=

NVIDIA.

NVIDIA Base Command Manager 11

Upgrade Manual
Revision: ec0df2bc3

Date: Mon Nov 24 2025

Table Of Contents

Table Of Contents e 3
1 Introduction 7
1.1 Supported BCM Versions And Linux Distributions 7
1.1.1 Upgrades From The Following BCM Versions Are Supported: 7
1.1.2 The Following Linux Distributions Are Supported: 7
1.1.3 An Overview Of Software Upgrades In Relation To A Cluster 7
1.2 Parallel VsIn-place Upgrades 8
2 Parallel Upgrades 11
2.1 Introduction e 11
2.2 Existing Cluster HealthCheck 11
2.3 Preparations For The Parallel Upgrade Setup 11
2.4 Important: Considerations For The Parallel Upgrade Setup 14
2.4.1 Configuration Changes And Services On The Production Cluster Desynchro-
NIZed . . . 14
2.4.2 Local Data On The Head Node Desynchronized 14
2.4.3 Dangling, Temporary, And Relocated Mounted Network File Systems 14
2.4.4 Cluster Extension Upgrade Not Supported 15
2.4.5 Edge Setup Upgrade Not Supported 15
2.4.6 Prerequisites 15
2.5 Important: Upgrading Particular Applications 16
2.5.1 Overview Of The Applications That cm-upgrade Does And Does Not Manage 16
2.5.2 UpgradingBase View e 17
2.5.3 Upgrading Workload Managers (WLM) 17
254 Upgrading The Kubernetes Package 22
2.5.5 Upgrading The JupyterHub Database 23
2.5.6 Upgrading The Docker Registry And Harbor Packages. 23
2.6 Important: Package Upgrade Dependencylssues 23
2.7 KNOWN ISSUBS e e e 24
2.7.1 Kubernetes PVC Access Issue With The Shared Directory For Multidistro
(MUItIOS) . . . 24
2.7.2 Miscellaneous Knownlssues 28
2.8 UpgradingUsing ABCM DVD/ISO e 30
29 EnableUpgrade 30
2.9.1 Enable The Upgrade Repo, And Install The Upgrade Package 30
2.9.2 Load The EnvironmentModule 31

2. 10 Perform Upgrade 31

4 TABLE OF CONTENTS
2.10.1 ApplyUpdatesToHead Node 31
2.10.2 Apply Updates To Softwarelmages 31
2.10.3 Apply Updates To The node-installerimage. 31
2.10.4 Upgrade Head Nodes ToBCM 11 32
2.10.5 RebootHead Node(s) 32
2.10.6 Post-upgrade Head Node Actions 32
2.10.7 Upgrade The Software Image(s) ToBCM 11 32
2.10.8 Upgrade /cm/node-installer TOoBCM 11 33
2.10.9 Post-upgrade Software Images Actions. 33
2.10.10 NVIDIA Driver Installation 33
2.10.11 (HA) Allow For The Provisioning Requests To The Secondary Head Node To

Complete. 35
2.10.12 Enable Mixed OS Setup And Create ADGXOS7Image 35
2.10.13 Upgrading CMDaemonLite 37
2.10.14 The Cluster IsNow Upgraded ToBCM 11 37
3 In-place Upgrades 39
3.1 Introduction 39
3.2 Existing Cluster HealthCheck 39
3.3 Important: Upgrading Particular Applications 39
3.3.1 Overview Of The Applications That cm-upgrade Does And Does Not Manage 39
33.2 Upgrading Base View e 40
3.3.3 Upgrading Workload Managers (WLM) 41
3.3.4 Upgrading The KubernetesPackage 45
3.3.5 Upgrading The JupyterHub Database 46
3.3.6 Upgrading The Docker Registry And Harbor Packages 46
3.4 Important: Package Upgrade Dependencylssues 46
3.5 KnownIssues. 47
3.5.1 Kubernetes PVC Access Issue With The Shared Directory For Multidistro
(MUItIOS) . . . e 47
3.5.2 Miscellaneous Knownlssues 51
3.6 UpgradingUsing ABCM DVD/ISO e 53
3.7 EnableUpgrade 53
3.7.1 Enable The Upgrade Repo, And Install The Upgrade Package 53
3.7.2 Load The Environment Module 54
3.8 PerformUpgrade e 54
3.8.1 Power Off Nodes e 54
3.82 ApplyUpdatesToHead Node 54
3.83 Apply Updates To Softwarelmages 54
3.8.4 Apply Updates To The node-installerlmage. 54
3.85 UpgradeHead NodesToBCM 11, 55
3.8.6 RebootHead Node(s) 55
3.87 Post-upgrade Head Node Actions 55
3.8.8 Upgrade The Software Image(s) ToBCM 11 55
3.89 Upgrade /cm/node-installer ToBCM 11 56
3.8.10 Post-upgrade Software Images Actions. 56

3.8.11 NVIDIA Driver Installation 57

39

3.8.12 (HA) Allow For The Provisioning Requests To The Secondary Head Node To

Complete. 58
3.8.13 Enable Mixed OS Setup And Create ADGXOS 7Ilmage 58
3.8.14 Upgrading CMDaemonlLite 60
3.8.15 The Cluster Is Now Upgraded ToBCM 11 60
In-place Upgrade Of An Edge Director Or AComputeNode 60
3.9.1 Important Note About Services Running On The In-place Upgraded Compute

Node/Edge Director 61

3.9.2 In-place Edge Director Upgrade Procedure 61

1 Introduction

This Upgrade Manual describes the procedure for upgrading a BCM (Base Command Manager) clus-
ter that is being managed by BCM version 10, to a cluster managed by BCM version 11.

A clean installation of BCM is recommended instead of an upgrade because it is simpler.

If an upgrade is to be carried out, then reasonable familiarity with Base Command Manager is
assumed. A good idea is to look up any unfamiliar concepts described in this manual in the other
BCM manuals.

The Upgrade Manual should be read carefully before the upgrade

The BCM Support team can be contacted using https://enterprise-support.nvidia.
com/s/create-case if there are BCM-related upgrade issues for which the documentation is in-
sufficient.

1.1 Supported BCM Versions And Linux Distributions

1.1.1 Upgrades From The Following BCM Versions Are Supported:
« BCM 10

1.1.2 The Following Linux Distributions Are Supported:
» RedHat Enterprise Linux 8 (update 8.10 and later)

RedHat Enterprise Linux 9 (update 9.5 and later)
« Rocky Linux 8 (update 8.10 and later)

« Rocky Linux 9 (update 9.5 and later)

SuSE Linux Enterprise Server 15 (SLES15 SP6)
Ubuntu 22.04

Ubuntu 24.04

1.1.3 An Overview Of Software Upgrades In Relation To A Cluster
These three softwares can be considered when upgrading the main softwares for a cluster.

« The underlying (distribution) OS on the head node.
« The BCM software that manages the regular (compute) nodes and is on the regular nodes

» The underlying (distribution) OS on the regular nodes. That OS is what is provided by the
software image.

https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case

8 Introduction

Upgrading The Underlying OS Is Not Supported

The underlying OS is the software that runs the head node. This can be any of the distributions
listed in section 2.1.1 of the Installation Manual. It is the distribution on which BCM runs. BCM in
turn provides software images that are provisioned to the other nodes. The software images run
on an underlying distribution OS that can be the same distribution as on the head node, but can
also be of another distribution. The architecture can be x86_64 or aarché64.

Upgrading the underlying OS, that is, upgrading from the existing major release of the OS upon
which BCM runs, to the next major release of the OS (for example, RHEL8 to RHEL9, or Ubuntu
22.04 to Ubuntu 24.04) while keeping BCM as it is, is not supported. If the underlying OS is to be
upgraded, then BCM must be reinstalled from scratch.

Upgrading BCM Is Supported

The discerning reader will have understood that upgrading the BCM cluster manager software from
version 10 to 11 is the subject of this upgrade manual. The upgrade to BCM is carried out for the
head node(s), and is carried out for the BCM used on the images that are used by the regular nodes.
The upgrade process requires planning, preparation, and commitment, because once the upgrade
is started—which is really when cm-upgrade is executed—rolling back is very hard. The parallel
upgrade procedure (section 1.2) is recommended for cluster administrators who would like to check
along each step of the way as they upgrade.

Upgrading The Software Images Is Supported
Creating software images for provisioning is described in section 9.6 of the Administrator Manual.

Upgrading the software images that are provisioned to other nodes is possible. This is however
independent of a BCM upgrade. This means that, for example, an Ubuntu 22.04 image can be
upgraded to an Ubuntu 24.04 image for a regular node while keeping the BCM 10 head node running
Ubuntu 22.04. Sometimes that is all that the cluster administrator or users require, instead of
upgrading BCM 10 to BCM 11.

An implication of the support for image OS upgrades independent of BCM upgrades is that a
new DGX OS 7 image (which is based on Ubuntu 24.04) can be upgraded from a DGX OS 6 image
(which requires Ubuntu 22.04 on the head node) in BCM 10 if the cluster has multiOS. However,
only the B200 hardware is supported by DGX OS 7 in BCM 10, and it requires Ubuntu 24.04 on the
head node. This means that DGX image upgrades from DGX OS 6 to DGX OS 7 for an Ubuntu 22.04
head node are not a supported image upgrade path in BCM 10.

Upgrading to BCM 11 and then setting up a new DGX 7 image within the new BCM 11 is rec-
ommended instead. DGX 7 images support more hardware, as listed in https://docs.nvidia.
com/dgx/dgx-os-7-user-guide/introduction.html#supported-nvidia-dgx-systems.

BCM 11 clusters do not support DGX 6 images. This means that if a BCM 10 cluster with DGX OS
6 images is upgraded to BCM 11, then new DGX OS 7 images must be created when upgrading, by
following the procedure in section 2.10.12 for a parallel upgrade, or in section 3.8.13 for an in-place
upgrade (the idea behind a parallel upgrade and in-place upgrade is described in section 1.2).

When upgrading the software image, it is important to note that any configuration changes
that were carried out on the old image need to have their equivalents or their analogous versions
carried out for the new image.

There are two kinds of upgrades possible.

1. A parallel upgrade: This is when a clone is made of the active head node. This means that

« For a cluster with one head node (a cluster with no HA failover configuration), the clone is
a new clone of the head node, and that there are now two head nodes in existence—one
active, and one clone

https://docs.nvidia.com/dgx/dgx-os-7-user-guide/introduction.html#supported-nvidia-dgx-systems
https://docs.nvidia.com/dgx/dgx-os-7-user-guide/introduction.html#supported-nvidia-dgx-systems

1.2 Parallel Vs In-place Upgrades 9

+ For a cluster with two head nodes (a cluster with an HA failover, with one head as one
active, and one head as the passive), the clone is a new clone of the active head node, and
that there are now 3 head nodes in existence—one active, one passive, and one clone.

The clone is taken away and isolated from the network of the original cluster. Any passive is
also taken to the new network and made the passive of the clone. The cloned system (that is:
head node, or active head node and passive head node) is then upgraded.

Meanwhile, the original head node keeps managing the cluster, so that there is not such a
severe pressure on getting the upgraded cluster up before a deadline. This means that if there
are unexpected issues that take time to resolve during upgrade, then the original cluster and
users remain unaffected.

After the required upgrade steps are completed for the isolated head node (or head node pair)
that is undergoing the upgrade, then the unupgraded head node that is managing the cluster
is replaced by the upgraded head node (or head node pair).

2. An in-place upgrade: This is when an upgrade is carried out using the existing head node
or head nodes in a production cluster. The regular nodes need to be powered off when the
upgrade is carried out, which means a significant downtime and can mean a severe pressure
on the cluster administrator to get the upgraded cluster up before a deadline.

Chapter 2 covers the steps and considerations for the upgrade procedure that are specific to
the parallel upgrade.

Chapter 3 covers the steps and considerations for the upgrade procedure that are specific to
the in-place upgrade.

2 Parallel Upgrades

In contrast with the in-place upgrade (Chapter 3), for a parallel upgrade the production cluster re-
mains operational while the upgrade takes place. This is possible with the [cm-clone-install and
functionality that allows the production (primary) head node to be cloned to a new
node. The new node is upgraded (in parallel) outside of the cluster, and when the upgrade is com-
pleted, the old production primary head node is replaced with the (newly) upgraded head node. This
last step to replace the head node will require a downtime.

Alternatively, the compute nodes can be gradually moved from the old production to the new
parallel-upgrade setup, while the two setups co-exist.

It is a good idea to check that the existing cluster is in a healthy state before carrying out the
upgrade.

The head nodes health checks in particular should be looked at. Unexpected health check fail-
ures should be examined, and if required, resolved. In some cases it is expected that health checks
will be in a failed state. For example, if all the compute nodes are DOWN, then the schedulers health
check fails.

The reason behind checking the health of the cluster before upgrading is that the health checks
can detect failing services, overfull filesystems, unmounted filesystems, networking issues, time
synchronization issues, and other issues. If these are unexpected then they can prevent the up-
grade from completing successfully.

The following steps need to be carried out for parallel upgrades. The steps marked with HA (High
Availability) need to be carried out only on clusters with (head node) HA:

« Have the BCM product key and the MAC address of the spare node (which is to be used for
cloning the primary active head node) ready, since they will need to be provided while cloning
the primary head node to the spare node.

» (HA) Have also the MAC address of the secondary head node ready.
» Have the new IPs for the cloned primary head node on the external network(s) ready.
« (HA) The primary head node must be made the active head, if it is not already.

» (HA) Login to the secondary passive head node and stop CMDaemon (systemctl stop cmd).
Note: make sure to stop CMDaemon on the passive secondary head node, and not on the
primary active head node.

12

Parallel Upgrades

(HA) On the same secondary passive head node, edit /etc/fstab and comment out the entry
for /cm/shared, so that on the next boot the secondary passive head node does not mount
/cm/shared from the file server.

(HA) Shut down the secondary passive head node. The node should remain shut down until
later when plugged in to the parallel setup.

Plug the spare node to the internal network of the production cluster and PXE boot it to the
BCM rescue environment (select RESCUE in the PXE boot menu, in the same way as perform-
ing a clone for an HA setup)

Log in to the rescue environment and run [cm-clone-install|, providing the product key and the
MAC address of this spare node. In the case of HA, the MAC address of the secondary head
node must also be provided. Thus, for the non-HA case:

/cm/cm-clone-install --clone --upgrade --productkey PRODUCT-KEY \
--primarymac PRIMARY-MAC

and for the HA case:

/cm/cm-clone-install --clone --upgrade --productkey PRODUCT-KEY \
--primarymac PRIMARY-MAC --secondarymac SECONDARY-MAC

and follow the instructions. At the end of the cloning process, confirm shutting down the
spare node.

In the preceding the values used for the primary and secondary MAC addresses are specified
as follows:

PRIMARY_MAC: the MAC address of the management interface of the primary head node (i.e
the one that is on the management network)

SECONDARY_MAC: the MAC address of the management interface of the secondary head node
(i.e the one that is on the management network)

Unplug the spare node from the production setup/networks and plug it in the parallel setup.

