
NVIDIA Base Command Manager 11

Administrator Manual
Revision: deefafd9d

Date: Thu Jun 12 2025

©2025 NVIDIA Corporation & affiliates. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of NVIDIA Corporation.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXlm is a registered
trademark of Flexera Software, Inc. PBS Professional, and Green Provisioning are trademarks of Altair
Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. NVIDIA Corporation shall
not be liable for technical or editorial errors or omissions which may occur in this document. NVIDIA
Corporation shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to NVIDIA Corporation
The NVIDIA Base Command Manager product principally consists of free software that is licensed by
the Linux authors free of charge. NVIDIA Corporation shall have no liability nor will NVIDIA Corpo-
ration provide any warranty for the NVIDIA Base Command Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is
without any warranty, either expressed or implied, including, but not limited to, marketability or suit-
ability for a specific purpose. The user of the NVIDIA Base Command Manager product shall accept
the full risk for the quality or performance of the product. Should the product malfunction, the costs for
repair, service, or correction will be borne by the user of the NVIDIA Base Command Manager prod-
uct. No copyright owner or third party who has modified or distributed the program as permitted in
this license shall be held liable for damages, including general or specific damages, damages caused by
side effects or consequential damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing of data, losses that must be
borne by you or others, or the inability of the program to work together with any other program), even
if a copyright owner or third party had been advised about the possibility of such damages unless such
copyright owner or third party has signed a writing to the contrary.

Table of Contents

Table of Contents . 3
0.1 Quickstart . 19
0.2 About This Manual . 19
0.3 About The Manuals In General . 19
0.4 Getting Administrator-Level Support . 20
0.5 Getting Professional Services . 20

1 Introduction 21
1.1 NVIDIA Base Command Manager Functions And Aims . 21
1.2 The Scope Of The Administrator Manual (This Manual) . 21

1.2.1 Installation . 21
1.2.2 Configuration, Management, And Monitoring Via BCM Tools And Applications . 22

1.3 Outside The Direct Scope Of The Administrator Manual 23

2 Cluster Management With NVIDIA Base Command Manager 25
2.1 Concepts . 25

2.1.1 Devices . 25
2.1.2 Software Images . 26
2.1.3 Node Categories . 27
2.1.4 Node Groups . 27
2.1.5 Roles . 28
2.1.6 Configuration Overlay . 28

2.2 Modules Environment . 29
2.2.1 Adding And Removing Modules . 29
2.2.2 Using Local And Shared Modules . 30
2.2.3 Setting Up A Default Environment For All Users . 30
2.2.4 Creating A Modules Environment Module . 31
2.2.5 Lua Modules Environment (LMod) . 31

2.3 Authentication . 32
2.3.1 Changing Administrative Passwords On The Cluster 32
2.3.2 Logins Using ssh . 33
2.3.3 Certificates . 34
2.3.4 Profiles . 35

2.4 Base View GUI . 35
2.4.1 Installing The Cluster Management GUI Service . 36
2.4.2 Navigating The Cluster With Base View . 38

2.5 Cluster Management Shell . 41
2.5.1 Invoking cmsh . 41
2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh 45
2.5.3 Working With Objects . 49
2.5.4 Accessing Cluster Settings . 60

4 Table of Contents

2.5.5 Advanced cmsh Features . 61
2.6 Cluster Management Daemon . 73

2.6.1 Managing And Inspecting The Cluster Management Daemon 74
2.6.2 Configuring The Cluster Management Daemon . 75
2.6.3 CMDaemon Versions . 75
2.6.4 Configuring The Cluster Management Daemon Logging Facilities 76
2.6.5 Configuration File Modification, And The FrozenFile Directive 77
2.6.6 Configuration File Conflicts Between The Standard Distribution And BCM For

Generated And Non-Generated Files . 78
2.6.7 CMDaemon Lite . 78

3 Configuring The Cluster 81
3.1 Main Cluster Configuration Settings . 81

3.1.1 Cluster Configuration: Various Name-Related Settings 82
3.1.2 Cluster Configuration: Some Network-Related Settings 83
3.1.3 Miscellaneous Settings . 85
3.1.4 Limiting The Maximum Number Of Open Files . 88

3.2 Network Settings . 89
3.2.1 Configuring Networks . 90
3.2.2 Adding Networks . 94
3.2.3 Changing Network Parameters . 95
3.2.4 Tools For Viewing Cluster Connections And Connectivity 106

3.3 Configuring Bridge Interfaces . 109
3.4 Configuring VLAN interfaces . 111

3.4.1 Configuring A VLAN Interface Using cmsh . 111
3.4.2 Configuring A VLAN Interface Using Base View . 111

3.5 Configuring Bonded Interfaces . 112
3.5.1 Adding A Bonded Interface . 112
3.5.2 Single Bonded Interface On A Regular Node . 113
3.5.3 Multiple Bonded Interface On A Regular Node . 113
3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes 114
3.5.5 Tagged VLAN On Top Of a Bonded Interface . 114
3.5.6 Association Of MAC Address With A Bonded Interface 114
3.5.7 Further Notes On Bonding . 115

3.6 Configuring InfiniBand Interfaces . 116
3.6.1 Installing Software Packages . 116
3.6.2 Subnet Managers . 116
3.6.3 InfiniBand Network Settings . 117
3.6.4 Verifying Connectivity . 118

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 119
3.7.1 BMC Network Settings . 120
3.7.2 BMC Authentication . 121
3.7.3 Interfaces Settings . 123
3.7.4 Identification With A BMC . 124

3.8 Configuring BlueField DPUs . 124
3.8.1 Assumptions And Limitations . 124
3.8.2 Preparation . 124

Table of Contents 5

3.8.3 Installation . 125
3.8.4 Managing DPU Settings . 129

3.9 Configuring Switches And PDUs . 132
3.9.1 Configuring With The Manufacturer’s Configuration Interface 132
3.9.2 Configuring SNMP . 134

3.10 Configuring Cumulus Switches . 136
3.10.1 Cumulus Switches Access Configuration, Initialization And Network Device Dis-

covery . 137
3.10.2 Custom Service Setups For Cumulus Linux . 138
3.10.3 Uplink Ports . 143
3.10.4 The showport MAC Address to Port Matching Tool 144
3.10.5 Disabling Port Detection . 145
3.10.6 The switchoverview Command . 146

3.11 Configuring NetQ Network Management System . 146
3.12 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 147

3.12.1 Disk Layouts . 147
3.12.2 Disk Layout Assertions . 147
3.12.3 Changing Disk Layouts . 147
3.12.4 Changing A Disk Layout From Disked To Diskless 147

3.13 Configuring NFS Volume Exports And Mounts . 150
3.13.1 Exporting A Filesystem Using Base View And cmsh 152
3.13.2 Mounting A Filesystem Using Base View And cmsh 155
3.13.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS 158
3.13.4 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers . 160

3.14 Managing And Configuring Services . 161
3.14.1 Why Use The Cluster Manager For Services? . 161
3.14.2 Managing And Configuring Services—Examples 162

3.15 Managing And Configuring A Rack . 167
3.15.1 Racks . 167
3.15.2 Assigning Devices To A Rack . 171
3.15.3 Assigning Devices To A Chassis . 173

3.16 Configuring GPU Settings . 176
3.16.1 GPUs And GPU Units . 176
3.16.2 Configuring GPU Settings . 176
3.16.3 MIG Configuration . 183

3.17 Configuring Sampling From A Prometheus Exporter . 192
3.18 Configuring Custom Scripts . 192

3.18.1 custompowerscript . 193
3.18.2 custompingscript . 193
3.18.3 customremoteconsolescript . 193
3.18.4 sysinfo Custom Scripts . 194

3.19 Cluster Configuration Without Execution By CMDaemon 197
3.19.1 Cluster Configuration: The Bigger Picture . 197
3.19.2 Making Nodes Function Differently By Image . 198
3.19.3 Making All Nodes Function Differently From Normal Cluster Behavior With

FrozenFile . 201

6 Table of Contents

3.19.4 Adding Functionality To Nodes Via An initialize Or finalize Script 201
3.19.5 Examples Of Configuring Nodes With Or Without CMDaemon 202

3.20 Saving A Backup Of Configuration Files With versionconfigfiles 203

4 Power Management 205
4.1 Configuring Power Parameters . 205

4.1.1 PDU-based Power Control . 206
4.1.2 IPMI-Based Power Control . 208
4.1.3 Combining PDU- and IPMI-Based Power Control 209
4.1.4 Custom Power Control . 209
4.1.5 Hewlett Packard iLO-Based Power Control . 211
4.1.6 Dell drac-based Power Control . 211
4.1.7 Redfish-Based and CIMC-Based Power Control . 211

4.2 Power Operations . 211
4.2.1 Power Operations Overview . 211
4.2.2 Power Operations With Base View . 212
4.2.3 Power Operations Through cmsh . 213

4.3 Monitoring Power . 217
4.4 Switch Configuration To Survive Power Downs . 217

5 Node Provisioning 219
5.1 Before The Kernel Loads . 219

5.1.1 PXE Booting . 219
5.1.2 iPXE Booting From A Disk Drive . 222
5.1.3 iPXE Booting Using InfiniBand . 222
5.1.4 Using PXE To Boot From The Drive . 223
5.1.5 Network Booting Without PXE On The ARMv8 Architecture 223
5.1.6 Network Booting Protocol . 223
5.1.7 The Boot Role . 224

5.2 Provisioning Nodes . 224
5.2.1 Provisioning Nodes: Configuration Settings . 224
5.2.2 Provisioning Nodes: Role Setup With cmsh . 225
5.2.3 Provisioning Nodes: Role Setup With Base View . 226
5.2.4 Provisioning Nodes: Housekeeping . 228

5.3 The Kernel Image, Ramdisk And Kernel Modules . 233
5.3.1 Booting To A “Good State” Software Image . 233
5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes 233
5.3.3 InfiniBand Provisioning . 235
5.3.4 VLAN Provisioning . 237

5.4 Node-Installer . 238
5.4.1 Requesting A Node Certificate . 239
5.4.2 Deciding Or Selecting Node Configuration . 241
5.4.3 Starting Up All Network Interfaces . 252
5.4.4 Determining Install-mode Type And Execution Mode 254
5.4.5 Running Initialize Scripts . 259
5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems 259
5.4.7 Synchronizing The Local Drive With The Software Image 260

Table of Contents 7

5.4.8 Writing Network Configuration Files . 264
5.4.9 Creating A Local /etc/fstab File . 264
5.4.10 Booting From The Local Hard Drive . 265
5.4.11 Running Finalize Scripts . 267
5.4.12 Unloading Specific Drivers . 268
5.4.13 Switching To The Local init Process . 268

5.5 Node States . 268
5.5.1 Node States Icons In Base View . 268
5.5.2 Node States Shown In cmsh . 268
5.5.3 Node States Indicating Regular Start Up . 269
5.5.4 Node States That May Indicate Problems . 270

5.6 Updating Running Nodes . 272
5.6.1 Updating Running Nodes: Configuration With excludelistupdate 272
5.6.2 Updating Running Nodes: With cmsh Using imageupdate 280
5.6.3 Updating Running Nodes: With Base View Using the Update node Option 280
5.6.4 Updating Running Nodes: Considerations . 280

5.7 Adding New Nodes . 281
5.7.1 Adding New Nodes With cmsh And Base View Add Functions 281
5.7.2 Adding New Nodes With The Node Creation Wizard 281

5.8 Troubleshooting The Node Boot Process . 283
5.8.1 Node Fails To PXE Boot . 283
5.8.2 Node-installer Logging . 287
5.8.3 Provisioning Logging . 288
5.8.4 Ramdisk Fails During Loading Or Sometime Later 288
5.8.5 Ramdisk Cannot Start Network . 288
5.8.6 Node-Installer Cannot Create Disk Layout . 289
5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface 292

6 User Management 297
6.1 Managing Users And Groups With Base View . 297
6.2 Managing Users And Groups With cmsh . 299

6.2.1 Adding A User . 299
6.2.2 Saving The Modified State . 300
6.2.3 Editing Properties Of Users And Groups . 301
6.2.4 Reverting To The Unmodified State . 304
6.2.5 Removing A User . 304

6.3 Using An External LDAP Server . 305
6.3.1 External LDAP Server Replication . 307
6.3.2 High Availability . 309

6.4 Tokens And Profiles . 310
6.4.1 Modifying Profiles . 311
6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By BCM’s In-

ternal LDAP . 312
6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External

LDAP . 315
6.4.4 Logging The Actions Of CMDaemon Users . 316
6.4.5 Creation Of Certificates For Nodes With cm-component-certificate 317

8 Table of Contents

7 Workload Management 319
7.1 Workload Managers Choices . 319
7.2 Forcing Jobs To Run In A Workload Management System 320

7.2.1 Disallowing User Logins To Regular Nodes Via cmsh 320
7.2.2 Disallowing User Logins To Regular Nodes Via Base View 321
7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes . 322
7.2.4 High Availability By Workload Managers . 322

7.3 Installation Of Workload Managers . 325
7.3.1 Running cm-wlm-setup In CLI Mode . 325
7.3.2 Running cm-wlm-setup As A TUI . 328
7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Con-

tainerized Jobs . 332
7.3.4 Prolog And Epilog Scripts . 338

7.4 Enabling, Disabling, And Monitoring Workload Managers 342
7.4.1 Enabling And Disabling A WLM With Base View 343
7.4.2 Enabling And Disabling A Workload Manager With cmsh 345
7.4.3 Monitoring The Workload Manager Services . 350

7.5 Configuring And Running Individual Workload Managers 353
7.5.1 Configuring And Running Slurm . 353
7.5.2 Configuring And Running PBS . 393
7.5.3 Installing, Configuring, And Running LSF . 402

7.6 Using Base View With Workload Management . 410
7.6.1 Jobs Display And Handling In Base View . 411
7.6.2 Queues Display And Handling In Base View . 411

7.7 Using cmsh With Workload Management . 412
7.7.1 The jobs Submode In cmsh . 414
7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode 420
7.7.3 Nodes Drainage Status And Handling In cmsh . 421

7.8 Examples Of Workload Management Assignment . 424
7.8.1 Setting Up A New Category And A New Queue For It 424
7.8.2 Setting Up A Prejob Or Postjob Check . 427

7.9 Power Saving With cm-scale . 429
7.10 Cgroups . 430

7.10.1 Cgroups Settings For Workload Managers . 430
7.11 Custom Node Parameters . 435

7.11.1 Other PBS Professional Customizations Examples 437

8 NVIDIA Base Command Manager Auto Scaler 439
8.1 Introduction . 439

8.1.1 Use Cases . 439
8.1.2 Resource Constraints . 440
8.1.3 Setup . 444
8.1.4 Workload Roles Assignment Limitations Per Node With cm-scale 453

8.2 Configuration . 453
8.2.1 The ScaleServer Role . 453
8.2.2 Resource Providers . 455
8.2.3 Time Quanta Optimization . 458

Table of Contents 9

8.2.4 Fairsharing Priority Calculation And Node Management 460
8.2.5 Engines . 461
8.2.6 Trackers . 462

8.3 Examples Of cm-scale Use . 469
8.3.1 Simple Static Node Provider Usage Example . 469
8.3.2 Simple Dynamic Node Provider Usage Example . 472

8.4 Further cm-scale Configuration And Examples . 478
8.4.1 Dynamic Nodes Re-purposing . 478
8.4.2 Pending Reasons . 479
8.4.3 Locations . 480
8.4.4 Azure Storage Accounts Assignment . 482
8.4.5 Uptake of HPC Jobs By Particular Types Of Nodes 482
8.4.6 How To Exclude Unused Nodes From Being Stopped 484
8.4.7 Prolog And Epilog Scripts With Auto Scaler . 484
8.4.8 Queue Node Placeholders . 485
8.4.9 Auto Scaling A Job On-premises To A Workload Manager And Kubernetes 486
8.4.10 AWS Spot Instances And Availability Zones . 488
8.4.11 Auto Scaler Statistics . 489

9 Post-installation Software Management 491
9.1 NVIDIA Base Command Manager Packages, Their Naming Convention And Version . . 493

9.1.1 The packages Command . 495
9.1.2 BCM Package Point Release Versions And The cm-package-release-info Com-

mand . 495
9.2 Managing Packages On The Head Node . 497

9.2.1 Managing RPM Or .deb Packages On The Head Node 497
9.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm

Packages . 499
9.3 Kernel Management On A Head Node Or Image . 499

9.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node . . 500
9.3.2 Excluding Kernels And Other Packages From Updates 501
9.3.3 Updating A Kernel In A Software Image . 502
9.3.4 Setting Kernel Options For Software Images . 503
9.3.5 Kernel Driver Modules . 503

9.4 Managing A Package In A Software Image And Running It On Nodes 505
9.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which

The Packages Are Deployed . 505
9.4.2 Installing From Head Into The Image: Updating The Node 507
9.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root,

yum --installroot Or chroot . 508
9.4.4 Managing A Package In The Node-Installer Image 509

9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 509
9.5.1 Managing The Software Directly On An Image . 509
9.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image . . . 510

9.6 Creating A Custom Software Image . 513
9.6.1 Creating A Base Distribution Archive From A Base Host 513
9.6.2 Creating The Software Image With cm-create-image 515

10 Table of Contents

9.6.3 Configuring Local Repositories For Linux Distributions, And For The BCM Pack-
age Repository, For A Software Image . 519

9.6.4 Creating A Custom Image From The Local Repository 521
9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 521

9.7.1 The cm-image Tool . 522
9.7.2 Multidistro Examples: Provisioning From Rocky 8 Head Node To Ubuntu 24.04

Regular Nodes . 525
9.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8

Architecture Regular Nodes . 526

10 Monitoring: Monitoring Cluster Devices 531
10.1 A Basic Monitoring Example And Action . 531

10.1.1 Synopsis Of Basic Monitoring Example . 531
10.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces 532
10.1.3 Using The Basic Monitoring Example . 533

10.2 Monitoring Concepts And Definitions . 536
10.2.1 Measurables . 536
10.2.2 Enummetrics . 539
10.2.3 Metrics . 540
10.2.4 Health Check . 541
10.2.5 Trigger . 543
10.2.6 Action . 543
10.2.7 Severity . 544
10.2.8 AlertLevel . 544
10.2.9 Flapping . 544
10.2.10 Data Producer . 544
10.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Base View 548

10.3 Monitoring Visualization With Base View . 549
10.3.1 The Monitoring Window . 549

10.4 Monitoring Configuration With Base View . 551
10.4.1 Monitoring Configuration: Data Producers . 552
10.4.2 Monitoring Configuration: Measurables . 554
10.4.3 Monitoring Configuration: Consolidators . 556
10.4.4 Monitoring Configuration: Actions . 560
10.4.5 Monitoring Configuration: Triggers . 563
10.4.6 Monitoring Configuration: Health status . 566
10.4.7 Monitoring Configuration: All Health Checks . 567
10.4.8 Monitoring Configuration: Standalone Monitored Entities 568
10.4.9 Monitoring Configuration: PromQL Queries . 568
10.4.10 Monitoring Configuration: Resources . 568
10.4.11 Monitoring Configuration: Types . 569

10.5 The monitoring Mode Of cmsh . 570
10.5.1 The action Submode . 571
10.5.2 The consolidator Submode . 573
10.5.3 The measurable Submode . 575
10.5.4 The setup Submode . 579
10.5.5 The standalone Submode . 585

Table of Contents 11

10.5.6 The trigger Submode . 585
10.6 Obtaining Monitoring Data Values . 588

10.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics,
healthchecks And enummetrics Commands . 588

10.6.2 On-Demand Metric Sampling And Health Checks 589
10.6.3 The Latest Data And Counter Values—The latest*data And

latestmetriccounters Commands . 592
10.6.4 Data Values Over A Period—The dumpmonitoringdata Command 595
10.6.5 Monitoring Data Health Overview–The healthoverview Command 604
10.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command 605
10.6.7 Dropping Monitoring Data With The monitoringdrop Command 606
10.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And

monitoringresume Commands . 607
10.6.9 Monitoring Pickup Intervals . 608

10.7 Offloaded Monitoring . 610
10.7.1 Why Offloaded Monitoring? . 610
10.7.2 Implementing Offloaded Monitoring . 611
10.7.3 Background Details . 611
10.7.4 Examining Offloaded Monitoring With monitoringoffloadinformation 615

10.8 The User Portal . 615
10.8.1 Accessing The User Portal . 616
10.8.2 Setting A Common Username/Password For The User Portal 616
10.8.3 User Portal Access . 617
10.8.4 User Portal Home Page . 617

10.9 Cloud Job Tagging . 618
10.10Event Viewer . 619

10.10.1 Viewing Events In Base View . 619
10.10.2 Viewing Events In cmsh . 620
10.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States 621
10.10.4 InfoMessages . 622

10.11Monitoring Location With GNSS . 624
10.12Monitoring Report Queries . 624

10.12.1 Monitoring Report Queries In cmsh . 624
10.13Monitoring With nvsm . 626

11 Monitoring: Job Monitoring 631
11.1 Job Metrics Introduction . 631
11.2 Job Metrics With Cgroups . 631
11.3 Job Information Retention . 632
11.4 Job Metrics Sampling Configuration . 633

11.4.1 The Job Metrics Collection Processing Mechanism 634
11.5 Job Monitoring In cmsh . 635

12 Monitoring: Job Accounting 639
12.1 Introduction . 639
12.2 Labeled Entities . 639

12.2.1 Dataproducers For Labeled Entities . 640

12 Table of Contents

12.2.2 PromQL And Labeled Entities . 640
12.2.3 Job IDs And Labeled Entities . 640
12.2.4 Measurables And Labeled Entities . 640

12.3 PromQL Queries . 641
12.3.1 The Default PromQL Queries... 641
12.3.2 ...And A Short Description Of Them . 642
12.3.3 Modifying The Default PromQL Query Properties 646
12.3.4 An Example PromQL Query, Properties, And Disassembly 647
12.3.5 Aside: Getting Raw Values For A Prometheus Class Metric 648
12.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued) 649

12.4 Parameterized PromQL Queries . 650
12.4.1 Two Job GPU Metrics Used In PromQL Queries . 652

12.5 Job Accounting In Base View . 653
12.5.1 Management And Use Of The Accounting Panel . 654

12.6 PromQL Query Modes And Specification In Base View . 656
12.7 Access Control For Workload Accounting And Reporting 659

12.7.1 Defining Project Managers Using Internal User Management 659
12.7.2 Defining Project Managers Using External User Management 660

12.8 Drilldown Queries For Workload Accounting And Reporting 661
12.8.1 The drilldownoverview Command . 662

12.9 The grid Command For Job Accounting . 664
12.9.1 The grid Command Help Text . 664
12.9.2 Some grid Command Examples . 664
12.9.3 The grid Command Time Specification . 666

13 Monitoring: Job Chargeback 669
13.1 Introduction . 669

13.1.1 The Word “Chargeback” . 669
13.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring

Measurements . 669
13.2 Job Chargeback Measurement . 670

13.2.1 Predefined Job Chargebacks . 670
13.2.2 Setting A Custom Job Chargeback . 671
13.2.3 The report And request Commands . 672

13.3 Job Chargeback Background Information . 676

14 Day-to-day Administration 677
14.1 Parallel Shells: pdsh And pexec . 677

14.1.1 pdsh In The OS Shell . 678
14.1.2 pexec In cmsh . 681
14.1.3 pexec In Base View . 682
14.1.4 Using The -j|--join Option Of pexec In cmsh . 682
14.1.5 Other Parallel Commands . 683

14.2 Getting Support With BCM Issues, And Notifications For Release Updates 683
14.2.1 The Support Portal For BCM . 684
14.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose 685
14.2.3 Requesting Remote Support With request-remote-assistance 686

Table of Contents 13

14.2.4 Getting Notified About Updates . 688
14.3 Backups . 688

14.3.1 Cluster Installation Backup . 688
14.3.2 Local Database And Data Backups And Restoration 689

14.4 Revision Control For Images . 691
14.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images 691
14.4.2 Btrfs Availability And Distribution Support . 692
14.4.3 Installing Btrfs To Work With Revision Control Of Images In BCM 692
14.4.4 Using cmsh For Revision Control Of Images . 694

14.5 BIOS And Firmware Management . 696
14.5.1 Introduction . 696
14.5.2 BIOS Management With BCM JSON Configuration Templates In Redfish 697
14.5.3 Updating BIOS And Firmware Versions . 703

14.6 Hardware Match Check With The hardware-profile Data Producer 712
14.7 Serial Over LAN Console Access . 713

14.7.1 Background Notes On Serial Console And SOL . 713
14.7.2 SOL Console Configuration With Base View . 715
14.7.3 SOL Console Configuration And Access With cmsh 715
14.7.4 The conman Serial Console Logger And Viewer . 716

14.8 Managing Raw Monitoring Data . 720
14.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option 720
14.8.2 Estimating The Required Size Of The Storage Device 720
14.8.3 Moving Monitoring Data Elsewhere . 721
14.8.4 Reducing Monitoring Data By Reducing Samples 721
14.8.5 Deleting All Monitoring Data . 721

14.9 Node Replacement . 723
14.10Ansible And NVIDIA Base Command Manager . 723

14.10.1 An Overview Of Ansible . 723
14.10.2 A Simple Playbook Example . 724
14.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration Pur-

poses . 726
14.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related

Properties . 727

15 High Availability 735
15.0 Introduction . 735

15.0.1 Why Have High Availability? . 735
15.0.2 High Availability—For What Nodes? . 735
15.0.3 High Availability Usually Uses Shared Storage . 736
15.0.4 Organization Of This Chapter . 736

15.1 HA Concepts . 736
15.1.1 Primary, Secondary, Active, Passive . 736
15.1.2 Monitoring The Active Head Node, Initiating Failover 736
15.1.3 Services In BCM HA Setups . 737
15.1.4 Failover Network Topology . 738
15.1.5 Shared Storage . 739
15.1.6 Guaranteeing One Active Head At All Times . 740

14 Table of Contents

15.1.7 Automatic Vs Manual Failover . 741
15.1.8 HA And Cloud Nodes . 741
15.1.9 HA Using Virtual Head Nodes . 742

15.2 HA Setup Procedure Using cmha-setup . 742
15.2.1 Preparation . 743
15.2.2 Failover Cloning (Replacing A Passive Head) . 745
15.2.3 Shared Storage Setup . 748
15.2.4 Automated Failover And Relevant Testing . 749

15.3 Running cmha-setup Without ncurses, Using An XML Specification 750
15.3.1 Why Run It Without ncurses? . 750
15.3.2 The Syntax Of cmha-setup Without ncurses . 750
15.3.3 Example cmha-setup Run Without ncurses . 751

15.4 Managing HA . 751
15.4.1 Changing An Existing Failover Configuration . 751
15.4.2 cmha Utility . 752
15.4.3 States . 755
15.4.4 Failover Action Decisions . 756
15.4.5 Keeping Head Nodes In Sync . 757
15.4.6 High Availability Parameters . 759
15.4.7 Viewing Failover Via Base View . 760
15.4.8 Re-cloning A Head Node . 760

15.5 HA For Regular Nodes And Edge Director Nodes . 762
15.5.1 Why Have HA On Non-Head Nodes? . 762
15.5.2 Comparing HA For Head Nodes, Regular Nodes And Edge Director Nodes 762
15.5.3 Setting Up A Regular Node HA Service . 763
15.5.4 The Sequence Of Events When Making Another HA Regular Node Active 767

15.6 HA And Workload Manager Jobs . 767

16 The Jupyter Notebook Environment Integration 769
16.1 Introduction . 769
16.2 Jupyter Environment Installation . 770

16.2.1 Jupyter Setup . 771
16.2.2 Jupyter Architecture . 771
16.2.3 Verifying Jupyter Installation . 773
16.2.4 Login Configuration . 773
16.2.5 JupyterHub Screen After Login . 775

16.3 Jupyter Notebook Examples . 776
16.4 Jupyter Kernels . 777

16.4.1 Jupyter Kernel Provisioning Kernels . 778
16.4.2 Tunables For Kernel Provisioners . 780

16.5 Jupyter Kernel Creator Extension . 782
16.5.1 BCM Predefined Kernel Templates . 783
16.5.2 Jupyter Kernel Starter . 788
16.5.3 Running Jupyter Kernels With Two Factor Authentication 789
16.5.4 Running Jupyter Kernels With Kubernetes . 790
16.5.5 Running Jupyter Kernels Based On NGC Containers 790
16.5.6 Running Jupyter Kernels With Workload Managers 793

Table of Contents 15

16.6 Jupyter Kernel Creator Extension Customization . 794
16.6.1 Kernel Template Parameters Definition . 794
16.6.2 Kernel Template Parameters Usage . 797
16.6.3 Filtering Out Irrelevant Templates From The Interface For Users 798

16.7 Jupyter VNC Extension . 799
16.7.1 What Is Jupyter VNC Extension About? . 799
16.7.2 Enabling User Lingering . 800
16.7.3 Starting A VNC Session With The Jupyter VNC Extension 800
16.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC

Extension . 802
16.8 Jupyter WLM Magic Extension . 803
16.9 Jupyter Kubernetes Operators Manager . 805

16.9.1 Overview Tab . 806
16.9.2 Jupyter Kernel Overview Tab . 807
16.9.3 Jobs Tab . 808
16.9.4 Pods Tab . 809
16.9.5 PVCs Tab . 811
16.9.6 PSQL Tab . 813
16.9.7 Spark Tab . 815
16.9.8 Events Tab . 823

16.10Jupyter Environment Removal . 824

A Generated Files 825
A.1 System Configuration Files Created Or Modified By CMDeamon On Head Nodes 825
A.2 System Configuration Files Created Or Modified Directly On The Node 828

A.2.1 Options To filewriteinfo . 829
A.2.2 Files Created On Regular Nodes By CMDaemon . 830
A.2.3 Files Created On Regular Nodes By The Node-Installer 831

A.3 Files Not Generated, But Installed In RHEL And Derivatives 832

B Bright Computing Public Key 837

C CMDaemon Configuration File Directives 839

D Disk Partitioning And RAID Configuration 871
D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema Definition File 871
D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema Definition

File . 879
D.3 Example: Default Node Partitioning . 882
D.4 Example: Hardware RAID Configuration . 884

D.4.1 RAID level 0 And RAID 10 Example . 884
D.5 Example: Software RAID . 886
D.6 Example: Software RAID With Swap . 887
D.7 Example: Logical Volume Manager . 887
D.8 Example: Logical Volume Manager With RAID 1 . 889
D.9 Example: Diskless . 890
D.10 Example: Semi-diskless . 891

16 Table of Contents

D.11 Example: Preventing Accidental Data Loss . 891
D.12 Example: Using Custom Assertions . 892
D.13 Example: Software RAID1 With One Big Partition . 893
D.14 Example: Software RAID5 With One Big Partition . 895
D.15 Example: Software RAID1 With Standard Partitioning . 897
D.16 Example: Software RAID5 With Standard Partitioning . 900
D.17 Example: LUKS Disk Encryption With Standard Partitioning 902

D.17.1 Introduction . 903
D.17.2 Node Provisioned Over The Network: Encrypted Partition XML Example 903
D.17.3 Standalone Node: Encrypted Partition XML Example 906
D.17.4 Changing A Passphrase On An Encrypted Node . 907

E Example initialize And finalize Scripts 909
E.1 When Are They Used? . 909
E.2 Accessing From Base View And cmsh . 909
E.3 Environment Variables Available To initialize And finalize Scripts 910
E.4 Using Environment Variables Stored In Multiple Variables 913
E.5 Storing A Configuration To A Filesystem . 914

E.5.1 Storing With Initialize Scripts . 914
E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes 914
E.5.3 Restricting The Script To Nodes Or Node Categories 917

F Workload Managers Quick Reference 919
F.1 Slurm . 919
F.2 PBS Professional . 921

G Metrics, Health Checks, Enummetrics, And Actions 923
G.1 Metrics And Their Parameters . 923

G.1.1 Regular Metrics . 924
G.1.2 NFS Metrics . 931
G.1.3 InfiniBand Metrics . 933
G.1.4 Monitoring System Metrics . 935
G.1.5 CPU Metrics Sampled By The CPUSampler And GPUSampler 937
G.1.6 GPU Metrics . 937
G.1.7 GPU Profiling Metrics . 939
G.1.8 Job Metrics . 940
G.1.9 IPMI Metrics . 947
G.1.10 Redfish Metrics . 948
G.1.11 SMART Metrics . 949
G.1.12 Prometheus Metrics . 950
G.1.13 NetQ Metrics . 952
G.1.14 Kubernetes Metrics . 953
G.1.15 Parameters For Metrics . 963

G.2 Health Checks And Their Parameters . 966
G.2.1 Regular Health Checks . 967
G.2.2 GPU Health Checks . 973
G.2.3 Redfish Health Checks . 974

Table of Contents 17

G.2.4 NetQ Health Checks . 974
G.2.5 Parameters For Health Checks . 975

G.3 Enummetrics . 976
G.4 Actions And Their Parameters . 978

G.4.1 Actions . 978
G.4.2 Parameters For A Monitoring Action . 978

H Workload Manager Configuration Files Updated By CMDaemon 981
H.1 Slurm . 981
H.2 PBS Professional/OpenPBS . 981
H.3 LSF . 981

I Changing The LDAP Password 983
I.1 Setting A New Password For The LDAP Server . 983
I.2 Setting The New Password In cmd.conf . 983
I.3 Checking LDAP Access . 984

J Tokens 985

K Understanding Consolidation 1001
K.1 Introduction . 1001
K.2 What Is Consolidation? . 1001
K.3 Raw Data And Consolidation . 1001
K.4 A Demonstration Of The Output . 1002

L Node Execution Filters And Execution Multiplexers 1005
L.1 Data Producers: Default Configuration For Running And Sampling 1006

L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command . 1006
L.1.2 Nodes That Data Producers Target By Default—The samplenow Command 1006

L.2 Data Producers: Configuration For Running And Targeting 1007
L.2.1 Custom Metrics From The fm.sh Custom Script . 1007

L.3 Replacing A Resource With An Explicit Node Specification 1009
L.4 Excessive Sampling . 1010
L.5 Not Just For Nodes . 1011
L.6 Lua Node Execution Filters . 1011

M A Tree View Of cmsh 1015
M.1 Modes . 1015

N Base Command Manager Essentials And NVIDIA AI Enterprise 1021
N.1 Scope Of BCME . 1021
N.2 BCME And Support For NVIDIA AI Enterprise . 1022

N.2.1 Certified Features Of BCME For NVIDIA AI Enterprise 1022
N.2.2 NVIDIA AI Enterprise Compatible Servers . 1022
N.2.3 NVIDIA Software Versions Supported . 1022
N.2.4 NVIDIA AI Enterprise Product Support Matrix . 1022

Preface

Welcome to the Administrator Manual for the NVIDIA Base Command Manager 11 (BCM) environment.

