of cmsh. A new node is detected when it reaches the node installer stage
after booting, and contacts the head node.

Example

[bright52->device]% newnodes

The following nodes (in order of appearance) are waiting to be assigned:

MAC First appeared Detected on switch port

----------------- ----------------------------- -----------------------

00:0C:29:01:0F:F8 Mon, 14 Feb 2011 10:16:00 CET [no port detected]

At this point the node installer is seen by the administrator to be loop-
ing, waiting for input on what node name is to be assigned to the new
node.

The nodes can be uniquely identified by their MAC address or switch
port address.

The port and switch to which a particular MAC address is connected
can be discovered by using the showport command (section 4.5.4). After
confirming that they are appropriate, the ethernetswitch property for
the specified device can be set to the port and switch values.

Example

[bright52->device]% showport 00:0C:29:01:0F:F8

switch01:8

[bright52->device]% set node003 ethernetswitch switch01:8

[bright52->device*]% commit

When the node name (node003 in the preceding example) is assigned,
the node installer stops looping and goes ahead with the installation to
the node.

The preceding basic use of newnodes is useful for small numbers of
nodes. For larger number of nodes, the advanced options of newnodes
may help carry out node-to-MAC assignment with less effort.

newnodes advanced use—options: The list of MAC addresses discov-
ered by a newnodes command can be assigned in various ways to nodes
specified by the administrator. Node objects should be created in advance
to allow the assignment to take place. The easiest way to set up node ob-
jects is to use the --clone option of the foreach command (section 3.5.5).

The advanced options of newnodes are particularly useful for quickly
assigning node names to specific physical nodes. All that is needed is to

© Bright Computing, Inc.



6.4 Node-Installer 133

power the nodes up in the right order. For nodes with the same hardware,
the node that is powered up first reaches the stage where it tries to connect
with the node installer first. So its MAC address is detected first, and
arrives on the list generated by newnodes first. If some time after the
first node is powered up, the second node is powered up, then its MAC
address becomes the second MAC address on the list, and so on for the
third, fourth, and further nodes.

When assigning node names to a physical node, on a cluster that has
no such assignment already, the first node that arrived on the list gets
assigned the name node001, the second node that arrived on the list gets
assigned the name node002 and so on.

The advanced options are shown in device mode by running the help
newnodes command. The options can be introduced as being of three
kinds: straightforward, grouping, and miscellaneous:

• The straightforward options:

-n|--nodes

-w|--write

-s|--save

Usually the most straightforward way to assign the nodes is to use
the -n option, which accepts a list of nodes, together with a -w or
-s option. The -w (--write) option sets the order of nodes to the
corresponding order of listed MAC addresses, and is the same as
setting an object in cmsh. The -s (--save) option is the same as
setting and committing an object in cmsh, so -s implies a -w option
is run at the same time.

So, for example, if 8 new nodes are discovered by the node installer
on a cluster with no nodes so far, then:

Example

[bright52->device]% newnodes -w -n node001..node008

assigns (but does not commit) the sequence node001 to node008 the
new MAC address according to the sequence of MAC addresses
displaying on the list.

• The grouping options:

-g|--group

-c|--category

-h|--chassis

-r|--rack

options: The “help newnodes” command in device mode shows
assignment options other than -n for a node range are possible. For
example, the assignments can also be made for a group (-g), per
category (-c), per chassis (-h), and per rack (-r).

• The miscellaneous options:

© Bright Computing, Inc.



134 Node Provisioning

-f|--force

-o|--offset

By default, the newnodes command fails when it attempts to set a
node name that is already taken. The -f (--force) option forces the
new MAC address to be associated with the old node name. When
used with an assignment grouping, (node range, group, category,
chassis, or rack) the entire grouping loses their assigned node-to-
MAC assignment and get new assignments. The -f option should
therefore be used with care.

The -o (--offset) option takes a number <number> and skips <num-
ber> nodes in the list of detected unknown nodes, before setting or
saving values from the assignment grouping.

Examples of how to use the advanced options follow.

newnodes advanced use—range assignment behavior example: For ex-
ample, supposing there is a cluster with nodes assigned all the way up
to node022. That is, CMDaemon knows what node is assigned to what
MAC address. For the discussion that follows, the three nodes node020,
node021, node022 can be imagined as being physically in a rack of their
own. This is simply to help to visualize a layout in the discussion and ta-
bles that follow and has no other significance. An additional 3 new, that
is unassigned, nodes are placed in the rack, and allowed to boot and get
to the node installer stage.

The newnodes command discovers the new MAC addresses of the new
nodes when they reach their node-installer stage, as before (the switch
port column is omitted in the following text for convenience):

Example

[bright52->device]% newnodes

MAC First appeared

----------------- -----------------------------

00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET

00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET

00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET

The assignment of MAC to node address could be carried out as fol-
lows:

Example

[bright52->device]% newnodes -s -n node023..node025

MAC First appeared Hostname

-------------------- ----------------------------- --------

00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET node023

00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET node024

00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET node025

Once this is done, the node-installer is able to stop looping, and to go
ahead and install the new nodes with an image.

The physical layout in the rack may then look as indicated by this:

© Bright Computing, Inc.



6.4 Node-Installer 135

before after MAC

node020 node020

node021 node021

node022 node022

node023 ...A

node024 ...B

node025 ...C

Here, node023 is the node with the MAC address ending in A.
If instead of the previous newnodes command, an offset of 1 is used to

skip assigning the first new node:

Example

[bright52->device]% newnodes -s -o 1 node024..node025

then the rack layout looks like:

before after MAC

node020 node020

node021 node021

node022 node022

unassigned ...A

node024 ...B

node025 ...C

Here, unassigned is where node023 of the previous example is physi-
cally located, that is, the node with the MAC address ...A. The lack of
assignment means there is actually no association of the name node023

with that MAC address, due to the newnodes command having skipped
over it with the -o option.

If instead the assignment is done with:

Example

[bright52->device]% newnodes -s 1 node024..node026

then the node023 name is unassigned, and the name node024 is assigned
instead to the node with the MAC address ...A, so that the rack layout
looks like:

before after MAC

node020 node020

node021 node021

node022 node022

node024 ...A

node025 ...B

node026 ...C

© Bright Computing, Inc.



136 Node Provisioning

newnodes advanced use—assignment grouping example: Node range
assignments are one way of using newnodes. However assignments can
also be made to a category, a rack, or a chassis. For example, with cmgui,
assigning node names to a rack can be done from the Nodes resource and
selecting the Settings tab. Within the tab, the Rack values can be set
appropriately, and saved for each node (figure 6.12).

Figure 6.12: Assigning A Node To A Rack

In cmsh, the assignment of multiple node names to a rack can conve-
niently be done with a foreach loop from within device mode:

Example

[bright52->device]% foreach -n node020..node029 (set rack rack02)

[bright52->device*]% commit

[bright52->device]% foreach -n node030..node039 (set rack rack03)

[bright52->device*]% commit

The assignment of node names with the physical node in the rack can
then be arranged as follows: If the nodes are identical hardware, and
are powered up in numerical sequence, from node020 to node039, with a
few seconds in between, then the list that the basic newnodes command
(without options) displays is arranged in the same numerical sequence.
Assigning the list in the rack order can then be done by running:

Example

[bright52->device]% newnodes -s -r rack02..rack03

If it turns out that the boot order was done very randomly and in-
correctly for all of rack02, and that the assignment for rack02 needs to
be done again, then a simple way to deal with it is to clear out all of the
rack02 current MAC associations, and redo them according to the correct
boot order:

Example

[bright52->device]% foreach -r rack02 ( clear mac ) ; commit

[...removes MAC association with nodes from CMDaemon...]

[...now reboot nodes in rack02 in sequence...]

[bright52->device]% newnodes

[...shows sequence as the nodes come up..]

© Bright Computing, Inc.



6.4 Node-Installer 137

[bright52->device]% newnodes -s -r rack02

[...assigns sequence in boot order...]

newnodes advanced use—assignment forcing example: The --force

option can be used in the following case: Supposing that node022 fails,
and a new node hardware comes in to replace it. The new node has a
new MAC address. So, as explained by scenario 3 (section 6.4.2), if there
is no switch port assignment in operation for the nodes, then the node
installer loops around, waiting for intervention.1

This situation can be dealt with from the command line by:

• accepting the node configuration at the head node console, via a
sub-dialog

• accepting the node configuration via cmsh, without needing to be at
the head node console:

[bright52->device]% newnodes -s -f -n node022

Node Identification Wizard
The node identification wizard can be accessed from the tabbed pane un-
der the Nodes resource (figure 6.13). It can also be accessed by double-
clicking, in the event viewer, on the event message “Nodes waiting to

be identified. Double click event to assign”.
The node identification wizard is roughly the cmgui equivalent to the

newnodes command of cmsh. Like newnodes, the wizard lists the MAC
address and switch port of any unassigned node that the head node de-
tects. Also, like newnodes, it can help assign a node name to the node,
assuming the node object exists. After assignment is done, a prompt to
save the new status appears.

Figure 6.13: Node Identification Wizard

The most useful way of using the wizard is for node assignment in
large clusters.

1with switch port assignment in place, scenario 1 means the new node simply boots up
by default and becomes the new node022 without further intervention

© Bright Computing, Inc.



138 Node Provisioning

To do this, it is assumed that the node objects have already been cre-
ated for the new nodes. The creation of the node objects means that the
node names exist, and so assignment to the node names is able to take
place. An easy way to create nodes, set their provisioning interface, and
set their IP addresses is described in the section on the node creation wiz-
ard (section 6.7.2). Node objects can also be created by running cmsh’s
foreach loop command on a node with a �clone option (section 3.5.5).

The nodes are also assumed to be set for net booting, typically set from
a BIOS setting.

The physical nodes are then powered up in an arranged order. Be-
cause they are unknown new nodes, the node-installer keeps looping af-
ter a timeout. The head node in the meantime detects the new MAC ad-
dresses and switch ports in the sequence in which they first have come
up and lists them in that order.

By default, all these newly detected nodes are set to auto, which means
their numbering goes up sequentially from whatever number is assigned
to the preceding node in the list. Thus, if there are 10 new unassigned
nodes that are brought into the cluster, and the first node in the list is as-
signed to the first available number, say node327; then clicking on assign
automatically assigns the remaining nodes to the next available numbers,
say node328�node337.

After the assignment, the node-installer looping process on the new
nodes notices that the nodes are now known. The node-installer then
breaks out of the loop, and installation goes ahead without any interven-
tion needed at the node console.

6.4.3 Starting Up All Network Interfaces
At the end of section 6.4.2, the node-installer knows which node it is run-
ning on, and has decided what its node configuration is.

It now gets on with setting up the IP addresses on the interfaces re-
quired for the node-installer, while taking care of matters that come up
on the way:

Avoiding Duplicate IP Addresses
The node-installer brings up all the network interfaces configured for the
node. Before starting each interface, the node-installer first checks if the
IP address that is about to be used is not already in use by another device.
If it is, then a warning and retry dialog is displayed until the IP address
conflict is resolved.

Using BOOTIF To Specify The Boot Interface
BOOTIF is a special name for one of the possible interfaces. The node-
installer automatically translates BOOTIF into the name of the device, such
as eth0 or eth1, used for network booting. This is useful for a machine
with multiple network interfaces where it can be unclear whether to spec-
ify, for example, eth0 or eth1 for the interface that was used for booting.
Using the name BOOTIF instead means that the underlying device, eth0 or
eth1 in this example, does not need to be specified in the first place.

Halting On Missing Kernel Modules For The Interface
For some interface types like VLAN and channel bonding, the node-
installer halts if the required kernel modules are not loaded or are loaded

© Bright Computing, Inc.



6.4 Node-Installer 139

with the wrong module options. In this case the kernel modules config-
uration for the relevant software image should be reviewed. Recreating
the ramdisk and rebooting the node to get the interfaces up again may be
necessary, as described in section 6.8.5.

Initializing IPMI Interfaces
IPMI interfaces, if present and set up in the node’s configuration, are also
initialized with correct IP address, netmask and user/password settings.

Restarting The Network Interfaces
At the end of this step (i.e. section 6.4.3) the network interfaces are up.
When the node-installer has completed the remainder of its 13 steps (sec-
tions 6.4.4–6.4.13), control is handed over to the local init process run-
ning on the local drive. During this handover, the node-installer brings
down all network devices. These are then brought back up again by init

by the distribution’s standard networking init scripts, which run from
the local drive and expect networking devices to be down to begin with.

6.4.4 Determining Install-mode Type And Execution Mode
Stored install-mode values decide whether synchronization is to be applied
fully to the local drive of the node, only for some parts of its filesystem,
not at all, or even whether to drop into a maintenance mode instead.

Related to install-mode values are execution mode values that deter-
mine whether to apply the install-mode values to the next boot, to new
nodes only, to individual nodes or to a category of nodes.

Related to execution mode values is the confirmation requirement tog-
gle value in case of a full installation is to take place.

These values are merely determined at this stage; nothing is executed
yet.

Install-mode Values
The install-mode can have one of four values: AUTO, FULL, MAIN and NOSYNC.

• If the install-mode is set to FULL, the node-installer re-partitions, cre-
ates new file systems and synchronizes a full image onto the local
drive. This process wipes out all pre-boot drive content.

• If the install-mode is set to AUTO, the node-installer checks the par-
tition table and file systems of the local drive against the node’s
stored configuration. If these do not match because, for example,
the node is new, or if they are corrupted, then the node-installer
recreates the partitions and file systems by carrying out a FULL in-
stall. If however the drive partitions and file systems are healthy, the
node-installer only does an incremental software image synchro-
nization. Synchronization tends to be quick because the software
image and the local drive usually do not differ much.

Synchronization also removes any extra local files that do not exist
on the image, for the files and directories considered. Section 6.4.7
gives details on how it is decided what files and directories are con-
sidered.

• If the install-mode is set to MAIN, the node-installer halts in main-
tenance mode, allowing manual investigation of specific problems.

© Bright Computing, Inc.



140 Node Provisioning

The local drive is untouched.

• If the install-mode is set to NOSYNC, and the partition and filesys-
tem check matches the stored configuration, then the node-installer
skips synchronizing the image to the node, so that contents on the
local drive persist from the previous boot. If however the partition
or filesystem does not match the stored configuration, a FULL image
sync is triggered.

Install-mode’s Execution Modes
Execution of an install-mode setting is possible in several ways, both per-
manently or just temporarily for the next boot. Execution can be set to ap-
ply to categories or individual nodes. The node-installer looks for install-
mode execution settings in this order:

1. The “New node installmode” property of the node’s category. This
decides the install mode for a node that is detected to be new.

It can be set using cmgui (figure 6.14):

Figure 6.14: cmgui Install-mode Settings Under Node Category

or using cmsh with a one-liner like:

cmsh -c "category use default; set newnodeinstallmode FULL; commit"

By default, the “New node installmode” property is set to FULL.

2. The Install-mode setting as set by choosing a PXE menu option on
the console of the node before it loads the kernel and ramdisk (fig-
ure 6.15). This only affects the current boot. By default the PXE
menu install mode option is set to AUTO.

© Bright Computing, Inc.



6.4 Node-Installer 141

Figure 6.15: PXE Menu With Install-mode Set To AUTO

3. The “Next boot install-mode” property of the node configura-
tion. This can be set using cmgui (figure 6.16):

Figure 6.16: cmgui Install-mode Settings For The Node

It can also be set using cmsh with a one-liner like:

cmsh -c "device use node001; set nextinstallmode FULL; commit"

The property is cleared when the node starts up again, after the
node-installer finishes its installation tasks. So it is empty unless
specifically set by the administrator during the current uptime for
the node.

4. The install-mode property can be set in the node configuration
using cmgui (figure 6.16), or using cmsh with a one-liner like:

cmsh -c "device use node001; set installmode FULL; commit"

By default, the install-mode property is auto-linked to the prop-
erty set for install-mode for that category of node. Since the
property for that node’s category defaults to AUTO, the property
for the install-mode of the node configuration defaults to “AUTO
(Category)”.

© Bright Computing, Inc.



142 Node Provisioning

5. The install-mode property of the node’s category. This can be set
using cmgui (figure 6.14), or using cmsh with a one-liner like:

cmsh -c "category use default; set installmode FULL; commit"

As already mentioned in a previous point, the install-mode is set by
default to AUTO.

6. A dialog on the console of the node (figure 6.17) gives the user a
last opportunity to overrule the install-mode value as determined
by the node-installer. By default, it is set to AUTO:

Figure 6.17: Install-mode Setting Option During Node-Installer Run

Require Full Install Confirmation Toggle
Related to execution mode values is the “Require full install

confirmation” value. This must be set in order to ask for a confirmation
in case a FULL installation is about to take place. If set, the node-installer
waits for a confirmation before going ahead with the FULL install.

The property can be set in the node configuration with cmgui (fig-
ure 6.18):

Figure 6.18: cmgui Require Full Install Confirmation Checkbox

Alternatively, it can be set using a cmsh one-liner like:

cmsh -c "device use node001; set requirefullinstallconfirmation yes;\

commit"

The reason behind having such a setting available is that a FULL in-
stallation can be triggered by a change in disk/partition, or a change in
the MAC address. If that happens, then:

© Bright Computing, Inc.



6.4 Node-Installer 143

• considering a drive, say, /dev/sda that fails, this means that any
drive /dev/sdb would then normally become /dev/sda upon re-
boot. In that case an unwanted FULL install would not only be trig-
gered by an install-mode settings of FULL, but also by the install-
mode settings of AUTO or NOSYNC. Having the new, “accidental”
/dev/sda have a FULL install is unlikely to be the intention, since
it would probably contain useful data that the node installer earlier
left untouched.

• considering a node with a new MAC address, but with local storage
containing useful data from earlier. In this case, too, an unwanted
FULL install would not only be triggered by an install-mode setting
of FULL, but also by the install-mode settings AUTO or NOSYNC.

Thus, in these two cases, having a confirmation required before pro-
ceeding with overwriting local storage contents is a good idea.

By default, no confirmation is required when a FULL installation is
about to take place.

6.4.5 Running Initialize Scripts
An initialize script is used when custom commands need to be executed
before checking partitions and mounting devices. For example, to initial-
ize some unsupported hardware, or to do a RAID configuration lookup
for a particular node. In such cases the custom commands are added to
an initialize script.

An initialize script can be added to both a node’s category and the
node configuration. The node-installer first runs an initialize script,
if it exists, from the node’s category, and then an initialize script, if it
exists, from the node’s configuration.

The node-installer sets several environment variables which can be
used by the initialize script. Appendix E contains an example script
documenting these variables.

Related to the initialize script are:

• The finalize script (section 6.4.11). This may run after node provi-
sioning is done, but just before the init process on the node run.

• The imageupdate_initialize and imageupdate_finalize scripts,
which may run when the imageupdate command runs (sec-
tion 6.6.2).

6.4.6 Checking Partitions, Mounting File Systems
In section 6.4.4 the node-installer determines the install-mode value, along
with when to apply it to a node. The install-mode value defaults mostly to
AUTO. If AUTO applies to the current node, it means the node-installer then
checks the partitions of the local drive and its file systems and recreates
them in case of errors. Partitions are checked by comparing the partition
layout of the local drive(s) against the drive layout as configured in the
node’s category configuration and the node configuration.

After the node-installer checks the drive(s) and, if required, recreates
the layout, it mounts all file systems to allow the drive contents to be
synchronized with the contents of the software image.

© Bright Computing, Inc.



144 Node Provisioning

If install-mode values of FULL or MAIN apply to the current node in-
stead, then no partition checking or filesystem checking is done by the
node-installer.

If the install-mode value of NOSYNC applies, then if the partition and
filesystem checks both show no errors, the node starts up without getting
an image synced to it from the provisioning node. If the partition or the
filesystem check show errors, then the node partition is rewritten, and a
known good image is synced across.

The node-installer is capable of creating advanced drive layouts, in-
cluding software RAID and LVM setups. Drive layout examples and rel-
evant documentation are in appendix D.

6.4.7 Synchronizing The Local Drive With The Software Image
After having mounted the local filesystems, these can be synchronized
with the contents of the software image associated with the node (through
its category). Synchronization is skipped if NOSYNC is set, and takes place
if install-mode values of FULL or AUTO are set. Synchronization is dele-
gated by the node-installer to the CMDaemon provisioning system. The
node-installer just sends a provisioning request to CMDaemon on the
head node.

For an install-mode of FULL, or for an install-mode of AUTO where the
local filesystem is detected as being corrupted, full provisioning is done.
For an install-mode of AUTO where the local filesystem is healthy and
agrees with that of the software image, sync provisioning is done.

On receiving the provisioning request, CMDaemon assigns the provi-
sioning task to one of the provisioning nodes. The node-installer is no-
tified when image synchronization starts, and also when the image syn-
chronization task ends—whether it is completed successfully or not.

Exclude Lists: excludelistsyncinstall And excludelistfullinstall

What files are synchronized is decided by an exclude list. An exclude list
is a property of the node category, and is a list of directories and files that
are excluded from consideration during synchronization. The excluded
list that is used is decided by the type of synchronization chosen: full or
sync:

• A full type of synchronization rewrites the partition table of the
node, then copies the filesystem from a software image to the node,
using a list to specify files and directories to exclude from consider-
ation when copying over the file system. The list of exclusions used
is specified by the excludelistfullinstall property.

The intention of full synchronization is to allow a complete work-
ing filesystem to be copied over from a known good software image
to the node. By default the excludelistfullinstall list contains
/proc/, /sys/, and lost+found/, which have no content in Bright
Cluster Manager’s default software image. The list can be modified
to suit the requirements of a cluster, but it is recommended to have
the list adhere to the principle of allowing a complete working node
filesystem to be copied over from a known good software image.

• A sync type of synchronization uses the excludelistsyncinstall

property to specify what files and directories to exclude from con-

© Bright Computing, Inc.



6.4 Node-Installer 145

sideration when copying parts of the filesystem from a known good
software image to the node. The excludelistsyncinstall prop-
erty is in the form of a list of exclusions, or more accurately in the
form of two sub-lists.

The contents of the sub-lists specify the parts of the filesystem that
should be retained or not copied over from the software image dur-
ing sync synchronization when the node is booting. The intention
behind this is to have the node boot up quickly, updating only the
files from the image to the node that need updating due to the re-
boot of the node, and otherwise keeping files that are already on
the node hard disk unchanged. The contents of the sub-lists are
thus items such as the node log files, or items such as the /proc and
/sys pseudo-filesystems which are generated during node boot.

The administrator should be aware that nothing on a node hard
drive can be regarded as persistent because a FULL sync takes place
if any error is noticed during a partition or filesystem check.

Anything already on the node that matches the content of
these sub-lists is not overwritten by image content during an
excludelistsyncinstall sync. However, image content that is not
on the node is copied over to the node only for items matching the
first sub-list. The remaining files and directories on the node, that
is, the ones that are not in the sub-lists, lose their original contents,
and are copied over from the software image.

A cmsh one-liner to get an exclude list for a category is:

cmsh -c "category use default; get excludelistfullinstall"

Similarly, to set the list:

cmsh -c "category use default; set excludelistfullinstall; commit"

where a text-editor opens up to allow changes to be made to the list. Fig-
ure 6.19 illustrates how the setting can be modified via cmgui.

Figure 6.19: Setting up exclude lists with cmgui for provisioning

Image synchronization is done using rsync, and the syntax of the
items in the exclude lists conforms to the “INCLUDE/EXCLUDE PATTERN

RULES” section of the rsync(1) man page, which includes patterns such
as “**”, “?”, and “[[:alpha:]]”.

The excludelistfullinstall and excludelistsyncinstall proper-
ties decide how a node synchronizes to an image during boot. For a node
that is already fully up, the related excludelistupdate property decides

© Bright Computing, Inc.



146 Node Provisioning

how a running node synchronizes to an image without a reboot event,
and is discussed in section 6.6.

Interface Used To Receive Image Data: provisioninginterface
For nodes with multiple interfaces, one interface may be faster than the
others. If so, it can be convenient to receive the image data via the fastest
interface. Setting the value of provisioninginterface, which is a prop-
erty of the node configuration, allows this. By default it is set to BOOTIF.

Transport Protocol Used For Image Data: provisioningtransport
The provisioning system can send the image data encrypted or unen-
crypted. The provisioningtransport property of the node configuration
can have these values:

• rsyncdaemon, which sends the data unencrypted

• rsyncssh, which sends the data encrypted

Because encryption severely increases the load on the provisioning node,
using rsyncssh is only suggested if the users on the network cannot be
trusted. By default, provisioningtransport is set to rsyncdaemon.

Tracking The Status Of Image Data Provisioning: provisioningstatus
The provisioningstatus command within the softwareimage mode of
cmsh displays an updated state of the provisioning system. As a one-liner,
it can be run as:

bright52:~ # cmsh -c "softwareimage provisioningstatus"

Provisioning subsystem status: idle, accepting requests

Update of provisioning nodes requested: no

Maximum number of nodes provisioning: 10000

Nodes currently provisioning: 0

Nodes waiting to be provisioned: <none>

Provisioning node bright52:

Max number of provisioning nodes: 10

Nodes provisioning: 0

Nodes currently being provisioned: <none>

The cmgui equivalent is accessed from the “Provisioning Status” tabbed
pane in the “Software Images” resource (figure 6.3).

Tracking The Provisioning Log Changes: synclog
For a closer look into the image file changes carried out during provision-
ing requests, the synclog command from device mode can be used (lines
elided in the following output):

Example

[bright52->device]% synclog node001

Tue, 11 Jan 2011 13:27:17 CET - Starting rsync daemon based provisionin\

g. Mode is SYNC.

sending incremental file list

./

...

deleting var/lib/ntp/etc/localtime

var/lib/ntp/var/run/ntp/

© Bright Computing, Inc.



6.4 Node-Installer 147

...

sent 2258383 bytes received 6989 bytes 156232.55 bytes/sec

total size is 1797091769 speedup is 793.29

Tue, 11 Jan 2011 13:27:31 CET - Rsync completed.

In cmgui, the equivalent output to cmsh’s synclog is displayed by
selecting a specific device or a specific category from the resource tree.
Then, within the tasks tabbed pane that opens up, the “Provisioning
Log” button at the bottom right is clicked (figure 6.20):

Figure 6.20: cmgui: Provisioning Log Button For A Device Resource

6.4.8 Writing Network Configuration Files
In the previous section, the local drive of the node is synchronized ac-
cording to install-mode settings with the software image from the provi-
sioning node. The node-installer now sets up configuration files for each
configured network interface. These are files like:

/etc/sysconfig/network-scripts/ifcfg-eth0

for Red Hat, Scientific Linux, and CentOS, while SUSE would use:
/etc/sysconfig/network/ifcfg-eth0

These files are placed on the local drive.
When the node-installer finishes its remaining tasks (sections 6.4.9–

6.4.13) it brings down all network devices and hands over control to the
local /sbin/init process. Eventually a local init script uses the network
configuration files to bring the interfaces back up.

6.4.9 Creating A Local /etc/fstab File
The /etc/fstab file on the local drive contains local partitions on which
filesystems are mounted as the init process runs. The actual drive layout
is configured in the category configuration or the node configuration, so
the node-installer is able to generate and place a valid local /etc/fstab
file. In addition to all the mount points defined in the drive layout, sev-
eral extra mount points can be added. These extra mount points, such
as NFS imports, /proc, /sys and /dev/shm, can be defined and man-
aged in the node’s category and in the specific configuration of the node
configuration, using cmgui or cmsh (section 4.7.2).

© Bright Computing, Inc.

/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0


148 Node Provisioning

6.4.10 Installing GRUB Bootloader
By default, a node-installer boots from the software image on the head
node via the network.

Optionally, the node-installer installs a boot record on the local drive
if the installbootrecord property of the node configuration or node cat-
egory is set to on, so that the next boot can be from the local drive.

For a hard drive boot to work:

1. hard drive booting must be set to have a higher priority than net-
work booting in the BIOS of the node. Otherwise regular PXE boot-
ing occurs, despite whatever value installbootrecord has.

2. the GRUB bootloader with a boot record must be installed in the
MBR of the local drive, overwriting the default gPXE boot record.

To set the GRUB bootloader in cmgui, the “Install boot record” check-
box must be ticked and saved in the node configuration or in the
node category.

The cmsh equivalents are commands like:

cmsh -c "device use node001; set installbootrecord yes; commit"

or

cmsh -c "category use default; set installbootrecord yes; commit"

Arranging for the two items in the preceding list ensures that the next
boot is from GRUB on the hard drive.

Simply unsetting “Install boot record” and rebooting the node does
not restore its gPXE boot record and hence its ability to gPXE boot. To
restore the gPXE boot record, the node can be booted from the default
image copy on the head node via a network boot again. Typically this is
done by manual intervention during node boot to select network booting
from the BIOS of the node.

As suggested by the Bright Cluster Manager gPXE boot prompt, set-
ting network booting to work from the BIOS (regular “PXE” booting) is
preferred to gPXE booting from the disk.

6.4.11 Running Finalize Scripts
A finalize script is similar to an initialize script (section 6.4.5), only it
runs a few stages later in the node-provisioning process.

It is used when custom commands need to be executed after the pre-
ceding mounting, provisioning, and housekeeping steps, but before hand-
ing over control to the node’s local init process. For example, custom
commands may be needed to:

• initialize some unsupported hardware before init takes over

• supply a configuration file for the software image that cannot sim-
ply be added to the software image and used by init because it
needs node-specific settings

• load a slightly altered standard software image on particular nodes,
typically with the change depending on automatically detecting the

© Bright Computing, Inc.



6.5 Node States 149

hardware of the node it is being loaded onto. While this could also
be done by creating a full new software image and loading it on
to the nodes according to the hardware, it usually turns out to be
better for simplicity’s sake (future maintainability) to minimize the
number of software images for the cluster

The custom commands used to implement such changes are then
added to the finalize script.

A finalize script can be added to both a node’s category and the
node configuration. The node-installer first runs a finalize script, if it
exists, from the node’s category, and then a finalize script, if it exists,
from the node’s configuration.

The node-installer sets several environment variables which can be
used by the finalize script. Appendix E contains an example script
which documents these variables.

Similar to the finalize script are:

• The initialize script (section 6.4.5). This may run several stages
before the finalize script.

• The imageupdate_initialize and imageupdate_finalize scripts,
which may run when the imageupdate command runs (section 6.6.2).

6.4.12 Unloading Specific Drivers
Many kernel drivers are only required during the installation of the node.
After installation they are not needed and can degrade node performance.

The IPMI drivers are an egregious example of this. The IPMI drivers
are required to have the node-installer configure the IP address of any
IPMI cards. Once the node is configured, these drivers are no longer
needed, but they continue to consume significant CPU cycles and power
if they stay loaded.

To solve this, the node-installer can be configured to unload a spec-
ified set of drivers just before it hands over control to the local init
process. This is done by editing the removeModulesBeforeInit setting
in the node-installer configuration file /cm/node-installer/scripts/

node-installer.conf. By default, the IPMI drivers are placed in the
removeModulesBeforeInit setting.

6.4.13 Switching To The Local init Process
At this point the node-installer is done. The node’s local drive now con-
tains a complete Linux installation and is ready to be started. The node-
installer hands over control to the local /sbin/init process, which con-
tinues the boot process and starts all runlevel services. From here on the
boot process continues as if the machine was started from the drive just
like any other regular Linux machine.

6.5 Node States
During the boot process, several state change messages are sent to the
head node CMDaemon or detected by polling from the head node CM-
Daemon. The most important node states for a cluster after boot up are
introduced in section 3.1.1. These states are described again, along with
some less common ones to give a more complete picture of node states.

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf


150 Node Provisioning

6.5.1 Node States Indicating Regular Start Up
During a successful boot process the node goes through the following
states:

• INSTALLING. This state is normally entered as soon as the node-
installer has determined on which node the node-installer is run-
ning. Within this state, information messages display indicating
what is being done while the node is in the INSTALLING state. Pos-
sible messages in the status displays for the node within cmgui and
cmsh are normally, in sequence:

1. node-installer started

2. checking disks

3. recreating partitions and file systems

4. mounting disks

5. One of these following two messages:

(a) waiting for FULL provisioning to start

(b) waiting for SYNC provisioning to start

6. provisioning started, waiting for completion

7. provisioning complete

Between steps 1 and 2 in the preceding, these optional messages can
also show up:

– If burn mode is entered or left:

running burn-in tests

burn-in test completed successfully

– If maintenance mode is entered:

entered maintenance mode

• INSTALLER_CALLINGINIT. This state is entered as soon as the node-
installer has handed over control to the local init process. The as-
sociated message normally seen with it in cmsh or cmgui is:

– switching to local root

• UP. This state is entered as soon as the CMDaemon of the node con-
nects to the head node CMDaemon.

6.5.2 Node States That May Indicate Problems
Other node states are often associated with problems in the boot process:

• DOWN. This state is registered as soon as the CMDaemon of the node
is no longer detected by CMDaemon on the head node. The addi-
tional text pingable is used alongside the state messages to indicate
whether a node responds to cmdaemon’s ICMP pings, which is use-
ful for troubleshooting node and network behavior.

• CLOSED. This state is set for the node by the administrator.

It can be set from the device mode of cmsh using the close com-
mand. The help text for the command gives details on how it can
be applied to categories, groups and so on. The “-m” option sets a
message for the closed node or nodes.

© Bright Computing, Inc.



6.5 Node States 151

Example

root@b52 ~]# cmsh

[b52]% device

[b52->device]% close -m "fan dead" -n node001,node009,node020

Mon May 2 16:32:01 2011 [notice] b52: node001 ....[ CLOSED ] (fan dead)

Mon May 2 16:32:01 2011 [notice] b52: node009 ....[ CLOSED ] (fan dead)

Mon May 2 16:32:01 2011 [notice] b52: node020 ....[ CLOSED ] (fan dead)

The state can also be set from cmgui. This is done via the Tasks tab
of the node item in the Nodes resource, or from the category item in
the Node Categories resource (figure 6.21).

Figure 6.21: Acting On A CLOSED State From cmgui

When the CLOSED state is set, CMDaemon does not register pings to
and from the node that tell it the node state, nor does it monitor the
node.

Only a few CMDaemon commands attempt to act on a closed node.
For example, in the device mode of cmsh:

– open

– drain and undrain

– For nodes that have power control2:

* power -f on

* power -f off

* power -f reset

The cmgui equivalents in figure 6.21 are:

– The Open button from the Watch row

– The Drain and Undrain buttons from the Workload row

– The On, Off, and Reset buttons from the PDU Power row
2power control mechanisms such as IPMI, PDUs, HP iLO and custom power scripts are

described in Chapter 5

© Bright Computing, Inc.



152 Node Provisioning

Since the CLOSED state is not monitored by the cluster manage-
ment system, powering down a CLOSED node, for example, does not
change its monitored state to DOWN. Nor does a reset on a CLOSED

node eventually bring its state to UP. The only way out of a CLOSED

state is for the administrator to tell the node to open via the afore-
mentioned cmsh or cmgui “open” options. Whether the node lis-
tens or not does not matter, the head node records it as being in an
OPENING state for a short time, during which period the next state
(UP, DOWN, etc) is agreed upon by the head node and the node.

The CLOSED state is sometimes set to take a node that is unhealthy
out of the cluster management system. The node can then still be
up, and even continue running workload jobs, since workload man-
agers run independent of CMDaemon. So, if the workload manager
is still running, the jobs themselves are still handled by the work-
load manager, even if CMDaemon is no longer aware of their status
until the node is re-opened. For this reason, draining a node is often
done before closing a node, although it is not obligatory.

• OPENING. This transitional state is entered as soon as the CMDae-
mon of the node rescinds the CLOSED state with an “open” command
from cmsh or cmgui. The state usually lasts no more than about 5
seconds, and never more than 30 seconds in the default configura-
tion settings of Bright Cluster Manager. The help text for the open

command of cmsh gives details on its options.

• INSTALLER_FAILED. This state is entered from the INSTALLING state
when the node-installer has detected an unrecoverable problem dur-
ing the boot process. For instance, it cannot find the local drive, or
a network interface cannot be started. This state can also be en-
tered from the INSTALLER_CALLINGINIT state when the node takes
too long to enter the UP state. This could indicate that handing over
control to the local init process failed, or the local init process was
not able to start the CMDaemon on the node. Lastly, this state can
be entered when the previous state was INSTALLER_REBOOTING and
the reboot takes too long.

• INSTALLER_UNREACHABLE. This state is entered from the INSTALLING
state when the head node CMDaemon can no longer ping the node.
It could indicate the node has crashed while running the node-
installer.

• INSTALLER_REBOOTING. In some cases the node-installer has to re-
boot the node to load the correct kernel. Before rebooting it sets
this state. If the subsequent reboot takes too long, the head node
CMDaemon sets the state to INSTALLER_FAILED.

6.6 Updating Running Nodes
Updating running nodes is the process of provisioning a software im-
age to a node without rebooting the node. A configuration setting called
excludelistupdate (section 6.6.1), is used by the imageupdate command
(section 6.6.2) when carrying out an update to a running node.

© Bright Computing, Inc.



6.6 Updating Running Nodes 153

The converse of the imageupdate command is the grabimage com-
mand, which grabs a node state and creates a software image from it. The
grabimage command is discussed in section 9.5.2.

6.6.1 Updating Running Nodes: Configuration With
excludelistupdate

Changes made to the contents of the head node’s software image for
nodes become part of the provisioning system according to its housekeep-
ing system (section 6.2.4). The image is then installed from the provision-
ing system onto a regular node when it (the regular node) reboots via a
provisioning request (section 6.4.7).

However, updating a running node with the latest changes from the
software image is also possible without rebooting it to re-install the im-
age. Such an update can be requested using cmsh or cmgui, and is queued
and delegated to a provisioning node just like an ordinary provisioning
request.

Like the provisioning requests done at the time of install it uses an ex-
clude list, with the same structure and rsync patterns syntax to those
detailed in section 6.4.7. This exclude list is however defined in the
excludelistupdate property of the node’s category. To distinguish the
intention behind the exclude lists, the administrator should note that it is
the excludelistupdate that is being discussed here, in contrast with the
excludelistsyncinstall/excludelistfullinstall from section 6.4.7.

So, the excludelistupdate property settings here concern an update
to a running system, while the other two from section 6.4.7 are about an
install during node start-up.

Similar to the sync case of section 6.4.7, which uses excludelistsync,
the update case in this section uses excludelistupdate.

The running node update type of synchronization uses the
excludelistupdate property to specify what files and directories
to exclude from consideration when copying parts of the filesys-
tem from a known good software image to the node. The
excludelistupdateinstall property is in the form of a list of exclusions,
or more accurately in the form of two sub-lists.

The contents of the sub-lists specify the parts of the filesystem that
should be retained on the node during update synchronization. The in-
tention behind this is to have the node synchronize quickly, updating only
the files from the image to the node that need updating due to the changes
on the software image, and otherwise keeping files that are already on the
node hard disk unchanged. The contents of the sub-lists are thus the files
and directories that are expected to be present in a running node.

Anything already on the node that matches the content of these sub-
lists is not overwritten by image content during an excludelistupdate

update. However, image content that is not on the node is copied over
to the node only for items matching the first sub-list. The remaining files
and directories on the node, that is, the ones that are not in the sub-lists,
lose their original contents, and are copied over from the software image.

A sample cmsh one-liner which opens up a text editor in a category to
set the exclude list for updates for is:

cmsh -c "category use default; set excludelistupdate; commit"

© Bright Computing, Inc.



154 Node Provisioning

The exclude list for updates can be edited in cmgui as indicated in
figure 6.22.

Figure 6.22: Setting up exclude lists with cmgui for node updates

In addition to the paths excluded using the excludelistupdate prop-
erty, the provisioning system automatically adds any NFS, Lustre, FUSE,
PanFS, FhGFS, GlusterFS, and GPFS imported file systems on the node.
If this were not done, all data on these filesystems would be wiped since
they are not part of the software image.

6.6.2 Updating Running Nodes
Updating Running Nodes: With cmsh Using imageupdate

Using a defined excludelistupdate property (section 6.6.1), the
imageupdate command of cmsh is used to start an update on a running
node:

Example

[bright52->device]% imageupdate -n node001

Performing dry run (use synclog command to review result, then pass -w \

to perform real update)...

Tue Jan 11 12:13:33 2011 bright52: Provisioning started on node node001

[bright52->device]% imageupdate -n node001: image update in progress ...

[bright52->device]%

Tue Jan 11 12:13:44 2011 bright52: Provisioning completed on node node0\

01

By default the imageupdate command performs a dry run, which
means no data on the node is actually written. Before passing the “-w”
switch, it is recommended to analyze the rsync output using the synclog

command (section 6.4.7).
If the user is now satisfied with the changes that are to be made, the

imageupdate command is invoked again with the “-w” switch to imple-
ment them:

Example

[bright52->device]% imageupdate -n node001 -w

Provisioning started on node node001

node001: image update in progress ...

[bright52->device]% Provisioning completed on node node001

© Bright Computing, Inc.



6.6 Updating Running Nodes 155

Updating Running Nodes: With cmgui Using The “Update node” Button
In cmgui an image update can be carried out by selecting the specific node
or specific category from the resource tree. Then, within the tasks tabbed
pane that opens up, the “Update node” button is clicked (figure 6.23).
This opens up a dialog which has a dry-run checkbox marked by default.

Figure 6.23: Updating A Running Node With cmgui

The dry-run can be reviewed by clicking on the “Provisioning Log”
button further down the same tabbed pane. The update can then be done
again with the dry-run check mark off to actually implement the update.

Updating Running Nodes: Considerations
Updating an image via cmsh or cmgui automatically updates the pro-
visioners first via the updateprovisioners command (section 6.2.4) if
the provisioners have not been updated in the last 5 minutes. So, if
there has been an update within the last 5 minutes, then provisioners
do not get an updated image when doing the updates. Running the
updateprovisioners command just before running the imageupdate com-
mand therefore usually makes sense.

Also, when updating services, the services on the nodes may not restart
since the init process may not notice the replacement.

For these reasons, especially for more extensive changes, it can be
safer for the administrator to simply reboot the nodes instead of using
imageupdate to provision the images to the nodes. A reboot ensures that
a node will have the latest image and that services should start up as in-
tended.

Updating Running Nodes: Pre- And Post-update Scripts
Two further scripts associated with the imageupdate command and its
cmgui equivalent may run as part the execution of the update. These are
located at /cm/images/default-image/cm/local/apps/cmd/scripts/ in
the default software image:

• The imageupdate_initialize script runs before the software image starts
updating. If the imageupdate_initialize script exits with non-
zero, then the image does not update

• The imageupdate_finalize script runs after an imageupdate command
is run on that node, and right after the software image has updated.

These differ from the initialize (section 6.4.5) and finalize (sec-
tion 6.4.11) scripts because they run on nodes that are fully up rather than

© Bright Computing, Inc.



156 Node Provisioning

on nodes that are booting, so they are able to access a fully running sys-
tem, and because they run on all nodes using that image rather than also
being configurable for individual nodes within that image.

6.7 Adding New Nodes
6.7.1 Adding New Nodes With cmsh And cmgui Add Functions
Node objects can be added from within the device mode of cmsh by run-
ning the add command:

Example

[bright52->device]% add physicalnode node002

[bright52->device*[node002*]% commit

The cmgui equivalent of this is to go within the Nodes resource, and
after the Overview tabbed pane for the Nodes resource comes up, to click
on the Add button (figure 6.24)

Figure 6.24: Buttons To Add, Remove And Set Up Nodes

When adding the node objects in cmsh and cmgui, some values (IP
addresses for example) may need to be filled in before the object validates.

Adding new node objects as “placeholders” can also be done from
cmsh or cmgui. By placeholders, here it is meant that an incomplete node
object is set. For example, sometimes it is useful to create a node object
with the MAC address setting unfilled because it is still unknown. Why
this can be useful is covered shortly.

6.7.2 Adding New Nodes With The Node Creation Wizard
Besides adding nodes using the add command of cmsh or the Add button of
cmgui as in the previous section, there is also a cmgui wizard that guides
the administrator through the process—the node creation wizard. This is
useful when adding many nodes at a time. It is available from the Nodes

resource, by selecting the Overview tabbed pane and then the “Create
Nodes” button (figure 6.24).

This wizard should not be confused with the closely related node iden-
tification wizard described earlier in section 6.4.2, which identifies unas-
signed MAC addresses and switch ports, and helps assign them node
names.

The node creation wizard instead creates an object for nodes, assigns
them node names, but it leaves the MAC address field for these nodes
unfilled, keeping the node object as a “placeholder”(figure 6.25).

© Bright Computing, Inc.



6.7 Adding New Nodes 157

Figure 6.25: Node Creation Wizard: 10 Placeholders Created

The MAC addresses can be assigned to a node via the node identifi-
cation wizard. However, leaving nodes in a “placeholder” state, where
the MAC address entry is left unfilled, means that any new node with an
unassigned MAC address that is started up is offered a choice out of the
created node names by the provisioning system at its console. This hap-
pens when the node-installer reaches the node configuration stage during
node boot as described in section 6.4.2. This is sometimes preferable to as-
sociating the node name with a MAC address remotely.

The node creation wizard can set IP addresses for the nodes. At one
point in the dialog a value for IP-offset can also be set (figure 6.26).

Figure 6.26: Node Creation Wizard: Setting Interfaces

The default setting for IP-offset is 0.0.0.0, and means the default
IP address is suggested for assignment to each node in the range. The
default IP address is based on the node name, with node001 having the
value 10.141.0.1, and so on. An offset of x implies that the xth IP address
after the default is suggested for assignment to each node in the range.
Some care must be taken when setting IP addresses using the wizard,

© Bright Computing, Inc.



158 Node Provisioning

since no duplicate IP address checking is done.

Example

A node001 has its default IP address 10.141.0.1. The node005 is then
added.

• If IP-offset=0.0.0.0, then 10.141.0.5 is suggested for assignment to
node005, because, by default, the node name is parsed and its de-
fault IP address suggested.

• If IP-offset=0.0.0.2, then 10.141.0.7 is suggested for assignment to
node005, because it is 2 IP addresses after the default.

The cmsh equivalent of the node creation wizard is the foreach loop
with the �clone option acting on a node (section 3.5.5).

6.8 Troubleshooting The Node Boot Process
During the node boot process there are several common issues that can
lead to an unsuccessful boot. This section describes some of these issues
and their solutions. It also provides general hints on how to analyze boot
problems.

6.8.1 Node Fails To PXE Boot
Possible reasons to consider if a node is not even starting to PXE boot in
the first place:

• The boot sequence may be set wrongly in the BIOS. The boot inter-
face should normally be set to be the first boot item in the BIOS.

• There may a a bad cable connection. This can be due to moving
the machine, or heat creep, or another physical connection problem.
Firmly inserting the cable into its slot may help. Replacing the cable
or interface as appropriate may be required.

• The cable may be connected to the wrong interface. By default, eth0
is assigned the internal network interface, and eth1 the external net-
work interface. However:

– The two interfaces can be confused when physically viewing
them and a connection to the wrong interface can therefore be
made.

– It is also possible that the administrator has changed the de-
fault assignment.

The connections should be checked to eliminate these possibilities.

• DHCP may not be running. A check should be done to confirm that
DHCP is running on the internal network interface (usually eth0):

[root@testbox ~]# ps aux | grep dhcp

root 4368 0.0 0.0 27680 3484 ? Ss Apr07 0:01 /usr/sbin/dhcpd eth0

© Bright Computing, Inc.



6.8 Troubleshooting The Node Boot Process 159

• A rogue DHCP server may be running. If there are all sorts of other
machines on the network the nodes are on, then it is possible that
there is a rogue DHCP server active on it, and interfering with PXE
booting. Stray machines should be eliminated.

• Sometimes a manufacturer releases hardware with buggy drivers
that have a variety of problems. For instance: Ethernet frames may
be detected at the interface (for example, by ethtool), but TCP/IP
packets may not be detected (for example, by wireshark). In that
case, the manufacturer should be contacted to upgrade their driver.

• The interface may have a hardware failure. In that case, the interface
should be replaced.

6.8.2 Node-installer Logging
If the node manages to get beyond the PXE stage to the node-installer
stage, then the first place to look for hints on node boot failure is usually
the node-installer log file. The node-installer sends logging output to a
local syslog daemon. This forwards all log data to the IP address from
which the node received its DHCP lease, which is typically the IP ad-
dress of the head node or failover node. In a default Bright Cluster Man-
ager setup, the local5 facility is used and all messages are then logged to
/var/log/node-installer of the head node.

Optionally, extra log information can be written by en-
abling debug logging, which sets the syslog importance level at
LOG_DEBUG. To enable debug logging, the debug field is changed in
/cm/node-installer/scripts/node-installer.conf.

From the console of the booting node the log file is also accessible by
pressing Alt+F7 on the keyboard.

A booting node console can be accessed remotely if Serial Over LAN
(SOL) is enabled.

6.8.3 Serial Over LAN Console Access
SOL Considerations For Node Console Access
The serial port of a node is often used to send and receive data. This
requires that the serial port is enabled. This is usually configured in the
node BIOS.

If the serial port of a node is configured in the node kernel to redirect
a console, then it allows serial console access. That is, the console can be
viewed using a terminal software such as minicom (in Linux) or Hypert-
erminal (in Windows) on another machine to communicate with the node
via the serial port.

Serial Over LAN (SOL) is a feature of IPMI 2.0, and iLO. It is en-
abled by configuring the baseboard management controller BIOS. When
enabled, it redirects data that is going to the serial port to the LAN, so
that SOL clients can process it.

SOL thus allows SOL clients on the LAN to access the Linux serial
console if

• the serial port is enabled in the node BIOS

• the serial console is enabled in the node kernel

• SOL is enabled in the Baseboard Management Controller BIOS

© Bright Computing, Inc.



160 Node Provisioning

A feature of SOL console clients is that the administrator is not pre-
sented with any text prompt from the node that is being accessed. This is
useful in some cases, and can be a problem in others.

An example of the issue is the case where the administrator has al-
ready logged into the console and typed in a command in the console
shell, but has no intention of pressing the <ENTER> key until some other
tasks are first carried out. If the connection breaks at this point, then the
command typed in is held in the console shell command buffer, but is not
displayed when a serial connection is re-established to the console—the
previously entered text is invisible to the client making the connection. A
subsequent <ENTER> would then attempt to execute the command. This
is why an <ENTER> is not sent as the last key sequence during automated
SOL access, and it is left to the administrator to enter the appropriate key
strokes.

To avoid commands in the console shell buffer inadvertantly being
run when taking over the console, the administrator can start the session
with a <CTRL>-u to clear out text in the shell before pressing <ENTER>.

SOL Console Configuration And Access With cmgui

In cmgui, within the “Software Images” resource, if the “Console over

SOL” checkbox (figure 6.27) is checked for the software image that the
node is using, then the kernel option to make the Linux serial console
accessible is used, on rebooting the node that is to be accessed.

Figure 6.27: Configuring The SOL Console For A Node With cmgui

This means that if the serial port and SOL are enabled for the node
hardware, then after the node reboots the Linux serial console is accessi-
ble over the LAN via an SOL client. Some of the settings for SOL can be
set from the same screen.

With SOL correctly configured, an SOL client to access the Linux serial
console can be launched using the “Remote Console” button for the node
(figure 6.28).

© Bright Computing, Inc.



6.8 Troubleshooting The Node Boot Process 161

Figure 6.28: Accessing The SOL Console For A Node With cmgui

By default the expected SOL client is configured for IPMI. To config-
ure the “Remote Console” button for iLO instead, the variable type in
the script at /cm/local/apps/cmd/scripts/ipmisol must be set to ilo

instead of ipmi.

SOL Console Configuration And Access With cmsh

In cmsh, the serial console kernel option for a software image can be en-
abled within the softwareimage mode of cmsh. For the default image of
default-image, this can be done as follows:

Example

[root@bright52 ~]# cmsh

[bright52]% softwareimage use default-image

[bright52->softwareimage[default-image]]% set enablesol yes

[bright52->softwareimage*[default-image*]]% commit

The SOL settings for a particular image can be seen with the show

command:

[bright52->softwareimage[default-image]]% show | grep SOL

Parameter Value

------------------------------ --------------

Enable SOL yes

SOL Flow Control yes

SOL Port ttyS1

SOL Speed 115200

Values can be adjusted if needed with the set command.
To access a node that has an IPMI Baseboard Management Controller

via an SOL client, the node can be specified from within the device mode
of cmsh, and the ipmisol command run on the head node:

[root@bright52 ~]# cmsh

[bright52]% device use node001

[bright52->device[node001]]% ipmisol

A node that has an iLO Baseboard Management Controller instead
can provide remote Linux serial console access via iLO. The node can be
accessed from the head node, using the command line or cmsh as follows:

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/ipmisol


162 Node Provisioning

1. From the command line, an ssh login to the Baseboard Management
Controller IP address can be done, and the iLO command remcons

is then run to get to the serial console of the remote node.

2. From cmsh, the remote node can be accessed from iLO using an
ilosol command, just like the remote node is accessed from IPMI
using the ipmisol command previously. This can be done with the
following one-time file changes:

• the alias ilosol is set to ipmisol in the cmsh default settings file
at /root/.cm/cmsh/.cmshrc by adding the line:

alias ilosol ipmisol

• the variable type in the script at /cm/local/apps/cmd/

scripts/ipmisol is set to ilo instead of ipmi

The Network, Username, And Password For The Baseboard Management
Controller
The default network base address on which the IP address of the Base-
board Management Controller is to be found is 10.148.0.0. The user-
name and password required to access the Baseboard Management Con-
troller can be obtained from partition mode, by getting the values of
ipmiusername and ipmipassword from the base object.

Example

[root@bright52 ~]# cmsh -c "partition use base;\

get ipmiusername; get ipmipassword"

ADMIN

araoos98Y6gotdfadlipoiq9

[root@bright52 ~]# ssh -l ADMIN 10.148.0.1

ADMIN@10.148.0.1's password:

User:ADMIN logged-in to demoilo.internal.com(10.148.0.1)

iLO 1.94 at 12:11:27 Mar 19 2009

Server Name: host is unnamed

Server Power: On

</>hpiLO-> remcons

Starting remote console

Press 'ESC (' to return to the CLI Session

Red Hat Enterprise Linux Server release 6.2 (Santiago)

Kernel 2.6.32-220.2.1.el6.x86_64 on an x86_64

node001 login:

6.8.4 Provisioning Logging
The provisioning system sends log information to the CMDaemon log
file. By default this is in /var/log/cmdaemon.

The image synchronization log file can be retrieved with the synclog

command running from device mode in cmsh (section 6.4.7). Hints on
provisioning problems are often found by looking at the tail end of the
log.

© Bright Computing, Inc.

/root/.cm/cmsh/.cmshrc
/cm/local/apps/cmd/scripts/ipmisol
/cm/local/apps/cmd/scripts/ipmisol


6.8 Troubleshooting The Node Boot Process 163

6.8.5 Ramdisk Cannot Start Network
The ramdisk must activate the node’s network interface in order to fetch
the node-installer. To activate the network device, the correct kernel mod-
ule needs to be loaded. If this does not happen, booting fails, and the
console of the node displays something similar to figure 6.29.

Figure 6.29: No Network Interface

To solve this issue the correct kernel module should be added to the
software image’s kernel module configuration (section 6.3.2). For exam-
ple, to add the e1000 module to the default image using cmsh:

Example

[mc]% softwareimage use default-image

[mc->softwareimage[default-image]]% kernelmodules

[mc->softwareimage[default-image]->kernelmodules]% add e1000

[mc->softwareimage[default-image]->kernelmodules[e1000]]% commit

Initial ramdisk for image default-image was regenerated successfully

[mc->softwareimage[default-image]->kernelmodules[e1000]]%

After committing the change it typically takes about a minute before
ramdisk creation is completed.

6.8.6 Node-Installer Cannot Create Disk Layout
When the node-installer is not able to create a drive layout it displays a
message similar to figure 6.30. The node-installer log file (section 6.8.2)
contains something like:

Mar 24 13:55:31 10.141.0.1 node-installer: Installmode is: AUTO

Mar 24 13:55:31 10.141.0.1 node-installer: Fetching disks setup.

Mar 24 13:55:31 10.141.0.1 node-installer: Checking partitions and

filesystems.

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev\

/sda /dev/hda).

© Bright Computing, Inc.



164 Node Provisioning

Mar 24 13:55:32 10.141.0.1 node-installer: Partitions and/or filesystems

are missing/corrupt. (Exit code 4, signal 0)

Mar 24 13:55:32 10.141.0.1 node-installer: Creating new disk layout.

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev\

/sda /dev/hda).

Mar 24 13:55:32 10.141.0.1 node-installer: Failed to create disk layout.

(Exit code 4, signal 0)

Mar 24 13:55:32 10.141.0.1 node-installer: There was a fatal problem. T\

his node can not be installed until the problem is corrected.

Figure 6.30: No Disk

It is likely that this issue is caused by the correct storage driver not be-
ing loaded. To solve this issue the correct kernel module should be added
to the software image’s kernel module configuration (section 6.3.2).

Experienced system administrators work out what drivers may be
missing by checking the results of hardware probes. For example, the
output of lspci provides a list of hardware detected in the PCI slots, giv-
ing the chipset name of the storage controller hardware in this case:

Example

[root@bright52 ~]# lspci | grep SCSI

00:10.0 Serial Attached SCSI controller: LSI Logic / Symbios Logic SAS2\

008 PCI-Express Fusion-MPT SAS-2 [Falcon] (rev 03)

The next step is to Google with likely search strings based on that
output.

The Linux Kernel Driver DataBase (LKDDb) is a hardware database
built from kernel sources that lists driver availability for Linux. It is avail-
able at http://cateee.net/lkddb/. Using the Google search engine’s
“site” operator to restrict results to the cateee.net web site only, a likely
string to try might be:

Example

© Bright Computing, Inc.

http://cateee.net/lkddb/


6.8 Troubleshooting The Node Boot Process 165

SAS2008 site:cateee.net

The search result indicates that the mpt2sas kernel module needs to
be added to the node kernels. A look in the modules directory of the
software image shows if it is available:

Example

find /cm/images/default-image/lib/modules/ -name "*mpt2sas*"

If it is is not available, the driver module must then be obtained. If
it is a source file, it will need to be compiled. By default, nodes run on
standard distribution kernels, so that only standard procedures need to
be followed to compile modules.

If the module is available, it can be added to the default image using
cmsh in softwareimage mode:

Example

[bright52]% softwareimage use default-image

[bright52->softwareimage[default-image]]% kernelmodules

[bright52->softwareimage[default-image]->kernelmodules]% add mpt2sas

[bright52->softwareimage[default-image]->kernelmodules*[mpt2sas*]]% com\

mit

[bright52->softwareimage[default-image]->kernelmodules[mpt2sas]]%

Thu May 19 16:54:52 2011 [notice] bright52: Initial ramdisk for image de\

fault-image is being generated

[bright52->softwareimage[default-image]->kernelmodules[mpt2sas]]%

Thu May 19 16:55:43 2011 [notice] bright52: Initial ramdisk for image de\

fault-image was regenerated successfully.

[bright52->softwareimage[default-image]->kernelmodules[mpt2sas]]%

After committing the change it can take some time before ramdisk
creation is completed—typically about a minute, as the example shows.
On rebooting the node, it should now continue past the disk layout stage.

6.8.7 Node-Installer Cannot Start IPMI Interface
In some cases the node-installer is not able to configure a node’s IPMI in-
terface, and displays an error message similar to figure 6.31. Usually the
issue can be solved by adding the correct IPMI kernel modules to the soft-
ware image’s kernel module configuration. However, in some cases the
node-installer is still not able to configure the IPMI interface. If this is the
case the IPMI card probably does not support one of the commands the
node-installer uses to set specific settings. To solve this issue, setting up
IPMI interfaces can be disabled globally by setting the setupIpmi field
in the node-installer configuration file /cm/node-installer/scripts/

node-installer.conf to false. Doing this disables configuration of all
IPMI interfaces by the node-installer. A custom finalize script (ap-
pendix E) can then be used to run the required commands instead.

© Bright Computing, Inc.

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf


166 Node Provisioning

Figure 6.31: No IPMI Interface

© Bright Computing, Inc.



7
User Management

Unix users and groups for the cluster are presented to the administra-
tor in a single system paradigm. That is, if the administrator manages
them with the Bright Cluster Manager, then the changes are automati-
cally shared across the cluster via the LDAP service.

This chapter describes how to add, remove and edit users and groups
using the Bright Cluster Manager.

7.1 Managing Users And Groups With cmgui

Selecting “Users & Groups” from the Resources tree within cmgui (fig-
ure 7.1) by default lists the LDAP object entries for regular users. These
entries are clickable and can be managed further.

There is already one user on a newly installed Bright Cluster Manager:
cmsupport. This user has no password set by default, and is used to run
various diagnostics utilities. The user cmsupport should not be removed,
nor should the default contents of its home directory be removed.

Figure 7.1: cmgui User Management

The following five buttons are available to manipulate the entries in
the Users & Groups resource pane:

1. Add: allows users to be added via a dialog. These additions can be
committed via the Save button.

2. Save: saves the as-yet-uncommitted Add or Edit operations. When
saving an addition:

• User and group ID numbers are automatically assigned from
UID and GID 1000 onwards. Normally Red Hat and simi-

© Bright Computing, Inc.



168 User Management

lar distributions assign from 500 onwards, while SUSE assigns
from 1000 onwards.

• A home directory is created and a login shell is set. Users with
unset passwords cannot log in.

3. Edit: allows users to be modified via a dialog (figure 7.2).

Figure 7.2: cmgui User Management: Edit Dialog

The less obvious items in the dialog are explained next:

• Expiration warning: The number of days, before the pass-
word expires, that the user is warned of the expiry

• Shadow max: The maximum number of days the password is
valid

• Shadow min: The minimum number of days required between
password changes. A value of zero means the user may change
their password at any time

• Inactivity: The number of days of inactivity allowed for the
user before the account is blocked. A value of zero means the
user is never blocked

4. Revert: discards unsaved edits that have been made via the Edit

button. The reversion goes back to the last save.

5. Remove: removes selected rows of users. By default, along with their
home directories.

Group management in cmgui is started by selecting the Groups tab
in the Users & Groups pane. Clickable LDAP object entries for regular
groups then show up, similar to the user entries already covered. Man-
agement of these entries is done with the same button functions as for
user management.

© Bright Computing, Inc.



7.2 Managing Users And Groups With cmsh 169

7.2 Managing Users And Groups With cmsh

This section goes through a session to cover the cmsh functions that corre-
spond to the user management functions of cmgui in the previous section.
These functions are run from within cmsh’s user mode:

Example

[root@mycluster ~]# cmsh

[mycluster]% user

[mycluster->user]%

7.2.1 Adding A User
(This corresponds roughly to the functionality of the Add button operation
in section 7.1.) In user mode, the process of adding a user maureen to the
LDAP directory is started with the add command:

Example

[mycluster->user]% add user maureen

[mycluster->user*[maureen*]]%

The cmsh helpfully drops into the context of the user just added, and
the prompt shows the user name to reflect this. Going into user context
would otherwise be done manually by typing use user maureen at the
user mode level.

Asterisks in the prompt are a helpful reminder of a modified state,
with each asterisk indicating that there is an unsaved, modified property
at that asterisk’s level.

The modified command displays a list of modified objects, and corre-
sponds roughly to the functionality of the List of Changes menu option
under the View menu of the main menu bar.

Running show at this point reveals a user name entry, but empty fields
for the other properties of user maureen. So the account in preparation,
while it is modified, is clearly not yet ready for use:

Example

[mycluster->user*[maureen*]]% show

Parameter Value

------------------------------ ----------------------------------------

Common name

Expiration date 2038/1/1

Group ID

Home directory

Inactive 0

Last change 1970/1/1

Login shell

Password < not set >

Revision

Shadow max 999999

Shadow min 0

Shadow warning 7

User ID

User name maureen

© Bright Computing, Inc.



170 User Management

7.2.2 Saving The Modified State
This corresponds roughly to the functionality of the Save button opera-
tion in section 7.1.

In section 7.2.1 above, user maureen was added. maureen now exists
as a proposed modification, but has not yet been committed to the LDAP
database.

Running the commit command now at the maureen prompt stores the
modified state at the user maureen level:

Example

[mycluster->user*[maureen*]]% commit

[mycluster->user[maureen]]% show

Parameter Value

------------------------------ -----------------------------------------

Common name maureen

Expiration date 2038/1/1

Group ID 1002

Home directory /home/maureen

Inactive 0

Last change 2011/5/30

Login shell /bin/bash

Password *********

Revision

Shadow max 999999

Shadow min 0

Shadow warning 7

User ID 1002

User name maureen

If, however, commit were to be run at the user mode level without drop-
ping down to the username level, then instead of just that modified user,
all modified users and groups would be committed.

When the commit is done, all the empty fields for the user are auto-
matically filled in with defaults based the underlying Linux distribution
used. Also, as a security precaution, if an empty field (that is, a “not set”)
password entry is committed, then a login into the account is not allowed.
So, while the account exists at this stage, it still cannot be logged into until
the password is set. Logging in requires first editing a property of user
maureen, namely the empty password field. Editing passwords and other
properties is covered in section 7.2.3.

The default file and directory permissions for the home directory of
the user are defined by the umask settings in /etc/login.defs, as would
be expected if the administrator were to use the standard useradd com-
mand.

7.2.3 Editing Properties Of Users And Groups
This corresponds roughly to the functionality of the Edit button opera-
tion in section 7.1.

In the preceding section 7.2.2, a user account maureenwas made, which
had as one of its properties an unset password. Account logins with an
unset password are refused, and so the password needs to be set if the
account is to function.

© Bright Computing, Inc.



7.2 Managing Users And Groups With cmsh 171

Editing Users With set And clear

The tool used to set user and group properties is the set command. Typ-
ing set and then either using tab to see the possible completions, or fol-
lowing it up with the enter key, suggests several parameters that can be
set, one of which is password:

Example

[mycluster->user[maureen]]% set

Name:

set - Set specific user or group property

Usage:

set <parameter>

set user <name> <parameter>

set group <name> <parameter>

Arguments:

name

Name of the user or group

Parameters:

commonname.......... Full user name

expirationdate...... Indicates the date on which the user logi\

n will be disabled

groupid............. Base group of this user

homedirectory....... Home directory

inactive............ Indicates the number of days of inactivit\

y allowed for the user

loginshell.......... Login shell

password............ Password

shadowmax........... Indicates the maximum number of days for \

which the user password remains valid.

shadowmin........... Indicates the minimum number of days requ\

ired between password changes

shadowwarning....... The number of days of advance warning giv\

en to the user before the user password e\

xpires

userid.............. User id number

username............ User name

[mycluster->user[maureen]]%

Continuing the session from the end of section 7.2.2, the password can
be set at the user context prompt like this:

Example

[mycluster->user[maureen]]% set password seteca5tr0n0my

[mycluster->user*[maureen*]]% commit

[mycluster->user[maureen]]%

At this point, the account maureen is finally ready for use.
The converse of the set command is the clear command, which clears

properties:

Example

[mycluster->user[maureen]]% clear password; commit

© Bright Computing, Inc.



172 User Management

Editing Groups With append And removefrom

While the above commands set and clear also work with groups, there
are two other commands available which suit the special nature of groups.
These supplementary commands are append and removefrom. They are
used to add extra users to, and remove extra users from a group.

For example, it may be useful to have a printer group so that several
users can share access to a printer. For the sake of this example (continu-
ing our session from where it was left off above), tim and fred are now
added to the LDAP directory, along with a printer group:

Example

[mycluster->user[maureen]]% add user tim; add user fred

[mycluster->user*[fred*]]% add group printer

[mycluster->user*[printer*]]% commit

[mycluster->user*[printer]]%

Note the context switch that happened here in the cmsh user mode en-
vironment: the context of user maureen was eventually replaced by the
context of group printer. As a result, the group printer is committed,
but the users tim and fred are not yet committed, which is indicated by
the asterisk at the user mode level.

Continuing onwards, to add users to a group the append command is
used. A list of users maureen, tim and fred can be added to the printer

group like this:

Example

[mycluster->user[printer]]% append groupmembers maureen tim fred; commit

[mycluster->user*[printer]]% show

Parameter Value

------------------------------ ------------------------------------------------

Group ID 1003

Group members maureen tim fred

Group name printer

To remove users from a group, the removefrom command is used. A
list of specific users, for example, tim and fred, can be removed from a
group like this:

[mycluster->user*[printer]]% removefrom groupmembers tim fred; commit

[mycluster->user*[printer]]% show

Parameter Value

------------------------------ ------------------------------------------------

Group ID 1003

Group members maureen

Group name printer

The clear command can also be used to clear members—but also
clears all of the extras from the group:

Example

[mycluster->user[printer]]% clear groupmembers

[mycluster->user*[printer*]]% show

Parameter Value

------------------------------ ------------------------------------------------

© Bright Computing, Inc.



7.2 Managing Users And Groups With cmsh 173

Group ID 1003

Group members

Group name printer

The commit command is intentionally left out at this point in the session
in order to illustrate how reversion is used in the next section.

7.2.4 Reverting To The Unmodified State
This corresponds roughly to the functionality of the Revert button oper-
ation in section 7.1.