In the case of /cm/shared on a file server (i.e. usually on an HA setup), login to the file server
and make a copy of the /cm/shared to a new directory. Alternatively, the copy can be made to
a new file server. Have the directory name and the (possibly new) file server host name ready.

Boot the spare (a.k.a. cloned primary head) node as it is plugged in the parallel (isolated) setup.
The node will boot with all of its network interfaces remaining DOWN.

Login on console (ignoring possible messages about not-found modules in /cm/shared), and
run /root/cm/update-cloned-db.py, providing the new location of /cm/shared:

/root/cm/update-cloned-db.py --new-cm-shared NEW-CM-SHARED-DIRECTORY-NAME \
--nas-server NAS-SERVER

which will setup in CMDaemon to mount the copy of /cm/shared made in the preceding ses-
sion from NAS-SERVER:NEW-CM-SHARED-DIRECTORY-NAME

or, if /cm/shared is not on a NAS server (i.e. no copy of /cm/shared was made in the preceding
session), then just run:

2.3 Preparations For The Parallel Upgrade Setup 13

/root/cm/update-cloned-db.py

The script finds values for MAC addresses, interfaces, and so on that came as part of the
original primary head node, and converts those values to ones suitable for the clone.

« After [root/cm/update-cloned-db.py is completed, on the cloned primary head node still logged
in on the console, by using "cmsh -r localhost”, change the IPs of the primary head node (mas-
ter) on the external network(s).

« Inthe case of HA: change also the shared IP (alias) of the secondary head node on the external
network(s) to match the new shared IP(s) of the primary head node.

« If necessary, update also other settings such as power management settings or if desired
fsmounts, to reflect that in this parallel setup the primary head node is a different physical
machine, which is a clone of the original primary head node.

« Reboot, to allow for the settings to take effect. After the reboot, the (cloned) primary head
node in the parallel setup will have the network interfaces UP.

» Ensure that this primary head node in the parallel setup has correctly mounted the copied
/cm/shared from the file server, if a copy of /cm/shared was made in the preceding.

If /cm/shared is not correctly mounted, then verify the fsmount settings for the primary head
node, the secondary head node, as well as for the compute nodes (typically the compute nodes
fsmount settings are set in the compute nodes categories) are correct and the head node is
able to connect to the file server.

+ (HA) Plug in the secondary head node to the parallel setup and boot it. After the secondary
head node has booted, ensure it has mounted correctly the /cm/shared copy from the file
server.

« (HA) On both the (cloned) primary head node and the secondary head node, ensure the active
head node is the (cloned) primary head node, the failover is in a good state and the mysq|l
replication is working by running (on both head nodes):

cmha status

If any of the returned responses for failoverping, mysql, ping, or status do not report "OK”,
then ensure the network configuration and cabling allow the two head nodes in the parallel
setup to communicate, and that they are isolated from the production setup. If this does not
resolve the issue, then please contact support (https://enterprise-support.nvidia.
com/s/create-case) for further assistance.

« Disable/remove the Base Command Manager integrations, such as with Kubernetes or WLM
for some versions of BCM, as described in the important notes and other prerequisites in the
preceding.

The notes in sections 2.4-2.8 should now be considered, before continuing on with the upgrade
as described in sections 2.9- 2.10.

https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case

14 Parallel Upgrades

The parallel upgrade procedure involves creating a clone of the primary head node and isolating the
clone from the production cluster.

This means that after creating the clone of the primary head node, changes that are usually
saved on the head node or in /cm/shared due to activities such as

- any further configuration changes on the production cluster,
- further collected monitoring data,

- other changes in settings or data values, such as are caused by the running of jobs, or by new
WLM jobs’ state data,

are not mirrored or synced to the cloned parallel head node, and are not mirrored or synced to the
copy of the /cm/shared directory tree.

Similarly, services running on the original primary head node will also be started by the operating
system on the cloned head node, but they will not be able to communicate with the production
cluster nodes.

For example, if the cluster is running with Kubernetes integration, with only one control plane
running on the head node, then the control plane on the production head node will continue to
communicate with the worker nodes and maintain the Kubernetes cluster state. In the parallel
setup, the Kubernetes control plane on the cloned head node cannot communicate with any node
from the production cluster and will not be aware of the Kubernetes cluster state.

Therefore some special services running on the parallel-setup head node may not be able to
take over from the respective services running on the production head node when the old produc-
tion head node is to be shut down and the upgraded parallel-setup head node is to become the
production head node. In these special cases, the administrator needs to take the necessary steps
to migrate the services, or the administrator needs to perform an in-place upgrade.

When the users’ home directories (/home) or other data are not on a file server, then the administra-
tor will most commonly need to take the necessary steps to sync the latest changes in the users’
home, resp. other directories from the production setup to the parallel setup when the upgrade of
the parallel setup is complete.

If the users’ home directories are on a file server, then a manual sync of the data as pointed in the
preceding is unnecessary, however the administrator must be aware that except for /cm/shared as
noted below, the head node(s) in the parallel setup will retain their fsmount settings also during
the upgrade. This means that also during the upgrade the head nodes from the parallel setup will
attempt to mount the network file systems. If this behavior is not desired, the administrator can
configure the parallel-upgrade network and cabling in such a way so that the file server(s) are also
isolated from the parallel setup. Alternatively, the administrator can modify the fsmount settings
after the primary head node is cloned when it is booted for the first time as described below, so
that the head nodes in the parallel setup do not mount these network file systems.

On the other hand, if mounting the network file systems on the head nodes in the parallel setup
is required, for example so that users can log in and test the upgraded setup while the production
setup is still operational in parallel, then the network configuration/cabling should allow the head
node to access the file servers. When the file servers are on an external network, usually no addi-
tional steps will be required since the head nodes in the parallel setup will have full access to the
external networks.

2.4 Important: Considerations For The Parallel Upgrade Setup 15

If the file servers are on the internal network(s) however, because by default the cloned head
node retains the same internal network IPs, and because the parallel setup’s internal networks
should be isolated from the production setup, by default the parallel-setup’s head nodes can-
not access the file servers or any other device on the production-cluster’s internal network(s).
Additional measures such as setting up intermediate servers or re-configuring the network set-
tings will have to be taken to ensure the parallel-setup’s nodes can access the data on the file
servers when needed, or to make sure they have access to a copy of the data on different (possi-
bly temporary) file servers. Such configuration changes are beyond the scope of this document,
for further information please contact support (https://enterprise-support.nvidia.com/
s/create-case) for further assistance.

A special case is /cm/shared mounted from a file server. The clone and upgrade scripts will
detect that, and the administrator will be required to copy /cm/shared to a new location and provide
the (new) path and file server host name. The new location can be a new directory on the same file
server if the file server is on an external network. If the file server is on the internal network, the
simplest solution is to set up a new or temporary file server to host the required for the parallel
upgrade copy of /cm/shared.

Parallel upgrade of clusters extended to the cloud (Cluster Extension cloudbursting) is not sup-
ported. For these clusters only an in-place upgrade is possible, which involves the termination of
all cloud nodes when the cluster extension is removed as part of the upgrade procedure.

Parallel upgrade of clusters with an edge setup is not supported.

« The cluster must have a previously installed and active subscription license.

- Sites with hardware life licenses should contact support (https://
enterprise-support.nvidia.com/s/create-case) for further assistance.

- Before starting with the upgrade, the subscription license should first be unlocked
via the self-service customer portal at https://customer.brightcomputing.com/
Customer-Portal?p=unlock

« A spare node is required for cloning the original (a.k.a production) primary head node. The
spare node must have comparable to the current head node hardware, such as number of
network cards, number of disks and size, memory, etc. After the completion of the upgrade,
the spare node will become the new primary head node for the upgraded cluster.

 Inthe case of head node HA, the secondary head node will need to be taken out of the produc-
tion cluster so that it can also be upgraded. This means that for the time needed to perform
the parallel upgrade, until all compute nodes are migrated to the upgraded setup, the old
production cluster will run with only one head node.

« If /cm/shared will be unmounted during the upgrade then please make sure that the contents
of the local /cm/shared are in sync with the remote copy.

« Inthe case of /cm/shared on a file server (such as in the case of head node HA), the file server
must have enough space for creating a copy of the /cm/shared directory tree. Alternatively,
/cm/shared can be copied to a new file server.

» While performing the upgrade, the cloned primary and—in the case of HA—the secondary
head node(s) need to have isolated internal network(s) which do not clash with the internal

https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case)
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case)
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://customer.brightcomputing.com/Customer-Portal?p=unlock
https://customer.brightcomputing.com/Customer-Portal?p=unlock

16 Parallel Upgrades

network(s) of the production cluster. The IP(s) of the upgraded head node(s) on the internal
network(s) will remain the same. After the upgrade is completed, the old (not upgraded) pri-
mary head must be shut down and the upgraded head node(s) can be re-connected back in
the cluster. Alternatively, compute nodes can be disconnected from the old (not upgraded)
setup and then connected in the upgraded setup, which can also be performed gradually.

« Thereis no requirement to isolate the external network(s) for the head node(s) while perform-
ing the upgrade, which means the cloned head node can still have access to the Internet. How-
ever, the cloned primary head node will require a new set of IPs on the external network(s),
which are different from the current IP(s) of the primary head node on the external network(s).
It is also recommended to use static IPs, and not DHCP with dynamic DNS updates on the ex-
ternal network, because both the original production head node and its clone in the parallel
setup will have the same hostname as defined in CMDaemon. The secondary head node does
not require a new set of IPs because it is simply moved (and not cloned) from the production
to the parallel setup.

« When upgrading the parallel setup, the head nodes require access to the new BCM package
repositories. Alternatively, the BCM ISOs can be used as a source for the packages. Access to
the base distro package repositories, using for example, the via internet or local repositories,
is also required.

Updates using the old BCM package repositories should be carried out only to bring the cluster
up to date before running cm-upgrade.

« In the case of HA, the cloned primary and the secondary head nodes will require to be able to
connect to the file server for their copied /cm/shared directory tree. This means that if the
file server is on an internal network, then—because the internal networks must be isolated—a
new file server must be setup and made available on the isolated internal network.

Automatically Upgraded By cm-upgrade
The following software, if managed by BCM 10, is managed and upgraded automatically by cm-
upgrade to BCM 11:

« Docker

« The cm-docker-registry package (Harbor upgrades (section 2.5.6) are not supported)

Jupyter (the JupyterHub database requires some additional care (section 2.5.5).

» Base View: The regular version of Base View in BCM 10 is upgraded to a new version in BCM
11. Any monitoring dashboards from the regular BCM 10 Base View version are no longer
used in the BCM 11 Base View version (section 2.5.2).

« NVIDIA drivers: The defaults will be installed in non-DGX images

Automatically Kept As Is By cm-upgrade
The following applications are allowed to remain during the upgrade, and are not automaticaly up-
graded:

« WLMSs (section 2.5.3)

- Slurm

2.5 Important: Upgrading Particular Applications 17

- PBS Professional/OpenPBS
- LSF

The installation of workload managers is described in section 7.3 of the Administrator Man-
ual, while the upgrade of the Slurm and PBS Professional workload managers is described in
section 7.5 of the Administrator Manual.

« Kubernetes: Kubernetes installation is described in section 4.21 of the Containerization Man-
ual.

» Run:Ai: Run:Ai installation options for BCM are described in section 6.8 of the Containerization
Manual.

« NVIDIA Container Toolkit: An NVIDIA Container Toolkit installation can be carried out as part
of Docker setup or a package installation (section 2.7 of the Containerization Manual).

» other Kubernetes operators: The installation of other Kubernetes operators is described in
Chapter 6 of the Containerization Manual.

Manually Removed And Reinstalled During Upgrade (Not Managed By cm-upgrade)
« Harbor: As explained earlier, Harbor upgrades (section 2.5.6) are not supported. The Har-
bor package needs to be removed from BCM version 10, and redeployed (section 3.2 of the
Containerization Manual) in BCM version 11.

« Cluster Extension: Needs to be removed and redeployed (Chapter 3 of the Cloudbursting Man-
ual)

Removed From Support During Upgrade (Not Managed By cm-upgrade)
The following software is no longer managed by BCM in BCM version 11.

« (Altair) Grid Engine (AGE): BCM support for integration ended. Possible alternatives to the
AGE WLM, that BCM supports, are Slurm, PBS Professional/OpenPBS, or LSF.

« Ceph: BCM support for integration ended.
» BeeGFS: BCM support for integration ended.

BCM has Base View (section 2.4 of the Administrator Manual) as the browser GUI to carry out cluster
management tasks. It is available as the package base-view.

Base View in BCM 10 had an additional, experimental and undocumented, Base View NG, avail-
able as the package base-view-ng. Base View NG uses a newer GUI toolkit from that of Base View
in BCM 10.

Base View in BCM 11 is actually just a development of Base View NG from BCM 10, and so it
uses that newer toolkit too.

The new Base View in BCM 11 means that an upgrade from BCM 10 to BCM 11 loses all the
dashboards that users and administrators may have built for Base View in BCM 10.

Itis therefore a good idea to make notes on the useful dashboards of BCM 10 so that analogous
ones can be constructed for BCM 11. A useful transition may be to construct the analogues in Base
View NG while still on BCM 10, before upgrading to BCM 11.

Unsupported unversioned or unsupported versioned WLM packages are not removed automatically.
They must be removed manually. If they are to be updated then it is recommended to install new,
supported, versioned WLM packages.

The supported PBSPro versions are compatible across BCM 10 and BCM 11.

https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.7
https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.9
https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.10

18 Parallel Upgrades

Upgrading WLMs In General From BCM 10
WLMs are not required to be disabled using cm-wlm-setup before upgrading the BCM version from
10to 11.

Upgrading Slurm
Slurm versions older than Slurm 24.11 are not supported in BCM 11. When upgrading from BCM
10, Slurm must be upgraded to at least Slurm 24.11 in the BCM 10 repositories before moving to
BCM 11.

For more information on upgrading Slurm, please refer to the KB article https://kb.
brightcomputing.com/knowledge-base/upgrading-slurm/.

Packages: Software images now include the same packages as the head nodes. This is because
starting with BCM 11, Slurm packages keep many things in /cm/local, instead of /cm/shared.
Slurm client packages, for example slurm25.85-client, are no longer available. So they are
removed as part of the upgrade procedure.
There are now separate slurmctld and slurmd packages that provide the binary and systemd
unit files for each service.