0.1 Quickstart
For readers who want to get a cluster up and running as quickly as possible with NVIDIA Base Com-
mand Manager, there is a quickstart installation guide in Chapter 1 of the Installation Manual.

0.2 About This Manual
The rest of this manual is aimed at helping system administrators configure, understand, and manage a
cluster running BCM so as to get the best out of it.

The Administrator Manual covers administration topics which are specific to the BCM environment.
Readers should already be familiar with basic Linux system administration, which the manual does not
generally cover. Aspects of system administration that require a more advanced understanding of Linux
concepts for clusters are explained appropriately.

This manual is not intended for users interested only in interacting with the cluster to run compute
jobs. The User Manual is intended to get such users up to speed with the user environment and workload
management system.

0.3 About The Manuals In General
Regularly updated versions of the NVIDIA Base Command Manager 11 manuals are available on up-
dated clusters by default at /cm/shared/docs/cm. The latest updates are always online at https:

//docs.nvidia.com/base-command-manager.

• The Administrator Manual describes the general administration of the cluster.

• The Installation Manual describes installation procedures.

• The User Manual describes the user environment and how to submit jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

• The Developer Manual has useful information for developers who would like to carry out program-
ming tasks with BCM.

• The Edge Manual describes how to install and configure machine learning capabilities with BCM.

• The Containerization Manual describes how to manage containers with BCM.

• The NVIDIA Mission Control Manual describes NVIDIA Mission Control capabilities and integra-
tion with BCM.

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

https://docs.nvidia.com/base-command-manager
https://docs.nvidia.com/base-command-manager

20 Table of Contents

The manuals constantly evolve to keep up with the development of the BCM environment and the
addition of new hardware and/or applications. The manuals also regularly incorporate feedback from
administrators and users, who can submit comments, suggestions or corrections via the website

https://enterprise-support.nvidia.com/s/create-case

Section 14.2 of the Administration Manual has more details on submitting an issue.

0.4 Getting Administrator-Level Support
Support for BCM subscriptions from version 10 onwards is available via the NVIDIA Enterprise Support
page at:

https://www.nvidia.com/en-us/support/enterprise/

Section 14.2 has more details on working with support.

0.5 Getting Professional Services
The BCM support team normally differentiates between

• regular support (customer has a question or problem that requires an answer or resolution), and

• professional services (customer asks for the team to do something or asks the team to provide
some service).

Professional services can be provided via the NVIDIA Enterprise Services page at:
https://www.nvidia.com/en-us/support/enterprise/services/

https://enterprise-support.nvidia.com/s/create-case
https://www.nvidia.com/en-us/support/enterprise/
https://www.nvidia.com/en-us/support/enterprise/services/

1
Introduction

1.1 NVIDIA Base Command Manager Functions And Aims
NVIDIA Base Command Manager (often shortened to BCM) contains tools and applications to facilitate
the installation, administration, and monitoring of a cluster. In addition, BCM aims to provide users
with an optimal environment for developing and running applications that require extensive computa-
tional resources.

1.2 The Scope Of The Administrator Manual (This Manual)
The Administrator Manual covers installation, configuration, management, and monitoring of BCM,
along with relevant background information to help understand the topics covered.

1.2.1 Installation
Installation can generally be divided into parts as follows, with some parts covered by the Administrator
Manual, some by the Installation Manual, and some by other manuals:

• Initial installation of BCM: This is covered in the Installation Manual, which gives a short intro-
duction to the concept of a cluster along with details on installing BCM onto the head node. The
Installation Manual is therefore the first manual an administrator should usually turn to when get-
ting to work with BCM for the first time. The Administrator Manual can be referred to as the main
reference resource once the head node has had BCM installed on it.

• Provisioning installation: This is covered in the Administrator Manual. After the head node has
had BCM installed on it, the other, regular, nodes can (network) boot off it and provision them-
selves from it with a default image, without requiring a Linux distribution DVD themselves. The
network boot and provisioning process for the regular nodes is described in detail in Chapter 5.

In brief, provisioning installs an operating system and files on a node. This kind of installation
to a regular node differs from a normal Linux installation in several ways. An important differ-
ence is that content that is put on the filesystem of the regular node is normally overwritten by
provisioning when the regular node reboots.

• Post-installation software installation: The installation of software to a cluster that is already
configured and running BCM is described in detail in Chapter 9 of this manual.

• Third-party software installation: The installation of software that is not developed as part of
BCM, but is supported as a part of BCM. This is described in detail in the Installation Manual.

• Cloudbursting, and Edge: these are integrated as part of BCM in various ways. These have their
own deployment procedures and have separate manuals.

22 Introduction

1.2.2 Configuration, Management, And Monitoring Via BCM Tools And Applications
The administrator normally deals with the cluster software configuration via a front end to BCM. This
can be GUI-based (Base View, section 2.4) or shell-based (cmsh, section 2.5). Other tasks can be handled
via special tools provided with BCM, or the usual Linux tools. The use of BCM tools is usually rec-
ommended over standard Linux tools because cluster administration often has special issues, including
that of scale.

The following topics are among those covered in this manual:

Chapter Title Description

2 Cluster Management With
NVIDIA Base Command
Manager

Introduction to main concepts and tools of BCM. Lays
down groundwork for the remaining chapters

3 Configuring The Cluster Further configuration and set up of the cluster after soft-
ware installation of BCM on the head node.

4 Power Management How power management within the cluster works

5 Node Provisioning Node provisioning in detail

6 User Management Account management for users and groups

7 Workload Management Workload management implementation and use

8 The cm-scale Service A BCM service to dynamically scale the cluster accord-
ing to need

9 Post-Installation Software
Management

Managing, updating, modifying BCM software and im-
ages

10 Monitoring: Monitoring Clus-
ter Devices

Device monitoring and conditional action triggers

11 Monitoring: Job Monitoring Jobs resource consumption monitoring by the jobs

12 Monitoring: Job Accounting Jobs resource consumption monitoring aggregated by
user or similar groupings

13 Monitoring: Job Chargeback Resource request monitoring, so that groups of users can
be charged for their use

14 Day-To-Day Administration Miscellaneous administration

15 High Availability Background details and setup instructions to build a
cluster with redundant head nodes

16 The Jupyter Notebook Envi-
ronment Integration

Installing and using the Jupyter notebook environment

The appendices to this manual generally give supplementary details to the main text.
The following topics are also logically a part of BCM administration, but they have their own sepa-

rate manuals. This is because they have, or are eventually expected to have, many features or cover a
special set of topics:

• Cloudbursting (Cloudbursting Manual)

• Edge deployment (Edge Manual)

• Developer topics (Developer Manual)

• Containerization topics (Containerization Manual)

• NVIDIA Mission Control topics (NVIDIA Mission Control Manual)

1.3 Outside The Direct Scope Of The Administrator Manual 23

1.3 Outside The Direct Scope Of The Administrator Manual
The following supplementary resources can deal with issues related to this manual, but are outside its
direct scope:

• Use by the end user: This is covered very peripherally in this manual. The user normally interacts
with the cluster by logging into a custom Linux user environment to run jobs. Details on running
jobs from the perspective of the user are given in the User Manual.

• The knowledge base at http://kb.brightcomputing.com often supplements the Administrator
Manual with discussion of the following:

– Obscure, or complicated, configuration cases

– Procedures that are not really within the scope of BCM itself, but that may come up as part of
related general Linux configuration.

• Further support options. If the issue is not described adequately in the manuals, then section 14.2
describes how to get further support.

http://kb.brightcomputing.com

2
Cluster Management With

NVIDIA Base Command
Manager

This chapter introduces cluster management with NVIDIA Base Command Manager. A cluster running
BCM exports a cluster management interface to the outside world, which can be used by any application
designed to communicate with the cluster.

Section 2.1 introduces a number of concepts which are key to cluster management using BCM.
Section 2.2 gives a short introduction on how the modules environment can be used by administra-

tors. The modules environment provides facilities to control aspects of a users’ interactive sessions and
also the environment used by compute jobs.

Section 2.3 introduces how authentication to the cluster management infrastructure works and how
it is used. Section 2.4 and section 2.5 introduce the cluster management GUI (Base View) and cluster
management shell (cmsh) respectively. These are the primary applications that interact with the cluster
management daemon.

Section 2.6 describes the basics of the cluster management daemon, CMDaemon, running on all
nodes of the cluster.

2.1 Concepts
In this section some concepts central to cluster management with BCM are introduced.

2.1.1 Devices
A device in BCM infrastructure represents components of a cluster. A device can be any of the following
types:

• Head Node

• Physical Node

• Virtual Node

• Cloud Node

• GPU Unit

• Chassis

• Switch (ethernet, InfiniBand, Myrinet)

• Lite Node

26 Cluster Management With NVIDIA Base Command Manager

• Power Distribution Unit

• Rack Sensor Kit

• Generic Device

A device can have a number of properties (e.g. rack position, hostname, switch port) which can be
set in order to configure the device. Using BCM, operations (e.g. power on) may be performed on a
device. The property changes and operations that can be performed on a device depend on the type of
device. For example, it is possible to mount a new filesystem to a node, but not to an Ethernet switch.

Every device that is managed by BCM has a device state associated with it. The table below describes
the most important states for devices:

device statuses device is monitored by BCM? state tracking?

[UP] UP monitored tracked

[DOWN] DOWN monitored tracked

[CLOSED] (UP) UP mostly ignored tracked

[CLOSED] (DOWN) DOWN mostly ignored tracked

These, and other states are described in more detail in section 5.5.
[DOWN] and [CLOSED] (DOWN) states have an important difference. In the case of [DOWN],

the device is down, but is typically intended to be available, and thus typically indicates a failure. In
the case of [CLOSED] (DOWN), the device is down, but is intended to be unavailable, and typically
indicates that the administrator deliberately brought the device down, and would like the device to be
ignored.

2.1.2 Software Images
A software image is a blueprint for the contents of the local filesystems on a regular node. In practice, a
software image is a directory on the head node containing a full Linux filesystem.

The software image in a standard BCM installation is based on the same parent distribution that
the head node uses. A different distribution can also be chosen after installation, from the distributions
listed in section 2.1 of the Installation Manual for the software image. That is, the head node and the
regular nodes can run different parent distributions. However, such a “mixed” cluster can be harder
to manage and it is easier for problems to arise in such mixtures. Such mixtures, while supported, are
therefore not recommended, and should only be administered by system administrators that understand
the differences between Linux distributions.

RHEL 8 and Rocky Linux 8 mixtures are completely compatible with each other on the head and
regular nodes. The same applies to RHEL9 and Rocky Linux 9. That is because Rocky Linux is designed
to be a binary-compatible derivative of its RHEL parents. On the other hand, SLES and Ubuntu need
quite some effort to work in a mixture.

When a regular node boots, the node provisioning system (Chapter 5) sets up the node with a copy
of the software image, which by default is called default-image.

Once the node is fully booted, it is possible to instruct the node to re-synchronize its local filesystems
with the software image. This procedure can be used to distribute changes to the software image without
rebooting nodes (section 5.6.2).

It is also possible to “lock” a software image so that no node is able to pick up the image until the
software image is unlocked. (section 5.4.7).

Software images can be changed using regular Linux tools and commands (such as rpm and chroot).
More details on making changes to software images and doing image package management can be
found in Chapter 9.

2.1 Concepts 27

2.1.3 Node Categories
Reasons For Categories
The collection of settings in BCM that can apply to a node is called the configuration of the node. The
administrator usually configures nodes using the Base View (section 2.4) or cmsh (section 2.5) front end
tools, and the configurations are managed internally with a database.

A node category is a group of regular nodes that share the same configuration. Node categories allow
efficiency, allowing an administrator to:

• configure a large group of nodes at once. For example, to set up a group of nodes with a particular
disk layout.

• operate on a large group of nodes at once. For example, to carry out a reboot on an entire category.

A regular node is in exactly one category at all times, which is default by default. The default
category can be changed by accessing the base object of partition mode (page 100), and setting the
value of defaultcategory to another, existing, category.

Nodes are typically divided into node categories based on the hardware specifications of a node or
based on the task that a node is to perform. Whether or not a number of nodes should be placed in a
separate category depends mainly on whether the configuration—for example: monitoring setup, disk
layout, role assignment—for these nodes differs from the rest of the nodes.

Corresponding Category Values And Node Values
• For non-boolean values, a node inherits values from the category it is in. Each value is treated as

the default property value for a node, and can be overruled by specifying the node property value
for a particular node.

• For boolean values, such as datanode (page 257) and installbootrecord (page 265), a node does
not inherit the value from the category it is in. Instead the category boolean value has the boolean
or operation applied to the node boolean value, and the result is the boolean value that is used for
the node. This is reasonably similar to the non-boolean values behavior.

Category And Software Image Do Not Necessarily Map One-To-One
One configuration property value of a node category is its software image (section 2.1.2). However,
there is no requirement for a one-to-one correspondence between node categories and software images.
Therefore multiple node categories may use the same software image, and conversely, one variable
image—it is variable because it can be changed by the node setting—may be used in the same node
category.

Software images can have their parameters overruled by the category settings. By default, however,
the category settings that can overrule the software image parameters are unset.

By default, all nodes are placed in the default category. Alternative categories can be created and
used at will, such as:

Example

Node Category Description

nodes-ib nodes with InfiniBand capabilities

nodes-highmem nodes with extra memory

login login nodes

storage storage nodes

2.1.4 Node Groups
A node group consists of nodes that have been grouped together for convenience. The group can consist
of any mix of all kinds of nodes, irrespective of whether they are head nodes or regular nodes, and

28 Cluster Management With NVIDIA Base Command Manager

irrespective of what category they are in. A node may be in 0 or more node groups at one time. I.e.: a
node may belong to many node groups.

Node groups are used mainly for carrying out operations on an entire group of nodes at a time. Since
the nodes inside a node group do not necessarily share the same configuration, configuration changes
cannot be carried out using node groups.

Example

Node Group Members

brokenhardware node087, node783, node917

headnodes mycluster-m1, mycluster-m2

rack5 node212..node254

top node084, node126, node168, node210

One important use for node groups is in the nodegroups property of the provisioning role configu-
ration (section 5.2.1), where a list of node groups that provisioning nodes provision is specified.

2.1.5 Roles
A role is a task that can be performed by a node. By assigning a certain role to a node, an administrator
activates the functionality that the role represents on this node. For example, a node can be turned into
provisioning node, or can be turned into a storage node, by assigning the corresponding roles to the
node.

Roles can be assigned to individual nodes or to node categories. When a role has been assigned to a
node category, it is implicitly assigned to all nodes inside the category.

A configuration overlay (section 2.1.6) is a group of roles that can be assigned to designated groups
of nodes within a cluster. This allows configuration of a large number of configuration parameters in
various combinations of nodes.

Some roles allow parameters to be set that influence the behavior of the role. For example, the
Slurm Client Role (which turns a node into a Slurm client) uses parameters to control how the node
is configured within Slurm in terms of queues and the number of GPUs.

When a role has been assigned to a node category with a certain set of parameters, it is possible to
override the parameters for a node inside the category. This can be done by assigning the role again to
the individual node with a different set of parameters. Roles that have been assigned to nodes override
roles that have been assigned to a node category.

Roles have a priority setting associated with them. Roles assigned at category level have a fixed
priority of 250, while roles assigned at node level have a fixed priority of 750. The configuration overlay
priority is variable, but is set to 500 by default. Thus, for example, roles assigned at the node level over-
ride roles assigned at the category level. Roles assigned at the node level also override roles assigned by
the default configuration overlay.

A role can be imported from another entity, such as a role, a category, or a configuration overlay.
Examples of role assignment are given in sections 5.2.2 and 5.2.3.

2.1.6 Configuration Overlay
A configuration overlay assigns roles (section 2.1.5) for groups of nodes. The number of roles can be
quite large, and priorities can be set for these.

Multiple configuration overlays can be set for a node. A priority can be set for each configuration
overlay, so that a configuration overlay with a higher priority is applied to its associated node instead of
a configuration overlay with a lower priority. The configuration overlay with the highest priority then
determines the actual assigned role.

A configuration overlay assigns a group of roles to an instance. This means that roles are assigned
to nodes according to the instance configuration, along with a priority. Whether the configuration over-

2.2 Modules Environment 29

lay assignment is used, or whether the original role assignment is used, depends upon the configured
priorities.

Configuration overlays can take on priorities in the range 0-1000, except for 250 and 750, which are
forbidden. Setting a priority of -1 means that the configuration overlay is ignored.

The priorities of 250, 500, and 750 are also special, as indicated by the following table:

priority assigned to node from

-1 configuration overlay not assigned

250 category

500 configuration overlay with default priority

750 node

2.2 Modules Environment
The modules environment is the shell environment that is set up by a third-party software (section 7.1 of
the Installation Manual) called Environment Modules. The software allows users to modify their shell
environment using pre-defined modules. A module may, for example, configure the user’s shell to run a
certain version of an application.

Details of the modules environment from a user perspective are discussed in section 2.3 of the User
Manual. However some aspects of it are relevant for administrators and are therefore discussed here.

2.2.1 Adding And Removing Modules
Modules may be loaded and unloaded, and also be combined for greater flexibility.

Modules currently installed are listed with:

module list

The modules available for loading are listed with:

module avail

Loading and removing specific modules is done with module load and module remove, using this
format:

module load <module name 1> [<module name 2> ...]

For example, loading the shared module (section 2.2.2), the gcc compiler, the openmpi parallel li-
brary, and the openblas library, allows an MPI application myapp.c to be compiled with OpenBLAS
optimizations:

Example

module add shared

module add gcc/13.1.0

module add openmpi/gcc/64/4.1.5

module add openblas

module add openblas/dynamic/0.3.18

mpicc -o myapp myapp.c

The exact versions used can be selected using tab-completion. In most cases, specifying version
numbers explicitly is typically only necessary when multiple versions of an application are installed
and available. When there is no ambiguity, module names without a further path specification may be
used.

https://modules.readthedocs.io/en/latest/

30 Cluster Management With NVIDIA Base Command Manager

2.2.2 Using Local And Shared Modules
Applications and their associated modules are divided into local and shared groups. Local applications
are installed on the local filesystem, whereas shared applications reside on a shared (i.e. imported)
filesystem.

It is recommended that the shared module be loaded by default for ordinary users. Loading it gives
access to the modules belonging to shared applications, and allows the module avail command to show
these extra modules.

Loading the shared module automatically for root is not recommended on a cluster where shared
storage is not on the head node itself. This is because root logins could be obstructed if this storage is
not available, and if the root user relies on files in the shared storage.

On clusters without external shared storage, root can safely load the shared module automatically
at login. This can be done by running the following command as root:

module initadd shared

Other modules can also be set to load automatically by the user at login by using “module initadd”
with the full path specification. With the initadd option, individual users can customize their own
default modules environment.

Modules can be combined in meta-modules. By default, the default-environment meta-module ex-
ists, which allows the loading of several modules at once by a user. Cluster administrators are encour-
aged to customize the default-environment meta-module to set up a recommended environment for
their users. The default-environment meta-module is empty by default.

The administrator and users have the flexibility of deciding the modules that should be loaded in
undecided cases via module dependencies. Dependencies can be defined using the prereq and conflict

commands. The man page for modulefile gives details on configuring the loading of modules with
these commands.

2.2.3 Setting Up A Default Environment For All Users
How users can set up particular modules to load automatically for their own use with the module

initadd command is discussed in section 2.2.2.
How the administrator can set up particular modules to load automatically for all users by default

is discussed in this section (section 2.2.3). In this example it is assumed that all users have just the
following modules as a default:

Example

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) shared

The slurm and gdb modules can then be set up by the administrator as a default for all users in the
following 2 ways:

1. Creating and defining part of a .profile to be executed for login shells. For example, a file
userdefaultmodules.sh created by the administrator:

[root@basecm11 ~]# cat /etc/profile.d/userdefaultmodules.sh

module load shared

module load slurm

module load gdb

Whenever users now carry out a bash login, these modules are loaded.

2. Instead of placing the modules directly in a script under profile.d like in the preceding
item, a slightly more sophisticated way is to set the modules in the meta-module /cm/shared/

modulefiles/default-environment. For example:

/cm/shared/modulefiles/default-environment
/cm/shared/modulefiles/default-environment

2.2 Modules Environment 31

[root@basecm11 ~]# cat /cm/shared/modulefiles/default-environment

#%Module1.0##

default modulefile

##

proc ModulesHelp { } {

puts stderr "\tLoads default environment modules for this cluster"

}

module-whatis "adds default environment modules"

Add any modules here that should be added by when a user loads the 'default-enviro\
nment' module

module add shared slurm gdb

The script userdefaultmodules.sh script under profile.d then only needs to have the
default-environment module loaded in it:

[root@basecm11 ~]# cat /etc/profile.d/userdefaultmodules.sh

module load -s default-environment

The -s option is used to load it silently, because otherwise a message is displayed on the terminal
informing the person logging in that the default-environment module has been loaded.

Now, whenever the administrator changes the default-environment module, users get these
changes too during login.

The lexicographical order of the scripts in the /etc/profile directory is important. For example,
naming the file defaultusermodules.sh instead of userdefaultmodules.sh means that the modules.sh
script is run after the file is run, instead of before, which would cause an error.

2.2.4 Creating A Modules Environment Module
All module files are located in the /cm/local/modulefiles and /cm/shared/modulefiles directories.
A module file is a Tcl or Lua script in which special commands are used to define functionality. The
modulefile(1) man page has more on this.

Cluster administrators can use the existing modules files as a guide to creating and installing their
own modules for module environments, and can copy and modify a file for their own software if there
is no environment provided for it already by BCM.

2.2.5 Lua Modules Environment (LMod)
By default, BCM uses traditional Tcl scripts for its module files, or TMod. Lua modules, or LMod, provide
an alternative modules environment, where the files are typically written in Lua. LMod can be used as
a replacement for TMod.

Conceptually LMod works in the same way as TMod, but provides some extra features and com-
mands.

For LMod, the module files are typically written in Lua, but LMod is also capable of reading Tcl mod-
ule files. It is therefore not necessary to convert all existing Tcl modules manually to the Lua language.

On a BCM cluster, both LMod and TMod are installed by default. However only one of them is
active, depending on which one is enabled. Switching between LMod and TMod for a node can be done
by setting an environment variable, $ENABLE_LMOD in the cm-lmod-init.sh shell script.

Switching For The Head Node
For example, for the head node:

Example

/etc/profile
/cm/local/modulefiles
/cm/shared/modulefiles

32 Cluster Management With NVIDIA Base Command Manager

[root@basecm11 ~]# cat /etc/sysconfig/modules/lmod/cm-lmod-init.sh

export ENABLE_LMOD=1

In the preceding example, LMod is enabled, and TMod is disabled because $ENABLE_LMOD is set to 1.

Example

[root@basecm11 ~]# cat /etc/sysconfig/modules/lmod/cm-lmod-init.sh

export ENABLE_LMOD=0

In the preceding example, LMod is disabled, and TMod is enabled because $ENABLE_LMOD is set to 0.
A change in the file on the node is effective after having logged out, then logged into the shell again.

Switching For The Regular Nodes
A node image is a directory and contents of that directory. It is used as the tem-
plate for a regular node when the node is provisioned (Chapter 5). For a node im-
age with the name <image name>, the cm-lmod-init.sh file is located at /cm/images/<image
name>/etc/sysconfig/modules/lmod/cm-lmod-init.sh. For switching between LMod and TMod on
a regular node, the file is changed on the image, and the file on the image is then updated to the node.
The update from the image to the node is typically carried out with the imageupdate command in cmsh

(section 5.6.2) or the Update node command in Base View (section 5.6.3).

2.3 Authentication
2.3.1 Changing Administrative Passwords On The Cluster
How to set up or change regular user passwords is not discussed here, but in Chapter 6 on user man-
agement.

Amongst the administrative passwords associated with the cluster are:

1. The root password of the head node: This allows a root login to the head node.

2. The root passwords of the software images: These allow a root login to a regular node running
with that image, and is stored in the image file.

3. The root password of the node-installer: This allows a root login to the node when the node-
installer, a stripped-down operating system, is running. The node-installer stage prepares the
node for the final operating system when the node is booting up. Section 5.4 discusses the node-
installer in more detail.

4. The root password of MySQL: This allows a root login to the MySQL server.

To avoid having to remember the disparate ways in which to change these 4 kinds of passwords,
the cm-change-passwd command runs a dialog prompting the administrator on which of them, if any,
should be changed, as in the following example:

[root@basecm11 ~]# cm-change-passwd

With this utility you can easily change the following passwords:

* root password of head node

* root password of slave images

* root password of node-installer

* root password of mysql

Note: if this cluster has a high-availability setup with 2 head

nodes, be sure to run this script on both head nodes.

2.3 Authentication 33

Change password for root on head node? [y/N]: y

Changing password for root on head node.

Changing password for user root.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Change password for root in default-image [y/N]: y

Changing password for root in default-image.

Changing password for user root.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Change password for root in node-installer? [y/N]: y

Changing password for root in node-installer.

Changing password for user root.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Change password for MYSQL root user? [y/N]: y

Changing password for MYSQL root user.

Old password:

New password:

Re-enter new password:

For a high-availability—also called a failover—configuration, the passwords are copied over auto-
matically to the other head node when a change is made in the software image root password (case 2 on
page 32).

For the remaining password cases (head root password, MySQL root password, and node-installer
root password), the passwords are best “copied” over to the other head node by simply rerunning the
script on the other head node.

Also, in the case of the password for software images used by the regular nodes: the new password
that is set for a regular node only works on the node after the image on the node itself has been updated,
with, for example, the imageupdate command (section 5.6.2). Alternatively, the new password can be
made to work on the node by simply rebooting the node to pick up the new image.

The LDAP root password is a random string set during installation. Changing this is not done using
cm-change-password. It can be changed as explained in Appendix I.

If the administrator has stored the password to the cluster in the Base View front-end, then the
password should be modified there too (figure 2.2).

2.3.2 Logins Using ssh

The standard system login root password of the head node, the software image, and the node-installer,
can be set using the cm-change-passwd command (section 2.3.1).

In contrast, ssh logins from the head node to the regular nodes are set by default to be passwordless:

• For non-root users, an ssh passwordless login works if the /home directory that contains the au-
thorized keys for these users is mounted. The /home directory is mounted by default on the head
node as well as on the regular node, so that by default a passwordless login works from the head
node to the regular nodes, as well as from the regular nodes to the head node.

34 Cluster Management With NVIDIA Base Command Manager

• For the root user, an ssh passwordless login should always work from the head node to the regular
nodes since the authorized keys are stored in /root. Logins from the regular node to the head node
are configured by default to request a password, as a security consideration.

Users can be restricted from ssh logins

• on regular nodes using the cmsh usernodelogin option (section 7.2.1) or the Base View User node

login (section 7.2.2) settings

• on the head node by modifying the sshd configuration on the head node. For example, to allow
only root logins, the value of AllowUsers can be set in /etc/ssh/sshd_config to root. The man
page for sshd_config has details on this.

2.3.3 Certificates
PEM Certificates And CMDaemon Front-end Authentication
While nodes in the cluster accept ordinary ssh-based logins, the cluster manager accepts public key
authentication using X509v3 certificates. Public key authentication using X509v3 certificates means in
practice that the person authenticating to the cluster manager must present their public certificate, and
in addition must have access to the private key that corresponds to the certificate.

BCM uses the PEM format for certificates. In this format, the certificate and private key are stored as
plain text in two separate PEM-encoded files, ending in .pem and .key.

Using cmsh and authenticating to BCM: By default, one administrator certificate is created for root for
the cmsh front end to interact with the cluster manager. The certificate and corresponding private key
are thus found on a newly-installed BCM cluster on the head node at:

/root/.cm/admin.pem

/root/.cm/admin.key

The cmsh front end, when accessing the certificate and key pair as user root, uses this pair by default, so
that prompting for authentication is then not a security requirement. The logic that is followed to access
the certificate and key by default is explained in detail in item 2 on page 315.

Using Base View and authenticating to BCM: When an administrator uses the Base View front end,
a login to the cluster is carried out with username password authentication (figure 2.2), unless the au-
thentication has already been stored in the browser, or unless certificate-based authentication is used.

• Certificate-based authentication can be carried out using a PKCS#12 certificate file. This can be
generated from the PEM format certificates. For example, for the root user, an openssl command
that can be used to generate the admin.pfx file is:

openssl pkcs12 -export -in ~/.cm/admin.pem -inkey ~/.cm/admin.key -out ~/.cm/admin.pfx

– In Chrome, the IMPORT wizard at chrome://settings/certificates can be used to save the
file into the browser.

– For Firefox, the equivalent navigation path is:
about:preferences#privacy > Certificates > View Certificates > Your Certificates

> Import

The browser can then access the Base View front end without a username/password combination.

chrome://settings/certificates

2.4 Base View GUI 35

If the administrator certificate and key are replaced, then any other certificates signed by the original
administrator certificate must be generated again using the replacement, because otherwise they will no
longer function.

Certificate generation in general, including the generation and use of non-administrator certificates,
is described in greater detail in section 6.4.

Replacing A Temporary Or Evaluation License
In the preceding section, if a license is replaced, then regular user certificates need to be generated again.
Similarly, if a temporary or evaluation license is replaced, regular user certificates need to be generated
again. This is because the old user certificates are signed by a key that is no longer valid. The generation
of non-administrator certificates and how they function is described in section 6.4.

Checking Certificates Validity With cm-check-certificates.sh

A BCM script that checks whether certificates are current or expired is /cm/local/apps/cmd/scripts/
cm-check-certificates.sh:

Example

root@basecm11:~# /cm/local/apps/cmd/scripts/cm-check-certificates.sh

/cm/local/apps/cmd/etc/cluster.pem: OK

/cm/local/apps/cmd/etc/cert.pem: OK

/cm/local/apps/cmd/etc/cluster.key : matches

All /cm/local/apps/cmd/etc/cluster.pem files are up to date (82070dedb489df6c19ffa3ace1bf354e)

/root/.cm/admin.pem: OK

... output truncated ...
root@basecm11:~#

2.3.4 Profiles
Certificates that authenticate to CMDaemon contain a profile.

A profile determines which cluster management operations the certificate holder may perform. The
administrator certificate is created with the admin profile, which is a built-in profile that allows all cluster
management operations to be performed. In this sense it is similar to the root account on unix systems.
Other certificates may be created with different profiles giving certificate owners access to a pre-defined
subset of the cluster management functionality (section 6.4).

2.4 Base View GUI
This section introduces the basics of the cluster management GUI (Base View). Base View is the web
application front end to cluster management in BCM.

Base View is supported to run on the last 2 versions of Firefox, Google Chrome, Edge, and Safari.
“Last 2 versions” means the last two publicly released versions at the time of release of NVIDIA Base
Command Manager. For example, at the time of writing of this section, June 2025, the last 2 versions
were:

Browser Versions

Chrome 136, 137

Edge 136, 137

Firefox 138, 139

...continues

/cm/local/apps/cmd/scripts/cm-check-certificates.sh
/cm/local/apps/cmd/scripts/cm-check-certificates.sh
https://browserl.ist/?q=last+2+versions
https://browserl.ist/?q=last+2+versions
https://browserl.ist/?q=last+2+versions
https://browserl.ist/?q=last+2+versions

36 Cluster Management With NVIDIA Base Command Manager

...continued

Browser Versions

Safari 18.4, 18.5

Base View should run on more up-to-date versions of the browsers in the table without issues.
Base View should run on other recent browsers without issues too, but this is not supported. Browsers

that run on mobile devices are also not supported.