This section (7.2.4) continues on from the state of the session at the
end of section 7.2.3. There, the state of group printers was changed so
that the extra added members were removed. This state (the state with
no group members showing) was however not yet committed.

The refresh command reverts an uncommitted object back to the last
committed state.

This happens at the level of the object it is using. For example, the
object that is being handled here is the properties of the group printer.
Running revert at a higher level prompt (say, at user mode level) would
revert everything at that level and below. So, in order to affect only
the properties of the group printer, the refresh command is used at
the group printer level prompt. It then reverts the properties of group
printer back to their last committed state (and does not affect other ob-
jects):

Example

[mycluster->user*[printer*]]% refresh

[mycluster->user*[printer]]% show

Parameter Value

------------------------------ ------------------------------------------------

Group ID 1003

Group members maureen

Group name printer

Here, the user maureen reappears because she was stored in the last
save. Also, because only the group printer object has been committed,
the asterisk indicates the existence of other uncommitted, modified ob-
jects.

7.2.5 Removing A User
Removing a user using cmsh corresponds roughly to the functionality of
the Remove button operation in section 7.1.

The remove command removes a user or group. The useful “-r” flag
added to the end of the username removes the user’s home directory too.
For example, within user mode, the command “remove user maureen

-r; commit” removes user maureen, along with her home directory. Or,
continuing the session at the end of section 7.2.4 from where it was left
off:

Example

[mycluster->user*[printer]]% use user maureen

[mycluster->user*[maureen]]% remove -r; commit

[mycluster->user*]% !ls -d /home/* | grep maureen #no maureen left behind

[mycluster->user*]%

© Bright Computing, Inc.



174 User Management

7.3 Using An External LDAP Server
When using an external LDAP server to serve the user database, a Bright
cluster can be configured in different ways to authenticate against it.

For smaller clusters, a configuration where LDAP clients on all nodes
point directly to the external server is recommended. An easy way to set
this up is as follows:

• On the head node:

– the URIs in /etc/ldap.conf, and in the image file /cm/images/
default-image/etc/ldap.conf are set to point to the external
LDAP server.1

– the updateprovisioners command (section 6.2.4) is run to up-
date any other provisioners.

• Then, to update configurations on the regular nodes:

– They can simply be rebooted to pick up the updated configu-
ration.

– Alternatively, to avoid a reboot, the imageupdate command
(section 6.6.2) can be run to pick up the new image from a pro-
visioner.

• If using the user portal with user authentication (section 10.9), the
changes described in section 10.9.1 for external LDAP server config-
uration should be carried out

• In the CMDaemon configuration file cmd.conf (Appendix C):

– If another LDAP tool is to be used to manage external LDAP
user management instead of cmgui or cmsh, then altering
cmd.conf is not required.

– If, however, system users and groups are to be managed via
cmgui or cmsh, then CMDaemon, too, must refer to the external
LDAP server instead of the default LDAP server on the head
node. To set that up:

* The LDAPHost, LDAPUser, LDAPPass, and LDAPSearchDN di-
rectives in cmd.conf are changed to refer to the external
LDAP server.

* CMDaemon is restarted to enable the new configurations.

For larger clusters the preceding solution can cause issues due to traffic,
latency, security and connectivity fault tolerance. If such occur, a bet-
ter solution is to replicate the external LDAP server onto the head node,
hence keeping all cluster authentication local, and making the presence
of the external LDAP server unnecessary except for updates. This opti-
mization is described in the next section.

1In distributions that are derived from RHEL 6 or higher, /etc/ldap.conf file does
not exist. The files in which the changes then need to be made are /etc/nslcd.conf and
/etc/pam_ldap.conf.

© Bright Computing, Inc.

/cm/images/default-image/etc/ldap.conf
/cm/images/default-image/etc/ldap.conf


7.3 Using An External LDAP Server 175

7.3.1 External LDAP Server Replication
This section explains how to set up replication for an external LDAP
server to an LDAP server that is local to the cluster, if improved LDAP ser-
vices are needed. Section 7.3.2 then explains how this can then be made
to work with a high availability setup.

Typically, the Bright LDAP server is configured as a replica (consumer)
to the external LDAP server (provider), with the consumer refreshing its
local database at set timed intervals. How the configuration is done varies
according to the LDAP server used. The description in this section as-
sumes the provider and consumer both use OpenLDAP.

External LDAP Server Replication: Configuring The Provider
It is advisable to back up any configuration files before editing them.

The provider is assumed to be an external LDAP server, and not nec-
essarily part of the Bright cluster. The LDAP TCP ports 389 and 689

may therefore need to be made accessible between the consumer and the
provider by changing firewall settings.
If a provider LDAP server is already configured then the following syn-
chronization directives must be in the slapd.conf file to allow replica-
tion:

index entryCSN eq

index entryUUID eq

overlay syncprov

syncprov-checkpoint <ops> <minutes>

syncprov-sessionlog <size>

The openldap documentation (http://www.openldap.org/doc/) has
more on the meanings of these directives. If the values for <ops>,
<minutes>, and <size> are not already set, typical values are:

syncprov-checkpoint 1000 60

and:

syncprov-sessionlog 100

To allow the consumer to read the provider database, the consumer’s
access rights need to be configured. In particular, the userPassword at-
tribute must be accessible. LDAP servers are often configured to prevent
unauthorized users reading the userPassword attribute.

Read access to all attributes is available to users with replication priv-
ileges. So one way to allow the consumer to read the provider database
is to bind it to replication requests.

Sometimes a user for replication requests already exists on the provider,
or the root account is used for consumer access. If not, a user for replica-
tion access must be configured.

A replication user, syncuser with password secret can be added
to the provider LDAP with adequate rights using the following
syncuser.ldif file:

dn: cn=syncuser,<suffix>

objectClass: person

cn: syncuser

sn: syncuser

userPassword: secret

© Bright Computing, Inc.

http://www.openldap.org/doc/


176 User Management

Here, <suffix> is the suffix set in slapd.conf, which is originally some-
thing like dc=example,dc=com. The syncuser is added using:

ldapadd -x -D "cn=root,<suffix>" -W -f syncuser.ldif

This prompts for the root password configured in slapd.conf.
To verify syncuser is in the LDAP database the output of ldapsearch

can be checked:

ldapsearch -x "(sn=syncuser)"

To allow access to the userPassword attribute for syncuser the fol-
lowing lines in slapd.conf are changed, from:

access to attrs=userPassword

by self write

by anonymous auth

by * none

to:

access to attrs=userPassword

by self write

by dn="cn=syncuser,<suffix>" read

by anonymous auth

by * none

Provider configuration is now complete and the server can be restarted
using /etc/init.d/ldap restart.

External LDAP Server Replication: Configuring The Consumer(s)
The consumer is an LDAP server on a Bright head node. It is configured
to replicate with the provider by adding the following lines to /cm/local/

apps/openldap/etc/slapd.conf:

syncrepl rid=2

provider=ldap://external.ldap.server

type=refreshOnly

interval=01:00:00:00

searchbase=<suffix>

scope=sub

schemachecking=off

binddn=cn=syncuser,<suffix>

bindmethod=simple

credentials=secret

Here:

• The rid=2 value is chosen to avoid conflict with the rid=1 setting
used during high availability configuration (section 7.3.2).

• The provider argument points to the external LDAP server.

• The interval argument (format DD:HH:MM:SS) specifies the time
interval before the consumer refreshes the database from the exter-
nal LDAP. Here, the database is updated once a day.

• The credentials argument specifies the password chosen for the
syncuser on the external LDAP server.

© Bright Computing, Inc.

/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf


7.3 Using An External LDAP Server 177

More on the syncrepl directive can be found in the openldap docu-
mentation (http://www.openldap.org/doc/).

The configuration files must also be edited so that:

• The <suffix> and rootdn settings in slapd.conf both use the cor-
rect<suffix> value, as used by the provider.

• The <base> value in the /etc/ldap.conf uses the correct <suffix>
value as used by the provider. This is set on all Bright cluster nodes.
If the ldap.conf file does not exist, then the footnote on page 174
applies.

Finally, before replication takes place, the consumer database is cleared.
This can be done by removing all files, except for the DB_CONFIG file, from
under the configured database directory, which by default is at /var/lib/
ldap/.

The consumer is restarted using service ldap restart. This repli-
cates the provider’s LDAP database, and continues to do so at the speci-
fied intervals.

7.3.2 High Availability
No External LDAP Server Case
If the LDAP server is not external—that is, if the Bright Cluster Manager
is set to its high availability configuration, with its LDAP servers running
internally, on its own head nodes—then by default LDAP services are
provided from both the active and the passive node. The high-availability
setting ensures that CMDaemon takes care of any changes needed in the
slapd.conf file when a head node changes state from passive to active
or vice versa, and also ensures that the active head node propagates its
LDAP database changes to the passive node via a syncprov/syncrepl
configuration in slapd.conf.

External LDAP Server With No Replication Locally Case
In the case of an external LDAP server being used, but with no local repli-
cation involved, no special high-availability configuration is required.
The LDAP client configuration in /etc/ldap.conf simply remains the
same for both active and passive head nodes, pointing to the external
LDAP server. The file /cm/images/default-image/etc/ldap.conf in
each image directory also points to the same external LDAP server. If
the ldap.conf files referred to here in the head and software images do
not exist, then the footnote on page 174 applies.

External LDAP Server With Replication Locally Case
In the case of an external LDAP server being used, with the external
LDAP provider being replicated to the high-availability cluster, it is gen-
erally more efficient for the passive node to have its LDAP database prop-
agated and updated only from the active node to the passive node, and
not updated from the external LDAP server.

The configuration should therefore be:

• an active head node that updates its consumer LDAP database from
the external provider LDAP server

© Bright Computing, Inc.

http://www.openldap.org/doc/
/var/lib/ldap/
/var/lib/ldap/
/cm/images/default-image/etc/ldap.conf


178 User Management

• a passive head node that updates its LDAP database from the active
head node’s LDAP database

Although the final configuration is the same, the sequence in which
LDAP replication configuration and high availability configuration are
done has implications on what configuration files need to be adjusted.

1. For LDAP replication configuration done after high availability con-
figuration, adjusting the new suffix in /cm/local/apps/openldap/

etc/slapd.conf and in /etc/ldap.conf on the passive node to the
local cluster suffix suffices as a configuration. If the ldap.conf file
does not exist, then the footnote on page 174 applies.

2. For high availability configuration done after LDAP replication con-
figuration, the initial LDAP configurations and database are prop-
agated to the passive node. To set replication to the passive node
from the active node, and not to the passive node from an external
server, the provider option in the syncrepl directive on the pas-
sive node must be changed to point to the active node, and the suf-
fix in /cm/local/apps/openldap/etc/slapd.conf on the passive
node must be set identical to the head node.

The high availability replication event occurs once only for configu-
ration and database files in Bright Cluster Manager’s high availability
system. Configuration changes made on the passive node after the event
are therefore persistent.

7.4 Using Kerberos Authentication
The default Bright Cluster Manager 5.2 setup uses LDAP for storing user
information and for authentication. This section describes how LDAP can
be configured to use a Kerberos V5 authentication back end, assuming a
Kerberos server has already been set up.

The resulting combination setup then retains user information such as
the login shell, home directory and UID in the LDAP database, while the
password and validity period information are managed by the Kerberos
database.

7.4.1 Matching Realms
Both LDAP and Kerberos manage different realms such as example.com
or cm.cluster. For LDAP to authenticate against Kerberos there must be
a matching realm between them. Changing the LDAP realms to match
the Kerberos realm is done as follows:

1. The Kerberos realm can be accessed in /etc/krb5.conf on the Ker-
beros server. Its value is noted.

2. In /cm/local/apps/openldap/etc/slapd.conf, these lines
should be updated to match the Kerberos realm by replacing
dc=cm,dc=cluster:

suffix "dc=cm,dc=cluster"

rootdn "cn=root,dc=cm,dc=cluster"

© Bright Computing, Inc.

/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf


7.4 Using Kerberos Authentication 179

The LDAP server is then restarted with the command:

service ldap restart

3. The ldap.conf file on all nodes should also be modified to match
the new realm, by modifying dc attributes in the following line:

base dc=cm,dc=cluster

This modification can be implemented by changing:

(a) /etc/ldap.conf on the head node

(b) /cm/images/<image>/etc/ldap.conf on the head node, where
<image> indicates the image used for the non-head nodes. Run-
ning the imageupdate command (section 6.6.2) then implements
the changes to the non-head nodes.

If the ldap.conf file does not exist on any of the nodes, then the
footnote on page 174 applies.

7.4.2 Configuring The LDAP Server As A Kerberos Client
Assuming the Kerberos server is a different server from the LDAP server,
then the LDAP server on the head node should be configured as a Ker-
beros client. The changes are implemented as follows:

Configuring The LDAP Server As A Kerberos Client: LDAP Server Changes
The /etc/krb5.conf file is copied from the Kerberos server onto the Bright
head node.

On the Kerberos server the kadmin shell is entered, and the LDAP
server is created as a principal:

Example

addprinc -randkey host/master.cm.cluster

Here, master.cm.cluster should match the fully qualified domain name
of the LDAP server. The kadmin shell is exited using the exit command.

On the LDAP server, the kadmin shell is entered, and the principal
added to the keytab:

Example

ktadd host/master.cm.cluster

As with the addprinc command, master.cm.cluster should correspond
to the LDAP server’s fully qualified domain name.

Configuring The LDAP Server As A Kerberos Client: Node Changes
The procedure in the previous section is repeated for all nodes in the clus-
ter.

The easiest way is to modify the image under /cm/images. The file
/etc/krb5.conf is copied to /cm/images/<image>/etc/krb5.conf.

For each node the following command is issued on the Kerberos server
using the kadmin shell:

Example

© Bright Computing, Inc.



180 User Management

addprinc -randkey host/<nodenumber>.cm.cluster

where <nodenumber>.cm.cluster represents the node hostname, with <node-
number> typically taking values of node001, node002 and so on.

On the Bright head server, after chrooting to the <image> directory
with:

chroot /cm/images/<image>/

the kadmin shell is entered. For each regular node in the image, the fol-
lowing keytab command is run:

ktadd host/<nodenumber>.cm.cluster

7.4.3 Configuring PAM
The system-auth service is configured in /etc/pam.d/system-auth with
the following rules added:

auth sufficient pam_krb5.so use_first_pass

account [default=bad success=ok user_unknown=ignore] pam_krb5.so

password sufficient pam_krb5.so use_authtok

session optional pam_krb5.so

Similar entries exist for LDAP authentication, which if left in there
allows users to either authenticate against LDAP or against Kerberos.
LDAP authentication can be disabled by removing the lines including
pam_ldap.so, thereby allowing users to only authenticate with Kerberos.

7.5 Tokens And Profiles
Tokens are used to assign capabilities to users, who are grouped accord-
ing to their assigned capabilities. A profile is the name given to each such
group. A profile thus consists of a set of tokens. The profile is stored as
part of the authentication certificate generated to run authentication op-
erations to the cluster manager for the certificate owner. Authentication
is introduced earlier in section 3.3.

The certificate can be generated within cmsh by using the createcert-
ificate operation from within cert mode. Alternatively, it can be gen-
erated within cmgui by using the Add dialog of the Certificates tabbed
pane within the Authentication resource.

Every cluster management operation requires the user’s profile to have
the relevant tokens for the operation.

Profiles are handled with the profiles mode of cmsh, or from the
Authorization resource of cmgui. The following default profiles are avail-
able:

© Bright Computing, Inc.



7.5 Tokens And Profiles 181

Profile name Default Tasks Allowed

Admin all tasks

CMHealth health-related prejob tasks

Node node-related

Power device power

Readonly view-only

Custom profiles can be created to include a custom collection of capa-
bilities in cmsh and cmgui. Cloning of profiles is also possible from cmsh.

7.5.1 Creating A New Certificate For cmsh Users
Creating a new certificate in cmsh is done from cert mode using the
createcertificate command, which has the following help text:

[bright52->cert]% help createcertificate

Name:

createcertificate - Create a new certificate

Usage:

createcertificate <key-length> <common-name> <organization> <o\

rganizational-unit> <locality> <state> <country> <profile> <sys-login> <\

days> <key-file> <cert-file>

Arguments:

key-file

Path to key file that will be generated

cert-file

Path to pem file that will be generated

Accordingly, as an example, a certificate file with a read-only profile
set to expire in 30 days, to be run with the privileges of user peter, can
be created with:

Example

createcertificate 1024 democert a b c d ef readonly peter 30 /home/peter\

/peterfile.key /home/peter/peterfile.pem

Thu Apr 14 15:10:53 2011 [notice] bright52: New certificate request wit\

h ID: 1

[bright52->cert]% createcertificate 1024 democert a b c d ef readonly pe\

ter 30 /home/peter/peterfile.key /home/peter/peterfile.pem

Certificate key written to file: /home/peter/peterfile.key

Certificate pem written to file: /home/peter/peterfile.pem

Users given this certificate can then carry out cmdaemon tasks that have
a read-only profile and as user peter.

7.5.2 Creating A New Certificate For cmgui Users
In a similar way to how cmsh creates a certificate and key files in the pre-
ceding section, cmgui users can create a certificate and a .pfx file. This is
done via the Authentication resource of cmgui, using the Certificates

tab (figure 7.3):

© Bright Computing, Inc.



182 User Management

Figure 7.3: cmgui Certificates Tab

After clicking on the Add button of the Certificates tab, a dialog
comes up in which the certificate is set up, and a profile selected (fig-
ure 7.4):

Figure 7.4: cmgui Add Certificate And Profile Dialog

Clicking on the Add button in figure 7.4 saves the certificate, and gen-
erates a .pfx. Another dialog then opens up to prompt the user for the
path to where the key is to be saved. A password to protect the key with
is also asked for (figure 7.5).

Figure 7.5: cmgui Password-protect Key And Save

Users that use this certificate for their cmgui clients are then restricted
to the set of tasks allowed by their profile, and carry out the tasks with
the privileges of the specified system login name (peter in figure 7.4).

© Bright Computing, Inc.



8
Workload Management

For clusters that have many users and a significant load, a workload man-
agement system allows a more efficient use of resources to be enforced for
all users than if there were no such system in place. This is because with-
out resource management, there is a tendency for each individual user to
over-exploit common resources.

When a workload manager is used, the user submits a batch (i.e. non-
interactive) job to it. The workload manager assigns resources to the job,
and checks the current availability as well as checking its estimates of
the future availability of the cluster resources that the job is asking for.
The workload manager then schedules and executes the job based on the
assignment criteria that the administrator has set for the workload man-
agement system. After the job has finished executing, the job output is
delivered back to the user.

Among the hardware resources that can be used for a job are GPUs.
Installing CUDA software to enable the use of GPUs is described in sec-
tion 12.5.

The details of job submission from a user’s perspective are covered in
the User Manual.

Sections 8.1–8.5 cover the installation procedure to get a workload
manager up and running.

Sections 8.6–8.7 describe how cmgui and cmsh are used to view and
handle jobs, queues and node drainage.

Section 8.8 shows examples of workload manager assignments han-
dled by Bright Cluster Manager.

Section 8.9 ends the chapter by describing the power saving features
of workload managers.

8.1 Workload Managers Choices
Some workload manager packages are installed by default, others require
registration from the distributor before installation.

During cluster installation, a workload manager can be chosen (fig-
ure 2.17) for setting up. The choices are:

• None

• SLURM v2.2.7 (default)

© Bright Computing, Inc.



184 Workload Management

• Grid Engine 6.2u5p2 (SGE, Open Grid Scheduler fork). An open
source development of Sun Grid Engine

• Torque v2.5.12 and its built-in scheduler

• Torque v2.5.12 and the Maui scheduler

• Torque v2.5.12 and the Moab scheduler

• PBS Pro v11.02

These workload managers can also be chosen and set up later using
the wlm-setup tool (section 8.3).

Besides the preceding workload managers, Load Sharing Facility
v7 (LSF) installation is also possible. This is handled separately (sec-
tion 8.5.5).

8.2 Forcing Jobs To Run In A Workload Management
System

Another preliminary step is to consider forcing users to run jobs only
within the workload management system. Having jobs run via a work-
load manager is normally a best practice.

For convenience, a Bright Cluster defaults to allowing users to login to
a node and run their processes outside the workload management system
without restriction. For clusters with a significant load this policy results
in a sub-optimal use of resources, since such unplanned-for jobs disturb
any already-running jobs.

Disallowing user logins to nodes, so that users have to run their jobs
through the workload management system, means that jobs on the nodes
are then disturbed only according to the planning of the workload man-
ager. If planning is based on sensible assignment criteria, then resources
use is optimized—which is the entire aim of a workload management
system in the first place.

8.2.1 Disallowing User Logins To Nodes Via cmsh

The usernodelogin setting of cmsh restricts direct user logins from out-
side the workload manager, and is thus one way of preventing the
user from using node resources in an unaccountable manner. The
usernodelogin setting is applicable to node categories only, rather than
to individual nodes.

In cmsh the attribute of usernodelogin is set from within category

mode:

Example

[root@bright52 ~]# cmsh

[bright52]% category use default

[bright52->category[default]]% set usernodelogin onlywhenjob

[bright52->category*[default*]]% commit

The attributes for usernodelogin are:

• always (the default): This allows all users to ssh directly into a node
from anywhere.

© Bright Computing, Inc.



8.3 Installation Of Workload Managers 185

• never: This allows no user other than root to directly ssh into the
node.

• onlywhenjob: This allows the user to ssh directly into the node
when running a job on a node. It typically also prevents other users
from doing a direct ssh into the same node during the job run, since
typically the workload manager is set up so that only one job runs
per node.

8.2.2 Disallowing User Logins To Nodes Via cmgui

In cmgui, user node login access is set from the Settings tab for a cat-
egory selected in the Node Categories resource, in the section labeled
“User node login” (figure 8.1).

Figure 8.1: Disallowing User Logins To Nodes Via cmgui

8.2.3 Disallowing Other User Processes Outside Of Workload
Manager User Processes

Besides disabling user logins, administrators may choose to disable inter-
active jobs in the workload management system as an additional measure
to prevent users from starting jobs on other nodes.

Administrators may also choose to set up post-job scripts that termi-
nate user processes outside the workload manager, as part of a policy,
or for general administrative hygiene. Such scripts are usually called
“Epilog” scripts and part of the workload manager.

The workload management system documentation has more on con-
figuring these options.

8.3 Installation Of Workload Managers
Normally the administrator selects a workload manager to be used dur-
ing Bright Cluster Manager installation (figure 2.17).

A workload manager may however also be added after Bright Clus-
ter Manager has been installed. In that case, the command-line tool
wlm-setup can be used to install and initialize a workload manager. It
is also able to enable or disable the workload manager services. The op-
tions available can be viewed on running wlm-setup -h.

8.3.1 Setting Up, Enabling, And Disabling The Workload
Manager With wlm-setup

The following options from wlm-setup must be chosen to set up, enable
or disable a workload manager for Bright Cluster Manager:

© Bright Computing, Inc.



186 Workload Management

• -w or --wlmanager: the workload manager option, together with
<name>, the workload manager name. The value of <name> can be
one of

· sge
· torque (Torque with its built-in scheduler)

· torquemaui (Torque with the Maui scheduler)

· torquemoab (Torque with the Moab scheduler)

· slurm
· pbspro

and for the named workload manager, either:

• -s or --setup: the setup option

or

• -p or --powersave: the powersave option, which enables the power
management options without enabling the workload manager. For
pbspro this option only works if the PBS Pro server is already run-
ning.

or

• -e or --enable: the enable option, which enables the workload
manager

· adding the -p or --powersave option to this also enables power
management

or

• -d or --disable: the disable option, which disables the workload
manager

· adding the -p or --powersave option to this disables power
management without disabling the workload manager

or

• -i or --image: the image option, which places the job execution
daemons in a specific software image, for example when a new
node category is added to the cluster.

The setup action of wlm-setup installs a workload manager package
along with its scheduler. Roles, queues, and databases used by the work-
load manager are initialized on the head. Software images stored on the
head node are also set up. The nodes themselves are only updated after
manually running imageupdate (section 6.6.2)—the idea being to avoid
an automatic update so that an administrator is encouraged to check via
a dry-run if unintended consequences would happen.

The enable and disable actions of wlm-setup are the same as those that
take place during role assignment (sections 8.4.1 and 8.4.2). These actions
enable or disable the workload manager as a service.

For example, setting up SGE can done as follows:

Example

© Bright Computing, Inc.



8.3 Installation Of Workload Managers 187

[root@bright52 ~]# wlm-setup -w sge -s

Disabling sge services ..... [ OK ]

Initializing sge setup ..... [ OK ]

Installing sge qmaster ..... [ OK ]

Updating image services ..... [ OK ]

Updating qmaster config ..... [ OK ]

Creating default sge setup ..... [ OK ]

Setting permissions ..... [ OK ]

Enabling sge services ..... [ OK ]

For example, SLURM job daemons can be installed in the node image
new-image as follows:

Example

wlm-setup -w slurm -i /cm/images/new-image

If there are provisioning nodes, the updateprovisioners command
(section 6.2.4) should be run after the software image is changed. The
nodes can then simply be rebooted to pick up the new image, or alter-
natively, to avoid rebooting, the imageupdate command (section 6.6.2)
places a new image on the node from the provisioner.

8.3.2 Other Options With wlm-setup

Other options exist for wlm-setup, including:

• offload The offload option (-o or --offload) deals with setting
up, enabling or disabling a workload manager server running on
another specified node, other than the default head node:

Example

wlm-setup -w slurm -s -o node003

• head as a compute node This option (-m or --mcompute) sets the
head node to join in as a compute node for job tasks in a work-
load management system. This can be significantly worthwhile on
smaller clusters:

Example

wlm-setup -w slurm -m -s

• slots The slots option (-n or --slots) sets the value of slots (SGE
terminology), or np (terminology used by other workload managers),
and is typically set to the number of cores per node:

Example

wlm-setup -w torque -s -n 4

© Bright Computing, Inc.



188 Workload Management

8.4 Enabling, Disabling, And Monitoring Workload
Managers

After a workload manager package is installed and initialized with
wlm-setup (section 8.3), it can also be enabled or (if already enabled)
disabled, with wlm-setup. Enabling and disabling means the workload
management services start or stop.

Alternatively, a workload manager can be enabled or disabled by the
administrator with cmgui or cmsh. This is described further on in this
section.

In Bright Cluster Manager 5.2, workload managers can even run con-
currently. For example, SLURM, SGE, and Torque can run at the same
time in the cluster. Using only one workload manager is however gener-
ally recommended for production environments.

For ease of use, the administrator can arrange it so that the skeleton
file in /etc/skel/.bashrc loads only the appropriate workload manager
environment module (slurm, sge, torque, or pbspro) as the preferred
system-wide default for a category of users. Alternatively, users can ad-
just their personal .bashrc files.

From the cmgui or cmsh point of view a workload manager consists of

• a workload manager server, usually on the head node

• workload manager clients, usually on the compute nodes

Enabling or disabling the servers or clients is then simply a matter of
assigning or unassigning a particular workload manager server or client
role on the head or compute nodes, as deemed appropriate.

8.4.1 Enabling And Disabling A Workload Manager With cmgui

A particular workload manager package may be set up, but the workload
manager may not be enabled. This can happen, for example, if using
wlm-setup (section 8.3) to install the package without enabling it, or for
example, if disabling a workload manager that was previously enabled.

The workload manager client and server can be enabled from cmgui

using the Roles tab. Within the Roles tab, the properties of the workload
manager may be further configured.

Workload Manager Role Assignment To An Individual Node With cmgui

Workload Manager Server Enabling the server on a node can be done
by clicking on the “Head Nodes” or Nodes folder, selecting the node item,
and selecting the Roles tab to display the possible roles. A workload
manager server role is then chosen and its options set. For example, for
Torque, the Maui or Moab schedulers must be set as options instead of
Torque’s built-in scheduler, when enabling Torque with Maui or Moab.
The workload manager server role is then saved with the selected op-
tions (figure 8.2). For starting it up on non-head nodes (but not for a head
node), the imageupdate command (section 6.6.2) is then run. The work-
load manager server process and any associated schedulers then auto-
matically start up.

© Bright Computing, Inc.



8.4 Enabling, Disabling, And Monitoring Workload Managers 189

Figure 8.2: Workload Management Role Assignment On A Head Node

Workload Manager Client Similarly, the workload manager client pro-
cess can be enabled on a node or head node by having the workload man-
ager client role assigned and saved within the Roles tab. After running
imageupdate (section 6.6.2), the client process then automatically starts
up.

Workload Manager Role Assignment To A Category With cmgui

While workload manager role assignment can be done as described in the
preceding text for individual non-head nodes, it is usually more efficient
to assign roles using categories due to the large number of compute nodes
in typical clusters.

All non-head nodes are by default placed in the default category.
This means that by default roles in the category are automatically as-
signed to all non-head nodes, unless by way of exception an individual
node configuration overrides the category setting and uses its own role
setting instead.

Viewing the possible workload manager roles for the category
default is done by clicking on the “Node Categories” folder, selecting
the default category, and selecting the Roles tab. The appropriate work-
load manager role is then configured (figure 8.3).

For compute nodes, the role assigned is workload manager client, ex-
cept for LSF, where the workload manager server role is used for compute
nodes. The assigned role for a compute node allows queues and GPUs to
be specified, and other parameters depending on the workload manager
used.

For workload managers other than LSF, the workload manager server
role can also be assigned to a non-head node. For example, a Torque
server role can be carried out by a non-head node. This is the equivalent
to the offload option of wlm-setup. As in the individual node assign-
ment case, for Torque with Maui or Torque with Moab, the Maui sched-
uler or the Moab scheduler options must be set if these schedulers are to
be used.

Saving the roles with their options and then running imageupdate

(section 6.6.2) automatically starts up the newly-configured workload
manager.

© Bright Computing, Inc.



190 Workload Management

Figure 8.3: Workload Manager Role Assignment By Category For A Com-
pute Node

Workload Manager Client Role Options With cmgui

Each compute node role (workload manager client role for non-LFS work-
load managers and workload manager server role for LFS) has options
that can be set for GPUs, Queues, and Slots. “Slots”, from SGE terminol-
ogy, corresponds in Bright Cluster Manager to the “np” setting in Torque
and PBS Pro terminology, and is normally set to the number of cores per
node. Queues with a specified name are available in their associated role
after they are created. The creation of queues is described in sections 8.6.2
(using cmgui) and 8.7.2 (using cmsh).

Overriding Category Settings Per Node With cmgui

If the role for the individual non-head node is set and saved then it over-
rides its corresponding category role. In cmgui this is done by selecting
the particular node device from the Nodes folder, then selecting the Roles
tab. The appropriate workload manager client role can then be config-
ured (figure 8.4).

A useful feature of cmgui is that the role displayed for the individual
node can be toggled between the category setting and the individual set-
ting by clicking on the role checkbox (figure 8.5). Clicking on the Save

button of the tabbed pane saves the displayed setting.

Figure 8.5: Workload Management Role Assignment Toggle States For An
Individual Node

© Bright Computing, Inc.



8.4 Enabling, Disabling, And Monitoring Workload Managers 191

Figure 8.4: Workload Management Role Assignment For An Individual
Node

8.4.2 Enabling And Disabling A Workload Manager With cmsh

A particular workload manager package may be set up, but not enabled.
This can happen, for example, if using wlm-setup (section 8.3) on the
package without enabling it. The workload manager client and server
can be enabled from cmsh by assigning it from within the roles submode.
Within the assigned role, the properties of the workload manager may be
further configured.

Workload Manager Role Assignment To A Category With cmsh

Workload manager role assignment of a node category is done using
category mode, using the category name, and assigning a role from the
roles submode:

Example

[root@bright52 ~]# cmsh

[bright52]% category

[bright52->category]% use default

[bright52->category[default]]% roles

[bright52->category[default]->roles]% assign torqueclient

[bright52->category[default]->roles*[torqueclient*]]% commit

[bright52->category[default]->roles[torqueclient]]%

After workload manager roles are assigned or unassigned, and after
running imageupdate (section 6.6.2) for non-head nodes, the associated
workload manager services automatically start up or stop as appropriate.

Workload Manager Role Assignment To An Individual Node With cmsh

In cmsh, assigning a workload manager role to a head node is done in
device mode, using master as the device, and assigning the workload
manager role from the roles submode:

Example

© Bright Computing, Inc.



192 Workload Management

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->device]% use master

[bright52->device[bright52]]% roles

[bright52->device[bright52]->roles]% assign torqueserver

[bright52->device*[bright52*]->roles*[torqueserver*]]% commit

[bright52->device[bright52]->roles[torqueserver]]%

For regular nodes, role assignment is done via device mode, using
the node name, and assigning a role from the roles submode:

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->device]% use node001

[bright52->device[node001]]% roles

[bright52->device[node001]->roles]% assign torqueclient

[bright52->device[node001]->roles*[torqueclient*]]% commit

[bright52->device[node001]->roles[torqueclient]]%

Role assignment values set in device mode have precedence over
any role assignment values set in category mode for that node. This
means, for example, that if a node is originally in a node category with
a torqueclient role and queues set, then when the node is assigned a
torqueclient role from device mode, its queue properties are empty by
default.

Setting Options For Workload Manager Settings With cmsh

In the preceding text, it is explained how the workload manager client or
server is assigned a role (such as torqueclient or torqueserver) within
the roles submode. It is done from within a main mode of category or
devices.

Whatever the main mode used, the workload manager settings can
then be handled with the usual object commands introduced in section
3.5.3. For example, the number of slots can be set for Torque clients as
follows:

Example

[bright52->category[default]->roles[torqueclient]]% show

Parameter Value

------------------------------ ---------------------------------

All Queues yes

GPUs 0

Name torqueclient

Queues shortq longq

Revision

Slots 4

Type TorqueClientRole

[bright52->category[default]->roles[torqueclient]]% set slots 5

[bright52->category*[default*]->roles*[torqueclient*]]% commit

[bright52->category[default]->roles[torqueclient]]%

In particular, the Scheduler parameter can be set from the torqueserver
role:

© Bright Computing, Inc.



8.4 Enabling, Disabling, And Monitoring Workload Managers 193

Example

[bright52->device[bright52]->roles]% set torqueserver scheduler

backfill builtin maui moab torque

[bright52->device[bright52]->roles]% use torqueserver

[bright52->device[bright52]->roles[torqueserver]]% show

Parameter Value

------------------------------ ------------------------------------------------

Name torqueserver

Revision

Scheduler torque

Type TorqueServerRole

[bright52->device[bright52]->roles[torqueserver]]% set scheduler moab

[bright52->device[bright52]->roles[torqueserver*]]% commit

[bright52->device[bright52]->roles[torqueserver]]%

In the preceding example, the Moab scheduler has been enabled. Af-
ter running imageupdate (section 6.6.2) for non-head nodes, the built-in
Torque scheduler stops and the Moab scheduler starts. It is possible to
switch to the Maui scheduler with the same approach. The Moab or Maui
schedulers do however need to be installed before starting them in this
manner.

In cmgui, when the Torque Server Role is selected in the Roles tab
of the node, a drop-down list of supported schedulers appears. Select-
ing a new scheduler and saving it enables the new scheduler. Running
imageupdate (section 6.6.2) for non-head nodes stops the previous sched-
uler and starts the newly selected and enabled scheduler.

8.4.3 Monitoring The Workload Manager Services
By default, the workload manager services are monitored. The Bright
Cluster Manager attempts to restart the services using the service tools
(section 4.8), unless the role for that workload manager service is dis-
abled, or the service has been stopped (using cmsh or cmgui). Work-
load manager roles and corresponding services can be disabled using
wlm-setup (section 8.3.1), cmgui (section 8.4.1), or cmsh (section 8.4.2).

The daemon service states can be viewed for each node via the shell,
cmsh, or cmgui (section 4.8).

Queue submission and scheduling daemons normally run on the head
node. From cmgui their states are viewable by clicking on the node folder
in the resources tree, then on the node name item, and selecting the
Services tab (figures 4.16 and 10.5).

The job execution daemons run on compute nodes. Their states are
viewable by clicking on the Nodes folder, then on the node name item,
and selecting the Services tab.

From cmsh the services states are viewable from within device mode,
using the services command. One-liners from the shell to illustrate this
are (output elided):

Example

[root@bright52 ~]# cmsh -c "device services node001; status"

sgeexecd[ UP ]

[root@bright52 ~]# cmsh -c "device services master; status"

...

sge[ UP ]

© Bright Computing, Inc.



194 Workload Management

8.5 Configuring And Running Individual Workload
Managers

Bright Cluster Manager deals with the various choices of workload man-
agers in as generic a way as possible. This means that not all features of a
particular workload manager can be controlled, so that fine-tuning must
be done through the workload manager configuration files. Workload
manager configuration files that are controlled by Bright Cluster Manager
should normally not be changed directly because Bright Cluster Manager
overwrites them. However, overwriting can be prevented by setting the
directive:

FreezeChangesTo<workload manager>Config = <true|false>

in cmd.conf (Appendix C), where <workload manager> takes the value of
SLURM, SGE, Torque, or PBSPro, as appropriate. The value of the directive
defaults to false.

A list of configuration files that are changed by CMDaemon, the items
changed, and the events causing such a change are listed in appendix L.

A very short guide to some specific workload manager commands
that can be used outside of the Bright Cluster Manager 5.2 system is given
in Appendix G.

8.5.1 Configuring And Running SLURM
Configuring SLURM
After package setup is done with wlm-setup (section 8.3), SLURM soft-
ware components are installed in /cm/shared/apps/slurm/current.

SLURM documentation is available via man pages under /cm/shared/
apps/slurm/current/man. HTML documentation is in the directory /cm/

shared/apps/slurm/current/share/doc/slurm-2.2.7/html, as well as
at the SLURM website at https://computing.llnl.gov/linux/slurm/
slurm.html.

SLURM is set up with reasonable defaults, but administra-
tors familiar with SLURM can reconfigure the configuration file
/cm/shared/apps/slurm/current/etc/slurm.conf using the javascript-
based configuration generator in /cm/shared/apps/slurm/2.2.7/

share/doc/slurm-2.2.7/html/configurator.html in a webbrowser.

Running SLURM
SLURM can be disabled and enabled with the wlm-setup tool (sec-
tion 8.3) during package installation itself. Alternatively, role assign-
ment and role removal also enables and disables SLURM from cmgui (sec-
tions 8.4.1 or cmsh (section 8.4.2).

The SLURM workload manager runs these daemons:

1. as servers:

(a) slurmdbd: The database that tracks job accounting. It is part of
the slurmdbd service.

(b) slurmctld: The controller daemon. Monitors SLURM pro-
cesses, accepts jobs, and assigns resources. It is part of the
slurm service.

© Bright Computing, Inc.

/cm/shared/apps/slurm/current
/cm/shared/apps/slurm/current/man
/cm/shared/apps/slurm/current/man
/cm/shared/apps/slurm/current/share/doc/slurm-2.2.7/html
/cm/shared/apps/slurm/current/share/doc/slurm-2.2.7/html
https://computing.llnl.gov/linux/slurm/slurm.html
https://computing.llnl.gov/linux/slurm/slurm.html
/cm/shared/apps/slurm/2.2.7/share/doc/slurm-2.2.7/html/configurator.html
/cm/shared/apps/slurm/2.2.7/share/doc/slurm-2.2.7/html/configurator.html


8.5 Configuring And Running Individual Workload Managers 195

(c) munged: The authentication (client-and-server) daemon. It is
part of the munge service.

2. as clients:

(a) slurmd: The compute node daemon that monitors and handles
tasks allocated by slurmctld to the node. It is part of the slurm
service.

(b) slurmstepd: A temporary process spawned by the slurmd com-
pute node daemon to handle SLURM job steps. It is not initi-
ated directly by users or administrators.

(c) munged: The authentication (client-and-server) daemon. It is
part of the munge service.

Logs for the daemons are saved on the node that they run on. Accord-
ingly, the locations are:

• /var/log/slurmdbd

• /var/log/slurmd

• /var/log/slurmctld

• /var/log/munge/munged.log

8.5.2 Configuring And Running SGE
Configuring SGE
After installation and initialization, SGE has reasonable defaults.

Administrators familiar with SGE can reconfigure it using the tem-
plate files in $SGE_ROOT/cm/templates, which define the queues, host-
groups and parallel environments. To configure the head node for use
with SGE, the install_qmaster wrapper script under $SGE_ROOT is run.
To configure a software image for use with SGE the install_execd wrap-
per script under $SGE_ROOT is run.

By default, the SGE application is installed in /cm/shared/apps/sge/

current, the SGE documentation in /cm/shared/doc/sge/current, and
job examples in /cm/shared/docs/sge/current/job_examples.

Running SGE
SGE can be disabled and enabled with the wlm-setup tool (section 8.3)
during package installation itself. Alternatively, role assignment and role
removal also enables and disables SGE from cmgui (sections 8.4.1) or cmsh
(section 8.4.2).

The SGE workload manager runs the following two daemons:

1. an sge_qmaster daemon running on the head node. This handles
queue submissions and schedules them according to criteria set by
the administrator.

2. an sge_execd execution daemon running on each compute node.
This accepts, manages, and returns the results of the jobs on the
compute nodes.

© Bright Computing, Inc.

/cm/shared/apps/sge/current
/cm/shared/apps/sge/current
/cm/shared/doc/sge/current
/cm/shared/docs/sge/current/job_examples


196 Workload Management

Messages from the qmaster daemon are logged under:

/cm/shared/apps/sge/current/default/spool/

For the associated compute nodes the execution log exists in:

/cm/local/apps/sge/current/default/spool/node<number>/messages

where node<number> is the node name, for example: node001, node002 . . .

8.5.3 Configuring And Running Torque
Torque is a resource manager controlling the jobs and compute nodes it
talks with. Torque has its own built-in scheduler, but since this is quite
basic, the open source Maui and the proprietary Moab schedulers are rec-
ommended alternatives.

Configuring Torque
The Torque package is installed, but not set up by default on Bright Clus-
ter Manager 5.2. If it is not set up during installation (figure 2.17), it can
be set up using the wlm-setup tool (section 8.3).

The execution daemon, pbs_mom is already in the software images by
default and does not need to be installed, even if Maui or Moab are added.

The Torque services can be enabled and disabled via role assignment
as described in section 8.4. Resources such as the number of GPUs are
configured in that section too for the node or node category in order to
set up the corresponding resource definitions in the Torque configuration
files.

Torque software components are installed in
/cm/shared/apps/torque/current, also referred to as the PBS_HOME.
The torque environment module, which sets $PBS_HOME and other
environment variables, must be loaded in order to submit jobs to Torque.
The man pages for Torque are then accessible, with $MANPATH set to
$PBS_HOME/man.

Torque documentation is available at the Adaptive Computing web-
site at http://www.adaptivecomputing.com/resources/docs/, and in
particular the Torque administrator manual is available at http://www.
adaptivecomputing.com/resources/docs/torque/index.php.

Torque examples are available in /cm/shared/docs/torque/2.5.12/

examples

Installing The Maui Scheduler Package
If Maui is to be installed, the Maui scheduler source version 3.3.1
is picked up from the Adaptive Computing website at http://www.

adaptivecomputing.com/resources/downloads/maui/index.php. It is
installed over the zero-sized placeholder file on the head node at /usr/
src/redhat/SOURCES/maui-3.3.1.tar.gz.

Maui documentation is available at http://www.

adaptivecomputing.com/resources/docs/maui/index.php.
The RPM file is built from the source on the head node for Bright Clus-

ter Manager 5.2 using:

rpmbuild -bb /usr/src/redhat/SPECS/maui.spec

© Bright Computing, Inc.

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php
/cm/shared/docs/torque/2.5.12/examples
/cm/shared/docs/torque/2.5.12/examples
http://www.adaptivecomputing.com/resources/downloads/maui/index.php
http://www.adaptivecomputing.com/resources/downloads/maui/index.php
/usr/src/redhat/SOURCES/maui-3.3.1.tar.gz
/usr/src/redhat/SOURCES/maui-3.3.1.tar.gz
http://www.adaptivecomputing.com/resources/docs/maui/index.php
http://www.adaptivecomputing.com/resources/docs/maui/index.php


8.5 Configuring And Running Individual Workload Managers 197

and the installation is done with:

rpm -i /usr/src/redhat/RPMS/x86_64/maui-3.3.1-58_cm5.2.x86_64.rpm

The exact version of the rpm file to install may differ from the version
shown here. The version freshly generated by the rpmbuild process is
what should be used.

CMDaemon needs to be aware the scheduler is Maui for nodes in a
Torque server role. This can be configured using wlm-setup to enable the
torquemaui option (as shown in section 8.3.1), or using cmgui to set the
scheduler from the Roles tab (as shown in section 8.4.1), or using cmsh

to assign the scheduler from within the assigned torqueserver role (as
shown in section 8.4.2).

Installing The Moab Scheduler Package
Moab is not installed by default in Bright Cluster Manager 5.2. Moab and
related products must be purchased from Adaptive Computing. Bright
Cluster Manager 5.2 expects the init script for Moab to be located in the
file /etc/init.d/moab. Other files such as the Moab binaries and libraries
can be installed in /cm/shared/apps/moab/<moab.version> or any other
preferred location.

CMDaemon needs to be aware the scheduler is Moab for nodes in a
Torque server role. This can be configured using wlm-setup to enable
the torquemoab option (section 8.3.1), or using cmgui to set the scheduler
from the Roles tab (as shown in section 8.4.1) or using cmsh to assign
the scheduler from within the assigned torqueserver role (as shown in
section 8.4.2).

Running Torque And Schedulers
The Torque resource manager runs the following two daemons:

1. a pbs_server daemon. This handles submissions acceptance, and
talks to the execution daemons on the compute nodes when sending
and receiving jobs. It writes logs to the /cm/shared/apps/torque/

current/spool/server_logs directory on its node. Queues for this
service are configured with the qmgr command.

2. a pbs_mom execution daemon running on the nodes that are assigned
the compute role. This accepts, manages, and returns the results of
jobs on the compute nodes. It writes logs to the /cm/local/apps/

torque/current/spool/mom_logs directory on the compute nodes.

Jobs are however not be executed unless the scheduler daemon is also
running. This typically runs on the head node and schedules jobs for
compute nodes according to criteria set by the administrator. The possible
scheduler daemons for Torque are:

• pbs_sched if Torque’s built-in scheduler itself is used. It writes
logs to the /cm/shared/apps/torque/current/spool/sched_logs

directory.

• maui if the Maui scheduler is used. It writes logs to /cm/shared/

apps/maui/current/spool/log.

© Bright Computing, Inc.

/cm/shared/apps/torque/current/spool/server_logs
/cm/shared/apps/torque/current/spool/server_logs
/cm/local/apps/torque/current/spool/mom_logs
/cm/local/apps/torque/current/spool/mom_logs
/cm/shared/apps/torque/current/spool/sched_logs
/cm/shared/apps/maui/current/spool/log
/cm/shared/apps/maui/current/spool/log


198 Workload Management

• moab if the Moab scheduler is used. Log files are written to the spool
directory. For example: /cm/shared/apps/moab/moab.version/

spool/moab.log if Moab is installed in /cm/shared/apps/moab/

<moab.version>.

8.5.4 Configuring And Running PBS Pro
Configuring PBS Pro
PBS Pro can be selected for installation during Bright Cluster Manager
5.2 installation, at the point when a workload manager must be selected
(figure 2.17). It can also be installed later on, when the cluster is already
set up. In either case, it is offered under a 90-day trial license.

To install and initialize PBS Pro after Bright Cluster Manager has al-
ready been set up without PBS Pro, the wlm-setup tool (section 8.3) is
used.

PBS Pro software components are then installed and initialized in
/cm/shared/apps/pbspro/current, also referred to as the PBS_HOME.
Users must load the pbspro environment module, which sets PBS_HOME

and other environment variables, in order to use PBS Pro.
PBS Pro documentation is available at http://www.pbsworks.com/

SupportDocuments.aspx.
By default, PBS Pro examples are available under the directory /cm/

shared/docs/pbspro/current/examples/.
Further configuration of PBS Pro is done using its qmgr command and

is covered in the PBS Pro documentation.

Running PBS Pro
PBS Pro runs the following three daemons:

1. a pbs_server daemon running, typically on the head node. This
handles submissions acceptance, and talks to the execution dae-
mons on the compute nodes when sending and receiving jobs.
It writes logs to the /cm/shared/apps/pbspro/current/spool/

server_logs/ directory on its node. Queues for this service are con-
figured with the qmgr command.

2. a pbs_sched scheduler daemon, also typically running on the head
node. It writes logs to the /cm/shared/apps/pbspro/current/

spool/sched_logs/ directory.

3. a pbs_mom execution daemon running on each compute node. This
accepts, manages, and returns the results of jobs on the compute
nodes. It writes logs to /cm/local/apps/pbspro/current/spool/

mom_logs on the compute nodes.

8.5.5 Installing, Configuring, And Running LSF
Installing LSF
The workload manager LSF, version 7, is integrated into Bright Cluster
Manager 5.2 as follows:

1. LSF is installed in the usual way, using the lsfinstall script. In
case of an existing failover setup, the installation is done on the ac-
tive head node.

© Bright Computing, Inc.

/cm/shared/apps/moab/moab.version/spool/moab.log
/cm/shared/apps/moab/moab.version/spool/moab.log
/cm/shared/apps/moab/<moab.version>
/cm/shared/apps/moab/<moab.version>
http://www.pbsworks.com/SupportDocuments.aspx
http://www.pbsworks.com/SupportDocuments.aspx
/cm/shared/docs/pbspro/current/examples/
/cm/shared/docs/pbspro/current/examples/
/cm/shared/apps/pbspro/current/spool/server_logs/
/cm/shared/apps/pbspro/current/spool/server_logs/
/cm/shared/apps/pbspro/current/spool/sched_logs/
/cm/shared/apps/pbspro/current/spool/sched_logs/
/cm/local/apps/pbspro/current/spool/mom_logs
/cm/local/apps/pbspro/current/spool/mom_logs


8.5 Configuring And Running Individual Workload Managers 199

• Some configuration changes may be needed before running the
lsfinstall script. The LSF install.config file requires edits
for at least the following entries:

LSF_TOP="/cm/shared/apps/lsf"

LSF_CLUSTER_NAME="<cluster name>"

LSF_MASTER_LIST="<head node list>"

LSF_LICENSE="<license path>"

For LSF_TOP, the path “/cm/shared/apps/lsf” is recom-
mended.
Another value can however be set for LSF_TOP. If it is set to
“<path>” (and this must be done on both head nodes if using
an existing failover configuration), then the entry

LSFProfileScript=<path>/conf/profile.lsf

is set accordingly in /cm/local/apps/cmd/etc/cmd.conf (ap-
pendix C). CMDaemon is then restarted with:

service cmd restart

• The lsfinstall script is run with the preceding configuration
changes:

./lsfinstall -f install.config

and the instructions are followed.

2. • LSF is added to the chkconfig system on the head node by
running:

./hostsetup --top=/cm/shared/apps/lsf/ --boot=y

The same is run on the passive head node in case of an existing
failover setup.

• To verify that installation is proceeding as intended so far, the
status can be checked with:

[root@bright52 ~]# /etc/init.d/lsf status

Show status of the LSF subsystem

lim (pid 21138) is running...

res (pid 17381) is running...

sbatchd (pid 17383) is running...

while default queues can be seen by running:

[root@bright52 ~]# /etc/init.d/lsf status

. /cm/shared/apps/lsf/conf/profile.lsf

3. The LSF startup script is installed on to the software images, It
should not be added via hostsetup or chkconfig. One way to copy
over the files required is:

for image in $(find /cm/images/ -mindepth 1 -maxdepth 1 -type d)

do cp /etc/init.d/lsf $image/etc/init.d/; done

4. Optionally, the LSF environment can be added to .bashrc with:

. /cm/shared/apps/lsf/conf/profile.lsf

© Bright Computing, Inc.



200 Workload Management

5. The LSF role is added to the head node (bright52 in the following)
with:

cmsh -c "device roles bright52; assign lsfserver;\

set allqueues yes; set addtomasterlist yes; commit"

In case of an existing failover setup, role assignment should be re-
peated on the passive head node, say head2.

Example

cmsh -c "device roles head2; assign lsfserver;\

set allqueues yes; set addtomasterlist yes; commit"

6. The LSF role is added to each node category containing LFS nodes.
If the only category is default, then the command run is:

cmsh -c "category roles default; assign lsfserver;\

set allqueues yes; commit"

7. Additional NFS entries for the export path of LFS are configured
for the head node and for LSF node categories. If the path is al-
ready NFS exported, for example by using the shared directory
/cm/shared, then this step is unnecessary. In cmgui the NFS path
can be set from the “FS Exports” tab for a “Head Node”, or “Node
Category”, or “Nodes” item (section 4.7.1).

8. The nodes are then rebooted, and the LSF command bhosts then
shows a display like:

Example

[root@bright52 ~]# bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

bright52 ok - 2 0 0 0 0 0

head2 ok - 0 0 0 0 0 0

node001 ok - 1 0 0 0 0 0

node002 ok - 1 0 0 0 0 0

node003 unavail - 1 0 0 0 0 0

node004 closed - 1 0 0 0 0 0

node005 ok - 1 0 0 0 0 0

Configuring LSF
• Queues By default, the preceding installation procedure makes a

node accept all queues in steps 5 and 6 by using “set allqueues

yes”. These default queues are displayed in figure 8.6.

A restricted list of queues named “qname1”, “qname2” and so on can
be set using a command syntax like this instead:

set queues <qname1> [<qname2> ...]

© Bright Computing, Inc.



8.5 Configuring And Running Individual Workload Managers 201

Alternatively, these, and other queues can be added or deleted us-
ing cmgui (section 8.6.2) or cmsh (section 8.7.2).

Figure 8.6: cmgui access to LSF configuration options via roles tab

• Options The options that can be set in figure 8.6 are:

– Slots: The number of CPUs per node (by default LSF tries to
determine the value automatically)

– GPUs: The number of GPUs per node

– Allow LSF master: When checked, allows the node, if it is an
LSF compute node (a passive LSF-master) to become an active
LSF-master if the existing active LSF-master fails

– Run jobs on the master: Allow this LSF compute node to run
jobs

From cmsh these properties are accessible from within the appropri-
ate node or category roles submode (section 8.4.2).

Some care must be taken to avoid confusion between LSF terminol-
ogy and more common terminology. What Bright Cluster Manager
treats as LSF compute nodes, these are sometimes called passive
LSF-masters, because any such node can become active and take
over as an active LSF-master. In contrast, a node that has only the
LSF client role in Bright Cluster Manager is simply a login node, not
even able to run jobs, and is explicitly not a compute node.

• Failover If LSF is set up before setting up failover (section 13.2)
for the Bright Cluster Manager head nodes, then nothing special or
extra needs to be done when setting up failover for LSF.

• Further Configuration For further configuration the Administer-
ing Platform LSF manual provided with the LSF software should be
consulted.

© Bright Computing, Inc.



202 Workload Management

Running LSF
Role assignment and role removal enables and disables LSF from cmgui

(sections 8.4.1) or cmsh (section 8.4.2).
An active LSF master (typically, but not necessarily on a head node)

has the following LSF-related processes or services running on it:

Process/Service Description

res Remote Execution Server*

sbatchd client batch job execution daemon*

mbatchd master batch job execution daemon

eauth External Authentication method

lim Load Information Manager*

pim Process Information Manager*

pem Process Execution Manager*

vemkd Platform LSF Kernel Daemon

egosc Enterprise Grid Orchestrator service controller

mbschd master batch scheduler daemon
*These services/processes run on compute nodes that are not active masters.

Non-active LSF-masters running as compute nodes run the processes
marked with an asterisk only.

Logs for LSF processes and services are kept under
/cm/shared/apps/lsf/log/ (or $LSF_TOP/log/ if the value of
$LSF_TOP during installation is other than the recommended
/cm/shared/apps/lsf).

8.6 Using cmgui With Workload Management
Viewing the workload manager services from cmgui is described in sec-
tion 8.4.3.

Selecting the Bright Cluster Manager workload manager item from
the resources tree displays tabs that let a cluster administrator change the
states of:

• jobs

• queues

• nodes

These tabs are described next.

8.6.1 Jobs Display And Handling In cmgui

Selecting the Jobs tab displays a list of job IDs, along with the scheduler,
user, queue, and status of the job (figure 8.7).

© Bright Computing, Inc.



8.6 Using cmgui With Workload Management 203

Figure 8.7: Workload Manager Jobs

Within the tabbed pane:

• The Show button allows further details of a selected job to be listed.

• The Remove button removes selected jobs from the queue.

• The Hold button stops selected queued jobs from being considered
for running by putting them in a Hold state.

• The Release button releases selected queued jobs in the Hold state
so that they are considered for running again.

• The Suspend button suspends selected running jobs.

• The Resume button allows selected suspended jobs to run again.

• The Refresh button refreshes the screen so that the latest available
jobs list is displayed.

8.6.2 Queues Display And Handling In cmgui

Selecting the Queues tab displays a list of queues available, their associ-
ated scheduler, and the list of nodes that use each queue (figure 8.8).

Figure 8.8: Workload Manager Queues

Within the tabbed pane:

• The Edit button allows an existing job queue of a workload man-
ager to be edited. The particular values that can be edited for the
queue depend upon the workload manager used (figures 8.9, 8.10
and 8.11).

© Bright Computing, Inc.



204 Workload Management

Figure 8.9: Workload Management Queues Edit Dialog For SGE

Figure 8.10: Workload Management Queues Edit Dialog For Torque And
PBS Pro

Figure 8.11: Workload Management Queues Edit Dialog For SLURM

In the edit dialog:

– the generic names “Minimum wallclock” and “Maximum
wallclock” correspond respectively to the soft and hard wall-
times allowed for the jobs in the queue. Specifically, these
are s_rt and h_rt in SGE, or resources_default.walltime,
and resources_max.walltime in Torque and PBS Pro.
The Maximum time parameter for SLURM corresponds to
Maximum wallclock and sets SLURM’s MaxTime value in

© Bright Computing, Inc.



8.6 Using cmgui With Workload Management 205

/etc/slurm.conf.

– The Prolog and Epilog files that can be specified in the dia-
log are scripts run before and after the job is executed. How-
ever, for SGE, a default global Prolog configuration is used by
Bright Cluster Manager if there is no local script in place. The
global configuration ensures that Bright Cluster Manager’s
health check scripts flagged as prejob scripts (section 10.4.3)
run as part of SGE’s Prolog script. Administrators creating
their own Prolog file may wish to refer to the global Prolog
script (cm/prolog under SGE_ROOT), and in particular how it
hooks into Bright Cluster Manager prejob checks with a call to
cmprejobcheck.
The Prolog and Epilog scripts for Torque and PBS Pro are set
up for the software images and their paths cannot be altered
via Bright Cluster Manager.

• The Add button allows a new job queue to be added to a workload
manager.

• The Remove button removes a job queue from the workload man-
ager.

• The Revert button reverts the Queues tabbed pane to its last saved
state.

• The Save button saves the modified Queues tabbed pane.

8.6.3 Nodes Display And Handling In cmgui

Selecting the Nodes tab displays a list of nodes, along with their sched-
ulers, queues, and whether they are in a status of Drained or Undrained
(figure 8.12).

Figure 8.12: Node Drainage

• The Drain button sets the state of a node, scheduler, and queue com-
bination to “Drained”. The workload manager then stops jobs from
starting to run for that combination.

• The Undrain button unsets a “Drained” state, allowing jobs to start
running for that combination.

• The Refresh button refreshes the screen so that the latest available
state is displayed.

© Bright Computing, Inc.



206 Workload Management

8.7 Using cmsh With Workload Management
8.7.1 Jobs Display And Handling In cmsh: jobs Mode
jobs Mode In cmsh: Top Level
At the top level of jobs mode, the administrator can view all jobs regard-
less of scheduler type with the list command:

Example

[bright52->jobs]% list

Type Job ID User Queue Status

------------ ------------ ------------ ------------ ------------

SGEJob 620 maud all.q r

SGEJob 621 maud qw

TorqueJob 90.bright52+ maud hydroq R

Also within the jobs mode, the hold, release, suspend, resume, show,
and remove commands act on jobs when used with a specified scheduler
type and job ID. Continuing with the example:

[bright52->jobs]% suspend torque 90.bright52.cm.cluster

Success

[bright52->jobs]% list

Type jobid User Queue Status

------------ ------------ ------------ ------------ ------------

SGEJob 620 maud all.q r

SGEJob 621 maud qw

TorqueJob 90.bright52+ maud hydroq S

While at the jobs mode top level, the suspended job here can be made to
resume using suspend’s complementary command—resume. However,
resume along with the other commands can also be executed within a
scheduler submode, as is shown shortly.

jobs Mode In cmsh: The scheduler Submode
Setting the scheduler type sets the scheduler submode, and can be done
thus (continuing with the preceding example):

[bright52->jobs]% scheduler torque

[bright52->jobs(torque)]%

The submode restriction can be unset with: scheduler "".
The top level job mode commands executed within the scheduler

submode then only apply to jobs running under that scheduler. The list
and resume commands, for example, then only apply only to jobs running
under torque (continuing with the example):

[bright52->jobs(torque)]% list; !#no sge jobs listed now - only torque

Type Job ID User Queue Status

------------ ------------ ------------ ------------ ------------

TorqueJob 90.bright52+ maud hydroq S

[bright52->jobs(torque)]% resume 90.bright52.cm.cluster; !#torque job

Success

[bright52->jobs(torque)]% list; !#only torque jobs

Type Job ID User Queue Status

------------ ------------ ------------ ------------ ------------

TorqueJob 90.bright52+ maud hydroq R

© Bright Computing, Inc.



8.7 Using cmsh With Workload Management 207

jobs Mode in cmsh: The show Command
The show command for a particular scheduler and job lists details of the
job. Continuing with the preceding example:

[bright52->jobs(torque)]% show 90.bright52.cm.cluster;

Parameter Value

-------------------------- ---------------------------------------------

Arguments -q hydroq /home/maud/sleeper.sh

Executable

In queue

Job ID 90.bright52.cm.cluster

Job name sleeper.sh

Mail list

Mail options a

Maximum wallclock time 02:00:00

Memory usage 0

Nodes node001

Notify by mail yes

Number of processes 1

Priority 0

Queue hydroq

Run directory /home/maud

Running time 809

Status R

Stderr file bright52.cm.cluster:/home/maud/sleeper.sh.e90

Stdout file bright52.cm.cluster:/home/maud/sleeper.sh.o90

Submission time Fri Feb 18 12:49:01 2011

Type TorqueJob

User maud

8.7.2 Job Queues Display And Handling In cmsh: jobqueue Mode
Properties of scheduler job queues can be viewed and set in jobqueue

mode.

jobqueue Mode In cmsh: Top Level
If a scheduler submode is not set, then the list, qstat, and listpes

commands operate, as is expected, on all queues for all schedulers.
At the top level of jobqueue mode:

• list lists the queues associated with a scheduler.

Example

[root@bright52 ~]# cmsh

[bright52]% jobqueue

[bright52->jobqueue]% list

Type Name

------------ ------------------------

sge all.q

torque default

torque hydroq

torque longq

torque shortq

• qstat lists statistics for the queues associated with a scheduler.

© Bright Computing, Inc.



208 Workload Management

Example

[bright52->jobqueue]% qstat

======================= sge ========================

Queue Load Total Used Available

------------ --------- --------- --------- ---------

all.q 0.1 1 0 1

====================== torque ======================

Queue Running Queued Held Waiting

------------ --------- --------- --------- ---------

default 0 0 0 0

hydroq 1 0 0 0

longq 0 0 0 0

shortq 0 0 0 0

====================== pbspro ======================

Queue Running Queued Held Waiting

------------ --------- --------- --------- ---------

• listpes lists the parallel environment available for schedulers

Example

(some details elided)

[bright52->jobqueue]% listpes

Scheduler Parallel Environment

------------ ------------------------

sge make

sge mpich

...

sge openmpi_ib

• scheduler sets the scheduler submode

Example

[bright52->jobqueue]% scheduler torque

Working scheduler is torque

[bright52->jobqueue(torque)]%

The submode can be unset using: scheduler ""

jobqueue Mode In cmsh: The scheduler Submode
If a scheduler submode is set, then commands under jobqueue mode
operate only on the queues for that particular scheduler. For example,
within the torque submode of jobqueue mode, the list command shows
only the queues for torque.

Example

[bright52->jobqueue]% list

Type Name

------------ ------------------------

sge all.q

torque default

© Bright Computing, Inc.



8.7 Using cmsh With Workload Management 209

torque longq

torque shortq

[bright52->jobqueue]% scheduler torque

Working scheduler is torque

[bright52->jobqueue(torque)]% list

Type Name

------------ ------------------------

torque default

torque longq

torque shortq

jobqueue Mode In cmsh: Other Object Manipulation Commands
The usual object manipulation commands of section 3.5.3 work at the top
level mode as well as in the scheduler submode:

Example

[bright52->jobqueue]% list torque

Type Name

------------ ------------------------

torque default

torque longq

torque shortq

[bright52->jobqueue]% show torque longq

Parameter Value

------------------------------ ------------------------------------------------

Maximal runtime 23:59:59

Minimal runtime 00:00:00

Queue type Execution

Routes

Type torque

name longq

nodes node001.cm.cluster node002.cm.cluster

[bright52->jobqueue]% get torque longq maximalruntime

23:59:59

[bright52->jobqueue]%

[bright52->jobqueue]% scheduler torque

Working scheduler is torque

[bright52->jobqueue(torque)]% list

Type Name

------------ ------------------------

torque default

torque longq

torque shortq

[bright52->jobqueue(torque)]% show longq

Parameter Value

------------------------------ ------------------------------------------------

Maximal runtime 23:59:59

Minimal runtime 00:00:00

Queue type Execution

Routes

Type torque

name longq

nodes node001.cm.cluster node002.cm.cluster

[bright52->jobqueue(torque)]% get longq maximalruntime

23:59:59

© Bright Computing, Inc.



210 Workload Management

[bright52->jobqueue(torque)]% use longq

[bright52->jobqueue(torque)->longq]% show

Parameter Value

------------------------------ ------------------------------------------------

Maximal runtime 23:59:59

Minimal runtime 00:00:00

Queue type Execution

Routes

Type torque

name longq

nodes node001.cm.cluster node002.cm.cluster

[bright52->jobqueue(torque)->longq]% get maximalruntime

23:59:59

8.7.3 Nodes Drainage Status And Handling In cmsh

Running the device mode command drainstatus displays if a specified
node is in a Drained state or not. In a Drained state jobs are not allowed
to start running on that node.

Running the device mode command drain puts a specified node in a
“Drained” state:

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->device]% drainstatus

Node Queue Status

------------------------ ------------------------ ----------------

node001 workq

node002 workq

[bright52->device]% drain node001

Node Queue Status

------------------------ ------------------------ ----------------

node001 workq Drained

Both the drain and drainstatus commands have the same options.
The options can make the command apply to not just one node, but to
a list of nodes, a group of nodes, a category of nodes, or to a chassis.
Continuing the example:

[bright52->device]% drain -c default; !# for a category of nodes

Node Queue Status

------------------------ ------------------------ ----------------

node001 workq Drained

node002 workq Drained

The help text for the command indicates the syntax:

[root@bright52 ~]# cmsh -c "device help drain"

Usage: drain ......................... Drain the current node

drain <node> .................. Drain the specified node

drain <-n|--nodes nodelist> ... Drain all nodes in the list

drain <-g|--group group> ...... Drain all nodes in the group

drain <-c|--category category> . Drain all nodes in the category

drain <-h|--chassis chassis> .. Drain all nodes in the chassis

nodelist

e.g. node001..node015,node20..node028,node030

© Bright Computing, Inc.



8.7 Using cmsh With Workload Management 211

8.7.4 Launching Jobs With cm-launcher

Some MPI distributions occasionally leave processes behind that cannot
be killed from the workload manager. To prevent this situation from oc-
curring, Bright Cluster Manager provides the cm-launcher wrapper for
the mpirun command, which tracks and kills such processes. The track-
ing relies on knowing what processes the workload manager launches,
so it can only run from within a suitable workload manager. Currently,
suitable workload managers are Torque or SGE.

In the following job script examples, instead of having users use:

Example

mpirun <...>

which may not have a job clean up properly after it ends, users can use:

Example

cm-launcher mpirun <...>

which cleans up properly after the job ends. Here, <...> is used to indi-
cate the mix of options, programs and arguments used with mpirun.

For Torque cm-launcher can be used if the default Torque epilogue

script provided by the Bright Cluster Manager Torque package is present,
at /cm/local/apps/torque/current/spool/mom_priv/epilogue.

For SGE the procedure is as follows:

• A symlink to cm-launcher is created to the <arch> SGE functions
directory library

ln -s /cm/shared/apps/sge/current/cm/cm-launcher /cm/shared/apps/sge\

/current/bin/<arch>

• SGE’s epilog (spelt without the “-ue” ending) script is set either for
a particular queue, or globally.

– To set it for a particular queue, for example, for the default
queue all.q, the following cmsh commands can be run:

Example

[root@bright52 ~]# cmsh

[bright52]% jobqueue

[bright52->jobqueue]% scheduler sge

Working scheduler is sge

[bright52->jobqueue(sge)]% set all.q epilog /cm/shared/apps/sge\

/current/cm/epilog

[bright52->jobqueue*(sge)]% commit

Successfully committed 1 JobQueues

[bright52->jobqueue(sge)]%

– To set it globally for all queues, that is, not just the queue all.q
but all the other queues as well, the following SGE configura-
tion command is used:

© Bright Computing, Inc.