Path adjustments: There are some path adjustments for Slurm for the upgrade from BCM 10 to
BCM 11, as summarized in the following table.

https://kb.brightcomputing.com/knowledge-base/upgrading-slurm/
https://kb.brightcomputing.com/knowledge-base/upgrading-slurm/

2.5 Important: Upgrading Particular Applications 19

Slurm item Version Path

BCM10 /cm/shared/apps/slurm

Prefix director
Y BCM11 /cm/local/apps/slurm

BCM10 /cm/shared/apps/slurm/var/etc/

Most configuration files
BCM11 /cm/shared/apps/slurm/etc

)) . BCM10 /cm/shared/apps/slurm/var/etc/munge
Munge configuration files
BCM11 /cm/shared/apps/slurm/var/etc/munge (unchanged)

BCMI10 /cm/shared/apps/slurm/current/bin
BCM11 /cm/local/apps/slurm/current/bin

Binaries

Template files such as: BCM10 /cm/shared/apps/slurm/var/etc
slurmdbd.conf.template, BCMI11 /cm/local/apps/slurm/current/templates
cgroup.conf.template

. BCM10 /cm/shared/apps/slurm/var/cm/statesave
statesave files
BCM11 /cm/shared/apps/slurm/statesave

. BCM10 /cm/shared/apps/slurm/var/cm/power
Power scripts
BCM11 /cm/local/apps/slurm/current/scripts/power

BCM10 /cm/shared/apps/slurm/var/cm

Enroot prolo
P g BCM11 /cm/shared/apps/slurm/prologs/prolog-enroot.sh

BCM10 /cm/shared/apps/slurm/var/cm

Enroot epilo
prog BCM11 /cm/shared/apps/slurm/epilogs/epilog-enroot.sh

Slurm DBD Performance Improvement

Installations from BCM 10.24.05 onward have MySQL configuration settings changes that improve
the performance of the slurmdbd service. The changes are not automatically applied during up-
dates of MySQL when updating from versions installed earlier than BCM 10.24.05.

To apply the improvement to a cluster that does not have this update, the MySQL configuration
must be manually adjusted on the head nodes after cm-upgrade has completed. The /etc/my.cnf
file on the head node, and also on the secondary head node in an HA-enabled cluster, should have
the following settings updated:

innodb_buffer_pool_size=4696M
innodb_log_file_size=64M
innodb_lock_wait_timeout=900

The default my . cnf file is typically symlinked by the system utility update-alternatives in
Ubuntu and SLES, (alternatives in RHEL derivatives), so how it is configured should also be con-
sidered.

/

20 Parallel Upgrades

Slurm Upgrades For DGX OS 6 To DGX OS 7
For DGX, BCM 10 supports only DGX OS 6 (an Ubuntu 22.04 variant), while BCM 11 supports only
DGX 0OS 7 (an Ubuntu 24.04 variant). As part of the upgrade from BCM 10 to BCM 11, the DGX 0OS
must be replaced with DGX OS 7. When replacing the DGX OS nodes from 6 to 7, a new software
image (and /cm/shared) is created for the Ubuntu 2404 nodes.

If Slurm and Pyxis have been deployed in a BCM 10 DGX OS 6 image, then some manual con-
figuration changes must be done to make these work right in the BCM 11 DGX OS 7 image. These
can be carried out as follows:

Changes to the MUNGE key in /cm/shared: The key needs to have the correct permissions and
ownership. If it does not have these, then a symptom of it is the message:

munged: Error: Keyfile is insecure: "/cm/shared/apps/slurm/var/munge/keys/
munge.key” should be owned by UID 1 instead of UID @

as seen in the systemd status output:

root@dgx-04:~# systemctl status munge.service
x munge.service - MUNGE authentication service
Loaded: loaded (/usr/lib/systemd/system/munge.service; enabled;
preset: enabled)
Active: failed (Result: exit-code) since Fri 2025-10-31
03:54:29 PDT; 26s ago
Docs: man:munged(8)

Process: 255424 ExecStart=/usr/sbin/munged --key-file=/cm/shared/
apps/slurm/var/munge/keys/munge.key (code=exited, status=1/
FAILURE)Oct 31 ©3:54:29 dgx-04 systemd[1]: Starting

munge.service - MUNGE authentication service...

Oct 31 03:54:29 dgx-04 munged[255424]: munged: Error: Keyfile is insecure:
"/cm/shared/apps/slurm/var/munge/keys/munge.key” should be owned by UID 1
instead of UID @

Oct 31 03:54:29 dgx-04 systemd[1]: munge.service: Control process exited,
code=exited, status=1/FAILURE Oct 31 ©3:54:29 dgx-04 systemd[1]:
munge.service: Failed with result 'exit-code’.

Oct 31 03:54:29 dgx-04 systemd[1]: Failed to start munge.service -

MUNGE authentication service.

The key can be made consistent with that of the previous deployment. This can be done by
changing the attributes of the files in the new DGX software image, for example dgx-o0s-7.2-
h100-image, after mounting it in the appropriate shared directory on the new cluster:

cm-chroot-sw-image -s /cm/shared-ubuntu2404-x86_64 \
/cm/images/dgx-0s-7.2-h100-image

chown daemon:root /cm/shared/apps/slurm/var/munge/keys/munge.key
chmod 400 /cm/shared/apps/slurm/var/munge/keys/munge.key

Changes to the Pyxis and Enroot files: The files within the DGX OS 7 image can be configured as
follows:
Copy the Pyxis plugin file to the new software image, for example: dgx-0s-7.2-h100-1image:

/cm/shared
/cm/shared

2.5 Important: Upgrading Particular Applications 21

cp /cm/local/apps/slurm/current/1ib64/slurm/spank_pyxis.so \
/cm/images/dgx-o0s-7.2-h100-image/cm/local/apps/slurm/current/1ib64/slurm/

Copy the plugstack files in /cm/shared over from the Ubuntu 2204 (DGX OS 6) version to the
Ubuntu 2404 (DGX OS 7) version:

cp /cm/shared-ubuntu2264-x86_64/apps/slurm/etc/slurm/plugstack.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/slurm/
cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/slurm/plugstack.conf.d/pyxis.conf \
/cm/shared-ubuntu24084-x86_64/apps/slurm/etc/slurm/plugstack.conf.d/

Copy the Enroot configurations in /cm/shared from the Ubuntu 2204 version to the Ubuntu
2404 version:

cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/enroot.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/

cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/enroot-sysctl.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/

Symlinks for the epilog, prolog, and enroot . conf files are created for the new software image:

cm-chroot-sw-img -s /cm/shared-ubuntu2404-x86_64 /cm/images/dgx-o0s-7.2-h100-image/
1n -s /cm/shared/apps/slurm/prologs/prolog-enroot.sh \
/cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh

1n -s /cm/shared/apps/slurm/epilogs/epilog-enroot.sh \
/cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh

1n -s /cm/shared/apps/slurm/etc/enroot.conf /etc/enroot/enroot.conf

<ctrl-d>

The compute nodes can pick up the new configuration when they get rebooted.

PBS Professional Upgrades
PBS Professional versions older than PBS Pro 2022 are not supported in BCM 10. Below is an
overview of the steps that can be taken to upgrade PBS Pro:

» Stop the pbsserver service on the head node

cmsh% device
cmsh% foreach -1 pbsproserver (services; stop pbsserver)

« Remove the old packages from the headnodes

22 Parallel Upgrades

S yum/zypper/apt remove pbspro<old version>*

« Remove the old packages from the software images

§ cm-chroot-sw-img /cm/images/<software image>

[root@<software image> /]# yum/zypper/apt remove pbspro<old version>*

- Install the new packages in the headnode

$ yum/zypper/apt install pbspro<new version> pbspro<new version>-client

- Install the new packages in the software images

§ cm-chroot-sw-img /cm/images/<software image>

[root@<software image> /]# yum/zypper/apt install pbspro<new version>-client

» Change the version of the WLM in the wlm object

cmsh% wlm use pbspro
cmsh% set version <new version>
cmsh% commit

- Start pbsserver

cmsh% device
cmsh% foreach -1 pbsproserver (services; start pbsserver)

Kubernetes deployments do not need removal before upgrading to BCM 11. The same version of
Kubernetes runs on the BCM cluster after the upgrade.

An upgrade to Kubernetes (section 4.21 of the Containerization Manual) can be carried out after
the BCM upgrade.

Kubernetes Package Upgrades For DGX Software Images
When upgrading DGX OS nodes from 6 to 7.2, a new software image (and /cm/shared) needs to
be created (section 2.10.12), for the nodes which will be running Ubuntu 24.04.

Kubernetes on the new DGX image needs to be manually copied over from the old image. This
can be done as follows:

» The kubernetes.list file should be copied over from the old image, <old DGX image>, to
the new image, <new DGX image>, along with its associated keyring file:

2.6 Important: Package Upgrade Dependency Issues 23

[root@basecm11 ~]# cp /cm/images/<old DGXimage>/etc/apt/sources.list.d/\
kubernetes.list /cm/images/<new DGXimage>/etc/apt/sources.list.d/
[root@basecm11 ~]# cp /cm/images/<old DGXimage>/etc/apt/keyrings/\
kubernetes-apt-keyring.gpg /cm/images/ <new DGXimage>/etc/apt/keyrings/

« The packages for the existing version need to be placed in the new image (here it is called
new-dgx-image):

[root@basecm11 ~]# cm-chroot-sw-img /cm/images/new-dgx-image

[root@new-dgx-image /]# apt-get install cm-kube-diagnose kubeadm kubectl \
kubelet kubernetes-cni cm-containerd nvidia-container-toolkit nginx \
libnginx-mod-stream

- The packages for the existing version need to be held. The following commands take care of
that:

[root@new-dgx-image /]# apt-mark hold kubeadm
[root@new-dgx-image /]# apt-mark hold kubectl
[root@new-dgx-image /]# apt-mark hold kubelet
[root@new-dgx-image /]# <ctrl-d>

The <ctrl-d> is to exit out of the cm-chroot-sw-img directory. The cm-chroot-sw-img
command is described on page 532 of the Administrator Manual.

The JupyterHub database schema must be manually upgraded in each JupyterHub node after the
main package upgrade has completed. The following commands can be run to upgrade the Jupyter-
Hub database:

module load jupyter
jupyterhub upgrade-db--config=/cm/local/apps/jupyter/conf/jupyterhub_config.py \
--db sqlite:////cm/local/apps/jupyter/run/jupyterhub.sqlite

Harbor cannot be upgraded when BCM 10 is upgraded to BCM 11, its package can only be (re-)in-
stalled and (re-)deployed separately from the BCM upgrade.

If the Harbor packages were installed in BCM 10 to a node other than the head node, then a
re-deployment to that node is required after the upgrade to BCM 11 for Harbor.

When upgrading a cluster from BCM 10 to BCM 11 the upgrade of Docker registry is supported.

The upgrade process will not only upgrade CMDaemon and its dependencies, but it will also upgrade
other packages. This means that old packages will not be available from the new BCM repositories.

In some cases, this will require recompiling the user applications to use the upgraded versions
of the compilers and the libraries. Also, the configurations of the old packages will not be copied
automatically to the new packages, which means that the administrator will have to adjust the
configuration from the old packages to suit the new packages manually.

24 Parallel Upgrades

Extra base distribution packages may be installed by yum/zypper/apt-get in order to resolve
dependencies that might arise as a result of the upgrade. Hence the base distribution repositories
must be reachable. This means that the clusters that run the Enterprise Linux distributions (RHEL
and SLES) must be subscribed to the appropriate software channels.

Packages in /cm/shared are upgraded, but the administrator should be aware of the following:

- If /cm/shared is installed in the local partition, then the packages are upgraded. This may not
be desirable for users that wish to retain the old behavior.

- If /cm/shared is mounted from a separate partition, then unmounting it will prevent upgrades
to the mounted partition, but will allow new packages to be installed in /cm/shared within
the local partition. This may be desirable for the administrator, who can later copy over up-
dates fromthelocal /cm/shared to the remote /cm/shared manually according to site-specific
requirements. Since unmounting of mounted /cm/shared is carried out by default, a local
/cm/shared will have files from any packages installed there upgraded. According to the yum
database, the system is then upgraded even though the files are misplaced in the local parti-
tion. However, the newer packages can only be expected to work properly if their associated
files are copied over from the local partition to the remote partition.

With a multidistro Kubernetes cluster, there can be a known issue with accessing /cm/shared
across the various nodes.

Under What Conditions Is There An Issue?
The issue can occur when all of the following conditions apply:

1. The Kubernetes cluster (and worker nodes in particular) are spread across multiple DGX OS
versions, due to one of the following situations:

+ (A) the nodes are running as multidistro nodes within the same Kubernetes cluster (run-
ning permanently as multidistro as is the intention, and not just transiently as part of an
upgrade).

+ (B) the nodes are being upgraded, for example from Ubuntu 22 to Ubuntu 24

2. The Local Path Provisioner is provisioned and deployed in the Kubernetes cluster. This is a
component running in Kubernetes that enables pods in every Kubernetes node to consume
some kind of local storage. The local-path-provisioner parameter provides the local
path StorageClass, which sets up a sub-directory under /cm/shared.

3. In this Kubernetes cluster, there is at least one pod using the local-path StorageClass using a
PVC (PersistentVolumeClaim)

Why Is There An Issue?

The problem is that the /cm/shared directory is not unique across all nodes in a BCM cluster. The
directory differs based on the DGX OS version. For example, on the head node, for the /cm/shared
mount, you have:

« for Ubuntu 22 nodes:
/cm/shared-ubuntu2204-x86_64

https://github.com/rancher/local-path-provisioner/tree/master?tab=readme-ov-file#overview
/
/cm/shared
/cm/shared

2.7 Known Issues 25

- for Ubuntu 24 nodes:
/cm/shared-ubuntu2404-x86_64
During normal running, each DGX node only sees its specific /cm/shared.

Now, if a pod consuming a PVC from its local-path StorageClass is rescheduled to a node from
the other DGX OS, then it cannot find the volume anymore, and it creates a new one.

Resolving The Issue For Persistent Mixed Distributions
A solution in the case of persistent mixed distributions on the nodes is to move all the pods to a new
common shared directory for Kubernetes, independent of the directories offered for the specific
DGX OS versions.

Steps:

1. If the cluster is not HA, then

« anew /cm/shared-kube directory can be created
- anew fsexport is created on the headnode:

[head]% device use master; fsexports

[head->device[head]->fsexports*]% add /cm/shared-kube@internalnet
[head->devi...*[/cm/shared-kube@internalnet*]]% set path /cm/shared-kube
[head->devi...*[/cm/shared-kube@internalnet*]]% set network internalnet
[head->devi...*[/cm/shared-kube@internalnet*]]% set write yes
[head->devi...*[/cm/shared-kube@internalnet*]]% commit
[head->device[head]->fsexports[/cm/shared-kube@internalnet]]%

2. If the cluster is HA, then

- anew directory or export can be created in the NAS to store the Kubernetes directory

« if the headnode is a Kubernetes workers, or if the head node is a Kubernetes master that
uses volumes using pods, then volumes will be used. Create an fsmount on the head
nodes with:

[head->device[head]->fsmounts]% add /cm/shared/apps/kubernetes
[head->...red/apps/kubernetes*]]% set device 10.180.81.165:/brdkube
[head->..*]->fsmounts*[/cm/shared/apps/kubernetes*]]% set filesystem nfs
[head->devicex[head*]->fsmounts*[/cm/shared/apps/kubernetes*]]% commit

3. Create an fsmount in the Kubernetes worker nodes categories (and/or nodes):

[head->category[default]->fsmounts]% add /cm/shared/apps/kubernetes
[head->...red/apps/kubernetes]]% set device $localnfsserver:/cm/shared-kube
[head->...*]->fsmounts*[/cm/shared/apps/kubernetes*]]% set filesystem nfs
[head->...*]->fsmounts*[/cm/shared/apps/kubernetes*]]% commit
[head->category[default]->fsmounts[/cm/shared/apps/kubernetes]]%

26

Parallel Upgrades

4. Turn off all the Kubernetes worker nodes using cmsh

10.