2.4.1 Installing The Cluster Management GUI Service
In a default installation, accessing the head node hostname or IP address with a browser leads to the
landing page (figure 2.1).

Figure 2.1: Head node hostname or IP address landing page at https://<host name or IP address>

The landing page is served by the Apache web server from the distribution, and can be served over
the HTTP (unencrypted) or HTTPS (encrypted) protocols.

The certificates used to ensure an encrypted connection are set within:

• /etc/httpd/conf.d/ssl.conf for the RHEL family of distributions. The PEM-encoded certificate
at /etc/pki/tls/certs/localhost.crt is set by default.

• /etc/apache2/sites-available/default-ssl.conf for Ubuntu. The PEM-encoded certificate
at /etc/ssl/certs/ssl-cert-snakeoil.pem is set by default.

The system administrator may wish to consider the security aspects of using the default distribution
certificates, and may wish to replace them.

/etc/httpd/conf.d/ssl.conf
/etc/pki/tls/certs/localhost.crt
/etc/apache2/sites-available/default-ssl.conf
/etc/ssl/certs/ssl-cert-snakeoil.pem

2.4 Base View GUI 37

Within the landing page are several blocks, one of which is the Base View block. Base View is the
BCM GUI. Within the Base View block is a clickable link, which is a circle with a chain-link symbol
inside it.

Base View connects by default to the encrypted web service on port 8081. This is served from the
head node cluster manager, rather than from Apache, to the browser. The direct URL for this is of the
form:

https://<host name or IP address>:8081/base-view

The BCM package that provides the service is base-view and it is installed by default with BCM. The
service can be disabled by removing the package with, for example, yum remove base-view.

NVIDIA Base Command Manager Base View Login Window
Figure 2.2 shows the login dialog window for Base View.

Figure 2.2: Base View Login via https://<host name or IP address>:8081/base-view

NVIDIA Base Command Manager Base View Default Display On Connection
Clicking on the Login button logs the administrator into the Base View service on the cluster. By default
an overview window is displayed, corresponding to the navigation path Cluster > Partition base

(figure 2.3).

38 Cluster Management With NVIDIA Base Command Manager

Figure 2.3: Cluster Overview

2.4.2 Navigating The Cluster With Base View
Aspects of the cluster can be managed by administrators using Base View (figure 2.3).

The resource tree, displayed on the left side of the window, consists of available cluster usage con-
cepts such as Provisioning, Grouping, HPC, Cloud, and Containers. It also has a cluster-centric ap-
proach to miscellaneous system concepts such as hardware devices Devices, non-hardware resources
such as Identity Management, and Networking.

Selecting a resource opens a window that allows parameters related to the resource to be viewed and
managed.

As an example, the Cluster resource can be selected. This opens up the so-called Partition base

window, which is essentially a representation of the cluster instance.1

The tabs within the Partition base window are mapped out in figure 2.4 and summarily described
next.

1The name Partition base is literally a footnote in BCM history. It derives from the time that BCM clusters were planned to
run in separate partitions within the cluster hardware. The primary cluster was then to be the base cluster, running in the base
partition. The advent of BCM cloud computing options in the form of the Cluster-On-Demand option (Chapter 2 of the Cloud-
bursting Manual), and the Cluster Extension option (Chapter 3 of the Cloudbursting Manual) means developing cluster partitions is
no longer a priority.

2.4 Base View GUI 39

Partition base

Rack View

...

Measurables

Navigation

Settings

Refresh

Fabrics

SWITCHES

TOPOLOGY

NAME

Run command

Run, clear, Single text view, Grouped view, Join output

Command

Nodes

Version info

HOSTNAME

DATABASE VERSION

BUILD HASH

BUILD INDEX

BCM VERSION

System information

...

NUMBER OF CORES

NUMBER OF CPUS

SYSTEM NAME

OS VERSION

BIOS DATE

HOSTNAME

DISK COUNT

MEMORY TOTAL

Licensee

Edge sites

Serial

Nodes with an accelerator

Burst node count

Node count

End time

License type

Version

Accounting and reporting

License count message

MAC address

Licensed nodes with accelerators

Burst nodes

Licensed nodes

Starttime

Edition

Licensee

Settings

Burn configs

Notes

Sign installer certificates

Default category

External network... External network, Management network, No zero conf

Default burn configuration

Externally visible IP

Search domains... Search domains, Relay Host

Name servers... Name servers, Name servers from dhcp, Time servers

Node basename... Node basename, Node digits

Cluster name... Cluster name, Administrator e-mail, Partition name

JUMP TO

Failover, Time zone, ArchOS, Burn configs Failover groups, BMC Settings,

SNMP settings, DPU settings, ZTP settings, ZTP new switch settings,

SELinux settings, Access settings, NetQ settings, Provisioning settings

Overview

Disks

Workload

Nodes status

Memory used/Memory free

Overview Uptime, Phasel load

Failing Health checks

CPU system/CPU user

Occupation rate

Figure 2.4: Cluster Navigation Within The Partition Base Window

40 Cluster Management With NVIDIA Base Command Manager

Overview
The Overview tab (figure 2.3, page 38) shows the Occupation rate (page 927), memory used, CPU
cycles used, node statuses, and other helpful cluster overview details.

Settings
The Settings tab has a number of global cluster properties and property groups. These are loosely
grouped as follows:

• Buttons for jumping to settings for: Failover, time zone, ArchOS, burn configuration, failover
groups, BMC settings, SNMP settings, DPU settings, ZTP settings, ZTP new switch settings,
SELinux settings, provisioning settings, access settings, NetQ settings, provisioning settings.

• Cluster name, Administrator e-mail, partition name

• Node basename, Node digits

• Name servers, Time servers

• Search domains, Relay Host

• Externally visible IP, Provisioning Node Auto Update Timeout

• Default burn configuration

• External network, Management network

• Default category: Sets the default category

• Sign installer certificates

• Notes

License info
The License info tab shows information to do with cluster licensing. A slightly obscure property
within this window is Version, which refers to the version type of the license. The license for NVIDIA
Base Command Manager version 7.0 and above is of a type that is compatible with versions all the
way up to the current version. NVIDIA Base Command Manager license versions from before 7.0 are
not compatible. In practice it means that an upgrade from before 7.0, to 7.0 or beyond, requires a license
upgrade. The BCM support team must be contacted to arrange the license upgrade.

System information
The System information tab shows the main hardware specifications of the node (CPU, memory, BIOS),
along with the operating system version that it runs.

Version info
The Version info tab shows version information for important cluster software components, such as
the CMDaemon database version, and BCM version and builds.

Run command
The Run command tab allows a specified command to be run on a selected node of the cluster.

Fabrics
The Fabrics tab displays the topology and switches for the fabrics used.

Rack View
The Rack View tab displays a view of the rack as defined by node allocations made by the administrator
to racks and chassis.

2.5 Cluster Management Shell 41

2.5 Cluster Management Shell
This section introduces the basics of the cluster management shell, cmsh. This is the command-line
interface to cluster management in BCM. Since cmsh and Base View give access to the same cluster man-
agement functionality, an administrator need not become familiar with both interfaces. Administrators
intending to manage a cluster with only Base View may therefore safely skip this section.

The cmsh front end allows commands to be run with it, and can be used in batch mode. Although
cmsh commands often use constructs familiar to programmers, it is designed mainly for managing the
cluster efficiently rather than for trying to be a good or complete programming language. For program-
ming cluster management, the use of Python bindings (Chapter 1 of the Developer Manual) is generally
recommended instead of using cmsh in batch mode.

Usually cmsh is invoked from an interactive session (e.g. through ssh) on the head node, but it can
also be used to manage the cluster from outside.

2.5.1 Invoking cmsh

From the head node, cmsh can be invoked as follows:

Example

[root@mycluster ~]# cmsh

[mycluster]%

By default it connects to the IP address of the local management network interface, using the de-
fault BCM port. If it fails to connect as in the preceding example, but a connection takes place using
cmsh localhost, then the management interface is most probably not up. In that case, bringing the
management interface up allows cmsh to connect to CMDaemon.
Running cmsh without arguments starts an interactive cluster management session. To go back to the
unix shell, a user enters quit or ctrl-d:

[mycluster]% quit

[root@mycluster ~]#

Batch Mode And Piping In cmsh

The -c flag allows cmsh to be used in batch mode. Commands may be separated using semi-colons:

[root@mycluster ~]# cmsh -c "main showprofile; device status apc01"

admin

apc01 [UP]

[root@mycluster ~]#

Alternatively, commands can be piped to cmsh:

[root@mycluster ~]# echo device status | cmsh

device status

apc01 [UP]

mycluster [UP]

node001 [UP]

node002 [UP]

switch01 [UP]

[root@mycluster ~]#

Dotfiles And /etc/cmshrc File For cmsh
In a similar way to unix shells, cmsh sources an rc file from the /etc directory, and also dotfiles, if

they exist. The sourcing is done upon start-up in both batch and interactive mode.
If /etc/cmshrc exists, then its settings are used, but the values can be overridden by user dotfiles.

This is standard Unix behavior, analogous to how bash works with /etc/bashrc and .bashrc files.
In the following list of cmsh dotfiles, a setting in the file that is in the shorter path overrides a setting

in the file with the longer path (i.e.: “shortest path overrides”):

/etc/cmshrc

42 Cluster Management With NVIDIA Base Command Manager

• ∼/.cm/cmsh/.cmshrc

• ∼/.cm/.cmshrc

• ∼/.cmshrc

Defining Command Aliases In cmsh

Sourcing settings is convenient when defining command aliases. Command aliases can be used to ab-
breviate longer commands. For example, putting the following in .cmshrc would allow lv to be used
as an alias for device list virtualnode:

Example

alias lv device list virtualnode

Besides defining aliases in dotfiles, aliases in cmsh can also be created with the alias command. The
preceding example can be run within cmsh to create the lv alias. Running the alias command within
cmsh lists the existing aliases.

Aliases can be exported from within cmsh together with other cmsh dot settings with the help of the
export command:

Example

[mycluster]% export > /root/mydotsettings

The dot settings can be taken into cmsh by running the run command from within cmsh:

Example

[mycluster]% run /root/mydotsettings

Built-in Aliases In cmsh

The following aliases are built-ins, and are not defined in any .cmshrc or cmshrc files:

[basecm11]% alias

alias - goto -

alias .. exit

alias / home

alias ? help

alias ds device status

alias ls list

The meanings are:

• goto -: go to previous directory level of cmsh

• exit: go up a directory level, or leave cmsh if already at top level.

• home: go to the top level directory

• help: show help text for current level

• device status: show status of devices that can be accessed in device mode

2.5 Cluster Management Shell 43

Automatic Aliases In cmsh

A cmsh script is a file that has a sequence of cmsh commands that run within a cmsh session.
The directory .cm/cmsh/ can have placed in it a cmsh script with a .cmsh suffix and an arbitrary

prefix. The prefix then automatically becomes an alias in cmsh.
In the following example

• the file tablelist.cmsh provides the alias tablelist, to list devices using the | symbol as a de-
limiter, and

• the file dfh.cmsh provides the alias dfh to carry out the Linux shell command df -h

Example

[root@mycluster ~]# cat /root/.cm/cmsh/tablelist.cmsh

list -d "|"

[root@mycluster ~]# cat /root/.cm/cmsh/dfh.cmsh

!df -h

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->device]% alias | egrep '(tablelist|dfh)'

alias dfh run /root/.cm/cmsh/dfh.cmsh

alias tablelist run /root/.cm/cmsh/tablelist.cmsh

[mycluster->device]% list

Type Hostname (key) MAC Category Ip

---------------------- ---------------- ------------------ ---------------- ---------------

HeadNode mycluster FA:16:3E:B4:39:DB 10.141.255.254

PhysicalNode node001 FA:16:3E:D5:87:71 default 10.141.0.1

PhysicalNode node002 FA:16:3E:BE:05:FE default 10.141.0.2

[mycluster->device]% tablelist

Type |Hostname (key) |MAC |Category |Ip

----------------------|----------------|------------------|----------------|---------------

HeadNode |mycluster |FA:16:3E:B4:39:DB | |10.141.255.254

PhysicalNode |node001 |FA:16:3E:D5:87:71 |default |10.141.0.1

PhysicalNode |node002 |FA:16:3E:BE:05:FE |default |10.141.0.2

[mycluster->device]% dfh

Filesystem Size Used Avail Use% Mounted on

devtmpfs 1.8G 0 1.8G 0% /dev

tmpfs 1.9G 0 1.9G 0% /dev/shm

tmpfs 1.9G 33M 1.8G 2% /run

tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup

/dev/vdb1 25G 17G 8.7G 66% /

tmpfs 374M 0 374M 0% /run/user/0

The cmsh session in NVIDIA Base Command Manager does not need restarting for the alias to be-
come active.

Default Arguments In cmsh Scripts
In a cmsh script, the parameters $1, $2 and so on can be used to pass arguments. If the argument being
passed is blank, then the values the parameters take also remain blank. However, if the parameter
format has a suffix of the form -<value>, then <value> is the default value that the parameter takes if the
argument being passed is blank.

Example

[root@mycluster ~]# cat .cm/cmsh/encrypt-node-disk.cmsh

home

44 Cluster Management With NVIDIA Base Command Manager

device use ${1-node001}

set disksetup /root/my-encrypted-node-disk.xml

set revision ${2-test}

commit

The script can be run without an argument (a blank value for the argument), in which case it takes
on the default value of node001 for the parameter:

[root@mycluster ~]# cmsh

[mycluster]% encrypt-node-disk

[mycluster->device[node001]]%

The script can be run with an argument (node002 here), in which case it takes on the passed value of
node002 for the parameter:

[root@mycluster ~]# cmsh

[mycluster]% encrypt-node-disk node002

[mycluster->device[node002]]%

Options Usage For cmsh
The options usage information for cmsh is obtainable with cmsh -h:

Usage:

cmsh [options] [hostname[:port]]

cmsh [options] -c <command>

cmsh [options] -f <filename>

Options:

--help|-h

Display this help

--noconnect|-u

Start unconnected

--controlflag|-z

ETX in non-interactive mode

--color <yes/no>

Define usage of colors

--spool <directory>

Alternative /var/spool/cmd

--tty|-t

Pretend a TTY is available

--noredirect|-r

Do not follow redirects

--norc|-n

Do not load cmshrc file on start-up

--noquitconfirmation|-Q

Do not ask for quit confirmation

--echo|-x

2.5 Cluster Management Shell 45

Echo all commands

--quit|-q

Exit immediately after error

--disablemultiline|-m

Disable multiline support

--hide-events

Hide all events by default

--disable-events

Disable all events by default

--certificate|-i

Specify alternative certificate

--key|-k

Specify alternative private key

Arguments:

hostname

The hostname or IP to connect to

command

A list of cmsh commands to execute

filename

A file which contains a list of cmsh commands to execute

Examples:

cmsh run in interactive mode

cmsh -c 'device status' run the device status command and exit

cmsh --hide-events -c 'device status' run the device status command and exit, without

showing any events that arrive during this time

cmsh -f some.file -q -x run and echo the commands from some.file, exit

Man Page For cmsh
There is also a man page for cmsh(8), which is a bit more extensive than the help text. It does not
however cover the modes and interactive behavior.

2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh

The top-level of cmsh is the level that cmsh is in when entered without any options.
To avoid overloading a user with commands, cluster management functionality has been grouped

and placed in separate cmsh mode levels. Mode levels and associated objects for a level make up a hierar-
chy available below the top-level.

There is an object-oriented terminology associated with managing via this hierarchy. To perform
cluster management functions, the administrator descends via cmsh into the appropriate mode and ob-
ject, and carries out actions relevant to the mode or object.

For example, within user mode, an object representing a user instance, fred, might be added or
removed. Within the object fred, the administrator can manage its properties. The properties can be
data such as a password fred123, or a home directory /home/fred.

Figure 2.5 shows the top-level commands available in cmsh. These commands are displayed when
help is typed in at the top-level of cmsh:

46 Cluster Management With NVIDIA Base Command Manager

alias Set aliases

category Enter category mode

cert Enter cert mode

cloud Enter cloud mode

color Manage console text color settings

configurationoverlay Enter configurationoverlay mode

connect Connect to cluster

delimiter Display/set delimiter

device Enter device mode

disconnect Disconnect from cluster

edgesite....................... Enter edgesite mode

etcd Enter etcd mode

events Manage events

exit Exit from current object or mode

export Display list of aliases current list formats

fspart Enter fspart mode

group Enter group mode

groupingsyntax Manage the default grouping syntax

help Display this help

hierarchy Enter hierarchy mode

history Display command history

kubernetes..................... Enter kubernetes mode

list List state for all modes

main Enter main mode

modified List modified objects

monitoring Enter monitoring mode

network Enter network mode

nodegroup Enter nodegroup mode

partition Enter partition mode

powercircuit Enter powercircuit mode

process Enter process mode

profile Enter profile mode

quit Quit shell

quitconfirmation Manage the status of quit confirmation

rack Enter rack mode

refresh Refresh all modes

run Execute cmsh commands from specified file

session Enter session mode

softwareimage Enter softwareimage mode

task Enter task mode

time Measure time of executing command

unalias Unset aliases

user Enter user mode

watch Execute a command periodically, showing output

wlm Enter wlm mode

Figure 2.5: Top level commands in cmsh

All levels inside cmsh provide these top-level commands.
Passing a command as an argument to help gets details for it:

Example

[myheadnode]% help run

Name: run - Execute all commands in the given file(s)

2.5 Cluster Management Shell 47

Usage: run [OPTIONS] <filename> [<filename2> ...]

Options: -x, --echo

Echo all commands

-q, --quit

Exit immediately after error

[myheadnode]%

In the general case, invoking help at any mode level or within an object, without an argument,
provides two lists:

• Firstly, under the title of Top: a list of top-level commands.

• Secondly, under the title of the level it was invoked at: a list of commands that may be used at that
level.

For example, entering session mode and then typing in help displays, firstly, output with a title of Top,
and secondly, output with a title of session (some output ellipsized):

Example

[myheadnode]% session

[myheadnode->session]% help

============================ Top =============================

alias Set aliases

category Enter category mode

cert Enter cert mode

cloud Enter cloud mode

...

========================== session ===========================

id Display current session id

killsession Kill a session

list Provide overview of active sessions

[myheadnode->session]%

Navigation Through Modes And Objects In cmsh

The major modes tree is shown in Appendix M.1.
The following notes can help the cluster administrator in navigating the cmsh shell:

• To enter a mode, a user enters the mode name at the cmsh prompt. The prompt changes to indicate
that cmsh is in the requested mode, and commands for that mode can then be run.

• To use an object within a mode, the use command is used with the object name. In other words,
a mode is entered, and an object within that mode is used. When an object is used, the prompt
changes to indicate that that object within the mode is now being used, and that commands are
applied for that particular object.

• To leave a mode, and go back up a level, the exit command is used. Similarly, if an object is in
use, the exit command exits the object. At the top level, exit has the same effect as the quit

command, that is, the user leaves cmsh and returns to the unix shell. The string .. is an alias for
exit.

• The home command, which is aliased to /, takes the user from any mode depth to the top level.

48 Cluster Management With NVIDIA Base Command Manager

• The path command at any mode depth displays a string that can be used as a path to the current
mode and object, in a form that is convenient for copying and pasting into cmsh. The string can be
used in various ways. For example, it can be useful to define an alias in .cmshrc (page 42).

In the following example, the path command is used to print out a string. This string makes it
easy to construct a bash shell command to run a list from the correct place within cmsh:

Example

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% list

Name (key)

slurmclient

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% path

home;configurationoverlay;use "slurm-client";roles;use slurmclient;

Pasting the string into a bash shell, using the cmsh command with the -c option, and appending
the list command to the string, replicates the session output of the list command:

[basecm11 ~]# cmsh -c 'configurationoverlay;use "slurm-client";roles;use slurmclient; list'

Name (key)

slurmclient

The following example shows the path command can also be used inside the cmsh session itself
for convenience:

Example

[basecm11]% device

[basecm11->device]% list

Type Hostname (key) MAC Category Ip Network Status

---------------- --------------- ------------------ --------- -------------- ----------- ------

EthernetSwitch switch01 00:00:00:00:00:00 10.141.0.50 internalnet [UP]

HeadNode basecm11 00:0C:29:5D:55:46 10.141.255.254 internalnet [UP]

PhysicalNode node001 00:0C:29:7A:41:78 default 10.141.0.1 internalnet [UP]

PhysicalNode node002 00:0C:29:CC:4F:79 default 10.141.0.2 internalnet [UP]

[basecm11->device]% exit

[basecm11]% device

[basecm11->device]% use node001

[basecm11->device[node001]]% path

home;device;use node001;

[basecm11->device[node001]]% home

[basecm11]% home;device;use node001 #copy-pasted from path output earlier

[basecm11->device[node001]]%

A command can also be executed in a mode without staying within that mode. This is done by
specifying the mode before the command that is to be executed within that node. Most commands also
accept arguments after the command. Multiple commands can be executed in one line by separating
commands with semi-colons.

A cmsh input line has the following syntax:

2.5 Cluster Management Shell 49

<mode> <cmd> <arg> . . . <arg>; . . . ; <mode> <cmd> <arg> . . . <arg>

where <mode> and <arg> are optional. 2

Example

[basecm11->network]% device status basecm11; list

basecm11 [UP]

Name (key) Type Netmask bits Base address Domain name Ipv6

------------- --------- ------------- ------------- -------------------- ----

externalnet External 16 192.168.1.0 brightcomputing.com no

globalnet Global 0 0.0.0.0 cm.cluster

internalnet Internal 16 10.141.0.0 eth.cluster

[basecm11->network]%

In the preceding example, while in network mode, the status command is executed in device mode
on the host name of the head node, making it display the status of the head node. The list command
on the same line after the semi-colon still runs in network mode, as expected, and not in device mode,
and so displays a list of networks.

Inserting a semi-colon makes a difference, in that the mode is actually entered, so that the list displays
a list of nodes (some output truncated here for convenience):

Example

[basecm11->network]% device; status basecm11; list

basecm11 [UP]

Type Hostname (key) MAC Category Ip Network Status

------------- --------------- ------------------ --------- -------------- ----------- ------

HeadNode basecm11 FA:16:3E:C8:06:D1 10.141.255.254 internalnet [UP]

PhysicalNode node001 FA:16:3E:A2:9C:87 default 10.141.0.1 internalnet [UP]

[basecm11->device]%

2.5.3 Working With Objects
Modes in cmsh work with associated groupings of data called objects. For instance, device mode works
with device objects, and network mode works with network objects.

The commands used to deal with objects have similar behavior in all modes. Not all of the commands
exist in every mode, and not all of the commands function with an explicit object:

Command Description

use Use the specified object. I.e.: Make the specified object the current object

add Create the object and use it

assign Assign a new object

unassign Unassign an object

clear Clear the values of the object

clone Clone the object and use it

remove Remove the object

commit Commit local changes, done to an object, to CMDaemon

...continues

2A more precise synopsis is:
[<mode>] <cmd> [<arg> ...] [; ... ; [<mode>] <cmd> [<arg> ...]]

50 Cluster Management With NVIDIA Base Command Manager

...continued

Command Description

refresh Undo local changes done to the object

list List all objects at current level

sort Sort the order of display for the list command

format Set formatting preferences for list output

foreach Execute a set of commands on several objects

show Display all properties of the object

swap Swap (exchange) the names of two objects

get Display specified property of the object

set Set a specified property of the object

clear Set default value for a specified property of the object.

append Append a value to a property of the object, for a multi-valued property

removefrom Remove a value from a specific property of the object, for a multi-valued property

modified List objects with uncommitted local changes

usedby List objects that depend on the object

validate Do a validation check on the properties of the object

exit Exit from the current object or mode level

Working with objects with these commands is demonstrated with several examples in this section.

Working With Objects: use, exit
Example

[mycluster->device]% use node001

[mycluster->device[node001]]% status

node001 [UP]

[mycluster->device[node001]]% exit

[mycluster->device]%

In the preceding example, use node001 issued from within device mode makes node001 the cur-
rent object. The prompt changes accordingly. The status command, without an argument, then returns
status information just for node001, because making an object the current object makes subsequent com-
mands within that mode level apply only to that object. Finally, the exit command exits the current
object level.

Working With Objects: add, commit, remove
The commands introduced in this section have many implicit concepts associated with them. So an
illustrative session is first presented as an example. What happens in the session is then explained in
order to familiarize the reader with the commands and associated concepts.

Example

[mycluster->device]% add physicalnode node100 10.141.0.100

[mycluster->device*[node100*]]% commit

[mycluster->device[node100]]% category add test-category

[mycluster->category*[test-category*]]% commit

[mycluster->category[test-category]]% remove test-category

[mycluster->category*]% commit

Successfully removed 1 Categories

Successfully committed 0 Categories

2.5 Cluster Management Shell 51

[mycluster->category]% device remove node100

[mycluster->category]% device

[mycluster->device*]% commit

Successfully removed 1 Devices

Successfully committed 0 Devices

[mycluster->device]%

add: The add command creates an object within its associated mode, and in cmsh the prompt drops
into the object level just created. Thus, at the start in the preceding example, within device mode, a new
object, named node100, is added. For this particular object properties can also be set, such as the type
(physicalnode), and IP address (10.141.0.100). The node object level ([node100*]) is automatically
dropped into from device mode when the add command is executed. After execution, the state achieved
is that the object has been created with some properties. However, it is still in a temporary, modified
state, and not yet persistent.

Asterisk tags in the prompt are a useful reminder of a modified state, with each asterisk indicating
a tagged object that has an unsaved, modified property. In this case, the unsaved properties are the IP
address setting, the node name, and the node type.

The add command—syntax notes:

In most modes the add command takes only one argument, namely the name of the object that is
to be created. However, in device mode an extra object-type, in this case physicalnode, is also
required as argument, and an optional extra IP argument may also be specified. The response to
“help add” while in device mode gives details:

[myheadnode->device]% help add

Name:

add - Create a new device of the given type with specified hostname

Usage:

add <type> <hostname>

add cloudnode <hostname> [provider]

add physicalnode <hostname> [ip] [interface]

Arguments:

type chassis, fabricresourcebox, fabricswitch, genericdevice, litenode,

cloudnode, dpu, physicalnode, headnode, powerdistributionunit,

racksensor, switch, unmanagednode

interface eg. ens3, bond0=ens3+ens4

commit: The commit command is a further step that actually saves any changes made after executing
a command. In this case, in the second line, it saves the node100 object with its properties. The asterisk
tag disappears for the prompt if settings for that mode level and below have been saved.

Conveniently, the top level modes, such as the category mode, can be accessed directly from within
this level if the mode is stated before the command. So, stating the mode category before running the
add command allows the specified category test-category to be added. Again, the test-category

object level within category mode is automatically dropped into when the add command is executed.

The -w|--wait option to commit:

The commit command by default does not wait for a state change to complete. This means that the
prompt becomes available right away. This means that it is not obvious that the change has taken
place, which could be awkward if scripting with cmsh for cloning (discussed shortly) a software

52 Cluster Management With NVIDIA Base Command Manager

image (section 2.1.2). The -w|--wait option to the commit command works around this issue
by waiting for any associated background task, such as the cloning of a software image, to be
completed before making the prompt available.

remove: The remove command removes a specified object within its associated mode. On successful
execution, if the prompt is at the object level, then the prompt moves one level up. The removal is not
actually carried out fully yet; it is only a proposed removal. This is indicated by the asterisk tag, which
remains visible, until the commit command is executed, and the test-category removal is saved. The
remove command can also remove a object in a non-local mode, if the non-local mode is associated
with the command. This is illustrated in the example where, from within category mode, the device

mode is declared before running the remove command for node100. The proposed removal is configured
without being made permanent, but in this case no asterisk tag shows up in the category mode, because
the change is in device mode. To drop into device mode, the mode command “device” is executed. An
asterisk tag then does appear, to remind the administrator that there is still an uncommitted change (the
node that is to be removed) for the mode. The commit command would remove the object whichever
mode it is in—the non-existence of the asterisk tag does not change the effectiveness of commit.

The -d|--data option to remove:

The remove command by default removes an object, and not the represented data. An example
is if, in softwareimage mode, a software image is removed with the remove (without options)
command. As far as the cluster manager is concerned, the image is removed after running commit.
However the data in the directory for that software image is not removed. The -d|--data option
to the remove command arranges removal of the data in the directory for the specified image, as
well as removal of its associated object.

The -a|--all option to remove:

The remove command by default does not remove software image revisions. The -a|--all option
to the remove command also removes all software image revisions.

Working With Objects: clone, modified, swap
Continuing on with the node object node100 that was created in the previous example, it can be cloned
to node101 as follows:

Example

[mycluster->device]% clone node100 node101

Warning: The Ethernet switch settings were not cloned, and have to be set manually

[mycluster->device*[node101*]]% exit

[mycluster->device*]% modified

State Type Name

------ ------------------------ -----------------------------------

+ Device node101

[mycluster->device*]% commit

[mycluster->device]%

[mycluster->device]% remove node100

[mycluster->device*]% commit

[mycluster->device]%

The modified command is used to check what objects have uncommitted changes, and the new
object node101 that is seen to be modified, is saved with a commit. The device node100 is then removed
by using the remove command. A commit executes the removal.

The modified command corresponds roughly to the functionality of the Unsaved entities icon in
figure 10.5.

2.5 Cluster Management Shell 53

The “+” entry in the State column in the output of the modified command in the preceding example
indicates the object is a newly added one, but not yet committed. Similarly, a “�” entry indicates an ob-
ject that is to be removed on committing, while a blank entry indicates that the object has been modified
without an addition or removal involved.

Cloning an object is a convenient method of duplicating a fully configured object. When duplicating
a device object, cmsh will attempt to automatically assign a new IP address using a number of heuristics.
In the preceding example, node101 is assigned IP address 10.141.0.101.

The attempt is a best-effort, and does not guarantee a sensibly-configured object. The cluster admin-
istrator should therefore inspect the result.

Sometimes an object may have been misnamed, or physically swapped. For example, node001 ex-
changed physically with node002 in the rack, or the hardware device eth0 is misnamed by the kernel
and should be eth1. In that case it can be convenient to simply swap their names via the cluster manager
front end rather than change the physical device or adjust kernel configurations. This is equivalent to
exchanging all the attributes from one name to the other.

For example, if the two interfaces on the head node need to have their names exchanged, it can be
done as follows:

[mycluster->device]% use mycluster

[mycluster->device[mycluster]]% interfaces

[mycluster->device[mycluster]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- --------------

physical eth0 [dhcp] 10.150.4.46 externalnet

physical eth1 [prov] 10.141.255.254 internalnet

[basecm11->device[mycluster]->interfaces]% swap eth0 eth1; commit

[basecm11->device[mycluster]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- --------------

physical eth0 [prov] 10.141.255.254 internalnet

physical eth1 [dhcp] 10.150.4.46 externalnet

[mycluster->device[mycluster]->interfaces]% exit; exit

Working With Objects: get, set, refresh
The get command is used to retrieve a specified property from an object, and set is used to set it:

Example

[mycluster->device]% use node101

[mycluster->device[node101]]% get category

test-category

[mycluster->device[node101]]% set category default

[mycluster->device*[node101*]]% get category

default

[mycluster->device*[node101*]]% modified

State Type Name

------ ------------------------ -------------------------------

Device node101

[mycluster->device*[node101*]]% refresh

[mycluster->device[node101]]% modified

No modified objects of type device

[mycluster->device[node101]]% get category

test-category

[mycluster->device[node101]]%

Here, the category property of the node101 object is retrieved by using the get command. The

54 Cluster Management With NVIDIA Base Command Manager

property is then changed using the set command. Using get confirms that the value of the property
has changed, and the modified command reconfirms that node101 has local uncommitted changes.

The refresh command undoes the changes made, and corresponds roughly to the Revert button in
Base View when viewing Unsaved entities (figure 10.5). The modified command then confirms that
no local changes exist. Finally the get command reconfirms that no local change took place.

Among the possible values a property can take on are strings and booleans:

• A string can be set as a revision label for any object:

Example

[mycluster->device[node101]]% set revision "changed on 10th May"

[mycluster->device*[node101*]]% get revision

[mycluster->device*[node101*]]% changed on 10th May 2011

This can be useful when using shell scripts with an input text to label and track revisions when
sending commands to cmsh. How to send commands from the shell to cmsh is introduced in
section 2.5.1.

• For booleans, the values “yes”, “1”, “on” and “true” are equivalent to each other, as are their
opposites “no”, “0”, “off” and “false”. These values are case-insensitive.

Working With Objects: clear
Example

[mycluster->device]% set node101 mac 00:11:22:33:44:55

[mycluster->device*]% get node101 mac

00:11:22:33:44:55

[mycluster->device*]% clear node101 mac

[mycluster->device*]% get node101 mac

00:00:00:00:00:00

[mycluster->device*]%

The get and set commands are used to view and set the MAC address of node101 without running
the use command to make node101 the current object. The clear command then unsets the value of the
property. The result of clear depends on the type of the property it acts on. In the case of string prop-
erties, the empty string is assigned, whereas for MAC addresses the special value 00:00:00:00:00:00

is assigned.