/cm/local/apps/torque/current/spool/mom_priv/epilogue


212 Workload Management

qconf -mconf global

This starts up an editor acting on the global configuration set-
ting. The epilog line entry is modified to:

epilog /cm/shared/apps/sge/current/cm/epilog

8.8 Examples Of Workload Management Assignment
8.8.1 Setting Up A New Category And A New Queue For It
Suppose a new node with processor optimized to handle Shor’s algo-
rithm is added to a cluster that originally has no such nodes. This merits a
new category, shornodes, so that administrators can configure more such
new nodes efficiently. It also merits a new queue, shorq, so that users are
aware that they can submit suitably optimized jobs to this category.

To create a new queue, the Workload Management item is selected,
and the Queues tab selected. The Add button is used to associate a newly
created queue with a scheduler and add it to the workload manager. The
modification is then saved (figure 8.13).

Figure 8.13: Adding A New Queue Via cmgui

A useful way to create a new category is to simply clone the old default

category over to a new category, and then change parameters in the new
category to suit the new machine (figure 8.14).

Figure 8.14: Cloning A New Category Via cmgui

Having cloned and saved the category, called shornodes in the ex-
ample of figure 8.14, the configuration of the category may be altered to
suit the new machine, perhaps by going into the settings tab and altering
items there.

Next, the queue is set for this new category, shornodes, by going into
the Roles tabbed pane of that category, selecting the appropriate work-
load manager client role and queues, and saving the setting (figure 8.15).

© Bright Computing, Inc.



8.8 Examples Of Workload Management Assignment 213

Figure 8.15: Setting A Queue For A New Category Via cmgui

Finally, a node in the Nodes folder that is to be placed in the new
shornodes category must be placed there by changing the category value
of that node in its Settings tab (figure 8.16).

Figure 8.16: Setting A New Category To A Node Via cmgui

8.8.2 Setting Up A Prejob Health Check
How It Works
Health checks (section 10.2.4) by default run as scheduled tasks over reg-
ular intervals. They can optionally be configured to run as prejob health
checks, that is, before a job is run. If the response to a prejob health check
is PASS, then it shows that the node is displaying healthy behavior for that
particular health aspect.

If the response to a prejob health check is FAIL, then it implies that
the node is unhealthy, at least for that aspect. A consequence of this may
be that a job submitted to the node may fail, or may not even be able to
start. To disallow passing a job to such unhealthy nodes is therefore a
good policy, and so for a cluster in the default configuration, the action
(section 10.2.2) taken defaults to putting the node in a Drained state (sec-
tions 8.6.3 and 8.7.3), with Bright Cluster Manager arranging a reschedul-
ing of the job.

A node that has been put in a Drained state with a health check is
not automatically undrained. The administrator must clear such a state
manually.

Configuration Using cmgui

To configure the monitoring of nodes as a prejob health check in cmgui,
the Monitoring Configuration resource item is selected, and the Health

© Bright Computing, Inc.



214 Workload Management

Check Configuration tabbed pane is opened. The default resource is
chosen as a value for Health Check Configuration, and the Add button
is clicked on to add the health check via a dialog (figure 8.17). In the di-
alog, the Health Check script value is set to the chosen health check. If
the health check is already listed, then it can be edited as needed. The
Sampling interval is set to prejob, which automatically sets the Fail

action to the Drain node action, when the configuration is saved. Af-
ter saving these settings, any node that is not in the Drained state in the
default resource gets a pre-job check when a job is scheduled for the
node, and the pre-job check puts the node in a Drained state if it is un-
healthy.

Figure 8.17: Configuring A Prejob Healthcheck Via cmgui

Configuration Using cmsh

To configure a prejob health check with cmsh, the healthconf submode
(section 10.7.4) is entered, and the prejob health script object used. In
the following example, where some text has been elided, the object is the
smart script:

Example

[bright52% monitoring setup healthconf default

[bright52->monitoring->setup[default]->healthconf]% use smart

[bright52->...->healthconf[smart]]% set checkinterval prejob

set checkinterval prejob

The failactions value automatically switches to “enter: Drain

node()” when the value for the checkinterval parameter of the health
check is set to prejob.

8.9 Power Saving Features
8.9.1 SLURM
SLURM provides a power saving mechanism that places idle nodes in
power save mode. In Bright Cluster Manager, the SLURM power saving
features can be enabled with the wlm-setup command from section 8.3:

wlm-setup -w slurm -e -p

© Bright Computing, Inc.



8.9 Power Saving Features 215

This sets the following default values for power save configuration pa-
rameters in the SLURM configuration file:

SuspendTime=300

SuspendProgram=/cm/local/apps/cluster-tools/wlm/scripts/slurmpoweroff

ResumeProgram=/cm/local/apps/cluster-tools/wlm/scripts/slurmpoweron

SuspendTimeout=30

ResumeTimeout=60

Setting a negative value for SuspendTime disables power saving
mode. A positive value is the time period (in seconds) after which a node
that has remained idle becomes eligible for power saving mode.

SuspendProgram and ResumeProgram are scripts that act on eligible
nodes, using the Bright power control mechanisms to power nodes on
and off.

SuspendTimeout and ResumeTimeout are timeout values (in seconds)
for when the nodes must respectively be set to a suspended state or a state
available for use.

Additional power saving configuration file parameters are described
in the SLURM power saving guide at https://computing.llnl.gov/

linux/slurm/power_save.html

8.9.2 PBS Pro
PBS Pro provides a power saving mechanism through the Green Provi-
sioning feature. This is installed as an RPM, pbspro-green, on Bright
clusters. Green Provisioning integrates with the PBS Pro scheduling cy-
cle, and nodes on the integrated system can then be powered on and off
using Bright Cluster Manager power control mechanisms. Power saving
features for PBS Pro can be enabled with the wlm-setup command from
section 8.3:

wlm-setup -w pbspro -e -p

The command triggers the cluster management daemon to enable
power management and set node level custom resources required for
Green Provisioning. The PBS Pro server parameters that enable power
saving are:

set server default_chunk.pwr_mgt_simpwr = True

set server resources_available.pwr_mgt_enabled = True

The following table shows the list of node level resource values that
are defined when power saving is enabled:

Name (In PBS Pro) Name (In CMDaemon) Default
Value

pwr_mgt_can_power_down PBSProCanPowerDown True

pwr_mgt_power_down_priority PBSProPwrMgtPowerDownPriority 30

pwr_mgt_power_down_delay PBSProPwrMgtPowerDownDelay 30

pwr_mgt_power_up_delay PBSProPwrMgtPowerUpDelay 60

pwr_mgt_trying_to_power_up PBSProTryingToPowerUp False

pwr_mgt_simpwr PBSProSimpwr True

© Bright Computing, Inc.

https://computing.llnl.gov/linux/slurm/power_save.html
https://computing.llnl.gov/linux/slurm/power_save.html


216 Workload Management

A delay time value in the preceding table is the period (in seconds) af-
ter issuing the node level resource command, after which the node power
command is assumed to have completed its action (i.e., the node is as-
sumed in a powered up or down state after the specified delay time).

The priority value is an arbitrary value per node that decides the order
in which a node powers up and down. The PBS Pro documentation has
more on this.

The default values for the parameters in the table can be changed by
specifying them in the AdvancedConfig directive of the CMDaemon con-
figuration file. An example is:

AdvancedConfig = {\

"PBSProCanPowerDown=True", "PBSProPwrMgtPowerDownPriority=30", \

"PBSProPwrMgtPowerDownDelay=30", "PBSProPwrMgtPowerUpDelay=60", \

"PBSProTryingToPowerUp=False", "PBSProSimpwr=True"\

}

Green Provisioning supports three power cycling strategies:

0. No power cycling

1. Simulate power cycling

2. Full power cycling

The numeric value in the list is used to set the strategy in the Green
Provisioning configuration file. For example, to enable “Full power

cycling”, the following is set in the Green Provisioning configuration
file at /cm/shared/apps/pbspro-green/config:

POWER_CYCLE_STRATEGY=2

By default, “Simulate power cycling” is used. This does not actually
carry out the power parameter instruction on the node, but the node is
treated as if the power parameter has been applied. So, for example, when
power cycling is being simulated, jobs are no longer scheduled to run on
the node after PBSProPwrMgtPowerDownDelay is run.

© Bright Computing, Inc.



9
Post-Installation Software

Management
Some time after Bright Cluster Manager has been installed, administra-
tors may wish to manage other software on the cluster. This means carry-
ing out software management actions such as installation, removal, up-
dating, version checking, and so on.

Since Bright Cluster Manager is built on top of an existing Linux distri-
bution, it is best that the administrator use distribution-specific package
utilities for software management.

Packages managed by the distribution are hosted by distribution repos-
itories. SUSE and Red Hat enterprise distributions require the purchase
of their license in order to access their repositories.

Packages managed by the Bright Cluster Manager are hosted by the
Bright Computing repository. Access to Bright repositories also requires
a license (section 4.1).

There may also be software that the administrator would like to install
that is outside the default packages collection. These could be source files
that need compilation, or packages in other repositories.

A software image (section 3.1.2) is the file system that a node picks
up from a provisioner (a head node or a provisioning node) during pro-
visioning. A subtopic of software management on a cluster is software
image management—the management of software on a software image.
By default, a node uses the same distribution as the head node for its
base image along with necessary minimal, cluster-mandated changes. A
node may however deviate from the default, and be customized by hav-
ing software added to it in several ways.

This chapter covers the techniques of software management for the
cluster.

Section 9.1 describes the naming convention for a Bright Cluster Man-
ager RPM package.

Section 9.2 describes how an RPM package is managed for the head
node.

Section 9.3 describes how a kernel RPM package can be managed on
a head node or image.

Section 9.4 describes how an RPM package can be managed on the
software image.

© Bright Computing, Inc.



218 Post-Installation Software Management

Section 9.5 describes how a software other than an RPM package can
be managed on a software image.

Section 9.6 describes how custom software images are created that are
completely independent of the existing software image distribution and
version.

Section 9.7 briefly describes how the FrozenFile configuration setting
can be used to make all nodes function differently from standard cluster
behavior.

Section 9.8 explains how different nodes can be made to load particu-
lar images.

Section 9.9 suggests alternatives that may achieve the same result as
using different images for different nodes, especially when changes are
minor.

9.1 Bright Cluster Manager RPM Packages And Their
Naming Convention

Like the distributions it runs on top of, Bright Cluster Manager uses RPM
(RPM Package Manager) packages. An example of a Bright Cluster Man-
ager RPM package is:

mpich-ge-gcc-64-1.2.7-105_cm5.2.x86_64.rpm

The file name has the following structure:

package-version-revision_cmx.y.architecture.rpm where:

• package (mpich-ge-gcc-64) is the name of the package

• version (1.2.7) is the version number of the package

• revision (105) is the revision number of the package

• x.y (5.2) is the version of Bright Cluster Manager for which the
RPM was built

• architecture (x86_64) is the architecture for which the RPM was built

To check whether Bright Computing or the distribution has provided
a file that is already installed on the system, the package it has come from
can be identified using “rpm -qf”.

Example

[root@bright52 bin]# rpm -qf /usr/bin/zless

gzip-1.3.12-18.el6.x86_64

[root@bright52 bin]# rpm -qf /cm/local/apps/cmd/sbin/cmd

cmdaemon-5.2-11233_cm5.2.x86_64

In the example, /usr/bin/zless is supplied by the distribution, while
/cm/local/apps/cmd/sbin/cmd is supplied by Bright Computing, as in-
dicated by the “_cm” in the nomenclature.

More information about the RPM Package Manager is available at
http://www.rpm.org.

© Bright Computing, Inc.

http://www.rpm.org


9.2 Managing Packages On The Head Node 219

9.2 Managing Packages On The Head Node
9.2.1 Managing RPM Packages On The Head Node
Once Bright Cluster Manager has been installed, distribution packages
and Bright Cluster Manager software packages can be managed using
the rpm command-line utility.

A more convenient way of managing RPM packages is to use either
YUM or zypper. Both of these tools are repository and package man-
agers. The zypper tool is recommended for use by the SUSE 11 distri-
bution, while YUM is recommended for use by the other distributions
that Bright Cluster Manager supports. YUM is not installed by default in
SUSE 11, and it is better not to install and use it with SUSE 11 unless the
administrator is familiar with configuring YUM.

For YUM and zypper, the following commands list all available pack-
ages:

yum list

or
zypper packages

For zypper, the short command option pa can also be used instead of
packages.

The following commands can install a new package called <package
name>:

yum install <package name>

or
zypper in <package name>

All installed packages can be updated with:

yum update

or
zypper up

Bright Computing maintains YUM and zypper repositories at:

http://updates.brightcomputing.com/yum

and updates are fetched by YUM and zypper for Bright Cluster Manager
packages from there by default.

Accessing the YUM repositories manually (i.e. not through YUM
or zypper) requires a username and password. Authentication creden-
tials are provided upon request. For more information on this, support@
brightcomputing.com should be contacted.

The repository managers use caches to speed up their operations. Oc-
casionally these caches may need flushing to clean up the index files as-
sociated with the repository. This is done with:

yum clean all

or
zypper clean -a

© Bright Computing, Inc.

support@brightcomputing.com
support@brightcomputing.com


220 Post-Installation Software Management

As an extra protection to prevent Bright Cluster Manager installations
from receiving malicious updates, all Bright Cluster Manager packages
are signed with the Bright Computing GPG public key (0x5D849C16), in-
stalled by default in /etc/pki/rpm-gpg/RPM-GPG-KEY-cm for Red Hat,
Scientific Linux, and CentOS packages. The Bright Computing public key
is also listed in Appendix B.

The first time YUM or zypper are used to install updates, the user
is asked whether the Bright Computing public key should be imported
into the local RPM database. Before answering with a “Y”, yum users may
choose to compare the contents of /etc/pki/rpm-gpg/RPM-GPG-KEY-cm
with the key listed in Appendix B to verify its integrity. Alternatively,
the key may be imported into the local RPM database directly, using the
following command:

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-cm

Installation of the following Bright Computing packages is described
in Chapter 12. These are installed mostly on the head node, but some
packages work as a server and client process, with the clients installed
and running on the regular nodes:

• Modules (section 12.1)

• Shorewall (section 12.2)

• Compilers (section 12.3):

– GCC (section 12.3.1)

– Intel Compiler Suite (section 12.3.2)

– PGI High-Performance Compilers (section 12.3.3)

– AMD Open64 Compiler Suite (section 12.3.4)

– FLEXlm License Daemon (section 12.3.5)

• Intel Cluster Checker (section 12.4)

• CUDA (section 12.5)

• Lustre (section 12.7)

• ScaleMP (section 12.8)

9.2.2 Managing Non-RPM Software On The Head Node
Sometimes a package is not packaged by Bright Computing for the head
node. In that case, the software can be usually be treated as for instal-
lation onto a standard distribution. There may be special considerations
on placement of components that the administrator may feel appropriate
due to the particulars of a cluster configuration.

For example, for compilation and installation of the software, some
consideration may be made of the options available on where to install
parts of the software within the default shared filesystem. A software
may have a compile option, say --prefix, that places an application <ap-
plication> in a directory specified by the administrator. If the administra-
tor decides that <application> should be placed in the shared directory, so
that everyone can access it, the (hypothetical) option could perhaps be
specified as: “--prefix=/cm/shared/apps/<application>”.

© Bright Computing, Inc.



9.3 Kernel Management On A Head Node Or Image 221

Other commonly provided components of software for the applica-
tions that are placed in shared may be documentation, licenses, and ex-
amples. These may similarly be placed in the directories /cm/shared/

docs, /cm/shared/licenses, and /cm/shared/examples. The placement
may be done with a compiler option, or, if that is not done or not pos-
sible, it could be done by modifying the placement by hand later. It is
not obligatory to do the change of placement, but it helps with cluster
administration to stay consistent as packages are added.

Module files (sections 3.2 and 12.1) may sometimes be provided by the
software, or created by the administrator to make the application work
for users easily with the right components. The directory /cm/shared/

modulefiles is recommended for module files to do with such software.
To summarize the above considerations on where to place software

components, the directories under /cm/shared that can be used for these
components are:

/cm/shared/

|-- apps

|-- docs

|-- examples

|-- licenses

`-- modulefiles

9.3 Kernel Management On A Head Node Or Image
Care should be taken when updating a head node or software image.
This is particularly true when custom kernel modules compiled against a
particular kernel version are being used.

9.3.1 Installing A Standard Distribution Kernel
A standard distribution kernel is treated almost like any other package
in a distribution. This means that for head nodes, installing a standard
kernel is done according to the normal procedures of managing a package
on a head node (section 9.2), while for regular nodes, installing a standard
distribution kernel onto a regular node is done according to the normal
procedures of managing an RPM package inside an image (section 9.4).

An example standard kernel package name is
“kernel-2.6.18-274.3.1.el5”. The actual one suited to a cluster
varies according to the distribution used. Packages with names that
begin with “kernel-devel-” are development packages that can be used
to compile custom kernels, and are not required when installing standard
distribution kernels.

When installing a kernel, extra considerations for software images are:

• The kernel must also be explicitly set in CMDaemon (section 9.3.3)
before it may be used by the regular nodes.

• Some GRUB-related errors show up during the installation of a ker-
nel package in the software image. These occur due to a failure to
find the partitions when running the post-install scripts in the ch-
root environment. They can simply be ignored because the nodes
do not boot from GRUB.

As is standard for Linux, both head or regular nodes must be rebooted
to use the new kernel.

© Bright Computing, Inc.

/cm/shared/docs
/cm/shared/docs
/cm/shared/licenses
/cm/shared/examples
/cm/shared/modulefiles
/cm/shared/modulefiles


222 Post-Installation Software Management

9.3.2 Excluding Kernels And Other Packages From Updates
Sometimes it may be desirable to exclude the kernel from updates.

• When using yum, to prevent an automatic update of a package, the
package is listed after using the �-exclude flag. So, to exclude the
kernel from the list of packages that should be updated, the follow-
ing command can be used:

yum --exclude kernel update

To exclude a package such as kernel permanently from all YUM
updates, without having to specify it on the command line each
time, the package can instead be excluded inside the repository con-
figuration file. YUM repository configuration files are located in the
/etc/yum.repos.d directory, and the packages to be excluded are
specified with a space-separated format like this:

exclude = <package 1> <package 2> ...

• The zypper command can also carry out the task of excluding the
kernel package from getting updated when updating. To do this,
the kernel package is first locked (prevented from change) using
the addlock command, then the update command is run, and fi-
nally the kernel package is unlocked again using the removelock

command:

zypper addlock kernel

zypper update

zypper removelock kernel

9.3.3 Updating A Kernel In A Software Image
For a software image, if the kernel is updated by the repository manager,
then the kernel is not used on reboot until it is explicitly enabled with
either cmgui or cmsh.

• To enable it in cmgui, the Software Images resource is selected,
and the specific image item is selected. The Settings tabbed pane
for that particular software image is opened, the new kernel ver-
sion is selected from the “Kernel version” drop-down menu, and
the Save button is clicked. Saving the version builds a new initial
ramdisk containing the selected kernel (figure 9.1).

• To enable the updated kernel from cmsh, the softwareimage mode
is used. The kernelversion property of a specified software image
is then set and committed:

Example

[root@bright52 ~]# cmsh

[bright52]% softwareimage

[bright52]->softwareimage% use default-image

[bright52->softwareimage[default-image]]% set kernelversion 2.6.32-

131.2.1.el6.x86_64

[bright52->softwareimage*[default-image*]]% commit

© Bright Computing, Inc.

/etc/yum.repos.d


9.3 Kernel Management On A Head Node Or Image 223

Figure 9.1: Updating A Software Image Kernel In cmgui

9.3.4 Setting Kernel Options For Software Images
A standard kernel can be booted with special options that alter its func-
tionality. For example, a kernel can boot with apm=off, to disable Ad-
vanced Power Management, which is sometimes useful as a workaround
for nodes with a buggy BIOS that may crash occasionally when it remains
enabled.

To enable booting with this kernel option setting in cmgui, the
“Software Images” resource is selected, and the specific image item is se-
lected (figure 9.1). The Settings tabbed pane for that particular software
image is opened, and the “Kernel parameters” value is set to apm=off.

In cmsh the value of “kernel parameters” in softwareimage mode
for the selected image can be set as in the following example:

[root@bright52 ~]# cmsh

[bright52]% softwareimage

[bright52]->softwareimage% use default-image

[bright52->softwareimage[default-image]]% set kernelparameters apm=off

[bright52->softwareimage*[default-image*]]% commit

Often kernel options load up modules and their parameters. Making
module loading persist after reboot and setting module loading order is
covered in section 6.3.2

Some kernel options may require changes to be made in the BIOS set-
tings in order to function.

9.3.5 Kernel Driver Modules
Bright Computing provides some packages which install new kernel
drivers or update kernel drivers. Such packages generally require the
kernel-devel package. In this section, the kernel-devel-check utility
is first described, followed by the various drivers that Bright Computing
provides.

Kernel Driver Modules: kernel-devel-check Compilation Check
The distribution’s kernel-devel package is required to compile kernel
drivers for its kernel. It must be the same version and release as the kernel
running on the node.

To check the head node and software images for the installation sta-
tus of the kernel-devel package, the Bright Cluster Manager utility

© Bright Computing, Inc.



224 Post-Installation Software Management

kernel-devel-check is run from the head node:

Example

[root@mycluster ~]# kernel-devel-check

Head node: mycluster

Found kernel development rpm package kernel-devel-2.6.32-131.2.1.el6.\

x86_64

Software image: default-image

No kernel development directories found, probably no kernel developme\

nt package installed.

Kernel development rpm package kernel-devel-2.6.32-131.2.1.el6.x86_64\

not found

If needed, try to install the kernel development package with:

# chroot /cm/images/default-image yum install kernel-devel-2.6.32-131\

.2.1.el6.x86_64

Software image: default-image1

No kernel development directories found, probably no kernel developme\

nt package installed.

Kernel development rpm package kernel-devel-2.6.32-131.2.1.el6.x86_64\

not found

If needed, try to install the kernel development package with:

# chroot /cm/images/default-image1 yum install kernel-devel-2.6.32-13\

1.2.1.el6.x86_64

As suggested by the output of kernel-devel-check, running a com-
mand on the head node such as:

[root@mycluster ~]# chroot /cm/images/default-image1 yum install kernel\

-devel-2.6.32-131.2.1.el6.x86_64

installs a kernel-devel package, to the software image called
default-image1 in this case. The package version suggested corresponds
to the kernel version set for the image, rather than necessarily the latest
one that the distribution provides.

Kernel Driver Modules: Improved Intel Wired Ethernet Drivers
Improved Intel wired Ethernet drivers—what they are: The standard
distributions provide Intel wired Ethernet driver modules as part of the
kernel they provide. Bright Computing provides an improved version of
the drivers with its own intel-wired-ethernet-drivers package. The
package contains more recent versions of the Intel wired Ethernet kernel
drivers: e1000, e1000e, igb, igbvf, ixgbe and ixgbevf. They often work
better than standard distribution modules when it comes to performance,
features, or stability.

Improved Intel wired Ethernet drivers—replacement mechanism: The
improved drivers can be installed on all nodes.

For head nodes, the standard Intel wired Ethernet driver modules on
the hard drive are overwritten by the improved versions during package
installation. Backing up the standard driver modules before installation
is recommended, because it may be that some particular hardware con-
figurations are unable to cope with the changes, in which case reverting
to the standard drivers may be needed.

© Bright Computing, Inc.



9.3 Kernel Management On A Head Node Or Image 225

For regular nodes, the standard distribution wired Ethernet drivers
are not overwritten into the provisioner’s software image during installa-
tion of the improved drivers package. Instead, the standard driver mod-
ules are removed from the kernel and the improved modules are loaded
to the kernel during the init stage of boot.

For regular nodes in this “unwritten” state, removing the improved
drivers package from the software image restores the state of the regular
node, so that subsequent boots end up with a kernel running the standard
distribution drivers from on the image once again. This is useful because
it allows a very close-to-standard distribution to be maintained on the
nodes, thus allowing better distribution support to be provided for the
nodes.

If the software running on a fully-booted regular node is copied over
to the software image, for example using the “Grab to image” button
(section 9.5.2), this will write the improved driver module into the soft-
ware image. Restoring to the standard version is then no longer possible
with simply removing the improved drivers packages. This makes the
image less close-to-standard, and distribution support is then less easily
obtained for the node.

Thus, after the installation of the package is done on a head or regular
node, for every boot from the next boot onwards, the standard distribu-
tion Intel wired Ethernet drivers are replaced by the improved versions
for fully-booted kernels. This replacement occurs before the network and
network services start. The head node simply boots from its drive with
the new drivers, while a regular node initially starts with the kernel using
the driver on the software image, but then if the driver differs from the
improved one, the driver is unloaded and the improved one is compiled
and loaded.

Improved Intel wired Ethernet drivers—installation: The drivers are
compiled on the fly on the regular nodes, so a check should first be done
that the kernel-devel package is installed on the regular nodes (sec-
tion 9.3.5).

If the regular nodes have the kernel-devel package installed, then
the following yum commands are issued on the head node, to install the
package on the head node and in the default-image:

Example

[root@mycluster ~]# yum install intel-wired-ethernet-drivers

[root@mycluster ~]# chroot /cm/images/default-image

[root@mycluster /]# yum install intel-wired-ethernet-drivers

For SUSE, the equivalent zypper commands are used (“zypper in”
instead of “yum install”).

Kernel Driver Modules: CUDA Driver Installation
CUDA drivers are drivers the kernel uses to manage GPUs. These are
compiled on the fly for nodes with GPUs in Bright Cluster Manager. The
details of how this is done is covered in the CUDA software section (sec-
tion 12.5).

© Bright Computing, Inc.



226 Post-Installation Software Management

Kernel Driver Modules: OFED Stack Installation
By default, the distribution provides the OFED stack used by the kernel to
manage the InfiniBand or RDMA interconnect. Installing a Bright Clus-
ter Manager repository OFED stack to replace the distribution version is
covered in section 12.6. Some guidance on placement into initrd for the
purpose of optional InfiniBand-based node provisioning is given in sec-
tion 6.3.3.

9.4 Managing An RPM Package In A Software Image
And Running It On Nodes

9.4.1 Installing From Head Via chroot: Installing The Image
Managing RPM packages (including the kernel) inside a software image
is most easily done while on the head node, using a chroot mechanism
with rpm, yum, or zypper.

The rpm command supports the �-root flag. To install an RPM pack-
age inside the default software image while on the head node, the com-
mand is used as follows:

Example

rpm --root /cm/images/default-image -ivh /tmp/libxml2-2.6.16-6.x86_64.rpm

YUM and zypper implement the same functionality in slightly differ-
ent ways. For example, all packages in the default image are updated
with:

yum --installroot=/cm/images/default-image update

or
zypper --root /cm/images/default-image up

With the chroot command, the same result is accomplished by first
chrooting into an image, and subsequently executing rpm, yum, or zypper
commands without �-root or �-installroot arguments.

9.4.2 Installing From Head Via chroot: Updating The Image
Rebooting the nodes that use the software images then has those nodes
start up with the new images. Alternatively, the nodes can usually simply
be updated without a reboot (section 6.6), if no reboot is required by the
underlying Linux distribution.

9.4.3 Installing From Head Via rpm --root, yum --installroot

Or chroot: Possible Issues
• The rpm --root or yum --installroot command can fail if the ver-

sions between the head node and the version in the software image
differ significantly. For example, installation from a Scientific Linux
5 head node to a Red Hat 6 software image is not possible with those
commands, and can only be carried out with chroot.

• While installing software into a software image with an rpm --root,
yum --installroot or with a chroot method is convenient, there
can be issues if daemons start up in the image.

© Bright Computing, Inc.



9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 227

For example, installation scripts that stop and re-start a system ser-
vice during a package installation may successfully start that service
within the image’s chroot jail and thereby cause related, unexpected
changes in the image. Pre- and post- (un)install scriptlets that are
part of RPM packages may cause similar problems.

Bright Computing’s RPM packages are designed to install under
chroot without issues. However packages from other repositories
may cause the issues described. To deal with that, the cluster man-
ager runs the chrootprocess health check, which alerts the admin-
istrator if there is a daemon process running in the image. The
chrootprocess also checks and kills the process if it is a crond.

9.5 Managing Non-RPM Software In A Software Image
And Running It On Nodes

Sometimes, packaged software is not available for a software image, but
non-packaged software is. This section describes the installation of non-
packaged software onto a software image in these two cases:

1. copying only the software over to the software image (section 9.5.1)

2. placing the software onto the node directly, configuring it until it is
working as required, and syncing that back to the software image
using Bright Cluster Manager’s special utilities (section 9.5.2)

As a somewhat related aside, completely overhauling the software im-
age, including changing the base files that distinguish the distribution
and version of the image is also possible. How to manage that kind of
extreme change is covered separately in section 9.6.

However, this current section (9.5) is about modifying the software
image with non-RPM software while staying within the framework of an
existing distribution and version.

In all cases of installing software to a software image, it is recommend
that software components be placed under appropriate directories under
/cm/shared (which is actually outside the software image).

So, just as in the case for installing software to the head node in sec-
tion 9.2.2, appropriate software components go under:

/cm/shared/

|-- apps

|-- docs

|-- examples

|-- licenses

`-- modulefiles

9.5.1 Managing The Software Directly On An Image
The administrator may choose to manage the non-packaged software di-
rectly in the correct location on the image.

For example, the administrator may wish to install a particular soft-
ware to all nodes. If the software has already been prepared elsewhere
and is known to work on the nodes without problems, such as for ex-
ample library dependency or path problems, then the required files can
simply be copied directly into the right places on the software image.

© Bright Computing, Inc.



228 Post-Installation Software Management

The chroot command may also be used to install non-packaged soft-
ware into a software image. This is analogous to the chroot technique for
installing packages in section 9.4:

Example

cd /cm/images/default-image/usr/src

tar -xvzf /tmp/app-4.5.6.tar.gz

chroot /cm/images/default-image

cd /usr/src/app-4.5.6

./configure --prefix=/usr

make install

Whatever method is used to install the software, after it is placed in the
software image, the change can be implemented on all running nodes by
running the updateprovisioners (section 6.2.4) and imageupdate (sec-
tion 6.6.2) commands.

9.5.2 Managing The Software Directly On A Node, Then Syncing
Node-To-Image

Why Sync Node-To-Image?
Sometimes, typically if the software to be managed is more complex and
needs more care and testing than might be the case in section 9.5.1, the
administrator manages it directly on a node itself, and then makes an
updated image from the node after it is configured, to the provisioner.

For example, the administrator may wish to install and test an appli-
cation from a node first before placing it in the image. Many files may be
altered during installation in order to make the node work with the ap-
plication. Eventually when the node is in a satisfactory state a new image
can be created.

Administrators should be aware that until the new image is saved, the
node loses its alterations and reverts back to the old image on reboot.

The node-to-image sync discussed in this section is called a “Grab to

image” in cmgui or “grabimage” in cmsh, and is the converse of the image-
to-node sync, imageupdate of section 6.6.2.

Node-To-Image Sync Using cmgui

In cmgui, saving the node state to a new image is done by selecting a node
from the Nodes resource, and then selecting the Tasks tab. The “Software
image” section of the tab has (amongst others) these two buttons that can
carry out the sync from node to software image (figure 9.2):

1. the “Grab to image” button, which opens up a dialog offering an
image to sync to. It creates a new image, wiping out whatever
(if anything) is in the selected image. It uses the “Exclude list

grabbing to a new image” exclude list, available under the “Node
Categories” resource, under the Settings tab.

2. the “Synchronize image” button, which does a sync preserving
system settings that are associated with image identity, and eval-
uates the remaining changes between the node and the selected
image. It is thus a synchronization to an existing image. It uses
the “Exclude list image grab” exclusion list, also available un-
der the “Node Categories” resource, under the Settings tab.

© Bright Computing, Inc.



9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 229

Figure 9.2: Synchronizing From A Node To A Software Image In cmgui

While both these exclude lists are simple by default, they conform
in structure and patterns syntax in the same way that the exclude lists
detailed in section 6.4.7 do and can therefore be quite powerful.

Both buttons open up a dialog allowing selection of the image to be
used for syncing. In the dialog, a dry-run checkbox is marked by default
to allow the administrator to see what would happen during the node-to-
image sync, without actually having the files written over to the image.
Logs of the run are viewable by clicking on the “Provisioning Log” but-
ton, also in the Tasks tab. If the administrator is sure that the run works as
wanted, the node-to-image sync can be done with the dry-run checkbox
unmarked.

The images that are available for selection with these buttons are exist-
ing images. If such existing images are known to work well with nodes,
then overwriting them with a new image on a production system may be
reckless. A wise administrator who has prepared a node that is to write an
image would therefore follow a process similar to the following instead
of simply overwriting an existing image:

1. A new image is created into which the node state can be written.
This is easiest to do by using the “Software Images” resource to
clone a new image. The node state with the software installed on it
would then be saved using the “Grab to image” or “Synchronize
image” buttons, and choosing the cloned image name as the image
to save it to.

2. A new category is then cloned from the old category, and within
the new category the old image is changed to the new image. This
is easiest to do from the Overview tab of the “Node Categories”
resource. Here the original category of the node is selected and
cloned. The cloned category is then selected, opened and the old
image within it—in the “Software image” section—is changed to
the new, cloned, image, and the result is saved.

3. Some nodes are set to the new category to test the new image. This
is done from the Nodes resource, selecting the node, and from its
Settings tab, changing its category to the new one, and saving the
change.

4. The nodes in the new category are made to pick up and run their
new images. This can be done with a reboot.

5. After sufficient testing, all remaining nodes can be moved to using
the new image, and the old image is removed if no longer needed.

© Bright Computing, Inc.



230 Post-Installation Software Management

Node-To-Image Sync Using cmsh

The preceding cmgui method can alternatively be carried out using
cmsh commands. The cmsh equivalent to the “Grab to image” or
“Synchronize image” buttons is the grabimage command, available
from device mode. The grabimage command requires the -i option to
specify what image it will write to. As before, that image must be created
or cloned beforehand.

Cloning an image for use, setting a category of nodes that will use
it, and then synchronizing a node that has the new software setup over
to the new image on the provisioner might be carried out as follows via
cmsh:

[root@bright52 ~]# cmsh

[bright52]% softwareimage

[bright52->softwareimage]% clone default-image default-image1

[bright52->softwareimage*[default-image1]]% commit

[bright52->softwareimage[default-image1]]% category

[bright52->category]% clone default default1

[bright52->category*[default1*]]% commit

[bright52->category[default1]]% set softwareimage default-image1

[bright52->category*[default1*]]% commit

[bright52->category[default1]]% device

[bright52->device]% grabimage -w -i default-image1 node001

[bright52->device]%

Mon Jul 18 16:13:00 2011 [notice] bright52: Provisioning started on\

node node001

[bright52->device]%

Mon Jul 18 16:13:04 2011 [notice] bright52: Provisioning completed on\

node node001

The grabimage command has some options. The -i option selects
the image, while the -w option instructs CMDaemon to really write the
image. Leaving the -w option out simply does a dry-run so that the user
can see in the provisioning logs what should be grabbed, without having
the changes actually carried out.

9.6 Creating A Custom Software Image
By default, the software image used to boot non-head nodes is based on
the same version and release of the Linux distribution as used by the head
node. However, sometimes an image based on a different distribution or
a different release from that on the head node may be needed.

A custom software image is created typically by building an entire
filesystem image from a node. The node is then called the base host, with
the term “base” used to indicate that it has no additional cluster manager
packages installed. The distribution on the base host, is called the base
distribution and is a selection of packages derived from the parent distribu-
tion (Red Hat, Scientific Linux etc). A base distribution package is a package
or rpm that is directly provided by the vendor of the parent distribution
which the base distribution is based on, and is not provided by Bright
Cluster Manager.

Creating a custom software image consists of two steps. The first step
is to create a base (distribution) archive from an installed base host. The

© Bright Computing, Inc.



9.6 Creating A Custom Software Image 231

second step is to create the image from the base archive using a special
utility, cm-create-image.

9.6.1 Creating A Base Distribution Archive From A Base Host
The step of creating the base distribution archive is done by creating an
archive structure containing the files that are needed by the non-head
node. The archive can be a convenient and standard tar.gz file archive,
or, taking the step a little further towards the end result, the archive can
be a fully expanded archive file tree.

In the following example, a base distribution tar.gz archive
/tmp/BASEDIST.tar.gz is created from the base host basehost64:

Example

ssh root@basehost64 \

"tar -cz \

--exclude /etc/HOSTNAME --exclude /etc/localtime \

--exclude /proc --exclude /lost+found --exclude /sys \

--exclude /root/.ssh --exclude /var/lib/dhcpcd/* \

--exclude /media/floppy --exclude /etc/motd \

--exclude /root/.bash_history --exclude /root/CHANGES \

--exclude /etc/udev/rules.d/*persistent*.rules \

--exclude /var/spool/mail/* --exclude /rhn \

--exclude /etc/sysconfig/rhn/systemid \

--exclude /var/spool/up2date/* \

--exclude /etc/sysconfig/rhn/systemid.save \

--exclude /root/mbox --exclude /var/cache/yum/* \

--exclude /etc/cron.daily/rhn-updates /" > /tmp/BASEDIST.tar.gz

Or alternatively, a fully expanded archive file tree can be cre-
ated from basehost64 by rsyncing to an existing directory (here it is
/cm/image/new-image):

Example

rsync -av --numeric-ids \

--exclude='/etc/HOSTNAME' --exclude='/etc/localtime' --exclude='/proc'\

--exclude='/lost+found' --exclude='/sys' --exclude='/root/.ssh' \

--exclude='/var/lib/dhcpcd/*' --exclude='/media/floppy' \

--exclude='/etc/motd' --exclude='/root/.bash_history' \

--exclude='/root/CHANGES' --exclude='/var/spool/mail/*'\

--exclude='/etc/udev/rules.d/*persistent*.rules' \

--exclude='/rhn' --exclude='/etc/sysconfig/rhn/systemid' \

--exclude='/etc/sysconfig/rhn/systemid.save'\

--exclude='/var/spool/up2date/*' \

--exclude='/root/mbox' --exclude='/var/cache/yum/*' \

--exclude='/etc/cron.daily/rhn-updates' \

root@basehost64:/ /cm/image/new-image/

The first step, that of building the base archive, is now done.

9.6.2 Creating The Software Image With cm-create-image

The second step, that of creating the image from the base archive, now
needs to be done. This uses the cm-create-image utility, which is part
of the cluster-tools package. The utility requires that base distribution
repositories be accessible.

© Bright Computing, Inc.



232 Post-Installation Software Management

Repository access can be directly to the online repositories provided
by the distribution, or it can be to a local copy. For RHEL, online reposi-
tory access can be activated by registration with the Red Hat Network, as
described in appendix M.1, and for SUSE, online repository access can be
activated by registration with Novell, as described in appendix M.2. An
offline repository can be constructed as described in section 9.6.3.

Usage Of The cm-create-image Command
The usage information for cm-create-image lists options and examples:

USAGE: cm-create-image <OPTIONS1> [OPTIONS2]

OPTIONS1:

---------

-a | --fromarchive <archive> Create software image from archive file

of supported base distribution. Supported

file formats are .tar, .tgz, .tar.gz, .tbz,

and .tar.bz2. The extension must match the

format.

-d | --fromdir <dir path> Create software image from existing

directory that already has valid base

distribution.

-h | --fromhost <hostname> Create software image from running host

-n | --imagename <name> Name of software image to create in cluster

management daemon database.

OPTIONS2:

---------

-i | --imagedir <dir name> Name of directory to be created in

/cm/images.

Contents of archive file are extracted into

this directory (default: name specified

with -n).

-r | --recreate Recreate directory specified by -i or

default, if it exists.

Default behavior: directory is overwritten

-s | --skipdist Skip install of base distribution packages

-e | --excludecmrepo Do not copy cluster manager repo files. (Use

when the repo files already exist, and must

not be overwritten.)

-f | --forcecreate Force non-interactive mode

-u | --updateimage If image specified by -n already exists,

then it is updated, with the new parameters

EXAMPLES:

---------

1. cm-create-image -a /tmp/RHEL5.tar.gz -n rhel5-image

2. cm-create-image -a /tmp/RHEL5.tar.gz -n rhel5-image -i /cm/images/te\

st-image

3. cm-create-image -d /cm/images/SLES11-image -n sles11-image

4. cm-create-image -h node001 -n node001-image

5. cm-create-image -a /tmp/RHEL5.tar.gz -n rhel5-image -i /cm/image/new\

-image -r

6. cm-create-image -a /tmp/RHEL5.tar.gz -n rhel5-image -i /cm/image/new\

-image -u

7. cm-create-image -d /cm/image/new-image -n bio-image -s

© Bright Computing, Inc.



9.6 Creating A Custom Software Image 233

Explanations Of The Examples In Usage Of cm-create-image
Explanations of the 7 examples in the usage text follow:

1. In the following, a base distribution archive file, /tmp/RHEL5.tar.gz,
is written out to a software image named rhel5-image:

cm-create-image --fromarchive /tmp/RHEL5.tar.gz --imagename rhel5-\

image

The image with the name rhel5-image is created in the CMDaemon
database, making it available for use by cmsh and cmgui. If an image
with the above name already exists, then /cm/create-image will
exit and advise the administrator to provide an alternate name.

By default, the image name specified sets the directory into
which the software image is installed. Thus here the directory is
/cm/image/rhel5-image/.

2. Instead of the image getting written into the default directory
as in the previous item, an alternative directory can be specified
with the --imagedir option. Thus, in the following, the base
distribution archive file, /tmp/RHEL5.tar.gz is written out to the
/cm/image/test-image directory. The software image is given the
name rhel5-image:

cm-create-image --fromarchive /tmp/RHEL5.tar.gz --imagename rhel5-\

image --imagedir /cm/image/test-image

3. If the contents of the base distribution file tree have been
transferred to a directory, then no extraction is needed. The
--fromdir option can then be used with that directory. Thus,
in the following, the archive has already been transferred to
the directory /cm/image/SLES11-image, and it is that directory
which is then used to place the image under a directory named
/cm/image/sles11-image/. Also, the software image is given the
name sles11-image:

cm-create-image --fromdir /cm/images/SLES11-image --imagename sles\

11-image

4. A software image can be created from a running node using the
--fromnode option. This option makes cm-create-image behave in
a similar manner to grabimage (section 9.5.2) in cmsh. It requires
passwordless access to the node in order to work. An image named
node001-image can then be created from a running node named
node001 as follows:

cm-create-image --fromhost node001 --imagename node001-image

By default the image goes under the /cm/image/node001-image/

directory.

© Bright Computing, Inc.



234 Post-Installation Software Management

5. If the destination directory already exists, the --recreate option
can be used to recreate the existing directory. The administrator
should be aware that this means removal of the content of any exist-
ing directory of the same name. Thus, in the following, the content
under /cm/image/new-image/ is deleted, and new image content
is taken from the base distribution archive file, /tmp/RHEL5.tar.gz
and then placed under /cm/image/new-image/. Also, the software
image is given the name rhel5-image:

cm-create-image --fromarchive /tmp/RHEL5.tar.gz --imagename rhel5-\

image --imagedir /cm/image/new-image --recreate

If the --recreate, option is not used, then the contents are simply
overwritten, that is, the existing directory contents are copied over
by the source content. It also means that old files on the destination
directly may survive unchanged because the new source may not
have filenames matching those.

6. The destination directory can also just be updated without remov-
ing the existing contents, by using the option --updateimage. The
option is almost the same as the “contents are simply overwritten”
behavior described in example 5, but it actually works like an rsync

command. Thus, in the following, the base distribution archive file,
/tmp/RHEL5.tar.gz, is used to update the contents under the direc-
tory /cm/image/new-image/. The name of the image is also set to
rhel5-image.

cm-create-image --fromarchive /tmp/RHEL5.tar.gz --imagename rhel5-\

image --imagedir /cm/image/new-image --updateimage

7. With the default Bright Cluster, the head node provisions a software
image based on the parent distribution to the other nodes. The soft-
ware image which runs on the nodes provides a selection of distri-
bution packages from the parent distribution.

The default software image is thus a selection of Red Hat packages,
if the head node uses Red Hat, or a selection of SUSE packages if
the head node uses SUSE, and so on. The other packages for the
software image are supplied by Bright Computing.

When creating a custom software image, and if using the
--skipdist flag with cm-create-image, then Bright Cluster Man-
ager packages are added to the software image, but no par-
ent distribution packages are added. Thus in the following,
the packages made available to cm-create-image in the direc-
tory /cm/image/new-image, are installed into the image named
bio-image; however, no packages matching parent distribution
packages are installed (because of the --skipdist option). Fur-
thermore, transfer of the packages takes place only if they are
newer than the files already in the bio-image image (because of the
--updateimage option):

cm-create-image --fromdir /cm/image/new-image --imagename bio-imag\

e --skipdist --updateimage

© Bright Computing, Inc.



9.6 Creating A Custom Software Image 235

So, only Bright Cluster Manager packages are updated to the image
bio-image in the directory /cm/image/bio-image.

Package Selection Files In cm-create-image

Regarding explanation 7 in the preceding explanations text, the selection
of packages on the head node is done using a package selection file.

Package selection files are available in /cm/local/apps/

cluster-tools/config/. For example, if the base distribution of
the software image being created is CentOS5, then the config file used is:

/cm/local/apps/cluster-tools/config/CENTOS5-config-dist.xml

The package selection file is made up of a list of XML elements, speci-
fying the name of the package, architecture and image type. For example:

...

<package image="slave" name="apr" arch="x86_64"/>

<package image="slave" name="apr-util" arch="x86_64"/>

<package image="slave" name="atk-devel" arch="x86_64"/>

<package image="slave" name="autoconf" arch="noarch"/>

...

Additional packages to be installed in the image can be specified in
the package selection file.

The package selection file also contains entries for the packages that
can be installed on the head (image="master") node. Therefore non-head
node packages must have the image="slave" attribute.

Output And Logging During A cm-create-image Run
The cm-create-image run goes through several stages: validation, sanity
checks, finalizing the base distribution, copying Bright Cluster Manager
repository files, installing distribution package, finalizing image services,
and installing Bright Cluster Manager packages. An indication is given if
any of these stages fail.

Further detail is available in the logs of the cm-create-image run,
which are kept in /var/log/cmcreateimage.log.<image name>, where
<image name> is the name of the built image.

Default Image Location
The default-image is at /cm/images/default-image, so the image direc-
tory can simply be kept as /cm/images/.

During a cm-create-image run, the --imagedir option allows an im-
age directory for the image to be specified. This must exist before the
option is used.

More generally, the full path for each image can be set:

• In cmgui in the “Software Images” resource, by filling in the box
for Path in the Settings tabbed pane for the image

• In cmsh within softwareimage mode, for example:

[bright60->softwareimage]% set new-image path /cm/higgs/new-images

• At the system level, the images or image directory can be symlinked
to other locations for organizational convenience

© Bright Computing, Inc.

/cm/local/apps/cluster-tools/config/
/cm/local/apps/cluster-tools/config/


236 Post-Installation Software Management

9.6.3 Configuring Local Repositories For Linux Distributions
Having local instead of remote repositories for the cluster can be useful
in the following cases:

• for clusters that have restricted or no internet access.

• for the RHEL and SUSE Linux distributions, which are based on
a subscription and support model, and therefore do not have free
access to their repositories.

The cm-create-image command introduced in section 9.6.2 requires
access to the base distribution repositories.

The administrator can choose to access an online repository provided
by the distribution itself via a subscription as described in appendix M.
Another way to set up a repository is to set it up as a locally controlled
repository, which may be offline, or perhaps set up as a locally controlled
proxy with occasional, restricted, updates from the distribution reposi-
tory.

In the three procedures that follow, the first two procedures explain
how to create and configure a locally controlled offline zypper or zypper
repository for the subscription-based base distribution packages. These
first two procedures assume that the corresponding ISO/DVD has been
purchased/downloaded from the appropriate vendors. The third proce-
dure then explains how to create and configure a locally controlled offline
YUM repository from a freely accessible CentOS repository and combine
it with a local Bright repository so that a cluster that is completely offline
still has a complete and consistent repository access.

Configuring Repositories For SLES
For SLES11 SP0 and SLES11 SP1, the required packages
are spread across two DVDs, and hence two repositories
must be created. The image directory is assumed to be
/cm/images/sles11sp1-image, while the names of the DVDs are
assumed to be SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso and
SLES-11-SP1-DVD-x86_64-GM-DVD1.iso. The contents of the DVDs
are copied as follows:

mkdir /mnt1 /mnt2

mkdir /cm/images/sles11sp1-image/root/repo1

mkdir /cm/images/sles11sp1-image/root/repo2

mount -o loop,ro SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso /mnt1

cp -ar /mnt1/* /cm/images/sles11sp1-image/root/repo1/

mount -o loop,ro SLES-11-SP1-DVD-x86_64-GM-DVD1.iso /mnt2

cp -ar /mnt2/* /cm/images/sles11sp1-image/root/repo2/

The two repositories are added for use by zypper, as follows:

chroot /cm/images/sles11sp1-image

zypper addrepo /root/repo1 "SLES11SP1-SDK"

zypper addrepo /root/repo2 "SLES11SP1"

exit (chroot)

© Bright Computing, Inc.



9.6 Creating A Custom Software Image 237

Configuring Repositories For RHEL-Based Distributions
For RHEL-based distributions, the procedure is almost the same. The
required packages are contained in one DVD.

mkdir /mnt1

mkdir /cm/images/rhel-image/root/repo1

mount -o loop,ro RHEL-DVD1.iso /mnt1

cp -ar /mnt1/* /cm/images/rhel-image/root/repo1/

The repository is added to YUM by creating the repository file
/cm/images/rhel-image/etc/yum.repos.d/rhel-base.repo with the
contents:

[base]

name=Red Hat Enterprise Linux $releasever - $basearch - Base

baseurl=file:///root/repo1/Server

gpgcheck=0

enabled=1

Configuring CentOS And Bright Repositories For Local Access
An image directory can be assigned to $imagedir as follows:

imagedir=/cm/images/centosimage

and repository directories can then be created under it as follows:

mkdir $imagedir/root/bright-repo

mkdir $imagedir/root/centos5-extra

The centos5-extra repository contains a small number of extra pack-
ages, beyond the basic CentOS distribution, that are needed to make
Bright able to work with CentOS. If the Bright DVD based on release ver-
sion 5.2-29 is called bright-centos5.iso, then repository contents based
on it can be created like this:

mkdir /mnt1

mount -o loop bright-centos5.iso /mnt1

cp -a /mnt1/data/cm-rpms/5.2-29/centos/5/* $imagedir/root/bright-repo/

chroot $imagedir createrepo /root/bright-repo

Similarly for the CentOS extra distribution, repository contents based
on it can be created like this:

cp -a /mnt1/data/cm-rpms/dist/centos/5/extra/* $imagedir/root/centos5-ex\

tra/

chroot $imagedir createrepo /root/centos5-extra

The repository configuration files for the two repositories can then be
written as:

cat >$imagedir/etc/yum.repos.d/cm.repo <<EOF

[bright-repo]

name=Bright Cluster Manager 5.2 Repo

baseurl=file:///root/bright-repo

enabled=1

gpgcheck=0

EOF

© Bright Computing, Inc.



238 Post-Installation Software Management

cat >$imagedir/etc/yum.repos.d/centos5-extra.repo <<EOF

[centos5-extra]

name=Centos5 Dist Repo Extra - Bright DVD

baseurl=file:///root/centos5-extra

enabled=1

gpgcheck=0

EOF

A central CentOS mirror can be enabled to allow additional distribu-
tion packages to be pulled in with YUM, to satisfy certain dependencies
for Bright packages. A CentOS 5 repository configuration file can be cre-
ated as follows:

cat >$imagedir/etc/yum.repos.d/centos5.repo <<EOF

[base]

name=CentOS-$releasever - Base

mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basea\

rch&repo=os

#baseurl=http://mirror.centos.org/centos/$releasever/os/$basearch/

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5

#released updates

[updates]

name=CentOS-$releasever - Updates

mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basea\

rch&repo=updates

#baseurl=http://mirror.centos.org/centos/$releasever/updates/$basearch/

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5

#additional packages that may be useful

[extras]

name=CentOS-$releasever - Extras

mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$base\

arch&repo=extras

#baseurl=http://mirror.centos.org/centos/$releasever/extras/$basearch/

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5

EOF

The software image can now be created in the directory called, for
example, offlineimage:

cm-create-image -d $imagedir -n offlineimage -e -s

The -e option prevents copying the default cluster manager cm.repo
file. The -s option prevents installing additional distribution packages
that might not be required.

9.7 Making All Nodes Function Differently From
Normal Cluster Behavior With FrozenFile

Configuration changes carried out by cmgui or cmsh often generate, re-
store, or modify configuration files (Appendix A).

© Bright Computing, Inc.



9.8 Making Some Nodes Function Differently By Image 239

However, sometimes an administrator may need to make a direct
change (without using cmgui or cmsh) to a configuration file to set up
a special configuration that cannot otherwise be done.

The FrozenFile directive to CMDaemon (Appendix C) applied to
such a configuration file stops CMDaemon from altering the file. The
frozen configuration file is generally applicable to all nodes and is there-
fore a possible way of making all nodes function differently from their
standard behavior.

Freezing files is however best avoided, if possible, in favor of a
CMDaemon-based method of configuring nodes, for the sake of adminis-
trative maintainability.

9.8 Making Some Nodes Function Differently By
Image

For minor changes, adjustments can often be made to node settings so
that nodes or node categories function differently. This is covered in sec-
tion 9.9.

For major changes, it is usually more appropriate to have nodes func-
tion differently from each other by simply setting different images per
node category with CMDaemon.

This can be done as follows with cmsh:

1. The image on which the new one will be based is cloned. The
cloning operation not only copies all the settings of the original
(apart from the name), but also the data of the image:

Example

[root@bright52 ~]# cmsh

[bright52]% softwareimage

[bright52->softwareimage]% clone default-image imagetwo

[bright52->softwareimage*[imagetwo*]]% commit

Thu Aug 11 15:44:44 2011 [notice] bright52: Started to copy: /cm/\

images/default-image -> /cm/images/imagetwo

[bright52->softwareimage*[imagetwo*]]%

Thu Aug 11 15:53:22 2011 [notice] bright52: Copied: /cm/images/de\

fault-image -> /cm/images/imagetwo

[bright52->softwareimage[imagetwo]]%

2. After cloning, the settings can be modified in the new object. For ex-
ample, if the kernel needs to be changed to suit nodes with different
hardware, kernel modules settings are changed (section 6.3.2) and
committed. This creates a new image with a new ramdisk.

Other ways of modifying and committing the image for the nodes
are also possible, as discussed in sections 9.2–9.6 of this chapter.

3. The modified image that is to be used by the differently functioning
nodes is placed in a new category in order to have the nodes be able
to choose the image. To create a new category easily, it can simply
be cloned. The image that the category uses is then set:

© Bright Computing, Inc.



240 Post-Installation Software Management

[bright52->softwareimage[imagetwo]]% category

[bright52->category]% clone default categorytwo

[bright52->category*[categorytwo*]]% set softwareimage imagetwo

[bright52->category*[categorytwo*]]% commit

[bright52->category[categorytwo]]%

4. • For just one node, or a few nodes, the node can be set from
device mode to the new category (which has the new image):

[bright52->category[categorytwo]]% device

[bright52->device]% use node099

[bright52->device[node099]]% set category categorytwo

[bright52->device*[node099*]]% commit; exit

• If there are many nodes, for example node100 sequentially up
to node200, they can be set to that category using a foreach

loop like this:

Example

[bright52->device]% foreach -n node100..node200 (set category\

categorytwo)

[bright52->device*]% commit

5. Rebooting restarts the nodes that are assigned to the new category
with the new image.

Similarly, using cmgui, a default image can be cloned with the “Clone”
button in the “Software Images” resource operating on an existing im-
age. The new image is modified from the “Software Images” tab (sec-
tion 9.3.4) or using the other image modifying methods in this chapter, to
make nodes function in the way required, and any appropriate node or
node category is assigned this image.

9.9 Making Some Nodes Function Differently By
Configuration Adjustment

9.9.1 Configuration Adjustment: The Bigger Picture
From an administrative perspective, sections 9.2–9.6 of this chapter have
covered managing (installing, maintaining, removing) software on nodes
as a technique, while section 9.7 has covered using the FrozenFile direc-
tive as a way to override CMDaemon control of configuration files and is
generally applicable to all nodes. How to make some nodes behave differ-
ently in the context of setting different images on some nodes is discussed
in section 9.8.

How to make some nodes behave differently in the context of adjust-
ing configuration settings on nodes instead of varying software images
per node is discussed in the current section 9.9.

Since the subject of this chapter is about the post-installation manage-
ment of software images, the current section is, strictly speaking, outside
the scope of the chapter. It is nonetheless included here for complete-
ness, because an administrator should consider configuration adjustment
methods as a possibly more suitable alternative to setting different im-
ages on nodes.

© Bright Computing, Inc.



9.9 Making Some Nodes Function Differently By Configuration Adjustment 241

9.9.2 Configuration Adjustment: When To Use It
Configuration adjustment is more appropriate for less complex changes
and also avoids having to manage images.

For example, it is more appropriate to adjust nodes rather than in-
stall entire images on them when there are minor changes per node. The
approach of installing software images would require a new image for
each change, and tends to lead to a large number of images. Managing
large numbers of images and their associated software can be a chore—
each different image requires tracking from the administrator for all fu-
ture changes. Adjustment techniques on the other hand may be able to
achieve the same behavior as that achieved by the installation of differ-
ent software images onto nodes, and, with no new image required for the
change in behavior, less administrative labor is required when changes
are needed in the future.

Therefore, adjustment techniques should be considered if the aim is to
have nodes function differently without image changes, and usually with
minor changes involved.

9.9.3 Configuration Adjustment: Techniques
The following adjustment techniques are considered next:

• node configuration adjustments using cmgui/cmsh (section 9.9.4)

• adding functionality via a finalize scripts (section 9.9.5)

• adding functionality by mounting a shared directory containing the
software (section 9.9.6)

9.9.4 Configuring Nodes Using cmgui Or cmsh
A node or node category can often have its software configured in CM-
Daemon via cmgui or cmsh:

Example

Configuring a software for nodes using cmgui or cmsh: If the software
under consideration is CUPS, then a node or node category can manage
it from the Services tab with cmgui or cmsh as outlined in section 4.8.2.

A (counter-) example to the method discussed in this section can be
considered here to make the difference clearer. Instead of configuring the
software via CMDaemon, it could instead first be configured as required
in a software image. It could then be loaded by the node category directly
as done in section 9.9. The example analogous to the preceding one would
then be:

Example

Configuring a software for nodes without using cmgui or cmsh1: Soft-
ware images can be created with and without CUPS configured. Setting
up nodes to load one of these two images via a node category is an alter-
native way of letting nodes run CUPS.

1except to link nodes to their appropriate image via the associated category

© Bright Computing, Inc.



242 Post-Installation Software Management

Whether node configuration for a particular functionality is done with
CMDaemon, or directly with the software, depends on what an admin-
istrator prefers. In the preceding two examples, the first example with
cmgui or cmsh setting the CUPS service is likely to be preferred over the
second example where an entire separate image must be maintained. A
new category must also be created in the second case.

Generally, sometimes configuring the node via Bright Cluster Man-
ager, and not having to manage images is better, sometimes configuring
the software and making various images to be managed out of it is better,
and sometimes only one of these techniques is possible anyway.

Configuring Nodes Using cmgui Or cmsh: Category Settings
When configuring nodes using cmgui or cmsh, configuring particular
nodes from a node category to override the state of the rest of its category
(as in section 3.1.3) is sensible for a small number of nodes. For larger
numbers it may not be organizationally practical to do this, and another
category can instead be created to handle nodes with the changes conve-
niently.

The CUPS service in the next two examples is carried out by imple-
menting the changes via cmgui or cmsh acting on CMDaemon.

Example

Setting a few nodes in a category: If only a few nodes in a category are
to run CUPS, then it can be done by those few nodes having the CUPS
service enabled in the Nodes resource, thereby overriding (section 3.1.3)
the category settings.

Example

Setting many nodes to a category: If there are many nodes that are to be
set to run CUPS, then a separate, new category can be created (cloning
it from the existing one is easiest) and those many nodes are moved into
that category, while the image is kept unchanged. The CUPS service set-
ting is then set at category level to the appropriate value for the new cat-
egory.

In contrast to these two examples, the software image method used
in section 9.8 to implement a functionality such as CUPS would load up
CUPS as configured in an image, and would not handle it via CMDae-
mon1. So, in section 9.8, software images prepared by the administrator
are set for a node category. Since, by design, images are only selected for
a category, a node cannot override the image used by the category other
than by creating a new category, and using it with the new image. The
administrative overhead of this can be inconvenient.

Administrators would therefore normally prefer letting CMDaemon
track software functionality across nodes as in the last two examples,
rather than having to deal with tracking software images manually.

9.9.5 Adding Functionality To Nodes Via A Finalize Script
CMDaemon can normally be used to allocate different images per node
or node category as explained in section 9.8. However, some configu-
ration files do not survive a reboot (Appendix A), sometimes hardware

© Bright Computing, Inc.



9.9 Making Some Nodes Function Differently By Configuration Adjustment 243

issues can prevent a consistent end configuration, and sometimes drivers
need to be initialized before provisioning of an image can happen. In
such cases, a finalize script (Appendix E.6) can be used to initialize or
configure nodes or node categories.

A finalize script is also useful because it can be used to implement
minor changes across nodes.

Example

Supposing that some nodes with a particular network interface have
a problem autonegotiating their network speed, and default to 100Mbps
instead of the maximum speed of 1000Mbps. Such nodes can be set
to ignore autonegotiation and be forced to use the 1000Mbps speed by
using the ETHTOOL_OPTS configuration parameter in their network inter-
face configuration file: /etc/sysconfig/network-scripts/ifcfg-eth0

(or /etc/sysconfig/network/ifcfg-eth0 in SUSE).
The ETHTOOL_OPTS parameter takes the options to the “ethtool -s

<device>” command as options. The value of <device> (for example eth0)
is specified by the filename that is used by the configuration file itself (for
example /etc/sysconfig/network-scripts/ifcfg-eth0). The ethtool

package is installed by default on Bright Clusters. Running the command:

ethtool -s autoneg off speed 1000 duplex full

turns out after some testing to be enough to reliably get the network card
up and running at 1000Mbps on the problem hardware.

However, since the network configuration file is overwritten by node-
installer settings during reboot, a way to bring persistence to the file set-
ting is needed. One way to ensure persistence is to append the configu-
ration setting to the file with a finalize script, so that it gets tagged onto
the end of the configuration setting that the node-installer places for the
file, just before the network interfaces are taken down again in prepara-
tion for init.

The script may thus look something like this for a Red Hat system:

#!/bin/bash

## node010..node014 get forced to 1000 duplex

if [[ $CMD_HOSTNAME = node01[0-4] ]]

then

echo 'ETHTOOL_OPTS="speed 1000 duplex full"'>>/localdisk/etc/sysconfig/\

network-scripts/ifcfg-eth0

fi

9.9.6 Adding Functionality To Nodes By Mounting A Shared
Directory

Software that is on a shared directory can be run on a node or node cat-
egory. Section 4.7 describes how to share a directory, thereby giving the
node or node category the added functionality of that software.

© Bright Computing, Inc.





10
Cluster Monitoring

The Bright Cluster Manager monitoring framework lets a cluster admin-
istrator:

• inspect monitoring data to the required level for existing resources;

• configure gathering of monitoring data for new resources;

• see current and past problems or abnormal behavior;

• notice trends that help the administrator predict likely future prob-
lems;

• handle current and likely future problems by

– triggering alerts;

– taking action if necessary to try to improve the situation or to
investigate further.

Powerful features are accessible within an intuitive monitoring frame-
work, and customized complex setups can be constructed to suit the re-
quirements of the administrator.

In this chapter, the monitoring framework is explained with the fol-
lowing approach:

1. A basic example is first presented in which processes are run on
a node. These processes are monitored, and are acted on when a
threshold is exceeded.

2. With this easy-to-understand example as the base, the various fea-
tures and associated functionality of the Bright Cluster Manager
monitoring framework are described and discussed in depth. These
include visualization of data, concepts, configuration, monitoring
customization and cmsh use.

10.1 A Basic Example Of How Monitoring Works
In this section, a minimal basic example of monitoring a process is set up.
The aim is to present a simple overview that covers a part of what the
monitoring framework is capable of handling. The overview gives the
reader a structure to keep in mind, around which further details are fitted
and filled in during the coverage in the rest of this chapter.

© Bright Computing, Inc.



246 Cluster Monitoring

In the example, a user runs a large number of pointless CPU-intensive
processes on a head node which is normally very lightly loaded. An
administrator would then want to monitor user mode CPU load usage,
and stop such processes automatically when a high load is detected (fig-
ure 10.1).

� High load detected
and processes stopped

?

CPU-intensive
processes started

6

CPU load

- Time

Figure 10.1: Monitoring Basic Example: CPU-intensive Processes Started,
Detected And Stopped

The basic example illustrates a (very contrived) way for the Bright
Cluster Manager monitoring framework to be used to do that.

10.1.1 Before Using The Framework—Setting Up The Pieces
Running A Large Number Of Pointless CPU-Intensive Processes
One way to simulate a user running pointless CPU-intensive processes is
to run several instances of the standard unix utility, yes. The yes com-
mand sends out an endless number of lines of “y” texts. It is usually used
to answer prompts for confirmation.

8 subshell processes are run in the background from the command line
on the head node, with yes output sent to /dev/null as follows:

for i in {1..8}; do ( yes > /dev/null &); done

Running “mpstat 2” shows usage statistics for each processor, updating
every 2 seconds. It shows that %user, which is user mode CPU usage, and
which is reported as CPUUser in the Bright Cluster Manager metrics, is
close to 100% on an 8-core or less head node when the 8 subshell processes
are running.

Setting Up The Kill Action
To stop the pointless CPU-intensive yes processes, the command “killall
yes” is used. It is made a part of a script killallyes:

#!/bin/bash

killall yes

and made executable with a chmod 700 killallyes. For convenience, it
may be placed in the /cm/local/apps/cmd/scripts/actions directory
where other action scripts also reside.

10.1.2 Using The Framework
Now that the pieces are in place, cmgui’s monitoring framework is used
to add the action to its action list, and then set up a threshold level that
triggers the action:

© Bright Computing, Inc.



10.1 A Basic Example Of How Monitoring Works 247

Figure 10.2: cmgui Monitoring Configuration: Adding An Action

Adding The Action To The Actions List
From the resources tree of cmgui, Monitoring Configuration is selected,
and then the Actions tab is selected. A list of currently available actions
is displayed. A new action is added by entering the following values in
the Add dialog (figure 10.2):

• action name: killallyes

• description: kill all yes processes

• command: /cm/local/apps/cmd/scripts/actions/killallyes

The Save button adds the action killallyes to the list of possible actions,
which means that the action can now be used throughout the monitoring
framework.

Setting Up The Threshold Level For CPUUser On The Head Node(s)
Continuing on, the Metric Configuration tab is selected. Then within
the selection box options for Metric Configuration, All Master Nodes

is selected to confine the metrics being measured to the head node(s).
The metric CPUUser, which is a measure of the user mode CPU usage as
a percentage, is selected. The Thresholds button is clicked on to open a
Thresholds dialog. Within the Thresholds dialog the Add is clicked but-
ton to open up a “New Threshold” dialog. Within the “New Threshold”
dialog (figure 10.3), these values are set:

• threshold name: killallyesthreshold

• (upper) bound: 50

• action name (first selection box in the action option): killallyes

• action state option (next selection box in the action option): Enter

Clicking on Ok exits the “New Threshold” dialog, clicking on Done ex-
its the Thresholds dialog, and clicking on Save saves the threshold set-
ting associated with CPUUser on the head node.

© Bright Computing, Inc.



248 Cluster Monitoring

Figure 10.3: cmgui Monitoring Configuration: Setting A Threshold

The Result
In the preceding section, an action was added, and a threshold was set up
with the monitoring framework.

With a default installation on a newly installed cluster, the measure-
ment of CPUUser is done every 120s (the edit dialog of figure 10.22 shows
how to edit this value). The basic example configured with the defaults
thus monitors if CPUUser on the head node has crossed the bound of 50%
every 120s.

If CPUUser is found to have entered, that is crossed over from below
the value and gone into the zone beyond 50%, then the framework runs
the killallyes script, killing all running yes processes. Assuming the
system is trivially loaded apart from these yes processes, the CPUUser

metric value then drops to below 50%.
After an Enter threshold condition has been met for a sample, the

first sample immediately after that does not ever meet the Enter thresh-
old condition, because an Enter threshold crossing condition requires the
previous sample to be below the threshold.

The second sample can only launch an action if the Enter threshold
condition is met and if the preceding sample is below the threshold.

Other non-yes CPU-intensive processes running on the head node can
also trigger the killallyes script. Since the script only kills yes pro-
cesses, leaving any non-yes processes alone, it would in such a case run
unnecessarily. This is a deficiency due to the contrived and simple nature
of the basic example being illustrated here, and is of no real concern.