This ensures that all pods are down, and not writing to the PVCs

On the head node, populate the whole directory with all the data from Kubernetes:

Example

rsync -ar /cm/shared-ubuntu2204-x86_64/apps/kubernetes/ \
/cm/shared/apps/kubernetes/

If present, copy specific PVCs from Ubuntu 24.04 as well:

Example

rsync -ar /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/\
/cm/shared/apps/kubernetes/var/volumes/

Turn on all the Kubernetes worker nodes

Ensure the Kubernetes worker nodes mount the new /cm/shared/apps/kubernetes directory

Example

mount | grep /cm/shared

Ensure all the pods are up and running again:

Example

kubectl get pods -A

Afterwards, clean up the old PVCs:

Example

rm -rf /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/
rm -rf /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/

/

2.7 Known Issues 27

Resolving The Issue For The Upgrade Case Only
A solution in the case of an image upgrade, for example from DGX OS 6 to DGX OS 7, can be carried
out as follows:

Before starting the upgrade of DGX OS version, you can move all PVCs from the old to the new
/cm/shared.

We assume old nodes are running Ubuntu 22 and that they need to be upgraded to Ubuntu 24.

1. Turn off all the (Ubuntu 22.04) Kubernetes worker nodes via cmsh

This ensures that all pods are down and not writing to the PVCs.
2. Upgrade DGX OS to Ubuntu 24.04

3. On the head node, copy all the PVCs to the other new /cm/shared

rsync -ar /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/
/cm/shared-ubuntu24084-x86_64/apps/kubernetes/default/var/volumes/

4. Turn on all the Kubernetes worker nodes and check that all the pods are up and running again
(kubectl get pods -A)

5. Afterwards, clean up the old PVCs:

rm -rf /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/

Resolving The Issue If You Already Have Duplicated PVCs
A solution in the case of PVCs that have already been duplicated requires some finesse.

1. Detect all PVCs in the old and new /cm/shared and mapping between them. First look for
current PVCs and ensure each one has the related directory in the new shared directory:

kubectl get pvc -A

Is /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/

2. Turn off the nodes

3. Backup or move the newly created PVCs, that most likely should be deleted:

mv /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes \
/cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes-backup

4. Now, for each PVC, you have to find the original/correct one in the former shared directory.
This is a manual process, and a bit of an art. You can consider:

« The directory name which matches the Kubernetes namespace and PVC name

« If there are 2 or more matching directories then:

/
/
/cm/shared

28

Parallel Upgrades

- look for the latest modification date (Is -lah))

- check the overall size (du -hs)). Usually the largest directory has more data and should
be the most recent one

5. Run an command per PVC:

rsync -ar \
/cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/\
pvc-98975be7-4030-4111-8680-46a38829e2e7_runai-backend_data-runai-backend-\
redis-queue-master-0/ \
/cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/\
pvc-98975be7-4030-4f11-8680-46a38829e2e7_runai-backend_data-runai-backend-\
redis-queue-master-0/

Note: the source and target directories are different (...-ubuntu2204-. to ...-
ubuntu2404-...). This is because the source should match what you have found outin the
previous step, whlle the target should match what you listed initially.

. Turn on nodes and verify pods are up and running

On clusters with Jupyter deployed, after the upgrade, users might find themselves being
asked to login twice. The first time when the user will be asked to login to JupyterHub, and
a second time, where the user is asked about a "CMDaemon login”. In such cases, the user
should once again present the credentials. This extra login request is harmless, and after the
credentials are given a second time, it is unlikely that users will be queried again. The cause
of this issue is that the Jupyterhub component that interacts with CMDaemon can lose con-
nection to CMDaemon, causing it to prompt for an extra login.

On some base distributions, depending on the version of the installed packages, when starting

'cm-upgrade), a YAMLLoadWarning message may be printed when its configuration files are
loaded. The warning message can be safely ignored.

In some cases because /cm/shared may be temporarily not accessible from the cloned primary
head node when it boots for the first time, if workload managers are setup on the cluster, then
CMDaemon may create and leave module files called no-version. For example:
slurm/slurm/no-version

To resolve the issue, the leftover no-version module files under /cm/shared/modulefiles/
can be deleted.

In some cases at the end of the head node or the software image(s) upgrade, the
script may report a list of packages that were not upgraded to their BCM 11 versions. This
can occur in cases where the package manager was not able to resolve the list of packages
to find a suitable candidate at the time of the upgrade of all packages.

While makes a best effort to swap or upgrade the packages to their BCM 11
versions, in some cases— notably on Ubuntu, it is also possible some packages are left in

their 10.0 versions.

The administrator is advised to manually swap the cm10.0 packages with the cm11.0 package.

2.7 Known Issues 29

« On clusters with cluster extension to AWS deployed, the cloud director and cloud nodes might
fail to start after the upgrade. This can happen when there is an entry

<blockdev mode="cloud”>/dev/nvmelni</blockdev>

in the disksetup. The issue can be resolved by removing that entry from the disksetup for the
cloud director and cloud nodes.

» On clusters that have PBSPro configured, and upgraded from BCM 10 to BCM 11, new jobs
submitted by users will get job ids that were already used. This is particularly relevant for
users that use BCM monitoring data for billing purposes.

- Disabling Kubernetes as part of the parallel-upgrade procedure results in an apparent failure
during the stage when etcd data is cleaned up, because the compute nodes are not reachable
from the parallel setup. This is expected since the parallel setup is isolated from the produc-
tion setup. To resolve the issue, the administrator should answer a prompt so that the failed
stage is skipped. It is also recommended to re-provision the compute nodes of the upgraded
parallel setup before attempting to set up Kubernetes or etcd again, so that any leftover data
from before the upgrade is cleaned during the provisioning.

« When upgrading the DGX OS 6 sofware image to the latest updates of DGX OS 6, there is a
known issue with DKMS when a new kernel 1inux-image-5.15.0-1090-nvidiais installed.
The DKMS post-install script fails for the new kernel. This is caused by duplicate entries for
the gdrdrv module. This can be checked for with the following command:

root@dgx-os-6:/# dkms status

gdrdrv/2.4.4, 5.15.0-1063-nvidia, amd64: installed
gdrdrv/2.4.4, 5.15.0-1090-nvidia, amd64: installed
gdrdrv/2.4.4, 5.15.0-1090-nvidia, x86_64: built

The last two statuses are for the same driver, and the lastlineisbuilt ratherthaninstalled,
which means it was not installed, and leads to the post-install script failure.

This issue can be resolved by removing the duplicate entry and reconfiguring the package as
follows:

dkms remove gdrdrv/2.4.4 -a amd64 -k 5.15.0-1090-nvidia
dpkg --configure -a

« When checking if the compute nodes are UP, in some cases cm-upgrade may wrongly report
that some nodes are not DOWN. The report depends on how a node has been shut down,
and that shut down can result in the state of the node not being updated correctly in the
CMDaemon database. In such scenarios, after confirming that the nodes are indeed DOWN,
re-run cm-upgrade with the --skip-node-states-check flag to skip the check for node
states:

cm-upgrade --skip-node-states-check

« Upgrading from BCM 10 to BCM 11 for DGX SuperPOD deployments requires filesystem ex-
ports to be explicitly set for the network dgxnet (page 60).

30 Parallel Upgrades

When using a BCM DVD/ISO to perform the upgrade, it is important to use a DVD/ISO that is not
older than 11.30.0. The DVD/ISO version can be found (assuming that the DVD/ISO is mounted
under /mnt/cdrom) with a command such as:

find /mnt/cdrom -type d -name '11.30.0'
/mnt/cdrom/data/packages/11.30.0

Enabling the upgrade repository and installing the upgrade package can be carried out for the
various distributions as follows:

RHELS8 derivatives:

yum-config-manager \
--add-repo http://support.brightcomputing.com/upgrade/11.8/rhel/8/updates
yum --nogpgcheck install cm-upgrade

RHEL9 derivatives:

yum-config-manager \
--add-repo http://support.brightcomputing.com/upgrade/11.08/rhel/9/updates
yum --nogpgcheck install cm-upgrade

SLES 15:

zypper addrepo \
http://support.brightcomputing.com/upgrade/11.06/sles/15/updates cm-upgrade-11
zypper install cm-upgrade

Ubuntu 22.04:

cat <<EOF > /etc/apt/sources.list.d/cm-upgrade-11.list

deb [trusted=yes] https://support.brightcomputing.com/upgrade/11.0/ubuntu/2204/ ./
EOF

apt-get update

apt-get install cm-upgrade

Ubuntu 24.04:

cat <<EOF > /etc/apt/sources.list.d/cm-upgrade-11.list

deb [trusted=yes] https://support.brightcomputing.com/upgrade/11.0/ubuntu/2404/ ./
EOF

apt-get update

apt-get install cm-upgrade

/mnt/cdrom

2.10 Perform Upgrade 31

2.9.2 Load The Environment Module

2.10 Perform Upgrade

The steps for carrying out the upgrade are as follows:

2.10.1 Apply Updates To Head Node
» RHEL derivatives:

« SLES derivatives:

« Ubuntu:

2.10.2 Apply Updates To Software Images

Before updating and upgrading a software image, it may be worth creating an image backup by

cloning the image (page 209 of the Administrator Manual). If the cluster after the upgrade has an

image that has an issue, then comparing it against the backup can help troubleshoot the issue.
For each software image, updates can be applied as follows:

« RHEL derivatives:

« SLES derivatives:

« Ubuntu:

2.10.3 Apply Updates To The node-installer Image
« RHEL derivatives:

« SLES derivatives:

32 Parallel Upgrades

zypper --root /cm/node-installer up

« Ubuntu:
cm-chroot-sw-img /cm/node-installer
apt-get update
apt-get upgrade --with-new-pkgs
exit

2.10.4 Upgrade Head Nodes To BCM 11

Important: this must be run on both head nodes in a high availability setup. Recommended: Up-
grade the active head node first and then the passive head node.
Depending on availability, the upgrade can be run either over the network, or using a DVD/ISO:

» Upgrade using repositories accessible over the network

cm-upgrade

« Upgrade using a BCM DVD/ISO

cm-upgrade -b /root/bcm-11.0-ubuntu2464.iso

In an HA setup, after upgrading both the head nodes, resync the databases. Run the following
from the active head node (it is very important to complete this step before moving to the next
one):

cmha dbreclone <secondary>

2.10.5 Reboot Head Node(s)
The head node(s) must be rebooted before proceeding to run the post-upgrade actions.

2.10.6 Post-upgrade Head Node Actions
Important: these must be run on both head nodes in an HA setup

module load cm-upgrade/11

cm-post-upgrade -m

2.10.7 Upgrade The Software Image(s) To BCM 11
Important: the upgrade to the software images must be done only on the active head node. De-
pending on availability, the upgrade can be run either over the network, or using a DVD/ISO:

« Upgrade using repositories accessible over the network

cm-upgrade -i all

» Upgrade using a BCM DVD/ISO

2.10 Perform Upgrade 33

cm-upgrade -i all -b /root/bcm-11.0-ubuntu2464.iso

If the software images are not under the standard location—/cm/images/ on the head node—
then the option -a should be used:

cm-upgrade -a /apps/images -i <name of software image>
cm-upgrade -a /apps/images -i <name of software image> \
-b /root/bcm-11.0-ubuntu2404.iso

If the software images are located under multiple locations, the target locations can be specified
as a comma-separated list:

cm-upgrade -a '/apps/images, /opt/images' -i all

2.10.8 Upgrade /cm/node-installer To BCM 11
This needs to be performed only on the primary active head node, either over the network, or using
a BCM DVD/ISO.

« Upgrade using repositories accessible over the network:

cm-upgrade -x

« Upgrade using a BCM DVD/ISO:

cm-upgrade -x -b /root/bcm-11.8-ubuntu2404.iso

2.10.9 Post-upgrade Software Images Actions
Important: these must be run only on the active head node.

cm-post-upgrade -i all

If the software images are not under the standard location, which is /cm/images/ on the head
node, then the option -a should be used:

cm-post-upgrade -a /apps/images -i all
cm-post-upgrade -a /apps/images -i <name of software image>

If the software images are located under multiple locations, then the target locations can be
specified as a comma-separated list:

cm-post-upgrade -a '/apps/images, /opt/images' -i all

2.10.10 NVIDIA Driver Installation

During the upgrade to BCM 11.0, cm-upgrade automatically installs NVIDIA GPU drivers on non-
DGX software images. This is only carried out on software images. It is not carried out on the head
nodes or the node-installer images.

/cm/images/
/cm/images/

34 Parallel Upgrades

Default NVIDIA Driver Version
By default, cm-upgradeinstallsNVIDIA driver version 570 (Open Kernel Modules edition).
The following components are installed:

« On Ubuntu 22.04 and 24.04: the package installed is the nvidia-driver-576-open meta-
package plus additional components including:

Fabric Manager (for NVLink/NVSwitch management)
NSCQ library (NVIDIA NVSwitch Configuration and Query Library)

IMEX library (GPU memory sharing across different compute nodes in a multi-node sys-
tem connected by NVLink)

NVSDM library (for monitoring NVSwitch devices on NVIDIA Blackwell systems)

« On RHEL 9/Rocky 9: a comprehensive set of packages based on the major 570 version. The
package set installed includes:

DKMS and open kernel modules for dynamic kernel support

Core driver libraries and CUDA components

Fabric Manager for multi-GPU interconnect management

GUI tools (nvidia-settings, nvidia-xconfig) for X11 display configuration

Most package names are generic (for example: nvidia-driver, nvidia-fabric-manager), with the
exact version version determined by the repository configuration

« On SLES 15 SP6: the package installed is a set based on the major 570 version, and includes:

- Open kernel modules (nvidia-open-570)
- Fabric Manager and NSCQ library

Packages are sourced from NVIDIA’s CUDA repository (version-numbered). Native SLES pack-
ages use GO6 generation naming, but we use NVIDIA’'s CUDA repository for consistency

Non-DGX Systems Only
NVIDIA driver installation is only carried out on non-DGX systems.

DGX systems have pre-installed NVIDIA drivers, which are maintained by NVIDIA’s own update
mechanisms, and should not managed by cm-upgrade. The upgrade script detects DGX systems
by checking for the presence of /etc/dgx-release in the software image. If this file exists, then
NVIDIA driver installation in the DGX system is skipped.

Changing the NVIDIA Driver Version
If you need toinstall a different version of the NVIDIA drivers, then you can modify the driver version
either before or after the upgrade as follows:

» Pre-upgrade: Edit /cm/local/apps/cm-upgrade/11.0/conf/packages.yaml and modify the pack-
age versions listed under the nvidia_driver_packages section for your distribution.