Working With Objects: list, format, sort
The list command is used to list objects in a mode. The command has many options. The ones that are
valid for the current mode can be viewed by running help list. The -f|--format option is available
in all modes, and takes a format string as argument. The string specifies what properties are printed for
each object, and how many characters are used to display each property in the output line. In following
example a list of objects is requested for device mode, displaying the hostname, switchports and ip

properties for each device object.

Example

[basecm11->device]% list -f hostname:14,switchports:15,ip

hostname (key) switchports ip

-------------- --------------- --------------------

apc01 10.142.254.1

basecm11 switch01:46 10.142.255.254

node001 switch01:47 10.142.0.1

node002 switch01:45 10.142.0.2

switch01 10.142.253.1

[basecm11->device]%

2.5 Cluster Management Shell 55

Running the list command with no argument uses the current format string for the mode.
Running the format command without arguments displays the current format string, and also dis-

plays all available properties including a description of each property. For example (output truncated):

Example

[basecm11->device]% format

Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]

Valid fields:

activation : Date on which node was defined

additionalhostnames : List of additional hostnames that should resolve to the interfaces IP address

allownetworkingrestart : Allow node to update ifcfg files and restart networking

banks : Number of banks

...

The print specification of the format command uses the delimiter “:” to separate the parameter and
the value for the width of the parameter column. For example, a width of 10 can be set with:

Example

[basecm11->device]% format hostname:10

[basecm11->device]% list

hostname (

apc01

basecm11

node001

node002

switch01

A range of widths can be set, from a minimum to a maximum, using square brackets. A single
minimum width possible is chosen from the range that fits all the characters of the column. If the
number of characters in the column exceeds the maximum, then the maximum value is chosen. For
example:

Example

[basecm11->device]% format hostname:[10-14]

[basecm11->device]% list

hostname (key)

apc01

basecm11

node001

node002

switch01

The parameters to be viewed can be chosen from a list of valid fields by running the format command
without any options, as shown earlier.

The format command can take as an argument a string that is made up of multiple parameters in a
comma-separated list. Each parameter takes a colon-delimited width specification.

Example

56 Cluster Management With NVIDIA Base Command Manager

[basecm11->device]% format hostname:[10-14],switchports:14,ip:20

[basecm11->device]% list

hostname (key) switchports ip

-------------- -------------- --------------------

apc01 10.142.254.1

basecm11 switch01:46 10.142.255.254

node001 switch01:47 10.142.0.1

node002 switch01:45 10.142.0.2

switch01 10.142.253.1

The output of the format command without arguments shows the current list printing format string,
with spaces. This can be used with enclosing quotes (").

In general, the string used in the format command can be set with enclosing quotes ("), or alterna-
tively, with the spaces removed:

Example

[basecm11->device]% format "hostname:[16-32], network:[14-32], status:[16-32]"

or

[basecm11->device]% format hostname:[16-32],network:[14-32],status:[16-32]

The default parameter settings can be restored with the -r|--reset option:

Example

[basecm11->device]% format -r

[basecm11->device]% format | head -3

Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]

[basecm11->device]%

The sort command sorts output in alphabetical order for specified parameters when the list com-
mand is run. The sort is done according to the precedence of the parameters passed to the sort com-
mand:

Example

[basecm11->device]% sort type mac

[basecm11->device]% list -f type:15,hostname:15,mac

type hostname (key) mac

--------------- --------------- --------------------

HeadNode basecm11 08:0A:27:BA:B9:43

PhysicalNode node002 00:00:00:00:00:00

PhysicalNode log001 52:54:00:DE:E3:6B

[basecm11->device]% sort type hostname

[basecm11->device]% list -f type:15,hostname:15,mac

type hostname (key) mac

--------------- --------------- --------------------

HeadNode basecm11 08:0A:27:BA:B9:43

PhysicalNode log001 52:54:00:DE:E3:6B

PhysicalNode node002 00:00:00:00:00:00

[basecm11->device]% sort mac hostname

[basecm11->device]% list -f type:15,hostname:15,mac

2.5 Cluster Management Shell 57

type hostname (key) mac

--------------- --------------- --------------------

PhysicalNode node002 00:00:00:00:00:00

HeadNode basecm11 08:0A:27:BA:B9:43

PhysicalNode log001 52:54:00:DE:E3:6B

The preceding sort commands can alternatively be specified with the -s|--sort option to the list
command:

[basecm11->device]% list -f type:15,hostname:15,mac --sort type,mac

[basecm11->device]% list -f type:15,hostname:15,mac --sort type,hostname

[basecm11->device]% list -f type:15,hostname:15,mac --sort mac,hostname

Working With Objects: append, removefrom
When dealing with a property of an object that can take more than one value at a time—a list of values—
the append and removefrom commands can be used to respectively append to and remove elements from
the list. If more than one element is appended, they should be space-separated. The set command may
also be used to assign a new list at once, overwriting the existing list. In the following example values are
appended and removed from the powerdistributionunits properties of device node001. The power-

distributionunits properties represent the list of ports on power distribution units that a particular
device is connected to. This information is relevant when power operations are performed on a node.
Chapter 4 has more information on power settings and operations.

Example

[mycluster->device]% use node001

[mycluster->device[node001]]% get powerdistributionunits

apc01:1

[...device[node001]]% append powerdistributionunits apc01:5

[...device*[node001*]]% get powerdistributionunits

apc01:1 apc01:5

[...device*[node001*]]% append powerdistributionunits apc01:6

[...device*[node001*]]% get powerdistributionunits

apc01:1 apc01:5 apc01:6

[...device*[node001*]]% removefrom powerdistributionunits apc01:5

[...device*[node001*]]% get powerdistributionunits

apc01:1 apc01:6

[...device*[node001*]]% set powerdistributionunits apc01:1 apc01:02

[...device*[node001*]]% get powerdistributionunits

apc01:1 apc01:2

Working With Objects: usedby
Removing a specific object is only possible if other objects do not have references to it. To help the ad-
ministrator discover a list of objects that depend on (“use”) the specified object, the usedby command
may be used. In the following example, objects depending on device apc01 are requested. The usedby

property of powerdistributionunits indicates that device objects node001 and node002 contain refer-
ences to (“use”) the object apc01. In addition, the apc01 device is itself displayed as being in the up state,
indicating a dependency of apc01 on itself. If the device is to be removed, then the 2 references to it first
need to be removed, and the device also first has to be brought to the CLOSED state (page 270) by using
the close command.

Example

[mycluster->device]% usedby apc01

Device used by the following:

Type Name Parameter

58 Cluster Management With NVIDIA Base Command Manager

---------------- ---------- ----------------------

Device apc01 Device is up

Device node001 powerDistributionUnits

Device node002 powerDistributionUnits

[mycluster->device]%

Working With Objects: validate
Whenever committing changes to an object, the cluster management infrastructure checks the object to
be committed for consistency. If one or more consistency requirements are not met, then cmsh reports
the violations that must be resolved before the changes are committed. The validate command allows
an object to be checked for consistency without committing local changes.

Example

[mycluster->device]% use node001

[mycluster->device[node001]]% clear category

[mycluster->device*[node001*]]% commit

Code Field Message

----- ------------------------ ---------------------------

1 category The category should be set

[mycluster->device*[node001*]]% set category default

[mycluster->device*[node001*]]% validate

All good

[mycluster->device*[node001*]]% commit

[mycluster->device[node001]]%

Working With Objects: show
The show command is used to show the parameters and values of a specific object. For example for the
object node001, the attributes displayed are (some output ellipsized):

[mycluster->device[node001]]% show

Parameter Value

--------------------------------------- ------------------------------------

Activation Thu, 03 Aug 2017 15:57:42 CEST

BMC Settings <submode>

Block devices cleared on next boot

Category default

...

Data node no

Default gateway 10.141.255.254 (network: internalnet)

...

Software image default-image

Static routes <0 in submode>

...

Working With Objects: assign, unassign
The assign and unassign commands are analogous to add and remove. The difference between assign

and add from the system administrator point of view is that assign sets an object with settable properties
from a choice of existing names, whereas add sets an object with settable properties that include the name
that is to be given. This makes assign suited for cases where multiple versions of a specific object choice
cannot be used.

For example,

• If a node is to be configured to be run with particular Slurm settings, then the node can be assigned
an slurmclient role (section 2.1.5) with the assign command. The node cannot be assigned an-
other slurmclient role with other Slurm settings at the same time. Only the settings within the
assigned Slurm client role can be changed.

2.5 Cluster Management Shell 59

• If a node is to be configured to run with added interfaces eth3 and eth4, then the node can have
both physical interfaces added to it with the add command.

The only place where the assign command is currently used within cmsh is within the roles sub-
mode, available under category mode, configurationoverlay mode, or device mode. Within roles,
assign is used for assigning roles objects to give properties associated with that role to the category,
configuration overlay, or device.

Working With Objects: import For Roles
The import command is an advanced command that works within a role. It is used to clone roles
between entities.

A node inherits all roles from the category and configuration overlay it is a part of.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles node001

[basecm11->device[node001]->roles]% list

Name (key)

[category:default] cgroupsupervisor

[category:default] slurmclient

If there is a small change to the default roles to be made, only for node001, in slurmclient, then the
role can be imported from a category or overlay. Importing the role duplicates the object and assigns the
duplicated value to node001.

This differs from simply assigning a slurmclient role to node001, because importing provides the
values from the category or overlay, whereas assigning provides unset values.

After running import, just as for assign, changes to the role made at node001 level stay at that node
level, and changes made to the category-level or overlay-level slurmclient role are not automatically
inherited by the node001 slurmclient role.

Example

[basecm11->device[node001]->roles]% import <TAB><TAB>
backup etcd::host pbsproclient

boot failover pbsproserver

...

...and other available roles including slurmclient...

[basecm11->device[node001]->roles]% import --overlay slurm-client slurmclient

[basecm11->device*[node001*]->roles*]% list

Name (key)

[category:default] cgroupsupervisor

slurmclient

[basecm11->device*[node001*]->roles*]% set slurmclient queues node1q

[basecm11->device*[node001*]->roles*]% commit

The preceding shows that a list of possible roles is prompted for via tab-completion after having
typed import, and that the settings from the configuration overlay level are brought into node001 for
the slurmclient role. The slurmclient values at node level then override any of the overlay level or
category level settings, as suggested by the new list output. The Slurm client settings are then the same
for node001 as the settings at the overlay level. The only change made is that a special queue, node1q, is
configured just for node001.

The import command in roles mode can duplicate any role between any two entities. Options can
be used to import from a category (-c|--category), or a node (-n|--node), or an overlay (-o|--overlay),
as indicated by its help text (help import).

60 Cluster Management With NVIDIA Base Command Manager

2.5.4 Accessing Cluster Settings
The management infrastructure of BCM is designed to allow cluster partitioning in the future. A cluster
partition can be viewed as a virtual cluster inside a real cluster. The cluster partition behaves as a
separate cluster while making use of the resources of the real cluster in which it is contained. Although
cluster partitioning is not yet possible in the current version of BCM, its design implications do decide
how some global cluster properties are accessed through cmsh.

In cmsh there is a partition mode which will, in a future version, allow an administrator to create
and configure cluster partitions. Currently, there is only one fixed partition, called base. The base

partition represents the physical cluster as a whole and cannot be removed. A number of properties
global to the cluster exist inside the base partition. These properties are referenced and explained in
remaining parts of this manual.

Example

[root@myheadnode ~]# cmsh

[myheadnode]% partition use base

[myheadnode->partition[base]]% show

Parameter Value

-------------------------------- --

Cluster name mycluster

Revision

Cluster reference architecture

Administrator e-mail gandalf@example.com

Name base

Headnode myheadnode

Node basename node

Node digits 3

Name servers

Name servers from dhcp 10.3.100.100

Time servers 0.pool.ntp.org,1.pool.ntp.org,2.pool.ntp.org

Search domains example.com

Relay Host

Externally visible IP 0.0.0.0

Time zone Europe/Amsterdam

BMC Settings <submode>

SNMP Settings <submode>

DPU Settings <submode>

SELinux Settings <submode>

Access Settings <submode>

Provisioning Settings <submode>

ZTP settings <submode>

ZTP new switch settings <submode>

NetQ settings <submode>

Default burn configuration default-destructive

External network externalnet

Management network internalnet

No zero conf no

Default category default

ArchOS <0 in submode>

Fabrics <0 in submode>

Sign installer certificates AUTO

Failover not defined

Failover groups <0 in submode>

Burn configs <3 in submode>

Notes <0B>

2.5 Cluster Management Shell 61

2.5.5 Advanced cmsh Features
This section describes some advanced features of cmsh and may be skipped on first reading.

Command Line Editing
Command line editing and history features from the readline library are available. http://tiswww.

case.edu/php/chet/readline/rluserman.html provides a full list of key-bindings.
For users who are reasonably familiar with the bash shell running with readline, probably the most

useful and familiar features provided by readline within cmsh are:

• tab-completion of commands and arguments

• being able to select earlier commands from the command history using <ctrl>-r, or using the up-
and down-arrow keys

History And Timestamps
The history command within cmsh explicitly displays the cmsh command history as a list.

The --timestamps|-t option to the history command displays the command history with times-
tamps.

Example

[basecm11->device[node001]]% history | tail -3

162 use node001

163 history

164 history | tail -3

[basecm11->device[node001]]% history -t | tail -3

163 Thu Dec 3 15:15:18 2015 history

164 Thu Dec 3 15:15:43 2015 history | tail -3

165 Thu Dec 3 15:15:49 2015 history -t | tail -3

This history is saved in the file .cm/.cmshhistory in the cmsh user’s directory. The timestamps in
the file are in unix epoch time format, and can be converted to human-friendly format with the standard
date utility.

Example

[root@mycluster ~]# tail -2 .cm/.cmshhistory

1615412046

device list

[root@mycluster ~]# date -d @1615412046

Wed Mar 10 22:34:06 CET 2021

Mixing cmsh And Unix Shell Commands
It is often useful for an administrator to be able to execute unix shell commands while carrying out
cluster management tasks. The cluster manager shell, cmsh, therefore allows users to execute commands
in a subshell if the command is prefixed with a “!” character:

Example

[mycluster]% !hostname -f

mycluster.cm.cluster

[mycluster]%

Executing the ! command by itself will start an interactive login sub-shell. By exiting the sub-shell,
the user will return to the cmsh prompt.

Besides simply executing commands from within cmsh, the output of operating system shell com-
mands can also be used within cmsh. This is done by using the legacy-style “backtick syntax” available
in most unix shells.

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html

62 Cluster Management With NVIDIA Base Command Manager

Example

[mycluster]% device use `hostname`

[mycluster->device[mycluster]]% status

mycluster [UP]

[mycluster->device[mycluster]]%

Output Redirection
Similar to unix shells, cmsh also supports output redirection to the shell through common operators such
as >, >>, and |.

Example

[mycluster]% device list > devices

[mycluster]% device status >> devices

[mycluster]% device list | grep node001

Type Hostname (key) MAC (key) Category

-------------- -------------- ------------------- ----------

PhysicalNode node001 00:E0:81:2E:F7:96 default

Input Redirection
Input redirection with cmsh is possible. As is usual, the input can be a string or a file. For example, for a
file runthis with some commands stored in it:

Example

[root@mycluster ~]# cat runthis

device

get node001 ip

the commands can be run with the redirection operator as:

Example

[root@mycluster ~]# cmsh < runthis

device

get node001 ip

10.141.0.1

Running the file with the -f option avoids echoing the commands

Example

[root@mycluster ~]# cmsh -f runthis

10.141.0.1

The ssh Command
The ssh command is run from within the device mode of cmsh. If an ssh session is launched from within
cmsh, then it clears the screen and is connected to the specified node. Exiting from the ssh session returns
the user back to the cmsh launch point.

Example

[basecm11]% device ssh node001

<screen is cleared>
<some MOTD text and login information is displayed>
[root@node001 ~]# exit

Connection to node001 closed.

2.5 Cluster Management Shell 63

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% #now let us connect to the head node from the head node object

[basecm11->device[basecm11]]% ssh

<screen is cleared>
<some MOTD text and login information is displayed>
[root@basecm11 ~]# exit

logout

Connection to basecm11 closed.

[basecm11->device[basecm11]]%

An alternative to running ssh within cmsh is to launch it in a subshell anywhere from within cmsh,
by using !ssh.

The time Command
The time command within cmsh is a simplified version of the standard unix time command.

The time command takes as its argument a second command that is to be executed within cmsh.
On execution of the time command, the second command is executed. After execution of the time

command is complete, the time the second command took to execute is displayed.

Example

[basecm11->device]% time ds node001

node001 [UP]

time: 0.108s

The watch Command
The watch command within cmsh is a simplified version of the standard unix watch command.

The watch command takes as its argument a second command that is to be executed within cmsh.
On execution of the watch command, the second command is executed every 2 seconds by default, and
the output of that second command is displayed.

The repeat interval of the watch command can be set with the --interval|-n option. A running
watch command can be interrupted with a <Ctrl>-c.

Example

[basecm11->device]% watch newnodes

screen clears
Every 2.0s: newnodes Thu Dec 3 13:01:45 2015

No new nodes currently available.

Example

[basecm11->device]% watch -n 3 status -n node001,node002

screen clears
Every 3.0s: status -n node001,node002 Thu Jun 30 17:53:21 2016

node001[UP]

node002[UP]

Looping Over Objects With foreach

It is frequently convenient to be able to execute a cmsh command on several objects at once. The foreach
command is available in a number of cmsh modes for this purpose. A foreach command takes a list of
space-separated object names (the keys of the object) and a list of commands that must be enclosed by
parentheses, i.e.: “(” and “)”. The foreach command will then iterate through the objects, executing the
list of commands on the iterated object each iteration.

64 Cluster Management With NVIDIA Base Command Manager

Basic syntax for the foreach command: The basic foreach syntax is:

foreach <object1> <object2> · · · (<command1>; <command2> · · ·)

Example

[mycluster->device]% foreach node001 node002 (get hostname; status)

node001

node001 [UP]

node002

node002 [UP]

[mycluster->device]%

With the foreach command it is possible to perform set commands on groups of objects simulta-
neously, or to perform an operation on a group of objects. The range command (page 68) provides an
alternative to it in many cases.

Advanced options for the foreach command: The foreach command advanced options can be viewed
from the help page:

[root@basecm11 ~]# cmsh -c "device help foreach"

The options can be classed as: grouping options (list, type), adding options, conditional options, and
looping options.

• Grouping options:

– -n|--nodes, -g|--group, -c|--category, -r|--rack, -h|--chassis, -e|--overlay,
-l|--role, -m|--image, -u|--union, -i|--intersection

– -t|--type chassis|fabricresourcebox|fabricswitch|genericdevice|litenode|cloudnode|

dpu|physicalnode|headnode|powerdistributionunit|racksensor|switch|unmanagednode

There are two forms of grouping options shown in the preceding text. The first form uses a list
of the objects being grouped, while the second form uses the type of the objects being grouped.
These options become available according to the cmsh mode used.

In the device mode of cmsh, for example, the foreach command has many grouping options
available. If objects are specifed with a grouping option, then the specified objects can be looped
over.

For example, with the list form, the --category (-c) option takes a node category argument (or
several categories), while the --node (-n) option takes a node-list argument. Node-lists (specifica-
tion on page 67) can also use the following, more elaborate, syntax:
<node>,. . .,<node>,<node>..<node>

Example

[demo->device]% foreach -c default (status)

node001 [DOWN]

node002 [DOWN]

[demo->device]% foreach -g rack8 (status)

...

[demo->device]% foreach -n node001,node008..node016,node032 (status)

...

[demo->device]%

2.5 Cluster Management Shell 65

With the type form, using the -t|--type option, the literal value to this option must be one of
node, cloudnode, virtualnode, and so on.

If multiple grouping options are used, then the union operation takes place by default.

Both grouping option forms are often used in commands other than foreach for node selection.

• Adding options: -o|--clone, -a|--add

The --clone (-o) option allows the cloning (section 2.5.3) of objects in a loop. In the following
example, from device mode, node001 is used as the base object from which other nodes from
node022 up to node024 are cloned:

Example

[basecm11->device]% foreach --clone node001 -n node022..node024 ()

[basecm11->device*]% list | grep node

Type Hostname (key) Ip

------------ -------------- -----------

PhysicalNode node001 10.141.0.1

PhysicalNode node022 10.141.0.22

PhysicalNode node023 10.141.0.23

PhysicalNode node024 10.141.0.24

[basecm11->device*]% commit

To avoid possible confusion: the cloned objects are merely objects (placeholder schematics and
settings, with some different values for some of the settings, such as IP addresses, decided by
heuristics). So it is explicitly not the software disk image of node001 that is duplicated by object
cloning to the other nodes by this action at this time.

– Overriding the default heuristics for IP address allocation: The default heuristics for IP
address allocation choose the next free IP address if, among other conditions, the same base
name is used for the clone. Thus, if the base name used differs from the original, then by
default the next free IP address is not chosen. To override the heuristic, so that the next free
IP address is chosen anyway, the --next-ip option can be used.
For example, when creating nodes starting with node02 instead of the default node002:

Example

[basecm11->device]% foreach -o node001 -n node[02-04] ()

Base name mismatch, IP settings will not be modified!

Base name mismatch, IP settings will not be modified!

Base name mismatch, IP settings will not be modified!

[basecm11->device*]% network ips internalnet

Hostname IP State

----------------- ---------------- ----------------

basecm11 10.141.255.254 ok

node001 10.141.0.1 duplicate

node02 10.141.0.1 duplicate

node03 10.141.0.1 duplicate

node04 10.141.0.1 ok

[basecm11->device]% foreach -o node001 -n node[02-04] --next-ip ()

[basecm11->device*]% network ips internalnet

Hostname IP State

----------------- ---------------- ----------------

basecm11 10.141.255.254 ok

66 Cluster Management With NVIDIA Base Command Manager

node001 10.141.0.1 ok

node02 10.141.0.2 ok

node03 10.141.0.3 ok

node04 10.141.0.4 ok

Conversely, IP addresses can be incremented by a specific amount when using the
addinterface command (section 3.7.1), by using its --increment option.

The --add (-a) option creates the device for a specified device type, if it does not exist. Valid types
are shown in the help output, and include physicalnode, headnode, switch.

• Conditional options: -s|--status, -q|--quitonunknown

The --status (-s) option allows nodes to be filtered by the device status (section 2.1.1).

Example

[basecm11->device]% foreach -n node001..node004 --status UP (get IP)

10.141.0.1

10.141.0.3

Since the --status option is also a grouping option, the union operation applies to it by default
too, when more than one grouping option is being run.

The --quitonunknown (-q) option allows the foreach loop to be exited when an unknown com-
mand is detected.

• Looping options: *, -v|--verbose

The wildcard character * with foreach implies all the objects that the list command lists for that
mode. It is used without grouping options:

Example

[myheadnode->device]% foreach * (get ip; status)

10.141.253.1

switch01 [DOWN]

10.141.255.254

myheadnode [UP]

10.141.0.1

node001 [CLOSED]

10.141.0.2

node002 [CLOSED]

[myheadnode->device]%

Another example that lists all the nodes per category, by running the listnodes command within
category mode:

Example

[basecm11->category]% foreach * (get name; listnodes)

default

Type Hostname MAC Category Ip Network Status

------------- --------- ------------------ --------- ---------- ------------ --------

PhysicalNode node001 FA:16:3E:79:4B:77 default 10.141.0.1 internalnet [UP]

PhysicalNode node002 FA:16:3E:41:9E:A8 default 10.141.0.2 internalnet [UP]

PhysicalNode node003 FA:16:3E:C0:1F:E1 default 10.141.0.3 internalnet [UP]

bf The --verbose (-v) option displays the loop headers during a running loop with time stamps,
which can help in debugging.

2.5 Cluster Management Shell 67

Node List Syntax
Node list specifications, as used in the foreach specification and elsewhere, can be of several types.
These types are best explained with node list specification examples:

• adhoc (with a comma, or a space):
example: node001,node003,node005,node006

• sequential (with two dots or square brackets):
example: node001..node004
or, equivalently: node00[1-4]
which is: node001,node002,node003,node004

• sequential extended expansion (only for square brackets):
example: node[001-002]s[001-005]
which is:
node001s001,node001s002,node001s003,node001s004,node001s005,\
node002s001,node002s002,node002s003,node002s004,node002s005

• rack-based:
This is intended to hint which rack a node is located in. Thus:

– example: r[1-2]n[01-03]
which is: r1n01,r1n02,r1n03,r2n01,r2n02,r2n03
This might hint at two racks, r1 and r2, with 3 nodes each.

– example: rack[1-2]node0[1-3]
which is: rack1node01,rack1node02,rack1node03,rack2node01,
rack2node02,rack2node03

Essentially the same as the previous one, but for nodes that were named more verbosely.

• sequential exclusion (negation):
example: node001..node005,-node002..node003
which is: node001,node004,node005

• sequential stride (every <stride> steps):
example: node00[1..7:2]
which is: node001,node003,node005,node007

• mixed list:
The square brackets and the two dots input specification cannot be used at the same time in one
argument. Other than this, specifications can be mixed:

– example: r1n001..r1n003,r2n003
which is: r1n001,r1n002,r1n003,r2n003

– example: r2n003,r[3-5]n0[01-03]
which is: r2n003,r3n001,r3n002,r3n003,r4n001,r4n002,r4n003,r5n001,r5n002,r5n003

– example: node[001-100],-node[004-100:4]
which is: every node in the 100 nodes, except for every fourth node.

• path to file that contains a list of nodes:
example: �/some/filepath/<file with list of nodes>
The caret sign is a special character in cmsh for node list specifications. It indicates the string that
follows is a file path that is to be read.

68 Cluster Management With NVIDIA Base Command Manager

Setting grouping syntax with the groupingsyntax command: “Grouping syntax” here refers to usage
of dots and square brackets. In other words, it is syntax of how a grouping is marked so that it is accepted
as a list. The list that is specified in this manner can be for input or output purposes.

The groupingsyntax command sets the grouping syntax using the following options:

• bracket: the square brackets specification.

• dot: the two dots specification.

• auto: the default. Setting auto means that:

– either the dot or the bracket specification are accepted as input,

– the dot specification is used for output.

The chosen groupingsyntax option can be made persistent by adding it to the .cmshrc dotfiles, or
to /etc/cmshrc (section 2.5.1).

Example

[root@basecm11 ~]# cat .cm/cmsh/.cmshrc

groupingsyntax auto

The range Command
The range command provides an interactive option to carry out basic foreach commands over a group-
ing of nodes. When the grouping option has been chosen, the cmsh prompt indicates the chosen range
within braces ({}).

Example

[basecm11->device]% range -n node0[01-24]

[basecm11->device{-n node001..024}]%

In the preceding example, commands applied at device level will be applied to the range of 24 node
objects.

Continuing the preceding session—if a category can be selected with the -c option. If the default
category just has three nodes, then output displayed could look like:

Example

[basecm11->device{-n node001..024}]% range -c default

[basecm11->device{-c default}]% ds

node001 [UP] state flapping

node002 [UP]

node003 [UP]

Values can be set at device mode level for the selected grouping.

Example

[basecm11->device{-c default}]% get revision

[basecm11->device{-c default}]% set revision test

[basecm11->device{-c default}]% get revision

test

test

test

2.5 Cluster Management Shell 69

Values can also be set within a submode. However, staying in the submode for a full interaction
is not possible. The settings must be done by entering the submode via a semi-colon (new command
statement continuation on same line) syntax, as follows:

Example

[basecm11->device{-c default}]% roles; assign pbsproclient; commit

The range command can be regarded as a modal way to carry out an implicit foreach on the group-
ing object. Many administrators should find it easier than a foreach:

Example

[basecm11->device{-c default}]% get ip

10.141.0.1

10.141.0.2

10.141.0.3

[basecm11->device{-c default}]% ..

[basecm11->device]% foreach -c default (get ip)

10.141.0.1

10.141.0.2

10.141.0.3

Commands can be run inside a range. However, running a pexec command inside a range is typi-
cally not the intention of the cluster administrator, even though it can be done:

Example

[basecm11->device]% range -n node[001-100]

[basecm11->device{-n node[001-100]}]% pexec -n node[001-100] hostname

The preceding starts 100 pexec commands, each running on each of the 100 nodes.
Further options to the range command can be seen with the help text for the command (output

truncated):

Example

[root@basecm11 ~]# cmsh -c "device help range"

Name: range - Set a range of several devices to execute future commands on

Usage: range [OPTIONS] * (command)

range [OPTIONS] <device> [<device> ...] (command)

Options: --show Show the current range

--clear Clear the range

-v, --verbose Show header before each element

...

The bookmark And goto Commands
Bookmarks: A bookmark in cmsh is a location in the cmsh hierarchy.

A bookmark can be

• set with the bookmark command

• reached using the goto command

A bookmark is set with arguments to the bookmark command within cmsh as follows:

• The user can set the current location as a bookmark:

70 Cluster Management With NVIDIA Base Command Manager

– by using no argument. This is the same as setting no name for it

– by using an arbitrary argument. This is the same as setting an arbitrary name for it

• Apart from any user-defined bookmark names, cmsh automatically sets the special name: “-”. This
is always the previous location in the cmsh hierarchy that the user has just come from.

All bookmarks that have been set can be listed with the -l|--list option.

Reaching a bookmark: A bookmark can be reached with the goto command. The goto command can
take the following as arguments: a blank (no argument), any arbitrary bookmark name, or “-”. The
bookmark corresponding to the chosen argument is then reached.

The “-” bookmark does not need to be preceded by a goto.

Example

[mycluster]% device use node001

[mycluster->device[node001]]% bookmark

[mycluster->device[node001]]% bookmark -l

Name Bookmark

---------------- ------------------------

home;device;use node001;

- home;

[mycluster->device[node001]]% home

[mycluster]% goto

[mycluster->device[node001]]% goto -

[mycluster]% goto

[mycluster->device[node001]]% bookmark dn1

[mycluster->device[node001]]% goto -

[mycluster]% goto dn1

[mycluster->device[node001]]%

Saving bookmarks, and making them persistent: Bookmarks can be saved to a file, such as mysaved,
with the -s|--save option, as follows:

Example

[mycluster]% bookmark -s mysaved

Bookmarks can be made persistent by setting (.)cmshrc files (page 41) to load a previously-saved
bookmarks file whenever a new cmsh session is started. The bookmark command loads a saved book-
mark file using the -x|--load option.

Example

[root@basecm11 ~]# cat .cm/cmsh/.cmshrc

bookmark -x mysaved

Renaming Nodes With The rename Command
Nodes can be renamed globally from within partition mode, in the Node basename field associated
with the prefix of the node in Base View (section 3.1.1) or in cmsh (section 2.5.4, and also page 102).

However, a more fine-grained batch renaming is also possible with the rename command, and typi-
cally avoids having to resort to scripting mechanisms. Using rename is best illustrated by examples:

The examples begin with using the default basename of node and default node digits (padded suffix
number length) of 3.

A simple rename that is a prefix change, can then be carried out as:

2.5 Cluster Management Shell 71

Example

[basecm11->device]% rename node001..node003 test

Renamed: node001 to test1

Renamed: node002 to test2

Renamed: node003 to test3

The rename starts up its own numbering from 1, independent of the original numbering. The change
is committed using the commit command.

Zero-padding occurs if the number of nodes is sufficiently large to need it. For example, if 10 nodes
are renamed (some output elided):

Example

[basecm11->device]% rename node[001-010] test

Renamed: node001 to test01

Renamed: node002 to test02

...

Renamed: node009 to test09

Renamed: node010 to test10

then 2 digits are used for each number suffix, in order to match the size of the last number.
String formatting can be used to specify the number of digits in the padded number field:

Example

[basecm11->device]% rename node[001-003] test%04d

Renamed: node001 to test0001

Renamed: node002 to test0002

Renamed: node003 to test0003

The target names can conveniently be specified exactly. It requires an exact name mapping. That is,
it assumes the source list size and target list size match:

Example

[basecm11->device]% rename node[001-005] test0[1,2,5-7]

Renamed: node001 to test01

Renamed: node002 to test02

Renamed: node003 to test05

Renamed: node004 to test06

Renamed: node005 to test07

The hostnames are sorted alphabetically before they are applied, with some exceptions based on the
listing method used.

A --dry-run option can be used to show how the devices will be renamed. Alternatively, the
refresh command can clear a proposed set of changes before a commit command commits the change,
although the refresh would also remove other pending changes.

Exact name mapping could be used to allocate individual servers to several people:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% rename node[001-004] alice,bob,charlie,dave

Renamed: node001 to alice

Renamed: node002 to bob

Renamed: node003 to charlie

Renamed: node004 to dave

[basecm11->device]% commit

72 Cluster Management With NVIDIA Base Command Manager

Skipping by a number of nodes is possible using a colon (:). An example might be to skip by two so
that twin servers can be segregated into left/right.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% rename node[001-100:2] left[001-050]

Renamed: node001 to left001

Renamed: node003 to left002

...