© Bright Computing, Inc.



10.2 Monitoring Concepts And Definitions 249

10.2 Monitoring Concepts And Definitions
A discussion of the concepts of monitoring, along with definitions of
terms used, is appropriate at this point. The features of the monitoring
framework covered later on in this chapter will then be understood more
clearly.

10.2.1 Metric
In the basic example of section 10.1, the metric value considered was
CPUUser, measured at regular time intervals of 120s.

A metric is a property of a device that can be monitored. It has a
numeric value and can have units, unless it is unknown, i.e. has a null
value. Examples are:

• temperature (value in degrees Celsius, for example: 45.2 °C);

• load average (value is a number, for example: 1.23);

• free space (value in bytes, for example: 12322343).

A metric can be a built-in, which means it is an integral part of the moni-
toring framework, or it can be a standalone script.

The word metric is often used to mean the script or object associated
with a metric as well as a metric value. The context makes it clear which
is meant.

10.2.2 Action
In the basic example of section 10.1, the action script is the script added
to the monitoring system to kill all yes processes. The script runs when
the condition is met that CPUUser crosses 50%.

An action is a standalone script or a built-in command that is executed
when a condition is met. This condition can be:

• health checking (section 10.2.4);

• threshold checking (section 10.2.3) associated with a metric (sec-
tion 10.2.1);

• state flapping (section 10.2.9).

10.2.3 Threshold
In the basic example of section 10.1, a threshold is set to 50% of CPUUser,
and an action set so that crossing this threshold runs the killallyes

script.
A threshold is a particular value in a sampled metric. A sample can

cross the threshold, thereby entering or leaving a zone that is demarcated
by the threshold.

A threshold can be configured to launch an action (section 10.2.2) ac-
cording to threshold crossing conditions. The “New Threshold” dialog of
cmgui (figure 10.3) has three action launch configuration options:

1. Enter: if the sample has entered into the zone and the previous
sample was not in the zone

2. Leave: if the sample has left the zone and the previous sample was
in the zone

© Bright Computing, Inc.



250 Cluster Monitoring

3. During: if the sample is in the zone, and the previous sample was
also in the zone.

A threshold zone also has a settable severity (section 10.2.6) associated
with it. This value is processed for the AlertLevel metric (section 10.2.7)
when an action is triggered by a threshold event.

10.2.4 Health Check
A health check value is a state. It is the response to running a health check
script at a regular time interval, with as possible response values: PASS,
FAIL, or UNKNOWN. The state is recorded in the monitoring framework.

Examples of health checks are:

• checking if the hard drive still has enough space left on it and re-
turning PASS if it has;

• checking if an NFS mount is accessible, and returning FAIL if it is
not;

• checking if CPUUser is below 50%, and returning PASS if it is;

• checking if the cmsh binary is found, and returning UNKNOWN if it is
not.

A health check has a settable severity (section 10.2.6) associated with
a FAIL or UNKNOWN response. This value is processed for the AlertLevel
metric (section 10.2.7) when the health check runs.

A health check can also launch an action based on any of the response
values, similar to the way that an action is launched by a metric with a
threshold condition.

10.2.5 Conceptual Overview: Health Checks Vs Threshold
Checks

A health check is quite similar to a threshold state check with a metric.
Conceptually, however, they are intended to differ as follows:

• A threshold state check works with numeric values.

A health check on the other hand works with a response state of
PASS, FAIL, or UNKNOWN.

• Threshold-checking does not specifically store a direct history of
whether the threshold condition was met or not—it just calls the
action script right away as its response. Admittedly, the associated
metric data values are still kept by the monitoring framework, so
that establishing if a threshold has been crossed historically is al-
ways possible with a little effort.

A health check on the other hand stores its PASS/FAIL/UNKNOWN re-
sponses for the monitoring framework, making it easily accessible
for viewing by default.

• The threshold-checking mechanism is intended to be limited to do-
ing a numerical comparison of a metric value with a threshold value

A health check on the other hand has more general checking capa-
bilities.

© Bright Computing, Inc.



10.2 Monitoring Concepts And Definitions 251

With some inventiveness, a health check can be made to do the func-
tion of a metric’s threshold/action sequence (as well as the other way
round).

The considerations above should help decide what the appropriate
tool (health check or metric threshold check) should be for the job.

10.2.6 Severity
Severity is a positive integer value that the administrator assigns to a
threshold-crossing event or to a health check status event. It takes one
of these 5 suggested values:

Value Name Icon Description

0 info informational message

10 notice normal, but significant, condition

20 warning warning conditions

30 error error conditions

40 alert action must be taken immediately

By default the value is 10. It is used in the AlertLevel metric (sec-
tion 10.2.7).

10.2.7 AlertLevel
AlertLevel is a special metric. It is not sampled, but it is re-calculated when
an event with an associated Severity (section 10.2.6) occurs. There are
two types of AlertLevel metrics:

1. AlertLevel (max), which is simply the maximum severity of the latest
value of all the events. The aim of this metric is to alert the admin-
istrator to the severity of the most important issue.

2. AlertLevel (sum) which is the sum of the latest severity values of all
the events. The aim of this metric is to alert the administrator to the
overall severity of issues.

10.2.8 InfoMessages
InfoMessages are messages that inform the administrator of the reason for
a health status event change in the cluster. These show up in the Overview
tab of nodes, in the Health Status section.

10.2.9 Flapping
Flapping, or State Flapping, is when a state transition (section 10.2.10) oc-
curs too many times over a number of samples. In the basic example
of section 10.1, if the CPUUser metric crossed the threshold zone 7 times
within 12 samples (the default values for flap detection), then it would by
default be detected as flapping. A flapping alert would then be recorded
in the event viewer, and a flapping action could also be launched if con-
figured to do so. Flapping configuration for cmgui is covered for thresh-
olds crossing events in section 10.4.2, when the metric configuration tab’s
Edit and Add dialogs are explained; and also covered for health check
state changes in section 10.4.3, when the health check configuration tab’s
Edit and Add dialogs are explained.

© Bright Computing, Inc.



252 Cluster Monitoring

�� ��-
1. Visualization

-�� ��
2. Monitoring
Configuration

#
"

 
!

-

3. Event
Viewer

�� ��

'

&

$

%

S
Sw

?

4. Overview Of Monitored Data

Figure 10.4: cmgui Conceptual Overview - Monitoring Types

10.2.10 Transition
A state transition is:

• a health check state change (for example, changing from PASS to
FAIL, or from FAIL to UNKNOWN);

• a metric threshold (section 10.2.3) crossing event. This is only valid
for values that Enter or Leave the threshold zone.

10.2.11 Conceptual Overview: cmgui’s Main Monitoring
Interfaces

Monitoring information is presented in several places in cmgui for con-
venience during everyday use. The conceptual overview in figure 10.4
covers a commonly seen layout in cmgui, showing 4 monitoring-related
viewing areas for the cluster administrator. These are:

1. Visualization

Visualization of monitoring data is made available from cmgui’s
monitoring menu, and launches a new window. Graphs are gen-
erated from metrics and health checks data, and these graphs are
viewed in various ways within window panes.

The use of the visualization tool is covered in section 10.3 using
typical data from CPUUser from the basic example of section 10.1.

2. Monitoring Configuration

Selecting the Monitoring Configuration resource in cmgui from
the Resources list on the left hand side of the Bright Cluster Man-
ager displays the monitoring configuration pane on the right hand
side. Within this pane, the following tabs show up:

• Overview: an overview of enabled actions

© Bright Computing, Inc.



10.2 Monitoring Concepts And Definitions 253

• Metric Configuration: allows configuration of device cate-
gories with metrics

• Health Check Configuration: allows configuration of device
categories with health checks

• Metrics: allows configuration of metrics for devices

• Health Checks: allows configuration of health checks for de-
vices

• Actions: allows actions to be set to run from metric thresholds
and health check results

Some parts of Monitoring Configuration were used in the basic
example of section 10.1 to set up the threshold for CPUUser, and to
assign the action. It is covered more thoroughly in section 10.4.

3. Event Viewer

The Event Viewer is a log of important events that are seen on the
cluster(s). How the events are presented is configurable, with tools
that allow filtering based on dates, clusters, nodes or a text string;
and widgets that allow rearranging the sort order or detaching the
pane.

4. Overview Of Monitored Data

A dashboard in a car conveys the most important relevant informa-
tion at a glance and attracts attention to items that are abnormal and
merit further investigation.

The same idea lies behind the Overview tab of Bright Cluster Man-
ager. This gives a dashboard view based on the monitored data for a
particular device such as a switch, a cluster (probably the most use-
ful overview, and therefore also the default when first connecting to
the cluster with cmgui), a node, a GPU unit, and so on.

Neighboring tabs often allow a closer look at issues noticed in the
Overview, and also sometimes a way to act on them.

For example, if jobs are not seen in the Overview tab, then the ad-
ministrator may want to look at the neighboring Services tab (fig-
ure 10.5), and see if the workload manager is running. The Services
tab (section 4.8.2) allows the administrator to manage a service such
as the workload manager.

Figure 10.5: cmgui: Device Services Tab

© Bright Computing, Inc.



254 Cluster Monitoring

10.3 Monitoring Visualization With cmgui

The Monitoring option in the menu bar of cmgui (item 1 in figure 10.4)
launches an intuitive visualization tool that should be the main tool for
getting a feel of the system’s behavior over periods of time. With this
tool the measurements and states of the system are viewed. Graphs for
metrics and health checks can be looked at in various ways: for example,
the graphs can be zoomed in and out on over a particular time period, the
graphs can be laid out on top of each other or the graphs can be laid out
as a giant grid. The graph scale settings can also be adjusted, stored and
recalled for use the next time a session is started.

An alternative to cmgui’s visualization tool is the command-line cmsh.
This has the same functionality in the sense that data values can be se-
lected and studied according to configurable parameters with it (sec-
tion 10.8). The data values can even be plotted and displayed on graphs
with cmsh with the help of unix pipes and graphing utilities. However,
the strengths of monitoring with cmsh lie elsewhere: cmsh is more use-
ful for scripting or for examining pre-decided metrics and health checks
rather than a quick visual check over the system. This is because cmsh

needs more familiarity with options, and is designed for text output in-
stead of interactive graphs. Monitoring with cmsh is discussed in sec-
tions 10.7 and 10.8.

How cmgui is used for visualization is now described.

10.3.1 The Monitoring Window
The Monitoring menu is selected from the menu bar of cmgui and a clus-
ter name is selected.

The Monitoring window opens (figure 10.6). The resources in the
cluster are shown on the left side of the window. Clicking on a resource
opens or closes its subtree of metrics and health checks.

The subsequent sections describe ways of viewing and changing re-
source settings. After having carried out such modifications, saving and
loading a settings state can be done from options in the File menu.

Figure 10.6: cmgui Monitoring Window: Resources View

Figure 10.6 shows the different resources of the head node, with the
CPU resource subtree opened up in turn to show its metrics and health

© Bright Computing, Inc.



10.3 Monitoring Visualization With cmgui 255

checks. Out of these, the CPUUser metric (for user CPU usage) is shown
selected for further display.

To display this metric, the selection is drag-and-dropped onto one of
the 3 panes which has the text “drop sensor here”.

10.3.2 The Graph Display Pane
Figure 10.7 shows the monitoring window after such a drag-and-drop.
The graph of the metric CPUUser is displayed over 20 minutes (10th Novem-
ber 2010 08:04 to 08:24). On the y-axis the unit used by the metric is shown
(0% to about 100%). This example is actually of data gathered when the
basic example of 10.1 was run, and shows CPUUser rising as a number of
yes processes are run, and falling when they end.

Figure 10.7: cmgui Monitoring Window: Graph Display Pane

Features of graph display panes are (figure 10.8):

1. The close widget which erases all graphs on the drawing pane when
it is clicked. (Individual graphs are removed in the settings dialog
discussed in section 10.3.5.)

2. The (time, measurement) data values in the graph are displayed on
the graph toolbar by hovering the mouse cursor over the graph.

3. The graph view adjustment buttons are:

• play/pause: by default the graph is refreshed with new data
every 2 minutes. This is disabled and resumed by clicking on
the pause/play button on the graph toolbar.

-�� ��close widget

?�� �


play/
pause

?�� �


zoom-in/
zoom-out

?�� �


broadcast

?�� �


settings

?�� �


(time, measurement)
value pair

Figure 10.8: Graph Display Pane: Features

© Bright Computing, Inc.



256 Cluster Monitoring

• zoom-out/zoom-in: Clicking on one of the magnifying glasses
zooms-in or zooms-out on the graph in time. This way data
values can be shown, even from many months ago. Zooming
in with mouse gestures is also possible and is discussed in sec-
tion 10.3.4.

• broadcast: A time-scale synchronizer. Toggling this button
to a pressed state for one of the graphs means that scale
changes carried out via magnifying glass zooms (preceding
bullet point) or via mouse gestures (section 10.3.4) are done
over all the other graph display panes too so that their x-ranges
match. This is useful for large numbers of nodes.

• settings: Clicking on this button opens a dialog window to
modify certain aspects of the graph. The settings dialog is dis-
cussed in section 10.3.5.

4. A grid of graph display panes can be laid out by using the Grid

menu option of the main Monitoring Pane (figure 10.6). Among
the menu options of the Grid menu (figure 10.9) are:

Figure 10.9: Grid Menu Options

(a) Layout: a grid of dimensions x× y can be selected or specified
with the Layout option. With the Layout option, metrics need
to be added manually to each grid unit.

(b) Grid plot wizard: For larger grids it is tedious to allocate de-
vices to a grid and manually fill in the grid units with metrics.
The Grid plot wizard can take care of the tedious aspects,
and is described in section 10.3.3.

5. Multiple graphs are drawn in a single graph display pane by re-
peating the drag and drop for different metrics. For example, adding
the CPUIdle metric with a drag-and-drop to the CPUUser graph of
figure 10.7 gives a result as seen in figure 10.10, where both graphs
lie on the same axis in the top pane.

© Bright Computing, Inc.



10.3 Monitoring Visualization With cmgui 257

Figure 10.10: Graph Display Pane: Multiple Graphs On One Pane

10.3.3 Using The Grid Wizard
Within the Monitoring window (section 10.3.1), the Grid plot wizard

sets up a grid for devices selected by the administrator, and allows met-
rics to be added automatically to each grid unit.

The first screen of the wizard allows devices to be selected from the
group of all devices, and placed in a group of devices that are to have
their metrics plotted (figure 10.11).

Figure 10.11: Grid Wizard: Devices Selection

The next screen of the wizard allows metrics to be drag-and-dropped
from the available metrics into a group of metrics that are to be displayed
for the devices in the previous screen (figure 10.12).

© Bright Computing, Inc.



258 Cluster Monitoring

Figure 10.12: Grid Wizard: Metrics Drag-And-Drop

The last screen of the wizard allows several display options to be set
for the selected devices and their metrics (figure 10.13).

Figure 10.13: Grid Wizard: Display Options

One of these options is the specification of the layout width and height
for the displayed grid of selected devices. For example, four nodes could
be laid out in a grid of 4 wide by 1 high, 2 wide by 2 high, or 1 wide by
4 high. The meanings of the remaining display options are described in
section 10.3.5.

Once the Finish button of the last screen is clicked, a graph display

© Bright Computing, Inc.



10.3 Monitoring Visualization With cmgui 259

pane is shown with a grid of graphs (figure 10.14).

Figure 10.14: Grid Wizard: Grid Result

10.3.4 Zooming In With Mouse Gestures
Besides using a magnifying glass button there are two other ways to zoom
in on a graph, based on intuitive mouse gestures:

X-Axis Zoom
The first way to zoom in is to draw a horizontal line across the graph by
holding the left mouse button down on the graph. A guide line shows up
while doing this (figure 10.15):

Figure 10.15: Graph Display Pane: X-axis Zoom Start

The x-axis range covered by this line is zoomed in on when the mouse
button is released (figure 10.16):

© Bright Computing, Inc.



260 Cluster Monitoring

Figure 10.16: Graph Display Pane: X-axis Zoom Finish

Box Zoom
The second way to zoom in is to draw a box instead of a line across the
graph by holding the left mouse button down and drawing a line diago-
nally across the data instead of horizontally. A guide box shows up (fig-
ure 10.17):

Figure 10.17: Graph Display Pane: Box Zoom Start

This is zoomed into when the mouse button is released (figure 10.18):

Figure 10.18: Graph Display Pane: Box Zoom Finish

10.3.5 The Graph Display Settings Dialog
Clicking on the settings button in the graph display pane (figure 10.8)
opens up the graph display pane settings dialog (figure 10.19):

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 261

Figure 10.19: Graph Display Pane Settings Dialog

This allows the following settings to be modified:

• the Title shown at the top of the graph;

• over When the x-range is displayed;

• the Intervals value. This is the number of intervals (by default 200)
used to draw the graph. For example, although there may be 2000
data points available during the selected period, by default only 200
are used, with each of the 200 an average of 10 real data points. This
mechanism is especially useful for smoothing out noisier metrics to
give a better overview of behavior.

• The Refresh Rate, which sets how often the graph is recreated;

• the visual layout of the graphs, which can be adjusted so that:

– Color aspects of each graph are changed in the row of settings
for that graph;

– Each graph is deleted from its pane with the 	 button at the
end of the row of settings for that graph.

10.4 Monitoring Configuration With cmgui

This section is about the configuration of monitoring for health checks
and metrics, along with setting up the actions which are triggered from a
health check or a metric threshold check.

Selecting Monitoring Configuration from the resources section of
cmgui makes the following tabs available (figure 10.20):

• Overview (displays as the default)

• Metric Configuration

• Health Check Configuration

• Metrics

© Bright Computing, Inc.



262 Cluster Monitoring

Figure 10.20: cmgui Monitoring Configuration Tabs

• Health Checks

• Actions

The tabs are now discussed in detail.

10.4.1 The Overview Tab
The Overview tab of figure 10.20 shows an overview of custom thresh-
old actions and custom health check actions that are active in the system.
Each row of conditions in the list that decides if an action is launched
is called a rule. Only one rule is on display in figure 10.20, showing an
overview of the metric threshold action settings which were set up in the
basic example of section 10.1.

The Add rule button runs a convenient wizard that guides an admin-
istrator in setting up a condition, and thereby avoids having to go through
the other tabs separately.

The Remove button removes a selected rule.
The Edit button edits aspects of a selected rule. It opens a dialog

that edits a metric threshold configuration or a health check configura-
tion. These configuration dialog options are also accessible from within
the Metric Configuration and Health Check Configuration tabs.

The Revert button reverts a modified state of the tab to the last saved
state.

The Save button saves a modified state of the tab.

10.4.2 The Metric Configuration Tab
The Metric Configuration tab allows device categories to be selected
for the sampling of metrics. Properties of metrics related to the taking
of samples can then be configured from this tab for the selected device
category. These properties are the configuration of the sampling parame-
ters themselves (for example, frequency and length of logs), but also the
configuration of related properties such as thresholds, consolidation, ac-
tions launched when a threshold is crossed, and actions launched when a
metric state is flapping.

The Metric Configuration tab is initially a blank tab until the device
category is selected by using the Metric Configuration selection box.
The selection box selects the device category from a list of built-in cate-
gories and user-defined node categories (node categories are introduced
in section 3.1.3). On selection, the metrics of the selected device category
are listed in the Metric Configuration tab. Properties of the metrics
related to sampling are only available for configuration and manipula-

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 263

tion after the metrics list displays. Handling metrics in this manner, via
groups of devices, is slightly awkward for just a few machines, but for
larger clusters it keeps administration scalable and thus manageable.

Figure 10.21 shows an example of the Metric Configuration tab af-
ter All master nodes is chosen as the device category. This corresponds
to the basic example of section 10.1, where All master nodes was the de-
vice category chosen because it was the CPUUser metric on a master node
that was to be monitored. Examples of other device categories that could
be chosen are All ethernet switches, if Ethernet switches are to have
their metrics configured; or All Power Distribution Units, if power
distribution units are to have their metrics configured.

Figure 10.21: cmgui Monitoring: Metric Configuration Display After Cat-
egory Selection

With the screen displaying a list of metrics as in figure 10.21, the met-
rics in the Metric Configuration tab can now be configured and manip-
ulated. The buttons used to do this are: Edit, Add, Remove, Thresholds,
Consolidators, Revert and Save.

The Save button saves as-yet-uncommitted changes made via the Add

or Edit buttons.
The Revert button discards unsaved edits made via the Edit button.

The reversion goes back to the last save.
The Remove button removes a selected metric from the metrics listed.
The remaining buttons, Edit, Add, Thresholds and Consolidators,

open up options dialogs. These options are now discussed.

Metric Configuration Tab: Edit And Add Options
The Metric Configuration tab of figure 10.21 has Add and Edit buttons.
The Add button opens up a dialog to add a new metric to the list, and
the Edit button opens up a dialog to edit a selected metric from the list.
The dialogs allow logging options for a metric to be set or adjusted. For
example, a new metric could be set for sampling by adding it to the device
category from the available list of all metrics, or the sampling frequency
could be changed on an existing metric, or an action could be set for a
metric that has a tendency to flap.

The Edit and Add dialogs for a metric have the following options (fig-

© Bright Computing, Inc.



264 Cluster Monitoring

ure 10.22):

Figure 10.22: cmgui Monitoring: Metric Configuration Tab Edit Dialog

• Metric: The name of the metric.

• Parameter: Values that the metric script is designed to handle. For
example:

– the metric FreeSpace tracks the free space left in a file system,
and is given a mount point such as / or /var as a parameter;

– the metric BytesRecv measures the number of bytes received
on an interface, and takes an interface name such as eth0 or

eth1 as a parameter.

For CPUUser, the parameter field is disallowed in the Metric tab, so
values here are ignored.

• Log length: The maximum number of raw data samples that are
stored for the metric. 3000 by default.

• Sampling interval: The time between samples. 120s by default.

• Gap size: The number of missing samples allowed before a null
value is stored as a sample value. 2 by default.

• Threshold duration: Number of samples in the threshold zone be-
fore a threshold event is decided to have occurred. 1 by default.

• Options checkboxes:

– Store: If ticked, the metric data values are saved to the
database. Note that any threshold checks are still done,
whether the samples are stored or not.

– Disabled: If ticked, the metric script does not run, and no
threshold checks are done for it. If Store is also ticked, no
value is stored.

– Only when idle: If ticked, the metric script is only run when
the system is idling. A resource-hungry metric burdens the
system less this way.

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 265

Figure 10.23: cmgui Monitoring: Thresholds Display

• State Flapping: The first selection box decides what action to
launch if state flapping is detected. The next box is a plain text-
entry box that allows a parameter to be passed to the action. The
third box is a selection box again, which decides when to launch the
action, depending on which of these following states is set:

– Enter: if the flapping has just started. That is, the current sam-
ple is in a flapping state, and the previous sample was not in a
flapping state.

– During: if the flapping is ongoing. That is, the current and
previous flapping sample are both in a flapping state.

– Leave: if the flapping has just stopped. That is, the current
sample is not in a flapping state, and the previous sample was
in a flapping state.

Metric Configuration Tab: Thresholds Options
The Metric Configuration tab of figure 10.21 also has a Thresholds but-
ton associated with a selected metric.

Thresholds are defined and their underlying concepts are discussed in
section 10.2.3. The current section describes the configuration of thresh-
olds.

In the basic example of section 10.1, CPUUser was configured so that
if it crossed a threshold of 50%, it would run an action (the killallyes

script). The threshold configuration was done using the Thresholds but-
ton of cmgui.

Clicking on the Thresholds button launches the Thresholds display
window, which lists the thresholds set for that metric. Figure 10.23, which
corresponds to the basic example of section 10.1, shows a Thresholds dis-
play window with a threshold named killallyesthreshold configured
for the metric CPUUser.

The Edit, and Remove buttons in this display edit and remove a se-
lected threshold from the list of thresholds, while the Add button adds a
new threshold to the list.

The Edit and Add dialogs for a threshold prompt for the following
values (figure 10.24):

© Bright Computing, Inc.



266 Cluster Monitoring

Figure 10.24: cmgui Metric Configuration: Thresholds Edit Dialog

• Name: the threshold’s name.

• Bound: the metric value which demarcates the threshold.

• Bound type: If checked, the radio button for

– upper bound: places the threshold zone above the bound;

– lower bound: places the threshold zone below the bound.

• Severity: A value assigned to indicate the severity of the situation
if the threshold is crossed. It is 10 by default. Severity is discussed
in section 10.2.6.

• Action: The action field types decide how the action should be trig-
gered and run. The field types are, from left to right:

– script: a script selected from a drop-down list of available
actions;

– parameter: [optional] what parameter value to pass to the ac-
tion;

– when: when the action is run. It is selected from a drop-down
choice of Enter, During or Leave, where:

* Enter runs the action if the sample has entered the zone;

* Leave runs the action if the sample has left the zone;

* During runs the action if the sample is in the zone, and the
previous sample was also in the zone.

Metric Configuration Tab: Consolidators Options
The Metric Configuration tab of figure 10.21 also has a Consolidators

button associated with the selected metric.
Consolidators decide how the data values are handled once the ini-

tial log length quantity for a metric is exceeded. Data points that have
become old are gathered and, when enough have been gathered, they
are processed into consolidated data. Consolidated data values present
fewer data values than the original raw data values over the same time
duration. The aim of consolidation is to increase performance, save space,
and keep the basic information still useful when viewing historical data.

The Consolidators button opens a window that displays a list of con-
solidators that have been defined for the selected metric (figure 10.25).

The Edit and Remove buttons in this display edit and remove a se-
lected consolidator from the list of consolidators while the Add button in
this display adds a new consolidator to the list of consolidators.

The Edit and Add dialogs for a consolidator prompt for the following
values (figure 10.26):

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 267

Figure 10.25: cmgui Metric Configuration: Consolidators Display

Figure 10.26: cmgui Metric Configuration: Consolidators Edit Dialog

• Name: the consolidator’s name. By default Day, Hour Month are al-
ready set up, with appropriate values for their corresponding fields.

• Length: the number of intervals that are logged for this consolida-
tor. Not to be confused with the metric log length.

• Interval: the time period (in seconds) associated with the consol-
idator. Not to be confused with the metric interval time period. For
example, the default consolidator with the name Hour has a value
of 3600.

• Time Offset: The time offset from the default consolidation time.

To understand what this means, consider the Log length of the
metric, which is the maximum number of raw data points that the
metric stores. When this maximum is reached, the oldest data point
is removed from the metric data when a new data point is added.
Each removed data point is gathered and used for data consolida-
tion purposes.

For a metric that adds a new data point every Sampling interval

seconds, the time traw gone, which is how many seconds into the
past the raw log data point is removed, is given by:

traw gone = (Log length)metric × (Sampling interval)metric
This value is also the default consolidation time, because the consol-
idated data values are normally presented from traw gone seconds
ago, to further into the past. The default consolidation time occurs
when the Time Offset has its default, zero value.

If however the Time Offset period is non-zero, then the consolida-
tion time is offset, because the time into the past from which consol-
idation is presented to the user, tconsolidation, is then given by:

tconsolidation = traw gone + Time Offset

© Bright Computing, Inc.



268 Cluster Monitoring

The monitoring visualization graphs then show consolidated data
from tconsolidation seconds into the past, to further into the past1.

• Kind: the kind of consolidation done on the raw data samples. The
output result for a processed set of raw data—the consolidated data
point—is an average, a maximum or a minimum of the input raw
data values. Kind can thus have the value Average, Maximum, or
Minimum.

10.4.3 Health Check Configuration Tab
The Health Check Configuration tab behaves in a similar way to the
Metric Configuration tab of section 10.4.2, with some differences aris-
ing due to working with health checks instead of metric values.

The Health Check Configuration tab allows device categories to be
selected for the evaluating the states of health checks. Properties of health
checks related to the evaluating these states can then be configured from
this tab for the selected device category. These properties are the config-
uration of the state evaluation parameters themselves (for example, fre-
quency and length of logs), but also the configuration of related proper-
ties such as severity levels based on the evaluated state, the actions to
launch based on the evaluated state, or the action to launch if the evalu-
ated state is flapping.

The Health Check Configuration tab is initially a blank tab until the
device category is selected by using the Health Check Configuration

selection box. The selection box selects a device category from a list of
built-in categories and user-defined node categories (node categories are
introduced in section 3.1.3). On selection, the health checks of the se-
lected device category are listed in the Health Check Configuration tab.
Properties of the health checks related to the evaluation of states are only
available for configuration and manipulation after the health checks list
is displayed. Handling health checks in this manner, via groups of de-
vices, is slightly awkward for just a few machines, but for larger clusters
it keeps administration scalable and thus manageable.

Figure 10.27: cmgui Monitoring: Health Check Configuration Display Af-
ter Category Selection

1 For completeness: the time tconsolidation gone, which is how many seconds into the past
the consolidated data goes and is viewable, is given by an analogous equation to that of the
equation defining traw gone:
tconsolidation gone = (Log length)consolidation × (Sampling interval)consolidation

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 269

Figure 10.27 shows an example of the Health Check Configuration

tab after All master nodes is chosen as the category. Examples of other
categories that could be chosen to have health checks carried out on them
are All ethernet switches and All Power Distribution Units.

With the screen displaying a list of health checks as in figure 10.27,
the health checks in the Health Check Configuration tab can now be
configured and manipulated. The buttons used to do this are: Edit, Add,
Remove, Revert and Save.

These Health Configuration tab buttons behave just like the corre-
sponding Metric Configuration tab buttons of section 10.4.2, that is:

The Save button saves as-yet-uncommitted changes made via the Add

or Edit buttons.
The Revert button discards unsaved edits made via the Edit button.

The reversion goes back to the last save.
The Remove button removes a selected health check from the health

checks listed.
The remaining buttons, Edit and Add, open up options dialogs. These

are now discussed.

Health Check Configuration Tab: Edit And Add Options
The Health Check Configuration tab of figure 10.27 has Add and Edit

buttons. The Add button opens up a dialog to add a new health check to
the list, and the Edit button opens up a dialog to edit a selected health
check from the list. The dialogs are very similar to those of the Add and
Edit options of Metric Configuration in section 10.4.2. The dialogs for
the Health Check Configuration tab are as follows (figure 10.28):

• Health Check: The name of the health check.

• Parameter: The values that the health check script is designed to
handle. For example:

– the health check ldap checks if the ldap service is running. It
tests the ability to look up a user on the LDAP server using
cmsupport as the default user. If a value is specified for the
parameter, it uses that value as the user instead;

– the health check portchecker takes parameter values such as
192.168.0.1 22 to check the if host 192.168.0.1 has port 22
open.

• Log length: The maximum number of samples that are stored for
the health check. 3000 by default.

• Sampling interval: The time between samples. 120s by default.

• Prejob: Clicking on this button sets the health check to run before
a new job is run from the scheduler of the workload management
system, instead of running at regular intervals.

• Gap size: The number of missing samples allowed before a null
value is stored as a sample value. 2 by default.

• Threshold duration: Number of samples in the threshold zone be-
fore a health check state is decided to have changed. 1 by default.

© Bright Computing, Inc.



270 Cluster Monitoring

• Fail severity: The severity value assigned to a FAIL response for
a health check. 10 by default.

• Unknown severity: The severity value assigned to an UNKNOWN
response for a health check. 10 by default.

• Options checkboxes:

– Store: If ticked, the health check state data values are saved to
the database. Note that health state changes and actions still
take place, even if no values are stored.

– Disabled: If ticked, the health state script does not run, and no
health check state changes or actions associated with it occur.
If Store is ticked, the value it stores while Disabled is ticked
for this health check configuration is an UNKNOWN value

– Only when idle: If ticked, the health check script is only run
when the system is idling. This burdens a system less, and is
useful if the health check is resource-hungry.

• Pass action, Fail action, Unknown action, State Flapping:
These are all action launchers, which launch an action for a given
health state (PASS, FAIL, UNKNOWN) or for a flapping state, de-
pending on whether these states are true or false. Each action
launcher is associated with three input boxes. The first selection
box decides what action to launch if the state is true. The next box is
a plain text-entry box that allows a parameter to be passed to the ac-
tion. The third box is a selection box again, which decides when to
launch the action, depending on which of the following conditions
is met:

– Enter: if the state has just started being true. That is, the cur-
rent sample is in that state, and the previous sample was not
in that state.

– During: if the state is true, and ongoing. That is, the current
and previous state sample are both in the same state.

– Leave: if the state has just stopped being true. That is, the
current sample is not in that state, and the previous sample
was in that state.

10.4.4 Metrics Tab
The Metrics tab displays the list of metrics that can be set in the cluster.
Some of these metrics are built-ins, such as CPUUser in the basic example
of section 10.1. Other metrics are standalone scripts. New custom metrics
can also be built and added as standalone commands or scripts.

Metrics can be manipulated and configured.
The Save button saves as-yet-uncommitted changes made via the Add

or Edit buttons.
The Revert button discards unsaved edits made via the Edit button.

The reversion goes back to the last save.
The Remove button removes a selected metric from the list.
The remaining buttons, Edit and Add, open up options dialogs. These

are now discussed.

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 271

Figure 10.28: cmgui Monitoring: Health Check Configuration Edit Dialog

Figure 10.29: cmgui Monitoring: Metrics Tab

Metrics Tab: Edit And Add Options
The Metrics tab of figure 10.29 has Add and Edit buttons. The Add button
opens up a dialog to add a new metric to the list, and the Edit button
opens up a dialog to edit a selected metric from the list. Both dialogs
have the following options (figure 10.30):

• Name: the name of the metric.

• Description: the description of the metric.

• Command: the command that carries out the script, or the full path to
the executable script.

• Command timeout: After how many seconds the script should stop
running, in case of no response.

• Parameter: an optional value that is passed to the script.

• Cumulative: whether the value is cumulative (for example, the
bytes-received counter for an Ethernet interface), or non-cumulative
(for example, temperature).

• Unit: the unit in which the metric is measured.

• When to run:

– Disabled: if ticked, the metric script does not run.

© Bright Computing, Inc.



272 Cluster Monitoring

Figure 10.30: cmgui Monitoring: Metrics Tab, Edit Dialog

– Only when idle: if ticked, the metric script only runs when
the system is idling. This burdens the system less if the metric
is resource-hungry.

• Sampling Method: the options are:

– Sampling on master: The head node samples the metric on
behalf of a device. For example, the head node may do this
for a PDU, since a PDU does not have the capability to run the
cluster management daemon at present, and so cannot itself
pass on data values directly when cmsh or cmgui need them.

– Sampling on node: The non-head node samples the metric it-
self. The administrator should ensure that the script is accessi-
ble from the non-head node.

• Class: An option selected from:

– Misc

– CPU

– GPU

– Disk

– Memory

– Network

– Environmental

– Operating System

– Internal

© Bright Computing, Inc.



10.4 Monitoring Configuration With cmgui 273

– Workload

– Cluster

– Prototype

These options should not be confused with the device category that
the metric can be configured for, which is a property of where the
metrics can be applied. (The device category possibilities are listed
in a bullet point a little further on).

• Retrieval Method:

– cmdaemon: Metrics retrieved internally using CMDaemon (default).

– snmp: Metrics retrieved internally using SNMP.

• State flapping count (default value 7): How many times the met-
ric value must cross a threshold within the last 12 samples (a default
setting, set in cmd.conf) before it is decided that it is in a flapping
state.

• Absolute range: The range of values that the metric takes. A range
of 0–0 implies no constraint is imposed.

• Notes: Notes can be made here.

• Which device category the metric is configured for, with choices out
of:

– Node metric

– Master Node metric

– Power Distribution Unit metric

– Myrinet Switch metric

– Ethernet Switch metric

– IB Switch metric

– Rack Sensor metric

– Chassis metric

– GPU Unit metric

– Generic Device metric

These options should not be confused with the class that the metric
belongs to (the earlier Class bullet point), which is the property
type of the metric.

Metrics Tab: Add Collection Option
The Add Collection button opens a dialog which is used to create a met-
ric collection (figure 10.31). A metric collection is a special metric script,
with the following properties:

• It is able to return several metrics of different types when it is run,
not just one metric of one type like a normal metric script does—
hence the name, “metric collection”.

© Bright Computing, Inc.



274 Cluster Monitoring

Figure 10.31: cmgui Monitoring: Metrics Tab, Add collection Dialog

• It autodetects if its associated metrics are able to run, and to what
extent, and presents the metrics accordingly. For example, if the
metric collection is run on a node which only has 3 CPUs running
rather than a default of 4, it detects that and presents the results for
just the 3 CPUs.

Further details on metric collections scripts are given in appendix I.
Because handling metric collections is just a special case of handling

a metric, the Add Collection button dialog is merely a restricted version
of the Add button dialog. Setting up a metric collection is therefore sim-
plified by having most of the metric fields pre-filled and kept hidden.
For example, the Class field for a metric collection would have the value
Prototype in the Add button dialog, while this value is pre-filled and in-
visible in the Add Collection dialog. A metric collection can be created
with the Add dialog, but it would be a little more laborious.

Whatever the method used to create the metric collection, it can al-
ways be edited with the Edit button, just like any other metric.

Viewing visualizations of a metric collection in cmgui is only possi-
ble through selection and viewing the separate graphs of its component
metrics.

10.4.5 Health Checks Tab
The Health Checks tab lists available health checks (figure 10.32). These
can be set to run from the system by configuring them from the Health

Check Configuration tab of section 10.4.3.
What the listed health checks on a newly installed system do are de-

scribed in appendix H.2.1.
The remove, revert and save buttons work for health checks just like

they do for metrics in section 10.4.4
Also, the edit and add buttons start up dialogs to edit and add health

checks. The dialog options for health checks are the same as for editing
or adding metrics, with a few exceptions. The exceptions are for options
that are inapplicable for health checks, and are elaborated on in appendix
H.2.2.

10.4.6 Actions Tab
The Actions tab lists available actions (figure 10.33) that can be set to run
on the system from metrics thresholds configuration, as explained in sec-
tion 10.4.2, and as was done in the basic example of section 10.1. Actions

© Bright Computing, Inc.



10.5 Overview Of Monitoring Data For Devices 275

Figure 10.32: cmgui Monitoring: Health Checks Tab

can also be set to run from health check configuration action launcher
options as described in section 10.4.3.

Figure 10.33: cmgui Monitoring: Actions Tab

What the listed actions on a newly installed system do are described
in appendix H.3.1.

The remove, revert, and save buttons work as described for metrics
in section 10.4.4.

The edit and add buttons start up dialogs to edit or add options to
action parameters. Action parameters are described in appendix H.3.2.

10.5 Overview Of Monitoring Data For Devices
These views are set up under the Overview tab for various devices that
are items under the resource tree in the cluster.

They are a miscellany of monitoring views based on the monitored
data for a particular device. The views are laid out as part of an overview
tab for that device, which can be a switch, cluster, node, GPU unit, and so
on.

When first connecting to a cluster with cmgui, the Overview tab of the
cluster is the default view. The Overview tab is also the default view first
time a device is clicked on in a cmgui session.

© Bright Computing, Inc.



276 Cluster Monitoring

Of the devices, the cluster(s), head node(s) and regular nodes have a
relatively extensive Overview tab, with a pre-selected mix of information
from monitored data. For example, in figure 10.4, a head node is shown
with an Overview tab presenting memory used, CPU usage, disk usage,
network statistics, running processes, and health status. Some of these
values are presented with colors and histograms to make the information
easier to see.

10.6 Event Viewer
This is a log view of events on the cluster(s). It is accessible from the View
menu of the main window.

The logs can be handled and viewed in several ways.�� ��

Event Viewer Toolbar

6

Detach Event Viewer

6

New Event Viewer

6

Set Event Filter

6

Acknowledge Event

6

Figure 10.34: cmgui Monitoring: Event Viewer Pane

Double clicking on an event row starts up an Event Details dialog
(figure 10.34), with buttons to:

• Acknowledge or Unacknowledge the event, as appropriate. Clicking
on Acknowledge removes the event from the event view unless the
Show Acknowledged checkbox has been checked. Any visible ac-
knowledged events have their acknowledged status removed when
the Unacknowledge button is clicked.

• Report to cluster vendor. The report option is used for send-
ing an e-mail about the selected event to the cluster vendor in case
troubleshooting and support is needed.

The event viewer toolbar (figure 10.34) offers icons to handle event
logs:

• detach event viewer: Detaches the event viewer pane into its own
window. Reattachment is done by clicking on the reattachment
event viewer icon that becomes available in the detached window.

• new event viewer filter dialog: Loads or defines filters (fig-
ure 10.35). Filters can be customized according to acknowledge-
ment status, time periods, cluster, nodes, severity, or message text.
The filter settings can be saved for later reloading. If the dialog
opened by this button is simply given an arbitrary name, and the Ok
button clicked on to accept the default values, then a default event
viewer tabbed pane is added to cmgui.

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 277

Figure 10.35: cmgui Monitoring: Event Viewer Filter Dialog

• set event viewer filter dialog: Adjusts an existing filter with
a similar dialog to the new event viewer filter dialog.

• acknowledge event: Sets the status of one or more selected events
in the log to "acknowledged". They are then no longer seen, unless
the filter setting for the show acknowledged checkbox is checked in
the set event filter option.

10.7 The monitoring Modes Of cmsh
This section covers how to use cmsh to configure monitoring. The
monitoring mode in cmsh is how metrics and health checks are config-
ured from the command line, and corresponds to the configuration car-
ried out by cmgui in section 10.4.

Visualization of data similar to how cmgui does it in section 10.3 can
also be done from cmsh’s command line, via its device mode. Graphs can
be obtained from cmsh by piping values returned by device mode com-
mands such as latestmetricdata (section 10.8.1) and dumpmetricdata

(section 10.8.2) into graphing utilities. These techniques are not covered
in this chapter.

Familiarity is assumed with handling of objects as described in the
introduction to working with objects (section 3.5.3). When using cmsh’s
monitoring mode, the properties of these objects—the details of the mon-
itoring settings—are the parameters and values which are accessed and
manipulated from the monitoring mode hierarchy within cmsh.

The monitoring “mode” of cmsh gives access to 4 modes under it.

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring help | tail -5

============================== Monitoring ==============================

actions ....................... Enter threshold actions mode

healthchecks .................. Enter healthchecks mode

metrics ....................... Enter metrics mode

© Bright Computing, Inc.



278 Cluster Monitoring

setup ......................... Enter monitoring configuration setup mode

These 4 modes are regarded as being the top level monitoring related
modes:

• monitoring actions

• monitoring healthchecks

• monitoring metrics

• monitoring setup

The word monitoring is therefore merely a grouping label prefixed insep-
arably to these 4 modes. The syntax of the 4 bulleted commands above is
thus consistent with that of the other top level cmsh modes.

The sections 10.7.1, 10.7.2, 10.7.3, and 10.7.4 give examples of how ob-
jects are handled under these 4 monitoring modes. To avoid repeating
similar descriptions, section 10.7.1 is relatively detailed, and is often re-
ferred to by the other sections.

10.7.1 The monitoring actions Mode In cmsh

The monitoring actionsmode of cmsh corresponds to the cmgui actions
tab of section 10.4.6.

The monitoring actions mode handles actions objects in the way de-
scribed in the introduction to working with objects (section 3.5.3). A typ-
ical reason to handle action objects—the properties associated with an
action script or action built-in—might be to view the actions available, or
to add a custom action for use by, for example, a metric or health check.

This section continues the cmsh session started above, giving examples
of how the monitoring actions mode is used.

The monitoring actions Mode In cmsh: list, show, And get

The list command by default lists the names and command scripts avail-
able in monitoring actions mode:

Example

[myheadnode]% monitoring actions

[myheadnode->monitoring->actions]% list

Name (key) Command

------------------------ ------------------------------------------------

Drain node <built-in>

Power off <built-in>

Power on <built-in>

Power reset <built-in>

Reboot <built-in>

SendEmail <built-in>

Shutdown <built-in>

Undrain node <built-in>

killprocess /cm/local/apps/cmd/scripts/actions/killprocess.+

remount /cm/local/apps/cmd/scripts/actions/remount

testaction /cm/local/apps/cmd/scripts/actions/testaction

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 279

The above shows the actions available on a newly installed system.
The details of what they do are covered in appendix H.3.1.

The show command of cmsh displays the parameters and values of a
specified action:

Example

[myheadnode->monitoring->actions]% show poweroff

Parameter Value

------------------------------ ------------------------------------------------

Command <built-in>

Description Power off the device

Name Power off

Revision

Run on master

Timeout 5

isCustom no

[myheadnode->monitoring->actions]%

The meanings of the parameters are covered in appendix H.3.2.
Tab-completion suggestions with the show command suggest argu-

ments corresponding to names of action objects:

Example

[myheadnode->monitoring->actions]% show

A double-tap on the tab key to get tab-completions suggestions for
show in the above displays the following:

Example

drainnode killprocess poweron reboot sendemail testaction

killallyes poweroff powerreset remount shutdown undrainnode

The Power off action name, for example, corresponds with the ar-
gument poweroff. By default, the arguments are the action names in
lower case, with the spaces removed. However, they are space- and case-
insensitive, so typing in show "Power off" with the quotes included to
pass the space on is also valid.

The get command returns the value of an individual parameter of the
action object:

Example

[myheadnode->monitoring->actions]% get poweroff runon

master

[myheadnode->monitoring->actions]%

The monitoring actions Mode In cmsh: add, use, remove, commit, refresh,
modified, set, clear, And validate

In the basic example of section 10.1, in “Adding The Action To The Ac-
tions List”, the name, description and command for an action were added
via a dialog in the Actions tab of cmgui.

The equivalent is done in cmsh with add and set commands. The add

command adds an object, makes it the current object, and sets its name at
the same time; while the set command sets values.

If there is no killallyes action already, then the name is added in the
actions mode with the add command as follows:

© Bright Computing, Inc.



280 Cluster Monitoring

Example

[myheadnode->monitoring->actions]% add killallyes

[myheadnode->monitoring->actions*[killallyes*]]%

The converse to the add command is the remove command, which re-
moves the action.

The use command is the usual way of "using" an object, where "using"
means that the object being used is referred to by default by any com-
mand run. So if the killallyes object already exists, then use killallyes

drops into the context of an already existing object (i.e. it “uses” the ob-
ject).

The set command sets the value of each parameter displayed by a
show command:

Example

[myheadnode->monitoring->actions*[killallyes*]]% set description "kill \

all yes processes"

The clear command is the converse of set, and removes any value
for a given parameter.

Example

[myheadnode->monitoring->actions*[killallyes*]]% clear command

The validate command checks if the object has all required values set
to sensible values. The commands refresh, modified and commit work
as expected from the introduction to working with objects (section 3.5.3).
So, for example, commit only succeeds if the killallyes object passes
validation.

Example

[myheadnode->monitoring->actions*[killallyes*]]% validate

Code Field Message

----- ------------------------ ------------------------------------------------

4 command command should not be empty

Here validation fails because the parameter Command has no value set
for it yet. This is remedied with set acting on the parameter (some prompt
text elided for display purposes):

Example

[...*]]% set command "/cm/local/apps/cmd/scripts/actions/killallyes"

[...*]]% commit

[...]]%

Validation then succeeds and the commit successfully saves the
killallyes object.

Note that validation does not check if the script itself exists. It solely
does a sanity check on the values of the parameters of the object, which
is another issue. If the killallyes script does not yet exist in the loca-
tion given by the parameter, it can be created as suggested in the basic
example of section 10.1, in “Setting Up The Kill Action”.

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 281

10.7.2 The monitoring healthchecks Mode in cmsh

The monitoring healthchecks mode of cmsh corresponds to the cmgui

Health Checks tab of section 10.4.5.
The monitoring healthchecks mode handles health check objects

in the way described in the introduction to working with objects (sec-
tion 3.5.3). A typical reason to handle health check objects—the proper-
ties associated with an health check script or health check built-in—might
be to view the health checks already available, or to add a health check
for use by a device resource.

This section goes through a cmsh session giving some examples of how
this mode is used and to illustrate what it looks like.

The monitoring healthchecks Mode in cmsh: list, show, And get

In monitoring healthchecks mode, the list command by default lists
the names of the health check objects along with their command scripts:

Example

[bright52->monitoring->healthchecks]% format name:18 command:55

[bright52->monitoring->healthchecks]% list

name (key) command

------------------ -------------------------------------------------------

DeviceIsUp <built-in>

ManagedServicesOk <built-in>

chrootprocess /cm/local/apps/cmd/scripts/healthchecks/chrootprocess

cmsh /cm/local/apps/cmd/scripts/healthchecks/cmsh

diskspace /cm/local/apps/cmd/scripts/healthchecks/diskspace

...

The format command, introduced in section 3.5.3, is used here with the
given column width values to avoid truncating the full path of the com-
mands in the display.

The above example shows a truncated list of health checks that can be
set for sampling on a newly installed system. The details of what these
health checks do is covered in appendix H.2.1.

The show command of cmsh displays the parameters and values of a
specified health check:

Example

[myheadnode->monitoring->healthchecks]% show deviceisup

Parameter Value

----------------------- ------------------------------------------------

Class of healthcheck internal

Command <built-in>

Description Returns PASS when device is up, closed or insta+

Disabled no

Extended environment no

Name DeviceIsUp

Notes <0 bytes>

Only when idle no

Parameter permissions disallowed

Revision

Sampling method samplingonmaster

State flapping count 7

© Bright Computing, Inc.



282 Cluster Monitoring

Timeout 5

Valid for node,master,pdu,ethernet,myrinet,ib,racksensor,+

[myheadnode->monitoring->healthchecks]%

The meanings of the parameters are covered in appendix H.2.2.
As detailed in section 10.7.1, tab-completion suggestions for the show

command suggest arguments corresponding to names of objects that can
be used in this mode. For show in healthchecks mode, tab-completion
suggestions give the following as possible health check objects:

Example

[myheadnode->monitoring->healthchecks]% show

chrootprocess failover mysql ssh2node

cmsh hardware-profile ntp swraid

deviceisup interfaces portchecker testhealthcheck

diskspace ldap rogueprocess

exports managedservicesok schedulers

failedprejob mounts smart

[myheadnode->monitoring->healthchecks]% show

The get command returns the value of an individual parameter of a
particular health check object:

Example

[myheadnode->monitoring->healthchecks]% get deviceisup description

Returns PASS when device is up, closed or installing

[myheadnode->monitoring->healthchecks]%

The monitoring healthchecks Mode In cmsh: add, use, remove, commit,
refresh, modified, set, clear, And validate

The remaining commands in monitoring healthchecks mode: add, use,
remove, commit, refresh, modified, set, clear, and validate; all work
as outlined in the introduction to working with objects (section 3.5.3).
More detailed usage examples of these commands within a monitoring

mode are given in Cmsh Monitoring Actions (section 10.7.1).
In the basic example of section 10.1, a metric script was set up from

cmgui to check if thresholds were exceeded, and if so, to launch an action.
A functionally equivalent task can be set up by creating and config-

uring a health check, because metrics and health checks are so similar
in concept. This is done here to illustrate how cmsh can be used to do
something similar to what was done with cmgui in the basic example.
A start is made on the task by creating a health check object and setting
its values using the monitoring healthchecks mode of cmsh. The task is
completed in the section on the monitoring setup mode in section 10.7.4.

To start the task, cmsh’s add command is used to create the new health
check object:

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring healthchecks

[myheadnode->monitoring->healthchecks]% add cpucheck

[myheadnode->monitoring->healthchecks*[cpucheck*]]%

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 283

The set command sets the value of each parameter displayed by a
show command (some prompt text elided for layout purposes):

Example

[...]% set command /cm/local/apps/cmd/scripts/healthchecks/cpucheck

[...]% set description "CPUuser under 50%?"

[...]% set parameterpermissions disallowed

[...]% set samplingmethod samplingonmaster

[...]% set validfor master

[...]]% commit

Since the cpucheck script does not yet exist in the location given by
the parameter command, it needs to be created:

#!/bin/bash

## echo PASS if CPUUser < 50

## cpu is a %, ie: between 0 and 100

cpu=`mpstat 1 1 | tail -1 | awk '{print $3}'`

comparisonstring="$cpu"" < 50"

if (( $(bc <<< "$comparisonstring") )); then

echo PASS

else

echo FAIL

fi

The script should be placed in the location suggested by the object,
/cm/local/apps/cmd/scripts/healthchecks/cpucheck, and made exe-
cutable with a chmod 700.

The cpucheck object is handled further within the cmsh monitoring

setup mode in section 10.7.4 to produce a fully configured health check.

10.7.3 The monitoring metrics Mode In cmsh

The monitoring metricsmode of cmsh corresponds to the cmgui metrics
tab of section 10.4.4.

The monitoring metrics mode of cmsh handles metrics objects in the
way described in the introduction to working with objects (section 3.5.3).
A typical reason to handle metrics objects—the properties associated with
a metrics script or metrics built-in—might be to view the configuration
metrics already being used for sampling by a device category, or to add a
metric for use by a device category.

This section goes through a cmsh session giving some examples of how
this mode is used and to illustrate its behavior.

The monitoring metrics Mode In cmsh: list, show, And get

In metrics mode, the list command by default lists the names and com-
mand scripts available for setting for device categories:

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring metrics

© Bright Computing, Inc.



284 Cluster Monitoring

[myheadnode->monitoring->metrics]% list

Name (key) Command

---------------------------- ------------------------------------------------

AlertLevel <built-in>

AvgExpFactor <built-in>

AvgJobDuration <built-in>

...

The above shows a truncated list of the metrics that may be used for
sampling on a newly installed system. What these metrics do is described
in appendix H.1.1.

The show command of cmsh displays the parameters and values of a
specified metric:

Example

[myheadnode->monitoring->metrics]% show cpuuser

Parameter Value

------------------------------ ------------------------------------------------

Class of metric cpu

Command <built-in>

Cumulative yes

Description Total core usage in user mode per second

Disabled no

Extended environment no

Maximum <range not set>

Measurement Unit

Minimum <range not set>

Name CPUUser

Notes <15 bytes>

Only when idle no

Parameter permissions disallowed

Retrieval method cmdaemon

Revision

Sampling method samplingonnode

State flapping count 7

Timeout 5

Valid for node,master

[myheadnode->monitoring->metrics]%

The meanings of the parameters above are explained in appendix H.1.2.
Tab-completion suggestions for the show command suggest arguments

corresponding to names of objects (the names returned by the list com-
mand) that may be used in a monitoring mode. For metrics mode, show,
followed by a double-tap on the tab key, displays a large number of pos-
sible metrics objects:

Example

[myheadnode->monitoring->metrics]% show

Display all 130 possibilities? (y or n)

alertlevel droprecv ipoutrequests

avgexpfactor dropsent ipreasmoks

avgjobduration errorsrecv ipreasmreqds

await_sda errorssent loadfifteen

...

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 285

The get command returns the value of an individual parameter of a
particular metric object:

Example

[myheadnode->monitoring->metrics]% get CPUUser description

Total core usage in user mode per second

The monitoring metrics Mode In cmsh: add, use, remove, commit, refresh,
modified, set, clear, And validate

The remaining commands in monitoring metrics mode: add, use,
remove, commit, refresh, modified, set, clear, and validate; all work
as outlined in the introduction to working with objects (section 3.5.3).
More detailed usage examples of these commands within a monitoring

mode are given in Cmsh Monitoring Actions (section 10.7.1).
Adding a metric collections script to the framework is possible from

this point in cmsh too. Details on how to do this are given in appendix I.

10.7.4 The monitoring setup Mode in cmsh

The cmsh monitoring setup mode corresponds to the cmgui Metric

Configuration and Health Check Configuration tabs of sections 10.4.2
and 10.4.3.

The monitoring setup mode of cmsh, like the Metric

Configuration and the Health Check Configuration tabs of cmgui,
is used to select a device category. Properties of metrics or of health
checks can then be configured for the selected device category. These
properties are the configuration of the sampling parameters themselves
(for example, frequency and length of logs), but also the configuration
of related properties such as thresholds, consolidation, actions launched
when a metric threshold is crossed, and actions launched when a metric
or health state is flapping.

The setup mode only functions in the context of metrics or health
checks, and therefore these contexts under the setup mode are called
submodes. On a newly installed system, a list command from the
monitoring setup prompt displays the following account of metrics and
health checks that are in use by device categories:

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring setup

[myheadnode->monitoring->setup]% list

Category Metric configuration Health configuration

---------------------- ---------------------- ----------------------

Chassis <2 in submode> <1 in submode>

EthernetSwitch <13 in submode> <1 in submode>

GenericDevice <2 in submode> <1 in submode>

GpuUnit <3 in submode> <0 in submode>

IBSwitch <2 in submode> <1 in submode>

MasterNode <90 in submode> <14 in submode>

MyrinetSwitch <2 in submode> <1 in submode>

PowerDistributionUnit <5 in submode> <1 in submode>

RackSensor <2 in submode> <1 in submode>

default <35 in submode> <11 in submode>

© Bright Computing, Inc.



286 Cluster Monitoring

[myheadnode->monitoring->setup]%

A device category must always be used when handling the proper-
ties of the metrics and health checks configurable under the submodes of
monitoring setup. The syntax of a configuration submode, metricconf
or healthconf, therefore requires the device category as a mandatory
argument, and tab-completion suggestions become quite helpful at this
point.

Examples are now given of how the metric configuration metricconf

and health check configuration healthconf submodes are used:

The monitoring setup Mode in cmsh: metricconf
Continuing with the session above, the metricconf option can only be
used with a device category specified. Tab-completion suggestions for
metricconf suggest the following possible device categories:

Example

[myheadnode->monitoring->setup]% metricconf

chassis gpuunit powerdistributionunit

default ibswitch racksensor

ethernetswitch masternode

genericdevice myrinetswitch

A category can be chosen with the use command, and show shows the
properties of the category. With a category selected, the metricconf or
healthconf submodes can then be invoked:

Example

[myheadnode->monitoring->setup]% use masternode

[myheadnode->monitoring->setup[MasterNode]]% show

Parameter Value

------------------------------ ------------------------------------------------

Category MasterNode

Health configuration <14 in submode>

Metric configuration <90 in submode>

Normal pickup interval 180

Revision

Scrutiny pickup interval 60

[myheadnode->monitoring->setup[MasterNode]]% metricconf

[myheadnode->monitoring->setup[MasterNode]->metricconf]%

Dropping into a submode—in the example given, the metricconf

submode—could also have been done directly in one command:
metricconf mastermode. The synopsis of the command in the example is
actually [[[monitoring] setup] metricconf] masternode, where the
optional parts of the command are invoked depending upon the context
indicated by the prompt. The example below clarifies this (some prompt
text elided for display purposes):

Example

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 287

[...->monitoring->setup[MasterNode]->metricconf]% exit; exit; exit; exit

[...]% monitoring setup metricconf masternode

[...->monitoring->setup[MasterNode]->metricconf]% exit; exit; exit

[...->monitoring]% setup metricconf masternode

[...->monitoring->setup[MasterNode]->metricconf]% exit; exit

[...->monitoring->setup]% metricconf masternode

[...->monitoring->setup[MasterNode]->metricconf]% exit

[...->monitoring->setup[MasterNode]]% metricconf

[...->monitoring->setup[MasterNode]->metricconf]%

A list of metrics that have been set to do sampling for the device cat-
egory masternode is obtained with list. Since there are many of these,
only 10 lines are displayed in the list shown below by piping it through
head:

Example

[myheadnode->monitoring->setup[MasterNode]->metricconf]% list | head

Metric Metric Param Samplinginterval

------------------------ ------------------ ------------------------

AlertLevel max 0

AlertLevel sum 0

AvgExpFactor 120

AvgJobDuration defq 60

BufferMemory 120

BytesRecv eth0 120

BytesRecv eth1 120

BytesSent eth0 120

BytesSent eth1 120

CMDMemUsed 120

Besides list, an alternative way to get a list of metrics that are set to
sample for masternode is to use the tab-completion suggestions to the use
command.

The use command is normally used to drop into the configuration
properties of the metric so that parameters of the metric object can be
configured:

Example

[myheadnode->monitoring->setup[MasterNode]->metricconf]% use cpuuser

[myheadnode->monitoring->setup[MasterNode]->metricconf[CPUUser]]% show

Parameter Value

------------------------------ ------------------------------------------------

Consolidators <3 in submode>

Disabled no

GapThreshold 2

LogLength 3000

Metric CPUUser

MetricParam

Only when idle no

Revision

Sampling Interval 120

Stateflapping Actions

Store yes

ThresholdDuration 1

© Bright Computing, Inc.



288 Cluster Monitoring

Thresholds <1 in submode>

[myheadnode->monitoring->setup[MasterNode]->metricconf[CPUUser]]%

The add command adds a metric to be set for sampling for the device
category. The list of all possible metrics that can be added to the device
category can be seen with the command monitoring metrics list, or
more conveniently, simply with tab-completion suggestions to the add

command at the [...metricconf]% prompt in the above example.
The above example indicates that there are two submodes for each

metric configuration: Consolidators and Thresholds. Running the
consolidators or thresholds commands brings cmsh into the chosen
submode.

Consolidation and threshold manipulation only make sense in the
context of a metric configuration, so at the metricconf prompt in
the example above (before use cpuuser is executed), the commands
thresholds cpuuser or consolidators cpuuser can be executed as
more direct ways of getting to the chosen submode.

The thresholds submode If, continuing on from the above example,
the thresholds submode is entered, then the list command lists the ex-
isting thresholds. If the basic example of section 10.1 has already been
carried out on the system, then a threshold called killallyesthreshold

is already there with an assigned action killallyes. The properties of
each threshold can be shown (some prompt text elided for layout pur-
poses):

Example

[...metricconf]% thresholds

[...metricconf[CPUUser]]% thresholds

[...metricconf[CPUUser]]->thresholds]% list

Name (key) Bound Severity

------------------------ ---------------- ------------------------

killallyesthreshold 50 10

[...metricconf[CPUUser]]->thresholds]% show killallyesthreshold

Parameter Value

------------------------------ ------------------------------------------------

Actions enter: killallyes()

Bound 50

Name killallyesthreshold

Revision

Severity 10

UpperBound yes

The meanings of the parameters are explained in the GUI equivalent
of the above example in section 10.4.2 in the section labeled “Metric Con-
figuration: Thresholds Options”. The object manipulation commands in-
troduced in section 3.5.3 work as expected at this cmsh prompt level: add
and remove add and remove a threshold; set, get, and clear set and get
values for the parameters of each threshold; refresh and commit revert
and commit changes; use “uses” the specified threshold, making it the
default for commands; validate applied to the threshold checks if the
threshold object has sensible values; and append and removefrom append
an action to, and remove an action from, a specified threshold.

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 289

The append and removefrom commands correspond to the ©+ and
©- widgets of cmgui in figure 10.24 and work with parameters that can
have multiple values. For example, a sendemail action with a parame-
ter root can be appended to the Actions parameter, which already has
the killallyes action as a value. This sends an e-mail to the root mail
account. A get command can be run to see the values for the threshold
actions:

Example

[...->thresholds*]% append killallyesthreshold actions sendemail root

[...->thresholds*]% get killallyesthreshold actions

enter: killallyes()

enter: SendEmail(root)

By default, the actions are set to run on entering the threshold zone,
with an implied flag of “-e|�-enter”. To run on leaving the threshold
zone, or to run during the time the value is within the threshold zone, the
flags “-l|�-leave” or “-d|�-during” must explicitly be applied to the
actions command.

In the example, the “Actions” parameter now has the value of the the
built-in action name, sendemail, as well as the value of the action script
name, killallyes. This means that both actions run when the threshold
condition is met.

The consolidators submode If, continuing on with the preceding ex-
ample, the consolidators submode is entered, then the list command
lists the consolidators running on the system. On a newly installed sys-
tem there are three consolidators by default for each metric set for a device
category. Each consolidator has an appropriately assigned time Interval,
in seconds. The show command shows the parameters and values of a
specific consolidator:

Example

[...metricconf[CPUUser]->thresholds*]% exit

[...metricconf[CPUUser]]% consolidators

[...metricconf[CPUUser]->consolidators]% list

Name (key) Length Interval

------------------------ ---------- ----------

Day 1000 86400

Hour 2000 3600

Week 1000 604800

[...metricconf[CPUUser]->consolidators]% show day

Parameter Value

------------------------------ ------------------------------------------------

Interval 86400

Kind AVERAGE

Length 1000

Name Day

Offset 0

Revision

© Bright Computing, Inc.



290 Cluster Monitoring

The meanings of the parameters are explained in the GUI equivalent
of the above example in section 10.4.2 in the section labeled “Metric Con-
figuration: Consolidators Options”.

The object manipulation commands introduced in section 3.5.3 work
as expected at this cmsh prompt level: add and remove add and remove a
consolidator; set, get, and clear set and get values for the parameters of
each consolidator; refresh and commit revert and commit changes; use
“uses” the specified consolidator, making it the default for commands;
and validate applied to the consolidator checks if the consolidator object
has sensible values.

The monitoring setup Mode in cmsh: healthconf
The healthconf submode is the alternative to the metricconf submode
under the main monitoring setup mode. Like the metricconf option,
healthconf too can only be used with a device category specified.

If the session above is continued, and the device category masternode

is kept unchanged, then the healthconf submode can be invoked with:

[...metricconf[CPUUser]->consolidators]% exit; exit; exit

[myheadnode->monitoring->setup[MasterNode]]% healthconf

[...healthconf]%

Alternatively, the healthconf submode with the masternode device
category could also have been reached from cmsh’s top level prompt by
executing monitoring setup healthconf masternode.

The health checks set to do sampling in the device category
masternode are listed:

Example

[myheadnode->monitoring->setup[MasterNode]->healthconf]% list

HealthCheck HealthCheck Param Check Interval

------------------------ ------------------ ------------------------

DeviceIsUp 120

ManagedServicesOk 120

chrootprocess 900

cmsh 1800

diskspace 2% 10% 20% 1800

exports 1800

failedprejob 900

failover 1800

interfaces 1800

ldap 1800

mounts 1800

mysql 1800

ntp 300

schedulers 1800

smart 1800

The use command would normally be used to drop into the health
check object. However use can also be an alternative to the list com-
mand, since tab-completion suggestions to the use command get a list of
currently configured health checks for the masternode too.

The add command adds a health check into the device category. The
list of all possible health checks that can be added to the category can be

© Bright Computing, Inc.



10.7 The monitoring Modes Of cmsh 291

seen with the command monitoring healthchecks list, or more con-
veniently, simply with tab-completion suggestions to the add command.

At the end of section 10.7.2 a script called cpucheck was built. This
script was part of a task to use health checks instead of metric threshold
actions to set up the functional equivalent of the behavior of the basic
example of section 10.1. In this section the task is continued and com-
pleted, and on the way how to use the health checks configuration object
methods to do this is shown.

First, the script is added, and as usual when using add, the prompt
drops into the level of the added object. The show command acting on
the object displays the following default values for its parameters (some
prompt text elided for display purposes):

Example

[...[MasterNode]->healthconf]% add cpucheck

[...*[MasterNode*]->healthconf*[cpucheck*]]% show

Parameter Value

------------------------------ ------------------------------------------------

Check Interval 120

Disabled no

Fail Actions

Fail severity 10

GapThreshold 2

HealthCheck cpucheck

HealthCheckParam

LogLength 3000

Only when idle no

Pass Actions

Revision

Stateflapping Actions

Store yes

ThresholdDuration 1

Unknown Actions

Unknown severity 10

[...*[MasterNode*]->healthconf*[cpucheck*]]%

The details of what these parameters mean is covered in section 10.4.3
where the edit and add dialog options for a health check state shown in
figure 10.28 are explained.

The object manipulation commands introduced in section 3.5.3 work
as expected at the healthconf prompt level in the example above: add

and remove add and remove a health check; set, get, and clear set and
get values for the parameters of each health check; refresh and commit

revert and commit changes; use “uses” the specified health check, mak-
ing it the default for commands; and validate applied to the health check
checks if the health check object has sensible values; and append and
removefrom append an action to, and remove an action from, a specified
health check action parameter.

The append and removefrom commands correspond to the ©+ and ©-
widgets of cmgui in figure 10.28 and work with parameters that can have
multiple values:

The action killallyes was set up to be carried out with the metric
CPUUser in the basic example of section 10.1. The action can also be car-

© Bright Computing, Inc.



292 Cluster Monitoring

ried out with a FAIL response for the cpucheck health check by using
append command:

Example

[...healthconf*[cpucheck*]]% append failactions killallyes

[...healthconf*[cpucheck*]]%

Sending an email to root can be done by appending further:

Example

[...healthconf*[cpucheck*]]% append failactions sendemail root

[...healthconf*[cpucheck*]]% get failactions

enter: SendEmail(root)

enter: killallyes()

[...healthconf*[cpucheck*]]%

10.8 Obtaining Monitoring Data Values
The monitoring data values that are logged by devices can be used to
generate graphs using the methods in section 10.3. However, sometimes
an administrator would like to have the data values that generate the
graphs instead, perhaps in order to import them into a spreadsheet for
further direct manipulation, or pipe them into a utility such as gnuplot.

The values can be obtained from within device mode in various ways.

10.8.1 The Latest Data Values—The latest*data Commands
Within device mode, the following commands display the latest metrics
and health checks being monitored, along with their latest data:
For metrics:

• metrics: The metrics command in device mode lists the metrics
that are currently configured to be monitored for a specified device.
These correspond to the metrics shown in cmgui in the “Metric
Configuration” tab for a specific device.