« Post-upgrade: Use the standard package management tools (yum/apt/zypper) within the
software image to remove the installed driver packages and install your preferred version.

/

2.10 Perform Upgrade 35

Allow between 15 and 30 seconds for CMDaemon to schedule and start provisioning updates of
/tftpboot and /cm/node-installer from the primary to the secondary head node. Then check
and wait until the provisioning requests with the secondary head node as destination have com-
pleted using:

cmsh -c 'softwareimage provisioningstatus -r'

If the provisioning requests with a destination node the secondary head node continue to be
listed for a prolonged period of time and do not disappear from the list, then the node-installer
and/or tftpboot on the secondary head node are out of sync from the primary head node, which
can result in issues with provisioning of the compute nodes. Please contact support (https://
enterprise-support.nvidia.com/s/create-case) for further assistance.

On BCM 10 Ubuntu 22.04 clusters can use DGX OS 6 images. DGX OS 6 images are not supported
in BCM 11.

A new DGX OS 7 software image must therefore be used. The image can be created using cm-
image and cm-create-image. These are BCM utilities, and are described in section 9.6 of the
Administrator Manual.

DGX OS 7 is based on Ubuntu 24.04. This then also means the mixed OS environment—
multidistro or multiOS as described in section 9.7 of the Administrator Manual—must be enabled,
to allow provisioning of DGX OS 7 images from the Ubuntu 22.04 head node of BCM 10.

Image creation can be carried out as follows:

1. A script may need to be created first:

[root@basecm11 ~]# cat disable-upstream-repos.sh

#!/bin/bash

if [-f "$1/etc/apt/sources.list.d/ubuntu.sources”]; then
mv $1/etc/apt/sources.list.d/ubuntu.sources \
$1/etc/apt/sources.list.d/ubuntu.sources.dvd_bak

fi

The script is only needed for a cluster running a BCM version 11 earlier than 11.31.0. It works
around a known issue that may arise from using an upstream repository in an inappropriate
manner. For BCM 11.31.0 and later, the workaround is carried out automatically, and the script
is not needed.

2. Use cm-image to create the appropriate the Ubuntu 24.04 base images and enable a mixed
0OS setup. The -z option that calls the script need only be used for BCM 11 installations earlier
than BCM 11.31.0.

/tftpboot
/cm/node-installer
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case

36 Parallel Upgrades

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image --v create all -a x86_64 -d ubuntu2404 --source \
/path/to/bcm11.0-ubuntu24.04-dgx-0s-7.2.iso \
-z disable-upstream-repos.sh

3. Use cm-create-image to create the new DGX OS image. The -z option that calls the script
need only be used for BCM 11 installations earlier than BCM 11.31.0.

[root@basecm11 ~]# cm-create-image --cmdvd \
/root/bcm-11.0-ubuntu2404-dgx-o0s-7.2.iso \
--no-cm-cuda-repo --extra-pkg-group \
doca_ofed_2.9.1-3.0.2 --dgx --dgx-type dgx_b260 \
--imagename dgx-os-image-b200 \

-z disable-upstream-repos.sh

The --dgx-type option (page 544 of the Administrator Manual) must be set for every type that
is to be used as an image. The possible values are:

« dgx_h1ee for the H100 GPU
« dgx_b2ee for the B200 GPU

» dgx_a10e for the A100 GPU

dgx_gb20e for the GB200 GPU

» dgx_h2ee for the H200 GPU

The cluster administrator should create a new category for each new image. Cloning the default-
image image from the default category is a convenient way to do this since it already has the
correct fsmounts. The image name should then be set for the category.

For example, for a B200 image dbx-os-image-b2060 that has been placed in /cm-images/:

root@basecml11:~# cmsh

[basecm11]% category

[basecm11->category]% list

Name (key) Software image Nodes

default default-image 1

[basecm11->category]% clone default gh206

[basecm11->category*[gh200*]]% use gb200

[basecm11->category*[gh200*]]% set softwareimage dgx-os-image-b200 ; commit

The nodes that are to use the new image should then be assigned their image. For example, a
nodeBB1 can be assigned to the gh200 category created in the preceding example with:

2.10 Perform Upgrade 37

[basecm11->device]% set nodeBB1 category gbh200 ; commit

Configuration overlays that were used in the old category should also be migrated as needed to
the new category.

Upgrading from BCM 10 to BCM 11 for DGX SuperPOD deployments requires NFS exports to be
explicitly set for the network dgxnet, for /cm/node-installer-ubuntu2404-x86_64 and /cm/node-
installer-ubuntu2404-x86_64/certificates

This can be configured with the following cmsh session on the head node:

[root@basecm11 ~]# cmsh

[basecm11]% device use master

[basecm11->device[basecm11]]% fsexports

[basecm11->...->fsexports]% add /cm/node-installer-ubuntu24064-x86_64@dgxnet
[basecm11->...installer-ubuntu2404-x86_64@dgxnet*]]% set network dgxnet
[basecm11->...installer-ubuntu2404-x86_64@dgxnet*]]% commit
[basecm11->...installer-ubuntu2404-x86_64@dgxnet]]% ..

[basecm11->...rts]% add /cm/node-installer-ubuntu2404-x86_64/certificates@dgxnet
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% set network dgxnet
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% set write yes
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% commit
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet]]%

The same procedure must also be carried out for that secondary head node.
The new DGX OS image has no Kubernetes packages installed on it by default. Migrating an old
Kubernetes installation over from the old image is described on page 45.

The BCM 10 to BCM 11 upgrade supports CMDaemon Lite (section 2.6.7 of the Administrator Man-
ual) running on cluster switches, such as Cumulus switches.

After the upgrade has been carried out on the head node and the images are ready for deploy-
ment, then the switches can be rebooted to pick up their new image.

« Itis important not to reboot the switch that is being used to connect to the head node.

After the switches have rebooted, the compute nodes can be powered on.

In a cluster, mixing deployments of cm-lite-daemon for BCM 10 with those of BCM 11 is not
supported.

This means that the CMDaemon Lite servers that are not managed by CMDaemon, for example
PCs running CMDaemon Lite in a Python environment, also need to be upgraded when upgrading
the cluster itself from BCM 10 to BCM 11. That must be done manually, by removing the BCM 10
package, and installing the BCM 11 package according to the environment and OS it is running in.

It is recommended to provision the compute nodes at least once with BCM 11 before setting up
any new integrations.

3 In-place Upgrades

In contrast with a parallel upgrade (Chapter 2), with an in-place upgrade the production cluster is
taken out of operation while the upgrade takes place.
This chapter covers the procedure for an in-place upgrade.

It is a good idea to check that the existing cluster is in a healthy state before carrying out the
upgrade.

The head nodes health checks in particular should be looked at. Unexpected health check fail-
ures should be examined, and if required, resolved. In some cases it is expected that health checks
will be in a failed state. For example, if all the compute nodes are DOWN, then the schedulers health
check fails.

The reason behind checking the health of the cluster before upgrading is that the health checks
can detect failing services, overfull filesystems, unmounted filesystems, networking issues, time
synchronization issues, and other issues. If these are unexpected then they can prevent the up-
grade from completing successfully.

Automatically Upgraded By cm-upgrade
The following software, if managed by BCM 10, is managed and upgraded automatically by cm-
upgrade to BCM 11:

» Docker

» The cm-docker-registry package (Harbor upgrades (section 3.3.6) are not supported)

Jupyter (the JupyterHub database requires some additional care (section 3.3.5).

» Base View: The regular version of Base View in BCM 10 is upgraded to a new version in BCM
11. Any monitoring dashboards from the regular BCM 10 Base View version are no longer
used in the BCM 11 Base View version (section 3.3.2).

» NVIDIA drivers: The defaults will be installed in non-DGX images

Automatically Kept As Is By cm-upgrade
The following applications are allowed to remain during the upgrade, and are not automaticaly up-
graded:

40 In-place Upgrades

« WLMs (section 3.3.3)

= Slurm
- PBS Professional/OpenPBS
- LSF

The installation of workload managers is described in section 7.3 of the Administrator Man-
ual, while the upgrade of the Slurm and PBS Professional workload managers is described in
section 7.5 of the Administrator Manual.

« Kubernetes: Kubernetes installation is described in section 4.21 of the Containerization Man-
ual.

» Run:Ai: Run:Aiinstallation options for BCM are described in section 6.8 of the Containerization
Manual.

» NVIDIA Container Toolkit: An NVIDIA Container Toolkit installation can be carried out as part
of Docker setup or a package installation (section 2.7 of the Containerization Manual).

» other Kubernetes operators: The installation of other Kubernetes operators is described in
Chapter 6 of the Containerization Manual.

Manually Removed And Reinstalled During Upgrade (Not Managed By cm-upgrade)
« Harbor: As explained earlier, Harbor upgrades (section 3.3.6) are not supported. The Har-
bor package needs to be removed from BCM version 10, and redeployed (section 3.2 of the
Containerization Manual) in BCM version 11.

« Cluster Extension: Needs to be removed and redeployed (Chapter 3 of the Cloudbursting Man-
ual)

Removed From Support During Upgrade (Not Managed By cm-upgrade)
The following software is no longer managed by BCM in BCM version 11.

+ (Altair) Grid Engine (AGE): BCM support for integration ended. Possible alternatives to the
AGE WLM, that BCM supports, are Slurm, PBS Professional/OpenPBS, or LSF.

« Ceph: BCM support for integration ended.

» BeeGFS: BCM support for integration ended.

BCM has Base View (section 2.4 of the Administrator Manual) as the browser GUI to carry out cluster
management tasks. It is available as the package base-view.

Base View in BCM 10 had an additional, experimental and undocumented, Base View NG, avail-
able as the package base-view-ng. Base View NG uses a newer GUI toolkit from that of Base View
in BCM 10.

Base View in BCM 11 is actually just a development of Base View NG from BCM 10, and so it
uses that newer toolkit too.

The new Base View in BCM 11 means that an upgrade from BCM 10 to BCM 11 loses all the
dashboards that users and administrators may have built for Base View in BCM 10.

It is therefore a good idea to make notes on the useful dashboards of BCM 10 so that analogous
ones can be constructed for BCM 11. A useful transition may be to construct the analogues in Base
View NG while still on BCM 10, before upgrading to BCM 11.

https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.7
https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.9
https://support.brightcomputing.com/manuals/10/admin-manual.pdf#chapter.10

3.3 Important: Upgrading Particular Applications 41

Unsupported unversioned or unsupported versioned WLM packages are not removed automatically.
They must be removed manually. If they are to be updated then it is recommended to install new,
supported, versioned WLM packages.

The supported PBSPro versions are compatible across BCM 10 and BCM 11.

Upgrading WLMs In General From BCM 10
WLMs are not required to be disabled using cm-wlm-setup before upgrading the BCM version from
10to 11.

Upgrading Slurm
Slurm versions older than Slurm 24.11 are not supported in BCM 11. When upgrading from BCM
10, Slurm must be upgraded to at least Slurm 24.11 in the BCM 10 repositories before moving to
BCM 11.

For more information on upgrading Slurm, please refer to the KB article https://kb.
brightcomputing.com/knowledge-base/upgrading-slurm/.

Packages: Software images now include the same packages as the head nodes. This is because
starting with BCM 11, Slurm packages keep many things in /cm/local, instead of /cm/shared.
Slurm client packages, for example slurm25.85-client, are no longer available. So they are
removed as part of the upgrade procedure.
There are now separate slurmctld and slurmd packages that provide the binary and systemd
unit files for each service.

Path adjustments: There are some path adjustments for Slurm for the upgrade from BCM 10 to
BCM 11, as summarized in the following table.

https://kb.brightcomputing.com/knowledge-base/upgrading-slurm/
https://kb.brightcomputing.com/knowledge-base/upgrading-slurm/

42 In-place Upgrades

Slurm item Version Path

BCM10 /cm/shared/apps/slurm

Prefix director
Y BCM11 /cm/local/apps/slurm

BCM10 /cm/shared/apps/slurm/var/etc/

Most configuration files
BCM11 /cm/shared/apps/slurm/etc

)) . BCM10 /cm/shared/apps/slurm/var/etc/munge
Munge configuration files
BCM11 /cm/shared/apps/slurm/var/etc/munge (unchanged)

BCMI10 /cm/shared/apps/slurm/current/bin
BCM11 /cm/local/apps/slurm/current/bin

Binaries

Template files such as: BCM10 /cm/shared/apps/slurm/var/etc
slurmdbd.conf.template, BCMI11 /cm/local/apps/slurm/current/templates
cgroup.conf.template

. BCM10 /cm/shared/apps/slurm/var/cm/statesave
statesave files
BCM11 /cm/shared/apps/slurm/statesave

. BCM10 /cm/shared/apps/slurm/var/cm/power
Power scripts
BCM11 /cm/local/apps/slurm/current/scripts/power

BCM10 /cm/shared/apps/slurm/var/cm

Enroot prolo
P g BCM11 /cm/shared/apps/slurm/prologs/prolog-enroot.sh

BCM10 /cm/shared/apps/slurm/var/cm

Enroot epilo
prog BCM11 /cm/shared/apps/slurm/epilogs/epilog-enroot.sh

Slurm DBD Performance Improvement

Installations from BCM 10.24.05 onward have MySQL configuration settings changes that improve
the performance of the slurmdbd service. The changes are not automatically applied during up-
dates of MySQL when updating from versions installed earlier than BCM 10.24.05.

To apply the improvement to a cluster that does not have this update, the MySQL configuration
must be manually adjusted on the head nodes after cm-upgrade has completed. The /etc/my.cnf
file on the head node, and also on the secondary head node in an HA-enabled cluster, should have
the following settings updated:

innodb_buffer_pool_size=4696M
innodb_log_file_size=64M
innodb_lock_wait_timeout=900

The default my . cnf file is typically symlinked by the system utility update-alternatives in
Ubuntu and SLES, (alternatives in RHEL derivatives), so how it is configured should also be con-
sidered.

/

3.3 Important: Upgrading Particular Applications 43

Slurm Upgrades For DGX OS 6 To DGX OS 7
For DGX, BCM 10 supports only DGX OS 6 (an Ubuntu 22.04 variant), while BCM 11 supports only
DGX 0OS 7 (an Ubuntu 24.04 variant). As part of the upgrade from BCM 10 to BCM 11, the DGX 0OS
must be replaced with DGX OS 7. When replacing the DGX OS nodes from 6 to 7, a new software
image (and /cm/shared) is created for the Ubuntu 2404 nodes.