Renamed: node097 to left049

Renamed: node099 to left050

[basecm11->device]% rename node[002-100:2] right[001-050]

Renamed: node002 to right001

Renamed: node004 to right002

...

Renamed: node098 to right049

Renamed: node100 to right050

[basecm11->device]% commit

Using CMDaemon Environment Variables In Scripts
Within device mode, the environment command shows the CMDaemon environment variables (sec-
tion 3.3.2 of the Developer Manual) that can be passed to scripts for particular device.

Example

[mycluster->device]% environment node001

Key Value

-- --

CMD_ACTIVE_MASTER_IP 10.141.255.254

CMD_CATEGORY default

CMD_CLUSTERNAME mycluster

CMD_DEVICE_TYPE ComputeNode

CMD_ENVIRONMENT_CACHE_EPOCH_MILLISECONDS 1615465821582

CMD_ENVIRONMENT_CACHE_UPDATES 4

...

The environment variables can be prepared for use in Bash scripts with the -e|--export option:

Example

[mycluster->device]% environment -e node001

export CMD_ENVIRONMENT_CACHE_UPDATES=4

export CMD_CATEGORY=default

export CMD_SOFTWAREIMAGE=default-image

export CMD_DEVICE_TYPE=ComputeNode

export CMD_ROLES=

export CMD_FSMOUNT__SLASH_home_FILESYSTEM=nfs

export CMD_NODEGROUPS=

...

Creating JSON Format Output From A Table Format Output In cmsh

A list of table entries can be converted to a JSON representation by using the delimiter specification
option: -d {}

By default, the indentation value used is 2. Other values can be set by putting the value inside the
braces.

2.6 Cluster Management Daemon 73

Example

[basecm11->device]% list -f hostname,ip,mac,status

hostname (key) ip mac status

-------------------- -------------------- -------------------- --------------------

node001 10.141.0.1 FA:16:3E:95:80:9F [UP]

basecm11 10.141.255.254 FA:16:3E:D3:56:E0 [UP]

[basecm11->device]% color off; list -f hostname,ip,mac,status -d {}

[

{

"hostname (key)": "basecm11",

"ip": "10.141.255.254",

"mac": "FA:16:3E:D3:56:E0",

"status": "[UP]"

},

{

"hostname (key)": "node001",

"ip": "10.141.0.1",

"mac": "FA:16:3E:95:80:9F",

"status": "[UP]"

}

]

[basecm11->device]%

The color off setting is needed to remove the default console coloring. If the command is to run
from the bash shell, the same output can be achieved with:

Example

[root@basecm11 ~]# cmsh --color=no -c "device; list -f hostname,ip,mac,status -d {}"

2.6 Cluster Management Daemon
The cluster management daemon or CMDaemon is a server process that runs on all nodes of the cluster
(including the head node). The cluster management daemons work together to make the cluster man-
ageable. When applications such as cmsh and Base View communicate with the cluster, they are actually
interacting with the cluster management daemon running on the head node. Cluster management ap-
plications never communicate directly with cluster management daemons running on non-head nodes.

The CMDaemon application starts running on any node automatically when it boots, and the ap-
plication continues running until the node shuts down. Should CMDaemon be stopped manually for
whatever reason, its cluster management functionality becomes unavailable, making it hard for admin-
istrators to manage the cluster. However, even with the daemon stopped, the cluster remains fully
usable for running computational jobs using a workload manager.

The only route of communication with the cluster management daemon is through TCP port 8081.
The cluster management daemon accepts only SSL connections, thereby ensuring all communications
are encrypted. Authentication is also handled in the SSL layer using client-side X509v3 certificates (sec-
tion 2.3).

On the head node, the cluster management daemon uses a MySQL database server to store all of its
internal data. Raw monitoring data, on the other hand, is stored as binary data outside of the MySQL
database (section 14.8).

74 Cluster Management With NVIDIA Base Command Manager

2.6.1 Managing And Inspecting The Cluster Management Daemon
Using systemctl To Manage The Cluster Management Daemon
It may be useful to shut down or restart the cluster management daemon. For instance, a restart may be
necessary to activate changes when the cluster management daemon configuration file is modified.

The cluster management daemon operation can be controlled through the systemctl unit command
options:

Example

[root@basecm11 etc]# systemctl stop cmd.service

[root@basecm11 etc]# systemctl is-enabled cmd.service

enabled

[root@basecm11 etc]# systemctl status cmd.service

* cmd.service - BCM daemon

Loaded: loaded (/usr/lib/systemd/system/cmd.service; enabled; preset: enabled)

Active: inactive (dead) since Tue 2025-04-08 15:44:00 CEST; 48s ago

...

[root@basecm11 etc]# systemctl start cmd.service

[root@basecm11 etc]# systemctl status cmd.service

* cmd.service - BCM daemon

Loaded: loaded (/usr/lib/systemd/system/cmd.service; enabled; preset: enabled)

Active: active (running) since Tue 2025-04-08 09:18:18 CEST; 6h ago

...

The cluster management daemon can be restarted on all regular nodes that are up:

Example

[root@mycluster ~]# pdsh -a "systemctl restart cmd; systemctl is-active cmd"

node001: active

node002: active

node003: active

[root@mycluster ~]#

This uses pdsh, the parallel shell command (section 14.1).

Using cmdaemonctl To Inspect The Cluster Management Daemon
The cmdaemonctl command is a way to run some CMDaemon-specific service-related commands:

Example

[root@basecm11 etc]# cmdaemonctl -h

cmdaemonctl [OPTIONS...] COMMAND ...

Query or send control commands to the cluster manager daemon.

-h --help Show this help

Commands:

debugon Turn on CMDaemon debug

debugoff Turn off CMDaemon debug

full-status Display CMDaemon status

upgrade Upgrade CMDaemon database

logconf Reload log configuration

[root@basecm11 etc]# cmdaemonctl full-status

2.6 Cluster Management Daemon 75

CMDaemon version 3.0 is running (active)

Running locally

Debug logging is disabled

Current Time: Tue, 08 Apr 2025 16:15:41 CEST

Startup Time: Tue, 08 Apr 2025 15:55:39 CEST

Uptime: 20m 1s

CPU Usage: 5.55887u 1.93049s (0.6%)

Memory Usage: 176MB

Sessions Since Startup: 5

Active Sessions: 5

Number of occupied worker-threads: 1

Number of free worker-threads: 14

Connections handled: 323

Requests processed: 323

Total read: 93KB

Total written: 317KB

Average request rate: 16.1 requests/m

Average bandwidth usage: 264.35B/s

For performance reasons, CMDaemon should not normally be run in debug mode.

2.6.2 Configuring The Cluster Management Daemon
Many cluster configuration changes can be done by modifying the cluster management daemon config-
uration file. For the head node, the file is located at:

/cm/local/apps/cmd/etc/cmd.conf

For regular nodes, it is located inside of the software image that the node uses.
Appendix C describes the supported configuration file directives and how they can be used. Nor-

mally there is no need to modify the default settings.
After modifying the configuration file, the cluster management daemon must be restarted to activate

the changes.

2.6.3 CMDaemon Versions
Updating CMDaemon
CMDaemon can be updated on the head node with a package manager command such as:

yum update cmdaemon

and on a regular node image with a command such as:

yum update --installroot=/cm/images/<software image> cmdaemon

Updating software on the cluster is covered in greater detail in Chapter9.

CMDaemon Version Extraction
For debugging an issue, knowing the version of CMDaemon that is in use on the cluster can be helpful.
The cmdaemonversions command runs within the device mode of cmsh. It lists the CMDaemon version
running on the nodes of the cluster

76 Cluster Management With NVIDIA Base Command Manager

Example

[basecm11->device]% cmdaemonversions

Hostname Version index Version hash

---------------- ------------- ------------

basecm11 146,965 e6f593b676

node001 146,965 e6f593b676

node002 146,965 e6f593b676

A higher version index value indicates a more recent CMDaemon version.
The �-join option is a formatting option which gathers together versions with the same option:

[basecm11->device]% cmdaemonversions --join

Version index Version hash Count Hostnames

------------- ------------ ------------ -------------------------

146,965 e6f593b676 3 basecm11,node001..node002

2.6.4 Configuring The Cluster Management Daemon Logging Facilities
CMDaemon generates log messages in /var/log/cmdaemon from specific internal subsystems, such as
Workload Management, Service Management, Monitoring, Certs, and so on. By default, none of those
subsystems generate detailed (debug-level) messages, as that would make the log file grow rapidly.

CMDaemon Logging Configuration Global Debug Mode
A global debug mode can be enabled in CMDaemon using cmdaemonctl:

Example

[root@basecm11 ~]# cmdaemonctl -h

cmdaemonctl [OPTIONS...] COMMAND ...

Query or send control commands to the cluster manager daemon.

-h --help Show this help

Commands:

debugon Turn on CMDaemon debug

debugoff Turn off CMDaemon debug

...

[root@basecm11 ~]# cmdaemonctl debugon

CMDaemon debug level on

Stopping debug level logs from running for too long by executing cmdaemonctl debugoff is a good
idea, especially for production clusters. This is important in order to prevent swamping the cluster with
unfeasibly large logs.

CMDaemon Subsystem Logging Configuration Debug Mode
CMDaemon subsystems can generate debug logs separately per subsystem, including by severity level.
This can be done by modifying the logging configuration file at:

/cm/local/apps/cmd/etc/logging.cmd.conf

Within this file, a section with a title of #Available Subsystems lists the available subsystems that
can be monitored. These subsystems include MON (for monitoring), DB (for database), HA (for high avail-
ability), CERTS (for certificates), and so on.

2.6 Cluster Management Daemon 77

CMDaemon Subsystem Logging Configuration Severity Levels
The debug setting is one of several severity levels. Other severity levels are info, warning, error, and
all.

Further details on setting subsystem options are given within the logging.cmd.conf file.
For example, to set CMDaemon log output for Monitoring, at a severity level of warning, the file

contents for the section severity might look like:

Example

Severity {

warning: MON

}

CMDaemon Subsystem Logging Configuration Deployment
The new logging configuration can be reloaded from the file by restarting CMDaemon:

Example

[root@basecm11 etc]# systemctl restart cmd

or by triggering it using the event bucket (page 623)

Example

[root@basecm11 etc]# echo LOGGING.RELOAD.CONFIG > /var/spool/cmd/eventbucket

2.6.5 Configuration File Modification, And The FrozenFile Directive
As part of its tasks, the cluster management daemon modifies a number of system configuration files.
Some configuration files are completely replaced, while other configuration files only have some sections
modified. Appendix A lists all system configuration files that are modified.

• A file that has been generated entirely by the cluster management daemon contains a header:

This file was automatically generated by cmd. Do not edit manually!

Such a file will be entirely overwritten, unless the FrozenFile configuration file directive (Ap-
pendix C, page 853) is used to keep it frozen.

• A file that has had only a section of it generated by the cluster management daemon contains a
header and ending sections in the following format:

This section of this file was automatically generated by cmd. Do not edit manually!

BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

...

END AUTOGENERATED SECTION -- DO NOT REMOVE

Such a file has only the auto-generated sections entirely overwritten, unless the FrozenFile con-
figuration file directive is used to keep these sections frozen.

The FrozenFile configuration file directive in cmd.conf is set as suggested by this example:

Example

FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }

If the generated full file or generated section of a file has a manually modified part, and FrozenFile

is not in use, then during overwriting an event is generated, and the original manually modified config-
uration file is backed up to:

/var/spool/cmd/saved-config-files

Using FrozenFile can be regarded as a configuration technique (section 3.19.3), and one of various
possible configuration techniques (section 3.19.1).

78 Cluster Management With NVIDIA Base Command Manager

2.6.6 Configuration File Conflicts Between The Standard Distribution And BCM For
Generated And Non-Generated Files

While BCM changes as little as possible of the standard distributions that it manages, there can some-
times be unavoidable issues. In particular, sometimes a standard distribution utility or service gener-
ates a configuration file that conflicts with what the configuration file generated by BCM carries out
(Appendix A).

For example, the Red Hat security configuration tool system-config-securitylevel can conflict
with what shorewall (section 7.2 of the Installation Manual) does, while the Red Hat Authentication
Configuration Tool authconfig (used to modify the /etc/pam.d/system-auth file) can conflict with the
configuration settings set by BCM for LDAP and PAM.

In such a case the configuration file generated by BCM must be given precedence, and the generation
of a configuration file from the standard distribution should be avoided. Sometimes using a fully or
partially frozen configuration file (section 2.6.5) allows a workaround. Otherwise, the functionality of
the BCM version usually allows the required configuration function to be implemented.

Details on the configuration files installed and updated by the package management system, for files
that are “non-generated” (that is, not of the kind in section 2.6.5 or in the lists in Appendixes A.1 and
A.2.3), are given in Appendix A.3.

2.6.7 CMDaemon Lite
Introduction
As an alternative to the regular CMDaemon, BCM provides a lightweight CMDaemon, called CMDae-
mon Lite. This is intended as a minimal alternative to the regular CMDaemon for nodes that are not
managed by CMDaemon. CMDaemon Lite is contained in the package cm-lite-daemon.

It can be installed on a device where the administrator considers the option of installing a regular,
full-featured, CMDaemon to be overkill, but still wants an alternative that allows some basic monitoring,
and (if available) GNSS measurements, to be carried out on the device.

CMDaemon Lite is a Python service, and can be run on a device such as a standalone desktop,
running Windows, Linux, or MacOS. It uses up one node license per node that it is run on. It requires
Python 3.6 or higher.

CMDaemon Lite with the standard number of metrics is about 25% lighter on memory resources,
and 50% lighter on CPU resources, than the regular CMDaemon.

Deployment
A zipped package can be picked up on the head node from BCM repositories with:

Example

yum install cm-lite-daemon

This places a zip file at /cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip. This file should
be moved to and unzipped on the lite node. The lite node is the machine that is to run cm-lite-daemon.

[root@basecm11 ~]# scp /cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip \
root@lite01:/opt/cm-lite-daemon.zip

[root@basecm11 ~]# ssh root@lite01

[root@lite01 ~]# cd /opt

[root@lite01 opt]# unzip cm-lite-daemon.zip

[root@lite01 opt]# cd cm-lite-daemon

[root@lite01 cm-lite-daemon]# ls -1l --group-directories-first

total 44

drwxr-xr-x 7 root root 4096 Nov 11 13:22 cm_lite_daemon

drwxr-xr-x 2 root root 104 Nov 11 13:23 etc

drwxr-xr-x 2 root root 76 Oct 19 16:43 examples

drwxr-xr-x 2 root root 6 Oct 19 16:43 log

/cm/shared/apps/cm-lite-daemon-dist/cm-lite-daemon.zip

2.6 Cluster Management Daemon 79

drwxr-xr-x 2 root root 78 Oct 19 16:43 service

-rwxr-xr-x 1 root root 4986 Oct 19 16:43 cm-lite-daemon

-rwxr-xr-x 1 root root 740 Oct 19 16:43 cm-lite-daemon_ctl

-rwxr-xr-x 1 root root 2469 Oct 19 16:43 connection_test

-rwxr-xr-x 1 root root 445 Oct 19 16:43 install-required-pip-packages

-rwxr-xr-x 1 root root 245 Oct 19 16:43 install-required-pip-packages.bat

-rwxr-xr-x 1 root root 5401 Oct 19 16:43 register_node

-rwxr-xr-x 1 root root 2808 Oct 19 16:43 request_certificate

-rwxr-xr-x 1 root root 3907 Oct 19 16:43 unregister_node

The lite node needs a certificate, and to be registered before cm-lite-daemon can run on it. The easi-
est way to do this is to use the register_node utility which is one of the unzipped files in the preceding
list. Running it:

• installs required Python packages

• requests a new certificate

• registers the lite node with the head node

• installs cm-lite-daemon as a service.

After register_node is run, CMDaemon running on the head node is able to see the certificate request.
Depending on the network that the CMDaemon Lite on the lite node is connected to, the certificate will
be automatically issued, just like it is for regular BCM nodes being installed. However if CMDaemon
Lite is connected via different network, then the certificate must be issued manually, which can be done
as follows:

Using cmsh the certificate request ID can be found:

Example

[basecm11->cert]% listrequests

Request ID Client type Session ID Name

------------ ------------ ------------ ------------

1 Lite node

After finding the correct value for the Request ID, the certificate can then be issued. For a certificate
with a Request ID value of 1, it can be issued with, for example:

basecm11->cert]% issuecertificate --days 10000 1

The days field can be used to set how long cm-lite-daemon is allowed to connect. Regular BCM
node certificates have a lifetime of about 10,000 days (about 27 years).

On a Linux machine register_node starts cm-lite-daemon as a service, so that the following com-
mands work as expected:

[root@lite01 ~]# service cm-lite-daemon status

...

[root@lite01 ~]# service cm-lite-daemon start

...

[root@lite01 ~]# service cm-lite-daemon stop

...

On non-Linux operating systems, cm-lite-daemon must be started manually.
CMDaemon Lite can be tested by first running it in a foreground shell environment:

Example

80 Cluster Management With NVIDIA Base Command Manager

[root@lite01 cm-lite-daemon]# ./cm-lite-daemon

The lite node should then show up as being in the UP state in Base View or cmsh.
Afterwards the cm-lite-daemon Python script can be registered to be autostarted. The administrator

should ensure that the running directory for this is set correctly.
The cm-lite-daemon service can alternatively simply be run as a foreground process when needed.

CMDaemon Lite On Cumulus Switches
From NVIDIA Base Command Manager version 10 onwards, Cumulus switches (section 3.10) also sup-
port running CMDaemon Lite. In that case, the property hasclientdaemon must be set for the switch:

Example

[head]% device add switch cumulus01

[head->device*[switch01*]]% set mac 12:34:56:78:90:AB

[head->device*[switch01*]]% set ip 1.2.3.4

[head->device*[switch01*]]% set hasclientdaemon yes

[head->device*[switch01*]]% commit

The ZTP settings should be configured from ztpsettings mode, and a username and password
must be set within the accesssettings mode for the Cumulus switch. Further details on configuring
Cumulus switches are given in section 3.10.

Even Lighter Than CMDaemon Lite: Configuring A Device As A Generic Node
To put things in perspective: so far the options described have been:
1. CMDaemon running on the device
2. CMDaemon Lite running on the device

A third option that can be considered, is to have
3. no CMDaemon at all running on the device and to register the device as a generic node with the
regular CMDaemon on the head node. A generic node is a generic network device (page 104) that
happens to be a node.

This third option—the generic node option—then monitors the device for a basic state of UP/DOWN,
but nothing else. In contrast to the first two cases, a node license is not used up.

Even lighter than generic nodes: configuring a device as unmonitored: Devices can alternatively be
added to the BIND DNS entries of the zone file via the /var/named/*.include files (Appendix A.1).
This is a feature of the Linux operating system rather than a feature of BCM, and so —perhaps rather
obviously—a BCM node license is also not used up in this case.

After restarting the named service, the nodes are not seen on the head node, and the device is not
monitored in any way. The cluster does however know how to reach it, which in some cases may be all
that a cluster administrator wants.

For example, if a host 10.141.1.20 with hostname myotherhost01, is added to the internalnet network
within the domain name eth.cluster, then the session may be run as follows:

Example

[root@head ~]# vi /var/named/eth.cluster.zone.include

(appropriate DNS forward entry is added)
[root@head ~]# cat /var/named/eth.cluster.zone.include

myotherhost01 IN A 10.141.1.20

[root@head ~]# vi /var/named/141.10.in-addr.arpa.zone.include

(appropriate DNS reverse entry is added)
[root@head ~]# cat /var/named/141.10.in-addr.arpa.zone.include

20.1 IN PTR myotherhost01.eth.cluster.

[root@head ~]# systemctl restart named

3
Configuring The Cluster

After the NVIDIA Base Command Manager software has been installed on the head node, the cluster
must be configured. For convenience, the regular nodes on the cluster use a default software image
stored on the head node. The image is supplied to the regular nodes during a process called provisioning
(Chapter 5), and both the head node and the regular nodes can have their software modified to suit exact
requirements (Chapter 9). This chapter however goes through a number of basic cluster configuration
aspects that are required to get all the hardware up and running on the head and regular nodes.

Section 3.1 explains how some of the main cluster configuration settings can be changed.
Section 3.2 details how the internal and external network parameters of the cluster can be changed.
Section 3.3 describes the setting up of network bridge interfaces.
Section 3.4 describes VLAN configuration.
Section 3.5 describes the setting up of network bond interfaces.
Section 3.6 covers how InfiniBand is set up.
Section 3.7 describes how Baseboard Management Controllers such as IPMI, iLO, DRAC, CIMC, and

Redfish are set up.
Section 3.8 describes how BlueField DPUs are set up.
Section 3.9 describes how switches are set up.
Section 3.10 describes how Cumulus switches are configured.
Section 3.11 describes how NetQ can be integrated with BCM.
Section 3.12 explains how disk layouts are configured, as well as how diskless nodes are set up.
Section 3.13 describes how NFS volumes are exported from an NFS server and mounted to nodes

using the integrated approach of BCM.
Section 3.14 describes how services can be run from BCM.
Section 3.15 describes how a rack can be configured and managed with BCM.
Section 3.16 describes how GPUs can be configured with BCM.
Section 3.18 describes how custom scripts can replace some of the default scripts in use.
Section 3.19 discusses configuration alternatives that are not based on CMDaemon.
Section 3.20 describes how the configuration files prior to a configuration change can be saved.
More elaborate aspects of cluster configuration such as power management, user management, pack-

age management, and workload management are covered in later chapters.

3.1 Main Cluster Configuration Settings
While both front ends—cmsh and Base View—can be used to carry out cluster management (Chapter 2),
the BCM Manuals often describe configuration with an arbitrary front end rather than for both front
ends.

This is because the front ends are usually analogous enough to each other when carrying out a
configuration procedure, so that describing the procedure for the other front end in detail as well is
mostly wasteful. If the procedures differ significantly, then guidance is typically given on the differences.

82 Configuring The Cluster

Thus, for example, both cmsh and Base View can be used for the global configuration of cluster
settings. For the cmsh front end, the configuration is done using partition mode. The analog to global
configuration in the Base View front end relies on the navigation path: Cluster > Settings.

This section now continues with the Base View description.
The navigation path: Cluster > Settings brings up Base View’s cluster Settings window (fig-

ure 3.1):

Figure 3.1: Cluster Settings

The navigational overview (figure 2.4) indicates how the main cluster Settings window fits into the
organizational layout of BCM.

The cluster Settings window allows changes to be made to many of the global cluster settings. Its
values can in some cases be overridden by more specific configuration levels, such as category-level or
node-level configuration. The main cluster settings in figure 3.1 are related to the cluster name-related
settings, cluster networking, and some miscellaneous global cluster settings.

3.1.1 Cluster Configuration: Various Name-Related Settings
In the Base View Settings window, the following defaults can be viewed and modified for names
throughout the cluster.

• Cluster name: (default name: BCM HEAD Cluster)

• External network: (default name: externalnet)

• Internal network: (default name: internalnet)

• Default category: (default name: default)

• How the nodes of the cluster are named:

– Node name: the base prefix, also called basename (default prefix name: node)

– Node digits size: number of digits in suffix of node name (default size: 3)

The global node naming structure can be managed in Base View via the navigation path Cluster

> Settings > NODE BASENAME. It can also be managed in cmsh via the parameters nodebasename

and nodedigits, under the partition mode (page 102) of cmsh.

3.1 Main Cluster Configuration Settings 83

Changing the naming and digit size only affects nodes created after the setting.

Renaming of existing node names is possible using the rename command from device mode of
cmsh, (section 2.5.5, page 70).

Cloning of nodes is also possible, and can save some work for the cluster administrator, due to
some heuristics used to get the cloned node configured correctly (page 65).

3.1.2 Cluster Configuration: Some Network-Related Settings
These following network-related settings are also described in the context of external network settings
for the cluster object, in section 3.2.3, as well as in the quickstart in Chapter 1 of the Installation Manual.

Nameserver And Search Domains Used By Cluster
• If Base View is used, then the settings window can be used to set the IP address of the nameserver

and the names of the search domains for the cluster.

By default, the nameserver is the internal (regular-nodes-facing) IP address of the head node.
Multiple nameservers can be added. If the value is set to 0.0.0.0, then the address supplied via
DHCP to the head node is used. Alternatively, a static value can be set. Static IP addresses must
be used for external addresses in the case of the cluster being configured with high availability.

• If cmsh is used instead of Base View, then the changes to the nameserver and searchdomain values
can instead be carried out via partition mode (page 100).

Limit to the number of search domains: In older versions of the Linux operating system, the number
of names that can be set as search domains used by the cluster has a maximum limit of 6 by default,
with a total of 256 characters.

More recent versions of glibc—from glibc 2.26 onward—no longer set a limit.
Because using more than 6 search domains is unsupported by older glibcs, some administrators take

the risk of forcefully installing a newer glibc, overriding the official repository dependency restrictions.
This results in a system that is unsupported by the distribution, and is also unsupported by BCM.

Instead of trying to set more than the officially supported number of search domains, the use of
FQDNs is advised as a workaround.

Changing The Order In resolv.conf

For clusters, CMDaemon by default automatically writes the /etc/resolv.conf by using the following
sources, and in the following order:

1. Global network

2. Other networks

3. Category search domains

4. Partition search domains

Because older glibc versions only support 6 entries in /etc/resolv.conf, it is sometimes useful to
exclude or reorder the preceding sources.

For a network object, there are two fields that control the position of the domain name in the file
/etc/resolv.conf:

Example

[basecm11]% network use ibnet

[basecm11->network[ibnet]]% show

...

Exclude from search domain no

Search domain index 0

/etc/resolv.conf
/etc/resolv.conf
/etc/resolv.conf

84 Configuring The Cluster

If the Exclude from search domain field is set to yes, then the domain name for the network is not
used.

The Search domain index field specifies the position of the domain name. A value of 0 means
CMDaemon automatically determines its location.

The index of the category and partition search domains can also be changed by appending a number,
in the suffix format :<index>, to the domain name:

Example

[basecm11]% partition

[basecm11->partition[base]]% get searchdomains

example.com:1

domain.test:6

If an index is set for one search domain, then setting indices for all search domains is recommended.
Search domains without indices are handled automatically by CMDaemon.

CMDaemon sorts all search domains according to index, and writes /etc/resolv.conf with the 6
that have the lowest index, with the lowest index first.

Setting The Stub Resolver For Ubuntu Hosts
For Ubuntu, CMDaemon generates a /etc/resolv.conf file (Appendix A), and symlinks it to the
resolv.conf managed by systemd at /etc/run/systemd/resolve/resolve.conf.

However, a default Ubuntu without BCM uses a systemd stub resolver service (man systemd-resolved.8)
that listens on the IP address 127.0.0.53. Sometimes a stub resolver is also useful in BCM for containers
such as enroot containers (section 7.3.3) that mount and use /etc/resolv.conf.

To enable resolution for such containers on a node via the stub resolver instead of the uplink resolver,
the resolver can be set using the extra resolve parameter, using the -e|--extra setting:

Example

basecm11->device[node001]]% # to set it to the stub resolver:

basecm11->device[node001]]% set -e resolv stub

basecm11->device*[node001*]]% commit # wait a bit

basecm11->device[node001]]% # to set it back to the BCM value:

basecm11->device[node001]]% set -e resolv uplink

basecm11->device*[node001*]]% commit # wait a bit

Externally Visible IP Address
The externally visible IP address are public (non-RFC 1918) IP addresses to the cluster. These can be set
to be visible on the external network.

• If using Base View, the navigation path is:
Cluster > Settings > EXTERNALLY VISIBLE IP.

• For cmsh, the parameter externallyvisibleip can be set via partition mode.

Time server(s)
Time server hostnames can be specified for the NTP client on the head node.

• If using Base View, the navigation path is via Cluster > Settings > NAME SERVERS.

• For cmsh, the parameter timeservers can be set via partition mode.

/etc/resolv.conf
/etc/run/systemd/resolve/resolve.conf
/etc/resolv.conf

3.1 Main Cluster Configuration Settings 85

Time Zone
The time zone setting can be set at various grouping levels:

If applied to the entire cluster, and if it is applied in partition mode, then:

• In Base View, the time zone parameters can be jumped to via the navigation path:
Cluster > Settings > JUMP TO > Time zone

• In cmsh, the time zone can be selected in partition mode, using the base object. Tab-completion
prompting after entering “set timezone” displays a list of several hundred possible time zones,
from which one can be chosen:

Example

[basecm11]% partition use base

[basecm11->partition[base]]% set timezone america/los_angeles

[basecm11->partition*[base*]]% commit

A time zone setting can also be applied at the level of a node, category, edge site, and cloud region.
As is usual in the BCM hierarchy, the value set for the larger grouping is the default value used by the
members of that group, while a value set specifically for the individual members of that group overrides
such a default.

3.1.3 Miscellaneous Settings
BMC (IPMI/iLO, DRAC, CIMC, Redfish) Settings
The BMC (Baseboard Management Controller) access settings can be configured in Base View via the
navigation path:
Cluster > Settings > JUMP TO > BMC Settings

This opens up a window so that the BMC settings can be managed:

• User name: (default: bright)

• Password: (default: random string generated during head node installation)

• User ID: (default: 4)

• Power reset delay: During a reset, this is the time, in seconds, that the machine is off, before it
starts powering up again (default: 0)

• Extra arguments: (default: none)

• privilege: (default: administrator)

The defaults in the preceding are set when the BMC interfaces are configured during head node instal-
lation. If the BMC interfaces are not set then, then the defaults are also unset.

BMC configuration is discussed in more detail in section 3.7.

Administrator E-mail Setting
By default, the distribution which BCM runs on sends e-mails for the administrator to the root e-mail
address. The administrator e-mail address can be changed within BCM so that these e-mails are received
elsewhere.

• In Base View, an e-mail address (or space-separated addresses) can be set in the Administrator

e-mail field via the navigation path Cluster > Settings > CLUSTER NAME (figure 3.1).

• In cmsh, the e-mail address (or space-separated addresses) can be set in partition mode, using
the base object as follows:

86 Configuring The Cluster

Example

[basecm11]% partition use base

[basecm11->partition[base]]% set administratore-mail alf@example.com beth@example.com

[basecm11->partition*[base*]]% commit

The following critical states or errors cause e-mails to be sent to the e-mail address:

• By default, a month before the cluster license expires, a reminder e-mail is sent to the administrator
account by CMDaemon. A daily reminder is sent if the expiry is due within a week.

• A service on the head node that fails on its first ever boot.

• When an automatic failover fails on the head or regular node.

SMTP Relay Host Mailserver Setting
The head node uses Postfix as its SMTP server. The default base distribution configuration is a minimal
Postfix installation, and so has no value set for the SMTP relay host. To set its value:

• in Base View: the Relay Host field sets the SMTP relay host for the cluster resource

• in cmsh: the relayhost property can be set for the base object within partition mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% partition use base

[basecm11-> partition[base]]% set relayhost mail.example.com

[basecm11-> partition[base*]]% commit

Postfix on the regular nodes is configured to use the head node as a relay host and is normally left
untouched by the administrator.

If the regular node configuration for Postfix is changed in partition mode, then a node reboot de-
ploys the change for the node. Setting the AdvancedConfig (page 858) SmtpPartitionRelayHostInImages
to 0 disables the changing of the relay host on the regular node.

Further Postfix changes can be done directly to the configuration files as is done in the standard dis-
tribution. The changes must be done after the marked auto-generated sections, and should not conflict
with the auto-generated sections.

A convenient way to check mail is functioning is to run BCM’s testemail command. The command
is run from within the main mode of cmsh. It sends a test e-mail out using CMDaemon:

[root@basecm11 ~]# mailq; ls -al /var/spool/mail/root

Mail queue is empty

-rw------- 1 root mail 0 Sep 8 11:11 /var/spool/mail/root

[root@basecm11 ~]# cmsh -c "main; testemail"

Mail delivered to postfix

You have new mail in /var/spool/mail/root

[root@basecm11 ~]# mailq; ls -al /var/spool/mail/root

Mail queue is empty

-rw------- 1 root mail 749 Sep 8 11:12 /var/spool/mail/root

The test e-mail destination is the administrator e-mail address discussed in the preceding section.

Failover Settings
To access the high availability (HA) feature of the cluster for head nodes, the administrator can click on
the Failover option in Base View. This opens up a subwindow that can be used to configure HA-related
parameters (section 15.4.6).

3.1 Main Cluster Configuration Settings 87

Failover Groups Settings
To access the high availability feature of the cluster for groups of regular nodes, the administrator can
click on the Failover groups option in Base View. This opens up a subwindow that can be used to
configure failover-groups-related parameters (section 15.5).

Burn Configs
Burning nodes is covered in Chapter 11 of the Installation Manual. Burn configuration settings for the
cluster can be accessed in Base View via the following navigation paths:

• Cluster[Partition base] > Settings > Default burn configuration

This allows the Default burn configuration for a node burn run to be modified.

• Cluster[Partition base] > Settings > Burn configs

This lists the possible burn configuration settings in a subwindow, and allows changes to some of
their properties of each item of the list.