• latestmetricdata: The latestmetricdata command for a partic-
ular device displays the most recent value that has been obtained
by the monitoring system for each item in the list of active metrics.

Similarly for health checks,

• healthchecks: The healthchecks command in device mode lists
the health checks that are currently configured to be monitored for
a device. These correspond to the health checks shown in cmgui in
the “Health Check Configuration” tab for a device.

• latesthealthchecks: The latesthealthdata command for a par-
ticular device displays the most recent value that has been obtained
by the monitoring system for each item in the list of active health
checks.

© Bright Computing, Inc.



10.8 Obtaining Monitoring Data Values 293

Using The metrics And healthchecks Commands
When using the metrics or healthchecks command, the device must be
specified (some output elided):

Example

[root@bright52 ~]# cmsh

[bright52]% device

[bright52->devices]% metrics node001

LoadOne

LoadFive

LoadFifteen

PageFaults

MajorPageFaults

Uptime

MemoryUsed

...

Using The latestmetricdata And latesthealthdata Commands
When using the latestmetricdata or latesthealthdata commands, the
device must be specified (some output elided):

Example

[bright52->device]% use node001

[bright52->device[node001]]% latestmetricdata

Metric Value Age (sec.) Info Message

----------------------- ---------------- ---------- ---------------

AlertLevel:max 30 76 FAIL schedulers

AlertLevel:sum 30 76 FAIL schedulers

BytesRecv:BOOTIF 690.733 76

BytesSent:BOOTIF 449.1 76

CPUIdle 99.0333 76

CPUIrq 0 76

CPUNice 0 76

...

10.8.2 Data Values Over Time—The dump* Commands
Within device mode, the following commands display monitoring data
values over a specified period:

• dumpmetricdata: The dumpmetricdata command for a particular
device displays the values of metrics obtained over a specific period
by the monitoring system for a particular metric.

• dumphealthdata: The dumphealthdata command for a particular
device displays the values of health checks obtained over a specific
period by the monitoring system for a particular health check.

• dumpstatistics: The dumpstatistics command for a particular
device displays statistics obtained over a specific period by the mon-
itoring system for a particular metric item in the list of checks.

© Bright Computing, Inc.



294 Cluster Monitoring

Using The dumpmetricdata And dumphealthdata Commands
A concise overview of the dumpmetricdata or dumphealthdata commands
can be displayed by, for example, typing in “help dumpmetricdata” in
the device mode of cmsh.

The usage of the dumpmetricdata and dumphealthdata commands is:

dumpmetricdata [OPTIONS] <start-time> <end-time> <metric> [device]

The mandatory arguments for the times, the metric being dumped, and
the device or devices being sampled, have values that are specified as
follows:

• The metric item <metric> for which the data values are being gath-
ered must always be given. Metrics currently in use can conve-
niently be listed by running the metrics command (section 10.8.1).

• If [device] is not specified when running the dumpmetricdata or
dumphealthdata command, then it must either be set by specifying
the object from the device mode of cmsh (for example, with “use
node001”), or by specifying it in the options. The options allow
specifying, amongst others, a list, a group, or a category of devices.

• The time pair <start-time> or <end-time> can conveniently be
specified as follows:

– now: That is, the time at which the dumpmetricdata or
dumphealthdata command is run

– for only one item in the time pair, its time can be set relative
to the other (the fixed time item). The non-fixed time item (the
relative time item) is specified as follows:

* A <start-time> <number> value is prefixed with a “-”

* an <end-time> <number> value is prefixed with “+”

* The <number> values have suffix values indicating the units
of time, as seconds (s), minutes (m), hours (h), or days (d).

This is summarized in the following table:

Unit <start-time> <end-time>

seconds: -<number>s +<number>s

minutes: -<number>m +<number>m

hours: -<number>h +<number>h

days: -<number>d +<number>d

– YY/MM/DD

– HH:MM

– HH:MM:SS

– unix epoch time (seconds since 00:00:00 1 January 1970)

An example of how the preceding mandatory arguments to the
dumpmetricdata command might be used is:

Example

© Bright Computing, Inc.



10.8 Obtaining Monitoring Data Values 295

[bright52->device]% dumpmetricdata -10m now cpuidle node001

# From Thu Oct 20 15:32:41 2011 to Thu Oct 20 15:42:41 2011

Time Value Info Message

-------------------------- ---------------- ---------------

Thu Oct 20 15:32:41 2011 96.3481

Thu Oct 20 15:34:00 2011 95.3167

Thu Oct 20 15:36:00 2011 93.4167

Thu Oct 20 15:38:00 2011 93.7417

Thu Oct 20 15:40:00 2011 92.2417

Thu Oct 20 15:42:00 2011 93.5083

The options applied to the samples are specified as follows:

Option Argument(s) (if any) Description

-n, --nodes <list> list of nodes

-c, --categories <list> list of categories

-g, --groups <list> list of groups

-r, --racks <list> list of racks

-h, --chassis <list> list of chassis

-i, --intervals <number> number of samples to
show

-k, --kind average, min, max show the average (default),
minimum, or maximum of
set of stores values, out of
the list of device samples

-u, --unix use a unix timestamp in-
stead of using the default
date format

-v, --verbose show the rest of the line on
a new line instead of cut-
ting it off

The -i option interpolates the data that is to be displayed to a speci-
fied number <number> of interpolated samples over the given time range.
Using “-i 0” outputs only the non-interpolated stored samples, and is
the default.

Example

[bright52->device]% dumpmetricdata -i 0 -38m now loadone node001

# From Thu Oct 20 17:22:12 2011 to Thu Oct 20 17:59:12 2011

Time Value Info Message

-------------------------- ---------------- --------------

Thu Oct 20 17:22:12 2011 0

Thu Oct 20 17:48:00 2011 0

Thu Oct 20 17:50:00 2011 0.03

Thu Oct 20 17:52:00 2011 0.02

Thu Oct 20 17:54:00 2011 0.08

Thu Oct 20 17:56:00 2011 0.07

© Bright Computing, Inc.



296 Cluster Monitoring

Thu Oct 20 17:58:00 2011 0.69

[bright52->device]% dumpmetricdata -n node001..node002 -5m now cpuidle

# From Fri Oct 21 16:52:41 2011 to Fri Oct 21 16:57:41 2011

Time Value Info Message

-------------------------- ---------------- ---------------

node001

Fri Oct 21 16:52:41 2011 99.174

Fri Oct 21 16:54:00 2011 99.3167

Fri Oct 21 16:56:00 2011 99.1333

node002

Fri Oct 21 16:52:41 2011 98.1518

Fri Oct 21 16:54:00 2011 99.3917

Fri Oct 21 16:56:00 2011 99.1417

[bright52->device]%

When a sample measurement is carried out, if the sample has the same
value as the two preceding it in the records, then the “middle” sample is
discarded from storage for performance reasons.

Thus, when viewing the sequence of output of non-interpolated sam-
ples, identical values do not exceed two entries one after the other.

Using The dumpstatistics Commands
The usage of the dumpstatistics command is:

dumpstatistics[OPTIONS] <start-time> <end-time> <metric> [device]

and it follows the pattern of earlier (page 294) for the dumpmetricdata

and dumphealthdata commands.
There are two significant differences:

• The -p option sets percentile boundaries. By default, the statistics
are divided into percentiles of 25%.

• The -i option is set by default to a value of 20. A setting
of i 0 (which displays non-interpolated values when used with
dumpmetricdata and dumphealthdata) is not a valid value for
dumpstatistics.

Example

[bright52->device]% dumpstatistics -i 5 -1h -p 100 now loadone -n node00\

1..node003

Start End 100%

-------------------------- -------------------------- ------

Fri Oct 21 17:04:30 2011 Fri Oct 21 17:16:30 2011 0.11

Fri Oct 21 17:16:30 2011 Fri Oct 21 17:28:30 2011 0.08

Fri Oct 21 17:28:30 2011 Fri Oct 21 17:40:30 2011 0.09

Fri Oct 21 17:40:30 2011 Fri Oct 21 17:52:30 2011 0.27

Fri Oct 21 17:52:30 2011 Fri Oct 21 18:04:30 2011 0.22

[bright52->device]% dumpstatistics -i 5 -u -1h now loadone -n node001..n\

ode003

Start End 0% 25% 50% 75% 100%

---------- ---------- ------ ------ ------ ------ ------

1319444362 1319445082 0 0 0.03 0.0475 0.07

1319445082 1319445802 0 0 0 0.0025 0.04

1319445802 1319446522 0 0 0 0.01 0.06

1319446522 1319447242 0 0 0 0.01 0.08

1319447242 1319447962 0 0 0 0.015 0.05

© Bright Computing, Inc.



10.9 The User Portal 297

10.9 The User Portal
10.9.1 Accessing The User Portal
The user portal allows users to login via a browser and view the state of
the cluster themselves. It is a read-only interface.

The first time a browser is used to login to the portal, a warning about
the site certificate being untrusted appears.

The certificate is a self-signed certificate (the x509v3 certificate of sec-
tion 4.1), generated and signed by Bright Computing, and the attributes of
the cluster owner are part of the certificate. However, Bright Computing
is not a recognized Certificate Authority (CA) according to the standard
CAs that are recognized by a browser, which is why the warning appears.

Portals Isolated From The Outside
For a portal that is not accessible from the outside world, such as the
internet, this warning is not an issue, and the user can simply accept the
“untrusted” certificate.

Indeed, for such portals, the administrator may wish to do away with
user authentication for the portal as well. A way to bypass authentication
in such a case is to change the file /var/www/html/header.php so that one
line is added as indicated:

...

Session()->set("username", "cmsupport"); // THIS LINE IS ADDED

if(!Session()->get("username")) {

$current = Input()->getCurrentPage();

$current = urlencode($current);

redirect("login.php?redirect=$current");

}

...

Portals Accessible From The Outside
For a portal that is accessible via the internet, some administrators may
regard it as more secure to ask users to trust the self-signed certificate
rather than external certificate authorities.

Alternatively the adminstrator can replace the self-signed certificate
with one obtained by a standard CA certificate, if that is preferred.

External LDAP Service
The file /var/www/html/login.php has the following lines as default val-
ues:

$ldapHost = "ldap://localhost";

$ldapPort = "389";

$ldapBase = "dc=cm, dc=cluster";

These values are valid for the internal LDAP server provided by Bright
Cluster Manager for LDAP authentication. However, the values in these
lines must be changed appropriately if an external LDAP service (sec-
tion 7.3) is used for authentication instead.

10.9.2 User Portal Home Page
The default user portal home page allows a quick glance to convey the
most important cluster-related information for users (figure 10.36):

© Bright Computing, Inc.

/var/www/html/header.php
/var/www/html/login.php


298 Cluster Monitoring

Figure 10.36: User Portal: Default Home Page

The following items are displayed on the home page:

• a Message Of The Day. This can be edited in /var/www/html/motd.

php

• links to the documentation for the cluster

• contact information. This can be edited in /var/www/html/

contact.php

• an overview of the cluster state, carried out by displaying the values
of items in the cluster. These are a subset of the items seen in the
Overview tab of the cluster in cmgui in figure 3.4

• a workload overview. This is a table displaying a summary of
queues and their associated jobs

The user portal from the point of view of a user is described further in
the User Manual.

© Bright Computing, Inc.

/var/www/html/motd.php
/var/www/html/motd.php
/var/www/html/contact.php
/var/www/html/contact.php


11
Day-to-day Administration

This chapter discusses several tasks that may come up in day-to-day ad-
ministration of a cluster running Bright Cluster Manager.

11.1 Parallel Shell
The cluster management tools include the parallel shell execution com-
mand, pexec. This allows bash commands to be run on a group of nodes
simultaneously.

The pexec command can be run from the OS shell (bash by default),
or from the CMDaemon (cmsh or cmgui) front ends. The name pexec is
the same in both these cases, but the syntax differs slightly.

• In the OS shell, running pexec without any arguments or options
displays the following help text:

------------------------------------------------------------------------

Cluster commands v1.3

------------------------------------------------------------------------

Options:

\* use wildcard for file selection

-- end of parallel commandline options

-v verbose

-a do not broadcast to see which nodes are alive

-b background execution (not supported by pcopy)

-t=time(s) timeout in seconds, default is 10 seconds, 0

disables timeout

-d=directory change the working directory

-g=nodegroup group selection

-n=node single node selection

-n=node001,node010 node list selection (node001 and node010)

-n=node001..node010 node range selection (node001 through node010)

-c prevent colored output

-e only execute on nodes running the installer

-m execute on all nodes, including nodes running

the installer

-u=url alternative master CMDaemon URL

Commands:

© Bright Computing, Inc.



300 Day-to-day Administration

pexec <command> execute <command>

pcopy <f1..fn> <dir> copy files and/or directories to <dir>. Add '/'

to the end of a directory in order to

transfer only the contents of a directory

pkilluser as root: user-only command, it should not be

used by root

as user: kill processes owned by user

------------------------//////////////////////////---------------------

Some of the less obvious options are explained here:

◦ \*: Not actually an option, but a reminder to escape the as-
terisk from the OS shell if using wildcards. The following are
equivalent:

Example

pexec ls "*"

pexect ls \*

◦ --: After the list of parallel commands is run, -- is used as
a marker to indicate the pexec command has ended, and that
anything that continues on the same line is no longer part of
the pexec just ended. Thus, in the following command:

pexec ls -- ; ls

it means that the first ls is executed in parallel as part of pexec,
while the second ls is run only from the current OS session.

◦ -a: By default a broadcast ping is used to check what nodes
are alive. The -a option tries to run the command on all nodes
(head and regular) without running the check.

◦ -u=url: This can be useful in the odd case of CMDaemon not
running on the default ports. Appendix C includes a descrip-
tion of the port directives which allow non-default ports to be
used.

• In cmsh, the pexec command is run from device mode:

Example

[bright52->device]% pexec -n node001,node002 "cd ; ls"

[node001] :

anaconda-ks.cfg

install.log

install.log.syslog

[node002] :

anaconda-ks.cfg

install.log

install.log.syslog

© Bright Computing, Inc.



11.2 Getting Support With Cluster Manager Issues 301

• In cmgui, it is executed from the Parallel Shell tab after selecting
the cluster from the resource tree (figure 11.1):

Figure 11.1: Executing Parallel Shell Commands

11.2 Getting Support With Cluster Manager Issues
Bright Cluster Manager is constantly undergoing development. While
the result is a robust and well-designed cluster manager, it is possible that
the administrator may run into a feature that requires help from Bright
Computing or Bright Computing’s resellers. This section describes how
to get support for such issues.

11.2.1 Getting Support From The Reseller
If the Bright Cluster Manager software was obtained through a reseller or
system integrator, then the first line of support is provided by the reseller
or system integrator. The reseller or system integrator in turn contacts
the Bright Computing support department if 2nd or 3rd level support is
required.

11.2.2 Getting Support From Bright Computing
If the Bright Cluster Manager software was purchased directly from Bright
Computing, then support@brightcomputing.com can be contacted for all
levels of support.

Bright Computing provides the cm-diagnose and the
request-remote-assistance utilities to help resolve issues.

If the issue appears to be a bug, then a bug report should be sub-
mitted. It is helpful to include as many details as possible to ensure the
development team is able to reproduce the apparent bug. The policy at
Bright Computing is to welcome such reports, to provide feedback to the
reporter, and to resolve the problem.

Reporting Cluster Manager Diagnostics With cm-diagnose

The diagnostic utility cm-diagnose is run from the head node and gathers
data on the system that may be of use in diagnosing issues. To view its

© Bright Computing, Inc.

support@brightcomputing.com


302 Day-to-day Administration

options and capabilities, it can be run as “cm-diagnose �-help”.
When run without any options, it runs interactively, and allows the

administrator to send the resultant diagnostics file to Bright Computing
directly. The output of a cm-diagnose session looks something like the
following (the output has been made less verbose for easy viewing):

Example

[root@bright52 ~]# cm-diagnose

Describing the issue helps us diagnose it.

Do you want to enter a description? [Y/n]

End input with ctrl-d

I tried X, Y, and Z on the S2464 motherboard. When that didn't work, I

tried A, B, and C, but the florbish is grommicking.

Thank you.

If issues are suspected to be in the cmdaemon process, a gdb trace of

that process is useful.

In general such a trace is only needed if Bright Support asks for this.

Do you want to create a gdb trace of the running CMDaemon? [y/N]

Proceed to collect information? [Y/n]

Processing master

Processing commands

Processing file contents

Processing large files and log files

Collecting process information for CMDaemon

Executing CMSH commands

Finished executing CMSH commands

Processing default-image

Processing commands

Processing file contents

Creating log file: /root/bright52_Bright_5.2_Cluster_954.tar.gz

Cleaning up

Automatically submit diagnostics to

http://support.brightcomputing.com/cm-diagnose/ ? [Y/n] y

Uploaded file: bright52_Bright_5.2_Cluster_954.tar.gz

Remove log file (/root/bright52_Bright_5.2_Cluster_954.tar.gz)? [y/N] y

[root@bright52 ~]

Requesting Remote Support With request-remote-assistance

The request-remote-assistance utility allows a Bright Computing en-
gineer to securely tunnel into the cluster without a change in firewall or
ssh settings of the cluster. For the utility to work, it should be allowed to
access the www and ssh ports of Bright Computing’s internet servers.

Administrators familiar with screen may wish to run it within a
screen session. It is run as follows:

Example

© Bright Computing, Inc.



11.3 Backups 303

[root@bright52 ~]# request-remote-assistance

This tool helps securely set up a temporary ssh tunnel to

sandbox.brightcomputing.com.

Allow a Bright Computing engineer ssh access to the cluster? [Y/n]

Enter additional information for Bright Computing (eg: related

ticket number, problem description)? [Y/n]

End input with ctrl-d

Ticket 1337 - the florbish is grommicking

Thank you.

Added temporary Bright public key.

The screen clears, and the secure tunnel opens up, displaying the follow-
ing notice:

REMOTE ASSISTANCE REQUEST

########################################################

A connection has been opened to Bright Computing Support.

Closing this window will terminate the remote assistance

session.

--------------------------------------------------------

Hostname: bright52.NOFQDN

Connected on port: 7000

ctrl-c to terminate this session

Bright Computing support automatically receives an e-mail alert that an
engineer can now securely tunnel into the cluster. The session activ-
ity is not explicitly visible to the administrator. When the engineer has
ended the session, the administrator may remove the secure tunnel with
a ctrl-c, and the display then shows:

Tunnel to sandbox.brightcomputing.com terminated.

Removed temporary Bright public key.

[root@bright52 ~]#

The Bright Computing engineer is then no longer able to access the
cluster.

11.3 Backups
11.3.1 Cluster Installation Backup
Bright Cluster Manager does not include facilities to create backups of
a cluster installation. When setting up a backup mechanism, it is rec-
ommended that the full file-system of the head node (i.e. including all
software images) is backed up. Unless the node hard drives are used to
store important data, it is not necessary to back up nodes.

If no backup infrastructure is already in place at the cluster site, the
following open source (GPL) software packages may be used to maintain
regular backups:

© Bright Computing, Inc.



304 Day-to-day Administration

• Bacula: Bacula is a mature network based backup program that
can be used to backup to a remote storage location. If desired, it
is also possible to use Bacula on nodes to back up relevant data that
is stored on the local hard drives. More information is available at
http://www.bacula.org

• rsnapshot: rsnapshot allows periodic incremental file system snap-
shots to be written to a local or remote file system. Despite its sim-
plicity, it can be a very effective tool to maintain frequent backups of
a system. More information is available at http://www.rsnapshot.
org.

11.3.2 Local Database Backups And Restoration
The CMDaemon database is stored in the MySQL cmdaemon database, and
contains most of the stored settings of the cluster.

The CMDaemon monitoring database is stored in a separate MySQL
cmdaemon_mon database.

The administrator is expected to run a regular backup mechanism for
the cluster to allow restores of all files from a recent snapshot. As an
additional, separate, convenience:

• For the CMDaemon database, the entire database is also backed up
nightly on the cluster filesystem itself (“local rotating backup”) for
the last 7 days.

• For the monitoring database, the monitoring database raw data
records are not backed up locally, since these can get very large,
but the rest of the database is backed up for the last 7 days too.

Database Corruption Messages And Repairs
A corrupted MySQL database is commonly caused by an improper shut-
down of the node. To deal with this, when starting up, MySQL checks
itself for corrupted tables, and tries to repair any such by itself. Detected
corruption causes an event notice to be sent to cmgui or cmsh.

When there is database corruption, info messages in the
/var/log/cmdaemon log may mention:

• “Unexpected eof found” in association with a table in the
database,

• “can't find file” when referring to an entire missing table,

• locked tables,

• error numbers from table handlers,

• “Error while executing” a command.

An example of an event message on a head node icarus:

Example

[icarus]%

Fri Jan 18 10:33:15 2012 [notice] icarus: Error when reading data from m\

onitoring database. No monitoring data will be saved. (details: Incorrec\

t key file for table './cmdaemon_mon/MonData.MYI'; try to repair it)

[icarus]%

© Bright Computing, Inc.

http://www.bacula.org
http://www.rsnapshot.org
http://www.rsnapshot.org


11.3 Backups 305

The associated messages logged in /var/log/cmdaemonmay show some-
thing like:

Example

Jan 18 10:31:05 icarus CMDaemon: Info: Reconnect command processed.

Jan 18 10:31:05 icarus CMDaemon: Info: MysqlBuffer: starting main mysql \

buffer thread

Jan 18 10:31:05 icarus CMDaemon: Info: MysqlBuffer: starting mirroring t\

hread

Jan 18 10:31:05 icarus CMDaemon: Info: Preloading mysql key cache using \

query: LOAD INDEX INTO CACHE MonMetaData

Jan 18 10:31:05 icarus CMDaemon: Info: MysqlBuffer: starting MysqlBuffer\

thread

Jan 18 10:31:05 icarus CMDaemon: Info: Database: Mirroring required to r\

remote master

Jan 18 10:31:05 icarus CMDaemon: Info: Database: generalQuery returned: \

cmdaemon_mon.MonMetaData preload_keys status OK

Jan 18 10:31:05 icarus CMDaemon: Info: Preloading mysql key cache using \

query: LOAD INDEX INTO CACHE MonData INDEX (MonDataIndex) IGNORE LEAVES

Jan 18 10:31:05 icarus CMDaemon: Info: Database: generalQuery returned: \

cmdaemon_mon.MonData preload_keys Error Unexpected eof found when readin\

g file '/var/lib/mysql/cmdaemon_mon/MonData.MYI' (Errcode: 0) cmdaemon_m\

on.MonData preload_keys status OK

Looking through the preceding messages, the conclusion is that the
monitoring database has a corrupted MonData table. Being in MyISAM
format (.MYI) means the myisamchk repair tool can be run on the table,
for example as:

[root@icarus ~]# service cmd stop

[root@icarus ~]# myisamchk --recover /var/lib/mysql/cmdaemon_mon/MonData\

.MYI

[root@icarus ~]# service cmd start

If basic repair fails, more extreme repair options—man myisamchk(1)

suggests what—can then be tried out next.
Another example: If CMDaemon is unable to start up due to a cor-

rupted database, then messages in the /var/log/cmdaemon file might
show something like:

Example

Oct 11 15:48:19 solaris CMDaemon: Info: Initialize cmdaemon database

Oct 11 15:48:19 solaris CMDaemon: Info: Attempt to set provisioningNetwo\

rk (280374976710700) not an element of networks

Oct 11 15:48:19 solaris CMDaemon: Fatal: Database corruption! Load Maste\

rNode with key: 280374976782569

Oct 11 15:48:20 solaris CMDaemon: Info: Sending reconnect command to all\

nodes which were up before master went down ...

Oct 11 15:48:26 solaris CMDaemon: Info: Reconnect command processed.

Here it is CMDaemon’s “Database corruption” message that the ad-
ministrator should be aware of, and which suggests database repairs are
required for the CMDaemon database. The severity of the corruption, in
this case not even allowing CMDaemon to start up, may mean a restora-
tion from backup is needed. How to restore from backup is explained in
the next section.

© Bright Computing, Inc.



306 Day-to-day Administration

Restoring From The Local Backup
MySQL has several database repair tools. If these do not fix the problem,
then, for a failover configuration, the dbreclone option (section 13.3.2)
should normally provide a database that is current.

If the head node is not part of a failover configuration, then a restora-
tion from local backup can be done. The local backup directory is
/var/spool/cmd/backup, with contents that look like (some text elided):

Example

[root@solaris ~]# cd /var/spool/cmd/backup/

[root@solaris backup]# ls -l

total 280

...

-rw------- 1 root root 1593 Oct 10 04:02 backup-monitor-Mon.sql.gz

-rw------- 1 root root 1593 Oct 9 04:02 backup-monitor-Sun.sql.gz

...

-rw------- 1 root root 33804 Oct 10 04:02 backup-Mon.sql.gz

-rw------- 1 root root 33805 Oct 9 04:02 backup-Sun.sql.gz

-rw------- 1 root root 33805 Oct 11 04:02 backup-Tue.sql.gz

...

The CMDaemon database snapshots are stored as backup-<day

of week>.sql.gz while the monitoring database snapshots are stored
as backup-monitor-<day of week>.sql.gz. In the example, the lat-
est backup available in the listing for CMDaemon turns out to be
backup-Tue.sql.gz

The latest backup can then be ungzipped and piped into the MySQL
database for the user cmdaemon. The password, <password>, can be re-
trieved from /cm/local/apps/cmd/etc/cmd.conf, where it is configured
in the DBPass directive (Appendix C).

Example

gunzip backup-Tue.sql.gz

service cmd stop #(just to make sure)

mysql -ucmdaemon -p<password> cmdaemon < backup-Tue.sql

Running “service cmd start” should have CMDaemon running
again, this time with a restored database from the time the snapshot was
taken.

A similar procedure for monitoring database backups can be used to
restore the table structure and info messages of the data records from lo-
cal backup. It does not restore the monitoring data records themselves.
To restore records, the administrator would need to retrieve a snapshot
from the regular backup that the administrator should be running for the
cluster.

11.4 BIOS Configuration And Updates
Bright Cluster Manager includes a number of tools that can be used to
configure and update the BIOS of nodes. All tools are located in the

© Bright Computing, Inc.

/cm/local/apps/cmd/etc/cmd.conf


11.4 BIOS Configuration And Updates 307

/cm/shared/apps/cmbios/nodebios directory on the head node. The re-
mainder of this section assumes that this directory is the current working
directory.

Due to the nature of BIOS updates, it is highly recommended that
these tools are used with great care. Incorrect use may render nodes un-
usable.

Updating a BIOS of a node requires booting it from the network us-
ing a specially prepared DOS image. From the autoexec.bat file, one or
multiple automated BIOS operations can be performed.

11.4.1 BIOS Configuration
In order to configure the BIOS on a group of nodes, an administrator
needs to manually configure the BIOS on a reference node using the con-
ventional method of entering BIOS Setup mode at system boot time. After
the BIOS has been configured, the machine needs to be booted as a node.
The administrator may subsequently use the cmospull utility on the node
to create a snapshot of the reference node’s NVRAM contents.

Example

ssh node001 /cm/shared/apps/cmbios/nodebios/cmospull > node001.nvram

After the NVRAM settings of the reference node have been saved to a file,
the settings need to be copied to the generic DOS image so that they can
be written to the NVRAM of the other nodes.

The generic DOS image is located in /cm/shared/apps/cmbios/

nodebios/win98boot.img. It is generally a good idea to copy the generic
image and make changes to the copy only.

Example

cp -a win98boot.img flash.img

To modify the image, it is first mounted:

mount -o loop flash.img /mnt

When the DOS image has been mounted, the utility that writes out the
NVRAM data needs to be combined with the NVRAM data into a sin-
gle DOS executable. This is done by appending the NVRAM data to the
cmosprog.bin file. The result is a DOS .COM executable.

Example

cat cmosprog.bin node001.nvram > cmosprog.com

The generated .COM is then copied to the image and should be started
from the autoexec.bat file. Note that DOS text files require a carriage
return at the end of every line.

Example

cp cmosprog.com /mnt

/bin/echo -e "A:\\\cmosprog.com\r" >> /mnt/autoexec.bat

After making the necessary changes to the DOS image, it is un-
mounted:

umount /mnt

After preparing the DOS image, it is booted as described in sec-
tion 11.4.3.

© Bright Computing, Inc.

/cm/shared/apps/cmbios/nodebios
/cm/shared/apps/cmbios/nodebios/win98boot.img
/cm/shared/apps/cmbios/nodebios/win98boot.img


308 Day-to-day Administration

11.4.2 Updating BIOS
Upgrading the BIOS to a new version involves using the DOS tools that
were supplied with the BIOS. Similar to the instructions above, the flash
tool and the BIOS image must be copied to the DOS image. The file
autoexec.bat should be altered to invoke the flash utility with the correct
parameters. In case of doubt, it can be useful to boot the DOS image and
invoke the BIOS flash tool manually. Once the correct parameters have
been determined, they can be added to the autoexec.bat.

After a BIOS upgrade, the contents of the NVRAM may no longer
represent a valid BIOS configuration because different BIOS versions may
store a configuration in different formats. It is therefore recommended to
also write updated NVRAM settings immediately after flashing a BIOS
image (section 11.4.1).

The next section describes how to boot the DOS image.

11.4.3 Booting DOS Image
To boot the DOS image over the network, it first needs to be copied to
software image’s /boot directory, and must be world-readable.

Example

cp flash.img /cm/images/default-image/boot/bios/flash.img

chmod 644 /cm/images/default-image/boot/bios/flash.img

An entry is added to the PXE boot menu to allow the DOS image to
be selected. This can easily be achieved by modifying the contents of
/cm/images/default-image/boot/bios/menu.conf, which is by default
included automatically in the PXE menu. By default, one entry Example

is included in the PXE menu, which is however invisible as a result of
the MENU HIDE option. Removing the MENU HIDE line will make the BIOS
flash option selectable. Optionally the LABEL and MENU LABEL may be set
to an appropriate description.

The option MENU DEFAULT may be added to make the BIOS flash image
the default boot option. This is convenient when flashing the BIOS of
many nodes.

Example

LABEL FLASHBIOS

KERNEL memdisk

APPEND initrd=bios/flash.img

MENU LABEL ^Flash BIOS

# MENU HIDE

MENU DEFAULT

The bios/menu.conf file may contain multiple entries corresponding to
several DOS images to allow for flashing of multiple BIOS versions or
configurations.

11.5 Hardware Match Check
Often a large number of identical nodes may be added to a cluster. In
such a case it is a good practice to check that the hardware matches what
is expected. This can be done easily as follows:

© Bright Computing, Inc.

/cm/images/default-image/boot/bios/menu.conf


11.5 Hardware Match Check 309

1. The new nodes, say node129 to node255, are committed to a newly
created category newnodes as follows (output truncated):

[root@bright52 ~]# cmsh -c "category add newnodes; commit"

[root@bright52 ~]# for i in {129..255}

> do

> cmsh -c "device; set node00$i category newnodes; commit"

> done

Successfully committed 1 Devices

Successfully committed 1 Devices

2. The hardware profile of one of the new nodes, say node129,
is saved into the category newnodes. This is done using the
node-hardware-profile health check (Appendix H.2.1) as follows:

[root@bright52 ~]# /cm/local/apps/cmd/scripts/healthchecks/node-hardwar\

e-profile -n node129 -s newnodes

The profile is intended to be the reference hardware against which
all the other nodes should match.

3. The frequency with which the health check should run in normal
automated periodic use is set as follows (some prompt text elided):

[root@bright52 ~]# cmsh

[bright52]% monitoring setup healthconf newnodes

[...->healthconf]% add hardware-profile

[...->healthconf*[hardware-profile*]]% set checkinterval 600; commit

4. The cmdaemon then automatically alerts the administrator if one of
the nodes does not match the hardware of that category during the
first automated check. In the unlikely case that the reference node
is itself faulty, then that will also be obvious because all—or almost
all, if more nodes are faulty—of the other nodes in that category will
then be reported “faulty” during the first check.

© Bright Computing, Inc.





12
Third Party Software

In this chapter, several third party software packages included in the
Bright Cluster Manager repository are described briefly. For all packages,
references to the complete documentation are provided.

12.1 Modules Environment
Package name: env-modules for head node

The modules environment (http://modules.sourceforge.net/) allows
a user of a cluster to modify the shell environment for a particular appli-
cation or even a particular version of an application. Typically, a module
file defines additions to environment variables such as PATH, LD_LIBRARY-
_PATH, and MANPATH. Cluster users use the module command to load or
remove modules from their environment. The module(1) man page has
more detail on the command.

Aspects of the modules environment that are relevant for administra-
tors are discussed in section 3.2, while the modules environment from a
user’s perspective is covered in the Bright Cluster Manager User Manual.

All module files are located in the /cm/local/modulefiles and /cm/

shared/modulefiles trees. A module-file is a TCL script in which spe-
cial commands are used to define functionality. The modulefile(1) man
page has more on this.

Cluster administrators can use the existing modules files as a guide to
creating their own modules for module environments, and can copy and
modify a file for their own software if there is no environment provided
for it already by Bright Cluster Manager.

12.2 Shorewall
Package name: shorewall
Bright Cluster Manager uses Shoreline Firewall (more commonly known
as “Shorewall”) package to provide firewall and gateway functionality
on the head node of a cluster. Shorewall is a flexible and powerful high-
level interface for the netfilter packet filtering framework inside the 2.4
and 2.6 Linux kernels. Behind the scenes, Shorewall uses the standard
iptables command to configure netfilter in the kernel. All aspects of
firewall and gateway configuration are handled through the configura-
tion files located in /etc/shorewall. Shorewall does not run as a daemon

© Bright Computing, Inc.

http://modules.sourceforge.net/
/cm/local/modulefiles
/cm/shared/modulefiles
/cm/shared/modulefiles
/etc/shorewall


312 Third Party Software

process, but rather exits immediately after configuring netfilter through
iptables. After modifying Shorewall configuration files, Shorewall must
be run again to have the new configuration take effect:

service shorewall restart

In the default setup, Shorewall provides gateway functionality to the
internal cluster network on the first network interface (eth0). This net-
work is known as the nat zone to Shorewall. The external network (i.e.
the connection to the outside world) is assumed to be on the second net-
work interface (eth1). This network is known as the net zone in Shore-
wall. Letting Bright Cluster Manager take care of the network interfaces
settings is recommended for all interfaces on the head node (section 4.2).
The interfaces file is generated by the cluster management daemon,
and any extra instructions that cannot be added via cmgui or cmsh can be
added outside of the file section clearly demarcated as being maintained
by CMDaemon.

Shorewall is configured by default (through /etc/shorewall/policy)
to deny all incoming traffic from the net zone, except for the traffic that
has been explicitly allowed in /etc/shorewall/rules. Providing (a sub-
set of) the outside world with access to a service running on a cluster, can
be accomplished by creating appropriate rules in /etc/shorewall/rules.
By default, the cluster responds to ICMP ping packets and allows SSH ac-
cess from the whole world. Depending on site policy, access to port 8081
may also be enabled to allow access to the cluster management daemon.

To remove all rules, for example for testing purposes, the clear option
should be used. This then allows all network traffic through:

shorewall clear

Administrators should be aware that in Red Hat distribution vari-
ants the “service shorewall stop” command corresponds to the
“shorewall stop” command, and not to the “shorewall clear” com-
mand. The “stop” option blocks network traffic but allows a pre-defined
minimal “safe” set of connections, and is not the same as completely re-
moving Shorewall from consideration. This differs from Debian-like dis-
tributions where “service shorewall stop” corresponds to “shorewall
clear” and removes Shorewall from consideration.

Administrators should also be aware that distributions such as Red
Hat and SUSE run their own set of high-level iptable setup scripts if the
standard distribution firewall is enabled. Since Bright Cluster Manager
requires Shorewall, then, to avoid conflict, the standard distribution fire-
wall must stay disabled. Shorewall can be configured to set up whatever
iptable rules are installed by the standard distribution script instead.

Full documentation on Shorewall is available at http://www.

shorewall.net.

12.3 Compilers
Bright Computing provides convenient RPM packages for several com-
pilers that are popular in the HPC community. All of those may be in-
stalled through yum or zypper (section 9.2) but (with the exception of
GCC) require an installed license file to be used.

© Bright Computing, Inc.

/etc/shorewall/policy
/etc/shorewall/rules
http://www.shorewall.net
http://www.shorewall.net


12.3 Compilers 313

12.3.1 GCC
Package name: gcc-recent

The GCC suite that the distribution provides is also present by de-
fault.

12.3.2 Intel Compiler Suite
Package names:

Intel Compiler Suite Versions

2011 2013

intel-compiler-common intel-compiler-common-2013

intel-compiler-common-32 intel-compiler-common-2013-32

intel-cc intel-cc-2013

intel-cc-32 intel-cc-2013-32

intel-fc intel-fc-2013

intel-fc-32 intel-fc-2013-32

intel-idb intel-idb-2013

intel-idb-32 intel-idb-2013-32

intel-ipp intel-ipp-2013

intel-ipp-32 intel-ipp-2013-32

intel-itac intel-itac-2013

intel-mkl intel-mkl-2013

intel-mkl-32 intel-mkl-2013-32

intel-openmp-2013 intel-openmp-2013

intel-openmp-32 intel-openmp-2013-32

intel-sourcechecker intel-sourcechecker-2013

intel-sourcechecker-32 intel-sourcechecker-2013-32

intel-tbb intel-tbb-2013

The Intel compiler packages are provided as a suite, for example by
Intel® C++ Composer XE. The 2013 version of the suite can be installed
concurrently with the 2011 version. However, the administrator should
be aware when doing this that if a short module (section 3.2) name is
used, such as intel/compiler, then the compiler version with the highest
character value folowing the short module name is the one that is used.

Typically, the suite includes the Intel Fortran (indicated by fc) and
Intel C++ compilers (part of the C compiler package, indicated by cc).
Along with the 64-bit (i.e. EM64T) version of both compilers, the 32-bit
version may optionally be installed. The 32-bit packages have package
names ending in “-32”

Both the 32-bit and 64-bit versions can be invoked through the same
set of commands. The modules environment (section 3.2) provided when
installing the packages can be loaded accordingly, to select one of the two
versions. For the C++ and Fortran compilers the 64-bit and 32-bit mod-
ules are called intel/compiler/64 and intel/compiler/32 respectively.

The Intel compilers include a debugger, which can also be accessed by
loading the intel/compiler/64 or intel/compiler/32 module. The fol-

© Bright Computing, Inc.



314 Third Party Software

lowing commands can be used to run the Intel compilers and debugger:

• icc: Intel C/C++ compiler

• ifort: Intel Fortran 90/95 compiler

• idb: Intel Debugger

Optional packages are:

• intel-ipp: Integrated Performance Primitives

• intel-mkl: Math Kernel Library

• intel-itac: Trace Analyzer And Collector

• intel-sourcechecker: Source Checker

• intel-tbb: Threading Building Blocks

A short summary of a package can be shown using, for example: “yum
info intel-fc”.

The compiler packages require a license, obtainable from Intel, and
placed in /cm/shared/licenses/intel.

Full documentation for the Intel compilers is available at http://

software.intel.com/en-us/intel-compilers/.

12.3.3 PGI High-Performance Compilers
Package name: pgi

The PGI compiler package contains the PGI C++ and Fortran 77/90/95
compilers.

• pgcc: PGI C compiler

• pgCC: PGI C++ compiler

• pgf77: PGI Fortran 77 compiler

• pgf90: PGI Fortran 90 compiler

• pgf95: PGI Fortran 95 compiler

• pgdbg: PGI debugger

Full documentation for the PGI High-Performance Compilers is available
at http://www.pgroup.com/resources/docs.htm.

12.3.4 AMD Open64 Compiler Suite
Package name: open64

The Open64 Compiler Suite contains optimizing C++ and Fortran com-
pilers.

• opencc: Open64 C compiler

• openCC: Open64 C++ compiler

• openf90: Open64 Fortran 90 compiler

• openf95: Open64 Fortran 95 compiler

Full documentation for the AMD Open64 Compiler Suite is available at:
http://www.amd.com.

© Bright Computing, Inc.

http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://www.pgroup.com/resources/docs.htm
http://www.amd.com


12.4 Intel Cluster Checker 315

12.3.5 FLEXlm License Daemon
Package name: flexlm

For the Intel and PGI compilers a FLEXlm license must be present in
the /cm/shared/licenses tree.

For workstation licenses, i.e. a license which is only valid on the head
node, the presence of the license file is typically sufficient.

However, for floating licenses, i.e. a license which may be used on
several machines, possibly simultaneously, the FLEXlm license manager,
lmgrd, must be running.

The lmgrd service serves licenses to any system that is able to con-
nect to it through the network. With the default firewall configuration,
this means that licenses may be checked out from any machine on the
internal cluster network. Licenses may be installed by adding them to
/cm/shared/licenses/lmgrd/license.dat. Normally any FLEXlm li-
cense starts with the following line:

SERVER hostname MAC port

Only the first FLEXlm license that is listed in the license.dat file used
by lmgrd may contain a SERVER line. All subsequent licenses listed in
license.dat should have the SERVER line removed. This means in prac-
tice that all except for the first licenses listed in license.dat start with a
line:

DAEMON name /full/path/to/vendor-daemon

The DAEMON line must refer to the vendor daemon for a specific ap-
plication. For PGI the vendor daemon (called pgroupd) is included in
the pgi package. For Intel the vendor daemon (called INTEL) must be
installed from the flexlm-intel.

Installing the flexlm package adds a system account lmgrd to the
password file. The account is not assigned a password, so it cannot be
used for logins. The account is used to run the lmgrd process. The lmgrd

service is not configured to start up automatically after a system boot, but
can be configured to do so with:

chkconfig lmgrd on

The lmgrd service is started manually with:

/etc/init.d/lmgrd start

The lmgrd service logs its transactions and any errors to
/var/log/lmgrd.log.

More details on FLEXlm and the lmgrd service are available at http:
//www.rovicorp.com.

12.4 Intel Cluster Checker
Package name: intel-cluster-checker

Intel Cluster Checker is a tool that checks the health of the cluster
and verifies its compliance against the requirements defined by the Intel
Cluster Ready Specification. This section lists the steps that must be taken
to certify a cluster as Intel Cluster Ready.

© Bright Computing, Inc.

/cm/shared/licenses/lmgrd/license.dat
http://www.rovicorp.com
http://www.rovicorp.com


316 Third Party Software

For additional instructions on using Intel Cluster Checker and its test
modules for a particular version <version>, the tool documentation lo-
cated in the cluster at /opt/intel/clck/<version>/doc/ can be referred
to. The URL http://software.intel.com/en-us/cluster-ready/ has
more information on the Intel Cluster Ready (ICR) program.

12.4.1 Package Installation
Package Installation: Other Required Packages
The Intel Cluster Checker tool is provided by the intel-cluster-checker
package. To meet all the Intel Cluster Ready specification requirements
the following software packages also need to be installed on the head and
regular nodes:

• intel-cluster-runtime

• cm-config-intelcompliance-master

• cm-config-intelcompliance-slave

Package Installation: Where The Packages Go
The intel-cluster-checker and intel-cluster-runtime packages are
installed only on the head node, although libraries are available to the
regular nodes through the shared file system. Packages cm-config--

intelcompliance-master and cm-config-intelcompliance-slave are
installed on the head node and software images respectively.

Package Installation: Installing The Packages With A Package Manager
The packages are normally already installed by default on a standard
Bright Cluster Manager cluster. If they are not installed then the pack-
ages can be installed using yum (or zypper if using SLES 11).

Example

[root@mycluster ~]# yum install intel-cluster-runtime intel-cluster-che\

cker cm-config-intelcompliance-master

[root@mycluster ~]# chroot /cm/images/default-image

[root@mycluster /]# yum install cm-config-intelcompliance-slave

The packages guarantee through package dependencies that all Intel
Cluster Ready package requirements are satisfied. If the package man-
ager reports that any additional packages need to be installed, simply
agreeing to install them is enough to satisfy the requirements.

Package Installation: Updating The Nodes
After installing the necessary packages the nodes need to be updated.
This can be done with an updateprovisioners command (if there are
node provisioners in the cluster) followed by an imageupdate command.

12.4.2 Preparing Configuration And Node List Files
The configuration and package list files are located in the /etc/intel/

clck directory:

• config-ib.xml

• config-nonib.xml

© Bright Computing, Inc.

http://software.intel.com/en-us/cluster-ready/
/etc/intel/clck
/etc/intel/clck


12.4 Intel Cluster Checker 317

• packagelist.head

• packagelist.node

The input files, containing a list of the nodes to be checked, are created
in the /home/cmsupport/intel-cluster-ready directory:

• nodelist

• nodelist.ib

These files are used during the cluster checker execution. During the
cluster checker preparation, the nodelist and nodelist.ib files must
be generated. During the first boot of a head nodethe package list files
packagelist.head and packagelist.node are generated.

Configuration Files
The config-nonib.xml and config-ib.xml files are default
configuration files that have been included as part of the
cm-config-intelcompliance-master package. Both configuration
files may need small modifications based on the cluster for which
certification is required.

The configuration file can be copied to the user’s home directory and
edited as needed. The adjusted configuration file name needs to be pro-
vided to the Intel cluster checker command as an argument. Otherwise,
the tool uses /etc/intel/clck/config.xml by default.

For the certification run, two configuration files are available:

• config-nonib.xml

• config-ib.xml

During the first boot of the head node, the
/etc/intel/clck/config.xml link is created.

• If no configuration file is provided when running the cluster check,
then /etc/intel/clck/config.xml is used as the configuration file

• If the cluster has no InfiniBand interconnect, then
/etc/intel/clck/config.xml links to the config-nonib.xml

file

• If the cluster uses an InfiniBand interconnect, then
/etc/intel/clck/config.xml links to the config-ib.xml file

The existence of a link and where it points to can be checked as fol-
lows:

[root@mycluster ~]# ls -l /etc/intel/clck/config.xml

The file or link /etc/intel/clck/config.xml can be changed if needed.
Although it is not required for an ICR certification, several perfor-

mance thresholds can be defined which require tuning based on the hard-
ware that is included in the cluster.

When in doubt, it can be useful to configure threshold values which
are certainly too high in performance for the cluster to meet. For example,
too high a throughput for disk I/O bandwidth, or too low a time in the

© Bright Computing, Inc.

/home/cmsupport/intel-cluster-ready


318 Third Party Software

case of latency. After running the cluster checker, a (failed) value for the
concerned performance parameters will be given, and the performance
thresholds can then be adjusted to more realistic numbers based on the
results obtained from the run.

Intel Cluster Checker can also be run with the ��autoconfigure op-
tion for automatic configuration, in which case a basic configuration is
written to an existing configuration file before the execution starts.

Node Lists
The nodelist and nodelist.ib files list the nodes which are considered
by the Intel Cluster Checker. In the normal case nodelist is used. When
an InfiniBand interconnect is used in the cluster, the nodelist.ib file can
be used to run the cluster check entirely over InfiniBand. When the cluster
changes, the node lists files must be regenerated with the clck-prepare

command.

Updating the Node Lists
The clck-prepare command is used to generate or update the node
lists files. The cmsupport account is used to generate the files, since the
cmsupport account is used to perform the cluster check run. For clusters
without InfiniBand interconnect, the nodelist.ib file is not generated.

Example

[root@mycluster ~]# su - cmsupport

[cmsupport@mycluster ~]$ clck-prepare

Created non InfiniBand node list file /home/cmsupport/intel-cluster-rea\

dy/nodelist

Created InfiniBand node list file /home/cmsupport/intel-cluster-ready/n\

odelist.ib

Package Lists
The package list files packagelist.head and packagelist.node contain
lists of all packages installed on the head node and on the regular nodes.
These lists are used to ensure that the same software is available on all
nodes. The package lists are created on the first boot, and do not change
unless explicitly regenerated.

Regenerating Package Lists
The package list files are generated during the first boot of the head node.
The following example regenerates the package list files, if this is needed.

Example

[root@mycluster ~]# module load intel-cluster-checker

[root@mycluster ~]# clck-prepare

[root@mycluster ~]# cluster-check --packages

Packages installed in host mycluster.cm.cluster saved in file mycluster\

.cm.cluster-20111013.123523.list.

Packages installed in host node001.cm.cluster saved in file node001.cm.\

cluster-20111013.123523.list.

[root@mycluster ~]# mv mycluster.cm.cluster-20111013.123523.list /etc/i\

ntel/clck/packagelist.head

© Bright Computing, Inc.



12.4 Intel Cluster Checker 319

[root@mycluster ~]# mv node001.cm.cluster-20111013.123523.list /etc/int\

el/clck/packagelist.node

The “cluster-check ��packages” command creates the package list
of the head node and a regular node, in this case node001, in the cur-
rent working directory. The package list of the head node is moved to
/etc/intel/clck/packagelist.head, and the package list of a regular
node is moved to /etc/intel/clck/packagelist.node.

12.4.3 Running Intel Cluster Checker
The cmsupport account, which is part of a default installation, is used to
perform the cluster check run.

The following commands start the cluster checker:

[root@mycluster ~]# su - cmsupport

[cmsupport@mycluster ~]$ module initadd intel-cluster-runtime

[cmsupport@mycluster ~]$ module load intel-cluster-runtime

[cmsupport@mycluster ~]$ cluster-check --certification

The last line could instead be:

[cmsupport@mycluster ~]$ cluster-check --certification ~/custom_con\

fig.xml

if a configuration file config-ib.xml from the default location has been
copied over to the cmsupport account directory, and then modified for
use by the cluster checker.

Handling Test Failures
The cluster checker produces several output files, with .xml, .out, .debug
suffixes, which include time stamps in the filenames. If tests fail, the out-
put files can be consulted for details. The output files can be found in the
�/intel-cluster-ready/logs directory.

When debugging and re-running tests, the option

��include_only <test>

can be passed to cluster-check to execute only the test named “<test>”
(and the tests on which it depends).

In a heterogeneous cluster the cluster check run fails as a result of
hardware differences. To resolve the failures, it is necessary to create mul-
tiple groups of homogeneous hardware. For more information, the Intel
Cluster Checker documentation can be consulted.

12.4.4 Applying For The Certificate
When the cluster check run has reported that the “Check has Succeeded”,
a certificate may be requested for the cluster. Requesting a certificate in-
volves creating a “Bill of Materials”, which includes software as well
as hardware. This is then submitted together with the output files from
Intel Cluster Checker runs and the packages lists to cluster@intel.com.
The Intel Cluster Ready site contains interactive submissions forms that
make the application process as easy as possible. For more details, http:
//software.intel.com/en-us/cluster-ready/ can be visited.

© Bright Computing, Inc.

http://software.intel.com/en-us/cluster-ready/
http://software.intel.com/en-us/cluster-ready/


320 Third Party Software

12.5 CUDA For GPUs
The optional CUDA packages should be installed in order to take advan-
tage of the computational capabilities of NVIDIA GPUs.

12.5.1 GPUs And GPU Units
GPUs (Graphics Processing Units) are processors that are heavily opti-
mized for executing certain types of parallel processing tasks. GPUs were
originally used for rendering graphics, and one GPU typically has hun-
dreds of cores. When used for general processing, they are sometimes
called General Processing GPUs, or GPGPUs. In this manual the “GP”
prefix is not used for convenience.

GPUs can be physically inside the node that uses them, or they can
be physically external to the node that uses them. As far as the operat-
ing system on the node making use of the physically external GPUs is
concerned, the GPUs are internal to the node.

If the GPUs are physically external to the node, then they are typically
in a GPU Unit. A GPU unit is a chassis that hosts only GPUs. It can
typically provide GPU access to several nodes, usually via PCIe extender
connections. An example of a GPU Unit is the Dell PowerEdge C410x,
which comes in a 3U chassis size, has upto 16 GPUs, and can allocate up
to 4 GPUs per node.

12.5.2 Installing CUDA
A number of CUDA 4.0, 4.1, 4.2 and 5.0 packages exist in the YUM repos-
itory. The CUDA 4.0 packages are:

Package Type Description

cuda40-toolkit shared CUDA 4.0 math libraries and utilities

cuda40-sdk shared CUDA 4.0 software development kit

cuda40-profiler shared CUDA 4.0 profiler

cuda40-tools shared CUDA 4.0 sdk tools

cuda40-driver local CUDA 4.0 driver

cuda40-libs local CUDA 4.0 libraries

cuda40-xorg local CUDA 4.0 X.org driver and libraries

The CUDA 4.1+ (i.e. CUDA 4.1, CUDA 4.2, or CUDA 5.0) packages
have the same names, except that the cuda40-tools package is replaced
by a cuda41-tdk, cuda42-tdk, or cuda50-tdk package.

To update all packages from one CUDA version to another, the pack-
ages from the original CUDA version must first be removed. For exam-
ple, to update from CUDA 4.0 to 4.1, the CUDA 4.0 packages must first
be removed before installing CUDA 4.1 packages.

The installation procedure for CUDA 4.0 packages is described in this
section; the installation for CUDA 4.1+ is similar.

The packages marked as “shared” in the preceding table should be in-
stalled on the head nodes of a cluster using CUDA-compatible GPUs. The
packages marked as “local” should be installed to all nodes that access the
GPUs. In most cases this means that the cuda40-driver and cuda40-libs

packages should be installed in a software image (section 3.1.2).

© Bright Computing, Inc.



12.5 CUDA For GPUs 321

If a head node also accesses GPUs, the cuda40-driver and
cuda40-libs packages should be installed on it, too.

For packages of type local, only one package version out of the choice
of CUDA 4.0, 4.1, 4.2, or 5.0 can be installed at a time. So, for example,
considering the case where a cluster may have one node (or node cate-
gory) that runs CUDA 4.0, and another node (or node category) that runs
CUDA 4.1. Then the CUDA 4.0 node (or node category) can only run
CUDA 4.1 jobs after CUDA 4.1 is reinstalled on the node (or category),
and vice versa. This is because the driver is compiled and installed on the
fly during boot.

For packages of type shared, multiple versions can be installed on the
head node at one time, out of the choice of CUDA 4.0, 4.1, 4.2, or 5.0. The
particular CUDA version that the node works with can be selected via a
modules environment command:

Example

module add shared cuda41

The CUDA packages have additional dependencies that may require
access to repositories besides the main repository in order to resolve
them automatically. For example, for Red Hat, a subscription (Ap-
pendix M.1.2) is needed to the rhel-x86_64-server-supplementary-5

channel for RHEL5, and to the rhel-x86_64-server-optional-6 chan-
nel for RHEL6.

One of the dependencies of the cuda40-driver package is the
freeglut-devel package, so it should be installed on a node that accesses
a GPU. If the CUDA SDK source is to be compiled on the head node (with
the head node not accessing a GPU, and with the cuda40-driver pack-
age not installed) then the freeglut, freeglut-devel, and libXi-devel

packages can be installed on the head node.
The cuda40-libs package is used to compile cuda40-driver,

the driver that manages the GPU. Therefore, when installing the
cuda40-driver with yum, cuda40-libs and several other X11-related
packages are installed too due to package dependencies.

The cuda40-sdk can be used to compile libraries and tools that are not
part of the CUDA toolkit, but used by CUDA software developers, such
as the deviceQuery binary (section 12.5.4).

The cuda40-xorg and cuda40-tools packages are optional. The
cuda40-xorg package contains the driver and libraries for an X server.
The cuda40-tools contains files for the CUDA profiling tools interface,
CUDA debugging API and the nVidia Management Library.

Example

On a cluster where (some of) the nodes access GPUs but the head node
does not access a GPU, the following commands are issued on the head
node to install the packages through YUM:

yum install cuda40-toolkit cuda40-sdk cuda40-profiler

yum --installroot=/cm/images/default-image install cuda40-driver

The cuda40-driver package provides an init-script which is executed
at boot-time to load the CUDA driver. Because the CUDA driver depends

© Bright Computing, Inc.



322 Third Party Software

on the running kernel, the script compiles the CUDA driver using the
CUDA libaries on the fly, and subsequently loads the module into the
running kernel.

This cuda40-driver can also be loaded on the fly by calling the init-
script. Loading the driver also causes a number of diagnostic kernel mes-
sages to be logged:

Example

[root@mycluster ~]# /etc/init.d/cuda40-driver start

Compiling CUDA4.0 driver..installing..probe.. [ OK ]

[root@mycluster ~]# dmesg

...

PCI: Setting latency timer of device 0000:0e:00.0 to 64

PCI: Setting latency timer of device 0000:10:00.0 to 64

NVRM: loading NVIDIA UNIX x86_64 Kernel Module 270.35 Fri Mar 18 11:\

48:56 PDT 2011

If there is a failure in compiling the CUDA module, usually indicated
by a message saying “Could not make module” or “Cannot determine

kernel version”, then it is usually because compilation is not possible
due to missing the correct kernel development package from the distribu-
tion. Section 12.5.3 explains how to check for and install the appropriate
missing package.

12.5.3 Installing Kernel Development Packages
This section can be skipped if there is no CUDA compilation problem.

Typically, a CUDA compilation problem (section 12.5.2) is due to a
missing or mismatched kernel package and kernel-devel package.

To check the head node and software images for the installation status
of the kernel-devel package, the Bright Cluster Manager utility kernel-

devel-check is used (section 9.3.5).
Alternatively, if a standard kernel is in use by the image, then sim-

ply upgrading CUDA, the standard kernel, and kernel-devel, to their
latest versions may be a good tactic to fix a CUDA compilation problem
because the kernel and kernel-devel package versions become synchro-
nized during such an upgrade.

12.5.4 Verifying CUDA
An extensive method to verify that CUDA is working is to run the
verify_cuda40.sh script, located in the CUDA SDK directory.

This script first copies the CUDA SDK source to a local directory un-
der /tmp or /local. It then builds CUDA test binaries and runs them. It
is possible to select which of the CUDA test binaries are run.

A help text showing available script options is displayed when
“verify_cuda40.sh -h” is run.

Example

[root@cuda-test ~]# module load cuda40/toolkit

[root@cuda-test ~]# cd $CUDA_SDK

[root@cuda-test 4.0.11]# ./verify_cuda40.sh

Copy cuda40 sdk files to "/local/cuda40" directory.

© Bright Computing, Inc.



12.5 CUDA For GPUs 323

make clean

make (may take a while)

Run all tests? (y/N)? y

Executing: /local/cuda40/C/bin/linux/release/alignedTypes

[alignedTypes]

[Tesla M2070] has 14 MP(s) x 32 (Cores/MP) = 448 (Cores)

> Compute scaling value = 1.00

> Memory Size = 49999872

Allocating memory...

Generating host input data array...

Uploading input data to GPU memory...

Testing misaligned types...

uint8...

Avg. time: 2.267250 ms / Copy throughput: 20.538542 GB/s.

TEST OK

...

...

All cuda40 just compiled test programs can be found in the

"/local/cuda40/C/bin/linux/release/" directory

They can be executed from the "/local/cuda40/C" directory.

The "/local/cuda40" directory may take up a lot of diskspace.

Use "rm -rf /local/cuda40" to remove the data.

Another method to verify that CUDA is working, is to build and use
the deviceQuery command on a node accessing one or more GPUs. The
deviceQuery command lists all CUDA-capable GPUs that a device can
access, along with several of their properties.

Example

[root@cuda-test ~]# module load cuda40/toolkit

[root@cuda-test ~]# cd $CUDA_SDK/C

[root@cuda-test C]# make clean

...

[root@cuda-test C]# make

...

[root@cuda-test C]# bin/linux/release/deviceQuery

bin/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

There are 2 devices supporting CUDA

Device 0: "Tesla M2070"

CUDA Driver Version: 4.0

CUDA Runtime Version: 4.0

CUDA Capability Major/Minor version number: 2.0

Total amount of global memory: 5636554752 bytes

(14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores

© Bright Computing, Inc.



324 Third Party Software

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 32768

Warp size: 32

Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Clock rate: 1.15 GHz

Concurrent copy and execution: Yes

# of Asynchronous Copy Engines: 2

Run time limit on kernels: Yes

Integrated: No

Support host page-locked memory mapping: Yes

Compute mode: Default

Concurrent kernel execution: Yes

Device has ECC support enabled: Yes

Device is using TCC driver mode: No

...

...

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.0,

CUDA Runtime Version = 4.0, NumDevs = 2,

Device = Tesla M2070, Device = Tesla M2070

PASSED

The CUDA user manual has further information on how to run com-
pute jobs using CUDA.

12.5.5 Verifying OpenCL
CUDA 4.0 also contains an OpenCL compatible interface. To verify that
the OpenCL is working, the oclDeviceQuery utility can be built and exe-
cuted.

Example

[root@cuda-test ~]# module add cuda40/toolkit

[root@cuda-test ~]# cd $CUDA_SDK/OpenCL

[root@cuda-test OpenCL]# make clean

...

[root@cuda-test OpenCL]# make

...

[root@cuda-test OpenCL]# bin/linux/release/oclDeviceQuery

bin/linux/release/oclDeviceQuery Starting...

OpenCL SW Info:

CL_PLATFORM_NAME: NVIDIA CUDA

CL_PLATFORM_VERSION: OpenCL 1.0 CUDA 4.0.1

OpenCL SDK Revision: 7027912

OpenCL Device Info:

© Bright Computing, Inc.



12.5 CUDA For GPUs 325

2 devices found supporting OpenCL:

---------------------------------

Device Tesla M2070

---------------------------------

CL_DEVICE_NAME: Tesla M2070

CL_DEVICE_VENDOR: NVIDIA Corporation

CL_DRIVER_VERSION: 270.35

CL_DEVICE_VERSION: OpenCL 1.0 CUDA

CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU

CL_DEVICE_MAX_COMPUTE_UNITS: 14

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: 3

CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 / 64

CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024

CL_DEVICE_MAX_CLOCK_FREQUENCY: 1147 MHz

CL_DEVICE_ADDRESS_BITS: 32

CL_DEVICE_MAX_MEM_ALLOC_SIZE: 1343 MByte

CL_DEVICE_GLOBAL_MEM_SIZE: 5375 MByte

CL_DEVICE_ERROR_CORRECTION_SUPPORT: yes

CL_DEVICE_LOCAL_MEM_TYPE: local

CL_DEVICE_LOCAL_MEM_SIZE: 48 KByte

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 64 KByte

CL_DEVICE_QUEUE_PROPERTIES: CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE

CL_DEVICE_QUEUE_PROPERTIES: CL_QUEUE_PROFILING_ENABLE

CL_DEVICE_IMAGE_SUPPORT: 1

CL_DEVICE_MAX_READ_IMAGE_ARGS: 128

...

...

oclDeviceQuery, Platform Name = NVIDIA CUDA,

Platform Version = OpenCL 1.0 CUDA 4.0.1,

SDK Revision = 7027912, NumDevs = 2,

Device = Tesla M2070, Device = Tesla M2070

System Info:

Local Time/Date = 12:34:37, 04/05/2011

CPU Name: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

# of CPU processors: 8

Linux version 2.6.18-194.32.1.el5 (mockbuild@builder10.centos.org)

(gcc version 4.1.2 20080704

(Red Hat 4.1.2-48)) #1 SMP Wed Jan 5 17:52:25 EST 2011

PASSED

12.5.6 Configuring The X server
The X server can be configured to use a CUDA GPU. To support the X
server, the cuda40-driver, cuda40-libs, and cuda40-xorg need to be
installed.

The following file pathname lines need to be added to the Files sec-
tion of the X configuration file:

ModulePath "/usr/lib64/xorg/modules/extensions/nvidia"

© Bright Computing, Inc.



326 Third Party Software

ModulePath "/usr/lib64/xorg/modules/extensions"

ModulePath "/usr/lib64/xorg/modules"

The following dynamic module loading lines need to be added to the
Module section of the X configuration:

Load "glx"

The following graphics device description lines need to be replaced in the
Device section of the X configuration:

Driver "nvidia"

The default configuration file for X.org is /etc/X11/xorg.conf.

Example

Section "ServerLayout"

Identifier "Default Layout"

Screen 0 "Screen0" 0 0

InputDevice "Keyboard0" "CoreKeyboard"

EndSection

Section "Files"

ModulePath "/usr/lib64/xorg/modules/extensions/nvidia"

ModulePath "/usr/lib64/xorg/modules/extensions"

ModulePath "/usr/lib64/xorg/modules"

EndSection

Section "Module"

Load "glx"

EndSection

Section "InputDevice"

Identifier "Keyboard0"

Driver "kbd"

Option "XkbModel" "pc105"

Option "XkbLayout" "us"

EndSection

Section "Device"

Identifier "Videocard0"

Driver "nvidia"

BusID "PCI:14:0:0"

EndSection

Section "Screen"

Identifier "Screen0"

Device "Videocard0"

DefaultDepth 24

SubSection "Display"

Viewport 0 0

Depth 24

EndSubSection

EndSection

© Bright Computing, Inc.



12.6 OFED Software Stack 327

12.6 OFED Software Stack
Bright Cluster Manager packages the OFED software developed by Mel-
lanox and QLogic. The Bright Cluster Manager packages are usually
more recent than the distribution packages and thus provide support for
more recent hardware, as well as more features.

If there is no OFED kernel modules package available for the kernel
in use, then the Bright Computing OFED install script tries to build the
package from the source package provided by Mellanox or QLogic. How-
ever, very recent kernels may not yet be supported by the source package.
If a build fails for such a kernel, then the OFED software stack will fail to
install, and nothing is changed on the head node or the software image.
OFED hardware manufacturers resolve build problems with their soft-
ware shortly after they become aware of them, but in the meantime a
supported kernel must be used.

12.6.1 Bright Repository Mellanox OFED Stack Installation
Package name: mlnx-ofed

Running a “yum install mlnx-ofed” unpacks several packages and
scripts, but does not install them due to the fundamental nature of the
changes it would carry out. The mlnx-ofed-install.sh install script is
used to carry out the changes:

• On the head node, the default distribution OFED software stack can
be replaced with the Bright Computing repository Mellanox OFED
software stack as follows:

[root@bright52~]# /cm/local/apps/mlnx-ofed/current/bin/mlnx-ofed-ins\

tall.sh -h

A reboot is recommended after the script completes the install.

• For a software image, for example default-image, used by the reg-
ular nodes, the default distribution OFED software stack can be re-
placed with the Bright Computing repository Mellanox OFED soft-
ware stack as follows:

[root@bright52~]# /cm/local/apps/mlnx-ofed/current/bin/mlnx-ofed-inst\

all.sh -s default-image

A reboot updates the software image on the regular node.

12.6.2 Bright Repository QLogic OFED Stack Installation
Package name: qlgc-ofed

Running a “yum install qlgc-ofed” package unpacks several pack-
ages and scripts, but does not install them due to the fundamental nature
of the changes it would carry out. The qlgc-ofed-install.sh install
script is used to carry out the changes:

• On the head node, the default distribution OFED software stack can
be replaced with the Bright Computing repository QLogic OFED
software stack as follows:

[root@bright52~]# /cm/local/apps/qlgc-ofed/current/bin/qlgc-ofed-ins\

tall.sh -h

© Bright Computing, Inc.



328 Third Party Software

A reboot is recommended after the script completes the install.

• For a software image, for example default-image, used by the reg-
ular nodes, the default distribution OFED software stack can be re-
placed with the Bright Computing repository QLogic OFED soft-
ware stack as follows:

[root@bright52~]# /cm/local/apps/qlgc-ofed/current/bin/qlgc-ofed-inst\

all.sh -s default-image

A reboot updates the software image on the regular node.

12.7 Lustre
This section covers aspects of Lustre, a parallel distributed filesystem
which can be used for clusters.

After a short architectural overview of Lustre, steps to set up a Lustre
filesystem to work with Bright Cluster Manager are described.

Further details on Lustre can be found at http://wiki.whamcloud.
com.

12.7.1 Architecture
There are four components to a Lustre filesystem:

1. One management service (MGS)

2. One metadata target (MDT) on the metadata server (MDS)

3. Multiple object storage target (OSTs), on an object storage server
(OSS)

4. Clients that access and use the data on the Lustre filesystem

The management services run on the metadata server, and hold infor-
mation for all Lustre filesystems running in a cluster.

Metadata values, like filenames, directories, permissions, and file lay-
out are stored on the metadata target. The file data values themselves are
stored on the object storage targets.

Among the supported Lustre networking types are TCP/IP over Eth-
ernet and InfiniBand.

12.7.2 Server Implementation
Lustre servers, MDS, and OSSs, run on a patched kernel. The patched
kernel, kernel modules, and software can be installed with RPM pack-
ages. The Lustre server software can also be compiled from source, but
the kernel needs to be patched and recreated. Lustre supports one kernel
version per Lustre version.

To use Lustre with Bright Cluster Manager, a Lustre server image and
a Lustre client image are installed onto the head node so that they can
provision the Lustre nodes.

Creating The Lustre Server Image
To create a Lustre server image, a clone is made of an existing software
image, for example from default-image.