If Slurm and Pyxis have been deployed in a BCM 10 DGX OS 6 image, then some manual con-
figuration changes must be done to make these work right in the BCM 11 DGX OS 7 image. These
can be carried out as follows:

Changes to the MUNGE key in /cm/shared: The key needs to have the correct permissions and
ownership. If it does not have these, then a symptom of it is the message:

munged: Error: Keyfile is insecure: "/cm/shared/apps/slurm/var/munge/keys/
munge.key” should be owned by UID 1 instead of UID @

as seen in the systemd status output:

root@dgx-04:~# systemctl status munge.service
x munge.service - MUNGE authentication service
Loaded: loaded (/usr/lib/systemd/system/munge.service; enabled;
preset: enabled)
Active: failed (Result: exit-code) since Fri 2025-10-31
03:54:29 PDT; 26s ago
Docs: man:munged(8)

Process: 255424 ExecStart=/usr/sbin/munged --key-file=/cm/shared/
apps/slurm/var/munge/keys/munge.key (code=exited, status=1/
FAILURE)Oct 31 ©3:54:29 dgx-04 systemd[1]: Starting

munge.service - MUNGE authentication service...

Oct 31 03:54:29 dgx-04 munged[255424]: munged: Error: Keyfile is insecure:
"/cm/shared/apps/slurm/var/munge/keys/munge.key” should be owned by UID 1
instead of UID @

Oct 31 03:54:29 dgx-04 systemd[1]: munge.service: Control process exited,
code=exited, status=1/FAILURE Oct 31 ©3:54:29 dgx-04 systemd[1]:
munge.service: Failed with result 'exit-code’.

Oct 31 03:54:29 dgx-04 systemd[1]: Failed to start munge.service -

MUNGE authentication service.

The key can be made consistent with that of the previous deployment. This can be done by
changing the attributes of the files in the new DGX software image, for example dgx-o0s-7.2-
h100-image, after mounting it in the appropriate shared directory on the new cluster:

cm-chroot-sw-image -s /cm/shared-ubuntu2404-x86_64 \
/cm/images/dgx-0s-7.2-h100-image

chown daemon:root /cm/shared/apps/slurm/var/munge/keys/munge.key
chmod 400 /cm/shared/apps/slurm/var/munge/keys/munge.key

Changes to the Pyxis and Enroot files: The files within the DGX OS 7 image can be configured as
follows:
Copy the Pyxis plugin file to the new software image, for example: dgx-0s-7.2-h100-1image:

/cm/shared
/cm/shared

44 In-place Upgrades

cp /cm/local/apps/slurm/current/1ib64/slurm/spank_pyxis.so \
/cm/images/dgx-o0s-7.2-h100-image/cm/local/apps/slurm/current/1ib64/slurm/

Copy the plugstack files in /cm/shared over from the Ubuntu 2204 (DGX OS 6) version to the
Ubuntu 2404 (DGX OS 7) version:

cp /cm/shared-ubuntu2264-x86_64/apps/slurm/etc/slurm/plugstack.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/slurm/
cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/slurm/plugstack.conf.d/pyxis.conf \
/cm/shared-ubuntu24084-x86_64/apps/slurm/etc/slurm/plugstack.conf.d/

Copy the Enroot configurations in /cm/shared from the Ubuntu 2204 version to the Ubuntu
2404 version:

cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/enroot.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/

cp /cm/shared-ubuntu2204-x86_64/apps/slurm/etc/enroot-sysctl.conf \
/cm/shared-ubuntu2404-x86_64/apps/slurm/etc/

Symlinks for the epilog, prolog, and enroot . conf files are created for the new software image:

cm-chroot-sw-img -s /cm/shared-ubuntu2404-x86_64 /cm/images/dgx-o0s-7.2-h100-image/
1n -s /cm/shared/apps/slurm/prologs/prolog-enroot.sh \
/cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh

1n -s /cm/shared/apps/slurm/epilogs/epilog-enroot.sh \
/cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh

1n -s /cm/shared/apps/slurm/etc/enroot.conf /etc/enroot/enroot.conf

<ctrl-d>

The compute nodes can pick up the new configuration when they get rebooted.

PBS Professional Upgrades
PBS Professional versions older than PBS Pro 2022 are not supported in BCM 10. Below is an
overview of the steps that can be taken to upgrade PBS Pro:

» Stop the pbsserver service on the head node

cmsh% device
cmsh% foreach -1 pbsproserver (services; stop pbsserver)

« Remove the old packages from the headnodes

3.3 Important: Upgrading Particular Applications 45

S yum/zypper/apt remove pbspro<old version>*

« Remove the old packages from the software images

§ cm-chroot-sw-img /cm/images/<software image>

[root@<software image> /]# yum/zypper/apt remove pbspro<old version>*

- Install the new packages in the headnode

$ yum/zypper/apt install pbspro<new version> pbspro<new version>-client

- Install the new packages in the software images

§ cm-chroot-sw-img /cm/images/<software image>

[root@<software image> /]# yum/zypper/apt install pbspro<new version>-client

» Change the version of the WLM in the wlm object

cmsh% wlm use pbspro
cmsh% set version <new version>
cmsh% commit

- Start pbsserver

cmsh% device
cmsh% foreach -1 pbsproserver (services; start pbsserver)

Kubernetes deployments do not need removal before upgrading to BCM 11. The same version of
Kubernetes runs on the BCM cluster after the upgrade.

An upgrade to Kubernetes (section 4.21 of the Containerization Manual) can be carried out after
the BCM upgrade.

Kubernetes Package Upgrades For DGX Software Images
When upgrading DGX OS nodes from 6 to 7.2, a new software image (and /cm/shared) needs to
be created (section 3.8.13), for the nodes which will be running Ubuntu 24.04.

Kubernetes on the new DGX image needs to be manually copied over from the old image. This
can be done as follows:

» The kubernetes.list file should be copied over from the old image, <old DGX image>, to
the new image, <new DGX image>, along with its associated keyring file:

46 In-place Upgrades

[root@basecm11 ~]# cp /cm/images/<old DGXimage>/etc/apt/sources.list.d/\
kubernetes.list /cm/images/<new DGXimage>/etc/apt/sources.list.d/
[root@basecm11 ~]# cp /cm/images/<old DGXimage>/etc/apt/keyrings/\
kubernetes-apt-keyring.gpg /cm/images/ <new DGXimage>/etc/apt/keyrings/

« The packages for the existing version need to be placed in the new image (here it is called
new-dgx-image):

[root@basecm11 ~]# cm-chroot-sw-img /cm/images/new-dgx-image

[root@new-dgx-image /]# apt-get install cm-kube-diagnose kubeadm kubectl \
kubelet kubernetes-cni cm-containerd nvidia-container-toolkit nginx \
libnginx-mod-stream

- The packages for the existing version need to be held. The following commands take care of
that:

[root@new-dgx-image /]# apt-mark hold kubeadm
[root@new-dgx-image /]# apt-mark hold kubectl
[root@new-dgx-image /]# apt-mark hold kubelet
[root@new-dgx-image /]# <ctrl-d>

The <ctrl-d> is to exit out of the cm-chroot-sw-img directory. The cm-chroot-sw-img
command is described on page 532 of the Administrator Manual.

The JupyterHub database schema must be manually upgraded in each JupyterHub node after the
main package upgrade has completed. The following commands can be run to upgrade the Jupyter-
Hub database:

module load jupyter
jupyterhub upgrade-db--config=/cm/local/apps/jupyter/conf/jupyterhub_config.py \
--db sqlite:////cm/local/apps/jupyter/run/jupyterhub.sqlite

Harbor cannot be upgraded when BCM 10 is upgraded to BCM 11, its package can only be (re-)in-
stalled and (re-)deployed separately from the BCM upgrade.

If the Harbor packages were installed in BCM 10 to a node other than the head node, then a
re-deployment to that node is required after the upgrade to BCM 11 for Harbor.

When upgrading a cluster from BCM 10 to BCM 11 the upgrade of Docker registry is supported.

The upgrade process will not only upgrade CMDaemon and its dependencies, but it will also upgrade
other packages. This means that old packages will not be available from the new BCM repositories.

In some cases, this will require recompiling the user applications to use the upgraded versions
of the compilers and the libraries. Also, the configurations of the old packages will not be copied
automatically to the new packages, which means that the administrator will have to adjust the
configuration from the old packages to suit the new packages manually.

3.5 Known Issues a7

Extra base distribution packages may be installed by yum/zypper/apt-get in order to resolve
dependencies that might arise as a result of the upgrade. Hence the base distribution repositories
must be reachable. This means that the clusters that run the Enterprise Linux distributions (RHEL
and SLES) must be subscribed to the appropriate software channels.

Packages in /cm/shared are upgraded, but the administrator should be aware of the following:

- If /cm/shared is installed in the local partition, then the packages are upgraded. This may not
be desirable for users that wish to retain the old behavior.

- If /cm/shared is mounted from a separate partition, then unmounting it will prevent upgrades
to the mounted partition, but will allow new packages to be installed in /cm/shared within
the local partition. This may be desirable for the administrator, who can later copy over up-
dates fromthelocal /cm/shared to the remote /cm/shared manually according to site-specific
requirements. Since unmounting of mounted /cm/shared is carried out by default, a local
/cm/shared will have files from any packages installed there upgraded. According to the yum
database, the system is then upgraded even though the files are misplaced in the local parti-
tion. However, the newer packages can only be expected to work properly if their associated
files are copied over from the local partition to the remote partition.

With a multidistro Kubernetes cluster, there can be a known issue with accessing /cm/shared
across the various nodes.

Under What Conditions Is There An Issue?
The issue can occur when all of the following conditions apply:

1. The Kubernetes cluster (and worker nodes in particular) are spread across multiple DGX OS
versions, due to one of the following situations:

+ (A) the nodes are running as multidistro nodes within the same Kubernetes cluster (run-
ning permanently as multidistro as is the intention, and not just transiently as part of an
upgrade).

+ (B) the nodes are being upgraded, for example from Ubuntu 22 to Ubuntu 24

2. The Local Path Provisioner is provisioned and deployed in the Kubernetes cluster. This is a
component running in Kubernetes that enables pods in every Kubernetes node to consume
some kind of local storage. The local-path-provisioner parameter provides the local
path StorageClass, which sets up a sub-directory under /cm/shared.

3. In this Kubernetes cluster, there is at least one pod using the local-path StorageClass using a
PVC (PersistentVolumeClaim)

Why Is There An Issue?

The problem is that the /cm/shared directory is not unique across all nodes in a BCM cluster. The
directory differs based on the DGX OS version. For example, on the head node, for the /cm/shared
mount, you have:

« for Ubuntu 22 nodes:
/cm/shared-ubuntu2204-x86_64

https://github.com/rancher/local-path-provisioner/tree/master?tab=readme-ov-file#overview
/
/cm/shared
/cm/shared

48 In-place Upgrades

- for Ubuntu 24 nodes:
/cm/shared-ubuntu2404-x86_64
During normal running, each DGX node only sees its specific /cm/shared.

Now, if a pod consuming a PVC from its local-path StorageClass is rescheduled to a node from
the other DGX OS, then it cannot find the volume anymore, and it creates a new one.

Resolving The Issue For Persistent Mixed Distributions
A solution in the case of persistent mixed distributions on the nodes is to move all the pods to a new
common shared directory for Kubernetes, independent of the directories offered for the specific
DGX OS versions.

Steps:

1. If the cluster is not HA, then

« anew /cm/shared-kube directory can be created
- anew fsexport is created on the headnode:

[head]% device use master; fsexports

[head->device[head]->fsexports*]% add /cm/shared-kube@internalnet
[head->devi...*[/cm/shared-kube@internalnet*]]% set path /cm/shared-kube
[head->devi...*[/cm/shared-kube@internalnet*]]% set network internalnet
[head->devi...*[/cm/shared-kube@internalnet*]]% set write yes
[head->devi...*[/cm/shared-kube@internalnet*]]% commit
[head->device[head]->fsexports[/cm/shared-kube@internalnet]]%

2. If the cluster is HA, then

- anew directory or export can be created in the NAS to store the Kubernetes directory

« if the headnode is a Kubernetes workers, or if the head node is a Kubernetes master that
uses volumes using pods, then volumes will be used. Create an fsmount on the head
nodes with:

[head->device[head]->fsmounts]% add /cm/shared/apps/kubernetes
[head->...red/apps/kubernetes*]]% set device 10.180.81.165:/brdkube
[head->..*]->fsmounts*[/cm/shared/apps/kubernetes*]]% set filesystem nfs
[head->devicex[head*]->fsmounts*[/cm/shared/apps/kubernetes*]]% commit

3. Create an fsmount in the Kubernetes worker nodes categories (and/or nodes):

[head->category[default]->fsmounts]% add /cm/shared/apps/kubernetes
[head->...red/apps/kubernetes]]% set device $localnfsserver:/cm/shared-kube
[head->...*]->fsmounts*[/cm/shared/apps/kubernetes*]]% set filesystem nfs
[head->...*]->fsmounts*[/cm/shared/apps/kubernetes*]]% commit
[head->category[default]->fsmounts[/cm/shared/apps/kubernetes]]%

3.5 Known Issues 49

4. Turn off all the Kubernetes worker nodes using cmsh

This ensures that all pods are down, and not writing to the PVCs

5. On the head node, populate the whole directory with all the data from Kubernetes:

Example

rsync -ar /cm/shared-ubuntu2204-x86_64/apps/kubernetes/ \
/cm/shared/apps/kubernetes/

6. If present, copy specific PVCs from Ubuntu 24.04 as well:

Example

rsync -ar /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/\
/cm/shared/apps/kubernetes/var/volumes/

7. Turn on all the Kubernetes worker nodes

8. Ensure the Kubernetes worker nodes mount the new /cm/shared/apps/kubernetes directory

Example

mount | grep /cm/shared

9. Ensure all the pods are up and running again:

Example

kubectl get pods -A

10. Afterwards, clean up the old PVCs:

Example

rm -rf /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/
rm -rf /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/

/

50 In-place Upgrades

Resolving The Issue For The Upgrade Case Only
A solution in the case of an image upgrade, for example from DGX OS 6 to DGX OS 7, can be carried
out as follows:

Before starting the upgrade of DGX OS version, you can move all PVCs from the old to the new
/cm/shared.

We assume old nodes are running Ubuntu 22 and that they need to be upgraded to Ubuntu 24.

1. Turn off all the (Ubuntu 22.04) Kubernetes worker nodes via cmsh

This ensures that all pods are down and not writing to the PVCs.
2. Upgrade DGX OS to Ubuntu 24.04

3. On the head node, copy all the PVCs to the other new /cm/shared

rsync -ar /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/
/cm/shared-ubuntu24084-x86_64/apps/kubernetes/default/var/volumes/

4. Turn on all the Kubernetes worker nodes and check that all the pods are up and running again
(kubectl get pods -A)

5. Afterwards, clean up the old PVCs:

rm -rf /cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/

Resolving The Issue If You Already Have Duplicated PVCs
A solution in the case of PVCs that have already been duplicated requires some finesse.