FIPS Mode
To be compliant with the Federal Information Processing Standards of the USA, Linux-based systems
are required to stick to some security standards. This is known as FIPS compliance.

FIPS compliance on regular nodes can be set per node or per category.
The existing FIPS status can be checked with the sysinfo command at node level:

Example

[head->device]% sysinfo node002

Name Value

------------------------- ---------------------------------

...

FIPS No

Or even just with a get:

Example

[head->device]% get node002 fips

no

FIPS can be enabled by node:

Example

[head->device]% set node002 fips yes

[head->device*]% commit

[head->device]% reboot node002

[time passes]

[node002 finishes reboot]

[head->device]% sysinfo node002 | grep FIPS

FIPS Yes

FIPS can be enabled by category:

Example

[head->device]% sysinfo node002

[head->device]% category

[head->category]% set default fips yes

[head->category*]% commit

88 Configuring The Cluster

Successfully committed 1 Categories

[head->category]%

...[notice] head: node001 [UP], restart required (fips)

...[notice] head: node002 [UP], restart required (fips)

[head->category]% device reboot -n node001..node002

[head->category]% device

[head->device]% get node001 fips; get node002 fips

yes

yes

As is usual in BCM, the node level setting overwrites the category level setting.
Setting FIPS compliance on the head node itself via CMDaemon is not allowed. This is because

FIPS GRUB configuration could, in some unusual cases, result in an unbootable head node. The clus-
ter administrator must consider the existing state of the head node with due care before manually re-
configuring it for FIPS.

3.1.4 Limiting The Maximum Number Of Open Files
Configuring The System Limit On Open Files: The /proc/sys/fs/file-max Setting
The maximum number of open files allowed on a running Linux operating system is determined by
/proc/sys/fs/file-max. To configure this setting so that it is persistent, the Linux operating system
uses a /etc/sysctl.conf file and *.conf files under /etc/sysctl.d/. Further information on these
files can be found via the man page, man sysctl.conf.5. BCM adheres to this standard method, and
places a settings file 90-cm-sysctl.conf in the directory /etc/sysctl.d.

By default, the value set for file-max by NVIDIA Base Command Manager is 131072. An on-
premises head node typically is not used to run applications that exceed this value, and the settings
file 90-cm-sysctl.conf is therefore not available for modification by the CMDaemon front ends (cmsh
and Base View). For edge and cloud director installations, the installation scripts take care of modifying
file-max since such installations can have many more open files. Cluster administrators are thus not
expected to have a need to modify the value of file-max in most use cases.

However, if there is a need to modify the value of file-max, then a subsequent, extra, con-
figuration file, such as /etc/sysctl.d/91-site-sysctl-file-max-tweak.conf can be added under
/etc/sysctl.d/, so that the BCM version is not intefered with directly.

Configuring The User Limit On Open Files: The nofile Setting
The maximum number of open files allowed for a user can be seen on running ulimit -n. The value is
defined by the nofile parameter of ulimit.

By default the value set by BCM is 131072.
Ulimit limits are limits to restrict the resources used by users. If the pam_limits.so module is used

to apply ulimit limits, then the resource limits can be set via the /etc/security/limits.conf file and
*.conf files in the /etc/security/limits.d directory. Further information on these files can be found
via the man page, man limits.conf.5.

Resource limits that can be set for user login sessions include the number of simultaneous login
sessions, the number of open files, and memory limits.

The maximum number of open files for a user is unlimited by default in an operating system that
is not managed by BCM. However, it is set to 131072 by default for a system managed by BCM. The
nofile value is defined by BCM in:

• in /etc/security/limits.d/91-cm-limits.conf on the head node

• in /cm/images/<software image name>/etc/security/limits.d/91-cm-limits.conf in the soft-
ware image that the regular node picks up.

The values set in 91-cm-limits.conf are typically sufficient for a user session, unless the user runs
applications that are resource hungry and consume a lot of open files.

/proc/sys/fs/file-max
pam_limits.so
/etc/security/limits.conf
/etc/security/limits.d
/etc/security/limits.d/91-cm-limits.conf
/cm/images/
/etc/security/limits.d/91-cm-limits.conf

3.2 Network Settings 89

Deciding On Appropriate Ulimit, Limit, And System Limit Values
Decreasing the nofile value in /etc/security/limits.d/91-cm-limits.conf (but leaving the /proc/
sys/fs/file-max untouched), or increasing /proc/sys/fs/file-max (but leaving the nofile value of
131072 per session as is), may help the system stay under the maximum number of open files allowed.

In general, users should not be allowed to use the head node as a compilation server, or as a test bed,
before running their applications. This is because user errors can unintentionally cause the head node
to run out of resources and crash it.

Depending what is running on the server, and the load on it, the administrator may wish to increase
the resource limit values.

A very rough rule-of-thumb that may be useful as a first approximation to set file-max optimally is
suggested in the kernel source code. The suggestion is to simply multiply the system memory (in MB)
by 10 per MB, and make the resulting number the file-max value. For example, if the node has 128 GB
of memory, then 1280000 can be set as the file-max value.

Fine-tuning to try and ensure that the operating system no longer runs out of file handles, and to try
and ensure the memory limits for handling the load are not exceeded, is best achieved via an empirical
trial-and-error approach.

3.2 Network Settings
A simplified quickstart guide to setting up the external head node network configuration on a vendor-
prepared cluster is given in Chapter 6 of the Installation Manual. This section (3.2) covers network con-
figuration more thoroughly.

After the cluster is set up with the correct license as explained in Chapter 4 of the Installation Manual,
the next configuration step is to define the networks that are present (sections 3.2.1 and 3.2.2).

During BCM installation at least three default network objects were created:

internalnet: the primary internal cluster network, and the default management network. This is
used for booting non-head nodes and for all cluster management communication. In the absence
of other internal networks, internalnet is also used for storage and communication between
compute jobs. Changing the configuration of this network is described on page 101 under the
subheading “Changing Internal Network Parameters For The Cluster”.

externalnet: the network connecting the cluster to the outside world (typically a corporate or campus
network). Changing the configuration of this network is described on page 97 under the subhead-
ing “Changing External Network Parameters For The Cluster”. This is the only network for which
BCM also supports IPv6.

globalnet: the special network used to set the domain name for nodes so that they can be resolved
whether they are cloud nodes or not. This network is described further on page 104 under the
subheading “Changing The Global Network Parameters For The Cluster”.

For a Type 1 cluster (section 3.3.9 of the Installation Manual) the internal and external networks are
illustrated conceptually by figure 3.2.

/etc/security/limits.d/91-cm-limits.conf
/proc/sys/fs/file-max
/proc/sys/fs/file-max
/proc/sys/fs/file-max

90 Configuring The Cluster

External

Head

n
o
d

e
0

0
1

n
o
d

e
0

0
2

n
o
d

e
0

0
3

n
o
d

e
0

0
4

n
o
d

e
0

0
5

n
o
d

e
0

0
6

Internal

Network

Network

= Network Interface

Figure 3.2: Network Settings Concepts

The configuration of network settings is completed when, after having configured the general net-
work settings, specific IP addresses are then also assigned to the interfaces of devices connected to the
networks.

• Changing the configuration of the head node external interface is described on page 98 under the
subheading “The IP address of the cluster”.

• Changing the configuration of the internal network interfaces is described on page 102 under the
subheading “The IP addresses and other interface values of the internal network”.

– How to set a persistent identity for an interface—for example, to ensure that a particular
interface that has been assigned the name eth3 by the kernel keeps this name across reboots—
is covered in section 5.8.1, page 285.

• Changing the configuration of globalnet is described on page 104 under the subheading “Chang-
ing The Global Network Parameters For The Cluster”. IP addresses are not configured at the
globalnet network level itself.

3.2.1 Configuring Networks
The network mode in cmsh gives access to all network-related operations using the standard object
commands. Section 2.5.3 introduces cmsh modes and working with objects.

In Base View, a network can be configured via the navigation path Networking > Networks, which
opens up the Network list subwindow (figure 3.3):

3.2 Network Settings 91

Figure 3.3: Networks

In the context of the OSI Reference Model, each network object represents a layer 3 (i.e. Network
Layer) IP network, and several layer 3 networks can be layered on a single layer 2 network (e.g. routes
on an Ethernet segment).

Selecting a network such as internalnet or externalnet in the list of networks, for example by
double-clicking the row, opens up a new Overview window for that network. Some resizing of the
windows is usually needed to view the new window properly on a standard screen.

The Overview window by default lists the device names and device properties that are in the net-
work. For example the internal network typically has some nodes, switches, and other devices at-
tached to it, each with their IP addresses and interface (figure 3.4).

Figure 3.4: Network Overview

Selecting the Settings option opens a scrollable pane that allows a number of network properties to
be changed (figure 3.5).

92 Configuring The Cluster

Figure 3.5: Network Settings

The properties of figure 3.5 are introduced in table 3.1.

3.2 Network Settings 93

Property Description

name Name of this network.

Domain Name DNS domain associated with the network.

Type Menu options to set the network type. Options are Internal, External,
Tunnel, Global, Cloud, or NetMap network.

MTU Maximum Transmission Unit. The maximum size of an IP packet transmit-
ted without fragmenting.

Node booting Enabling means nodes are set to boot from this network (useful in the
case of nodes on multiple networks). For an internal subnet called <sub-
net>, when node booting is set, CMDaemon adds a subnet configura-
tion /etc/dhcpd.<subnet>.conf on the head node, which is accessed from
/etc/dhcpd.conf.

• It can be set in Base View via the Networking resource, selecting a
network, and then setting Node booting from within the network
settings.

• It can be set in cmsh via the network mode, selecting a network, and
then setting nodebooting.

Lock down dhcpd Enabling means new nodes are not offered a PXE DHCP IP address from
this network, i.e. DHCPD is “locked down”. A DHCP “deny unknown-
clients” option is set by this action, so no new DHCP leases are granted to
unknown clients for the network. Unknown clients are nodes for which
BCM has no MAC addresses associated with the node.

• It can be set in Base View via the Networking resource, selecting a
network, and then setting Lock down dhcpd from within the network
settings.

• It can be set in cmsh via the network mode, selecting a network, and
then setting lockdowndhcpd.

Management allowed Enabling means that the network has nodes managed by the head node.

Search domain index The position of the network domain in the resolv.conf file. A value of 0
means the position is determined automatically.

Exclude from search

domain

Enabling means the domain name for the network is not used.

Disable automatic

exports

Enabling means that exports of built-in filesystems are not done automati-
cally for the network.

Base address Base address of the network (also known as the network address).

Broadcast address Broadcast address of the network.

Dynamic range

start/end

Start/end IP addresses of the DHCP range temporarily used by nodes dur-
ing PXE boot on the internal network. These are addresses that do not con-
flict with the addresses assigned and used by nodes during normal use.

Netmask bits Prefix-length, or number of bits in netmask. The part after the “/” in CIDR
notation.

Gateway Default route IP address
Table 3.1: Network Configuration Settings

/etc/dhcpd.conf

94 Configuring The Cluster

In basic networking concepts, a network is a range of IP addresses. The first address in the range is
the base address. The length of the range, i.e. the subnet, is determined by the netmask, which uses CIDR
notation. CIDR notation is the so-called / (“slash”) representation, in which, for example, a CIDR nota-
tion of 192.168.0.1/28 implies an IP address of 192.168.0.1 with a traditional netmask of 255.255.255.240
applied to the 192.168.0.0 network. The netmask 255.255.255.240 implies that bits 28–32 of the 32-bit
dotted-quad number 255.255.255.255 are unmasked, thereby implying a 4-bit-sized host range of 16 (i.e.
24) addresses.

The sipcalc utility installed on the head node is a useful tool for calculating or checking such IP
subnet values (man sipcalc.1 in the RHEL family of distributions or sipcalc -h for help on this util-
ity):

Example

user@basecm11:~$ sipcalc 192.168.0.1/28

-[ipv4 : 192.168.0.1/28] - 0

[CIDR]

Host address - 192.168.0.1

Host address (decimal) - 3232235521

Host address (hex) - C0A80001

Network address - 192.168.0.0

Network mask - 255.255.255.240

Network mask (bits) - 28

Network mask (hex) - FFFFFFF0

Broadcast address - 192.168.0.15

Cisco wildcard - 0.0.0.15

Addresses in network - 16

Network range - 192.168.0.0 - 192.168.0.15

Usable range - 192.168.0.1 - 192.168.0.14

Every network has an associated DNS domain which can be used to access a device through a par-
ticular network. For internalnet, the default DNS domain is set to eth.cluster, which means that
the hostname node001.eth.cluster can be used to access device node001 through the primary internal
network. If a dedicated storage network has been added with DNS domain storage.cluster, then
node001.storage.cluster can be used to reach node001 through the storage network. Internal DNS
zones are generated automatically based on the network definitions and the defined nodes on these
networks. For networks marked as external, no DNS zones are generated.

3.2.2 Adding Networks
Once a network has been added, it can be used in the configuration of network interfaces for devices.

In Base View the Add button in the Networks subwindow (figure 3.3) can be used to add a new
network. After the new network has been added, the Settings pane (figure 3.5) can be used to further
configure the newly-added network.

In cmsh, a new network can be added from within network mode using the add or clone commands.
The default assignment of networks (internalnet to Management network and externalnet to

External network) can be changed using Base View, via the Settings window of the cluster object
(figure 3.1).

In cmsh the assignment to Management network and External network can be set or modified from
the base object in partition mode:

Example

[root@basecm11 ~]# cmsh

node001.storage.cluster

3.2 Network Settings 95

[basecm11]% partition use base

[basecm11->partition[base]]% set managementnetwork internalnet; commit

[basecm11->partition[base]]% set externalnetwork externalnet; commit

3.2.3 Changing Network Parameters
After both internal and external networks are defined, it may be necessary to change network-related
parameters from their original or default installation settings.

Changing The Head Or Regular Node Hostname
To reach the head node from inside the cluster, the alias master may be used at all times. Setting the
hostname of the head node itself to master is not recommended.

The name of a cluster is sometimes used as the hostname of the head node. The cluster name, the
head node hostname, and the regular node hostnames, all have their own separate names as a property
of their corresponding objects. The name can be changed in a similar manner for each.

For example, to change the hostname of the head node, the device object corresponding to the head
node must be modified.

• In Base View, the navigation path for modifying the host name is Devices > Head Nodes > Edit

> Settings > Hostname > Save. That is, under the Devices resource, the Head Nodes option is
selected. The Edit button can then be used to edit the host. This opens up a pane, and the Settings
option can then be selected. The Hostname record can then be modified (figure 3.6), and saved by
clicking on the Save button. When setting a hostname, a domain is not included.

After the change, as suggested by Base View, the head node must be rebooted.

96 Configuring The Cluster

Figure 3.6: Head Node Settings

• In cmsh, the hostname of the head node can also be changed, via device mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% set hostname foobar

[foobar->device*[foobar*]]% commit

[foobar->device[foobar]]%

Tue Jan 22 17:35:29 2013 [warning] foobar: Reboot required: Hostname changed

[foobar->device[foobar]]% quit

[root@basecm11 ~]# sleep 30; hostname -f foobar.cm.cluster

[root@basecm11 ~]#

The prompt string shows the new hostname after a short time, when a new shell is started.

After the hostname has been set, as suggested by cmsh, the head node must be rebooted.

3.2 Network Settings 97

Adding Hostnames To The Internal Network
Additional hostnames, whether they belong to the cluster nodes or not, can be added as name/value
pairs to the /etc/hosts file(s) within the cluster. This should be done only outside the specially-marked
CMDaemon-managed section. It can be done to the file on the head node, or to the file on the software
image for the regular nodes, or to both, depending on where the resolution is required.

However, for hosts that are on the internal network of the cluster, such as regular nodes, it is easier
and wiser to avoid adding additional hostnames via /etc/hosts.

Instead, it is recommended to let BCM manage host name resolution for devices on the internalnet
through its DNS server on the internalnet interface. The host names can be added to the
additionalhostnames object, from within interfaces submode for the head node. The interfaces

submode is accessible from the device mode. Thus, for the head node, with eth1 as the interface for
internalnet:

Example

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% interfaces

[basecm11->device[basecm11]->interfaces]% use eth1

[basecm11->device[basecm11]->interfaces[eth1]]% set additionalhostnames test

[basecm11->device*[basecm11*]->interfaces*[eth1*]]% commit

[basecm11->device[basecm11]->interfaces[eth1]]%

Fri Oct 12 16:48:47 2012 [notice] basecm11: Service named was restarted

[basecm11->device[basecm11]->interfaces[eth1]]% !ping test

PING test.cm.cluster (10.141.255.254) 56(84) bytes of data.

...

Multiple hostnames can be added as space-separated entries.
The named service automatically restarts within about 20 seconds after committal, implementing

the configuration changes. This kind of restart is a feature (section 3.14.1) of changes made to service
configurations by Base View or cmsh.

Changing External Network Parameters For The Cluster
The external network parameters of the cluster: When a cluster interacts with an external network,
such as a company or a university network, its connection behavior is determined by the settings of
two objects: firstly, the external network settings of the Networks resource, and secondly, by the cluster
network settings.

1. The external network object contains the network settings for all objects configured to connect
to the external network, for example, a head node. Network settings are configured in Base View
under the Networking resource, then under the Networks subwindow, then within the Settings

option for a selected network. Figure 3.5 shows a settings window for when the internalnet item
has been selected, but in the current case the externalnet item must be selected instead. The
following parameters can then be configured:

• the IP network parameters of the cluster (but not the IP address of the cluster):

– Base address: the network address of the external network (the “IP address of the ex-
ternal network”). This is not to be confused with the IP address of the cluster, which is
described shortly after this.

– Broadcast address: the broadcast address of the external network. This is not to be
confused with the IP address of the internal network (page 93).

– Dynamic range start and Dynamic range end: Not used by the external network con-
figuration.

– Netmask bits: the netmask size, or prefix-length, of the external network, in bits.

98 Configuring The Cluster

– Gateway: the default route for the external network.

• the network name (what the external network itself is called), by default this is defined as
externalnet in the base partition on a newly installed Type 1 cluster,

• the Domain Name: the network domain (LAN domain, i.e. what domain machines on the
external network use as their domain),

• the External network checkbox: this is checked for a Type 1 cluster,

• and MTU size (the maximum value for a TCP/IP packet before it fragments on the external
network—the default value is 1500).

2. The cluster object contains other network settings used to connect to the outside. These are con-
figured in the Settings options of the cluster object resource in Base View (figure 3.1):

• e-mail address(es) for the cluster administrator,

• any additional external name servers used by the cluster to resolve external host names. As an
aside: by default, only the head node name server is configured, and by default it only serves
hosts on the internal network via the internal interface. Enabling the PublicDNS directive
(Appendix C) allows the head node name server to resolve queries about internal hosts from
external hosts via any interface, including the external interface.

• the DNS search domain (what the cluster uses as its domain),

• and NTP time servers (used to synchronize the time on the cluster with standard time) and
time zone settings.

These settings can also be adjusted in cmsh in the base object under partition mode.

Changing the networking parameters of a cluster (apart from the IP address of the cluster) therefore
requires making changes in the settings of the two preceding objects.

The IP address of the cluster: The cluster object itself does not contain an IP address value. This is
because it is the cluster network topology type that determines whether a direct interface exists from
the cluster to the outside world. Thus, the IP address of the cluster in the Type 1, Type 2, and Type 3
configurations (section 3.3.9 of the Installation Manual) is defined by the cluster interface that faces the
outside world. For Type 1, this is the interface of the head node to the external network (figure 3.2). For
Type 2 and Type 3 interfaces the cluster IP address is effectively that of an upstream router, and thus
not a part of BCM configuration. Thus, logically, the IP address of the cluster is not a part of the cluster
object or external network object configuration.

For a Type 1 cluster, the head node IP address can be set in BCM, separately from the cluster object
settings. This is then the IP address of the cluster according to the outside world.

Setting the network parameters of the cluster and the head node IP address: These values can be set
using Base View or cmsh:

With Base View: The cluster network object and associated settings are accessed as follows:

The external network object:
The external network object is accessed via the navigation path
Networking > Networks > externalnet > Edit > Settings

which reaches the window shown in figure 3.7:

3.2 Network Settings 99

Figure 3.7: Network Settings For External Network

The cluster object:
The cluster object and associated settings are accessed as shown in figure 3.1

The head node IP address:
For a head node basecm11, where the IP address is used by the interface eth0, the static IP address
can be set via the navigation path
Devices > Head Nodes > Edit[basecm11] > Settings > JUMP TO > Interfaces > Edit[eth0] > IP

(figure 3.8).

With cmsh: The preceding Base View configuration can also be done in cmsh, using the network,
partition and device modes, as in the following example:

Example

[basecm11]% network use externalnet

[basecm11->network[externalnet]]% set baseaddress 192.168.1.0

[basecm11->network*[externalnet*]]% set netmaskbits 24

[basecm11->network*[externalnet*]]% set gateway 192.168.1.1

100 Configuring The Cluster

Figure 3.8: Setting The IP Address On A Head Node In Base View

[basecm11->network*[externalnet*]]% commit

[basecm11->network[externalnet]]% partition use base

[basecm11->partition[base]]% set nameservers 192.168.1.1

[basecm11->partition*[base*]]% set searchdomains x.com y.com

[basecm11->partition*[base*]]% append timeservers ntp.x.com

[basecm11->partition*[base*]]% commit

[basecm11->partition[base]]% device use basecm11

[basecm11->device[basecm11]]% interfaces

[basecm11->device[basecm11]->interfaces]% use eth1

[basecm11->device[basecm11]->interfaces[eth1]]% set ip 192.168.1.176

[basecm11->device[basecm11]->interfaces*[eth1*]]% commit

[basecm11->device[basecm11]->interfaces[eth1]]%

After changing the external network configurations, a reboot of the head node is necessary to
activate the changes.

Using DHCP to supply network values for the external interface: Connecting the cluster via DHCP
on the external network is not generally recommended for production clusters. This is because DHCP-
related issues can complicate networking troubleshooting compared with using static assignments.

For a Type 1 network, the cluster and head node can be made to use some of the DHCP-supplied
external network values as follows:

3.2 Network Settings 101

• In Base View, the DHCP setting of figure 3.8 can be set to Enabled

• Alternatively, in cmsh, within interfaces mode for the head node interface, the value of the param-
eter DHCP can be set:

[basecm11->device[basecm11]->interfaces[eth0]]% set dhcp yes

The gateway address, the name server(s), and the external IP address of the head node are then obtained
via a DHCP lease. Time server configuration for externalnet is not picked up from the DHCP server,
having been set during installation (figure 3.8 in Chapter 3 of the Installation Manual). The time servers
can be changed using Base View as in figure 3.1, or using cmsh in partition mode as in the preceding
example. The time zone can be changed similarly.

It is usually sensible to reboot after implementing these changes in order to test the changes are
working as expected.

Changing Internal Network Parameters For The Cluster
When a cluster interacts with the internal network that the regular nodes and other devices are on, its
connection behavior with the devices on that network is determined by settings in:

1. the internal network of the Networks resource (page 101)

2. the cluster network for the internal network (page 102)

3. the individual device network interface (page 102)

4. the node categories network-related items for the device (page 104), in the case of the device being
a regular node.

In more detail:

1. The internal network object: has the network settings for all devices connecting to the internal
network, for example, a login node, a head node via its internalnet interface, or a managed switch on
the internal network. In Base View, the settings can be configured under the Networking resource, then
under the Networks subwindow, then within the Settings option for the internalnet item (figure 3.5).
In cmsh the settings can be configured by changing the values in the internalnet object within cmsh’s
network mode. Parameters that can be changed include:

• the IP network parameters of the internal network (but not the internal IP address):

– “Base address”: the internal network address of the cluster (the “IP address of the internal
network”). This is not to be confused with the IP address of the internal network interface of
the head node. The default value is 10.141.0.0.

– “Netmask bits”: the netmask size, or prefix-length, of the internal network, in bits. The
default value is 16.

– Gateway: the default gateway route for the internal network. If unset, or 0.0.0.0 (the default),
then its value is decided by the DHCP server on the head node, and nodes are assigned a
default gateway route of 10.141.255.254, which corresponds to using the head node as a
default gateway route for the interface of the regular node. The effect of this parameter is
overridden by any default gateway route value set by the value of Default gateway in the
node category.

– “Dynamic range start” and “Dynamic range end”: These are the DHCP ranges for nodes.
DHCP is unset by default. When set, unidentified nodes can use the dynamic IP address
values assigned to the node by the node-installer. These values range by default from
10.141.128.0 to 10.141.143.255. Using this feature is not generally recommended, in order
to avoid the possibility of conflict with the static IP addresses of identified nodes.

102 Configuring The Cluster

– Node booting: This allows nodes to boot from the provisioning system controlled by CM-
Daemon. The parameter is normally set for the management network (that is the network
over which CMDaemon communicates to manage nodes) but booting can instead be carried
out over a separate physical non-management network. Booting over InfiniBand is possible
(section 5.1.3).

– Lock down dhcpd, if set to yes, stops new nodes from booting via the network. New nodes are
those nodes which are detected but the cluster cannot identify based on CMDaemon records.
Details are given in Chapter 5 about booting, provisioning, and how a node is detected as
new.

• the “domain name” of the network. This is the LAN domain, which is the domain machines on
this network use as their domain. By default, set to a name based on the network interface type
used on the internal network, for example eth.cluster. In any case, the FQDN must be unique
for every node in the cluster.

• the network name, or what the internal network is called. By default, set to internalnet.

• The MTU size, or the maximum value for a TCP/IP packet before it fragments on this network. By
default, set to 1500.

2. The cluster object: has other network settings that the internal network in the cluster uses. These
particulars are configured in the Settings option of the cluster object resource in Base View (figure 3.1).
The cmsh equivalents can be configured from the base object in partition mode. Values that can be set
include:

• the “Management network”. This is the network over which CMDaemon manages the nodes. Man-
agement means that CMDaemon on the head node communicates with CMDaemons on the other
nodes. The communication includes CMDaemon calls and monitoring data. By default, the man-
agement network is set to internalnet for Type 1 and Type 2 networks, and managementnet in
Type 3 networks. It is a partition-level cluster-wide setting by default. Partition-level settings can
be overridden by the category level setting, and node-level settings can override category level or
partition level settings.

• the “Node name” can be set to decide the prefix part of the node name. By default, set to node.

• the “Node digits” can be set to decide the possible size of numbers used for suffix part of the
node name. By default, set to 3.

• the “Default category”. This sets the category the nodes are in by default. By default, it is set to
default.

• the “Default software image”. This sets the image the nodes use by default, for new nodes that
are not in a category yet. By default, it is set to default-image.

• the “Name server”. This sets the name server used by the cluster. By default, it is set to the head
node. The default configuration uses the internal network interface and serves only internal hosts.
Internal hosts can override using this value at category level (page 104). By default external hosts
cannot use this service. To allow external hosts to use the service for resolving internal hosts, the
PublicDNS directive (Appendix C) must be set to True.

3. The internal IP addresses and other internal interface values: In Base View, the network for a node,
such as a physical node node001, can be configured via a navigation path Devices > Nodes[node001] >
Interface. The subwindow that opens up then allows network configuration to be done for such nodes
in a similar way to figure 3.8.

3.2 Network Settings 103

In cmsh the configuration can be done by changing properties from the interfaces submode that is
within the device mode for the node.

The items that can be set include:

• the Network device name: By default, this is set to BOOTIF for a node that boots from the same
interface as the one from which it is provisioned.

• the Network: By default, this is set to a value of internalnet.

• the IP address: By default, this is automatically assigned a static value, in the range 10.141.0.1

to 10.141.255.255, with the first node being given the first address. Using a static IP address
is recommended for reliability, since it allows nodes that lose connectivity to the head node to
continue operating. The static address can be changed manually, in case there is an IP address or
node ID conflict due to an earlier inappropriate manual intervention.

Administrators who want DHCP addressing on the internal network, despite the consequences,
can set it via a checkbox.

• onnetworkpriority: This sets the priority of DNS resolution queries for the interface on the net-
work. The range of values that it can take is from 0 to 4294967295. Resolution takes place via the
interface with the higher value.

The default priority value for a network interface is set according to its type. These defaults are:

Type Value

Bridge 80

Bond 70

Physical 60

VLAN 50

Alias 40

Tunnel 30

Netmap 20

BMC 10

• Additional Hostname: In the case of nodes this is in addition to the default node name
set during provisioning. The node name set during provisioning takes a default form of
node<3 digit number>, as explained earlier on page 102 in the section describing the cluster ob-
ject settings.

For, example, a regular node that has an extra interface, eth1, can have its values set as follows:

Example

[basecm11] device interfaces node001

[basecm11->device[node001]->interfaces]% add physical eth1

[basecm11->...->interfaces*[eth1*]]% set network externalnet

[basecm11->...->interfaces*[eth1*]]% set additionalhostnames extra01

[basecm11->...->interfaces*[eth1*]% set ip 10.141.1.1

[basecm11->...->interfaces*[eth1*]]% commit

[basecm11->...->interfaces[eth1]]% ..

[basecm11->...->interfaces]% ..

[basecm11->device[node001]]% reboot

104 Configuring The Cluster

4. Node category network values: are settings for the internal network that can be configured for node
categories. For example, for the default category called default this can be carried out:

• via Base View, using the Settings option for Node categories. This is in the navigation path
Grouping > Node categories[default-image] > Settings

• or via the category mode in cmsh, for the default node category.

If there are individual node settings that have been configured in Base View or cmsh, then the node
settings override the corresponding category settings for those particular nodes.

The category properties involved in internal networking that can be set include:

• Default gateway: The default gateway route for nodes in the node category. If unset, or 0.0.0.0
(the default), then the node default gateway route is decided by the internal network object Gateway
value. If the default gateway is set as a node category value, then nodes use the node category
value as their default gateway route instead.

• Management network: The management network is the network used by CMDaemon to manage
devices. The default setting is a property of the node object. It can be set as a category property.

• Name server, Time server, Search domain: The default setting for these on all nodes is set by the
node-installer to refer to the head node, and is not configurable at the node level using Base View
or cmsh. The setting can however be set as a category property, either as a space-separated list of
entries or as a single entry, to override the default value.

Application To Generic Network Devices: The preceding details for the internal network parameters
of the cluster, starting from page 101, are applicable to regular nodes, but they are often also applicable
to generic network devices (section 2.1.1). Benefits of adding a generic device to be managed by BCM
include that:

• the name given to the device during addition is automatically placed in the internal DNS zone, so
that the device is accessible by name

• the device status is automatically monitored via an ICMP ping (Appendix G.2.1).

• the device can be made to work with the health check and metric framework. The scripts used in
the framework will however almost certainly have to be customized to work with the device

After changing network configurations, a reboot of the device is necessary to activate the changes.

Changing The Global Network Parameters For The Cluster
The global network globalnet is a unique network used to set up a common name space for all nodes
in a cluster in BCM. It is required in BCM because of the added cloud extension functionality, described
in the Cloudbursting Manual. Regular nodes and regular cloud nodes are thus both named under the
globalnet domain name, which is cm.cluster by default. So, for example, if default host names for
regular nodes (node001, node002, ...) and regular cloud nodes (cnode001, cnode002, ...) are used, node
addresses with the domain are:

• node001.cm.cluster for node001

• cnode001.cm.cluster for cnode001

The only parameter that can be sensibly changed on globalnet is the domain name, which is cm.cluster
by default.

Removing globalnet should not be done because it will cause various networking failures, even for
clusters deploying no cloud nodes.

Details on how resolution is carried out with the help of globalnet are given in section 6.6.1 of the
Cloudbursting Manual.

3.2 Network Settings 105

Setting Static Routes In The staticroutes Submode Of cmsh
To route via a specific gateway, the staticroutes submode can be used. This can be set for regular
nodes and head nodes via the device mode, and for node categories via the category mode.

On a newly-installed cluster with a type 1 network (section 3.3.9 of the Installation Manual), a node
by default routes packets using the head node as the default gateway.

If the administrator would like to configure a regular node to use another gateway to reach a printer
on another subnet, as illustrated by figure 3.9:

External Network

Internal Network
10.141.0.0/16

Another internal network
192.168.0.0/24
(not managed by the cluster manager)

192.168.0.3

n
o
d
e
0

0
1

n
o
d
e
0

0
2

head node
(default route)

192.168.0.1

10.141.0.1

10.141.1.1

10.141.255.254
192.168.0.9

Fax

Printer

10.141.0.2
Gateway

Figure 3.9: Example Of A Static Route To A Printer On Another Subnet

then an example session for setting the static route is as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]%

[basecm11->device[node001]]% staticroutes

[basecm11->device[node001]->staticroutes]% list

Name (key) Gateway Destination

-------------------------------- ---------------- --------------

[basecm11->device[node001]->staticroutes]% add printerroute

[basecm11->...*[printerroute*]]% set gateway 10.141.1.1

[basecm11->...*[printerroute*]]% set destination 192.168.0.3

[basecm11->...*[printerroute*]]% set networkdevicename bootif

[basecm11->...*[printerroute*]]% commit

[basecm11->...[printerroute]]% show

Parameter Value

-------------------------------- -------------------------------

Destination 192.168.0.3/32

Gateway 10.141.1.1

Name printerroute

Network Device Name bootif

106 Configuring The Cluster

Revision

[basecm11->device[node001]->staticroutes[printerroute]]% exit

[basecm11->device[node001]->staticroutes]% list

Name (key) Gateway Destination

-------------------------------- ---------------- --------------

printerroute 10.141.1.1 192.168.0.3/32

[basecm11->device[node001]->staticroutes]% exit; exit

[basecm11->device]% reboot node001

In the preceding example, the regular node node001, with IP address 10.141.0.1 can connect to a
host 192.168.0.3 outside the regular node subnet using a gateway with the IP addresses 10.141.1.1 and
192.168.0.1. The route is given the arbitrary name printerroute for administrator and CMDaemon
convenience, because the host to be reached in this case is a print server. The networkdevicename is
given the interface name bootif. If another device interface name is defined in CMDaemon, then that
can be used instead. If there is only one interface, then networkdevicename need not be set.