© Bright Computing, Inc.

http://wiki.whamcloud.com
http://wiki.whamcloud.com


12.7 Lustre 329

In cmgui this is done by selecting the Software Images resource to
bring up the Overview tabbed pane display. Selecting the image to clone
and then clicking on the Clone button prompts for a confirmation to build
a clone image (figure 12.1):

Figure 12.1: cmgui: Cloning An Image

Alternatively, cmsh on the head node can create a clone image:

Example

[root@mycluster ~]# cmsh

[mycluster]% softwareimage

[mycluster->softwareimage]% clone default-image lustre-server-image

[mycluster->softwareimage*[lustre-server-image*]]% commit

The RPM Lustre packages can be downloaded from the Whamcloud
website. It is best to first check which version of Lustre can be used
for a particular distribution against the Lustre Support Matrix at http:
//wiki.whamcloud.com/display/PUB/Lustre+Support+Matrix.

After choosing a Lustre version from the Lustre Support Matrix,
the appropriate distribution and platform can be chosen. For CentOS
and Scientific Linux (SL), Red Hat packages can be used. Download
links for Lustre releases, among others kernel, module, lustre and
lustre-ldiskf packages, can be found at http://wiki.whamcloud.com/
display/PUB/Lustre+Releases. Download links for Lustre tools, among
others the e2fsprogs package, can be found at http://wiki.whamcloud.
com/display/PUB/Lustre+Tools

The RPM packages to download are:

• kernel: Lustre-patched kernel (MDS/MGS/OSS only)

• lustre-modules: Lustre kernel modules (client and server for the
Lustre-patched kernel)

• lustre: Lustre userland tools (client and server for the Lustre-
patched kernel)

• lustre-ldiskfs: Backing filesystem kernel module
(MDS/MGS/OSS only)

• e2fsprogs: Backing filesystem creation and repair tools
(MDS/MGS/OSS only)

• e2fsprogs-libs: Backing filesystem creation and repair tools li-
braries (MDS/MGS/OSS and EL6 only)

© Bright Computing, Inc.

http://wiki.whamcloud.com/display/PUB/Lustre+Support+Matrix
http://wiki.whamcloud.com/display/PUB/Lustre+Support+Matrix
http://wiki.whamcloud.com/display/PUB/Lustre+Releases
http://wiki.whamcloud.com/display/PUB/Lustre+Releases
http://wiki.whamcloud.com/display/PUB/Lustre+Tools
http://wiki.whamcloud.com/display/PUB/Lustre+Tools


330 Third Party Software

• e2fsprogs-devel: Backing filesystem creation and repair tools de-
velopment (MDS/MGS/OSS and EL6 only)

In most cases on EL5 nodes, the e2fsprogs package from the distribu-
tion is already installed, so the package only has to be upgraded. On EL5
nodes it is possible that the Lustre e2fsprogs package conflicts with the
e4fsprogs package from the distribution, in which case the e4fsprogs

package has to be removed. If the Lustre kernel version has a lower
version number than the already installed kernel, then the Lustre kernel
needs to be installed with the ��force option. Warning and error mes-
sages that may display about installing packages in a software image can
be ignored.

Example

[root@mycluster ~]# mkdir /cm/images/lustre-server-image/root/lustre

[root@mycluster ~]# cp kernel-* lustre-* e2fsprogs-* /cm/images/lustre-\

server-image/root/lustre

[root@mycluster ~]# chroot /cm/images/lustre-server-image

[root@mycluster /]# cd /root/lustre

[root@mycluster lustre]# rpm -e e4fsprogs

[root@mycluster lustre]# rpm -Uvh e2fsprogs-1.41.90.wc3-0redhat.x86_64.\

rpm

[root@mycluster lustre]# rpm -ivh --force kernel-2.6.18-238.19.1.el5_lu\

stre.g65156ed.x86_64.rpm

[root@mycluster lustre]# rpm -ivh \

lustre-ldiskfs-3.3.0-2.6.18_238.19.1.el5_lustre.g65156ed_g9d71fe8.x86_\

64.rpm \

lustre-2.1.0-2.6.18_238.19.1.el5_lustre.g65156ed_g9d71fe8.x86_64.rpm \

lustre-modules-2.1.0-2.6.18_238.19.1.el5_lustre.g65156ed_g9d71fe8.x86_\

64.rpm

[root@mycluster lustre]# rm kernel-* lustre-* e2fsprogs-*

In most cases on EL6 nodes, the e2fsprogs package from the distri-
bution is already installed, so the package only has to be upgraded. If
the Lustre kernel version has a lower version number than the already
installed kernel, then the Lustre kernel needs to be installed with the
��force option. Warning and error messages that may display about in-
stalling packages in a software image can be ignored.

Example

[root@mycluster ~]# mkdir /cm/images/lustre-server-image/root/lustre

[root@mycluster ~]# cp kernel-* lustre-* e2fsprogs-* /cm/images/lustre-\

server-image/root/lustre/

[root@mycluster ~]# chroot /cm/images/lustre-server-image

[root@mycluster /]# cd /root/lustre

[root@mycluster lustre]# rpm -Uvh \

e2fsprogs-1.41.90.wc3-7.el6.x86_64.rpm \

e2fsprogs-libs-1.41.90.wc3-7.el6.x86_64.rpm \

e2fsprogs-devel-1.41.90.wc3-7.el6.x86_64.rpm

[root@mycluster lustre]# rpm -ivh --force kernel-2.6.32-131.6.1.el6_lus\

tre.g65156ed.x86_64.rpm

[root@mycluster lustre]# rpm -ivh \

lustre-ldiskfs-3.3.0-2.6.32_131.6.1.el6_lustre.g65156ed.x86_64_g9d71f\

e8.x86_64.rpm \

© Bright Computing, Inc.



12.7 Lustre 331

lustre-2.1.0-2.6.32_131.6.1.el6_lustre.g65156ed.x86_64_g9d71fe8.x86_6\

4.rpm \

lustre-modules-2.1.0-2.6.32_131.6.1.el6_lustre.g65156ed.x86_64_g9d71f\

e8.x86_64.rpm

[root@mycluster lustre]# rm kernel-* lustre-* e2fsprogs-*

The kernel version is set to the Lustre kernel version for the Lustre server
image:

Example

[root@mycluster ~]# cd /cm/images/lustre-server-image/boot

[root@mycluster boot]# ls -1 vmlinuz-*

vmlinuz-2.6.18-238.19.1.el5_lustre.g65156ed

vmlinuz-2.6.18-274.7.1.el5

[root@mycluster ~]# cmsh

[mycluster]% softwareimage

[mycluster->softwareimage]% use lustre-server-image

[mycluster->softwareimage[lustre-server-image]]% set kernelversion 2.6.\

18-238.19.1.el5_lustre.g65156ed

[mycluster->softwareimage*[lustre-server-image*]]% commit

Creating The Lustre Server Category
A node category is cloned. For example, default to lustre-server. The
software image is set to the Lustre server image, the installbootrecord

option is enabled, and the roles option is cleared:

Example

[root@mycluster ~]# cmsh

[mycluster]% category

[mycluster->category]% clone default lustre-server

[mycluster->category*[lustre-server*]]% set softwareimage lustre-server\

-image

[mycluster->category*[lustre-server*]]% set installbootrecord yes

[mycluster->category*[lustre-server*]]% clear roles

[mycluster->category*[lustre-server*]]% commit

Creating Lustre Server Nodes
An MDS node is created with cmsh:

Example

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->[device]]% add physicalnode mds001 10.141.16.1

[mycluster->[device*[mds001*]]]% set category lustre-server

[mycluster->[device*[mds001*]]]% commit

One or multiple OSS node(s) are created with cmsh:

Example

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->[device]]% add physicalnode oss001 10.141.32.1

[mycluster->[device*[oss001*]]]% set category lustre-server

[mycluster->[device*[oss001*]]]% commit

© Bright Computing, Inc.



332 Third Party Software

After the first boot and initial installation, the MDS and OSS(s) are con-
figured to boot from the local drive instead of the network, to preserve
locally made changes. The BIOS of each server needs to be configured to
boot from the local drive.

For nodes based on EL6 the Lustre initrd file needs to regenerated,
after the first boot and initial installation. To regenerate the initrd image
file, for the nodes in the lustre-server category:

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->device]% pexec -c lustre-server "mv \

/boot/initrd-2.6.32-131.6.1.el6_lustre.g65156ed.x86_64.orig \

/boot/initrd-2.6.32-131.6.1.el6_lustre.g65156ed.x86_64.old"

[mycluster->device]% pexec -c lustre-server "mkinitrd \

/boot/initrd-2.6.32-131.6.1.el6_lustre.g65156ed.x86_64.orig \

2.6.32-131.6.1.el6_lustre.g65156ed.x86_64"

Warning and error messages that display about write errors or broken
pipes can be ignored.

Creating The Lustre Metadata Target
On the metadata server a metadata target must be created. To create the
metadata target a free disk, partition, or logical volume is used. The disk
device can also be an external storage device and/or a redundant storage
device. The metadata server also acts as a management server.

To format a metadata target mkfs.lustre is used. For example,
the following formats /dev/sdb, setting the Lustre filesystem name to
“lustre00”:

Example

[root@mds001 ~]# mkfs.lustre --fsname lustre00 --mdt --mgs /dev/sdb

The filesystem is mounted and the entry added to /etc/fstab:

Example

[root@mds001 ~]# mkdir /mnt/mdt

[root@mds001 ~]# mount -t lustre /dev/sdb /mnt/mdt

[root@mds001 ~]# echo "/dev/sdb /mnt/mdt lustre rw,_netdev 0 0" >> /etc\

/fstab

Creating The Lustre Object Storage Target
On the object storage server one or multiple object storage target(s) can be
created. To create the object storage target, free disks, partitions or logical
volumes are used. The disk devices can also be an external storage device
and/or a redundant storage device.

To format a object storage target mkfs.lustre is used. For ex-
ample, the following formats /dev/sdb, sets the management node to
10.141.16.1, sets the filesystem name to lustre00, and sets the network
type to TCP/IP:

Example

[root@oss001 ~]# mkfs.lustre --fsname lustre00 --ost --mgsnode=10.141.1\

6.1@tcp0 /dev/sdb

© Bright Computing, Inc.



12.7 Lustre 333

The filesystem is mounted and the entry added to /etc/fstab:

Example

[root@oss001 ~]# mkdir /mnt/ost01

[root@oss001 ~]# mount -t lustre /dev/sdb /mnt/ost01

[root@oss001 ~]# echo "/dev/sdb /mnt/ost01 lustre rw,_netdev 0 0" >> /e\

tc/fstab

After mounting the OST(s) the Lustre clients can mount the Lustre filesys-
tem.

12.7.3 Client Implementation
There are several ways to install a Lustre client.

If the client has a supported kernel version, the lustre-client RPM
package and lustre-client-modules RPM package can be installed. The
lustre-client-modules package installs the required kernel modules.

If the client does not have a supported kernel, a Lustre kernel, Lustre
modules, and Lustre userland software can be installed with RPM pack-
ages.

The client kernel modules and client software can also be built from
source.

Creating The Lustre Client Image: Method 1
This method describes how to create a Lustre client image with Lustre
client RPM packages. It requires that the lustre-client-module package
have the same kernel version as the kernel version used for the image.

To create a starting point image for the Lustre client image, a clone is
made of the existing software image, for example from default-image.

The clone software image is created via cmgui (figure 12.1), or using
cmsh on the head node:

Example

[root@mycluster ~]# cmsh

[mycluster]% softwareimage

[mycluster->softwareimage]% clone default-image lustre-client-image

[mycluster->softwareimage*[lustre-client-image*]]% commit

The RPM Lustre client packages are downloaded from the Wham-
cloud website:

• lustre-client: Lustre client userland tools (client for unpatched
vendor kernel)

• lustre-client-modules: Lustre client kernel modules (client for
unpatched vendor kernel)

The same Lustre version which is used for the Lustre servers is used
for the Lustre clients.

The kernel version of the lustre-client-modules package must also
match that of the kernel used. It is 2.6.18-238.19.1.el5 in the following
example:

Example

© Bright Computing, Inc.



334 Third Party Software

[root@mycluster ~]# ls lustre-client-modules-*

lustre-client-modules-2.1.0-2.6.18_238.19.1.el5_g9d71fe8.x86_64.rpm

[root@mycluster ~]# cmsh -c "softwareimage; use lustre-client-image; ge\

t kernelversion"

2.6.18-238.19.1.el5

The installation can then be carried out:

Example

[root@mycluster ~]# mkdir /cm/images/lustre-client-image/root/lustre

[root@mycluster ~]# cp lustre-client-*.rpm /cm/images/lustre-client-ima\

ge/root/lustre/

[root@mycluster ~]# chroot /cm/images/lustre-client-image

[root@mycluster /]# cd /root/lustre

[root@mycluster lustre]# rpm -ivh lustre-client-modules-2.0.0.1-2.6.18_\

164.11.1.el5_lustre.2.0.0.1.x86_64.rpm

[root@mycluster lustre]# rpm -ivh \

lustre-client-modules-2.1.0-2.6.18_238.19.1.el5_g9d71fe8.x86_64.rpm \

lustre-client-2.1.0-2.6.18_238.19.1.el5_g9d71fe8.x86_64.rpm

[root@mycluster lustre]# rm lustre-client-*.rpm

Creating The Lustre Client Image: Method 2
This method describes how to create a Lustre client image with a Lustre
kernel package.

To create the image for the Lustre client image, a clone is made of the
existing lustre-server-image software image.

A clone software image is created via cmgui (figure 12.1), or using cmsh

on the head node.

Example

[root@mycluster ~]# cmsh

[mycluster]% softwareimage

[mycluster->softwareimage]% clone lustre-server-image lustre-client-image

[mycluster->softwareimage*[lustre-client-image*]]% commit

Creating the lustre-server-image software image is described in the
Lustre Server Implementation section (section 12.7.2).

Creating The Lustre Client Image: Method 3
This method describes how to create a Lustre client image by building
Lustre from source.

As a starting point image for a Lustre client image, a clone is made of
the existing software image, for example from default-image.

A clone software image is created via cmgui (figure 12.1), or using cmsh

on the head node.

Example

[root@mycluster ~]# cmsh

[mycluster]% softwareimage

[mycluster->softwareimage]% clone default-image lustre-client-image

[mycluster->softwareimage*[lustre-client-image*]]% commit

© Bright Computing, Inc.



12.7 Lustre 335

The source package can be downloaded from the Whamcloud web-
site. The same Lustre version used for Lustre servers is used for the Lustre
clients.

Instead of selecting a Linux distribution and architecture, a source
package with the right version em<version> to download is chosen:

• lustre-client-source-<version>.rpm: Lustre source code

The source file is copied to the image:

Example

[root@mycluster ~]# mkdir /cm/images/lustre-client-image/root/lustre

[root@mycluster ~]# cp lustre-client-source-*.rpm /cm/images/lustre-cli\

ent-image/root/lustre

If the kernel-devel package is not installed on the client image,
it is first installed so that the kernel can be compiled. To check the
lustre-client-image software image among others, for the installation
status of the kernel-devel package, the Bright Cluster Manager utility
kernel-devel-check is used (section 9.3.5).

To determine the kernel version used by the software image:

Example

[root@mycluster ~]# cmsh -c "softwareimage get lustre-client-image kern\

elversion"

2.6.18-274.7.1.el5

The Lustre software is then built and installed:

Example

[root@mycluster ~]# export RPM_BUILD_NCPUS=$(grep -c "^processor" /proc\

/cpuinfo)

[root@mycluster ~]# chroot /cm/images/lustre-client-image

[root@mycluster /]# cd /root/lustre

[root@mycluster lustre]# rpm -ivh lustre-client-source-2.1.0-2.6.18_238\

.19.1.el5_g9d71fe8.x86_64.rpm

[root@mycluster lustre]# rm lustre-client-source-2.1.0-2.6.18_238.19.1.\

el5_g9d71fe8.x86_64.rpm

[root@mycluster lustre]# cd /usr/src

[root@mycluster src]# ln -s kernels/2.6.18-274.7.1.el5-x86_64 linux

[root@mycluster src]# cd lustre-2.1.0

[root@mycluster lustre-2.1.0]# ./configure --disable-server

[root@mycluster lustre-2.1.0]# make rpms

[root@mycluster lustre-2.1.0]# cd ..

[root@mycluster src]# rm linux

[root@mycluster src]# rpm -e lustre-client-source

[root@mycluster src]# rm -rf lustre-2.1.0

[root@mycluster src]# cd /usr/src/redhat/RPMS/x86_64

[root@mycluster x86_64]# rpm -ivh --nodeps lustre-modules-2.1.0-2.6.18_\

274.7.1.el5_g9d71fe8.x86_64.rpm

[root@mycluster x86_64]# rpm -ivh lustre-2.1.0-2.6.18_274.7.1.el5_g9d71\

fe8.x86_64.rpm

[root@mycluster x86_64]# rm lustre-*

[root@mycluster x86_64]# cd ../../SRPMS

[root@mycluster SRPMS]# rm lustre-*

[root@mycluster SRPMS]# cd ../BUILD

[root@mycluster BUILD]# rm -rf lustre-*

© Bright Computing, Inc.



336 Third Party Software

To configure the lnet kernel module to use TCP/IP interface
eth1, the string “options lnet networks=tcp(eth1)” is added to the
/etc/modprobe.conf file of the client image:

[root@mycluster ~]# echo "options lnet networks=tcp(eth1)" >> /cm/image\

s/lustre-client-image/etc/modprobe.conf

To specify that a Lustre node uses a TCP/IP inter-
face and an InfiniBand interface, the string “options lnet

networks=tcp0(eth0),o2ib(ib0)” is added to the /etc/modprobe.conf

file of the client image:

[root@mycluster ~]# echo "options lnet networks=tcp0(eth0),o2ib(ib0)" >\

> /cm/images/lustre-client-image/etc/modprobe.conf

Creating The Lustre Client Category
A node category is cloned, for example default to a new category
lustre-client. The software image in this category is set to the Lustre
client image, lustre-client:

Example

[root@mycluster ~]# cmsh

[mycluster]% category

[mycluster->category]% clone default lustre-client

[mycluster->category*[lustre-client*]]% set softwareimage lustre-client\

-image

[mycluster->category*[lustre-client*]]% commit

The Lustre client category is configured to mount the Lustre filesystem
(some text in the display here is elided):

Example

[root@mycluster ~]# cmsh

[mycluster]% category

[mycluster->category]% use lustre-client

[mycluster->category[lustre-client]]% fsmounts

[mycl...fsmounts]% add /mnt/lustre00

[myc...fsmounts*[/mnt/lustre00*]]% set device 10.141.16.1@tcp0:/lustre00

[myc...fsmounts*[/mnt/lustre00*]]% set filesystem lustre

[myc...fsmounts*[/mnt/lustre00*]]% set mountoptions rw,_netdev

[myc...fsmounts*[/mnt/lustre00*]]% commit

The configured fsmounts device is the MGS, which in the example
has IP address 10.141.16.1. The network type used in the example is
TCP/IP.

Creating Lustre Client Nodes
A client node is created as follows:

Example

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->device]% add physicalnode lclient001 10.141.48.1

[mycluster->device*[lclient001*]]% set category lustre-client

[mycluster->device*[lclient001*]]% commit

© Bright Computing, Inc.



12.8 ScaleMP 337

The Lustre client is booted and checked to see if the Lustre filesystem
is mounted. The Lustre file stripe configuration of the filesystem can be
checked with “lfs getstripe”, and it can be set with “lfs setstripe”:

Example

[root@lclient001 ~]# lfs getstripe /mnt/lustre00

[root@lclient001 ~]# lfs setstripe -s 1M -o -1 -c -1 /mnt/lustre00

The “lfs setstripe” command in the example sets the filesystem to use
1MB blocks, the start OST is chosen by the MDS, data is striped over all
available OSTs.

12.8 ScaleMP
This section describes how to use ScaleMP’s vSMP for Cloud product to
create virtual SMP nodes in a cluster.

12.8.1 Installing vSMP For Cloud
Before virtual SMP nodes can be created, the ScaleMP vSMP for Cloud
software needs to be installed on the head node of the cluster. The vSMP
for Cloud software consists of two components:

• The image_manager utility

• The vSMP image

Both components have to be copied to the /cm/local/apps/vsmp

directory on the head node. In addition, the
/cm/local/apps/vsmp/vSMP.img symbolic link should point to the
vSMP image that should be used.

Example

Installing image_manager and version 3.5.155 of the vSMP image:

[root@mc ~]# cp image_manager /cm/local/apps/vsmp/

[root@mc ~]# cp vSMP-3.5.155.img /cm/local/apps/vsmp

[root@mc ~]# ln -sf vSMP-3.5.155.img /cm/local/apps/vsmp/vSMP.img

12.8.2 Creating Virtual SMP Nodes
After the vSMP for Cloud software has been installed, virtual SMP nodes
may be created using cmsh or cmgui.

Creating a virtual SMP node in cmgui is done by clicking the Virtual

SMP Nodes folder, clicking the Add button and entering a hostname (e.g.
vsmp001). A virtual SMP node behaves like any other physical node, but
has an extra configuration tab: Virtual SMP. This tab can be used to con-
figure which physical nodes should be used as components of the virtual
SMP node.

Nodes that are made members of a virtual SMP node, go into the
Aggregated state and when booted load the vSMP kernel. After all mem-
bers of a vSMP nodes have booted the vSMP kernel, the virtual SMP node
boots as a single (large) node.

Example

© Bright Computing, Inc.



338 Third Party Software

Creating and powering up a virtual SMP node using cmsh is done as fol-
lows:

[mc]% device add virtualsmpnode vsmp001

[mc->device*[vsmp001*]]% set members node001 node002 node003

[mc->device*[vsmp001*]]% interfaces

[mc->device*[vsmp001*]->interfaces]% add physical BOOTIF

[mc->device*[vsmp001*]->interfaces*[BOOTIF*]]% set ip 10.141.10.1

[mc->device*[vsmp001*]->interfaces*[BOOTIF*]]% set network internalnet

[mc->device*[vsmp001*]->interfaces*[BOOTIF*]]% exit

[mc->device*[vsmp001*]->interfaces*]% exit

[mc->device*[vsmp001*]]% set provisioninginterface BOOTIF

[mc->device*[vsmp001*]]% commit

...

[mc->device[vsmp001]]% power reset -n vsmp001

After the virtual SMP node boots, it must be identified in the same
way that a new physical node has to be identified at first boot. Sec-
tion 6.4.2 has more information on node identification and selection.

© Bright Computing, Inc.



13
High Availability

In a cluster with a single head node, the head node is a single point of
failure for the entire cluster. It is often unacceptable that the failure of a
single machine can disrupt the daily operations of a cluster.

The high availability (HA) feature of Bright Cluster Manager therefore
allows clusters to be set up with two head nodes configured as a failover
pair.

In this chapter:

• Section 13.1 describes the concepts behind HA, keeping the Bright
Cluster configuration in mind.

• Section 13.2 describes how the Bright Cluster implementation of
failover is set up.

• Section 13.3 describes how HA is managed on a Bright Cluster after
it has been set up.

13.1 HA Concepts
13.1.1 Primary, Secondary, Active, Passive
In a cluster with an HA setup, one of the head nodes is named the primary
head node and the other head node is named the secondary head node.
Under normal operation, one of the two head nodes is in active mode,
whereas the other is in passive mode.

The difference between naming versus mode is illustrated by realizing
that while a head node which is primary always remains primary, the
mode that the node is in may change. Thus, the primary head node can
be in passive mode when the secondary is in active mode. Similarly the
primary head node may be in active mode while the secondary head node
is in passive mode.

13.1.2 Monitoring The Active Head Node, Initiating Failover
In HA the passive head node continuously monitors the active head node.
If the passive finds that the active is no longer operational, it will initiate
a failover sequence. A failover sequence involves taking over resources,
services and network addresses from the active head node. The goal is
to continue providing services to compute nodes, so that jobs running on
these nodes keep running.

© Bright Computing, Inc.



340 High Availability

13.1.3 Services In Bright Cluster Manager HA Setups
There are several services being offered by a head node to the cluster and
its users.

Services Running On Both Head Nodes
One of the design features of the HA implementation in Bright Cluster
Manager is that whenever possible, services are offered on both the ac-
tive as well as the passive head node. This allows the capacity of both
machines to be used for certain tasks (e.g. provisioning), but it also means
that there are fewer services to move in the event of a failover sequence.

On a default HA setup, the following key services for cluster opera-
tions are always running on both head nodes:

• CMDaemon: providing certain functionality on both head nodes
(e.g. provisioning)

• DHCP: load balanced setup

• LDAP: running in replication mode (the active head node LDAP
database is pulled by the passive)

• MySQL: running in multiple-master replication mode (the active
head node MySQL database is pulled by the passive)

• NTP

• DNS

When an HA setup is created from a single head node setup, the above
services are automatically reconfigured to run in the HA environment
over two head nodes.

Provisioning role runs on both head nodes In addition, both head
nodes also take up the provisioning role, which means that nodes can be
provisioned from both head nodes.

The implications of running a cluster with multiple provisioning
nodes are described in detail in section 6.2. One important aspect de-
scribed in that section is how to make provisioning nodes aware of image
changes.

From the administrator’s point of view, achieving awareness of im-
age changes for provisioning nodes in HA clusters is dealt with in
the same way as for single-headed clusters. Thus, if using cmsh, the
updateprovisioners command from within softwareimage mode is
used, while if using cmgui, it is done from the Software Images resource,
then selecting the Provisioning Status tab, and clicking on the Update

Provisioning Nodes button (section 6.2.4).

Services That Migrate To The Active Node
Although it is possible to configure any service to migrate from one head
node to another in the event of a failover, in a typical HA setup only the
following services migrate:

• NFS

• Workload Management (e.g. SGE, Torque/Maui)

© Bright Computing, Inc.



13.1 HA Concepts 341

13.1.4 Failover Network Topology
A two-head failover network layout is illustrated in figure 13.1. In the il-

head1 head2

External
network

Internal
network

Virtual shared eth1:0
external IP address

Virtual shared eth0:0
internal IP address

Dedicated failover
network link

eth0 eth0
eth0

eth
0

eth1
eth1

eth1
eth1

10.141.255.254

10.50.0.1
eth2

10.141.255.252

eth2
10.50.0.2

10.1
41.2

55.2
53

10.141.255.254

192.168.32.10

192.168.32.11 192.168.32.12
192.168.32.10______________

______________

Figure 13.1: High Availability: Two-Head Failover Network Topology

lustration, the primary head1 is originally a head node before the failover
design is implemented. It is originally set up as part of a Type 1 network
(section 2.3.6), with an internal interface eth0, and an external interface
eth1.

When the secondary head is connected up to help form the failover
system, several changes are made.

HA: Network Interfaces
Each head node in an HA setup typically has at least an external and an
internal network interface, each configured with an IP address.

In addition, an HA setup uses two virtual IP interfaces, each of which
has an associated virtual IP address: the external shared IP address and
the internal shared IP address.

In a normal HA setup, both shared IP addresses are hosted on the
head node that is operating in active mode, and during failover, the inter-
faces migrate and become part of the head node that then becomes active.

When head nodes are also being used as login nodes, users outside

© Bright Computing, Inc.



342 High Availability

of the cluster are encouraged to use the shared external IP address for
connecting to the cluster. This ensures that they always reach whichever
head node is active. Similarly, inside the cluster, nodes use the shared
internal IP address wherever possible for referring to the head node. For
example, nodes mount NFS filesystems on the shared internal IP interface
so that the imported filesystems continue to be accessible in the event of
a failover.

Shared interfaces are implemented as alias interfaces on the physical
interfaces (e.g. eth0:0). They are activated when a head node becomes
active, and deactivated when a head node becomes passive.

HA: Dedicated Failover Network
In addition to the normal internal and external network interfaces on both
head nodes, the two head nodes are usually also connected using a direct
dedicated network connection, eth2 in figure 13.1. This connection is
used between the two head nodes to monitor their counterpart’s avail-
ability. It is called a heartbeat connection because the monitoring is usu-
ally done with a regular heartbeat-like signal between the nodes such as
a ping, and if the signal is not detected, it suggests a head node is dead.

To set up a failover network, it is highly recommended to simply run a
UTP cable directly from the NIC of one head node to the NIC of the other,
because not using a switch means there is no disruption of the connection
in the event of a switch reset.

13.1.5 Shared Storage
Almost any HA setup also involves some form of shared storage between
two head nodes to preserve state after a failover sequence. For example,
user home directories must always be available to the cluster in the event
of a failover.

In the most common HA setup, the following two directories are shared:

• User home directories (i.e. /home)

• Shared tree containing applications and libraries that are made avail-
able to the nodes (i.e. /cm/shared)

The shared filesystems are only available on the active head node. For
this reason, it is generally recommended that users login via the shared
IP address, rather than ever using the direct primary or secondary IP ad-
dress. End-users logging into the passive head node by direct login may
run into confusing behavior due to unmounted filesystems.

Although Bright Cluster Manager gives the administrator full flexibil-
ity on how shared storage is implemented between two head nodes, there
are generally three types being used: NAS, DAS and DRBD.

NAS
In a Network Attached Storage (NAS) setup, both head nodes mount a
shared volume from an external network attached storage device. In the
most common situation this would be an NFS server either inside or out-
side of the cluster.

Because imported mounts can typically not be re-exported (which is
true at least for NFS), nodes typically mount filesystems directly from the
NAS device.

© Bright Computing, Inc.



13.1 HA Concepts 343

DAS
In a Direct Attached Storage (DAS) setup, both head nodes share access
to a block device that is usually acccessed through a SCSI interface. This
could be a disk-array that is connected to both head nodes, or it could be
a block device that is exported by a corporate SAN infrastructure.

Although the block device is visible and can physically be accessed
simultaneously on both head nodes, the filesystem that is used on the
block device is typically not suited for simultaneous access. Simultaneous
access to a filesystem from two head nodes must therefore be avoided
because it generally leads to filesystem corruption. Only special purpose
parallel filesystems such as GPFS and Lustre are capable of being accessed
by two head nodes simultaneously.

DRBD
In a setup with DRBD, both head nodes mirror a physical block device
on each node device over a network interface. This results in a virtual
shared DRBD block device. A DRBD block devices is effectively a DAS
block device simulated via a network. DRBD is a cost-effective solution
for implementing shared storage in an HA setup.

Custom Shared Storage With Mount And Unmount Scripts
The cluster management daemon on the two head nodes deals with shared
storage through a mount script and an unmount script. When a head node
is moving to active mode, it must acquire the shared filesystems. To ac-
complish this, the other head node first needs to relinquish any shared
filesystems that may still be mounted. After this has been done, the head
node that is moving to active mode invokes the mount script which has
been configured during the HA setup procedure. When an active head
node is requested to become passive (e.g. because the administrator wants
to take it down for maintenance without disrupting jobs), the unmount
script is invoked to release all shared filesystems.

By customizing the mount and unmount scripts, an administrator has
full control over the form of shared storage that is used. Also an admin-
istrator can control which filesystems are shared.

Mount scripts paths can be set via cmsh or cmgui (section 13.3.6).

13.1.6 Guaranteeing One Active Head At All Times
Because of the risks involved in accessing a shared filesystem simultane-
ously from two head nodes, it is vital that only one head node is in active
mode at any time. To guarantee that a head node that is about to switch
to active mode will be the only head node in active mode, it must either
receive confirmation from the other head node that it is in passive mode,
or it must make sure that the other head node is powered off.

What Is A Split Brain?
When the passive head node determines that the active head node is no
longer reachable, it must also take into consideration that there could be
a communication disruption between the two head nodes. Because the
“brains” of the cluster are communicatively “split” from each other, this
is called a split brain situation.

Since the normal communication channel between the passive and ac-
tive may not be working correctly, it is not possible to use only that chan-

© Bright Computing, Inc.



344 High Availability

nel to determine either an inactive head or a split brain with certainty. It
can only be suspected.

Thus, on the one hand, it is possible that the head node has, for exam-
ple, completely crashed, becoming totally inactive and thereby causing
the lack of response. On the other hand, it is also possible that, for ex-
ample, a switch between both head nodes is malfunctioning, and that the
active head node is still up and running, looking after the cluster as usual,
and that the head node in turn observes that the passive head node seems
to have split away from the network.

Further supporting evidence from the dedicated failover network
channel is therefore helpful. Some administrators find this supporting ev-
idence an acceptable level of certainty, and configure the cluster to decide
to automatically proceed with the failover sequence, while others may
instead wish to examine the situation first before manually proceeding
with the failover sequence. The implementation of automatic vs manual
failover is described in section 13.1.7. In either implementation, fencing,
described next, takes place until the formerly active node is powered off.

Going Into Fencing Mode
To deal with a suspected inactive head or split brain, a passive head node
that notices that its active counterpart is no longer responding, first goes
into fencing mode from that time onwards. While a node is fencing, it
will try to obtain proof via another method that its counterpart is indeed
inactive.

Fencing, incidentally, refers to the way all subsequent actions are
tagged and effectively fenced-off as a backlog of actions to be carried out
later. It does not refer to a thrust-and-parry imagery derived from fencing
swordplay.

Ensuring That The Unresponsive Active Is Indeed Inactive
There are two ways in which “proof” can be obtained that an unrespon-
sive active is inactive:

1. By asking the administrator to manually confirm that the active
head node is indeed powered off

2. By performing a power-off operation on the active head node, and
then checking that the power is indeed off. This is also referred to
as a STONITH (Shoot The Other Node In The Head) procedure

Once a guarantee has been obtained that the active head node is pow-
ered off, the fencing head node (i.e. the previously passive head node)
moves to active mode.

Improving The Decision To Initiate A Failover With A Quorum Process
While the preceding approach guarantees one active head, a problem re-
mains.

In situations where the passive head node loses its connectivity to the
active head node, but the active head node is communicating without a
problem to the entire cluster, there is no reason to initiate a failover. It can
even result in undesirable situations where the cluster is rendered unus-
able if, for example, a passive head node decides to power down an active
head node just because the passive head node is unable to communicate

© Bright Computing, Inc.



13.1 HA Concepts 345

with any of the outside world (except for the PDU feeding the active head
node).

One technique used to reduce the chances of a passive head node
powering off an active head node unnecessarily is to have the passive
head node carry out a quorum procedure. All nodes in the cluster are
asked by the passive node to confirm that they also cannot communicate
with the active head node. If more than half of the total number of nodes
confirm that they are also unable to communicate with the active head
node, then the passive head node initiates the STONITH procedure and
moves to active mode.

13.1.7 Automatic Vs Manual Failover
Administrators have a choice between creating an HA setup with auto-
matic or manual failover. In case of automatic failover, an active head
node is powered off when it is no longer responding and a failover se-
quence is initiated automatically.

In case of manual failover, the administrator is responsible for initiat-
ing the failover when the active head node is no longer responding. No
automatic power off is done, so the administrator is asked to confirm that
the previously active node is powered off.

For automatic failover to be possible, power control should be de-
fined for both head nodes. If power control is defined for the head
nodes, automatic failover is used by default. However, it is possi-
ble to disable automatic failover. In cmsh this is done by setting the
disableautomaticfailover property:

[root@bright52 ~]# cmsh

[bright52]% partition failover base

[bright52->partition[base]->failover]% set disableautomaticfailover yes

[bright52->partition*[base*]->failover*]% commit

With cmgui it is done by selecting the cluster resource, then selecting
the Failover tab. Within the tab, the “Disable automatic failover”
checkbox is ticked, and the change saved with a click on the “Save” but-
ton (figure 13.2).

Figure 13.2: cmgui High Availability: Disable Automatic Failover

If no power control has been defined, or if automatic failover has been
disabled, a failover sequence must always be initiated manually by the
administrator.

© Bright Computing, Inc.



346 High Availability

13.2 HA Setup Procedure Using cmha-setup

After a cluster has been installed using the procedure described in Chap-
ter 2, the administrator has the choice of running the cluster with a single
head node or performing an HA setup. This section describes cmha-setup,
a special tool that guides the administrator in building an HA setup.

The cmha-setup utility interacts with the cluster management envi-
ronment using cmsh to create an HA setup. Although it is also possible
to create an HA setup manually too, using either cmgui or cmsh, it is not
recommended as it is error-prone.

A basic HA setup is created in three stages:

1. Preparation (section 13.2.1): the configuration parameters are set
for the shared interface and for the secondary head node that is
about to be installed.

2. Cloning (section 13.2.2): the secondary head node is installed by
cloning it from the primary head node.

3. Shared Storage Setup (section 13.2.3): the method for shared stor-
age is chosen and set up.

An optional extra stage is:

4. Automated Failover Setup (section 13.2.4): Power control to allow
automated failover is set up.

13.2.1 Preparation
The following steps prepare the primary head node for the cloning of
the secondary. The preparation is done only on the primary, so that the
presence of the secondary is not actually needed during this stage.

0. All nodes except for the primary head node are powered off.

1. To start the HA setup, the cmha-setup command is run from a root

shell on the primary head node.

2. Setup is selected from the main menu (figure 13.3).

3. Configure is selected from the Setup menu.

4. The virtual shared internal IP address and interface alias name are
set.

5. The virtual shared external IP address and interface alias name are
set.

6. The primary head node may have other network interfaces (e.g. In-
finiBand interfaces, IPMI interface, alias interface on the IPMI net-
work). These interfaces are also created on the secondary head
node, but the IP address of the interfaces still need to be config-
ured. For each such interface, when prompted, a unique IP address
for the secondary head node is configured.

7. The hostname is entered for the secondary head node

© Bright Computing, Inc.



13.2 HA Setup Procedure Using cmha-setup 347

Figure 13.3: cmha-setup Main menu

8. The failover network parameters are created (network name, base
address, netmask and domain name). This is the network used for
heartbeat monitoring.

9. The failover network IP addresses and interface names are set for
the primary and secondary head nodes.

10. The (direct, non-virtual) internal and external IP addresses for the
secondary are set.

11. A summary screen displays the planned failover configuration. If
alterations need to be made, they can be done via the next step.

12. The administrator is prompted to set the planned failover configu-
ration. If it is not set, the main menu of cmha-setup is redisplayed.

13. If the option to set the planned failover configuration is chosen, then
a password for the mysql server is requested. The procedure con-
tinues further after the password is entered.

14. Setup progress for the planned configuration is displayed.

15. Instructions on what to run on the secondary to clone it from the
primary are displayed (figure 13.4).

13.2.2 Cloning
After the preparation has been done by configuring parameters as out-
lined in section 13.2.1, the cloning of the head nodes is carried out. In
the cloning instructions that follow, the active node refers to the primary
node and the passive node refers to the secondary node. However this
correlation is only true for when an HA setup is created for the first time,
and it is not necessarily true if head nodes are replaced later on by cloning.

© Bright Computing, Inc.



348 High Availability

Figure 13.4: cmha-setup Instructions To Run On Secondary For Cloning

These cloning instructions may also be repeated later on if a passive
head node ever needs to be replaced, for example, if the hardware is de-
fective. In that case the active head node can be either the primary or
secondary.

The process described PXE boots the passive from the active, thereby
loading a special rescue image from the active that allows cloning from
the active to the passive to take place.

1. The passive head node is PXE booted off the internal cluster net-
work, from the active head node. It is highly recommended that
the active and passive head nodes have identical hardware config-
urations. Typically, the BIOS of both head nodes is configured so
that a hard disk boot is attempted first, and a PXE boot is attempted
after a hard disk boot failure, leading to the Cluster Manager PXE

Environment menu of options. This menu has a 5s time-out.

2. In the Cluster Manager PXE Environment menu, before the 5s
time-out, “Start Rescue Environment” is selected to boot the
node into a Linux ramdisk environment.

3. Once the rescue environment has finished booting, a login as root is
done. No password is required (figure 13.5).

4. The following command is executed (figure 13.6):
/cm/cm�clone�install ��failover

5. When prompted to enter a network interface to use, the interface
that was used to boot from the internal cluster network (e.g. eth0,
eth1, ...) is entered. There is often uncertainty about what interface
name corresponds to what physical port. This can be resolved by
switching to another console and using “ethtool �p <interface>”,
which makes the NIC corresponding to the interface blink.

© Bright Computing, Inc.



13.2 HA Setup Procedure Using cmha-setup 349

Figure 13.5: Login Screen After Booting Passive Into Rescue Mode From
Active

Figure 13.6: Cloning The Passive From The Active Via A Rescue Mode
Session

6. If the provided network interface is correct, a root@master's

password prompt appears. The administrator should enter the root
password.

7. An opportunity to view or edit the master disk layout is offered.

8. A confirmation that the contents of the specified disk are to be erased
is asked for.

9. The cloning takes place. The “syncing” stage usually takes the most
time. Cloning progress can also be viewed on the active by selecting
the “Install Progress” option from the Setup menu. When view-
ing progress using this option, the display is automatically updated

© Bright Computing, Inc.



350 High Availability

as changes occur.

10. After the cloning process has finished, a prompt at the console of
the passive asks if a reboot is to be carried out. A “y” is typed in
response to this. The passive node should be set to reboot off its
hard drive. This may require an interrupt during reboot, to enter a
change in the BIOS setting, if for example, the passive node is set to
network boot first.

11. Continuing on now on the active head node, Finalize is selected
from the Setup menu of cmha-setup.

12. The mysql root password is requested. After entering the mysql
password, the progress of the Finalize procedure is displayed, and
the cloning procedure continues.

13. The cloning procedure of cmha-setup pauses to offer the option to
reboot the passive. The administrator should accept the reboot op-
tion. After reboot, the cloning procedure is complete. The adminis-
trator can then go to the main menu and quit from there or go on to
configure “Shared Storage” (section 13.2.3) from there.

A check can already be done at this stage on the failover status of the
head nodes with the cmha command, run from either head node:

Example

[root@bright52 ~]# cmha status

Node Status: running in active master mode

Failover status:

bright52* -> master2

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

master2 -> bright52*

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

Here, the mysql, ping and status states indicate that HA setup com-
pleted successfully. The backupping (backup ping) state uses the dedi-
cated failover network route for its checks, and starts working as soon as
the passive head node has been rebooted.

13.2.3 Shared Storage Setup
After cloning the head node (section 13.2.2), the last basic stage of creat-
ing an HA setup is setting up shared storage. The available shared storage
forms are NAS, DAS, and DRBD.

NAS
1. In the cmha-setup main menu, the “Shared Storage” option is se-

lected.

© Bright Computing, Inc.



13.2 HA Setup Procedure Using cmha-setup 351

2. NAS is selected.

3. The parts of the head node filesystem that are to be copied to the
NAS filesystems are selected. The point in the filesystem where the
copying is done is the future mount path where the NAS will share
the shared filesystem to.

4. The NFS hostname is configured. Also, for each head node filesys-
tem that is to be copied to the NAS filesystem, there is an associated
path on the NAS filesystem where the share is to be served from.
These NFS volume paths are now configured.

5. If the configured NFS filesystems can be correctly mounted from
the NAS server, the process of copying the local filesystems onto
the NAS server begins.

DAS
1. In the cmha-setup main menu, the “Shared Storage” option is se-

lected.

2. DAS is selected.

3. The parts of the filesystem that should be placed on shared DAS
filesystems are selected.

4. The hostnames of the primary and secondary head nodes and the
physical disk partitions to use on both head nodes are entered.

5. That the contents of the listed partitions can be erased on both head
nodes should be confirmed. After filesystems have been created,
the current contents of the shared directories are copied onto the
shared filesystems and the shared filesystems are mounted over the
old non-shared filesystems.

DRBD
1. In the cmha-setup main menu, the “Shared Storage” option is se-

lected.

2. DRBD is selected.

3. The parts of the filesystem that should be placed on DRBD filesys-
tems are selected.

4. The hostnames of the primary and secondary head nodes and the
physical disk partitions to use on both head nodes are entered.

5. That the contents of the listed partitions can be erased on both head
nodes is confirmed. After DRBD based filesystems have been cre-
ated, the current contents of the shared directories are copied onto
the DRBD based filesystems and the DRBD based filesystems are
mounted over the old non-shared filesystems.

6. Once the setup process has completed, “DRBD Status/Overview” is
selected to verify the status of the DRBD block devices.

© Bright Computing, Inc.



352 High Availability

13.2.4 Automated Failover
For automatic failover to work, the two head nodes must be able to power
off their counterpart. This is done by setting up power control (Chap-
ter 5).

The “device power status” command in cmsh can be used to verify
that power control is functional:

Example

[master1]% device power status -n mycluster1,mycluster2

apc03:21 ............ [ ON ] mycluster1

apc04:18 ............ [ ON ] mycluster2

If IPMI is used for power control, it is possible that a head node is not
able to reach its own IPMI interface over the network. This is especially
true when no dedicated IPMI network port is used. In this case, cmsh -c

"device power status" reports a failure for the active head node. This
does not necessarily mean that the head nodes cannot reach the IPMI in-
terface of their counterpart. Pinging an IPMI interface can be used to
verify that the IPMI interface of a head node is reachable from its coun-
terpart.

Example

Verifying that the IPMI interface of mycluster2 is reachable from mycluster1:

[root@mycluster1 ~]# ping -c 1 mycluster2.ipmi.cluster

PING mycluster2.ipmi.cluster (10.148.255.253) 56(84) bytes of data.

64 bytes from mycluster2.ipmi.cluster (10.148.255.253): icmp_seq=1

ttl=64 time=0.033 ms

Verifying that the IPMI interface of mycluster1 is reachable from mycluster2:

[root@mycluster2 ~]# ping -c 1 mycluster1.ipmi.cluster

PING mycluster1.ipmi.cluster (10.148.255.254) 56(84) bytes of data.

64 bytes from mycluster1.ipmi.cluster (10.148.255.254): icmp_seq=1

ttl=64 time=0.028 ms

While testing an HA setup with automated failover, it can be useful
to simulate a kernel crash on one of the head nodes. The following com-
mand crashes a head node instantly:

echo c > /proc/sysrq-trigger

After the active head node freezes as a result of the crash, the passive
head node powers off the machine that has frozen and switches to active
mode.

13.3 Managing HA
Once an HA setup has been created, the tools in this section can be used
to manage the HA aspects of the cluster.

13.3.1 Changing An Existing Failover Configuration
Changing an existing failover configuration is usually done most simply
by running through the HA setup procedure of section 13.2 again, with
one exception. The exception is that the existing failover configuration
must be removed by using the “Undo Failover” menu option between
steps 2 and 3 of the procedure described in section 13.2.1.

© Bright Computing, Inc.



13.3 Managing HA 353

13.3.2 cmha Utility
A major command-line utility for interacting with the HA subsystem is
cmha. Its usage information is:

[root@mycluster1 ~]# cmha

Usage: /cm/local/apps/cmd/sbin/cmha status | makeactive | dbreclone <node>

The options do the following:

• status: query the status of the HA subsystem on the local machine

• makeactive: initiate failover manually, making the current machine
active

• dbreclone: clone the cmdaemon database across head nodes

These options are looked at in greater detail next:

status: Querying HA Status
Information on the failover status is displayed thus:

Example

[root@mycluster1 ~]# cmha status

Node Status: running in active master mode

Failover status:

mycluster1* -> mycluster2

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

mycluster2 -> mycluster1*

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

The * in the output indicates the head node which is currently active.
The status output shows 4 aspects of the HA subsystem from the per-
spective of each head nodes:

HA Status Description

backupping the other head node is reachable via the ded-
icated failover network. This backup ping
uses the failover route instead of the internal
net route.

mysql MySQL replication status

ping the other head node is reachable over the pri-
mary management network

status CMDaemon running on the other head node
responds to SOAP calls

By default, Bright Cluster Manager prepares to carry out the failover
sequence when all three of ping, backupping and status are not OK on a
head node. If automatic failover is enabled, the failover completes auto-
matically; otherwise a manual failover must be done (section 13.1.7).

© Bright Computing, Inc.



354 High Availability

makeactive: Initiate Failover
Example

To initiate a failover manually:

[root@mycluster2 ~]# cmha makeactive

Proceeding will initiate a failover sequence which will make this node

(mycluster2) the active master.

Are you sure ? [Y/N]

y

Your session ended because: CMDaemon failover, no longer master

mycluster2 became active master, reconnecting your cmsh ...

The status information and makeactive functionalities of cmha are also
accessible via cmgui, as described in section 13.3.7.

dbreclone: Cloning The CMDaemon Database
The dbreclone option of cmha clones the CMDaemon state database from
the head node on which cmha runs to the other head node. This may be
useful to run if the mysql CMDaemon state database tables are unsal-
vageably corrupted on the destination node, and the source node has a
known good database state.

Example

[root@bright52 ~]# cmha status

Node Status: running in active master mode

Failover status:

bright52* -> head2

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

head2 -> bright52*

backupping [ OK ]

mysql [FAILED] (11)

ping [ OK ]

status [ OK ]

[root@bright52 ~]# cmha dbreclone head2

Proceeding will cause the contents of the cmdaemon state database on he\

ad2 to be resynchronized from this node (i.e. bright52 -> head2)

Are you sure ? [Y/N]

Y

Waiting for CMDaemon (3113) to terminate...

[ OK ]

Waiting for CMDaemon (7967) to terminate...

[ OK ]

cmdaemon.dump.8853.sql 100% 253KB 252.9KB/s 00:00

slurmacctdb.dump.8853.sql 100% 11KB 10.7KB/s 00:00

Waiting for CMDaemon to start... [ OK ]

Waiting for CMDaemon to start...[ OK ]

[root@bright52 ~]# cmha status

Node Status: running in active master mode

© Bright Computing, Inc.



13.3 Managing HA 355

Failover status:

bright52* -> head2

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

head2 -> bright52*

backupping [ OK ]

mysql [ OK ]

ping [ OK ]

status [ OK ]

13.3.3 States
The state a head node is in can be determined in three different ways:

1 By looking at the message being displayed at login time.

Example

-------------------------------------------------------------------------------

Node Status: running in active master mode

-------------------------------------------------------------------------------

2 By executing cmha status.

Example

[root@mycluster ~]# cmha status

Node Status: running in active master mode

...

3 By examining /var/spool/cmdaemon/state.

There are a number of possible states that a head node can be in:

State Description

INIT Head node is initializing

FENCING Head node is trying to determine whether it
should try to become active

ACTIVE Head node is in active mode

PASSIVE Head node is in passive mode

BECOMEACTIVE Head node is in the process of becoming ac-
tive

BECOMEPASSIVE Head node is in the process of becoming pas-
sive

UNABLETOBECOMEACTIVE Head node tried to become active but failed

ERROR Head node is in error state due to unknown
problem

© Bright Computing, Inc.



356 High Availability

Especially when developing custom mount and unmount scripts, it is
quite possible for a head node to go into the UNABLETOBECOMEACTIVE state.
This generally means that the mount and/or unmount script are not work-
ing properly or are returning incorrect exit codes. To debug these situ-
ations, it is helpful to examine the output in /var/log/cmdaemon. The
“cmha makeactive” shell command can be used to instruct a head node
to become active again.

13.3.4 Failover Action Decisions
A table summarizing the scenarios that decide when a passive head should
take over is helpful:

Event on
active

Reaction on
passive Reason

Reboot Nothing Event is usually an administrator

action. To make the passive turn

active, an administrator would

run “cmha makeactive” on it.

Shutdown Nothing As above.

Unusably slug- Nothing 1. Active may still unfreeze.

gish or freez- 2. Shared filesystems may still be

ing system but in use by the active. Concurrent

still pingable use by the passive taking over

therefore risks corruption.

Become pass- Become active As ordered by administrator

ive in response when former

to “cmha active becomes

makeactive” passive

run on passive

Active dies Quorum called, Confirms if active head is dead

may lead according to other nodes too.

to passive If so, then a “power off” com-

becoming new mand is sent to it. If the com-

active mand is successful, the passive

head becomes the new active

head.

13.3.5 Keeping Head Nodes In Sync
What Should Be Kept In Sync?
If filesystem changes are made on an active head node without using
CMDaemon (cmsh or cmgui), and if the changes are outside the shared

© Bright Computing, Inc.



13.3 Managing HA 357

filesystem, then these changes should normally also be made on the pas-
sive head node. For example:

• RPM installations/updates (section 9.2)

• Applications installed locally

• Files (such as drivers or values) placed in the /cm/node-installer/
directory and referred to by initialize (section 6.4.5) and
finalize scripts (section 6.4.11)

• Any other configuration file changes outside of the shared filesys-
tems

If the cluster is being built on bare metal, a sensible way to minimize
the amount of work to be done is to install a single head cluster first. All
packages and applications should then be placed, updated and config-
ured on that single head node until it is in a satisfactory state. Only then
should HA be set up as described in section 13.2, where the cloning of
data from the initial head node to the secondary is described. The re-
sult is then that the secondary node gets a well-prepared system with the
effort to prepare it having only been carried out once.

Avoiding Encounters With The Old Filesystems
It should be noted that when the shared storage setup is made, the con-
tents of the shared directories (at that time) are copied over from the local
filesystem to the newly created shared filesystems. The shared filesystems
are then mounted on the mountpoints on the active head node, effectively
hiding the local contents.

Since the shared filesystems are only mounted on the active machine,
the old filesystem contents remain visible when a head node is operating
in passive mode. Logging into the passive head node may thus confuse
users and is therefore best avoided.

Updating Services On The Head Nodes And Associated Syncing
The services running on the head nodes described in section 13.1.3 should
also have their packages updated on both head nodes.

For the services that run simultaneously on the head nodes, such as
CMDaemon, DHCP, LDAP, MySql, NTP and DNS, their packages should
be updated on both head nodes at about the same time. A suggested
procedure is to stop the service on both nodes around the same time,
update the service and ensure that it is restarted.

The provisioning node service is part of the CMDaemon package.
The service updates images from the active head node to all provision-
ing nodes, including the passive head node, if the administrator runs
the command to update provisioners. How to update provisioners is de-
scribed in section 13.1.3.

For services that migrate across head nodes during failover, such as
NFS and Workload Management, it is recommended (but not mandated)
to carry out this procedure: the package on the passive node (called the
secondary for the sake of this example) is updated to check for any bro-
ken package behavior. The secondary is then made active with “cmha
makeactive” (section 13.3.2), which automatically migrates users cleanly
off from being servced by the active to the secondary. The package is then

© Bright Computing, Inc.



358 High Availability

updated on the primary. If desired, the primary can then be made active
again. The reason for recommending this procedure for services that mi-
grate is that, in case the update has issues, the situation can be inspected
somewhat better with this procedure.

13.3.6 High Availability Parameters
There are several HA-related parameters that can be tuned. Accessing
these via cmgui is described in section 13.3.7. In cmsh the settings can be
accessed in the failover submode of the base partition.

Example

[mycluster1]% partition failover base

[mycluster1->partition[base]->failover]% show

Parameter Value

------------------------------ -----------------------------------------

Dead time 10

Disable automatic failover no

Failover network failovernet

Init dead 30

Keep alive 1

Mount script

Postfailover script

Prefailover script

Quorum time 60

Revision

Secondary master

Unmount script

Warn time 5

Dead time

When a passive head node determines that the active head node is not re-
sponding to any of the periodic checks for a period longer than the “Dead
time” seconds, the active head node is considered dead and a quorum
procedure starts. Depending on the outcome of the quorum, a failover
sequence may be initiated.

Disable automatic failover

Setting this to yes disables automated failover. Section 13.1.7 covers this
further.

Failover network

The “Failover network” setting determines which network is used as
a dedicated network for the backupping (backup ping) heartbeat check.
The heartbeat connection is normally a direct cable from a NIC on one
head node to a NIC on the other head node. The network can be selected
via tab-completion suggestions. By default, without a dedicated failover
network, the possibilities are nothing, externalnet and internalnet.

Init dead

When head nodes are booted simultaneously, the standard “Dead time”
might be too strict if one head node requires a bit more time for booting
than the other. For this reason, when a head node boots (or more exactly,
when the cluster management daemon is starting), a time of “Init dead”

© Bright Computing, Inc.



13.3 Managing HA 359

seconds is used rather than the “Dead time” to determine whether the
other node is alive.

Keep alive

The “Keep alive” value is the time interval, in seconds, over which the
passive head node carries out a check that the active head node is still up.
If a dedicated failover network is used, 3 separate heartbeat checks are
carried out to determine if a head node is reachable.

Mount script

The script pointed to by the “Mount script” setting is responsible for
bringing up and mounting the shared filesystems.

Postfailover script

The script pointed to by the “Postfailover script” setting is run by
cmdaemon on both head nodes. The script first runs on the head that is
now passive, then on the head that is now active. It runs as soon as the
former passive has become active. It is typically used by scripts mounting
an NFS shared storage so that no more than one head node exports a
filesystem to NFS clients at a time.

Prefailover script

The script pointed to by the “Prefailover script” setting is run by
cmdaemon on both head nodes. The script first runs on the (still) active
head, then on the (still) passive head. It runs as soon as the decision for
the passive to become active has been made, but before the changes are
implemented. It is typically used by scripts unmounting an NFS shared
storage so that no more than one head node exports a filesystem to NFS
clients at a time.

Quorum time

When a node is asked what head nodes it is able to reach over the net-
work, the node has “Quorum time” seconds to respond. If a node does
not respond to a call for quorum within that time, it is no longer consid-
ered for the results of the quorum check.

Secondary master

The “Secondary master” setting is used to define the secondary head
node to the cluster.

Unmount script

The script pointed to by the “Unmount script” setting is responsible for
bringing down and unmounting the shared filesystems.

Warn time

When a passive head node determines that the active head node is not
responding to any of the periodic checks for a period longer than “Warn
time” seconds, a warning is logged that the active head node might be-
come unreachable soon.

© Bright Computing, Inc.



360 High Availability

13.3.7 Handling And Viewing Failover Via cmgui

Accessing cmha Functionality Via cmgui

The equivalent functions of cmha (section 13.3.2) are available under
cmgui by selecting a cluster from the resource tree, and then choosing
the Failover tab (figure 13.7).

Figure 13.7: Accessing HA Cluster Parameters And Functions Via cmgui

The states of the head nodes are indicated in the first section of the
tabbed pane, where the machines are shown along with their modes and
states, and with LED lights. Hovering the mouse cursor over the LED
lights causes hovertext to appear, indicating which check is associated
with which light.

Manual failover can be initiated from cmgui by clicking on the “Manaul
Failover” button (figure 13.7).

Accessing cmsh HA Parameters (partition failover base) Via cmgui

The cmgui equivalents of the cmsh HA parameters in section 13.3.6 are ac-
cessed from the same cmgui tab as described earlier in this section ( 13.3.7).

13.3.8 Re-cloning A Head Node
Some time after an HA setup has gone into production, it may become
necessary to re-install one of the head nodes, for example if one of the
head nodes were replaced due to hardware failure.

To re-clone a head node from an existing active head node,
cmha-setup is entered, Setup is selected, and then “Clone Install” is
selected. The displayed instructions are then followed (i.e. the instruc-
tions in section 13.2.2 are repeated).

If the MAC address of one of the head nodes has changed, it is typi-
cally necessary to request a new license. Section 4.1.3 has details on ob-
taining a new license.

© Bright Computing, Inc.



A
Generated Files

This appendix contains a list of all system configuration files which are
generated automatically.

Section 3.6.3 describes how system configuration files on all nodes are
written out using the Cluster Management Daemon. The Cluster Man-
agement Daemon is introduced in section 3.6.3 and its configuration di-
rectives are listed in Appendix C.

All of these configuration files may be listed as Frozen Files in the
Cluster Management Daemon configuration file to prevent them from be-
ing generated automatically.

© Bright Computing, Inc.



362 Generated Files

A.1 Files Generated Automatically On Head Nodes

Files generated automatically on head nodes

File Generated By Method Comment

/etc/resolv.conf CMDaemon Section

/etc/HOSTNAME CMDaemon Entire file SUSE only

/etc/localtime CMDaemon Entire file Copied from zoneinfo

/etc/exports CMDaemon Section

/etc/fstab CMDaemon Section

/etc/hosts CMDaemon Section

/etc/hosts.equiv CMDaemon Section

/tftpboot/mtu.conf CMDaemon Entire file Bright configuration

/etc/sysconfig/ipmicfg CMDaemon Entire file Bright configuration

/etc/sysconfig/network/config CMDaemon Section SUSE only

/etc/sysconfig/network/routes CMDaemon Section SUSE only

/etc/sysconfig/network/ifcfg-* CMDaemon Section SUSE only

/etc/sysconfig/network/dhcp CMDaemon Section SUSE only

/etc/sysconfig/network CMDaemon Section Red Hat only

/etc/sysconfig/network-

scripts/ifcfg-* CMDaemon Section Red Hat only

/etc/dhclient.conf CMDaemon Entire file Red Hat only

/etc/dhcpd.conf Entire file

/etc/dhcpd. Entire file

internalnet.conf

/etc/shorewall/interfaces CMDaemon Section

/etc/shorewall/masq CMDaemon Section

/etc/slurm/gres.conf CMDaemon Section

/etc/sysconfig/clock CMDaemon Section

/etc/postfix/canonical CMDaemon Section

/etc/postfix/main.cf CMDaemon Section

/etc/postfix/generic CMDaemon Section

/etc/aliases CMDaemon Section

/etc/ntp.conf CMDaemon Section

/etc/ntp/step-tickers CMDaemon Section Red Hat only

/etc/named.conf CMDaemon Entire file For custom additions use

/etc/named.conf.include

/var/named/*.zone CMDaemon Entire file Red Hat only

/var/lib/named/*.zone CMDaemon Entire file SUSE only

© Bright Computing, Inc.



A.2 Files Generated Automatically In Software Images 363

A.2 Files Generated Automatically In Software Images

Files generated automatically in software images

File Generated By Method Comment

/etc/localtime CMDaemon Entire file

/etc/hosts CMDaemon Section

/etc/sysconfig/ipmicfg CMDaemon Entire file

/etc/sysconfig/clock CMDaemon Section

/etc/sysconfig/kernel CMDaemon Section SUSE only

/etc/sysconfig/network/config CMDaemon Section SUSE only

/etc/sysconfig/network/routes CMDaemon Section SUSE only

/boot/vmlinuz CMDaemon Symlink

/boot/initrd CMDaemon Symlink

/boot/initrd-* CMDaemon Entire file

/etc/modprobe.conf CMDaemon Section

/etc/postfix/main.cf CMDaemon Section

/etc/aliases CMDaemon Section

A.3 Files Generated Automatically On Regular Nodes

Files generated automatically on regular nodes

File Generated By Method Comment

/etc/hosts Node-installer Section

/etc/exports CMDaemon Section

/etc/fstab Node-installer Section

/etc/ntp.conf Node-installer Entire file

/etc/ntp/step-tickers Node-installer Entire file

/etc/postfix/main.cf Node-installer Section

/etc/resolv.conf Node-installer Entire file

/etc/sysconfig/network Node-installer Entire file

/etc/sysconfig/network/ifcfg-* Node-installer Entire file SUSE only,

not ifcfg-lo

/etc/sysconfig/network-scripts/ifcfg-* Node-installer Entire file Red Hat only,

not ifcfg-lo

/etc/HOSTNAME Node-installer Entire file

© Bright Computing, Inc.





B
Bright Computing Public Key

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.4.0 (GNU/Linux)

mQGiBEqtYegRBADStdQjn1XxbYorXbFGncF2IcMFiNA7hamARt4w7hjtwZoKGHbC

zSLsQTmgZO+FZs+tXcZa50LjGwhpxT6qhCe8Y7zIh2vwKrKlaAVKj2PUU28vKj1p

2W/OIiG/HKLtahLiCk0L3ahP0evJHh8B7elClrZOTKTBB6qIUbC5vHtjiwCgydm3

THLJsKnwk4qZetluTupldOEEANCzJ1nZxZzN6ZAMkIBrct8GivWClT1nBG4UwjHd

EDcGlREJxpg/OhpEP8TY1e0YUKRWvMqSVChPzkLUTIsd/O4RGTw0PGCo6Q3TLXpM

RVoonYPR1tRymPNZyW8VJeTUEn0kdlCaqZykp1sRb3jFAiJIRCmBRc854i/jRXmo

foTPBACJQyoEH9Qfe3VcqR6+vR2tX9lPvkxS7A5AnJIRs3Sv6yM4oV+7k/HrfYKt

fyl6widtEbQ1870s4x3NYXmmne7lz1nGxBfAxzPG9rtjRSXyVxc+KGVd6gKeCV6d

o7kS/LJHRi0Lb5G4NZRFy5CGqg64liJwp/f2J4uyRbC8b+/LQbQ7QnJpZ2h0IENv

bXB1dGluZyBEZXZlbG9wbWVudCBUZWFtIDxkZXZAYnJpZ2h0Y29tcHV0aW5nLmNv

bT6IXgQTEQIAHgUCSq1h6AIbAwYLCQgHAwIDFQIDAxYCAQIeAQIXgAAKCRDvaS9m

+k3m0JO0AKC0GLTZiqoCQ6TRWW2ijjITEQ8CXACgg3o4oVbrG67VFzHUntcA0YTE

DXW5Ag0ESq1h6xAIAMJiaZI/0EqnrhSfiMsMT3sxz3mZkrQQL82Fob7s+S7nnMl8

A8btPzLlK8NzZytCglrIwPCYG6vfza/nkvyKEPh/f2it941bh7qiu4rBLqr+kGx3

zepSMRqIzW5FpIrUgDZOL9J+tWSSUtPW0YQ5jBBJrgJ8LQy9dK2RhAOLuHfbOSVB

JLIwNKxafkhMRwDoUNS4BiZKWyPFu47vd8fM67IPT1nMl0iCOR/QBn29MYuWnBcw

61344pd/IjOu3gM6YBqmRRU6yBeVi0TxxbYYnWcts6tEGAlTjHUOQ7gxVp4RDia2

jLVtbee8H464wxkkC3SSkng216RaBBAoaAykhzcAAwUH/iG4WsJHFw3+CRhUqy51

jnmb1FTFO8KQXI8JlPXM0h6vv0PtP5rw5D5V2cyVe2i4ez9Y8XMVfcbf60lptKyY

bRUjQq+9SNjt12ESU67YyLstSN68ach9Af03PoSZIKkiNwfA0+VBILv2Mhn7xd74

5L0M/eJ7lHSpeJA2Rzs6szc234Ob/VxGfGWjogaK3NElSYOzQo+/k0VMdMWsQm/8

Ras19IA9P5jlSbcZQlHlPjndS4x4XQ8P41ATczsIDyWhsJC51rTuw9/QO7fqvvPn

xsRz1pFmiiN7I4JLjw0nAlXexn4EaeVa7Eb+uTjvxJZNdShs7Td74OmlF7RKFccI

wLuISQQYEQIACQUCSq1h6wIbDAAKCRDvaS9m+k3m0C/oAJsHMmKrLPhjCdZyHbB1

e19+5JABUwCfU0PoawBN0HzDnfr3MLaTgCwjsEE=

=WJX7

-----END PGP PUBLIC KEY BLOCK-----

© Bright Computing, Inc.





C
CMDaemon Configuration File

Directives
This Appendix lists all configuration file directives that may be used in
the cluster management daemon configuration file:

/cm/local/apps/cmd/etc/cmd.conf

To activate changes in a configuration file, the cmd service must be restarted,
and is normally done with the command:

service cmd restart

Master directive
Syntax: Master = hostname
Default: Master = master

The cluster management daemon treats the host specified in the Master

directive as the head node. A cluster management daemon running on a
node specified as the head node starts in head mode. On a regular node,
it starts in node mode.

Port directive
Syntax: Port = number
Default: Port = 8080

The number used in the syntax above is a number between 0 and 65535.
The standard port is 8080.

The Port directive controls the non-SSL port that the cluster manage-
ment daemon listens on. In practice all communication with the cluster
management daemon is carried out over the SSL port.

SSLPort directive
Syntax: SSLPort = number
Default: SSLPort = 8081

The number used in the syntax above is a number between 0 and 65535.
The standard port is 8081.

© Bright Computing, Inc.



368 CMDaemon Configuration File Directives

The SSLPort directive controls the SSL port that the cluster manage-
ment daemon listens on.

SSLPortOnly directive
Syntax: SSLPortOnly = yes|no
Default: SSLPortOnly = no

The SSLPortOnly directive allows non-SSL port to be disabled. Normally
both SSL and non-SSL ports are active although in practice only the SSL
port is used.

CertificateFile directive
Syntax: CertificateFile = filename
Default: CertificateFile = "/cm/local/apps/cmd/etc/cmd.pem"

The CertificateFile directive specifies the certificate which is to be used
for authentication purposes. On the master node, the certificate used also
serves as a software license.

PrivateKeyFile directive
Syntax: PrivateKeyFile = filename
Default: PrivateKeyFile = "/cm/local/apps/cmd/etc/cmd.key"

The PrivateKeyFile directive specifies the private key which corresponds
to the certificate that is being used.

CACertificateFile directive
Syntax: CACertificateFile = filename
Default: CACertificateFile = "/cm/local/apps/cmd/etc/cacert.pem"

The CACertificateFile directive specifies the path to the Bright Cluster
Manager root certificate. It is normally not necessary to change the root
certificate.

RandomSeedFile directive
Syntax: RandomSeedFile = filename
Default: RandomSeedFile = "/dev/urandom"

The RandomSeedFile directive specifies the path to a source of random-
ness.

DHParamFile directive
Syntax: DHParamFile = filename
Default: DHParamFile = "/cm/local/apps/cmd/etc/dh1024.pem"

The DHParamFile directive specifies the path to the Diffie-Hellman pa-
rameters.

© Bright Computing, Inc.



369

SSLHandshakeTimeout directive
Syntax: SSLHandshakeTimeout = number
Default: SSLHandshakeTimeout = 10

The SSLHandShakeTimeout directive controls the time-out period (in sec-
onds) for SSL handshakes.