1. Detect all PVCs in the old and new /cm/shared and mapping between them. First look for
current PVCs and ensure each one has the related directory in the new shared directory:

kubectl get pvc -A

Is /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/

2. Turn off the nodes

3. Backup or move the newly created PVCs, that most likely should be deleted:

mv /cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes \
/cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes-backup

4. Now, for each PVC, you have to find the original/correct one in the former shared directory.
This is a manual process, and a bit of an art. You can consider:

« The directory name which matches the Kubernetes namespace and PVC name

« If there are 2 or more matching directories then:

/
/
/cm/shared

3.5 Known Issues 51

- look for the latest modification date (Is -lah))

- check the overall size (du -hs)). Usually the largest directory has more data and should
be the most recent one

5. Run an command per PVC:

rsync -ar \
/cm/shared-ubuntu2204-x86_64/apps/kubernetes/default/var/volumes/\
pvc-98975be7-4030-4111-8680-46a38829e2e7_runai-backend_data-runai-backend-\
redis-queue-master-0/ \
/cm/shared-ubuntu2404-x86_64/apps/kubernetes/default/var/volumes/\
pvc-98975be7-4030-4f11-8680-46a38829e2e7_runai-backend_data-runai-backend-\
redis-queue-master-0/

Note: the source and target directories are different (...-ubuntu2204-. to ...-
ubuntu2404-...). This is because the source should match what you have found outin the
previous step, whlle the target should match what you listed initially.

6. Turn on nodes and verify pods are up and running

« On clusters with Jupyter deployed, after the upgrade, users might find themselves being
asked to login twice. The first time when the user will be asked to login to JupyterHub, and
a second time, where the user is asked about a "CMDaemon login”. In such cases, the user
should once again present the credentials. This extra login request is harmless, and after the
credentials are given a second time, it is unlikely that users will be queried again. The cause
of this issue is that the Jupyterhub component that interacts with CMDaemon can lose con-
nection to CMDaemon, causing it to prompt for an extra login.

- Onsome base distributions, depending on the version of the installed packages, when starting

'cm-upgrade), a YAMLLoadWarning message may be printed when its configuration files are
loaded. The warning message can be safely ignored.

» In some cases because /cm/shared may be temporarily not accessible from the cloned primary
head node when it boots for the first time, if workload managers are setup on the cluster, then
CMDaemon may create and leave module files called no-version. For example:
slurm/slurm/no-version
To resolve the issue, the leftover no-version module files under /cm/shared/modulefiles/
can be deleted.

« In some cases at the end of the head node or the software image(s) upgrade, the
script may report a list of packages that were not upgraded to their BCM 11 versions. This
can occur in cases where the package manager was not able to resolve the list of packages
to find a suitable candidate at the time of the upgrade of all packages.

While makes a best effort to swap or upgrade the packages to their BCM 11
versions, in some cases— notably on Ubuntu, it is also possible some packages are left in

their 10.0 versions.

The administrator is advised to manually swap the cm10.0 packages with the cm11.0 package.

52

In-place Upgrades

On clusters with cluster extension to AWS deployed, the cloud director and cloud nodes might
fail to start after the upgrade. This can happen when there is an entry

<blockdev mode="cloud”>/dev/nvmelni</blockdev>

in the disksetup. The issue can be resolved by removing that entry from the disksetup for the
cloud director and cloud nodes.

On clusters that have PBSPro configured, and upgraded from BCM 10 to BCM 11, new jobs
submitted by users will get job ids that were already used. This is particularly relevant for
users that use BCM monitoring data for billing purposes.

Disabling Kubernetes as part of the parallel-upgrade procedure results in an apparent failure
during the stage when etcd data is cleaned up, because the compute nodes are not reachable
from the parallel setup. This is expected since the parallel setup is isolated from the produc-
tion setup. To resolve the issue, the administrator should answer a prompt so that the failed
stage is skipped. It is also recommended to re-provision the compute nodes of the upgraded
parallel setup before attempting to set up Kubernetes or etcd again, so that any leftover data
from before the upgrade is cleaned during the provisioning.

When upgrading the DGX OS 6 sofware image to the latest updates of DGX OS 6, there is a
known issue with DKMS when a new kernel 1inux-image-5.15.0-1090-nvidiais installed.
The DKMS post-install script fails for the new kernel. This is caused by duplicate entries for
the gdrdrv module. This can be checked for with the following command:

root@dgx-os-6:/# dkms status

gdrdrv/2.4.4, 5.15.0-1063-nvidia, amd64: installed
gdrdrv/2.4.4, 5.15.0-1090-nvidia, amd64: installed
gdrdrv/2.4.4, 5.15.0-1090-nvidia, x86_64: built

The last two statuses are for the same driver, and the lastlineisbuilt ratherthaninstalled,
which means it was not installed, and leads to the post-install script failure.

This issue can be resolved by removing the duplicate entry and reconfiguring the package as
follows:

dkms remove gdrdrv/2.4.4 -a amd64 -k 5.15.0-1090-nvidia
dpkg --configure -a

When checking if the compute nodes are UP, in some cases cm-upgrade may wrongly report
that some nodes are not DOWN. The report depends on how a node has been shut down,
and that shut down can result in the state of the node not being updated correctly in the
CMDaemon database. In such scenarios, after confirming that the nodes are indeed DOWN,
re-run cm-upgrade with the --skip-node-states-check flag to skip the check for node
states:

cm-upgrade --skip-node-states-check

Upgrading from BCM 10 to BCM 11 for DGX SuperPOD deployments requires filesystem ex-
ports to be explicitly set for the network dgxnet (page 60).

3.6 Upgrading Using A BCM DVD/ISO 53

When using a BCM DVD/ISO to perform the upgrade, it is important to use a DVD/ISO that is not
older than 11.30.0. The DVD/ISO version can be found (assuming that the DVD/ISO is mounted
under /mnt/cdrom) with a command such as:

find /mnt/cdrom -type d -name '11.30.0'
/mnt/cdrom/data/packages/11.30.0

Enabling the upgrade repository and installing the upgrade package can be carried out for the
various distributions as follows:

RHELS8 derivatives:

yum-config-manager \
--add-repo http://support.brightcomputing.com/upgrade/11.8/rhel/8/updates
yum --nogpgcheck install cm-upgrade

RHEL9 derivatives:

yum-config-manager \
--add-repo http://support.brightcomputing.com/upgrade/11.08/rhel/9/updates
yum --nogpgcheck install cm-upgrade

SLES 15:

zypper addrepo \
http://support.brightcomputing.com/upgrade/11.06/sles/15/updates cm-upgrade-11
zypper install cm-upgrade

Ubuntu 22.04:

cat <<EOF > /etc/apt/sources.list.d/cm-upgrade-11.list

deb [trusted=yes] https://support.brightcomputing.com/upgrade/11.0/ubuntu/2204/ ./
EOF

apt-get update

apt-get install cm-upgrade

Ubuntu 24.04:

cat <<EOF > /etc/apt/sources.list.d/cm-upgrade-11.list

deb [trusted=yes] https://support.brightcomputing.com/upgrade/11.0/ubuntu/2404/ ./
EOF

apt-get update

apt-get install cm-upgrade

/mnt/cdrom

54 In-place Upgrades

3.7.2 Load The Environment Module

3.8 Perform Upgrade

The steps for carrying out the upgrade are as follows:

3.8.1 Power Off Nodes
- Power off regular nodes

« Terminate cloud nodes and cloud directors, and remove the cloud extension(s)

3.8.2 Apply Updates To Head Node
« RHEL derivatives:

« SLES derivatives:

« Ubuntu:

3.8.3 Apply Updates To Software Images

Before updating and upgrading a software image, it may be worth creating an image backup by

cloning the image (page 209 of the Administrator Manual). If the cluster after the upgrade has an

image that has an issue, then comparing it against the backup can help troubleshoot the issue.
For each software image, updates can be applied as follows:

« RHEL derivatives:

o SLES derivatives:

« Ubuntu:

3.8.4 Apply Updates To The node-installer Image
« RHEL derivatives:

3.8 Perform Upgrade 55

yum --installroot /cm/node-installer update

« SLES derivatives:

zypper --root /cm/node-installer up

- Ubuntu:
cm-chroot-sw-img /cm/node-installer
apt-get update
apt-get upgrade --with-new-pkgs
exit

3.8.5 Upgrade Head Nodes To BCM 11

Important: this must be run on both head nodes in a high availability setup. Recommended: Up-
grade the active head node first and then the passive head node.
Depending on availability, the upgrade can be run either over the network, or using a DVD/ISO:

» Upgrade using repositories accessible over the network

cm-upgrade

« Upgrade using a BCM DVD/ISO

cm-upgrade -b /root/bcm-11.0-ubuntu2464.iso

In an HA setup, after upgrading both the head nodes, resync the databases. Run the following
from the active head node (it is very important to complete this step before moving to the next
one):

cmha dbreclone <secondary>

3.8.6 Reboot Head Node(s)

The head node(s) must be rebooted before proceeding to run the post-upgrade actions.

3.8.7 Post-upgrade Head Node Actions
Important: these must be run on both head nodes in an HA setup

module load cm-upgrade/11

cm-post-upgrade -m

3.8.8 Upgrade The Software Image(s) To BCM 11
Important: the upgrade to the software images must be done only on the active head node. De-
pending on availability, the upgrade can be run either over the network, or using a DVD/ISO:

- Upgrade using repositories accessible over the network

56 In-place Upgrades

cm-upgrade -i all

« Upgrade using a BCM DVD/ISO

cm-upgrade -i all -b /root/bcm-11.08-ubuntu2404.iso

If the software images are not under the standard location—/cm/images/ on the head node—
then the option -a should be used:

cm-upgrade -a /apps/images -i <name of software image>
cm-upgrade -a /apps/images -i <name of software image> \
-b /root/bcm-11.08-ubuntu2404.1iso

If the software images are located under multiple locations, the target locations can be specified
as a comma-separated list:

cm-upgrade -a '/apps/images, /opt/images' -i all

3.8.9 Upgrade /cm/node-installer To BCM 11
This needs to be performed only on the primary active head node, either over the network, or using
a BCM DVD/ISO.

» Upgrade using repositories accessible over the network:

cm-upgrade -x

« Upgrade using a BCM DVD/ISO:

cm-upgrade -x -b /root/bcm-11.0-ubuntu2404.1iso

3.8.10 Post-upgrade Software Images Actions
Important: these must be run only on the active head node.

cm-post-upgrade -i all

If the software images are not under the standard location, which is /cm/images/ on the head
node, then the option -a should be used:

cm-post-upgrade -a /apps/images -i all
cm-post-upgrade -a /apps/images -i <name of software image>

If the software images are located under multiple locations, then the target locations can be
specified as a comma-separated list:

cm-post-upgrade -a '/apps/images, /opt/images' -i all

/cm/images/
/cm/images/

3.8 Perform Upgrade 57

During the upgrade to BCM 11.0, cm-upgrade automatically installs NVIDIA GPU drivers on non-
DGX software images. This is only carried out on software images. It is not carried out on the head
nodes or the node-installer images.

Default NVIDIA Driver Version
By default, cm-upgradeinstallsNVIDIA driver version 570 (Open Kernel Modules edition).
The following components are installed:

« On Ubuntu 22.04 and 24.04: the package installed is the nvidia-driver-570-open meta-
package plus additional components including:

Fabric Manager (for NVLink/NVSwitch management)
NSCQ library (NVIDIA NVSwitch Configuration and Query Library)

IMEX library (GPU memory sharing across different compute nodes in a multi-node sys-
tem connected by NVLink)

NVSDM library (for monitoring NVSwitch devices on NVIDIA Blackwell systems)

« On RHEL 9/Rocky 9: a comprehensive set of packages based on the major 570 version. The
package set installed includes:

DKMS and open kernel modules for dynamic kernel support

Core driver libraries and CUDA components

Fabric Manager for multi-GPU interconnect management

GUI tools (nvidia-settings, nvidia-xconfig) for X11 display configuration

Most package names are generic (for example: nvidia-driver, nvidia-fabric-manager), with the
exact version version determined by the repository configuration

« On SLES 15 SP6: the package installed is a set based on the major 570 version, and includes:

- Open kernel modules (nvidia-open-570)
- Fabric Manager and NSCQ library

Packages are sourced from NVIDIA’s CUDA repository (version-numbered). Native SLES pack-
ages use GO6 generation naming, but we use NVIDIA’'s CUDA repository for consistency

Non-DGX Systems Only
NVIDIA driver installation is only carried out on non-DGX systems.

DGX systems have pre-installed NVIDIA drivers, which are maintained by NVIDIA’s own update
mechanisms, and should not managed by cm-upgrade. The upgrade script detects DGX systems
by checking for the presence of /etc/dgx-release in the software image. If this file exists, then
NVIDIA driver installation in the DGX system is skipped.

Changing the NVIDIA Driver Version
If you need toinstall a different version of the NVIDIA drivers, then you can modify the driver version
either before or after the upgrade as follows:

+ Pre-upgrade: Edit /cm/local/apps/cm-upgrade/11.0/conf/packagesyaml and modify the pack-
age versions listed under the nvidia_driver_packages section for your distribution.

« Post-upgrade: Use the standard package management tools (yum/apt/zypper) within the
software image to remove the installed driver packages and install your preferred version.

/

58 In-place Upgrades

Allow between 15 and 30 seconds for CMDaemon to schedule and start provisioning updates of
/tftpboot and /cm/node-installer from the primary to the secondary head node. Then check
and wait until the provisioning requests with the secondary head node as destination have com-
pleted using:

cmsh -c 'softwareimage provisioningstatus -r'

If the provisioning requests with a destination node the secondary head node continue to be
listed for a prolonged period of time and do not disappear from the list, then the node-installer
and/or tftpboot on the secondary head node are out of sync from the primary head node, which
can result in issues with provisioning of the compute nodes. Please contact support (https://
enterprise-support.nvidia.com/s/create-case) for further assistance.

On BCM 10 Ubuntu 22.04 clusters can use DGX OS 6 images. DGX OS 6 images are not supported
in BCM 11.

A new DGX OS 7 software image must therefore be used. The image can be created using cm-
image and cm-create-image. These are BCM utilities, and are described in section 9.6 of the
Administrator Manual.

DGX OS 7 is based on Ubuntu 24.04. This then also means the mixed OS environment—
multidistro or multiOS as described in section 9.7 of the Administrator Manual—must be enabled,
to allow provisioning of DGX OS 7 images from the Ubuntu 22.04 head node of BCM 10.

Image creation can be carried out as follows:

1. A script may need to be created first:

[root@basecm11 ~]# cat disable-upstream-repos.sh

#!/bin/bash

if [-f "$1/etc/apt/sources.list.d/ubuntu.sources”]; then
mv $1/etc/apt/sources.list.d/ubuntu.sources \
$1/etc/apt/sources.list.d/ubuntu.sources.dvd_bak

fi

The script is only needed for a cluster running a BCM version 11 earlier than 11.31.0. It works
around a known issue that may arise from using an upstream repository in an inappropriate
manner. For BCM 11.31.0 and later, the workaround is carried out automatically, and the script
is not needed.

2. Use cm-image to create the appropriate the Ubuntu 24.04 base images and enable a mixed
0S setup. The -z option that calls the script need only be used for BCM 11 installations earlier
than BCM 11.31.0.