After a reboot of the node, the route that packets from the node follow can be seen with a traceroute
or similar. The ping utility with the -R option can often track up to 9 hops, and can be used to track the
route:

Example

[root@basecm11 ~]# ssh node001 ping -c1 -R 192.168.0.3

PING 192.168.0.3 (192.168.0.3) 56(124) bytes of data.

64 bytes from 192.168.0.3: icmp_seq=1 ttl=62 time=1.41 ms

RR: 10.141.0.1

10.141.1.1

192.168.0.1

192.168.0.3

192.168.0.3

192.168.0.1

10.141.1.1

10.141.0.1

--- 192.168.0.3 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 1ms

rtt min/avg/max/mdev = 1.416/1.416/1.416/0.000 ms

[root@basecm11->device[node001]->staticroutes]%

The routing is achieved by CMDaemon making sure that whenever the network interface is brought
up, the OS of the regular node runs a routing command to configure the routing tables. The command
executed for the given example is either:

route add -host 192.168.0.3 gw 10.141.1.1

or its modern iproute2 equivalent:

ip route add 192.168.0.3 via 10.141.1.1

If the device bootif is eth0—which is often the case—then the command is run from the network
interface configuration file: /etc/sysconfig/network-scripts/ifcfg-eth0 (or /etc/sysconfig/

network/ifcfg-eth0 in SUSE).

3.2.4 Tools For Viewing Cluster Connections And Connectivity
Viewing Node Routes With routes In cmsh

The cmsh routes command is a wrapper around the Linux route command, and is designed to run in
parallel over nodes. It is intended to get a fast route overview for one or more nodes, and display it for
easy comparison.

To get a full overview of the routes for all nodes, the command is run without any options:

/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0

3.2 Network Settings 107

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% routes

Node Destination Gateway Netmask Interface

---------- ---------------- ---------------- ---------------- ---------

basecm11 0.0.0.0 192.168.200.254 0.0.0.0 eth1

basecm11 10.141.0.0 0.0.0.0 255.255.0.0 eth0

basecm11 169.254.0.0 0.0.0.0 255.255.0.0 eth1

basecm11 169.254.169.254 192.168.200.254 255.255.255.255 eth1

basecm11 192.168.200.0 0.0.0.0 255.255.255.0 eth1

node001 0.0.0.0 10.141.255.254 0.0.0.0 eth0

node001 10.141.0.0 0.0.0.0 255.255.0.0 eth0

node001 169.254.0.0 0.0.0.0 255.255.0.0 eth0

To select or filter the output, the grouping options of routes, or the text processing utility awk

can be used. Grouping options are options to select nodes, groups, categories, and so on, and are
described in the cluster management chapter, on page 64, while a handy link for awk one-liners is
http://tuxgraphics.org/~guido/scripts/awk-one-liner.html.

Selection or filtering makes it very easy to detect badly configured nodes. For example, for unex-
pected gateways, when the expected gateway is <expected-gateway>, the following command may be
used:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% routes --category default | awk 'if ($3 != "<expected-gateway>") print $0'

...

Viewing Connections In cmsh

The connections command can be run from within the device mode of cmsh It is a parallel wrapper to
view active TCP and UDP connections. That is, it runs as a simple command over multiple devices at
the same time.

Running connections without options displays a full overview of the currently active TCP and UDP
ports on all devices (output truncated):

Example

[basecm11->device]% connections

Node Type Source Port Destination Port State

--------- -------- -------- ----- ------------ ----- ----------

basecm11 TCP 0.0.0.0 22 0.0.0.0 0 Listening

basecm11 TCP 0.0.0.0 25 0.0.0.0 0 Listening

basecm11 TCP 0.0.0.0 111 0.0.0.0 0 Listening

basecm11 TCP 0.0.0.0 636 0.0.0.0 0 Listening

...

Filtering with grep can then show which nodes are listening on which ports. For example, nodes
listening for DNS queries (port 53) can be found with:

Example

[basecm11->device]% connections | head -2; connections | grep Listen | grep " 53"

Node Type Source Port Destination Port State

--------- -------- ------------------ -------- --------------- -------- -----------

http://tuxgraphics.org/~guido/scripts/awk-one-liner.html

108 Configuring The Cluster

basecm11 TCP 10.141.255.254 53 0.0.0.0 0 Listening

basecm11 TCP 127.0.0.1 53 0.0.0.0 0 Listening

basecm11 TCP 192.168.200.162 53 0.0.0.0 0 Listening

and shows that only the head node is listening on that port, providing DNS.
Some third party tools require a free port on all nodes for a service to listen on. Filtering and sorting

the output of the connections command allows the administrator to find all the existing used ports
across all nodes:

Example

[basecm11->device]% connections | awk 'print $4' | sort -un

Port

22

25

53

67

68

69

...

Options to the connections command can be seen by running help connections. Options include
node grouping options (such as -n|--nodes, -c|--category, and -t|--type), and filtering out TCP6
and UDP6 connections (--no-tcp6, --no-udp6).

Viewing Connectivity in cmsh

The connectivity command can be run from within the device mode of cmsh. It runs ICMP pings
along each node route on a network of the cluster. By default the network is the management network.

By default the output displays if the connection is OK, the ping sequence ID (counting starts from
zero), and the latency between the source and destination:

Example

[basecm11->device]% connectivity

Source Destination Result ID Latency

--------- ----------- ------------ ---- ------------

basecm11 node001 Ok 0 0.4ms

basecm11 node002 Ok 0 0.3ms

basecm11 node003 Ok 0 0.4ms

basecm11 basecm11 Ok 0 0.1ms

Pings where the source and destination have identical names are carried out via identical interfaces.
Further options to the connectivity command can be seen by running help connectivity. Op-

tions include the ability to set ping timeouts and the cluster network on which to ping, as well as node
grouping options.

For larger clusters, the following type of connectivity check may be a helpful diagnostic:

Example

[basecm11->device]% connectivity --statistics --count 100 --delay 0.01

Name Value

----------- --------

OK 400

Total 400

Count 2

Average 0.35ms

Minimum 0.35ms

Maximum 0.35ms

Uniformity 100.0%

3.3 Configuring Bridge Interfaces 109

The preceding shows how uniform nodes are in ping timings. A significant spread in uniformity can
indicate network problems.

Viewing Network Performance With cm-iperf.py

A handy tool for checking the network performance of the nodes on a cluster is cm-iperf.py.
The nodes to be checked must be specified with the -n|--node option:

Example

basecm11:~# /cm/local/apps/cmd/scripts/cm-iperf.py -n node001..node004

Thread Port Server Client Target Bitrate

======= ======= =============== =============== =============== =================

0 5000 node001 node002 node001 7.89 Gbits/sec

0 5001 node001 node003 node001 7.84 Gbits/sec

0 5002 node001 node004 node001 8.22 Gbits/sec

0 5003 node002 node003 node002 7.53 Gbits/sec

0 5004 node002 node004 node002 8.60 Gbits/sec

0 5005 node003 node004 node003 7.59 Gbits/sec

For a Type 1 cluster (section 3.3.9 of the Installation Manual) with n nodes, the total number of con-
nection pairs that can be evaluated is: (

n

2

)
=

(n)(n− 1)
2

For a 4-node cluster this means 6 network connection pairs are displayed, as is seen in the preceding
example.

Each pair is checked for about 10s. This means that for a 1000-node cluster, the time for a default run
would take about 2 months. The following options are therefore useful:

• --count: specify the number of pairs that are checked

• -r|--random: have the connection pairs chosen in a random sequence

• -p|--parallel: specify the number of parallel threads to runs the process

Example

basecm11:~# /cm/local/apps/cmd/scripts/cm-iperf.py -n node001..node004 --count 5 -r -p 2

Further options can be viewed with the -h|--help option.

3.3 Configuring Bridge Interfaces
Bridge interfaces can be used to divide one physical network into two separate network segments at
layer 2 without creating separate IP subnets. A bridge thus connects the two networks together at layer
3 in a protocol-independent way.

The network device name given to the bridge interface is of the form br<number> . The following
example demonstrates how to set up a bridge interface in cmsh, where the name br0 is stored by the
parameter networkdevicename.

Example

[basecm11->device[node001]->interfaces]% add bridge br0

[basecm11->...->interfaces*[br0*]]% set network internalnet

[basecm11->...->interfaces*[br0*]]% set ip 10.141.1.1

[basecm11->...->interfaces*[br0*]]% show

Parameter Value

110 Configuring The Cluster

------------------------------ ------------------

Additional Hostnames

DHCP no

Forward Delay 0

IP 10.141.1.1

Interfaces

MAC 00:00:00:00:00:00

Network internalnet

Network device name br0

Revision

SpanningTreeProtocol no

Type bridge

A bridge interface is composed of one or more physical interfaces. The IP and network fields of the
member interfaces must be empty:

Example

[basecm11->...->interfaces*[br0*]]% set interfaces eth1 eth2; exit

[basecm11->...->interfaces*]% clear eth1 ip; clear eth1 network

[basecm11->...->interfaces*]% clear eth2 ip; clear eth2 network

[basecm11->...->interfaces*]% use br0; commit

The BOOTIF interface is also a valid interface option.
Currently, the following bridge properties can be set:

• SpanningTreeProtocol: sets the spanning tree protocol to be on or off. The default is off.

• Forward Delay: sets the delay for forwarding Ethernet frames, in seconds. The default is 0.

Additional properties, if required, can be set manually using the brctl command in the OS shell.
When listing interfaces in cmsh, if an interface is a member of a bond (or bridge) interface, then the

corresponding bond or bridge interface name is shown in parentheses after the member interface name:

Example

[headnode->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

bond bond0 [prov] 10.141.128.1 internalnet

bridge br0 10.141.128.2 internalnet

physical eth0 10.141.0.1 internalnet

physical eth1 (bond0) 0.0.0.0

physical eth2 (bond0) 0.0.0.0

physical eth3 (br0) 0.0.0.0

physical eth4 (br0) 0.0.0.0

It is possible to create a bridge interface with no IP address configured, that is, with an IP address
of 0.0.0.0. This can be done for security reasons, or when the number of available IP addresses on
the network is scarce. As long as such a bridge interface has a network assigned to it, it is properly
configured on the nodes and functions as a bridge on the network.

3.4 Configuring VLAN interfaces 111

3.4 Configuring VLAN interfaces
A VLAN (Virtual Local Area Network) is an independent logical LAN within a physical LAN network.
VLAN tagging is used to segregate VLANs from each other. VLAN tagging is the practice of inserting a
VLAN ID tag into a packet frame header, so that each packet can be associated with a VLAN.

The physical network then typically has sections that are VLAN-aware or VLAN-unaware. The
nodes and switches of the VLAN-aware section are configured by the administrator to decide which
traffic belongs to which VLAN.

A VLAN interface can be configured for an interface within BCM using cmsh or Base View.

3.4.1 Configuring A VLAN Interface Using cmsh

In the following cmsh session, a regular node interface that faces a VLAN-aware switch is made VLAN-
aware, and assigned a new interface—an alias interface. It is also assigned a network, and an IP address
within that network:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device interfaces node001

[basecm11->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- -------------- ------------

physical BOOTIF [prov] 10.141.0.1 internalnet

[basecm11->device[node001]->interfaces]% list -h | tail -4

Arguments:

type

alias, bmc, bond, bridge, netmap, physical, tunnel, vlan

[basecm11->device[node001]->interfaces]% add vlan BOOTIF.1

[basecm11->device*[node001*]->interfaces*[BOOTIF.1*]]% commit

[basecm11->device[node001]->interfaces[BOOTIF.1]]% show

Parameter Value

------------------------- ------------------------

Additional Hostname

DHCP no

IP 0.0.0.0

MAC 00:00:00:00:00:00

Network

Network device name BOOTIF.1

Reorder HDR no

Revision

Type vlan

[basecm11->...[BOOTIF.1]]% set network internalnet

[basecm11->...[BOOTIF.1*]]% set ip 10.141.2.1; commit

The Reorder HDR setting in a VLAN, if enabled, moves the ethernet header around to make it look
exactly like a real ethernet device. This setting controls the REORDER_HDR setting in the file at /etc/
sysconfig/network-scripts/ifcfg-<interface> on the node.

3.4.2 Configuring A VLAN Interface Using Base View
Within Base View a VLAN interface can be added for a node such as node001 via the navigation path:
Devices > Nodes > Edit[node001] > Settings > JUMP TO > Interfaces > +ADD[Network VLAN interface]

(figure 3.10).

/etc/sysconfig/network-scripts/
/etc/sysconfig/network-scripts/

112 Configuring The Cluster

Figure 3.10: Configuring a VLAN via Base View
A Network VLAN Interface window opens up, allowing an IP address, network, and other options

to be configured for the VLAN interface.

3.5 Configuring Bonded Interfaces
3.5.1 Adding A Bonded Interface
The Linux bonding driver allows multiple physical network interfaces that have been configured pre-
viously (for example, as on page 103) to be bonded as a single logical bond interface. The behavior of
such interfaces is determined by their bonding mode. The modes provide facilities such as hot standby
or load balancing.

The driver is included by default on head nodes. To configure a non-head node to use a bonded
interface, a Linux kernel module called the bonding module must be included in the kernel modules
list of the software image of the node. A bonding interface can then be created, and its properties set as
follows:

Example

[basecm11->device[node001]->interfaces]% add bond bond0

[...->device*[node001*]->interfaces*[bond0*]]% set network internalnet

[...->device*[node001*]->interfaces*[bond0*]]% set ip 10.141.128.1

[...->device*[node001*]->interfaces*[bond0*]]% set mode 3

[...->device*[node001*]->interfaces*[bond0*]]% set interfaces eth1 eth2

Each bonded interface has a unique set of object properties, called bonding options, that specify how
the bonding device operates. The bonding options are a string containing one or more options formatted
as option=value pairs, with pairs separated from each other by a space character.

A bonded interface also always has a mode associated with it. By default it is set to 0, corresponding
to a balanced round-robin packet transmission.

3.5 Configuring Bonded Interfaces 113

The 7 bonding modes are:

• 0 – balance-rr

• 1 – active-backup

• 2 – balance-xor

• 3 – broadcast

• 4 – 802.3ad

• 5 – balance-tlb

• 6 – balance-alb

Technically, outside of Base View or cmsh, the bonding mode is just another bonding option specified
as part of the options string. However in BCM the bonding mode value is set up using the dedicated
mode property of the bonded interface, for the sake of clarity. To avoid conflict with the value of the mode
property, trying to commit a bonding mode value as an option=value pair will fail validation.

3.5.2 Single Bonded Interface On A Regular Node
A single bonded interface on a node can be configured and coexist in several ways on nodes with mul-
tiple network interfaces. Possibilities and restrictions are illustrated by the following:

• The bonded interface may be made up of two member interfaces, and a third interface outside of
the bond could be the boot interface. (The boot interface is the node interface used to PXE boot the
node before the kernel loads (section 5.1)).

• The boot interface could itself be a member of the bonded interface. If the boot interface is a
member of a bonded interface, then this is the first bonded interface when interfaces are listed as
in the example on page 110.

• The bonded interface could be set up as the provisioning interface. However, the provisioning
interface cannot itself be a member of a bonded interface. (The provisioning interface is the node’s
interface that picks up the image for the node after the initial ramdisk is running. Chapter 5 covers
this in more detail).

• A bonded interface can be set up as the provisioning interface, while having a member interface
which is used for PXE booting.

3.5.3 Multiple Bonded Interface On A Regular Node
A node can also have multiple bonded interfaces configured. Possibilities and restrictions are illustrated
by the following:

• Any one of the configured bonded interfaces can be configured as the provisioning interface. How-
ever, as already mentioned in the case of single bond interfaces (section 3.5.2), a particular member
of a bonded interface cannot be made the provisioning interface.

• When a bonded interface is set as the provisioning interface, then during the node-installer phase
of boot, the node-installer brings up the necessary bonded interface along with all its member
interfaces so that node provisioning is done over the bonded interface.

114 Configuring The Cluster

3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes
It is also possible to configure bonded interfaces on head nodes.

For a single head node setup, this is analogous to setting up bonding on regular nodes.
For a high availability (HA) setup (chapter 15), bonding is possible for internalnet as well as for

externalnet, but it needs the following extra changes:

• For the bonded interface on internalnet, the shared internal IP alias interface name (the value of
networkdevicename, for example, eth0:0 in figure 15.1) for that IP address should be renamed to
the bonded alias interface name on internalnet (for example, bond0:0).

• For the bonded interface on externalnet, the shared external IP alias interface name (the value of
networkdevicename, for example, eth1:0 in figure 15.1) for that IP address should be renamed to
the bonded alias interface name on externalnet (for example, bond1:0).

• Additionally, when using a bonded interface name for the internal network, the value of the provi-
sioning network interface name (the value of provisioninginterface, for example, eth0) for the
head nodes, must be changed to the name of the bonded interface (for example, bond0 [prov]) on
the internal network. The provisioninginterface value setting is described further on page 262.

Example

[headnode1->device[headnode1]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ------------

alias bond0:0 10.141.255.252 internalnet

alias bond1:0 10.150.57.1 externalnet

bond bond0 [prov] 10.141.255.254 internalnet

bond bond1 10.150.57.3 externalnet

physical eth0 (bond0) 0.0.0.0

physical eth1 (bond0) 0.0.0.0

physical eth2 (bond1) 0.0.0.0

physical eth3 (bond1) 0.0.0.0

3.5.5 Tagged VLAN On Top Of a Bonded Interface
It is possible to set up a tagged VLAN interface on top of a bonded interface. There is no requirement for
the bonded interface to have an IP address configured in this case. The IP address can be set to 0.0.0.0,
however a network must be set.

Example

[headnode1->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ------------

bond bond0 0.0.0.0 internalnet

physical eth0 [prov] 10.141.0.1 internalnet

physical eth1 (bond0) 0.0.0.0

physical eth2 (bond0) 0.0.0.0

vlan bond0.3 10.150.1.1 othernet

3.5.6 Association Of MAC Address With A Bonded Interface
BCM has MAC settings for interfaces as well as for nodes.

When a node is provisioned via PXE booting (Chapter 5), the MAC on the NIC that is being booted
from is matched with the MAC property of the node. This is how the node is identified.

If a bonded interface is used, then depending on the bond mode, any interface may be used for PXE
booting. Each interface has its own MAC address, which means that if the interface MAC address does

3.5 Configuring Bonded Interfaces 115

not match the node MAC address, then the node loops in the node-installer waiting to be identified as a
new node (section 5.4.2).

BCM from version 10.25.05 by default has the node-installer recognize any interface MAC in the
bonded interface for a node. To change that behavior, the AnyMAC advanced configuration directive
(page 858) should be set to 0. When the node CMDaemon starts for the first time, it adds the MAC
addresses for all the physical interfaces that are a part of a bond automatically to the bond interface.

3.5.7 Further Notes On Bonding
If using bonding to provide failover services, then the kernel module option setting for media indepen-
dent interface monitoring, miimon, which is set to be off by default (set to 0), should be given a non-zero
value.

The miimon setting is the time period in milliseconds between checks of the interface carrier state. A
common value is miimon=100.

Its value is set in the bonding device configuration file.

• For RHEL and derivatives, and for SLES distributions, the file is in a network script along a file
path such as /etc/sysconfig/network-scripts/ifcfg-bond0.

The line within the stanza for the ifcfg-bond0 file might look like:

Example

BONDING_MODULE_OPTS="mode=active-backup miimon=100"

and can be set manually.

– For RHEL and derivatives, it can alternatively be configured with front-end tools such as the
nmcli tool, nmtui, or others.

Example

nmcli connection add type bond con-name bond0 ifname bond0 bond.options \

"mode=active-backup,miimon=100"

– For SLES, YaST can be used as a front-end tool (YaST > System > Network Settings).

• For Ubuntu, the interface definitions are in a file, either /etc/network/interfaces, or a file under
/etc/network/interfaces.d/.

The line to set the value of miimon follows a form such as:

bond-miimon 100

instead of

miimon=100

and can be set manually.

Alternatively, Canonical’s netplan (https://netplan.io) utility can be used to set the net-
work configuration files. The netplan YAML configuration key to set bond-miimon is
mii-monitor-interval.

When listing interfaces in cmsh, if an interface is a member of a bond or bridge interface, then the
corresponding bonded or bridge interface name is shown in parentheses after the member interface
name. Section 3.3, on configuring bridge interfaces, shows an example of such a listing from within
cmsh on page 110.

More on bonded interfaces (including a detailed description of bonding options and modes) can be
found at http://www.kernel.org/doc/Documentation/networking/bonding.txt.

/etc/sysconfig/network-scripts/ifcfg-bond0
/etc/network/interfaces
/etc/network/interfaces.d/
https://netplan.io
https://netplan.io/reference#properties-for-device-type-bonds
http://www.kernel.org/doc/Documentation/networking/bonding.txt

116 Configuring The Cluster

3.6 Configuring InfiniBand Interfaces
On clusters with an InfiniBand interconnect, the InfiniBand Host Channel Adapter (HCA) in each node
must be configured before it can be used.

This section describes how to set up the InfiniBand service on the nodes for regular use. Setting up
InfiniBand for booting and provisioning purposes is described in Chapter 5, while setting up InfiniBand
for NFS is described in section 3.13.4.

3.6.1 Installing Software Packages
On a standard NVIDIA Base Command Manager cluster, the OFED (OpenFabrics Enterprise Distribu-
tion) packages that are part of the Linux base distribution are used. These packages provide RDMA
implementations allowing high bandwidth/low latency interconnects on OFED hardware. The imple-
mentations can be used by InfiniBand hardware.

By default, all relevant OFED packages are installed on the head node and software images. It is
possible to replace the distribution OFED with an OFED provided by the BCM repository or another
custom version. The replacement can be for the entire cluster, or only for certain software images. Ad-
ministrators may choose to switch to a different OFED version if the HCAs used are not supported by
the distribution OFED version, or to increase performance by using an OFED version that has been opti-
mized for a particular HCA. Installing a BCM OFED package is covered in Chapter 10 of the Installation
Manual.

If the InfiniBand network is enabled during cluster installation, then the infiniband.conf and
rdma.conf modules in the subdirectory etc/rdma/modules/ are automatically configured for the de-
tected hardware.

The relevant InfiniBand HCA kernel modules are then automatically loaded during the init stage by
systemd. Verifying that InfiniBand is active can be done after the cluster is up and running by running
ibstat:

auser@head:~$ ibstat

CA 'mlx5_0'

CA type: MT4123

Number of ports: 1

Firmware version: 20.31.2006

Hardware version: 0

Node GUID: 0xb8599f0300e4222a

System image GUID: 0xb

Port 1:

State: Active

Physical state: LinkUp

...

3.6.2 Subnet Managers
Every InfiniBand subnet requires at least one subnet manager to be running. The subnet manager takes
care of routing, addressing and initialization on the InfiniBand fabric. Some InfiniBand switches include
subnet managers. However, on large InfiniBand networks or in the absence of a switch-hosted subnet
manager, a subnet manager needs to be started on at least one node inside of the cluster. When multiple
subnet managers are started on the same InfiniBand subnet, one instance will become the active subnet
manager whereas the other instances will remain in passive mode. It is recommended to run 2 subnet
managers on all InfiniBand subnets to provide redundancy in case of failure.

On a Linux machine that is not running BCM, an administrator sets a subnet manager service1 to
start at boot-time with a command such as:

systemctl enable opensm.service

1usually opensm, but opensmd in SLES

etc/rdma/modules/

3.6 Configuring InfiniBand Interfaces 117

However, for clusters managed by BCM, a subnet manager is best set up using CMDaemon. There
are two ways of setting CMDaemon to start up the subnet manager on a node at boot time:

1. by assigning a role.

In cmsh this can be done with:

[root@basecm11 ~]# cmsh -c "device roles <node>; assign subnetmanager; commit"

where <node> is the name of a node on which it will run, for example: basecm11, node001,
node002...

In Base View, the subnet manager role is assigned by selecting a head node or regular node from
the Devices resource, and assigning it the “Subnet manager role”. The navigation path for this,
for a node node002 for example, is Devices > Nodesnode002 > Settings > Roles > Add[Subnet

manager role].

2. by setting the service up. Services are covered more generally in section 3.14.

In cmsh this is done with:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device services node001

[basecm11->device[node001]->services]% add opensm

[basecm11->device[node001]->services*[opensm*]]% set autostart yes

[basecm11->device[node001]->services*[opensm*]]% set monitored yes

[basecm11->device[node001]->services*[opensm*]]% commit

[basecm11->device[node001]->services[opensm]]%

In Base View the subnet manager service is configured by selecting a head node or regular node
from the resources tree, and adding the service to it. The navigation path for this, for a node
node002 for example, is: Devices > Nodesnode002 > Settings > Services[Service].

When the head node in a cluster is equipped with an InfiniBand HCA, it is a good candidate to run
as a subnet manager for smaller clusters.

On large clusters a dedicated node is recommended to run the subnet manager.

3.6.3 InfiniBand Network Settings
Although not strictly necessary, it is recommended that InfiniBand interfaces are assigned an IP address
(i.e. IP over IB). First, a network object in the cluster management infrastructure should be created. The
procedure for adding a network is described in section 3.2.2. The following settings are recommended
as defaults:

Property Value

Name ibnet

Domain name ib.cluster

Type internal

Base address 10.149.0.0

Netmask bits 16

MTU up to 4k in datagram mode

up to 64k in connected mode

118 Configuring The Cluster

By default, an InfiniBand interface is set to datagram mode, because it scales better than connected
mode. It can be configured to run in connected mode by setting the connectedmode property:

Example

[basecm11->device[node001]->interfaces[ib0]]% set connectedmode yes

For nodes that are PXE booting or are getting provisioned over InfiniBand, the mode setting in the
node-installer script has to be changed accordingly.

Example

[root@basecm11 ~]# echo datagram > /cm/node-installer/scripts/ipoib_mode

Once the network has been created all nodes must be assigned an InfiniBand interface on this net-
work. The easiest method of doing this is to create the interface for one node device and then to clone
that device several times.

For large clusters, a labor-saving way to do this is using the addinterface command (section 3.7.1)
as follows:

[root@basecm11 ~]# echo "device

addinterface -n node001..node150 physical ib0 ibnet 10.149.0.1

commit" | cmsh -x

When the head node is also equipped with an InfiniBand HCA, it is important that a corresponding
interface is added and configured in the cluster management infrastructure.

Example

Assigning an IP address on the InfiniBand network to the head node:

[basecm11->device[basecm11]->interfaces]% add physical ib0

[basecm11->device[basecm11]->interfaces*[ib0*]]% set network ibnet

[basecm11->device[basecm11]->interfaces*[ib0*]]% set ip 10.149.255.254

[basecm11->device[basecm11]->interfaces*[ib0*]]% commit

As with any change to the network setup, the head node needs to be restarted to make the above
change active.

3.6.4 Verifying Connectivity
After all nodes have been restarted, the easiest way to verify connectivity is to use the ping utility

Example

Pinging node015 while logged in to node014 through the InfiniBand interconnect:

[root@node014 ~]# ping node015.ib.cluster

PING node015.ib.cluster (10.149.0.15) 56(84) bytes of data.

64 bytes from node015.ib.cluster (10.149.0.15): icmp_seq=1 ttl=64

time=0.086 ms

...

If the ping utility reports that ping replies are being received, the InfiniBand is operational. The ping
utility is not intended to benchmark high speed interconnects. For this reason it is usually a good idea
to perform more elaborate testing to verify that bandwidth and latency are within the expected range.

The quickest way to stress-test the InfiniBand interconnect is to use the Intel MPI Benchmark (IMB),
which is installed by default in /cm/shared/apps/imb/current. The setup.sh script in this directory
can be used to create a template in a user’s home directory to start a run.

/cm/shared/apps/imb/current

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 119

Example

Running the Intel MPI Benchmark using openmpi to evaluate performance of the InfiniBand inter-
connect between node001 and node002:

[root@basecm11 ~]# su - cmsupport

[cmsupport@basecm11 ~]$ cd /cm/shared/apps/imb/current/

[cmsupport@basecm11 current]$./setup.sh

[cmsupport@basecm11 current]$ cd ~/BenchMarks/imb/2017

[cmsupport@basecm11 2017]$ module load openmpi/gcc

[cmsupport@basecm11 2017]$ module initadd openmpi/gcc

[cmsupport@basecm11 2017]$ make -f make_mpi2

[cmsupport@basecm11 2017]$ mpirun -np 2 -machinefile ../nodes IMB-MPI1 PingPong

#---

Benchmarking PingPong

#processes = 2

#---

#bytes #repetitions t[usec] Mbytes/sec

0 1000 0.78 0.00

1 1000 1.08 0.88

2 1000 1.07 1.78

4 1000 1.08 3.53

8 1000 1.08 7.06

16 1000 1.16 13.16

32 1000 1.17 26.15

64 1000 1.17 52.12

128 1000 1.20 101.39

256 1000 1.37 177.62

512 1000 1.69 288.67

1024 1000 2.30 425.34

2048 1000 3.46 564.73

4096 1000 7.37 530.30

8192 1000 11.21 697.20

16384 1000 21.63 722.24

32768 1000 42.19 740.72

65536 640 70.09 891.69

131072 320 125.46 996.35

262144 160 238.04 1050.25

524288 80 500.76 998.48

1048576 40 1065.28 938.72

2097152 20 2033.13 983.71

4194304 10 3887.00 1029.07

All processes entering MPI_Finalize

To run on nodes other than node001 and node002, the ../nodes file must be modified to contain
different hostnames. To perform other benchmarks, the PingPong argument should be omitted.

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces
BCM can initialize and configure the baseboard management controller (BMC) that may be present on
devices. This ability can be set during the installation on the head node (figure 3.15 of the Installation
Manual), or it can be set after installation as described in this section. The IPMI, iLO, DRAC, CIMC,
or Redfish interface that is exposed by a BMC is treated in the cluster management infrastructure as a
special type of network interface belonging to a device. In the most common setup a dedicated network

120 Configuring The Cluster

(i.e. IP subnet) is created for BMC communication. The 10.148.0.0/16 network is used by default for
BMC interfaces by BCM.

3.7.1 BMC Network Settings
The first step in setting up a BMC is to add the BMC network as a network object in the cluster man-
agement infrastructure. The procedure for adding a network is described in section 3.2.2. The following
settings are recommended as defaults:

Property Value

Name bmcnet, ilonet, ipminet, dracnet, cimcnet, or rfnet

Domain name bmc.cluster, ilo.cluster, ipmi.cluster, drac.cluster,
cimc.cluster, or rf.cluster

Type Internal

Base address 10.148.0.0

Netmask bits 16

Broadcast address 10.148.255.255

Once the network has been created, all nodes must be assigned a BMC interface, of type bmc, on this
network. The easiest method of doing this is to create the interface for one node device and then to clone
that device several times.

For larger clusters this can be laborious, and a simple bash loop can be used to do the job instead:

[basecm11 ~]# for ((i=1; i<=150; i++)) do

echo "

device interfaces node$(printf '%03d' $i)

add bmc ipmi0

set network bmcnet

set ip 10.148.0.$i

commit"; done | cmsh -x # -x usefully echoes what is piped into cmsh

The preceding loop can conveniently be replaced with the addinterface command, run from within
the device mode of cmsh:

[basecm11 ~]# echo "

device

addinterface -n node001..node150 bmc ipmi0 bmcnet 10.148.0.1

commit" | cmsh -x

The help text in cmsh gives more details on how to use addinterface.
Most administrators are likely to simply run it as an interactive session in cmsh, running the help

addinterface command for reference, and then supplying the options for the nodes and interface set-
tings in device mode. For example, as in the following session:

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% help addinterface

Name:

addinterface - Add a network interface to one or more nodes

Usage:

addinterface [OPTIONS] <type> <devicename> <network> <firstip>

Options:

...help text omitted...

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 121

Examples:

addinterface -n node001..node010 physical ib0 ibnet 10.149.0.1

[basecm11->device]% addinterface -n node001..node150 bmc ipmi0 bmcnet 10.148.0.1

[basecm11->device*]% commit

In order to be able to communicate with the BMC interfaces, the head node also needs an interface
on the BMC network. Depending on how the BMC interfaces are physically connected to the head node,
the head node has to be assigned an IP address on the BMC network one way or another. There are two
possibilities for how the BMC interface is physically connected:

• When the BMC interface is connected to the primary internal network, the head node should be
assigned an alias interface configured with an IP address on the BMC network.