SSLSessionCacheExpirationTime directive
Syntax: SSLSessionCacheExpirationTime = number
Default: SSLSessionCacheExpirationTime = 300

The SSLSessionCacheExpirationTime directive controls the period (in
seconds) for which SSL sessions are cached. Specifying the value 0 can be
used to disable SSL session caching.

DBHost directive
Syntax: DBHost = hostname
Default: DBHost = "localhost"

The DBHost directive specifies the hostname of the MySQL database server.

DBPort directive
Syntax: DBPort = number
Default: DBHost = 3306

The DBPort directive specifies the TCP port of the MySQL database server.

DBUser directive
Syntax: DBUser = username
Default: DBUser = cmdaemon

The DBUser directive specifies the username used to connect to the MySQL
database server.

DBPass directive
Syntax: DBPass = password
Default: DBPass = "<random string set during installation>"

The DBPass directive specifies the password used to connect to the MySQL
database server.

DBName directive
Syntax: DBName = database
Default: DBName = "cmdaemon"

The DBName directive specifies the database used on the MySQL database
server to store CMDaemon related configuration and status information.

© Bright Computing, Inc.



370 CMDaemon Configuration File Directives

DBMonName directive
Syntax: DBMonName = database
Default: DBMonName = "cmdaemon_mon"

The DBMonName directive specifies the database used on the MySQL database
server to store monitoring related data.

DBUnixSocket directive
Syntax: DBUnixSocket = filename

The DBUnixSocket directive specifies the named pipe used to connect to
the MySQL database server if it is running on the same machine.

DBUpdateFile directive
Syntax: DBUpdateFile = filename
Default: DBUpdateFile = "/cm/local/apps/cmd/etc/cmdaemon_upgrade.sql"

The DBUpdateFile directive specifies the path to the file that contains in-
formation on how to upgrade the database from one revision to another.

EventBucket directive
Syntax: EventBucket = filename
Default: EventBucket = "/var/spool/cmd/eventbucket"

The EventBucket directive specifies the path to the named pipe that is
created to listen for incoming events.

EventBucketFilter directive
Syntax: EventBucketFilter = filename
Default: EventBucketFilter = "/cm/local/apps/cmd/etc/eventbucket.filter"

The EventBucketFilter directive specifies the path to the file that con-
tains regular expressions used to filter out incoming messages on the
event-bucket.

LDAPHost directive
Syntax: LDAPHost = hostname
Default: LDAPHost = "localhost"

The LDAPHost directive specifies the hostname of the LDAP server to con-
nect to for user management.

LDAPUser directive
Syntax: LDAPUser = username
Default: LDAPUser = "root"

© Bright Computing, Inc.



371

The LDAPUser directive specifies the username used when connecting to
the LDAP server.

LDAPPass directive
Syntax: LDAPPass = password
Default: LDAPPass = "<random string set during installation>"

The LDAPPass directive specifies the password used when connecting to
the LDAP server.

LDAPSearchDN directive
Syntax: LDAPSearchDN = dn
Default: LDAPSearchDN = "dc=cm,dc=cluster"

The LDAPSearchDN directive specifies the Distinguished Name (DN) used
when querying the LDAP server.

DocumentRoot directive
Syntax: DocumentRoot = path
Default: DocumentRoot = "/cm/local/apps/cmd/etc/htdocs"

The DocumentRoot directive specifies the directory mapped to the web-
root of the CMDaemon. The CMDaemon acts as a HTTP-server, and can
therefore in principle also be accessed by web-browsers.

SpoolDir directive
Syntax: SpoolDir = path
Default: SpoolDir = "/var/spool/cmd"

The SpoolDir directive specifies the directory which is used by the CM-
Daemon to store temporary and semi-temporary files.

CMDaemonAudit
Syntax: CMDaemonAudit = yes|no
Default: CMDaemonAudit = no

When the CMDaemonAudit directive is set to yes, and a value is set for the
CMDaemon auditor file with the CMDaemonAuditorFile directive, then
CMDaemon actions are time-stamped and logged in the CMDaemon au-
ditor file.

CMDaemonAuditorFile
Syntax: CMDaemonAuditorFile = filename
Default: CMDaemonAuditorFile = "/var/spool/cmd/audit.log"

The CMDaemonAuditorFile directive sets where the audit logs for CM-
Daemon actions are logged. The log format is:

© Bright Computing, Inc.



372 CMDaemon Configuration File Directives

(time stamp) profile [IP-address] action (unique key)

Example

(Mon Jan 31 12:41:37 2011) Administrator [127.0.0.1] added Profile: arb\

itprof(4294967301)

DisableAuditorForProfiles
Syntax: DisableAuditorForProfiles = { profile [,profile]...}
Default: DisableAuditorForProfiles = {node}

The DisableAuditorForProfiles directive sets the profile for which an
audit log for CMDaemon actions is disabled. A profile (section 3.3.3) de-
fines the services that CMDaemon provides for that profile user. More
than one profile can be set as a comma-separated list. Out of the
profiles that are available on a newly-installed system: node, admin,
cmhealth, and readonly; only the profile node is enabled by default.
New profiles can also be created via the profile mode of cmsh or via
the Authorization resource of cmgui, thus making it possible to disable
auditing for arbitrary groups of CMDaemon services.

PublicDNS
Syntax: PublicDNS = true|false
Default: PublicDNS = false

Setting the directive PublicDNS to true allows the head node to provide
DNS services for any network, and not just the local one.

LockDownDhcpd directive
Syntax: LockDownDhcpd = true|false
Default: LockDownDhcpd = false

LockDownDhcpd is a deprecated legacy directive. If set to true, a global
DHCP “deny unknown-clients” option is set. This means no new DHCP
leases are granted to unknown clients for all networks. It is deprecated
because its globality affects clients on all networks managed by Bright
Cluster Manager, which is contrary to the general principle of segregating
the network activity of networks.

The recommended way to deny letting new nodes boot up is now
to set the option for specific networks by using cmsh or cmgui. In cmsh

this is done via the network mode, selecting a network, and then setting a
value for lockdowndhcpd. In cmgui this is done via the Networks resource,
selecting a network item, and then choosing the Settings tabbed pane.

Setting the cmd.conf LockDownDhcpd directive overrides
lockdowndhcpd values set by cmsh or cmgui.

MaxNumberOfProvisioningThreads directive
Syntax: MaxNumberOfProvisioningThreads = number
Default: MaxNumberOfProvisioningThreads = 10000

© Bright Computing, Inc.



373

The MaxNumberOfProvisioningThreads directive specifies the cluster-
wide total number of nodes that can be provisioned simultaneously. Indi-
vidual provisioning servers typically define a much lower bound on the
number of nodes that may be provisioned simultaneously.

IpmiSessionTimeout directive
Syntax: IpmiSessionTimeout = number
Default: IpmiSessionTimeout = 2000

The IpmiSessionTimeout specifies the time-out for IPMI calls in millisec-
onds.

SnmpSessionTimeout directive
Syntax: SnmpSessionTimeout = number
Default: SnmpSessionTimeout = 500000

The SnmpSessionTimeout specifies the time-out for SNMP calls in mi-
croseconds.

PowerOffPDUOutlet directive
Syntax: PowerOffPDUOutlet = true|false
Default: PowerOffPDUOutlet = false

On clusters with both PDU and IPMI power control, the
PowerOffPDUOutlet directive when enabled, allows PDU ports to
be powered off. Section 5.1.3 has more on this.

MetricAutoDiscover directive
Syntax: MetricAutoDiscover = true|false
Default: MetricAutoDiscover = true

Scan for new hardware components which are not monitored yet and
schedule them for monitoring.

UseHWTags directive
Syntax: UseHWTags = true|false
Default: UseHWTags = false

When UseHWTags is set to true, the boot procedure for unknown nodes
requires the administrator to enter a HWTag on the console.

DisableBootLogo directive
Syntax: DisableBootLogo = true|false
Default: DisableBootLogo = false

When DisableBootLogo is set to true, the Bright Cluster Manager logo is
not displayed on the first boot menu.

© Bright Computing, Inc.



374 CMDaemon Configuration File Directives

StoreBIOSTimeInUTC directive
Syntax: StoreBIOSTimeInUTC = true|false
Default: StoreBIOSTimeInUTC = false

When StoreBIOSTimeInUTC is set to true, the system relies on the time
being stored in BIOS as being UTC rather than local time.

FreezeChangesToSlurmConfig directive
Syntax: FreezeChangesToSlurmConfig = true|false
Default: FreezeChangesToSlurmConfig = false

When FreezeChangesToSlurmConfig is set to true, CMDaemon does not
make any modifications to the SLURM configuration.

FreezeChangesToSGEConfig directive
Syntax: FreezeChangesToSGEConfig = true|false
Default: FreezeChangesToSGEConfig = false

When FreezeChangesToSGEConfig is set to true, CMDaemon does not
make any modifications to the SGE configuration.

FreezeChangesToPBSProConfig directive
Syntax: FreezeChangesToPBSProConfig = true|false
Default: FreezeChangesToPBSProConfig = false

When FreezeChangesToPBSProConfig is set to true, CMDaemon does
not make any modifications to the PBS Pro configuration.

FreezeChangesToTorqueConfig directive
Syntax: FreezeChangesToTorqueConfig = true|false
Default: FreezeChangesToTorqueConfig = false

When FreezeChangesToTorqueConfig is set to true, CMDaemon does
not make any modifications to the Torque configuration.

FreezeChangesToLSFConfig directive
Syntax: FreezeChangesToLSFConfig = true|false
Default: FreezeChangesToLSFConfig = false

When FreezeChangesToLSFConfig is set to true, CMDaemon does
not modify the LSF configuration in the file pointed to by the
LSFProfileScript directive.

LSFProfileScript= directive
Syntax: LSFProfileScript = filename
Default: LSFProfileScript = /cm/shared/apps/lsf/conf/profile.lsf

© Bright Computing, Inc.



375

LSFProfileScript sets the path to the LSF configuration profile. Dur-
ing LSF installation (section 8.5.5), the value of LSF_TOP used in LSF’s
install.config file must be set by the administrator to the directory
level above /conf/profile.lsf as specified by LSFProfileScript. For
the default value of LSFProfileScript, LSF_TOP must therefore be set to
/cm/shared/apps/lsf.

ProvisioningNodeAutoUpdate directive
Syntax: ProvisioningNodeAutoUpdate = true|false
Default: ProvisioningNodeAutoUpdate = true

If ProvisioningNodeAutoUpdate is set to true, provisioning nodes
are:

1. automatically updated every 24 hours

2. automatically updated when a provisioning request is made, if the
ProvisioningNodeAutoUpdateTimer directive allows it

These updates are disabled if ProvisioningNodeAutoUpdate is set to
false.

ProvisioningNodeAutoUpdateTimer directive
Syntax: ProvisioningNodeAutoUpdateTimer = number
Default: ProvisioningNodeAutoUpdateTimer = 300

When the head node receives a provisioning request, it checks if
the last update of the provisioning nodes is more than number seconds
ago. If this is the case an update is triggered. The update is disabled if
ProvisioningNodeAutoUpdate is set to false.

FrozenFile directive
Syntax: FrozenFile = { filename [,filename]...}
Syntax: FrozenFile = { filename1, filename2 }

Example: FrozenFile = {"/etc/dhcpd.conf","/etc/postfix/main.cf"}

The FrozenFile directive is used to prevent files from being automati-
cally generated. This is useful when site-specific modifications to config-
uration files have to be made.

SyslogHost directive
Syntax: SyslogHost = hostname
Default: SyslogHost = "localhost"

The SyslogHost directive specifies the hostname of the syslog host.

SyslogFacility directive
Syntax: SyslogFacility = facility
Default: SyslogFacility = "LOG_LOCAL6"

© Bright Computing, Inc.



376 CMDaemon Configuration File Directives

The default value of LOG_LOCAL6 is set by default in /etc/syslog.conf

to redirect messages to /var/log/cmdaemon. The value of facility
must be one of: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG_SYSLOG or LOG_LOCAL0..7

ResolveToExternalName
Syntax: ResolveToExternalName = true|false
Default: ResolveToExternalName = false

The ResolveToExternalName directive determines under which do-
main name the primary and secondary head nodes are visible from within
head nodes. The ResolveToExternalName directive has no effect on com-
pute nodes. Compute nodes always resolve the hostname of any head
node to an IP address located on the internal cluster network.

When ResolveToExternalName is set to true, the domain name of
the head nodes is set to the domain name of the network that is spec-
ified as the "External network" in the base partition in cmsh (the out-
put of “cmsh -c "partition use base; get externalnetwork"”). All
head node host names (for example, head1, head2) resolved from within
a head node resolve to the head node’s IP address located on the exter-
nal network. This also includes head node hostnames appended with
the domain name of the internal cluster network. Only the master host-
name and master.<internalnet> resolve to the shared IP address on the
internal cluster network. The “hostname -f” command then returns a
fully qualified domain name (FQDN) of the head node on which it was
invoked.

The system configuration files affected by this directive include
/etc/hosts and, on SLES systems, also the /etc/HOSTNAME.

A restart of CMDaemon implements any change set for
ResolveToExternalName. However the change should not be done
while important system services (for example, Torque) are running.
Doing so is likely to cause problems with accessing such services due
to them then running with a different domain name than the one with
which they originally started.

© Bright Computing, Inc.



D
Disk Partitioning

Bright Cluster Manager requires that disk partitionings are specified us-
ing the XML format that is described in section D.1.

Disk partitioning is initially implemented on the head node and regu-
lar nodes during installation (section 2.3.14).

For the head node it cannot be changed from within the Bright Cluster
Manager after implementation.

For regular nodes partitioning can be changed after the initial imple-
mentation, by changing the XML file defining their partitioning scheme.
Diskless operation can also be implemented by using an appropriate XML
file.

D.1 Structure Of Partitioning Definition
In Bright Cluster Manager, partitioning setups have their global structure
defined using an XML schema. The schema file is installed on the head
node in /cm/node-installer/scripts/disks.xsd. This section shows
the schema and gives some examples of the defined types, while the next
sections contain examples of the schema in use:

XML schema for partitioning

<?xml version='1.0'?>

<!--

#

# Copyright (c) 2004-2010 Bright Computing, Inc. All Rights Reserved.

#

# This software is the confidential and proprietary information of

# Bright Computing, Inc.("Confidential Information"). You shall not

# disclose such Confidential Information and shall use it only in

# accordance with the terms of the license agreement you entered into

# with Bright Computing, Inc.

This is the XML schema description of the partition layout XML file.

It can be used by software to validate partitioning XML files.

There are however a few things the schema does not check:

- There should be exactly one root mountpoint (/), unless diskless.

- There can only be one partition with a 'max' size on a particular device.

- Something similar applies to logical volumes.

© Bright Computing, Inc.



378 Disk Partitioning

- The 'auto' size can only be used for a swap partition.

- Partitions of type 'linux swap' should not have a filesystem.

- Partitions of type 'linux raid' should not have a filesystem.

- Partitions of type 'linux lvm' should not have a filesystem.

- Partitions of type 'unspecified' should not have a filesystem.

- If a raid is a member of another raid then it can not have a filesystem.

- Partitions, which are listed as raid members, should be of type 'linux raid'.

- If diskless is not set, there should be at least one device.

-->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' elementFormDefault='qualified'>

<xs:element name='diskSetup'>

<xs:complexType>

<xs:sequence>

<xs:element name='diskless' type='diskless' minOccurs='0' maxOccurs='1'/>

<xs:element name='device' type='device' minOccurs='0' maxOccurs='unbounded'/>

<xs:element name='raid' type='raid' minOccurs='0' maxOccurs='unbounded'/>

<xs:element name='volumeGroup' type='volumeGroup' minOccurs='0' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

<xs:key name='partitionAndRaidIds'>

<xs:selector xpath='.//raid|.//partition'/>

<xs:field xpath='@id'/>

</xs:key>

<xs:keyref name='raidMemberIds' refer='partitionAndRaidIds'>

<xs:selector xpath='.//raid/member'/>

<xs:field xpath='.'/>

</xs:keyref>

<xs:keyref name='volumeGroupPhysicalVolumes' refer='partitionAndRaidIds'>

<xs:selector xpath='.//volumeGroup/physicalVolumes/member'/>

<xs:field xpath='.'/>

</xs:keyref>

<xs:unique name='raidAndVolumeMembersUnique'>

<xs:selector xpath='.//member'/>

<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='deviceNodesUnique'>

<xs:selector xpath='.//device/blockdev'/>

<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='mountPointsUnique'>

<xs:selector xpath='.//mountPoint'/>

<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='assertNamesUnique'>

<xs:selector xpath='.//assert'/>

© Bright Computing, Inc.



D.1 Structure Of Partitioning Definition 379

<xs:field xpath='@name'/>

</xs:unique>

</xs:element>

<xs:complexType name='diskless'>

<xs:attribute name='maxMemSize' type='memSize' use='required'/>

</xs:complexType>

<xs:simpleType name='memSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='([0-9]+[MG])|100%|[0-9][0-9]%|[0-9]%|0'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='size'>

<xs:restriction base='xs:string'>

<xs:pattern value='max|auto|[0-9]+[MGT]'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='extentSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='([0-9])+M'/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name='device'>

<xs:sequence>

<xs:element name='blockdev' type='xs:string' minOccurs='1' maxOccurs='unbounded'/>

<xs:element name='vendor' type='xs:string' minOccurs='0' maxOccurs='1'/>

<xs:element name='requiredSize' type='size' minOccurs='0' maxOccurs='1'/>

<xs:element name='assert' minOccurs='0' maxOccurs='unbounded'>

<xs:complexType>

<xs:simpleContent>

<xs:extension base='xs:string'>

<xs:attribute name='name' use='required'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:pattern value='[a-zA-Z0-9-_]+'/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name='args' type='xs:string'/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name='partition' type='partition' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

<xs:complexType name='partition'>

<xs:sequence>

<xs:element name='size' type='size'/>

© Bright Computing, Inc.



380 Disk Partitioning

<xs:element name='type'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='linux'/>

<xs:enumeration value='linux swap'/>

<xs:enumeration value='linux raid'/>

<xs:enumeration value='linux lvm'/>

<xs:enumeration value='unspecified'/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>

</xs:sequence>

<xs:attribute name='id' type='xs:string' use='required'/>

</xs:complexType>

<xs:group name='filesystem'>

<xs:sequence>

<xs:element name='filesystem'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='ext2'/>

<xs:enumeration value='ext3'/>

<xs:enumeration value='ext4'/>

<xs:enumeration value='xfs'/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='mountPoint' type='xs:string'/>

<xs:element name='mountOptions' type='xs:string' default='defaults'/>

</xs:sequence>

</xs:group>

<xs:complexType name='raid'>

<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='2' maxOccurs='unbounded'/>

<xs:element name='level' type='xs:int'/>

<xs:choice minOccurs='0' maxOccurs='1'>

<xs:group ref='filesystem'/>

<xs:element name='swap'><xs:complexType /></xs:element>

</xs:choice>

</xs:sequence>

<xs:attribute name='id' type='xs:string' use='required'/>

</xs:complexType>

<xs:complexType name='volumeGroup'>

<xs:sequence>

<xs:element name='name' type='xs:string'/>

<xs:element name='extentSize' type='extentSize'/>

<xs:element name='physicalVolumes'>

<xs:complexType>

<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

© Bright Computing, Inc.



D.2 Example: Default Node Partitioning 381

</xs:element>

<xs:element name='logicalVolumes'>

<xs:complexType>

<xs:sequence>

<xs:element name='volume' type='logicalVolume' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name='logicalVolume'>

<xs:sequence>

<xs:element name='name' type='xs:string'/>

<xs:element name='size' type='size'/>

<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Examples Of Element Types In XML Schema

Name Of Type Example Values

size 10G, 128M, 1T, auto, max

device /dev/sda, /dev/hda, /dev/cciss/c0d0

partition linux, linux raid, linux swap, unspecified

fileystem ext2, ext3, ext4, xfs

D.2 Example: Default Node Partitioning
The following example shows the default layout used for regular nodes:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<partition id="a1">

<size>20G</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a2">

<size>2G</size>

<type>linux</type>

© Bright Computing, Inc.



382 Disk Partitioning

<filesystem>ext3</filesystem>

<mountPoint>/var</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a3">

<size>2G</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</partition>

<partition id="a4">

<size>16G</size>

<type>linux swap</type>

</partition>

<partition id="a5">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/local</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

The example assumes a single disk. Because multiple blockdev tags are
used, the node-installer first tries to use /dev/sda, then /dev/hda, and
finally /dev/cciss/c0d0.

For each partition, a size is specified. Sizes can be specified using
megabytes (e.g. 500M), gigabytes (e.g. 50G) or terabytes (e.g. 2T). Alterna-
tively, a max size will use all remaining space. For swap partitions, a size
of auto sets a swap partition to twice the node memory size.

In the example, all file systems are specified as ext3. Valid alternatives
are ext2 and xfs.

The mount man page has more details on mount options. If the
mountOptions tag is left empty, its value defaults to defaults.

D.3 Example: Software RAID
The following example shows a simple software RAID setup:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>25G</size>

<type>linux raid</type>

</partition>

</device>

© Bright Computing, Inc.



D.4 Example: Software RAID With Swap 383

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>25G</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

The level tag specifies the RAID level used. The following are sup-
ported:

• 0 (striping without parity)

• 1 (mirroring)

• 4 (striping with dedicated parity drive)

• 5 (striping with distributed parity)

• 6 (striping with distributed double parity)

The member tags must refer to an id attribute of a partition tag, or
an id attribute of a another raid tag. The latter can be used to create, for
example, RAID 10 configurations.

The administrator must ensure that the correct RAID kernel module
is loaded (section 6.3.2). Including the appropriate module from the fol-
lowing is usually sufficient: raid0, raid1, raid4, raid5, raid6.

D.4 Example: Software RAID With Swap
The <swap></swap> tag is used to indicate a swap partition in a RAID
device specified in the XML schema of section D.1. For example, the fol-
lowing marks a 1GB RAID 1 partition as being used for swap, and the
second partition for an ext3 filesystem:

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

© Bright Computing, Inc.



384 Disk Partitioning

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<swap></swap>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<level>1</level>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

D.5 Example: Logical Volume Manager
This example shows a simple LVM setup:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>25G</size>

<type>linux lvm</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>25G</size>

<type>linux lvm</type>

</partition>

</device>

<volumeGroup>

© Bright Computing, Inc.



D.6 Example: Diskless 385

<name>vg1</name>

<extentSize>4M</extentSize>

<physicalVolumes>

<member>a1</member>

<member>b1</member>

</physicalVolumes>

<logicalVolumes>

<volume>

<name>vol1</name>

<size>35G</size>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

<volume>

<name>vol2</name>

<size>max</size>

<filesystem>ext3</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

</logicalVolumes>

</volumeGroup>

</diskSetup>

The member tags must refer to an id attribute of a partition tag, or an id

attribute of a raid tag.
The administrator must ensure that the dm-mod kernel module is loaded

when LVM is used.

D.6 Example: Diskless
This example shows a node configured for diskless operation:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<diskless maxMemSize="0"></diskless>

</diskSetup>

An example of the implementation of a diskless configuration is given in
section 4.6.3.

In diskless mode the software image is transferred by the node-
installer to a RAM-based filesystem on the node called tmpfs.

The obvious advantage of running from RAM is the elimination of
the physical disk, cutting power consumption and reducing the chance
of hardware failure. On the other hand, some of the RAM on the node is
then no longer available for user applications.

Special considerations with diskless mode:

• Recommended minimum RAM size: The available RAM per node
should be sufficient to run the OS and the required tasks. At least
4GB is recommended for diskless nodes.

© Bright Computing, Inc.



386 Disk Partitioning

• Default tmpfs size is unrestricted: By default the amount of RAM
that may be used for a file system is unrestricted. This means that
creating very large files can exceed the RAM physically available
for the file system, causing a node to run out of memory and crash.

• Limiting tmpfs size: The amount of RAM used for a file system can
be set with the maxMemSize attribute. The default value of 0 allows
all of the RAM to be used. A limit does not however necessarily
prevent the node from crashing, as some processes might not deal
properly with a situation when there is no more space left on the
filesystem.

• Persistence issues: While running as a diskless node, the node is
unable to retain any non-shared data each time it reboots. For ex-
ample the files in /var/log/*, which are normally preserved by the
exclude list settings for disked nodes, are lost from RAM during
diskless mode reboots.

• Leftover disk issues: Administrators in charge of sensitive environ-
ments should be aware that the disk of a node that is now running
in diskless mode still contains files from the last time the disk was
used, unless the files are explicitly wiped.

• Reducing the software image size in tmpfs on a diskless node: To
make more RAM available for tasks, the software image size held
in RAM can be reduced:

– by removing unnecessary software from the image.

– by mounting parts of the filesystem in the image over NFS
during normal use. This is especially worthwhile for less fre-
quently accessed parts of the image (section 4.7.3).

D.7 Example: Semi-diskless
Diskless operation (section D.6) can also be mixed with certain parts of
the file system on the local physical disk. This frees up RAM which the
node can then put to other use. In this example all data in /local is on
the physical disk, the rest in RAM.

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<diskless maxMemSize="0"></diskless>

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/local</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

© Bright Computing, Inc.



D.8 Example: Preventing Accidental Data Loss 387

</device>

</diskSetup>

When nodes operate in semi-diskless mode the node-installer always uses
excludelistfullinstall (section 6.4.7) when synchronizing the software
image to memory and disk.

An alternative to using a local disk for freeing up RAM is to use NFS
storage, as is described in section 4.7.3.

D.8 Example: Preventing Accidental Data Loss
Optional tags, vendor and requiredSize, can be used to prevent acci-
dentally repartitioning the wrong drive. Such a tag use is shown in the
following example.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<vendor>Hitachi</vendor>

<requiredSize>200G</requiredSize>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<vendor>BigRaid</vendor>

<requiredSize>2T</requiredSize>

<partition id="b1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/data</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

If a vendor or a requiredSize element is specified, it is treated as an
assertion which is checked by the node-installer. If any assertion fails, no
partitioning changes will be made to any of the specified devices. The
node-installer reads the drive vendor string from /sys/block/<drive

name>/device/vendor.

© Bright Computing, Inc.



388 Disk Partitioning

Specifying device assertions is recommended for machines that con-
tain important data because it protects against a situation where a drive
is assigned to an incorrect block device. This can happen, for example,
when the first drive in a multi-drive system is not detected (e.g. due to a
hardware failure) which could cause the second drive to become known
as /dev/sda.

D.9 Example: Using Custom Assertions
The following example shows the use of the assert tag, which can be
added to a device definition:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<assert name="modelCheck" args="WD800AAJS">

<![CDATA[

#!/bin/bash

if grep -q $1 /sys/block/$ASSERT_DEV/device/model; then

exit 0

else

exit 1

fi

]]>

</assert>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<vendor>BigRaid</vendor>

<requiredSize>2T</requiredSize>

<partition id="b1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/data</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

© Bright Computing, Inc.



D.9 Example: Using Custom Assertions 389

The assert tag is similar to the vendor and size tags described in sec-
tion D.8.

It can be used to define custom assertions. The assertions can be im-
plemented using any script language.

The script will have access to the environment variables ASSERT_DEV

(i.e. sda) and ASSERT_NODE (i.e. /dev/sda).
Each assert needs to be assigned an arbitrary name and can be passed

custom parameters. A non-zero exit code in the assertion causes the node-
installer to halt.

© Bright Computing, Inc.





E
Example initialize And

finalize Scripts
The node-installer executes any initialize and finalize scripts at par-
ticular stages of its 13-step run during node-provisioning (section 6.4).
They are sometimes useful for troubleshooting or workarounds during
those stages. The scripts are stored in the CMDaemon database, rather
than in the filesystem as plain text files, because they run before the
node’s init process takes over and establishes the final filesystem.

E.1 When Are They Used?
An initialize script is used well before the init process starts, to
execute custom commands before partitions and mounting devices are
checked. Typically, initialize script commands are related to parti-
tioning, mounting, or initializing special storage hardware. Often an
initialize script is needed because the commands in it cannot be stored
persistently anywhere else.

A finalize script (also run before init) is used to set a file configura-
tion or to initialize special hardware, sometimes after a hardware check.
It is run in order to make software or hardware work before, or during the
later init stage of boot. Thus, often a finalize script is needed because
its commands must be executed before init, and the commands cannot
be stored persistently anywhere else, or it is needed because a choice be-
tween (otherwise non-persistent) configuration files must be made based
on the hardware before init starts.

E.2 Accessing From cmgui And cmsh

The initialize and finalize scripts are accessible for viewing and edit-
ing:

• In cmgui, using the “Node Categories” or Nodes resource, under
the Settings tabbed pane for the selected item.

• In cmsh, using the category or device modes. The get command
is used for viewing the script, and the set command to start up the
default text editor to edit the script. Output is truncated in the two
following examples at the point where the editor starts up:

© Bright Computing, Inc.



392 Example initialize And finalize Scripts

Example

[root@bright52 ~]# cmsh

[bright52]% category use default

[bright52->category[default]]% show | grep script

Parameter Value

------------------------------ ------------------------------------------------

Finalize script <1367 bytes>

Initialize script <0 bytes>

[bright52->category[default]]% set initializescript

Example

[bright52]% device use node001

[bright52->device[node001]]%

[bright52->device[node001]]% set finalizescript

E.3 Analogous Scripts That Run During imageupdate

The imageupdate_initialize and imageupdate_finalize scripts are
similar scripts, but run, as their name implies, when the imageupdate

command is run, and not during node-provisioning. They are discussed
further in section 6.6.2.

E.4 Environment Variables Available To initialize

And finalize Scripts
For the initialize and finalize scripts, node-specific customizations
can be made from a script using environment variables. The following
table shows the available variables with some example values:

Table E: Environment Variables For The initialize And Finalize Scripts

Variable Example Value

CMD_ACTIVE_MASTER_IP 10.141.255.254

CMD_CATEGORY default

CMD_CHASSIS chassis01

CMD_CHASSIS_IP 10.141.1.1

CMD_CHASSIS_PASSWORD ADMIN

CMD_CHASSIS_SLOT 1

CMD_CHASSIS_USERNAME ADMIN

CMD_CLUSTERNAME Bright 5.2 Cluster

CMD_DEVICE_HEIGHT 1

CMD_DEVICE_POSITION 10

CMD_DEVICE_TYPE SlaveNode

CMD_ETHERNETSWITCH switch01:1

CMD_FSEXPORT__SLASH_cm_SLASH\ no

...continues

© Bright Computing, Inc.



E.4 Environment Variables Available To initialize And finalize Scripts 393

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

_node-installer_ALLOWWRITE

CMD_FSEXPORT__SLASH_cm_SLASH\ 10.141.0.0/16

_node-installer_HOSTS

CMD_FSEXPORT__SLASH_cm_SLASH\ /cm/node-installer

_node-installer_PATH

CMD_FSEXPORTS _SLASH_cm_SLASH_node-installer

CMD_FSMOUNT__SLASH_cm_SLASH\ master:/cm/shared

_shared_DEVICE

CMD_FSMOUNT__SLASH_cm_SLASH\ nfs

_shared_FILESYSTEM

CMD_FSMOUNT__SLASH_cm_SLASH\ /cm/shared

_shared_MOUNTPOINT

CMD_FSMOUNT__SLASH_cm_SLASH\ rsize=32768,wsize=32768,\
_shared_OPTIONS hard,intr,async

CMD_FSMOUNT__SLASH_dev_SLASH\ none

_pts_DEVICE

CMD_FSMOUNT__SLASH_dev_SLASH\ devpts

_pts_FILESYSTEM

CMD_FSMOUNT__SLASH_dev_SLASH\ /dev/pts

_pts_MOUNTPOINT

CMD_FSMOUNT__SLASH_dev_SLASH\ gid=5,mode=620

_pts_OPTIONS

CMD_FSMOUNT__SLASH_dev_SLASH\ none

_shm_DEVICE

CMD_FSMOUNT__SLASH_dev_SLASH\ tmpfs

_shm_FILESYSTEM

CMD_FSMOUNT__SLASH_dev_SLASH\ /dev/shm

_shm_MOUNTPOINT

CMD_FSMOUNT__SLASH_dev_SLASH\ defaults

_shm_OPTIONS

CMD_FSMOUNT__SLASH\ master:/home

_home_DEVICE

CMD_FSMOUNT__SLASH_home\ nfs

_FILESYSTEM

CMD_FSMOUNT__SLASH_home\ home

_MOUNTPOINT

CMD_FSMOUNT__SLASH_home\ rsize=32768,wsize=32768,\
_OPTIONS hard,intr,async

...continues

© Bright Computing, Inc.



394 Example initialize And finalize Scripts

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

CMD_FSMOUNT__SLASH_proc\ none

_DEVICE

CMD_FSMOUNT__SLASH_proc\ proc

_FILESYSTEM

CMD_FSMOUNT__SLASH_proc\ /proc

_MOUNTPOINT

CMD_FSMOUNT__SLASH_proc\ defaults,nosuid

_OPTIONS

CMD_FSMOUNT__SLASH_sys\ none

_DEVICE

CMD_FSMOUNT__SLASH_sys\ sysfs

_FILESYSTEM

CMD_FSMOUNT__SLASH_sys\ /sys

_MOUNTPOINT

CMD_FSMOUNT__SLASH_sys\ defaults

_OPTIONS

CMD_FSMOUNTS ∗ _SLASH_dev_SLASH_pts

_SLASH_proc

_SLASH_sys

_SLASH_dev_SLASH_shm

_SLASH_cm_SLASH_shared

_SLASH_home

CMD_GATEWAY 10.141.255.254

CMD_HOSTNAME node001

CMD_INSTALLMODE AUTO

CMD_INTERFACE_eth0_IP ∗∗ 10.141.0.1

CMD_INTERFACE_eth0_MTU ∗∗ 1500

CMD_INTERFACE_eth0_NETMASK ∗∗ 255.255.0.0

CMD_INTERFACE_eth0_TYPE ∗∗ physical

CMD_INTERFACES ∗ eth0 eth1 eth2

ipmi0

CMD_IP 10.141.0.1

CMD_MAC 00:00:00:00:00:01

CMD_PARTITION base

CMD_PASSIVE_MASTER_IP 10.141.255.253

CMD_PDUS

CMD_POWER_CONTROL custom

CMD_RACK rack01

CMD_RACK_HEIGHT 42

...continues

© Bright Computing, Inc.



E.5 Using Environment Variables Stored In Multiple Variables 395

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

CMD_RACK_ROOM serverroom

CMD_ROLES sgeclient storage

CMD_SHARED_MASTER_IP 10.141.255.252

CMD_SOFTWAREIMAGE_PATH /cm/images/default-image

CMD_SOFTWAREIMAGE default-image

CMD_TAG 00000000a000

CMD_USERDEFINED1 var1

CMD_USERDEFINED2 var2

* The value for this variable is a string with spaces, not an array. Eg:

CMD_FSMOUNTS="_SLASH_dev_SLASH_pts _SLASH_proc _SLASH_sys ..."

** The name of this variable varies according to the interfaces available. So,

eth0 can be replaced by eth1, eth2, ipmi0, and so on.

E.5 Using Environment Variables Stored In Multiple
Variables

Some data values, such as those related to interfaces
(CMD_INTERFACES_*), mount points (CMD_FSMOUNT__SLASH_*) and
exports (CMD_FSEXPORT__SLASH_cm__SLASH_node-installer_*) are
stored in multiple variables. The code example below shows how they
can be used:

Example

#!/bin/bash

for interface in $CMD_INTERFACES

do

eval type=\$CMD_INTERFACE_${interface}_TYPE

eval ip=\$CMD_INTERFACE_${interface}_IP

eval mask=\$CMD_INTERFACE_${interface}_NETMASK

echo "$interface type=$type"

echo "$interface ip=$ip"

echo "$interface netmask=$mask"

done

For remotely mounted devices, the name of the environment variables
for mount entries have the following naming convention:

Description Naming Convention

volume CMD_FSMOUNT_<x>_DEVICE

mount point CMD_FSMOUNT_<x>_MOUNTPOINT

filesystem type CMD_FSMOUNT_<x>_FILESYSTEM

mount point options CMD_FSMOUNT_<x>_OPTIONS

© Bright Computing, Inc.



396 Example initialize And finalize Scripts

For the names, the entries <x> are substituted with the local mount
point path, such as “/cm/shared”, but with the “/” character replaced
with the text “_SLASH_”. So, for a local mount point path “/cm/shared”,
the name of the associated volume environment variable becomes
CMD_FSMOUNT__SLASH_cm_SLASH_shared_DEVICE.

A similar naming convention is applicable to the names of the envi-
ronmental variables for the export entries:

Description Naming Convention

exported system writeable? CMD_FSEXPORT_<y>_ALLOWWRITE

allowed hosts or networks CMD_FSEXPORT_<y>_HOSTS

path on exporter CMD_FSMOUNT_<y>_PATH

Here, the entry <y> is replaced by the file path to the exported filesys-
tem on the exporting node. This is actually the same as the value of
“CMD_FSMOUNT_<y>_PATH”, but with the “/” character replaced with the
text “_SLASH_”.

The entries for the local mount values and the export values in the
table in section E.4 are the default values for a newly installed cluster. If
the administrator wishes to add more devices and mount entries, this is
done by configuring fsexports on the head node, and fsmounts on the
regular nodes, using cmgui or cmsh (section 4.7).

E.6 Storing A Configuration To A Filesystem
E.6.1 Ways Of Writing A Finalize Script To Configure Nodes
The initialize script (section 6.4.5) runs after the install-mode type and
execution have been determined (section 6.4.4), but before unloading spe-
cific drivers and before partitions are checked and filesystems mounted
(section 6.4.6). Data output can therefore be written by it to writeable
parts of the special NFS drive from which the node-installer is running.

For a finalize script (section 6.4.11), which runs just before switching
from using the ramdrive to using the local hard drive, the local hard drive
is mounted under /localdisk. Data can therefore be written to the local
hard drive if needed. For example, predetermined configuration files can
be written from the NFS drive for a particular node, or they can be writ-
ten from an image prepared earlier and now running on the node at this
stage, overwriting a node installer configuration:

Example

#!/bin/bash

cp /etc/myapp.conf.overwrite /localdisk/etc/myapp.conf

This technique is used in a finalize script example in section 9.9.5,
except that an append operation is used instead of a copy operation,
to overcome a network issue by modifying a network configuration file
slightly.

Detection within a finalize script is another useful technique. The
finalize script example of section 9.9.5 does detection too, to decide if a
configuration change is to be done on the node or not.

© Bright Computing, Inc.



E.6 Storing A Configuration To A Filesystem 397

A useful variation of a finalize script with detection is a script se-
lecting from a choice of possible configurations. A symlink is set to one of
the possible configurations based on hardware detection or detection of
an environment variable. The environment variable can be a node param-
eter or similar, from the table in section E.4. If it is necessary to overwrite
different nodes with different configurations, then the previous finalize
script example might become something like:

Example

#!/bin/bash

if [[ $CMD_HOSTNAME = node00[1-7] ]]

then ln -s /etc/myapp.conf.first /localdisk/etc/myapp.conf

fi

if [[ $CMD_HOSTNAME = node01[5-8] ]]

then ln -s /etc/myapp.conf.second /localdisk/etc/myapp.conf

fi

if [[ $CMD_HOSTNAME = node02[3-6] ]]

then ln -s /etc/myapp.conf.third /localdisk/etc/myapp.conf

fi

In the preceding example, the configuration file in the image has
several versions: /etc/myapp.conf.<first|second|third>. Nodes
node001 to node007 are configured with the first version, nodes node015
to node018 with the second version, and nodes node023 to node026 with
the third version. More versions are convenient to add to this kind of
decision mechanism.

E.6.2 Restricting The Script To Nodes Or Node Categories
As mentioned in section 3.1.3, node settings can be adjusted within a cat-
egory. So the configuration changes to ifcfg-eth0 can be implemented
per node by accessing and adjusting the finalize script per node if only
a few nodes in the category are to be set up like this. If all the nodes in a
category are to be set up like this, then the changes are best implemented
in a finalize script accessed and adjusted at the category level. Access-
ing the scripts at the node and category levels is covered in section E.2.

© Bright Computing, Inc.





F
Quickstart Installation Guide

This appendix describes a basic installation of Bright Cluster Manager
on a cluster as a step-by-step process. Following these steps allows clus-
ter administrators to get a cluster up and running as quickly as possible
without having to read the entire administrators manual. References to
chapters and sections are provided where appropriate.

F.1 Installing Head Node
1. Set the local time in the BIOS of the head node.

2. Boot head node from Bright Cluster Manager DVD.

3. Select Install Bright Cluster Manager in the boot menu

4. Once the installation environment has been started, choose Normal
installation mode and click Continue.

5. Accept the License Agreement for Bright Cluster Manager and click
Continue.

6. Accept the License Agreement for the Linux base distribution and
click Continue.

7. Click Continue on kernel modules screen.

8. Review the detected hardware and go back to kernel modules screen
if additional kernel modules are required. Once all relevant hard-
ware (Ethernet interfaces, hard drive and DVD drive) is detected,
click Continue.

9. Specify the number of racks and the number of regular nodes, set
the base name for the regular nodes and the number of digits to
append to the base name. Select the correct hardware manufacturer
and click Continue.

10. Choose a network layout and click Continue. The first layout is the
most commonly used. The rest of this appendix assumes the first
layout was chosen.

11. Optionally add an InfiniBand network and configure the use of
IPMI/iLO BMCs on the nodes. Adding an IPMI/iLO network is

© Bright Computing, Inc.



400 Quickstart Installation Guide

needed to configure IPMI/iLO interfaces in a different IP subnet
(recommended). When done, click Continue.

12. Fill in the following settings for the network named externalnet:

• Base Address (a.k.a. network address)

• Netmask

• Domain name

• Default gateway

The network externalnet corresponds to the site network that the
cluster resides in (e.g. corporate or campus network). Note that
assigning the cluster an IP address in this network is handled in one
of the next screens. All networks besides the externalnet network
use private IP ranges by default and normally do not have to be
changed. Click Continue.

13. Add and remove DNS search domains and external DNS name servers
as required, and click Continue

14. Assign an IP address for the head node on externalnet. This is the
IP address that is used to access the cluster over the network.

15. If necessary, modify the node properties. When IPMI/iLO inter-
faces reside in the same IP subnet, an IP Offset is set for the ipmi0

interface. Click Continue to continue.

16. If an InfiniBand network was enabled, select which nodes (if any)
are to run the subnet manager for the InfiniBand network. Click
Continue to continue.

17. Select the DVD drive containing the Bright Cluster Manager DVD
and click Continue.

18. Select a workload management system and set the number of slots
per node equal to the number of CPU cores per node. Click Continue

to continue.

19. Optionally you may modify the disk layout for the head node by
selecting a pre-defined layout. The layout may be fine-tuned by
editing the XML partitioning definition. Click Continue to continue
and confirm that the data on the listed drive(s) may be erased by
clicking Yes.

20. Select a time-zone and optionally add NTP time-servers. Click
Continue to continue.

21. By default there are no network-specific restrictions on access to
the cluster (e.g. using ssh or cmgui). To accept the defaults, click
Continue.

22. Enter a hostname for the head node. Enter a password that is to be
used for system administration twice and click Continue.

23. Configure text or graphical consoles for the nodes in the cluster.
Note that Cluster Management GUI can still be used remotely if
the console of the head node is set to text mode.

© Bright Computing, Inc.



F.2 First Boot 401

24. Review the network summary screen, click the Start button to start
the installation and click Yes to confirm that the data on the listed
drive(s) may be erased.

25. Wait until installation has completed, click Reboot and click Yes to
confirm that the head node may be rebooted.

F.2 First Boot
1. Ensure that the head node boots from the first hard drive by remov-

ing the DVD or altering the boot-order in the BIOS configuration.

2. Once the machine is fully booted, log in as root with the password
that was entered during installation.

3. Confirm that the machine is visible on the external network. En-
sure that the second NIC (i.e. eth1) is physically connected to the
external network.

4. Verify that the license parameters are correct:
cmsh -c "main licenseinfo"

If the license being used is a temporary license (see End Time value),
a new license should be requested well before the temporary license
expires. The procedure for requesting and installing a new license
is described in section 4.1.

F.3 Booting Nodes
1. Make sure the first NIC (i.e. eth0) on the head node is physically

connected to the internal cluster network.

2. Configure the BIOS of nodes to boot from the network, and boot the
nodes.

3. If everything goes well, the node-installer component starts on each
node and a certificate request is sent to the head node.

If a node does not make it to the node-installer, it is possible that
additional kernel modules are needed. Section 6.8 contains more
information on how to diagnose problems during the node booting
process.

4. To identify the nodes (i.e. to assign a host name to each physical
node), several options are available. Which option is most conve-
nient depends mostly on the number of nodes and whether a (con-
figured) managed Ethernet switch is present.

Rather than identifying nodes based on their MAC address, it is
often beneficial (especially in larger clusters) to identify nodes based
on the Ethernet switch port that they are connected to. To allow
nodes to be identified based on Ethernet switch ports, section 4.5
should be consulted.

Any one of the following methods may be used to assign node iden-
tities when all nodes have been booted:

© Bright Computing, Inc.



402 Quickstart Installation Guide

a. Identify each node on the node console: To manually identify
each node, the “Manually select node” option is selected for
each node. The node is then identified manually by selecting
a node-entry from the list, chosing the Accept option. This
option is easiest when there are not many nodes. It requires
being able to view the console of each node and keyboard entry
to the console.

b. Identify nodes using cmgui: The Node Identification Wizard
(section 6.4.2) in cmgui automates the process of assigning iden-
tities so that nodes do not require manual identification on the
console.

c. Identify nodes using cmsh: In cmsh the newnodes command
in device mode (section 6.4.2) can be used to assign identities
to nodes from the command line. When called without pa-
rameters, the newnodes command can be used to verify that all
nodes have booted into the node installer and are all waiting
to be assigned an identity.

Example

To verify that all nodes have booted into the node installer:

[root@mycluster ~]# cmsh

[mycluster]% device newnodes

MAC First appeared Detected on switch port

-------------------- -------------------------------- ----------------------------

00:0C:29:D2:68:8D Mon, 05 Sep 2011 13:43:13 CEST [no port detected]

00:0C:29:54:F5:94 Mon, 05 Sep 2011 13:49:41 CEST [no port detected]

..

[mycluster]% device newnodes | wc -l

MAC First appeared Detected on switch port

-------------------- -------------------------------- ----------------------------

32

[mycluster]% exit

[root@mycluster ~]#

Example

Once all nodes have been booted in the proper order, we can
use the order of their appearance on the network to assign
node identities. To assign identities node001 through node032

to the first 32 nodes that were booted, the following commands
may be used:

[root@mycluster ~]# cmsh

[mycluster]% device newnodes -s -n node001..node032

MAC First appeared Hostname

-------------------- -------------------------------- ----------------------

00:0C:29:D2:68:8D Mon, 05 Sep 2011 13:43:13 CEST node001

00:0C:29:54:F5:94 Mon, 05 Sep 2011 13:49:41 CEST node002

..

[mycluster]% exit

[root@mycluster ~]#

5. Each node is now provisioned and eventually fully boots. In case of
problems, section 6.8 should be consulted.

© Bright Computing, Inc.



F.4 Running Cluster Management GUI 403

6. Optional: To configure power management, Chapter 5 should be
consulted.

F.4 Running Cluster Management GUI
To run the Cluster Management GUI on the cluster from a workstation
running X11:

1. From a Linux desktop PC, log in to the cluster with SSH X-forwarding:
ssh -X root@mycluster

2. Start the Cluster Management GUI:
cmgui

3. Click on the connect button (see figure 3.3 and enter the password
that was configured during installation.)

4. Optional: For more information on how the Cluster Management
GUI can be used to manage one or more clusters, consult section 3.4.

To run the Cluster Management GUI on a desktop PC:

1. Copy the appropriate package(s) from /cm/shared/apps/cmgui/dist

to the desktop PC:

scp root@mycluster:/cm/shared/apps/cmgui/dist/* /tmp

Note: On windows use e.g. WinSCP.

2. Copy the PFX certificate file from the cluster to the desktop so that
it can be used for authentication purposes:

scp root@mycluster:admin.pfx ~/mycluster-admin.pfx

3. Install the package.
On Windows: execute the installer and follow the steps.
On Linux: extract using tar -xvjf filename

4. Start the cluster management GUI.
On Windows: from the Start menu or by clicking the desktop icon.
On Linux: change into the cmgui directory and execute:
./cmgui

5. Click on Add a new cluster and enter the following parameters:
Host: Hostname or IP address of the cluster
Certificate: Click Browse and browse to the certificate file.
Password: Password entered during installation

6. Click on the connect button (see figure 3.3)

7. Optional: For more information on how the Cluster Management
GUI can be used to manage one or more clusters, consult section 3.4.

Your cluster should now be ready for running compute jobs. For more
information on managing the cluster, please consult the appropriate
chapters in this manual.

© Bright Computing, Inc.

/cm/shared/apps/cmgui/dist


404 Quickstart Installation Guide

Please consult the User Manual provided in:
/cm/shared/docs/cm/user-manual.pdf

for more information on the user environment and how to start jobs
through the workload management system.

© Bright Computing, Inc.



G
Workload Managers Quick

Reference
G.1 SLURM
SLURM (Simple Linux Utility for Resource Management) is a GPL-
licensed workload management system and developed largely at
Lawrence Livermore National Laboratory.

The SLURM service and outputs are normally handled using the cmgui
or cmsh front-end tools for CMDaemon (section 8.4).

From the command line, direct SLURM commands that may some-
times come in useful include the following:

• sacct: used to report job or job step accounting information about
active or completed jobs.

• salloc: used to allocate resources for a job in real time. Typically
this is used to allocate resources and spawn a shell. The shell is then
used to execute srun commands to launch parallel tasks.

• sattach used to attach standard input, output, and error plus signal
capabilities to a currently running job or job step. One can attach to
and detach from jobs multiple times.

• sbatch: used to submit a job script for later execution. The script
typically contains one or more srun commands to launch parallel
tasks.

• sbcast: used to transfer a file from local disk to local disk on the
nodes allocated to a job. This can be used to effectively use disk-
less compute nodes or provide improved performance relative to a
shared file system.

• scancel: used to cancel a pending or running job or job step. It can
also be used to send an arbitrary signal to all processes associated
with a running job or job step.

• scontrol: the administrative tool used to view and/or modify
SLURM state. Note that many scontrol commands can only be exe-
cuted as user root.

© Bright Computing, Inc.



406 Workload Managers Quick Reference

• sinfo: reports the state of partitions and nodes managed by SLURM.
It has a wide variety of filtering, sorting, and formatting options.

• smap: reports state information for jobs, partitions, and nodes man-
aged by SLURM, but graphically displays the information to reflect
network topology.

• squeue: reports the state of jobs or job steps. It has a wide variety of
filtering, sorting, and formatting options. By default, it reports the
running jobs in priority order and then the pending jobs in priority
order.

• srun: used to submit a job for execution or initiate job steps in real
time. srun has a wide variety of options to specify resource require-
ments, including: minimum and maximum node count, processor
count, specific nodes to use or not use, and specific node character-
istics (so much memory, disk space, certain required features, etc.).
A job can contain multiple job steps executing sequentially or in
parallel on independent or shared nodes within the job’s node allo-
cation.

• smap: reports state information for jobs, partitions, and nodes man-
aged by SLURM, but graphically displays the information to reflect
network topology.

• strigger: used to set, get or view event triggers. Event triggers
include things such as nodes going down or jobs approaching their
time limit.

• sview: a graphical user interface to get and update state information
for jobs, partitions, and nodes managed by SLURM.

Full documentation on SLURM is available online at: https://

computing.llnl.gov/linux/slurm/documentation.html.

G.2 Sun Grid Engine
Sun Grid Engine (SGE) is a workload management system that was origi-
nally made available under an Open Source license by Sun Microsystems.
It forked off into various versions in 2010 and its future is unclear at the
time of writing, but it remains in widespread use. Bright Cluster Manager
5.2 uses version 6.2 update 5 patch 2 of Grid Scheduler, which is a bugfix-
patched version of the last SGE release from Sun Microsystems, and is
made available on sourceforge at http://gridscheduler.sourceforge.
net/.

SGE services should be handled using CMDaemon, as explained in
section 8.4. However SGE can break in obtuse ways when implementing
changes, so the following notes are sometimes useful in getting a system
going again:

• The sge_qmaster daemon on the head node can be started or
stopped using /etc/init.d/sgemaster.sqe1 start|stop, or alter-
natively via qconf -{s|k}m.

© Bright Computing, Inc.

https://computing.llnl.gov/linux/slurm/documentation.html
https://computing.llnl.gov/linux/slurm/documentation.html
http://gridscheduler.sourceforge.net/
http://gridscheduler.sourceforge.net/


G.2 Sun Grid Engine 407

• The sge_execd execution daemon running on each compute node
accepts, manages, and returns the results of the jobs on the
compute nodes. The daemon can be started or stopped via
/etc/init.d/sgeexecd start|stop, or alternatively deregistered
from qmaster via qconf -{s|k}s.

• Queues in an error state are cleared with a qmod -c <queue name>.

SGE can be configured and managed generally with the command line
utility qconf, which is what most administrators become familiar with. A
GUI alternative, qmon, is also provided.

SGE commands are listed below. The details of these are in the man

page of the command and the SGE documentation.

• qalter: modify existing batch jobs

• qacct: show usage information from accounting data

• qconf: configure SGE

• qdel: delete batch jobs

• qhold: place hold on batch jobs

• qhost: display compute node queues, states, jobs

• qlogin: start login-based interactive session with a node

• qmake: distributed, parallel make utility

• qmod: suspend/enable queues and jobs

• qmon: configure SGE with an X11 GUI interface

• qping: check sge_qmaster and sge_execd status

• qquota: list resource quotas

• qresub: create new jobs by copying existing jobs

• qrdel: cancel advance reservations

• qrls: release batch jobs from a held state

• qrsh: start rsh-based interactive session with node

• qrstat: show status of advance reservations

• qrsub: submit advanced reservation

• qselect: select queues based on argument values

• qsh: start sh interactive session with a node

• qstat: show status of batch jobs and queues

• qsub: submit new jobs (related: qalter, qresub)

• qtcsh: start csh-based interactive session with a node

© Bright Computing, Inc.



408 Workload Managers Quick Reference

G.3 Torque
The following commands are used to manage Torque:

Torque resource manager commands:

• qalter: alter batch job

• qdel: delete batch job

• qhold: hold batch jobs

• qrls: release hold on batch jobs

• qstat: show status of batch jobs

• qsub: submit job

• qmgr: batch policies and configurations manager

• qenable: enable input to a destination

• qdisable: disable input to a destination

• tracejob: trace job actions and states

Further information on these and other commands is available in
the appropriate man pages and on-line documentation at http://www.
adaptivecomputing.com/resources/docs/.

The Torque administrator manual is online at http://www.

adaptivecomputing.com/resources/docs/torque/index.php.

G.4 PBS Pro
The following commands can be used in PBS Pro to view queues:

qstat query queue status

qstat -a alternate form

qstat -r show only running jobs

qstat -q show available queues

qstat -rn only running jobs, w/ list of allocated nodes

qstat -i only idle jobs

qstat -u username show jobs for named user

Other useful commands are:

tracejob id show what happened today to job id

tracejob -n d id search last d days

qmgr administrator interface to batch system

qterm terminates queues (but cm starts pbs_server again)

pbsnodes -a list available worker nodes in queue

The commands of PBS Pro are documented in the PBS Professional
11.0 Reference Guide. There is further extensive documentation for PBS
Pro administrators in the PBS Professional 11.0 Administrator’s Guide. Both
are available at the PBS Works website at http://www.pbsworks.com/

SupportDocuments.aspx.

© Bright Computing, Inc.

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.pbsworks.com/SupportDocuments.aspx
http://www.pbsworks.com/SupportDocuments.aspx


H
Metrics, Health Checks, And

Actions
This appendix describes the metrics, health checks, and actions in a newly-
installed cluster. Metrics, health checks, and actions can each be stan-
dalone scripts, or built-ins. Standalone scripts can be those supplied
with the system, or they can be custom scripts built by the administra-
tor. Scripts can use environmental values (the CMD_* variables of Ap-
pendix E.4).

H.1 Metrics And Their Parameters
H.1.1 Metrics

Table H.1.1: List Of Metrics

Name Description

AlertLevel Indicates the healthiness of a device, the
lower the better

Average Cluster-wide average of metric of choice

AvgExpFactor Average Expansion Factor. This is by what
factor, on average, jobs took longer to run
than expected. The expectation is according
to heuristics based on duration in past and
current job queues, as well as node availabil-
ity.

AvgJobDuration Average Job Duration of current jobs

BufferMemory System memory used for buffering

BytesRecv Number of bytes received

BytesSent Number of bytes sent

CMDActiveSessions Managed active sessions count

CMDCycleTime Time used by master to process picked up
data

...continues

© Bright Computing, Inc.



410 Metrics, Health Checks, And Actions

Table H.1.1: List Of Metrics...continued

Name Description

CMDMemUsed Resident memory used by CMDaemon

CMDState State in which CMDaemon is running (head:
0, node: 1, failover:2)

CMDStoreQueryTime Time used by master to store monitoring data
to database

CMDSystime Time spent by CMDaemon in system mode

CMDUsertime Time spent by CMDaemon in user mode

CPUCoresAvailable Cluster-wide number of CPU cores

CPUIdle Total core usage in idle tasks per second

CPUIrq Total core usage in servicing interrupts per
second

CPUNice Total core usage in nice’d user mode per sec-
ond

CPUSoftIrq Total core usage in servicing soft interrupts
per second

CPUSystem Total core usage in system mode per second

CPUUser Total core usage in user mode per second

CPUWait Total core usage in waiting for I/O to com-
plete per second

CacheMemory System memory used for caching

CompletedJobs Jobs completed

CtxtSwitches Number of context switches per second

DevicesUp Number of devices in status UP

DropRecv Number of received packets which are
dropped

DropSent Number of packets sent which are dropped

ErrorsRecv Number of received packets with error

ErrorsSent Number of packets sent which have error

EstimatedDelay Estimated Delay to execute jobs

FailedJobs Failed jobs

Forks Number of forks since boot per second

FrameErrors Number of packet framing errors

FreeSpace Free space for non-root. Takes mount point as
a parameter

GPUAvailable Cluster-wide number of GPUs

IOInProgress Number of I/O operations currently in
progress

IOTime Number of milliseconds spent doing I/O

LoadFifteen Load average on 15 minutes

...continues

© Bright Computing, Inc.



H.1 Metrics And Their Parameters 411

Table H.1.1: List Of Metrics...continued

Name Description

LoadFive Load average on 5 minutes

LoadOne Load average on 1 minute

MajorPageFaults Page faults that require I/O

Max Cluster-wide maximum of metric of choice

MemoryFree Free system memory

MemoryUsed Used system memory

MergedReads Total number of merged reads

MergedWrites Total number of merged writes

Min Cluster-wide minimum of metric of choice

NetworkBytesRecv Cluster-wide number of bytes received on all
networks

NetworkBytesSent Cluster-wide number of bytes transmitted on
all networks

NetworkUtilization Network utilization estimation(%)

NodesUp Number of nodes in status UP

OccupationRate Cluster occupation rate—the load on the clus-
ter as a whole. 100% means all cores on all
nodes are fully loaded.

PDUBankLoad Total PDU bank load

PDULoad Total PDU phase load

PDUUptime PDU uptime

PacketsRecv Number of received packets

PacketsSent Number of packets sent

PageFaults Page faults

PhaseLoad Cluster-wide phase load

ProcessCount Total number of processes

QueuedJobs Number of queued jobs

RackSensorHumidity Rack sensor humidity

RackSensorTemp Rack sensor Temperature

Range Cluster-wide range of metric of choice (differ-
ence between min and max)

ReadTime Total number of milliseconds spent by all
reads

Reads Total number of reads completed successfully

RunningJobs Number of running jobs

RunningProcesses Number of processes in runnable state

SMARTHDATemp Temperature of a Hard Disk Assembly

SMARTReallocSecCnt Number of remapped sectors

SMARTSeekErrRate Frequency of errors appearance while posi-
tioning the head

...continues

© Bright Computing, Inc.



412 Metrics, Health Checks, And Actions

Table H.1.1: List Of Metrics...continued

Name Description

SMARTSeekTimePerf Average efficiency of operations whilst posi-
tioning the head

SMARTSoftReadErrRate Frequency of program errors while reading
data

SectorsRead Total number of sectors read successfully

SectorsWritten Total number of sectors written successfully

SensorFanSpeed System or CPU fan speed sensor

SensorTemp Temperature sensor(system and CPU)

SensorVoltage Motherboard voltage sensor

Sum Cluster-wide sum of metric of choice

SwapFree Free swap space

SwapUsed Used swap space

SwitchBroadcastPackets Total number of good packets received and
directed to the broadcast address

SwitchCPUUsage Switch CPU utilization estimation(%)

SwitchCollisions Total number of collisions on this network
segment

SwitchDelayDiscardFrames Number of frames discarded due to excessive
transit delay through the bridge

SwitchFilterDiscardFrames Number of valid frames received but dis-
carded by the forwarding process

SwitchMTUDiscardFrames Number of frames discarded due to an exces-
sive size

SwitchMulticastPackets Total number of good packets received and
directed to a multicast address

SwitchOverSizedPackets Total number of well-received packets longer
than 1518 octets

SwitchUnderSizedPackets Total number of packets received which are
less than 64 octets long

SwitchUptime Switch uptime

TotalCPUIdle Cluster-wide core usage in idle tasks

TotalCPUSystem Cluster-wide core usage in system mode

TotalCPUUser Cluster-wide core usage in user mode

TotalMemoryUsed Cluster-wide total memory used

TotalNodes Total number of nodes

TotalSwapUsed Cluster-wide total swap used

Uptime System uptime

UsedSpace Total used space by a mount point

WriteTime Total number of milliseconds spent by all
writes

...continues

© Bright Computing, Inc.



H.1 Metrics And Their Parameters 413

Table H.1.1: List Of Metrics...continued

Name Description

Writes Total number of writes completed success-
fully

gpu∗ GPU measurements (file: sample_gpu)

ilo∗ ILO measurements (file: sample_ilo)

ipForwDatagrams Number of input datagrams to be forwarded

ipFragCreates The number of IP datagram fragments gener-
ated

ipFragFails Number of IP datagrams which needed to be
fragmented but could not

ipFragOKs Number of IP datagrams successfully frag-
mented

ipInAddrErrors Number of input datagrams discarded be-
cause the IP address in their header was not
a valid address

ipInDelivers Total number of input datagrams success-
fully delivered

ipInDiscards Number of input IP datagrams discarded

ipInHdrErrors Number of input datagrams discarded due to
errors in their IP headers

ipInReceives Total number of input datagrams, including
ones with errors, received from all interfaces

ipInUnknownProtos Number of received datagrams but discarded
because of an unknown or unsupported pro-
tocol

ipOutDiscards Number of output IP datagrams discarded

ipOutNoRoutes Number of IP datagrams discarded because
no route could be found

ipOutRequests Total number of IP datagrams supplied to IP
in requests for transmission

ipReasmOKs Number of IP datagrams successfully re-
assembled

ipReasmReqds Number of IP fragments received needing re-
assembly

ipmi∗ IPMI measurements (file: sample_ipmi)

responsiveness∗ The average time (in ms) for I/O re-
quests to be served from device (file:
sample_responsiveness)

sdt∗ SuperMicro hardware measurements (file:
sample_sdt)

tcpCurrEstab Number of TCP connections for which the
current state is either ESTABLISHED or
CLOSE-WAIT

...continues

© Bright Computing, Inc.



414 Metrics, Health Checks, And Actions

Table H.1.1: List Of Metrics...continued

Name Description

tcpInErrs Total number of IP segments received in error

tcpRetransSegs Total number of IP segments retransmitted

testcollection∗ An example of a metric collection script (file:
testmetriccollection)

testmetric∗ An example of a metric script (file:
testmetric)

udpInDatagrams Total number of UDP datagrams delivered to
UDP users

udpInErrors Number of received UDP datagrams that
could not be delivered for other reasons (no
port excl.)

udpNoPorts Total number of received UDP datagrams for
which there was no application at the desti-
nation port

* standalone scripts, not built-ins. Located in directory:

/cm/local/apps/cmd/scripts/metrics/

H.1.2 Parameters For Metrics
Metrics have the parameters indicated by the left column in the following
example:

Example

[myheadnode->monitoring->metrics]% show cpuuser

Parameter Value

------------------------------ ------------------------------------------------

Class of metric cpu

Command <built-in>

Cumulative yes

Description Total core usage in user mode per second

Disabled no

Extended environment no

Measurement Unit

Name CPUUser

Only when idle no

Parameter permissions disallowed

Retrieval method cmdaemon

Sampling method samplingonnode

State flapping count 7

Timeout 5

Valid for node,master

maximum <range not set>

minimum <range not set>

[myheadnode->monitoring->metrics]%

The meanings of the parameters are:

Class of metric: A choice assigned to a metric depending on its type.
The choices and what they are related to are listed below:

© Bright Computing, Inc.



H.1 Metrics And Their Parameters 415

• Misc (default): miscellaneous class of metrics, used if none of
the other classes are appropriate, or if none of the other classes
are chosen

• CPU: CPU activity

• GPU: GPU activity

• Disk: Disk activity

• Memory: Memory activity

• Network: Network activity

• Environmental: sensor measurements of the physical environ-
ment

• Operating System: operating system activity

• Internal: bright cluster manager utilities

• Workload: workload management

• Cluster: clusterwide measurements

• Prototype: metric collections class

Command: For a standalone metric script, it is the full path. For a built-in,
the value cannot be set, and the command is simply the name of the
metric.

Cumulative: If set to yes, then the value is cumulative (for example, the
bytes-received counter for an Ethernet interface). If set to no (de-
fault), then the value is not cumulative (for example, temperature).

Description: Description of the metric. Empty by default.

Disabled: If set to no (default) then the script runs.

Extended environment: If set to yes, more information about the device
is made part of the environment to the script. The default is no.

Measurement Unit: A unit for the metric. A percent is indicated with %.

Name: The name given to the metric.

Only when idle: If set to yes, the metric script runs only when the sys-
tem is idling. Useful if the metric is resource hungry, in order to
burden the system less. It is set to no by default.

Parameter permissions: Decides if parameters passed to the metric
script can be used. The three possible values are:

• disallowed: parameters are not used

• required: parameters are mandatory

• optional (default): parameters are optional

Retrieval method:

• cmdaemon (default): Metrics retrieved internally using CMDae-
mon

• snmp: Metrics retrieved internally using SNMP

Sampling method:

© Bright Computing, Inc.



416 Metrics, Health Checks, And Actions

• samplingonmaster: The head node samples the metric on be-
half of a device. For example, the head node may do this for a
PDU because the PDU does not have the capability to run the
cluster management daemon at present, and so cannot itself
pass on data values directly when cmsh or cmgui need them.

• samplingonnode (default): The non-head node samples the met-
ric itself.

State flapping count: How many times the metric value must cross a
threshold within the last 12 samples before it is decided that it is in
a flapping state. Default value is 7.

Timeout: After how many seconds the command will give up retrying.
Default value is 5 seconds.

Valid for: Which device category the metric can be used with. The
choices being:

• Node (Default)

• Master Node (Also a default)

• Power Distribution Unit

• Myrinet Switch

• Ethernet Switch

• IB Switch

• Rack Switch

• Generic Switch

• Chassis

• GPU Unit

Maximum: the default minimum value the y-axis maximum will take in
graphs plotted in cmgui.1

Minimum: the default maximum value the y-axis minimum will take in
graphs plotted in cmgui.1

1To clarify the concept, if maximum=3, minimum=0, then a data-point with a y-value of 2 is
plotted on a graph with the y-axis spanning from 0 to 3. However, if the data-point has a
y-value of 4 instead, then it means the default y-axis maximum of 3 is resized to 4, and the
y-axis will now span from 0 to 4.

© Bright Computing, Inc.



H.2 Health Checks And Their Parameters 417

H.2 Health Checks And Their Parameters
H.2.1 Health Checks

Table H.2.1: List Of Health Checks

Name Query (response is PASS/FAIL/UNKNOWN)

DeviceIsUp∗ Is the device up, closed or installing?

ManagedServicesOk∗ Are CMDaemon-monitored services all OK?

chrootprocess Are there daemon processes running using
chroot in software images? (here: yes = fail).
On failure, kill cron daemon processes run-
ning in the software images.

cmsh Is cmsh available?

diskspace Is there less disk space available to non-root
users than any of the space parameters speci-
fied?
The space parameters can be specified as MB, GB,
TB, or as percentages with %. The default sever-
ity of notices from this check is 10, when one space
parameter is used. For more than one space pa-
rameter, the severity decreases by 10 for each space
parameter, sequentially, down to 10 for the last
space parameter. There must be at least one space
parameter. An optional non-space parameter, the
filesystem mount point parameter, can be speci-
fied after the last space parameter to track filesys-
tem space, instead of disk space. A metric-based
alternative to tracking filesystem space changes is
to use the built-in metric freespace (page 410)
instead.
Examples:

• diskspace 10%

less than 10% space = FAIL, severity 10

• diskspace 10% 20% 30%

less than 30% space = FAIL, with sever-
ity levels as indicated:

space left Severity

10% 30

20% 20

30% 10

...continued

© Bright Computing, Inc.