/tftpboot
/cm/node-installer
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case

3.8 Perform Upgrade 59

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image --v create all -a x86_64 -d ubuntu2404 --source \
/path/to/bcm11.0-ubuntu24.04-dgx-0s-7.2.iso \
-z disable-upstream-repos.sh

3. Use cm-create-image to create the new DGX OS image. The -z option that calls the script
need only be used for BCM 11 installations earlier than BCM 11.31.0.

[root@basecm11 ~]# cm-create-image --cmdvd \
/root/bcm-11.0-ubuntu2404-dgx-o0s-7.2.iso \
--no-cm-cuda-repo --extra-pkg-group \
doca_ofed_2.9.1-3.0.2 --dgx --dgx-type dgx_b260 \
--imagename dgx-os-image-b200 \

-z disable-upstream-repos.sh

The --dgx-type option (page 544 of the Administrator Manual) must be set for every type that
is to be used as an image. The possible values are:

« dgx_h1ee for the H100 GPU
« dgx_b2ee for the B200 GPU

» dgx_a10e for the A100 GPU

dgx_gb20e for the GB200 GPU

» dgx_h2ee for the H200 GPU

The cluster administrator should create a new category for each new image. Cloning the default-
image image from the default category is a convenient way to do this since it already has the
correct fsmounts. The image name should then be set for the category.

For example, for a B200 image dbx-os-image-b2060 that has been placed in /cm-images/:

root@basecml11:~# cmsh

[basecm11]% category

[basecm11->category]% list

Name (key) Software image Nodes

default default-image 1

[basecm11->category]% clone default gh206

[basecm11->category*[gh200*]]% use gb200

[basecm11->category*[gh200*]]% set softwareimage dgx-os-image-b200 ; commit

The nodes that are to use the new image should then be assigned their image. For example, a
nodeBB1 can be assigned to the gh200 category created in the preceding example with:

60 In-place Upgrades

[basecm11->device]% set nodeBB1 category gbh200 ; commit

Configuration overlays that were used in the old category should also be migrated as needed to
the new category.

Upgrading from BCM 10 to BCM 11 for DGX SuperPOD deployments requires NFS exports to be
explicitly set for the network dgxnet, for /cm/node-installer-ubuntu2404-x86_64 and /cm/node-
installer-ubuntu2404-x86_64/certificates

This can be configured with the following cmsh session on the head node:

[root@basecm11 ~]# cmsh

[basecm11]% device use master

[basecm11->device[basecm11]]% fsexports

[basecm11->...->fsexports]% add /cm/node-installer-ubuntu24064-x86_64@dgxnet
[basecm11->...installer-ubuntu2404-x86_64@dgxnet*]]% set network dgxnet
[basecm11->...installer-ubuntu2404-x86_64@dgxnet*]]% commit
[basecm11->...installer-ubuntu2404-x86_64@dgxnet]]% ..

[basecm11->...rts]% add /cm/node-installer-ubuntu2404-x86_64/certificates@dgxnet
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% set network dgxnet
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% set write yes
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet*]]% commit
[basecm11->...-ubuntu2404-x86_64/certificates@dgxnet]]%

The same procedure must also be carried out for that secondary head node.
The new DGX OS image has no Kubernetes packages installed on it by default. Migrating an old
Kubernetes installation over from the old image is described on page 45.

The BCM 10 to BCM 11 upgrade supports CMDaemon Lite (section 2.6.7 of the Administrator Man-
ual) running on cluster switches, such as Cumulus switches.

After the upgrade has been carried out on the head node and the images are ready for deploy-
ment, then the switches can be rebooted to pick up their new image.

- It isimportant not to reboot the switch that is being used to connect to the head node.

After the switches have rebooted, the compute nodes can be powered on.

In a cluster, mixing deployments of cm-lite-daemon for BCM 10 with those of BCM 11 is not
supported.

This means that the CMDaemon Lite servers that are not managed by CMDaemon, for example
PCs running CMDaemon Lite in a Python environment, also need to be upgraded when upgrading
the cluster itself from BCM 10 to BCM 11. That must be done manually, by removing the BCM 10
package, and installing the BCM 11 package according to the environment and OS it is running in.

It is recommended to provision the compute nodes at least once with BCM 11 before setting up
any new integrations.

The recommended way of upgrading the compute nodes is to upgrade the head node and software
image(s) as described in section 3.8, and to allow the node-installer (when the compute nodes are

3.9 In-place Upgrade Of An Edge Director Or A Compute Node 61

booted) to re-provision the compute nodes with the upgraded software. For clusters with an edge
setup, this usually means a new edge ISO needs to be generated on the head node, transferred
to the edge site, and then the edge director node needs to be reconfigured to boot from the IS0,
which will start the node-installer.

In some special cases, however, the administrator may elect to manually carry out an in-place
upgrade of a compute node or edge director, instead of using the node installer to automatically
upgrade the node. With the manual in-place upgrade, the administrator sets up the node to receive
the updates directly from the software image (through [imageupdate) without the involvement of
the node installer.

Other than the cases where the node installer does not start on (re)boot by default, such as
for the edge director, the in-place upgrade of a compute node/edge director does not offer any
advantage over the standard approach to simply upgrade the head node and the software image(s).

Anin-place upgrade of a compute node will generally restart only the CMDaemon service. Any other
service that may be affected by the upgrade of the packages, especially in the case of packages in
/cm/shared (such as WLM), which are upgraded as part of the head node(s) upgrade, will need to
be restarted manually by the administrator, or a reboot will be required.

It is therefore recommended to use the standard approach to upgrade the software image(s)
on the head node, boot the nodes with the node installer, and allow the node installer to upgrade
and configure the compute nodes as usual.

Nevertheless the administrator may find it more convenient in special cases such as edge sites,
which have edge directors, to perform an in-place upgrade. The edge directors nodes are typically
configured to boot from the local disk and by default do not start the node installer on (re)boot. An
in-place upgrade of the edge directors will then allow the administrator to upgrade the software
on the directors without transferring ISOs and reconfiguring the directors to boot from I1SOs. To
address the issue with the running services, the edge directors can be rebooted at the end of
the upgrade and while they will still not start the node installer, they will boot into the upgraded
software.

Unless otherwise stated, all actions are performed locally on the edge director

Apply Updates To The Edge Director
« RHEL derivatives:

yum update

« SLES derivatives:

zypper up

« Ubuntu:

apt-get update
apt-get upgrade --with-new-pkgs

Back Up The File System
It is recommended to perform a file system backup of the edge director

62 In-place Upgrades

Stop CMDaemon and cm-nfs-checker services

systemctl stop cmd
systemctl stop cm-nfs-checker

Upgrade The Head Node(s) As Described In The Preceding

Follow the steps to upgrade the head nodes, software image, and node installer as described in the
preceding sections “Enable Upgrade” (section 3.7) and “Perform Upgrade” (section 3.8), and which
are performed on the head node(s) of the cluster. Because CMDaemon on the edge director is
stopped, the edge director does not need to be powered off while the upgrade of the head nodes
takes place.

Upgrade CMDaemon To BCM 11
After the upgrade of the head nodes is completed, the package manager repositories files on the
edge director must be manually updated to point to the BCM 11 repositories. This means that all
occurrences of 10.0 in the repositories are replaced with with 11.0. Note: Leave the usernames
such as in, for example, “username=cm10user”, unchanged.

Then, upgrade CMDaemon as follows for the various distributions:

» RHEL derivatives:

Update the /etc/yum.repos.d/cm. repo file to point to the 11.0 repositories.

On RHEL, typically yum/dnf can manage to resolve most of the dependencies, and the admin-
istrator can execute:

yum clean all
rpm -e --nodeps cm-config-cm
yum install cmdaemon

« SLES derivatives:

Updatethe /etc/zypp/repos.d/Cluster_Manager_Updates.repo filetopointtothe 11.0
repositories.

Execute

zypper clean --all
zypper install cmdaemon

A problem may be reported by zypper with upgrading cmdaemon to version 11.0, due to a re-
quirement to install cm-config-cm version 11.0. Typically the first solution, Solution 1, of-
fered by zypper can be selected, which is to deinstall a certain set of BCM packages (prefixed
by cm9.2) in order to upgrade CMDaemon to version 11.0.

» Ubuntu:
Update the /etc/apt/sources.list.d/cm.list file to point to the 11.0 repositories.
Also update the /etc/apt/auth.conf.d/cm.conf file, to point to the 11.0 repositories.

Create a new file /etc/apt/preferences.d/99-tmp-cmd-upgrade with content (without
any space at the beginning of the lines):

Package: *
Pin: origin "updates.brightcomputing.com”

/etc/yum.repos.d/cm.repo
/etc/zypp/repos.d/Cluster_Manager_Updates.repo
/etc/apt/sources.list.d/cm.list
/etc/apt/auth.conf.d/cm.conf
/etc/apt/preferences.d/99-tmp-cmd-upgrade

3.9 In-place Upgrade Of An Edge Director Or A Compute Node 63

Pin-Priority: 1001

The administrator may also find it convenient to choose a geographically-close mirror in the
cm.list file. But note that the local change will be overwritten to the settings in the software

image, once [imageupdate| is run in a step later on.

Execute

apt-get update
apt-get install cmdaemon

Start CMDaemon
After CMDaemon has been upgraded to BCM 11, execute:

systemctl daemon-reload
systemctl start cm-nfs-checker
systemctl start cmd

Update The Edge Director Image With imageupdate
On the head node, with cmsh, verify that the edge director is UP. If the edge director is not UP, then
the in-place upgrade has not been successful, and the director will need to be upgraded by booting
into to the node-installer.

With cmsh on the head node, execute for the edge director. The administrator is
advised to execute a dry-run first, then to use use the synclog command to review the result and
verify no unexpected local data directories or files will be affected, and then to perform the real

imageupdate:

cmsh% device use edge-director
cmsh% imageupdate

cmsh% synclog

cmsh% imageupdate -w

Update The Provisioners And Recreate The Ramdisks
Execute on the head node

cmsh% softwareimage updateprovisioners;
cmsh% fspart; trigger /tftpboot; trigger /cm/node-installer; trigger /cm/shared

Allow for the provisioning requests with a destination node the in-place upgraded director to
complete by monitoring the provisioning status:

cmsh% softwareimage provisioningstatus -r

For the images served by the edge director, recreate the ramdisk

cmsh% softwareimage; createramdisk -d <image-name>

If needed, the in-place upgraded edge director can now also be rebooted. It is then upgraded
and can provision the edge compute nodes.

	Table Of Contents
	1 Introduction
	1.1 Supported BCM Versions And Linux Distributions
	1.1.1 Upgrades From The Following BCM Versions Are Supported:
	1.1.2 The Following Linux Distributions Are Supported:
	1.1.3 An Overview Of Software Upgrades In Relation To A Cluster

	1.2 Parallel Vs In-place Upgrades

	2 Parallel Upgrades
	2.1 Introduction
	2.2 Existing Cluster Health Check
	2.3 Preparations For The Parallel Upgrade Setup
	2.4 Important: Considerations For The Parallel Upgrade Setup
	2.4.1 Configuration Changes And Services On The Production Cluster Desynchronized
	2.4.2 Local Data On The Head Node Desynchronized
	2.4.3 Dangling, Temporary, And Relocated Mounted Network File Systems
	2.4.4 Cluster Extension Upgrade Not Supported
	2.4.5 Edge Setup Upgrade Not Supported
	2.4.6 Prerequisites

	2.5 Important: Upgrading Particular Applications
	2.5.1 Overview Of The Applications That cm-upgrade Does And Does Not Manage
	2.5.2 Upgrading Base View
	2.5.3 Upgrading Workload Managers (WLM)
	2.5.4 Upgrading The Kubernetes Package
	2.5.5 Upgrading The JupyterHub Database
	2.5.6 Upgrading The Docker Registry And Harbor Packages

	2.6 Important: Package Upgrade Dependency Issues
	2.7 Known Issues
	2.7.1 Kubernetes PVC Access Issue With The Shared Directory For Multidistro (MultiOS)
	2.7.2 Miscellaneous Known Issues

	2.8 Upgrading Using A BCM DVD/ISO
	2.9 Enable Upgrade
	2.9.1 Enable The Upgrade Repo, And Install The Upgrade Package
	2.9.2 Load The Environment Module

	2.10 Perform Upgrade
	2.10.1 Apply Updates To Head Node
	2.10.2 Apply Updates To Software Images
	2.10.3 Apply Updates To The node-installer Image
	2.10.4 Upgrade Head Nodes To BCM 11
	2.10.5 Reboot Head Node(s)
	2.10.6 Post-upgrade Head Node Actions
	2.10.7 Upgrade The Software Image(s) To BCM 11
	2.10.8 Upgrade /cm/node-installer To BCM 11
	2.10.9 Post-upgrade Software Images Actions
	2.10.10 NVIDIA Driver Installation
	2.10.11 (HA) Allow For The Provisioning Requests To The Secondary Head Node To Complete
	2.10.12 Enable Mixed OS Setup And Create A DGX OS 7 Image
	2.10.13 Upgrading CMDaemon Lite
	2.10.14 The Cluster Is Now Upgraded To BCM 11

	3 In-place Upgrades
	3.1 Introduction
	3.2 Existing Cluster Health Check
	3.3 Important: Upgrading Particular Applications
	3.3.1 Overview Of The Applications That cm-upgrade Does And Does Not Manage
	3.3.2 Upgrading Base View
	3.3.3 Upgrading Workload Managers (WLM)
	3.3.4 Upgrading The Kubernetes Package
	3.3.5 Upgrading The JupyterHub Database
	3.3.6 Upgrading The Docker Registry And Harbor Packages

	3.4 Important: Package Upgrade Dependency Issues
	3.5 Known Issues
	3.5.1 Kubernetes PVC Access Issue With The Shared Directory For Multidistro (MultiOS)
	3.5.2 Miscellaneous Known Issues

	3.6 Upgrading Using A BCM DVD/ISO
	3.7 Enable Upgrade
	3.7.1 Enable The Upgrade Repo, And Install The Upgrade Package
	3.7.2 Load The Environment Module

	3.8 Perform Upgrade
	3.8.1 Power Off Nodes
	3.8.2 Apply Updates To Head Node
	3.8.3 Apply Updates To Software Images
	3.8.4 Apply Updates To The node-installer Image
	3.8.5 Upgrade Head Nodes To BCM 11
	3.8.6 Reboot Head Node(s)
	3.8.7 Post-upgrade Head Node Actions
	3.8.8 Upgrade The Software Image(s) To BCM 11
	3.8.9 Upgrade /cm/node-installer To BCM 11
	3.8.10 Post-upgrade Software Images Actions
	3.8.11 NVIDIA Driver Installation
	3.8.12 (HA) Allow For The Provisioning Requests To The Secondary Head Node To Complete
	3.8.13 Enable Mixed OS Setup And Create A DGX OS 7 Image
	3.8.14 Upgrading CMDaemon Lite
	3.8.15 The Cluster Is Now Upgraded To BCM 11

	3.9 In-place Upgrade Of An Edge Director Or A Compute Node
	3.9.1 Important Note About Services Running On The In-place Upgraded Compute Node/Edge Director
	3.9.2 In-place Edge Director Upgrade Procedure