418 Metrics, Health Checks, And Actions

Table H.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL/UNKNOWN)

• diskspace 10GB 20GB

less than 20GB space = FAIL, severity 10

less than 10GB space = FAIL, severity 20

• diskspace 10% 20% /var

For the file system /var:

less than 20% space = FAIL, severity 10

less than 10% space = FAIL, severity 20

exports Are all filesystems as defined by the cluster
management system exported?

failedprejob Are there failed prejob health checks? (here:
yes = FAIL)

failover Is all well with the failover system?

interfaces Are the interfaces all up and OK?

ldap Can the ID of the user be looked up with
LDAP?

mounts Are all mounts defined in the fstab OK?

mysql Is the status and configuration of mysql cor-
rect?

node-hardware-profile Is the specified node’s hardware configura-
tion during health check use unchanged?
The options to this script are described us-
ing the “-h” help option. Before this script
is used for health checks, the specified hard-
ware profile is usually first saved with the -s

option. Eg: “node-hardware-profile -n

node001 -s hardwarenode001”

ntp Is NTP synchronization happening?

portchecker Is the specified port on the specified host
open for TCP (default) or UDP connections?

rogueprocess Are the processes that are running legitimate
(ie, not ’rogue’)?
Illegitimate processes are processes that
should not be running on the node. An ille-
gitimate process is, by default:

• not part of the workload manager ser-
vice or its jobs

• not a root- or system-owned process

• in the state Z, T, W, or X. States are de-
scribed in the ps man pages in the sec-
tion on “PROCESS STATE CODES”

Rogue process criteria can be configured in
the file rogueprocess.py.

...continued © Bright Computing, Inc.



H.2 Health Checks And Their Parameters 419

Table H.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL/UNKNOWN)

schedulers Are the queue instances of all schedulers on a
node healthy ?

smart Is the SMART response healthy?

ssh2node Is passwordless ssh login from head to node
working?

swraid Are the software RAID arrays healthy?

testhealthcheck A health check script example for creating scripts,
or setting a mix of PASS/FAIL/UNKNOWN re-
sponses. The source includes examples of environ-
ment variables that can be used, as well as config-
uration suggestions.

* built-ins, not standalone scripts. Standalone scripts are located in

/cm/local/apps/cmd/scripts/healthchecks/

H.2.2 Parameters For Health Checks
Health checks have the parameters indicated by the left column in the
example below:

Example

[myheadnode->monitoring->healthchecks]% show cmsh

Parameter Value

------------------------------ ------------------------------------------------

Class of healthcheck internal

Command /cm/local/apps/cmd/scripts/healthchecks/cmsh

Description Checks whether a the cmsh is available, i.e. we+

Disabled no

Extended environment no

Name cmsh

Only when idle no

Parameter permissions optional

Sampling method samplingonnode

State flapping count 7

Timeout 10

Valid for node,master,pdu,ethernet,myrinet,ib,racksensor+

The parameters have the same meaning as for metrics, with the following
exceptions due to inapplicability:

Parameter Reason For Inapplicability

class: prototype only applies to metric collections

cumulative only sensible for numeric values

measurementunit only applies to numeric values

retrievalmethod all health checks use CMDaemon internally
for retrieval

maximum only applies to numeric values

minimum only applies to numeric values

© Bright Computing, Inc.



420 Metrics, Health Checks, And Actions

The remaining parameters have meanings that can be looked up in
section H.1.2.

H.3 Actions And Their Parameters
H.3.1 Actions

Table H.3.1: List Of Actions

Name Description

Drain node Allows no new processes on a compute node
from the workload manager (Usage Tip: Plan
for undrain from another node becoming ac-
tive)

killprocess∗ Kills a process with KILL (-9) signal

Power off Powers off, hard

Power on Powers on, hard

Power reset Power reset, hard

Reboot Reboot via the system, trying to shut every-
thing down cleanly, and then start up again

SendEmail Sends mail using the mailserver that was
set up during server configuration. Format:
sendemail [somebody@example.com]. De-
fault destination is root@localhost

Shutdown Power off via system, trying to shut every-
thing down cleanly

test action∗ An action script example for users who
would like to create their own scripts. The
source has helpful remarks about the envi-
ronment variables that can be used as well as
tips on configuring it generally

Undrain node Allow processes to run on the node from the
workload manager

* standalone scripts, not built-ins. Located in directory:

/cm/local/apps/cmd/scripts/actions/

H.3.2 Parameters For Actions
Actions have the parameters indicated by the left column in the example
below:

Example

[myheadnode->monitoring->actions]% show drainnode

Parameter Value

------------------------------ ------------------------------------------------

Command <built-in>

Description Remove a node from further use by the scheduler+

Name Drain node

Run on master

Timeout 5

isCustom no

The meanings of these parameters are:

© Bright Computing, Inc.



H.3 Actions And Their Parameters 421

Command: For a standalone metric script, it is the full path. For a built-in,
the value cannot be set, and the command is simply the name of the
metric.

Description: Description of the metric. Empty by default.

Name: The name given to the metric.

Run on: The node it will run on. For standalone actions it is usually a
choice of head node, or the non-head node. For non-head nodes
the action will run from the node that triggered it, if the node has
sufficient permission to do that.

Timeout: After how many seconds the command will give up retrying.
Default value is 5 seconds.

isCustom: Is this a standalone script?

© Bright Computing, Inc.





I
Metric Collections

This appendix gives details on metric collections.
In section 10.4.4, metric collections are introduced, and how to add a

metric collections script with cmgui is described.
This appendix covers how to add a metric collections script with cmsh.

It also describes the output specification of a metric collections script,
along with example outputs, so that a metric collections script can be
made by the administrator.

I.1 Metric Collections Added Using cmsh

A metric collections script, responsiveness, is added in the monitoring

metrics mode just like any other metric.

Example

[bright52]% monitoring metrics

[bright52->monitoring->metrics]% add responsiveness

[...[responsiveness]]% set command /cm/local/apps/cmd/scripts/metrics/s\

ample_responsiveness

[...*[responsiveness*]]% set classofmetric prototype; commit

For classofmetric, the value prototype is the class used to distin-
guish metric collections from normal metrics.

I.2 Metric Collections Initialization
When a metric collections script is added to the framework for the first
time, it is implicitly run with the --initialize flag, which detects and
adds component metrics to the framework.

The displayed output of a metric collections script when using the
--initialize flag is a list of available metrics and their parameter values.
The format of each line in the list is:

metric <name> [<unit> [<class> ["<description>" [<cumulative> [<min> <max>]]]]]

where the parameters are:

metric: A bare word.

name: The name of the metric.

unit: A measurement unit.

© Bright Computing, Inc.



424 Metric Collections

class: Any of: misc cpu disk memory network environmental

operatingsystem internal workload cluster.

description: This can contain spaces, but should be enclosed with quotes.

cumulative: Either yes or no (default is no). This indicates whether
the metric increases monotonically (e.g., bytes received) or not (e.g.,
temperature).

min and max: The minimum and maximum numeric values of this met-
ric which still make sense.

Example

[root@myheadnode metrics]# ./sample_responsiveness --initialize

metric util_sda % internal "Percentage of CPU time during which I/O

requests were issued to device sda" no 0 100

metric await_sda ms internal "The average time (in milliseconds) for

I/O requests issued to device sda to be served" no 0 500

I.3 Metric Collections Output During Regular Use
The output of a metric collection script without a flag is a list of outputs
from the available metrics. The format of each line in the list is:

metric <name> <value>

where the parameters are:

metric: A bare word.

name: The name of the metric.

value: The numeric value of the measurement.

Example

[root@myheadnode metrics]# ./sample_responsiveness

metric await_sda 0.00

metric util_sda 0.00

[root@myheadnode metrics]#

If the output has more metrics than that suggested by when the
--initialize flag is used, then the extra sampled data is discarded. If
the output has less metrics, then the metrics are set to NaN (not a number)
for the sample.

I.4 Error Handling
As long as the exit code of the script is 0, the framework assumes that
there is no error. So, with the --initialize flag active, despite no nu-
meric value output, the script does not exit with an error.

If the exit code of the script is non-zero, the output of the script is
assumed to be a diagnostic message and passed to the head node. This in
turn will be shown as an event in cmsh or cmgui.

For example, the sample_ipmi script uses the ipmi-sensors binary in-
ternally. Calling the binary directly returns an error code if the device has

© Bright Computing, Inc.



I.5 Environment Variables 425

no IPMI configured. However, the sample_ipmi script in this case simply
returns 0, and no output. The rationale here being that the administra-
tor is aware of this situation and would not expect data from that IPMI
anyway, let alone an error.

I.5 Environment Variables
The following environment variables are available for a metric collection
script (as well as for custom scripts):

On all devices:

CMD_HOSTNAME: name of the device. For example:

CMDHOSTNAME=myheadnode

Only on non-node devices:

CMD_IP: IP address of the device. For example:

CMD_IP=192.168.1.33

Only on node devices:

Because these devices generally have multiple interfaces, the single
environment variable CMD_IP is often not enough to express these.
Multiple interfaces are therefore represented by these environment
variables:

• CMD_INTERFACES: list of names of the interfaces attached to the
node. For example:

CMD_INTERFACES=eth0 eth1 ipmi0 BOOTIF

• CMD_INTERFACE_<interface>_IP: IP address of the interface
with the name <interface>. For example:

CMD_INTERFACE_eth0_IP=10.141.255.254

CMD_INTERFACE_eth1_IP=0.0.0.0

• CMD_INTERFACE_<interface>_TYPE: type of interface with the
name <interface>. For example:

CMD_INTERFACE_eth1_TYPE=NetworkPhysicalInterface

CMD_INTERFACE_ipmi0_TYPE=NetworkIpmiInterface

Possible values are:

– NetworkIpmiInterface

– NetworkPhysicalInterface

– NetworkVLANInterface

– NetworkAliasInterface

– NetworkBondInterface

• CMD_IPMIUSERNAME: username for the IPMI device at this node
(if available).

© Bright Computing, Inc.



426 Metric Collections

• CMD_IPMIPASSWORD: password for the IMPI device at this node
(if available).

To parse the above information to get the IPMI IP address of the node
for which this script samples, one could use (in perl):

my $ip;

my $interfaces = $ENV{"CMD_INTERFACES"};

foreach my $interface ( split( " " , $interfaces ) ) {

if( $ENV{"CMD_INTERFACE_" . $interface . "_TYPE"} eq

"NetworkIpmiInterface" ) {

$ip = $ENV{"CMD_INTERFACE_" . $interface . "_IP"};

last;

}

}

# $ip holds the ipmi ip

I.6 Metric Collections Examples
Bright Cluster Manager has several scripts in the
/cm/local/apps/cmd/scripts/metrics directory. Among them
are the metric collections scripts testmetriccollection and
sample_responsiveness. A glance through them while reading
this appendix may be helpful.

I.7 iDataPlex And Similar Units
IBM’s iDataPlex is a specially engineeered dual node rack unit. When the
term iDataPlex is used in the following text in this section, it also implies
any other dual node units that show similar behavior.

This section gives details on configuring an iDataPlex if IPMI metrics
retrieval seems to skip most IPMI values from one of the nodes in the
unit.

When carrying out metrics collections on an iDataPlex unit, Bright
Cluster Manager should work without any issues. However, it may be
that due to the special paired node design of an iDataPlex unit, most IPMI
metrics of one member of the pair are undetectable by the sample_ipmi

script sampling on that particular node. The missing IPMI metrics can
instead be retrieved from the second member in the pair (along with the
IPMI metrics of the second member).

The output may thus look something like:

Example

[root@master01 ~]# cmsh

[master01]% device latestmetricdata node181 | grep Domain

Metric Value

---------------------------- -----

Domain_A_FP_Temp 23

Domain_A_Temp1 39

Domain_A_Temp2 37

Domain_Avg_Power 140

Domain_B_FP_Temp 24

Domain_B_Temp1 40

Domain_B_Temp2 37

© Bright Computing, Inc.



I.7 iDataPlex And Similar Units 427

[master01]% device latestmetricdata node182 | grep Domain

Metric Value

---------------------------- -----

Domain_A_FP_Temp no data

Domain_A_Temp1 no data

Domain_A_Temp2 no data

Domain_Avg_Power 170

Domain_B_FP_Temp no data

Domain_B_Temp1 no data

Domain_B_Temp2 no data

[master01]%

Because there are usually many iDataplex units in the rack, the metrics
retrieval response of each node pair in a unit should be checked for this
behavior.

The issue can be dealt with by Bright Cluster Manager by modi-
fying the configuration file for the sample_ipmi script in /cm/local/

apps/cmd/scripts/metrics/configfiles/sample_ipmi.conf. Two pa-
rameters that can be configured there are chassisContainsLeadNode and
chassisContainsLeadNodeRegex.

• Setting chassisContainsLeadNode to on forces the sample_ipmi

script to treat the unit as an iDataPlex unit.

In particular:

– auto (recommended) means the unit is checked by the IPMI
metric sample collection script for whether it behaves like an
iDataPlex unit.

– on means the unit is treated as an iDataplex node pair, with
one node being a lead node that has all the IPMI metrics.

– off means the unit is treated as a non-iDataPlex node pair,
with each node having normal behavior when retrieving IPMI
metrics. This setting may need to be used in case the default
value of auto ever falsely detects a node as part of an iDataPlex
pair.

• The value of chassisContainsLeadNodeRegex can be set to a regu-
lar expression pattern that matches the system information pattern
for the name, as obtained by CMDaemon for an iDataPlex unit (or
similar clone unit). The pattern that it is matched against is the out-
put of:

cmsh -c 'device ; sysinfo master | grep "^System Name"'

If the pattern matches, then the IPMI sample collection script as-
sumes the unit behaves like an iDataPlex dual node pair. The miss-
ing IPMI data values are then looked for on the lead node.

By default, chassisContainsLeadNodeRegex is set to iDataPlex

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/metrics/configfiles/sample_ipmi.conf
/cm/local/apps/cmd/scripts/metrics/configfiles/sample_ipmi.conf




J
Changing The Network

Parameters Of The Head Node
J.1 Introduction
After a cluster physically arrives at its site, the administrator often has to
change the network settings to suit the site. Details on this are given in
section 4.2.1 of the Bright Cluster Manager Administrator Manual. How-
ever, it relies on understanding the material leading up to that section.

This document is therefore a quickstart document explaining how to
change the IPv4 network settings while assuming no prior knowledge of
Bright Cluster Manager and its network configuration interface.

J.2 Method
A cluster consists of a head node and one or more regular nodes. The
head node of the cluster is assumed to face the internal network (the net-
work of regular nodes) on one interface, say eth0. The external network
leading to the internet is then on another interface, say eth1. This is re-
ferred to as a type 1 configuration in the manual.

Typically, an administrator gives the head node a static external IP
address before actually connecting it up to the external network. This
requires logging into the physical head node with the vendor-supplied
root password. The original network parameters of the head node can
then be viewed and set. For example for eth1:

# cmsh -c "device interfaces master; get eth1 ip"

0.0.0.0

Here, 0.0.0.0 means the interface accepts DHCP server-supplied values.
Setting a static IP address value of, for example, 192.168.1.176 and

checking the value once more:

# cmsh -c "device interfaces master; set eth1 ip 192.168.1.176; commit"

# cmsh -c "device interfaces master; get eth1 ip"

192.168.1.176

Other external network parameters can be viewed and set in a similar
way, as shown in table J.1. A reboot implements the networking changes.

© Bright Computing, Inc.



430 Changing The Network Parameters Of The Head Node

Table
J.1:

ExternalN
etw

ork
Param

eters
A

nd
H

ow
To

C
hange

Them
O

n
The

H
ead

N
ode

N
etw

ork
Param

eter
D

escription
O

peration
C

om
m

and
U

sed

IP
∗

IP
address

ofhead
node

view
c
m
s
h

-
c

"
d
e
v
i
c
e

i
n
t
e
r
f
a
c
e
s

m
a
s
t
e
r
;

g
e
t

e
t
h
1

i
p
"

on
eth1

interface
set

c
m
s
h

-
c

"
d
e
v
i
c
e

i
n
t
e
r
f
a
c
e
s

m
a
s
t
e
r
;

s
e
t

e
t
h
1

i
p

a
d
d
r
e
s
s
;

c
o
m
m
i
t
"

baseaddress ∗
base

IP
address

(netw
ork

view
c
m
s
h

-
c

"
n
e
t
w
o
r
k

g
e
t

e
x
t
e
r
n
a
l
n
e
t

b
a
s
e
a
d
d
r
e
s
s
"

address)ofnetw
ork

set
c
m
s
h

-
c

"
n
e
t
w
o
r
k
;

s
e
t
e
x
t
e
r
n
a
l
n
e
t

b
a
s
e
a
d
d
r
e
s
s

a
d
d
r
e
s
s
;

c
o
m
m
i
t
"

broadcastaddress ∗
broadcastIP

address
of

view
c
m
s
h

-
c

"
n
e
t
w
o
r
k

g
e
t

e
x
t
e
r
n
a
l
n
e
t

b
r
o
a
d
c
a
s
t
a
d
d
r
e
s
s
"

netw
ork

set
c
m
s
h

-
c

"
n
e
t
w
o
r
k
;

s
e
t
e
x
t
e
r
n
a
l
n
e
t

b
r
o
a
d
c
a
s
t
a
d
d
r
e
s
s
a
d
d
r
e
s
s
;

c
o
m
m
i
t
"

netm
askbits

netm
ask

in
C

ID
R

notation
view

c
m
s
h

-
c

"
n
e
t
w
o
r
k

g
e
t

e
x
t
e
r
n
a
l
n
e
t

n
e
t
m
a
s
k
b
i
t
s
"

(num
ber

after
“/”,or

prefix
length)

set
c
m
s
h

-
c

"
n
e
t
w
o
r
k
;

s
e
t
e
x
t
e
r
n
a
l
n
e
t

n
e
t
m
a
s
k
b
i
t
s

b
i
t
s
i
z
e
;

c
o
m
m
i
t
"

gatew
ay
∗

gatew
ay

(defaultroute)
view

c
m
s
h

-
c

"
n
e
t
w
o
r
k

g
e
t

e
x
t
e
r
n
a
l
n
e
t

g
a
t
e
w
a
y
"

IP
address

set
c
m
s
h

-
c

"
n
e
t
w
o
r
k
;

s
e
t
e
x
t
e
r
n
a
l
n
e
t

g
a
t
e
w
a
y

a
d
d
r
e
s
s
;

c
o
m
m
i
t
"

nam
eservers ∗,∗∗

nam
eserver

IP
addresses

view
c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
g
e
t
b
a
s
e

n
a
m
e
s
e
r
v
e
r
s
"

set
c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
;

s
e
t

b
a
s
e

n
a
m
e
s
e
r
v
e
r
s

a
d
d
r
e
s
s
;

c
o
m
m
i
t
"

searchdom
ains ∗∗

nam
e

ofsearch
dom

ains
view

c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
g
e
t
b
a
s
e

s
e
a
r
c
h
d
o
m
a
i
n
s
"

set
c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
;

s
e
t

b
a
s
e

s
e
a
r
c
h
d
o
m
a
i
n
s

h
o
s
t
n
a
m
e
;

c
o
m
m
i
t
"

tim
eservers ∗∗

nam
e

oftim
eservers

view
c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
g
e
t
b
a
s
e

t
i
m
e
s
e
r
v
e
r
s
"

set
c
m
s
h

-
c

"
p
a
r
t
i
t
i
o
n
;

s
e
t

b
a
s
e

t
i
m
e
s
e
r
v
e
r
s

h
o
s
t
n
a
m
e
;

c
o
m
m
i
t
"

*
Ifaddress

is
setto

0.0.0.0
then

the
value

offered
by

the
D

H
C

P
server

on
the

externalnetw
ork

is
accepted

**
Space-separated

m
ultiple

values
are

also
accepted

for
these

param
eters

w
hen

setting
the

value
for

address
or

hostnam
e.

© Bright Computing, Inc.



J.3 Terminology 431

J.3 Terminology
A reminder about the less well-known terminology in the table:

• netmaskbits is the netmask size, or prefix-length, in bits. In IPv4’s
32-bit addressing, this can be up to 31 bits, so it is a number between
1 and 31. For example: networks with 256 (28) addresses (i.e. with
host addresses specified with the last 8 bits) have a netmask size of
24 bits. They are written in CIDR notation with a trailing “/24”, and
are commonly spoken of as “slash 24” networks.

• baseaddress is the IP address of the network the head node is on,
rather than the IP address of the head node itself. The baseaddress

is specified by taking netmaskbits number of bits from the IP ad-
dress of the head node. Examples:

– A network with 256 (28) host addresses: This implies the first
24 bits of the head node’s IP address are the network address,
and the remaining 8 bits are zeroed. This is specified by using
“0” as the last value in the dotted-quad notation (i.e. zeroing
the last 8 bits). For example: 192.168.3.0

– A network with 128 (27) host addresses: Here netmaskbits is
25 bits in size, and only the last 7 bits are zeroed. In dotted-
quad notation this implies “128” as the last quad value (i.e.
zeroing the last 7 bits). For example: 192.168.3.128.

When in doubt, or if the preceding terminology is not understood, then
the values to use can be calculated using the head node’s sipcalc utility.
To use it, the IP address in CIDR format for the head node must be known.

When run using a CIDR address value of 192.168.3.130/25, the output
is (some output removed for clarity):

# sipcalc 192.168.3.130/25

Host address - 192.168.3.130

Network address - 192.168.3.128

Network mask - 255.255.255.128

Network mask (bits) - 25

Broadcast address - 192.168.3.255

Addresses in network - 128

Network range - 192.168.3.128 - 192.168.3.255

Running it with the -b (binary) option may aid comprehension:

# sipcalc -b 192.168.3.130/25

Host address - 11000000.10101000.00000011.10000010

Network address - 11000000.10101000.00000011.10000000

Network mask - 11111111.11111111.11111111.10000000

Broadcast address - 11000000.10101000.00000011.11111111

Network range - 11000000.10101000.00000011.10000000 -

11000000.10101000.00000011.11111111

© Bright Computing, Inc.





K
Bright Cluster Manager Python

API
This appendix introduces the Python API of the Bright Cluster Manager.

K.1 Installation
The Python cluster manager bindings are pre-installed on the head node.

K.1.1 Windows Clients
For windows clients, Python version 2.5.X is needed. Newer versions of
Python do not work with the API.

For Windows a redistributable package is supplied in the
pythoncm-dist package installed on the cluster. The file at /cm/

shared/apps/pythoncm/dist/windows-pythoncm.5.2.r11221.zip—
the exact version number may differ—is copied to the Windows PC and
unzipped.

A Windows shell (cmd.exe) is opened to the directory where the
Python bindings are. The headnodeinfo.py example supplied with the
unzipped files has a line that has the following format:

cluster = clustermanager.addCluster(<parameters>);

where <parameters> is either:

'<URL>', '<PEMauth1>', '<PEMauth2>'

or
'<URL>', '<PFXauth>', �, '<password>'

The <parameters> entry is edited as follows:

• the correct hostname is set for the <URL> entry. By default it is set
to https://localhost:8081

• If PEM key files are to be used for client authentication,

– <PEMauth1> is set to path of cert.pem

– <PEMauth2> is set to the path of cert.key

• If a PFX file is used for client authentication,

© Bright Computing, Inc.

/cm/shared/apps/pythoncm/dist/windows-pythoncm.5.2.r11221.zip
/cm/shared/apps/pythoncm/dist/windows-pythoncm.5.2.r11221.zip


434 Bright Cluster Manager Python API

– <PFXauth> is set to path of admin.pfx

– <password> is set to the password

To verify everything is working, it can be run as follows:

c:\python25\python headnodeinfo.py

K.1.2 Linux Clients
For Linux clients, a redistributable source package is supplied in
the pythoncm-dist package installed on the cluster. The file
at /cm/shared/apps/pythoncm/dist/pythoncm-5.2-r11221-src.tar.

bz2—the exact version number may differ—is copied and untarred to any
directory.

The build.sh script is then run to compile the source. About 4GB of
memory is usually needed for compilation, and additional packages may
be required for compilation to succeed. A list of packages needed to build
Python cluster manager bindings can be found in the README file included
with the package.

The headnodeinfo.py example supplied with the untarred files
is edited as for in the earlier windows client example, for the
clustermanager.addCluster line.

The path to the remote cluster manager library is added:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:remotecm

To verify everything is working, the following can be run:

python ./headnodeinfo.py

K.2 Examples
A set of examples can be found in /cm/local/examples/cmd/python/ on
the head node of the cluster.

K.2.1 First Program
A Python script is told to use the cluster manager bindings by importing
pythoncm at the start of the script:

import pythoncm

If not working on the cluster, the administrator needs to set the
path where the shared libraries can be found (pythoncm.so in Linux, or
python.pyd in windows). This is done by adding the following to the
start of the script:

import sys

sys.path.append(".") # path to pythoncm.so/python.pyd

Python cluster manager bindings allow for simultaneous connections
to several clusters. For this reason the first thing to do is to create a Clus-
terManager object:

clustermanager = pythoncm.ClusterManager()

A connection to a cluster can now be made. There are two possible
ways of connecting.

The first is using a certificate and private key file similar to what cmsh
uses by default when it authenticates from the head node.

© Bright Computing, Inc.

/cm/shared/apps/pythoncm/dist/pythoncm-5.2-r11221-src.tar.bz2
/cm/shared/apps/pythoncm/dist/pythoncm-5.2-r11221-src.tar.bz2


K.3 Methods And Properties 435

cluster = clustermanager.addCluster('https://mycluster:8081',\

'/cm/local/apps/cmd/etc/cert.pem', '/cm/local/apps/cmd/etc/cert.key');

The second way uses the password protected admin.pfx file similar
to cmgui. A Python script could ask for the password and store it in a
variable for increased security.

cluster = clustermanager.addCluster('https://mycluster:8081',\

'/root/.cm/cmgui/admin.pfx', '', '<password>');

Having defined the cluster, a connection can now be made to it:

isconnected = cluster.connect()

if !isconnected:

print "Unable to connect"

print cluster.getLastError()

exit(1)

If a connection cannot be made, the Boolean isconnected is set to
false. The function ’cluster.getLastError()’ shows details about the prob-
lem. The two most likely problems are due to a wrong password setting
or a firewall settings issue.

Similar to cmgui and cmsh, the cluster object contains a local cache of
all objects. This cache will be filled automatically when the connection is
established. All changes to properties will be done on these local copies
and will be lost after the Python scripts exits, unless a commit operation
is done.

The most common operation is finding specific objects in the cluster.

active = cluster.find('active')

if active == None:

print "Unable to find active head node"

exit(1)

else:

print "Hostname of the active head node is %s" % master.hostname

If creating an automated script that runs at certain times, then it is
highly recommended to check if objects can be found. During a failover,
for instance, there will be a period over a few minutes in which the active
head node will not be set.

It is good practice to disconnect from the cluster at the end of the
script.

cluster.disconnect()

When connecting to a cluster with a failover setup, it is the shared IP
address that should be connected to, and not the fixed IP address of either
of the head nodes.

K.3 Methods And Properties
K.3.1 Viewing All Properties And Methods
All properties visible in cmsh and cmgui are also accessible from Python
cluster manager bindings. The easiest way to get an overview of the
methods and properties of an object is to define the following function:

© Bright Computing, Inc.



436 Bright Cluster Manager Python API

import re

def dump(obj):

print "--- DUMP ---"

for attr in dir(obj):

p = re.compile('^__.*__$')

if not p.match(attr):

print "%s = %s" % (attr, getattr(obj, attr))

An overview of all properties and methods for the active master node
can be obtained with:

active = cluster.find('active')

dump(active)

K.3.2 Property Lists
Most properties are straightforward and their names are almost identical
to the cmsh equivalent.

For instance:

node.mac = '00:00:00:00:00:00'

category.softwareimage = cluster.find('testimage')

Properties that contain lists, like node.roles, node.interfaces,
category.fsmounts and several others, are trickier to deal with. While
iterating over a list property is simple enough:

for role in node.roles:

print role.name

because of an implementation restriction, adding a new role requires that
a local copy of the roles list be made:

roles = node.roles

provisioningrole = pythoncm.ProvisioningRole() # Create a new pro\

visioning role object

roles.append(provisioningrole)

node.roles = roles # This will update the internal\

roles list with the local copy

K.3.3 Creating New Objects
Creating a new node can be done with:

node = pythoncm.Node()

This is valid command, but fairly useless because a node has to be
a MasterNode, PhysicalNode or VirtualSMPNode. So to create a normal
compute or login node, the object is created as follows:

node = pythoncm.PhysicalNode()

The first thing to do after creating a new object is to add it to a cluster.

cluster.add(node)

It is impossible to add one node to more than one cluster.
After the node has been added its properties can be set. In cmsh and

cmgui this is semi-automated, but in Python cluster manager bindings it
has to be done by hand.

© Bright Computing, Inc.



K.3 Methods And Properties 437

node.hostname = 'node001'

node.partition = cluster.find('base')

node.category = cluster.find('default')

Similar to the node object, a NetworkInterface object has sev-
eral subtypes: NetworkPhysicalInterface, NetworkVLANInterface,
NetworkAliasInterface, NetworkBondInterface, and
NetworkIPMIInterface.

interface = pythoncm.NetworkPhysicalInterface()

interface.name = 'eth0'

interface.ip = '10.141.0.1'

interface.network = cluster.find('internalnet')

node.interfaces = [interface]

node.provisioningInterface = interface

Having set the properties of the new node, it can now be committed.

cr = node.commit()

If a commit fails for some reason, the reason can be found:

if not cr.result:

print "Commit of %s failed:" % node.resolveName()

for j in range(cr.count):

print cr.getValidation(j).msg

K.3.4 List Of Objects
In the following lists of objects:

• Objects marked with (*) cannot be used

• Trees marked with (+) denote inheritance

Roles
Role (*)

+ BackupRole

+ BootRole

+ DatabaseRole

+ EthernetSwitch

+ LoginRole

+ LSFClientRole

+ LSFServerRole

+ MasterRole

+ PbsProClientRole

+ PbsProServerRole

+ ProvisioningRole

+ SGEClientRole

+ SGEServerRole

+ SlurmClientRole

+ SlurmServerRole

+ SubnetManagerRole

+ TorqueClientRole

+ TorqueServerRole

© Bright Computing, Inc.



438 Bright Cluster Manager Python API

Devices
Device (*)

+ Chassis

+ GpuUnit

+ GenericDevice

+ PowerDistributionUnit

+ Switch (*)

+ EthernetSwitch

+ IBSwitch

+ MyrinetSwitch

Node (*)

+ MasterNode

+ SlaveNode (*)

+ PhysicalNode

+ VirtualSMPNode

Network Interfaces
NetworkInterface (*)

+ NetworkAliasInterface

+ NetworkBondInterface

+ NetworkIpmiInterface

+ NetworkPhysicalInterface

+ NetworkVLANInterface

Information Objects
ClusterSetup

GuiClusterOverview

GuiGpuUnitOverview

GuiNodeOverview

GuiNodeStatus

LicenseInfo

SysInfoCollector

VersionInfo

Monitoring Configuration Objects
MonConf

ConsolidatorConf

MonHealthConf

HealthCheck

MonMetricConf

ThreshActionConf

ThreshAction

Threshold

LDAP Objects
User

Group

Category Objects
Category

FSExport

FSMount

Miscellaneous Objects
SoftwareImage

© Bright Computing, Inc.



K.3 Methods And Properties 439

KernelModule

Network

NodeGroup

Partition

Rack

K.3.5 Useful Methods
For The Cluster Object:

Name Description

find(<name>) Find the object with a given name, <name>

find(<name>, <type>) Because it is possible to give a category and
node the same name, sometimes the type
<type> of the object needs to be specified too

getAll(<type>) Get a list of all objects of a given type: e.g.
device, category

activeMaster() Get the active master object

passiveMaster() Get the active master object

overview() Get all the data shown in the cmgui cluster
overview

add(<object>) Add a newly created object <object> to the
cluster. Only after an object is added can it
be used

pexec(<nodes>, <command>) Execute a command <command> on one or
more nodes

For Any Object:

Name Description

commit() Save changes to the cluster

refresh() Undo all changes and restore the object to its
last saved state

remove() Remove an object from the cluster

clone() Make an identical copy. The newly created
object is not added to a cluster yet

© Bright Computing, Inc.



440 Bright Cluster Manager Python API

For Any Device:

Name Description

close() Close a device

open() Open a device

powerOn() Power on a device

powerOff() Power off a device

powerReset() Power reset a device

latestMonitoringData() Return a list of the most recent monitoring
data

For Any Node:

Name Description

overview() Get the data displayed in the cmgui node
overview tab

sysinfo() Get the data displayed in the cmgui node sys-
tem information tab

pexec(<command>) Execute a command

K.3.6 Useful Example Program
In the directory /cm/local/examples/cmd/python are some example pro-
grams using the python API.

One of these is printall.py. It displays values for objects in an easily
viewed way. With all as the argument, it displays resource objects de-
fined in a list in the program. The objects are ’Partition’, ’MasterNode’,
’SlaveNode’, ’Category’, ’SoftwareImage’, ’Network’, ’NodeGroup’. The
output is displayed something like (some output elided):

Example

[root@bright60 ~]# cd /cm/local/examples/cmd/python

[root@bright60 python]# ./printall all

Partition base

+- revision ......................

| name .......................... base

| clusterName ................... Bright 6.0b Cluster

...

| burnConfigs

| +- revision ..................

| | name ...................... default

| | description ............... Standard burn test.

| | configuration ............. < 2780 bytes >

| +- revision ..................

| | name ...................... long-hpl

...

| provisioningInterface ......... None

| fsmounts ...................... < none >

| fsexports

| +- revision ..................

| | name ...................... /cm/shared@internalnet

© Bright Computing, Inc.



K.3 Methods And Properties 441

| | path ...................... /cm/shared

| | hosts ..................... !17179869185!

...

Category default

+- revision ......................

| name .......................... default

| softwareImage ................. default-image

| defaultGateway ................ 10.141.255.253

| nameServers ................... < none >

...

The values of a particular resource-level object, such as nodegroup,
can be viewed by specifying it as the argument:

Example

[root@bright60 python]# ./printall.py nodegroup

nodegroup us-east-1-director-dependents

+- revision ......................

| name .......................... us-east-1-director-dependents

| nodes ......................... < none >

| type .......................... CLOUDDIRECTOR

| firstSeenTime ................. 0

| lastSeenTime .................. 0

nodegroup us-east-1-director-dependents-2

+- revision ......................

| name .......................... us-east-1-director-dependents-2

| nodes ......................... < none >

| type .......................... CLOUDDIRECTOR

| firstSeenTime ................. 1327593444

| lastSeenTime .................. 1327593444

[root@bright60 python]#

© Bright Computing, Inc.





L
Workload Manager

Configuration Files Updated By
CMDaemon

This appendix lists workload manager configuration files changed by
CMDaemon, events causing such change, and the file or property changed.

L.1 Slurm
File/Property Updates What? Updated During

/etc/slurm.conf head node Add/Remove/Update
nodes, hostname
change

/etc/slurmdbd.conf head node Add/Remove/Update
nodes, hostname
change

L.2 Grid Engine

File/Property Updates What? Updated During

$ROOT/default/common/

host_aliases

head node hostname/domain
change, failover

$ROOT/default/common/

act_qmaster

head node hostname/domain
change, failover

queue hostlist head node Add/Remove/Update
nodes

queue slots head node Add/Remove/Update
nodes

queue ngpus head node Add/Remove/Update
nodes

© Bright Computing, Inc.



444 Workload Manager Configuration Files Updated By CMDaemon

L.3 Torque

File/Property Updates What? Updated During

$ROOT/spool/server_name head node hostname/domain
change, failover

$ROOT/spool/torque.cfg head node hostname/domain
change, failover

$ROOT/server_priv/

acl_svr/acl_hosts

head node hostname/domain
change, failover

$ROOT/spool/server_priv/

acl_svr/operators

head node hostname change,
failover

$ROOT/spool/server_priv/

nodes

head node Add/Remove/Update
nodes

$ROOT/mom_priv/config software image hostname change,
failover

L.4 PBS Pro
File/Property Updates What? Updated During

/etc/pbs.conf head node, soft-
ware image

hostname/domain
change, failover

$ROOT/server_priv/

acl_svr/operators

head node hostname change,
failover

$ROOT/spool/server_priv/

nodes

head node Add/Remove/Update
nodes

queue acl_hosts head node Add/Remove/Update
nodes

© Bright Computing, Inc.



M
Linux Distributions That

Require Registration
This appendix describes setting up registered access for the Bright Cluster
Manager nodes with the Red Hat and SUSE distributions.

The head and regular nodes need registered access to the enterprise
Linux distributions of Red Hat and SUSE so that updates from their repos-
itories can take place on the cluster correctly. This allows the distributions
to continue to provide support and security updates.

Registered access is also needed in order to create an up-to-date cus-
tom software image (section 9.6) if using Red Hat or SUSE as the base
distribution.

M.1 Registering A Red Hat Enterprise Linux Based
Cluster

To register a Red Hat Enterprise Linux (RHEL) system, Red Hat subscrip-
tions are needed as described at https://www.redhat.com/. Registration
with the Red Hat Network is needed to install new RHEL packages or
receive RHEL package updates, as well as carry out some other tasks.

M.1.1 Registering A Head Node With RHEL
The rhn_register command can be used to register an RHEL head node.
If the head node has no direct connection to the internet, an HTTP proxy
can be configured as a command line option. The rhn_register man
pages give details on configuring the proxy from the command line.

The head node can be registered in text mode by running:

[root@bright52 ~]# rhn_register --nox

When the rhn_register command is run, the following screens are
gone through in a standard run:

• Connect to Red Hat Network

• Information

• Enter login information for Red Hat Network

• Register a System Profile—Hardware

© Bright Computing, Inc.

https://www.redhat.com/


446 Linux Distributions That Require Registration

• Register a System Profile—Packages

• Send Profile Information to Red Hat Network

• Review system subscription details

• Finish setup

Some of the screens may require inputs before going on to the next
screen.

The Red Hat Network base software channel subscription configura-
tion is displayed in the “Review system subscription details” screen.

The Red Hat Network software channels subscriptions configuration
can also be viewed outside of the rhn_register command by using the
rhn-channel command.

For RHEL5 it can be run as:

[root@bright52 ~]# rhn-channel -l

For RHEL6 it can be run as:

[root@bright52 �]# rhn-channel -L -u <Red Hat Network username> -p \
<Red Hat Network password>

For a head node based on RHEL5, the following Red Hat Network
software channels subscriptions need to be configured:

• rhel-x86_64-server-5

• rhel-x86_64-server-supplementary-5

For a head node based on RHEL6 these are:

• rhel-x86_64-server-6

• rhel-x86_64-server-optional-6

Typically, on an RHEL5-based head node, the
rhel-x86_64-server-supplementary-5 channel must still be added
to the configuration. To do this, the rhn-channel command can be used
as follows:

[root@bright52 �]# rhn-channel -a -c rhel-x86_64-server-supplementary-5 \
-u <Red Hat Network username> -p <Red Hat Network password>

Similarly, for an RHEL6-based head node configuration the
rhel-x86_64-server-optional-6 channel is added with:

[root@bright52 �]# rhn-channel -a -c rhel-x86_64-server-optional-6 -u \
<Red Hat Network username> -p <Red Hat Network password>

After registering the system with Red Hat Network the rhnsd daemon
is enabled, and it then becomes active after a reboot. The rhnsd daemon
synchronizes information regularly with the Red Hat Network.

The following commands are useful for handling rhnsd options at this
stage:

© Bright Computing, Inc.



M.1 Registering A Red Hat Enterprise Linux Based Cluster 447

Command Description

service rhnsd start make it active without a reboot

chkconfig rhnsd off stop it becoming active on boot

service rhnsd status see if it is currently running

After registration, the yum-rhn-plugin is enabled, so that yum can be
used to install and update from the Red Hat Network repositories.

M.1.2 Registering A Software Image With RHEL
The rhn_register command can be used to register an RHEL software
image. If the head node, on which the software image resides, has no
direct connection to the internet, then an HTTP proxy can be configured
as a command line option. The rhn_register man pages give details on
configuring the proxy from the command line.

The default software image, default-image, can be registered by run-
ning the following on the head node:

[root@bright52 ~]# chroot /cm/images/default-image rhn_register --nox

When the rhn_register command is run, the following screens are
gone through in a standard run:

• Connect to Red Hat Network

• Information

• Enter login information for Red Hat Network

• Register a System Profile—Hardware

• Register a System Profile—Packages

• Send Profile Information to Red Hat Network

• System subscription details

• Finish setup

Some of the screens may require inputs before going on to the next
screen.

The Red Hat Network base software channel subscription configura-
tion is displayed in the “Review system subscription details” screen.

The Red Hat Network software channels subscriptions configuration
can also be viewed outside of the rhn_register command by using the
rhn-channel command.

For RHEL5 it can be run from the head node as:

[root@bright52 ~]# chroot /cm/images/default-image rhn-channel -l

For RHEL6 it is:

[root@bright52 �]# chroot /cm/images/default-image rhn-channel -L -u \
<Red Hat Network username> -p <Red Hat Network password>

For an RHEL5-based software image, the following Red Hat Network
software channels subscriptions need to be configured:

© Bright Computing, Inc.



448 Linux Distributions That Require Registration

• rhel-x86_64-server-5

• rhel-x86_64-server-supplementary-5

For an RHEL6-based software image these are:

• rhel-x86_64-server-6

• rhel-x86_64-server-optional-6

Typically, for an RHEL5-based software image, the
rhel-x86_64-server-supplementary-5 channel must still be added
to the configuration. To do this, the rhn-channel command can be used
as follows on the head node:

[root@bright52 �]# chroot /cm/images/default-image rhn-channel -a -c \
rhel-x86_64-server-supplementary-5 -u <Red Hat Network username> -p \
<Red Hat Network password>

Similarly, for an RHEL6-based software image configuration the
rhel-x86_64-server-optional-6 channel must be added. This can be
done with:

[root@bright52 �]# chroot /cm/images/default-image rhn-channel -a -c \
rhel-x86_64-server-optional-6 -u <Red Hat Network username> -p \
<Red Hat Network password>

After registering the software image with the Red Hat Network, the
rhnsd daemon is enabled, and it then becomes active when a node boots.
The rhnsd daemon synchronizes information regularly with the Red Hat
Network.

The rhnsd daemon can be turned off in the default default-image
software image with:

[root@bright52 ~]# chroot /cm/images/default-image chkconfig rhnsd off

After registering, the yum-rhn-plugin is enabled within the software
image, so yum can be used for the software image to install and update
from the Red Hat Network repositories.

M.2 Registering A SUSE Linux Enterprise Server
Based Cluster

To register a SUSE Linux Enterprise Server system, SUSE Linux Enter-
prise Server subscriptions are needed as described at http://www.suse.
com/. Registration with Novell is needed to install new SLES packages or
receive SLES package updates, as well as to carry out some other tasks.

M.2.1 Registering A Head Node With SUSE
The suse_register command can be used to register a SUSE head
node. If the head node has no direct connection to the internet, then the
HTTP_PROXY and HTTPS_PROXY environment variables can be set, to access
the internet via a proxy. Running the command with the help option, as
“suse_register --help”, provides further information about the com-
mand and its options.

© Bright Computing, Inc.

http://www.suse.com/
http://www.suse.com/


M.2 Registering A SUSE Linux Enterprise Server Based Cluster 449

The head node can be registered as follows:

[root@bright52 �]# suse_register -a email=<e-mail address> -a regcode-\
sles=<activation code> --restore-repos

The e-mail address used is the address that was used to register the
subscription with Novell. When logged in on the Novell site, the activa-
tion code or registration code can be found at the products overview page
after selecting “SUSE Linux Enterprise Server”.

After registering, the SLES and SLE SDK repositories are added to the
repository list and enabled.

The repository list can be viewed with:

[root@bright52 ~]# zypper lr

and the head node can be updated with:

[root@bright52 ~]# zypper refresh

[root@bright52 ~]# zypper update

M.2.2 Registering A Software Image With SUSE
The suse_register command can be used to register a SUSE software
image. If the head node on which the software image resides has no
direct connection to the internet, then the HTTP_PROXY and HTTPS_PROXY

environment variables can be set to access the internet via a proxy. Run-
ning the command with the help option, as “suse_register --help”,
provides further information about the command and its options.

The default software image default-image can be registered by run-
ning the following on the head node:

[root@bright52 �]# chroot /cm/images/default-image suse_register -n -a \
email=<e-mail address> -a regcode-sles=<activation code> --restore-repos

The e-mail address is the address used to register the subscription
with Novell. When logged in on the Novell site, the activation code or
registration code can be found at the products overview page after select-
ing “SUSE Linux Enterprise Server”.

When running the suse_register command, warnings about the
/sys or /proc filesystems can be ignored. The command tries to query
hardware information via these filesystems, but these are empty filesys-
tems in a software image, and only fill up on the node itself after the
image is provisioned to the node.

Instead of registering the software image, the SLES repositories can be
enabled for the default-image software image with:

[root@bright52 ~]# cp /etc/zypp/repos.d/*novell* /cm/images/default-ima\

ge/etc/zypp/repos.d/

[root@bright52 ~]# cp /etc/zypp/credentials.d/NCCcredentials /cm/images\

/default-image/etc/zypp/credentials.d/

The repository list of the default-image software image can be viewed
with the chroot option, -R, as follows:

[root@bright52 ~]# zypper -R /cm/images/default-image lr

© Bright Computing, Inc.



450 Linux Distributions That Require Registration

and the software image can be updated with:

[root@bright52 ~]# export PBL_SKIP_BOOT_TEST=1

[root@bright52 ~]# zypper -R /cm/images/default-image refresh

[root@bright52 ~]# zypper -R /cm/images/default-image update

[root@bright52 ~]# zypper -R /cm/images/default-image clean --all

© Bright Computing, Inc.



N
Burning Nodes

The burn framework is a component of Bright Cluster Manager 5.2 that can
automatically run test scripts on specified nodes within a cluster. The
framework is designed to stress test newly built machines and to detect
components that may fail under load.

N.1 Test Scripts Deployment
The framework requires power management to be running so that the
node can be power cycled by the scripts used. In modern clusters power
management is typically achieved by enabling a baseboard managment
controller such as IPMI or iLO. Details on power management are given
in chapter 5.

The framework can run any executable script. The default test
scripts are mostly bash shell scripts and Perl scripts. Each test script
has a directory in /cm/shared/apps/cmburn containing the script. The
directory and test script must have the same name. For example:
/cm/shared/apps/cmburn/disktest/disktest is the default script used
for testing a disk. More on the contents of a test script is given in sec-
tion N.3.3.

N.2 Burn Configurations
A burn configuration file specifies the order of the tests that are run. Within
the burn configuration the tests are normally grouped into sequences, and
several sequences typically make up a phase. Phases in turn are grouped
in either a pre-install section or post install section. A simple example of
such a burn configuration could therefore look like:

Example

<?xml version="1.0"?>

<burnconfig>

<mail>

<address>root@master</address>

<address>some@other.address</address>

</mail>

<pre-install>

© Bright Computing, Inc.

/cm/shared/apps/cmburn


452 Burning Nodes

<phase name="01-hwinfo">

<test name="hwinfo"/>

<test name="hwdiff"/>

<test name="sleep" args="10"/>

</phase>

<phase name="02-disks">

<test name="disktest" args="30"/>

<test name="mce_check" endless="1"/>

</phase>

</pre-install>

<post-install>

<phase name="03-hpl">

<test name="hpl"/>

<test name="mce_check" endless="1"/>

</phase>

<phase name="04-compile">

<test name="compile" args="6"/>

<test name="mce_check" endless="1"/>

</phase>

</post-install>

</burnconfig>

N.2.1 Mail Tag
The mail tag is an optional tag to add a sequence of e-mail addresses.
These addresses receive burn failure and warning messages, as well as a
notice when the burn run has completed.

N.2.2 Pre-install And Post-install
The pre-install part of a burn configuration is run from inside a node-
installer environment. This environment is a limited Linux environment
and allows some simpler tests to run before loading up the full Linux
node environment.

The post-install part of a burn configuration is run from inside the full
Linux node environment. This environment allows more complex tests
to run.

N.2.3 Phases
The phases sections must exist. If there is no content for the phases, the
phases tags must still be in place (“must exist”). Each phase must have
a unique name and must be written in the burn configuration file in al-
phanumerical order. By default, numbers are used as prefixes. The phases
are executed in sequence.

© Bright Computing, Inc.



N.3 Running A Burn Configuration 453

N.2.4 Tests
Each phase consists of one or more test tags. The tests can optionally be
passed arguments using the args property of the burn configuration file
(section N.2). If multiple arguments are required, they should be a space
separated list, with the (single) list being the args property.

Tests in the same phase are run simultaneously.
Most tests test something and then end. For example, the disk test

tests the performance of all drives and then quits.
Tests which are designed to end automatically are known as non-endless

tests.
Tests designed to monitor continuously are known as endless tests.

Endless tests are not really endless. They end once all the non-endless
tests in the same phase are ended, thus bringing an end to the phase.
Endless tests typically test for errors caused by the load induced by the
non-endless tests. For example the mce_check test continuously keeps an
eye out for Machine Check Exceptions while the non-endless tests in the
same phase are run.

N.3 Running A Burn Configuration
Burn configurations can be viewed and executed from cmsh or cmgui.

N.3.1 Burn Configuration And Execution In cmgui

From within cmgui the configuration can be selected for a particular node
by selecting a node from the Nodes resource, then selecting the Burn tab.
Clicking on the “Start New Burn” button opens up the burn configura-
tion file selection dialog (figure N.1).

Figure N.1: cmgui: Starting A New Burn

Clicking on the OK button then means the burn setting is turned on,
as well as sending a power reset signal to the node via the Baseboard
Management Controller or the APC. The burn setting being on means the
node starts up in burn mode when starting up from now on (section 6.5.1).

© Bright Computing, Inc.



454 Burning Nodes

The “Cancel burn” button can be used to turn the burn setting off from
cmgui, and then also sends a power reset signal.

The burn status of a node can be monitored for each individual node
(figure N.2).

Figure N.2: cmgui: Status Of A Burn Run—Node View

An overview of the burn status of nodes in a particular category can
also be viewed for all nodes in the category (figure N.3). The category
view is accessible when selecting the Nodes resource folder, and then
selecting the “Burn Overview” tab. It can also be accessed by selecting
the category item associated with the node from “Node Categories” re-
source, and then selecting the “Burn Overview” tab.

Figure N.3: cmgui: Status Of A Burn Run—Category View

N.3.2 Burn Configuration And Execution In cmsh

Burn configuration and execution can be carried out using cmgui (sec-
tion N.3.1), or using cmsh. Using cmsh has some extra features, including
the ability to create or modify a new burn configuration file, and also the
ability to have the burn execution wait for a separate manual power reset.

© Bright Computing, Inc.



N.3 Running A Burn Configuration 455

Burn Configuration File Settings
From cmsh, the burn configurations can be accessed from partitionmode
as follows:

Example

[bright52]% partition use base

[bright52->partition[base]]% burnconfigs

[bright52->partition[base]->burnconfigs]% list

Name (key) Description XML

------------- ------------------------ -------------

default Standard burn test. <2780 bytes>

long-hpl Run HPL test for a long+ <879 bytes>

The values of a particular burn configuration (default in the follow-
ing example) can be viewed as follows:

Example

[bright52->partition[base]->burnconfigs]% use default

[bright52->partition[base]->burnconfigs[default]]% show

Parameter Value

------------------------------ ----------------------------

Description Standard burn test.

Name default

Revision

XML <2780 bytes>

The set command can be used to modify existing values of the burn
configuration, that is: Description, Name and XML. XML is the burn config-
uration file itself, and the default text editor opens up when using the set
command on it, thus allowing the burn configuration to be modified.

A new burn configuration can also be added with the add command.
The new burn configuration can be created from scratch with the set

command. However, an XML file can also be imported to the new burn
configuration by specifying the full path of the XML file to be imported:

Example

[bright52->partition[base]->burnconfigs]% add boxburn

[bright52->partition[base]->burnconfigs*[boxburn*]]% set xml /tmp/im.xml

The burn configuration can also be edited when carrying out burn
execution with the burn command.

Executing A Burn
A burn as specified by the burn configuration file can be executed using
cmgui (section N.3.1), or using cmsh. Execution using cmsh has some ex-
tra features, including the ability to have the burn execution wait for a
separate manual power reset.

Burn-related properties: To execute a burn configuration file on a node
in cmsh, the node object is accessed from device mode in cmsh. Among
its properties, a node has

• Burn config: the selected burn configuration file

© Bright Computing, Inc.



456 Burning Nodes

• Burning: the burn setting of the node. When its value is “on”, and
if the node has been power reset, then the node PXE boots into an
image that runs burn tests according to the specifications of the burn
configuration file

These properties can be viewed in device mode with the show com-
mand:

Example

[bright52->device[node001]]% show | grep ^Burn

Burn config custom <2780 bytes>

Burning no

Burn commands: The burn commands can modify these properties, as
well as execute other burn-related operations.

The burn commands are executed within device mode, and are:

• burn start

• burn stop

• burn status

• burn log

The burn help text lists the detailed options (figure N.4). Next, oper-
ations with the burn commands illustrate how the options may be used
along with some features.

Burn command operations: Burn commands allow the following oper-
ations, and have the following features:

• The basic burn operations allow a burn to be started or stopped,
and the status of a burn to be viewed.

– The “burn start” command always needs a configuration file
name (here it is “default”), and also always needs to be given
the nodes it operates on. For example:

burn start -o default -n node001

– The “burn stop” command only needs to be given the nodes
it operates on, for example:

burn stop -n node001

– The “burn status” command may be given the nodes for which
the status is to be found, for example:

burn status -n node001

– The “burn status” command need not have any nodes speci-
fied for it, for example

burn status

© Bright Computing, Inc.



N.3 Running A Burn Configuration 457

[bright52->device]% burn

Name: burn - Node burn control

Usage: burn [OPTIONS] status

burn [OPTIONS] start

burn [OPTIONS] stop

burn [OPTIONS] log

Options: -n, --nodes node(list)

List of nodes, e.g. node001..node015,node20..node028,nod\

e030 or ^/some/file/containing/hostnames

-g, --group group(list)

Include all nodes that belong to the node group, e.g. te\

stnodes or test01,test03

-c, --category category(list)

Include all nodes that belong to the category, e.g. defa\

ult or default,gpu

-r, --rack rack(list)

Include all nodes that are located in the given rack, e.\

g rack01 or rack01..rack04

-h, --chassis chassis(list)

Include all nodes that are located in the given chassis,\

e.g chassis01 or chassis03..chassis05

-o, --config <name>

Burn with the specified burn configuration. See in parti\

tion burn configurations for a list of valid names

-l, --later

Do not reboot nodes now, wait until manual reboot

-e, --edit

Open editor for last minute changes

-p, --path

Show path to the burn log files. Of the form: /var/spool\

/burn/<mac>.

Examples: burn -o default start -n node001

Figure N.4: Usage information for burn

in which case the burn status is shown for all nodes.

• Advanced options allow burn commands can be executed over var-
ious node groupings, that is: node lists, a group, category, rack, and
chassis.

© Bright Computing, Inc.



458 Burning Nodes

• By default a “burn start” or “burn stop” command carries out a
power reset on the node or nodes, but this can be disabled

• The burn configuration file can not only be selected, but also be
edited for the “burn start” command. This is an alternative to
editing the burn configuration file in partition mode.

• Each node with a boot MAC address of <mac> has an associated
burn log file, by default under /var/spool/burn/<mac>.

Burn command output examples: The burn status command has a
compact one-line output per node:

Example

[bright52->device]% burn -n node001 status

node001 (00000000a000) - W(0) phase 02-disks 00:02:58 (D:H:M) FAILED, m\

ce_check (SP), disktest (SF,61), kmon (SP)

The fields in the preceding output example are:

Description Value Meaning Here

The node name node001

The node tag (00000000a000)

Warnings since start of burn (0)

The current phase name 02-disks Burn configuration phase

being run is 02-disks

Time since phase started 00:02:58 (D:H:M) 2 hours 58 minutes

State of current phase FAILED Failed in 02-disks

burn test for MCE mce_check (SP) Started and Passed

burn test for disks disktest (SF,61) Started and Failed

61 is the speed

and is custom information

burn test kernel log monitor kmon (SP) Started and Passed

The “burn log” command output looks like the following (some out-
put elided):

[bright52->device]% burn -n node001 log

Thu ... 2012: node001 - burn-control: burn framework initializing

Thu ... 2012: node001 - burn-control: e-mail will be sent to: root@master

Thu ... 2012: node001 - burn-control: finding next pre-install phase

Thu ... 2012: node001 - burn-control: starting phase 01-hwinfo

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/hwinfo

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/sleep

Thu ... 2012: node001 - sleep: sleeping for 10 seconds

Thu ... 2012 node001 - hwinfo: hardware information:

Thu ... 2012: node001 - hwinfo: CPU1: vendor_id = AuthenticAMD

...

Thu ... 2012: node001 - burn-control: test hwinfo has ended, test passed

Thu ... 2012: node001 - burn-control: test sleep has ended, test passed

Thu ... 2012: node001 - burn-control: all non-endless test are done, terminating endless tests

© Bright Computing, Inc.



N.3 Running A Burn Configuration 459

Thu ... 2012: node001 - burn-control: phase 01-hwinfo passed

Thu ... 2012: node001 - burn-control: finding next pre-install phase

Thu ... 2012: node001 - burn-control: starting phase 02-disks

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/disktest

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/mce_check

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/kmon

Thu ... 2012: node001 - disktest: starting, threshold = 30 MB/s

Thu ... 2012: node001 - mce_check: checking for MCE's every minute

Thu ... 2012: node001 - kmon: kernel log monitor started

Thu ... 2012: node001 - disktest: detected 1 drives: sda

...

Thu ... 2012: node001 - disktest: drive sda wrote 81920 MB in 1278.13

Thu ... 2012: node001 - disktest: speed for drive sda was 64 MB/s -> disk passed

Thu ... 2012: node001 - burn-control: test disktest has ended, test FAILED

Thu ... 2012: node001 - burn-control: all non-endless test are done, terminating endless tests

Thu ... 2012: node001 - burn-control: asking test /cm/shared/apps/cmburn/kmon/kmon to terminate

Thu ... 2012: node001 - kmon: kernel log monitor terminated

Thu ... 2012: node001 - burn-control: test kmon has ended, test passed

Thu ... 2012: node001 - burn-control: asking test /cm/shared/apps/cmburn/mce_check/mce_check to terminate

Thu ... 2012: node001 - mce_check: terminating

Thu ... 2012: node001 - mce_check: waiting for mce_check to stop

Thu ... 2012: node001 - mce_check: no MCE's found

Thu ... 2012: node001 - mce_check: terminated

Thu ... 2012: node001 - burn-control: test mce_check has ended, test passed

Thu ... 2012: node001 - burn-control: phase 02-disks FAILED

Thu ... 2012: node001 - burn-control: burn will terminate

N.3.3 Writing A Test Script
This section describes a sample test script for use within the burn frame-
work. The script is typically a shell or Perl script. The sample that follows
is a Bash script, while the hpl script is an example in Perl.

Section N.1 describes how to deploy the script.

Non-endless Tests
The following example test script is not a working test script, but can be
used as a template for a non-endless test:

Example

#!/bin/bash

# We need to know our own test name, amongst other things for logging.

me=`basename $0`

# This first argument passed to a test script by the burn framework is a path

# to a spool directory. The directory is created by the framework. Inside the

# spool directory a sub-directory with the same name as the test is also created.

# This directory ($spooldir/$me) should be used for any output files etc. Note

# that the script should possibly remove any previous output files before starting.

spooldir=$1

# In case of success, the script should touch $passedfile before exiting.

passedfile=$spooldir/$me.passed

# In case of failure, the script should touch $failedfile before exiting.

© Bright Computing, Inc.



460 Burning Nodes

# Note that the framework will create this file if a script exits without

# creating $passedfile. The file should contain a summary of the failure.

failedfile=$spooldir/$me.failed

# In case a test detects trouble but does not want the entire burn to be halted

# $warningfile _and_ $passedfile should be created. Any warnings should be written to this file.

warningfile=$spooldir/$me.warning

# Some short status info can be written to this file. For instance, the stresscpu

# test outputs something like 13/60 to this file to indicate time remaining.

# Keep the content on one line and as short as possible!

statusfile=$spooldir/$me.status

# A test script can be passed arguments from the burn configuration. It is

# recommended to supply default values and test if any values have been overriden

# from the config file. Set some defaults:

option1=40

option2=some_other_value

# Test if option1 and/or option2 was specified (note that $1 was to spooldir parameter):

if [ ! x$2 = "x" ]; then

option1=$2

fi

if [ ! x$3 = "x" ]; then

option2=$3

fi

# Some scripts may require some cleanup. For instance a test might fail and be

# restarted after hardware fixes.

rm -f $spooldir/$me/*.out &>/dev/null

# Send a message to the burn log file, syslog and the screen.

# Always prefix with $me!

blog "$me: starting, option1 = $option1 option2 = $option2"

# Run your test here:

run-my-test

if [ its_all_good ]; then

blog "$me: wOOt, it's all good! my-test passed."

touch $passedfile

exit 0

elif [ was_a_problem ]; then

blog "$me: WARNING, it did not make sense to run this test. You don't have special device X."

echo "some warning" >> $warningfile # note the append!

touch $passedfile

exit 0

else

blog "$me: Aiii, we're all gonna die! my-test FAILED!"

echo "Failure message." > $failedfile

exit 0

fi

Endless Tests
The following example test script is not a working test, but can be used
as a template for an endless test.

© Bright Computing, Inc.



N.3 Running A Burn Configuration 461

Example

#!/bin/bash

# We need to know our own test name, amongst other things for logging.

me=`basename $0`

# This first argument passed to a test script by the burn framework is a path

# to a spool directory. The directory is created by the framework. Inside the

# spool directory a sub-directory with the same name as the test is also created.

# This directory ($spooldir/$me) should be used for any output files etc. Note

# that the script should possibly remove any previous output files before starting.

spooldir=$1

# In case of success, the script should touch $passedfile before exiting.

passedfile=$spooldir/$me.passed

# In case of failure, the script should touch $failedfile before exiting.

# Note that the framework will create this file if a script exits without

# creating $passedfile. The file should contain a summary of the failure.

failedfile=$spooldir/$me.failed

# In case a test detects trouble but does not want the entire burn to be halted

# $warningfile _and_ $passedfile should be created. Any warnings should be written to this file.

warningfile=$spooldir/$me.warning

# Some short status info can be written to this file. For instance, the stresscpu

# test outputs something like 13/60 to this file to indicate time remaining.

# Keep the content on one line and as short as possible!

statusfile=$spooldir/$me.status

# Since this in an endless test the framework needs a way of stopping it once

# all non-endless test in the same phase are done. It does this by calling

# the script once more and passing a "-terminate" argument.

if [ "$2" == "-terminate" ]; then

blog "$me: terminating"

# remove the lock file the main loop is checking for

rm $spooldir/$me/running

blog "$me: waiting for $me to stop"

# wait for the main loop to die

while [ -d /proc/`cat $spooldir/$me/pid` ]

do

sleep 1

done

blog "$me: terminated"

else

blog "$me: starting test, checking every minute"

# Some scripts may require some cleanup. For instance a test might fail and be

# restarted after hardware fixes.

rm -f $spooldir/$me/*.out &>/dev/null

# create internal lock file, the script will remove this if it is requested to end

© Bright Computing, Inc.



462 Burning Nodes

touch $spooldir/$me/running

# save our process id

echo $$ > "$spooldir/$me/pid"

while [ -e "$spooldir/$me/running" ]

do

run-some-check

if [ was_a_problem ]; then

blog "$me: WARNING, something unexpected happened."

echo "some warning" >> $warningfile # note the append!

elif [ failure ]; then

blog "$me: Aiii, we're all gonna die! my-test FAILED!"

echo "Failure message." > $failedfile

fi

sleep 60

done

# This part is only reached when the test is terminating.

if [ ! -e "$failedfile" ]; then

blog "$me: no problem detected"

touch $passedfile

else

blog "$me: test ended with a failure"

fi

fi

© Bright Computing, Inc.


	Table of Contents
	Quickstart
	About This Manual
	Getting Administrator-Level Support
	Introduction
	What Is Bright Cluster Manager?
	Cluster Structure
	Bright Cluster Manager Administrator And User Environment
	Organization Of This Manual

	Installing Bright Cluster Manager
	Minimal Hardware Requirements
	Supported Hardware
	Head Node Installation

	Cluster Management With Bright Cluster Manager
	Concepts
	Modules Environment
	Authentication
	Cluster Management GUI
	Cluster Management Shell
	Cluster Management Daemon

	Configuring The Cluster
	Installing A License
	Network Settings
	Configuring InfiniBand Interfaces
	Configuring IPMI Interfaces
	Configuring Switches And PDUs
	Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration
	Configuring NFS Volume Exports And Mounts
	Managing And Configuring Services
	Managing And Configuring A Rack

	Power Management
	Configuring Power Parameters
	Power Operations
	Monitoring Power

	Node Provisioning 
	Before The Kernel Loads
	Provisioning Nodes
	The Kernel Image, Ramdisk And Kernel Modules
	Node-Installer
	Node States
	Updating Running Nodes
	Adding New Nodes
	Troubleshooting The Node Boot Process

	User Management
	Managing Users And Groups With cmgui
	Managing Users And Groups With cmsh
	Using An External LDAP Server
	Using Kerberos Authentication
	Tokens And Profiles

	Workload Management
	Workload Managers Choices
	Forcing Jobs To Run In A Workload Management System
	Installation Of Workload Managers
	Enabling, Disabling, And Monitoring Workload Managers
	Configuring And Running Individual Workload Managers
	Using cmgui With Workload Management
	Using cmsh With Workload Management
	Examples Of Workload Management Assignment
	Power Saving Features

	Post-Installation Software Management
	Bright Cluster Manager RPM Packages And Their Naming Convention
	Managing Packages On The Head Node
	Kernel Management On A Head Node Or Image
	Managing An RPM Package In A Software Image And Running It On Nodes
	Managing Non-RPM Software In A Software Image And Running It On Nodes
	Creating A Custom Software Image
	Making All Nodes Function Differently From Normal Cluster Behavior With FrozenFile
	Making Some Nodes Function Differently By Image
	Making Some Nodes Function Differently By Configuration Adjustment

	Cluster Monitoring
	A Basic Example Of How Monitoring Works
	Monitoring Concepts And Definitions
	Monitoring Visualization With cmgui
	Monitoring Configuration With cmgui
	Overview Of Monitoring Data For Devices
	Event Viewer
	The monitoring Modes Of cmsh
	Obtaining Monitoring Data Values
	The User Portal

	Day-to-day Administration
	Parallel Shell
	Getting Support With Cluster Manager Issues
	Backups
	BIOS Configuration And Updates
	Hardware Match Check

	Third Party Software
	Modules Environment
	Shorewall
	Compilers
	Intel Cluster Checker
	CUDA For GPUs
	OFED Software Stack
	Lustre
	ScaleMP

	High Availability
	HA Concepts
	HA Setup Procedure Using cmha-setup
	Managing HA

	Generated Files
	Files Generated Automatically On Head Nodes
	Files Generated Automatically In Software Images
	Files Generated Automatically On Regular Nodes

	Bright Computing Public Key
	CMDaemon Configuration File Directives
	Disk Partitioning
	Structure Of Partitioning Definition
	Example: Default Node Partitioning
	Example: Software RAID
	Example: Software RAID With Swap
	Example: Logical Volume Manager
	Example: Diskless
	Example: Semi-diskless
	Example: Preventing Accidental Data Loss
	Example: Using Custom Assertions

	Example initialize And finalize Scripts
	When Are They Used?
	Accessing From cmgui And cmsh
	Analogous Scripts That Run During imageupdate
	Environment Variables Available To initialize And finalize Scripts
	Using Environment Variables Stored In Multiple Variables
	Storing A Configuration To A Filesystem

	Quickstart Installation Guide
	Installing Head Node
	First Boot
	Booting Nodes
	Running Cluster Management GUI

	Workload Managers Quick Reference
	SLURM
	Sun Grid Engine
	Torque
	PBS Pro

	Metrics, Health Checks, And Actions
	Metrics And Their Parameters
	Health Checks And Their Parameters
	Actions And Their Parameters

	Metric Collections
	Metric Collections Added Using cmsh
	Metric Collections Initialization
	Metric Collections Output During Regular Use
	Error Handling
	Environment Variables
	Metric Collections Examples
	iDataPlex And Similar Units

	Changing The Network Parameters Of The Head Node
	Introduction
	Method
	Terminology

	Bright Cluster Manager Python API
	Installation
	Examples
	Methods And Properties

	Workload Manager Configuration Files Updated By CMDaemon
	Slurm
	Grid Engine
	Torque
	PBS Pro

	Linux Distributions That Require Registration
	Registering A Red Hat Enterprise Linux Based Cluster
	Registering A SUSE Linux Enterprise Server Based Cluster

	Burning Nodes
	Test Scripts Deployment
	Burn Configurations
	Running A Burn Configuration