• When the BMC interface is connected to a dedicated physical network, the head node must also
be physically connected to this network. A physical interface must be added and configured with
an IP address on the BMC network.

Example

Assigning an IP address on the BMC network to the head node using an alias interface:

[basecm11->device[basecm11]->interfaces]% add alias eth0:0

[basecm11->device[basecm11]->interfaces*[eth0:0*]]% set network bmcnet

[basecm11->device[basecm11]->interfaces*[eth0:0*]]% set ip 10.148.255.254

[basecm11->device[basecm11]->interfaces*[eth0:0*]]% commit

[basecm11->device[basecm11]->interfaces[eth0:0]]%

Mon Dec 6 05:45:05 basecm11: Reboot required: Interfaces have been modified

[basecm11->device[basecm11]->interfaces[eth0:0]]% ..;..

[basecm11->device[basecm11]]% reboot

As with any change to the network setup, the head node needs to be restarted to make the above
change active.

BMC connectivity from the head node to the IP addresses of the configured interfaces on the regular
nodes can be tested with Bash one-liner such as:

Example

[root@basecm11 ~]# for i in $(cmsh -c "device; foreach -t physicalnode (interfaces; \
use ilo0; get ip)"); do ping -c1 $i; done | grep -B1 packet

--- 10.148.0.1 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

--- 10.148.0.2 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

--- 10.148.0.3 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

...

In the preceding example the packet loss demonstrates there is a connection problem between the head
node and the BMC subnet.

3.7.2 BMC Authentication
The node-installer described in Chapter 5 is responsible for the initialization and configuration of the
BMC interface of a device. In addition to a number of network-related settings, the node-installer also
configures BMC authentication credentials. By default BMC interfaces are configured with username
bright and a random password that is generated during the installation of the head node. The password

122 Configuring The Cluster

is stored by CMDaemon. It can be managed from cmsh from within the base object of partition mode,
in the bmcsettings submode. This means that by default, each BMC in the cluster has that username
and password set during node boot.

For example, the current values of the BMC username and password for the entire cluster can be
obtained and changed as follows:

Example

[basecm11]% partition use base

[basecm11->partition[base]]% bmcsettings

[basecm11->partition[base]->bmcsettings]% get username

bright

[basecm11->partition[base]->bmcsettings]% get password

Za4ohni1ohMa2zew

[basecm11->partition[base]->bmcsettings]% set username bmcadmin

[basecm11->partition*[base*]->bmcsettings*]% set password

enter new password: ******

retype new password: ******

[basecm11->partition*[base*]->bmcsettings*]% commit

In Base View, selecting the cluster item in the resources pane, and then using the Settings option,
allows the BMC settings to be edited.

The BMC authentication credentials, and also some other BMC properties can be set cluster-wide,
category, or per node. As usual, category settings override cluster-wide settings, and node settings over-
ride category settings. The relevant properties are:

Property Description

BMC User ID User type. Normally set to 4 for administrator access.

BMC User Name User name used when sending a BMC command

BMC Password Password for specified user name when sending a BMC command

BMC Power reset delay Delay, in seconds, before powering up (default value: 0)

BMC extra arguments Extra arguments passed to BMC commands

BMC privilege Possible options are

• administrator

• callback

• OEMproprietary

• operator

• user

BMC configuration on a head node is done directly.
For regular nodes BCM stores the BMC configuration, and uses it:

• to configure the BMC interface from the node-installer

• to authenticate to the BMC interface after it has come up

BMC management operations, such as power cycling nodes and collecting hardware metrics, can then
be performed after the node has been provisioned again.

If BMC authentication fails, then an explanation for why can often be found in the node-installer log
at /var/log/node-installer.

/var/log/node-installer

3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces 123

3.7.3 Interfaces Settings
Interface Name
It is recommended that the network device name of a BMC interface start with ipmi, ilo, drac, cimc, or
rf, according to whether the BMC is running with IPMI, iLO, DRAC, CIMC, or Redfish. Numbers are
appended to the base name, resulting in, for example: ipmi0.

Obtaining The IP address
BMC interfaces can have their IP addresses configured statically, or obtained from a DHCP server.

Only a node with a static BMC IP address has BMC power management done by BCM. If the node
has a DHCP-assigned BMC IP address, then it requires custom BMC power management (section 4.1.4)
due to its dynamic nature.

Dell OpenManage And racadm Installation
The Dell OpenManage utilities are provided with BCM only for RHEL8-based distributions at the time
of writing of this section (September 2023).

If Dell was chosen as the hardware vendor when the BCM ISO was created for installation, and
chosen as the hardware manufacturer when the head node was configured in the BCM installer (sec-
tion 3.3.10 of the Installation Manual), then the Dell OpenManage utilities are located under /opt/dell
on the head node.

If Dell was chosen as the hardware manufacturer when nodes are configured in the BCM installer
(section 3.3.11 of the Installation Manual), then the default software image that is used by the node has
the Dell OpenManage utilities, located on the head node at /cm/images/default-image/opt/dell.

The Dell OpenManage utilities contain the racadm binary to carry out remote access control admin-
istration. The racadm tool can be used to issue power commands (Chapter 4). BCM runs commands
similar to the following to issue the power commands:

/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u <bmcusername> -p <bmcpassword>\
serveraction powerstatus

/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u <bmcusername> -p <bmcpassword>\
serveraction hardreset

The BMC username/password values can be obtained from cmsh as follows:

[root@basecm11 ~]# cmsh

[basecm11]% partition use base

[basecm11->partition[base]]% bmcsettings

[basecm11->partition[base]->bmcsettings]% get password

12345

[basecm11->partition[base]->bmcsettings]% get username

tom

[basecm11->partition[base]->bmcsettings]%

Sometimes the bright user does not have the right privilege to get the correct values. The racadm

commands then fail.
The bright user privilege can be raised using the following command:

/opt/dell/srvadmin/sbin/racadm -r <DRAC interface IP address> -u root -p <root password> set \
iDRAC.Users.4.Privilege 511

Here it is assumed that the BMC user has the username bright, a userID 4, and the privilege can be
set to 511.

/opt/dell
/cm/images/default-image/opt/dell

124 Configuring The Cluster

3.7.4 Identification With A BMC
Sometimes it is useful to identify a node using BMC commands. This can be done by, for example,
blinking a light via a BMC command on the node:

Example

ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> chassis identify 1

The exact implementation may be vendor-dependent, and need not be an ipmitool command. Such
commands can be scripted and run from CMDaemon.

For testing without a BMC, the example script at /cm/local/examples/cmd/bmc_identify can be
used if the environment variable $CMD_HOSTNAME is set. The logical structure of the script can be used as
a basis for carrying out an identification task when a physical BMC is in place, by customizing the script
and then placing the script in a directory for use.

To have such a custom BMC script run from CMDaemon, the BMCIdentifyScript advanced config-
uration directive (page 851) can be used.

3.8 Configuring BlueField DPUs
NVIDIA BlueField Data Processing Units (DPUs) are an aarch64-based compute platform for cluster
infrastructure.

A DPU is a programmable network card with in-network compute, acceleration, isolation, storage,
and security capabilities.

Organizations can use DPUs to build software-defined, hardware-accelerated IT infrastructure.
The configuration of DPUs with BCM is done using the cm-dpu-setup utility. This creates DPU en-

tities in BCM, installs the DOCA (https://docs.nvidia.com/doca/sdk/overview/index.html) soft-
ware stack on host nodes, creates a specialized software image for the DPUs, and provisions them to
boot over the network.

3.8.1 Assumptions And Limitations
DPU provisioning with BCM assumes that DPUs and their host nodes have a strict 1-to-1 relation. This
means that for all host nodes with DPUs, a single host only ever has a single DPU.

At the time of writing of this section, (April 2023) the cm-dpu-setup utility supports provisioning
using the 1.5.1 LTS version of the DPU software stack. Version 2.0 is due soon, but has not yet been
tested with cm-dpu-setup.

3.8.2 Preparation
• Secure boot must be disabled in the DPU BIOS settings. This is required to allow the DPU to boot

over PXE.

• The DPU provisioning process requires the following two additional files:

1. a DOCA host software repository archive. For example:
doca-host-repo-ubuntu2004_1.5.1-0.1.8.1.5.1007.1.5.8.1.1.2.1_amd64.deb

2. a BlueField Bootstream (BFB) file. For example:
DOCA_1.5.1_BSP_3.9.3_Ubuntu_20.04-4.2211-LTS.signed.bfb

Both can be acquired from the NVIDIA developer website at https://developer.nvidia.com/
networking/doca#downloads. The files should be placed on the head node.

• The DPUs all need to be physically installed in their hosts before running cm-dpu-setup.

1. Provisioning requires at least one performance port to be connected.

2. There must also be an Ethernet connection with the OOB/BMC port, which is the interface
over which BCM manages and PXE boots the DPU.

/cm/local/examples/cmd/bmc_identify
https://docs.nvidia.com/doca/sdk/overview/index.html
https://developer.nvidia.com/networking/doca#downloads
https://developer.nvidia.com/networking/doca#downloads

3.8 Configuring BlueField DPUs 125

3.8.3 Installation
New DPU deployments can only be provisioned using the cm-dpu-setup CLI tool, and not using Base
View. Configuration of the deployment should usually be done interactively, which results in a YAML
configuration file. This configuration file is then used by cm-dpu-setup to perform all provisioning
steps.

When a cluster already has a provisioned DPU deployment, cm-dpu-setup gives an option to extend
it with new DPUs.

Provisioning DPUs With cm-dpu-setup

Starting cm-dpu-setup without any arguments launches the interactive TUI for configuring a new DPU
deployment (figure 3.11):

Figure 3.11: Initial screen for cm-dpu-setup

When Provision is selected, the wizard guides the user on selecting the host nodes of the DPUs. It
is the DPUs that are to be provisioned within these hosts. Host nodes can be selected by choosing whole
categories or individual nodes. The selected nodes are rebooted during the provisioning process.

The cm-dpu-setup wizard then prompts for a name for the category of all DPU nodes. The DPU
image and DPU settings are assigned to this category, and the settings are thus automatically applied to
all DPU nodes.

Next is a screen to configure the performance network (figure 3.12):

Figure 3.12: Configuration screen for the DPU network

This configuration creates a network and connects it to the provided interface port. The options for
the port interfaces on most DPUs are P0 and P1. The exact value depends on the PCI bus numbering
allocated to the DPU.

The next screen asks for the IP address offset for the management interface, relative to the host node’s
assigned IP address on the internal network.

The cm-dpu-setup utility then prompts for names to be given for the software images that are to be
created on the DPU and the host nodes. The BFB file for building the DPU image, and a DOCA archive
for building an image for the host nodes, are also selected.

Finally, cm-dpu-setup prompts for configuration of the DPU settings object that is defined in BCM
(figure 3.13):

126 Configuring The Cluster

Figure 3.13: Configuration screen for the DPU settings

Every physical interface port of a DPU can be configured to be either Ethernet or InfiniBand, de-
pending on its SKU. The operation mode (section 3.8.4) of a DPU can be set to:

• separated_host: treats the DPU as a separate host to the node hosting it

• embedded_cpu: treats the DPU as part of the node hosting it

The boot mode determines from which device the DPU boots. This does not include PXE boot, which is
configured separately by cm-dpu-setup itself. This boot mode is relevant in cases where PXE boot fails.

The summary screen appears after the configuration steps are completed. It allows the configuration
to be viewed, saved, or saved and deployed.

Figure 3.14: Summary of the configuration

Deployment takes some time, especially during software image creation from the BFB file. The
DPU device is automatically given a name composed of the node which hosts it together with the suf-
fix -dpu. Steps are displayed during the deployment process. The log file gets written at /var/log/
cm-dpu-setup.log

Extending DPU Deployment With cm-dpu-setup

When the cluster already contains DPU nodes, the cm-dpu-setup wizard provides additional menu
options to extend or remove the deployment (figure 3.15):

Figure 3.15: Initial screen for cm-dpu-setup with already existing DPU nodes

Extending the cluster with more DPU nodes can be done with

• a new network, for example InfiniBand instead of Ethernet, or just a separate subnet

• with a new BFB base image, which creates a new DPU software image

/var/log/cm-dpu-setup.log
/var/log/cm-dpu-setup.log

3.8 Configuring BlueField DPUs 127

• simply adding additional DPUs to an existing DPU category, which implies that they boot with
the same image and have the same network configuration

For the first two options, cm-dpu-setup prompts for the configuration of a new category, so that the
different subsets of DPUs in the cluster can be distinguished. All kinds of variations in configuration
can thus be carried out.

CLI Options For cm-dpu-setup
The cm-dpu-setup utility has the following usage instructions:

root@basecm11:~# cm-dpu-setup -h

usage: DPU cm-dpu-setup [-c <config_file>] [--remove] [--yes-i-really-mean-it] [--erase-images]

[--skip-network] [--skip-host-image] [--skip-archos] [--extend]

[--hold-bfb-packages HOLD_BFB_PACKAGES] [-v] [--store-name-aliases]

[--no-distro-checks] [--json] [--output-remote-execution-runner]

[--on-error-action debug,remotedebug,undo,abort] [--skip-packages]

[--min-reboot-timeout <reboot_timeout_seconds>] [--allow-running-from-secondary]

[--dev] [-h]

optional arguments:

-h, --help Print this screen

common:

Common arguments

-c <config_file> Load runtime configuration for plugins from a YAML config file

Managing DPUs:

Flags that can be used to manage DPUs in a cluster

--remove Remove and reset DPUs

--yes-i-really-mean-it

Required for additional safety

--erase-images Erase all images from disk during removal

--skip-network Skip check and creation of DPU performance network

--skip-host-image Skip creation of the Host Image

--skip-archos Skip creation of ArchOS and continue with DPU deployment

--extend Extend current deployment with new DPU nodes

--hold-bfb-packages HOLD_BFB_PACKAGES

Mark a custom set (comma-separated) of packages to be held for install

during DPU image build

The help output continues beyond this, but only contains advanced, generic cm-setup options, and
not DPU-specific options.

The options can be grouped as follows:

• Common arguments:

– -c <YAML configuration file>: Loads a runtime configuration for plugins, from a YAML con-
figuration file.

• Removal arguments:

– --remove: Starts the removal process. Does not do anything unless --yes-i-really-mean-it
is also provided.

128 Configuring The Cluster

– --yes-i-really-mean-it: Required as a safety precaution when removing the DPU deploy-
ment from the CLI.

– --erase-images: Also removes the software images from disk instead of only removing the
entities from BCM.

• Provisioning management arguments: This group of arguments is useful when the provisioning
process has been interrupted and an administrator wants to continue it without starting again
from scratch.

– --skip-network: Skips check for overlap with existing networks and creation of the network.

– --skip-host-image: Skips the creation of the host image.

– --skip-archos: Skips the creation of the DPU image, node-installer image, shared image,
and the ArchOS object.

• DPU image arguments:

– --hold-bfb-packages <packages>: Comma-separated list of packages to hold off on with
post-install configuration and set up a service to finish it on DPU boot. This is necessary for
certain packages that fail to install inside of a chroot/systemd-spawn environment because
their configuration depends on certain hardware being present or being booted with systemd

as PID 1.

Troubleshooting
Some problems that may occur during installation are described in this section, along with possible
solutions.

Host or DPU image creation stage fails:

• A package fails to install or the software configuration fails: If this happens, then the cluster
administrator should try to establish how it failed. Did it fail because of:

– dependencies on systemd? A workaround could be to pass a dependency as an argument to
--hold-bfb-packages.

– unsupported external hardware? The cluster administrator can check that that the base BFB
file used supports the hardware used (1.5.1 LTS or newer).

• A repository is inaccessible: If this happens, then the cluster administrator should check that the
BCM repositories are reachable from the head node, and that the authentication is correct. If there
are missing or invalid GPG keys, then the keys that the BFB file is shipped with should be checked.
The 1.5.1 LTS version of the BFB file ships with a Kubernetes GPG key that expired in December
2022. The cm-dpu-setup utility automatically fetches the correct key.

Pre-install checks are failing:

• DPU-related entities already exist in the cluster: if a previous deployment or setup process was
not cleaned up properly, then there might be leftover entities in BCM that inhibit a fresh setup.
The generic entities related to a DPU deployment are as follows:

– DPU network

– RShim network

– DPU category

– DPU settings (applied to the category)

– Host image

3.8 Configuring BlueField DPUs 129

– DPU image

– Ubuntu 20.04 aarch64 (in the base partition, under archos mode)

– Ubuntu 20.04 aarch64 node-installer image

– Ubuntu 20.04 aarch64 shared image

– DPU nodes

Rebooting nodes fails Possible failures when trying to reboot nodes are:

Mellanox configuration fails: the DPU provisioning stage configures the DPU via the command:
mlxconfig -d /dev/mst/mt41686_pciconf0

on the host. If this stage fails, then possible reasons are:

• the DPU is not available

• it is a model that does not support Ethernet (the default config resets both ports to Ethernet during
provisioning)

• the DPU appears under a different device identifier in the filesystem

In the last case, BCM support can be contacted to check on the state of updates for support on the device.

Timeout while waiting for DPUs to become reachable: It may be that cm-dpu-setup could not
establish an SSH connection from the RSHim (outside the DPU) to the tmfifo interface (inside the DPU).
Underlying reasons for this could be:

• The PXE boot may have failed

• the interfaces on the DPU are not configured correctly.

Provisioning a base BFB file to the DPU directly with cmsh using

Example

[basecm11->device[node001-dpu]]% dpu push-bfb

can be tried out to confirm that the interface is healthy. If the problem persists, then BCM support can
be contacted.

3.8.4 Managing DPU Settings
A DPU is generally managed as a node, with a custom kernel, by CMDaemon. So most of the regular
node operations work with the DPU just as they do with a regular node.

This section covers DPU operations that are not managed by regular node operations in CMDaemon.
A backend script, cm-dpu-manage, is used to carry out these operations, but it is recommended to use
the cmsh front end for all the operations instead.

DPU Discovery
At device level, DPUs can be discovered:

Example

[basecm11->device]% dpu discover

Node bfb boot_order mac success version

----------- ---- -------------- ------------------ -------- -----------------------------------...

node001-dpu no NET-OOB-IPV4 94:6d:ae:6c:89:1e yes bright ubuntu 22.04 Cluster Manager...

node002-dpu no NET-OOB-IPV4 94:6d:ae:6c:88:be yes bright ubuntu 22.04 Cluster Manager...

130 Configuring The Cluster

Listing And Pushing BFB Files For DPUs
All available BFB files can be listed with:

Example

[basecm11->device]% dpu list-bfb

DOCA_2.0.2_BSP_4.0.3_Ubuntu_22.04-10.23-04.prod.bfb

A specific BFP file can be provisioned to a DPU node001-dpu with

Example

[basecm11->device]% dpu push-bfb -n node001-dpu -f DOCA2.0.2_BSP_4.0.3_Ubuntu_test.bfb

DPU Settings That Have Been Applied
The DPU settings that are active (that have been applied) for a particular DPU can be viewed with:

Example

[basecm11->device]% dpu show -n node001-dpu

Node boot_mode boot_timeout display_level drop_mode operation_mode Result Error

------------ ----------- ------------- -------------- --------- ---------------- ------ -----

node001-dpu EMMC 100 BASIC NORMAL EMBEDDED_CPU(1) good

DPU Settings Submode
DPU settings can be managed with cmsh from within the dpusettings submode. This submode is
accessible from within the partition and category modes. The submode can also be accessed from
within device mode, if the device is a DPU.

For example, for a DPU category given the name dpu during a cm-dpu-setup run, the submode
settings might look like:

Example

basecm11->category[dpus]->dpusettings]% show

Parameter Value

-------------------------------- --

Revision

Operation mode embedded

Display level basic

Boot mode emmc

Drop mode normal

Boot timeout 1m 40s

Boot order NET-OOB-IPV4

Interface mode port 1 eth

Interface mode port 2 ib

Offload OVS to hardware yes

Key value settings <submode>

If a setting is changed within the dpusettings submode, then the value becomes active on the DPU
only after committing it, and then running the dpu apply command.

The dpu apply command: makes committed DPU settings active on the DPU.

Example

3.8 Configuring BlueField DPUs 131

root@basecm11:~# cmsh

[basecm11]% device use node001-dpu

[basecm11->device[node001-dpu]]% dpusettings

[basecm11->device[node001-dpu]->dpusettings]% get displaylevel

advanced

[basecm11->device[node001-dpu]]% !ssh node001 grep DISPLAY /dev/rshim0/misc

DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)

[basecm11->device[node001-dpu]->dpusettings]% set displaylevel <tab><tab>
advanced basic log

[basecm11->device[node001-dpu]->dpusettings]% set displaylevel basic

[basecm11->device*[node001-dpu*]->dpusettings*]% commit

[basecm11->device[node001-dpu]->dpusettings]% exit

[basecm11->device[node001-dpu]]% dpu apply

[basecm11->device[node001-dpu]]% !ssh node001 grep DISPLAY /dev/rshim0/misc

DISPLAY_LEVEL 0 (0:basic, 1:advanced, 2:log)

Within the dpusettings submode:

• The displaylevel setting can take a value of

– basic

– advanced, or

– log.

The value configures the verbosity of the /dev/rshim0/misc file of the rshim0 device. An rshim

device is a network interface between the host and a DPU.

• An Offload OVS to hardware value of yes allows Open vSwitch to offload tasks to the hardware
running on the interface, reducing CPU load.

• The value of operationmode can be:

– embedded: ECPF (Embedded CPU Physical Function) mode lets the embedded ARM system
of the DPU control the NIC resources and data path of the host as well as of the DPU.

– separated: separated host mode lets the host and the DPU control their own resources, but
has them sharing the same NIC.

Further details on the operation mode can be found in the DOCA SDK documen-
tation at https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#

configuring-operation-mode.

• The boot order configures the UEFI order from which device the DPU boots. Options are:

– DISK: boots from an EMMC device

– UEFI_SHELL: boots into a UEFI shell

– NET-OOB-IPV4: boots via PXE over an OOB interface running IPv4

Options can also be combined using comma-separation, and the boot order then follows that
comma-separated order. The boot order gets written with a dpu apply to a BlueField configu-
ration file /etc/bf.cfg on the DPU. The value DISK,NET-OOB-IPV4 thus results in a bf.cfg file:

BOOT0=DISK

BOOT1=NET-OOB-IPV4

which results in disk booting being tried first, then PXE booting.

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#configuring-operation-mode
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#configuring-operation-mode

132 Configuring The Cluster

• The keyvaluesettings are existing key/value settings that can be committed from
the mlxconfig script (https://docs.nvidia.com/networking/display/MFT4170/Examples+of+
mlxconfig+Usage).

The settings can alternatively be user-defined for the DPU in cmsh and committed from there.

For example, the mlnxconfig script can be run directly on the DPU host, node001 as follows:

Example

node001# mlxconfig -d <device-id> set PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

The cmsh equivalent for the DPU is:

Example

[basecm11->device[node001-dpu]->dpusettings]% keyvaluesettings

[basecm11->device*[node001-dpu*]->dpusettings*->keyvaluesettings*]% set PCI_DOWNSTREAM_PORT_OWNER[4] 0xF

[basecm11->device*[node001-dpu*]->dpusettings*->keyvaluesettings*]% commit

[basecm11->device[node001-dpu]->dpusettings->keyvaluesettings]% show

Parameter Value

-------------------------------- --------------------------------

PCI_DOWNSTREAM_PORT_OWNER[4] 0xF

DPU Interfaces And IP Addresss Persistence When Operation Mode Changes
The IP address, network, and network device settings of the DPU and host can be seen as usual within
the interfaces mode. For a node node001, that hosts a DPU node001-dpu, the interfaces list would
show an output similar to:

Example

[basecm11->device[node001]->interfaces]% list

Type Network device name IP Network Start if

------------ -------------------- ---------------- ---------------- --------

physical BOOTIF [prov] 10.141.0.1 internalnet always

physical DPU1 10.147.0.1 netdpu1 always

physical tmfifo_net0 192.168.100.1 tmfifonet always

[basecm11->device[node001]->interfaces]% device use node001-dpu

[basecm11->device[node001-dpu]->interfaces]% list

Type Network device name IP Network Start if

------------ -------------------- ---------------- ---------------- --------

physical BOOTIF [prov] 10.141.0.101 internalnet always

physical p1 10.147.0.1 netdpu1 always

physical tmfifo_net0 192.168.100.2 tmfifonet always

In the example, looking at the performance embedded network netdpu1, the device DPU1 on the
host node node001 and the device p1 on the DPU node001-dpu, have the same IP address. This is to
avoid interfaces reconfiguration when the DPU is switched between embedded and separated mode.

3.9 Configuring Switches And PDUs
3.9.1 Configuring With The Manufacturer’s Configuration Interface
Network switches and PDUs that are to be used as part of the cluster should be configured with the
PDU/switch configuration interface described in the PDU/switch documentation supplied by the man-
ufacturer. Typically the interface is accessed by connecting via a web browser or telnet to an IP address
preset by the manufacturer.

The IP address settings of the PDU/switch must match the settings of the device as stored by the
cluster manager.

https://docs.nvidia.com/networking/display/MFT4170/Examples+of+mlxconfig+Usage
https://docs.nvidia.com/networking/display/MFT4170/Examples+of+mlxconfig+Usage

3.9 Configuring Switches And PDUs 133

• In Base View, this is done via the navigation path Devices > Edit > <switchname> to select the
switch. If the switch does not already exist, then it can be added via the ADD button. The values
in the associated Settings window that comes up (figure 3.16) can then be filled in, and the IP
address can be set and saved.

• In cmsh this can be done in device mode, with a set command:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% set switch01 ip 10.141.253.2

[basecm11->device*]% commit

Port Assignments For Switches
• Using the uplinks option to configure uplink ports is described in section 3.10.3.

• The showport tool for seeing what MAC address matches what port number on a switch is de-
scribed in section 3.10.4.

• The switchoverview tool gives an overview of the MAC addresses detected on the ports based on
SNMP queries, and is described in section 3.10.6.

• The switchports command lists the switches and switch ports that have been assigned a node.

• The switchports option assigns ports on a switch to a node:

Example

[basecm11->device]% #the option:

[basecm11->device]% set node003 switchports switch01:1

[basecm11->device*]% commit

[basecm11->device]% #the command:

[basecm11->device*]% switchports

Switch #Port Node

---------------- ------ ----------------

switch01 1 node003

The switchports option used at node level is a legacy option, which can still be used in BCM
version 10. However it may not work as expected when a node has multiple interfaces that may
be connected to a switch.

Since BCM version 10 it is therefore recommended to assign ports from within the interfaces

submode for a node. This assigns ports clearly per interface, and supports bonding of the inter-
faces (section 3.5). Management of ports at interface level also makes it possible for CMDaemon
Lite (section 2.6.7) to manage the network configuration of Cumulus switches (section 3.10).

Example

[basecm11->device]% use node003; interfaces

[basecm11->device[node003]->interfaces]% set eth1 switchports switch01:2

[basecm11->device*[node003*]->interfaces*]% set eth2 switchports switch01:3

[basecm11->device*[node003*]->interfaces*]% commit; ..

[basecm11->device[node003]]% switchports

Switch #Port Node

---------------- ------ ----------------

switch01 1 node003

switch01 2 node003

switch01 3 node003

134 Configuring The Cluster

Managing PDUs in Base View or cmsh is done in a similar way to the preceding method for switches.
However, assigning PDUs and PDU ports to devices such as nodes is not part of this method, and is
instead described in section 4.1.1.

APC PDUs
For the APC brand of PDUs, the powercontrol value for the PDU device should be set to apc.

For example, for a PDU with the name mypdu, its value can be set in cmsh with:

Example

[basecm11->device[mypdu]]% set powercontrol apc; commit

and in Base View with the navigation path:

Devices > Power Distribution Units > Power Distribution Unit list > Power Distribution

Unit > Power control

If it is not set to apc, then the list of PDU ports is ignored by default.

3.9.2 Configuring SNMP
BCM can be used to manage switches, including many InfiniBand switches, using SNMP. This requires
that SNMP be enabled. If disablesnmp is set to no, the default, then SNMP is enabled for the switch:

Example

[basecm11]% device add switch myibswitch

[basecm11->device[myibswitch]]% get disablesnmp

no

Configuring SNMP Community Strings
In order to allow the cluster management software to communicate with the switch or PDU, SNMP must
be enabled on it, and the SNMP community strings should be configured correctly.

By default, the SNMP community strings for switches and PDUs are set to public and private for
respectively read and write access. If different SNMP community strings have been configured in the
switch or PDU, the readstring and writestring properties of the corresponding switch device should
be changed.

Example

[basecm11]% device use switch01

[basecm11->device[switch01]]% snmpsettings

[basecm11->device[switch01]->snmpsettings]% get readstring

public

[basecm11->device[switch01]->snmpsettings]% get writestring

private

[basecm11->device[switch01]->snmpsettings]% set readstring public2

[basecm11->device*[switch01*]->snmpsettings*]% set writestring private2

[basecm11->device*[switch01*]->snmpsettings*]% commit

Alternatively, these properties can also be set in Base View via the navigation path:

Devices > Switches > Edit > SNMP Settings

3.9 Configuring Switches And PDUs 135

Configuring SNMP Settings
SNMP settings can be configured in cmsh via the snmpsettings submode, which is available under
partition mode as well as under device mode.

The submode allows the version to be set to v1, v2c, or v3.
Setting the version to the value file is also an option, but is not meant as an option for end users. It

is used in SNMP walk emulation for debugging non-standard switches.
The SNMPv3 settings that can be managed in BCM are:

Example

[basecm11]% device use switch01

[basecm11->device[switch01]]% snmpsettings

[basecm11->device[switch01]->snmpsettings]% show

Parameter Value

-------------------------------- --

Authentication key < not set >

Authentication protocol MD5

Context

Privacy key < not set >

Privacy protocol DES

Retries -1

Revision

Security level Authentication encrypted

Security name

Timeout 0s

VLAN Timeout 0s

version V3

The set command can be used, sometimes with tab-completion, to set the SNMP switch parameters.
For example, for the SNMPv3 parameters that are set to use cryptographic keys:

Example

[basecm11->device*[switch01*]->snmpsettings*]% set authenticationprotocol <TAB><TAB>
md5 sha

[basecm11->device[switch01]->snmpsettings]% set authenticationprotocol aes

[basecm11->device*[switch01*]->snmpsettings*]% set privacyprotocol <TAB><TAB>
aes des

[basecm11->device*[switch01*]->snmpsettings*]% set privacyprotocol aes

[basecm11->device*[switch01*]->snmpsettings*]% commit

[basecm11->device[switch01]->snmpsettings]%

SNMP Traps
BCM can assign an SNMP trap manager role to a node. The snmptrapd daemon is then configured and
managed on the assigned node by CMDaemon.

Configuration options include enabling or disabling mailing of the messages, and setting the sender
and recipients for the mail. By default an undefined value for Server means that the SNMP server is
localhost.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% roles

[basecm11->device[node001]->roles]% assign snmptrap

[basecm11->device[node001]->roles*[snmptrap*]]% show

136 Configuring The Cluster

Parameter Value

-------------------------------- --

Access public

Add services yes

All administrators no

Alternative script

Arguments

Event yes

Mail yes

Name snmptrap

Provisioning associations <0 internally used>

Recipients

Revision

Sender

Server

Type SnmpTrapRole

3.10 Configuring Cumulus Switches
A Cumulus switch is a switch that runs Cumulus Linux, which is a Debian-based distribution with a
networking focus.

The following capabilities and features are available, or can be run, on a switch that can run Cumulus
Linux:

• ONIE (Open Network Install Environment, https://opencomputeproject.github.io/onie/): a
bootloader, similar in concept to PXE booting. It allows the switch to boot up and install the
Cumulus OS from an image on the network. Installing Cumulus with ONIE wipes out any existing
image already installed on the switch.

• ZTP (Zero Touch Provisioning): a protocol that is used with the ztp client. The protocol uses
specially defined DHCP options. ZTP allows the switch to automatically carry out provisioning
for other hardware devices on a network on top of an OS on the switch. The capability to carry
this out becomes available automatically when the switch is powered on, and the interface on
which provisioning is to be carried out automatically becomes active with an IP address (“day-0
provisioning”).

• NVUE (NVIDIA User Experience): a CLI that uses the nv command set to manage the
network configuration of the switch. The NVUE CLI is documented at https://docs.

nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/

NVIDIA-User-Experience-NVUE/NVUE-CLI/.

• The NVUE REST API: if it is explicitly enabled, can run the same commands via
HTTP as the NVUE CLI. The NVUE REST API is documented at https://docs.

nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/

NVIDIA-User-Experience-NVUE/NVUE-API/

• Public key SSH: if configured, the administrator can access the switch from the head node safely
and securely with public key SSH, including passwordless SSH.

A Cumulus switch is added to the cluster manager as a regular switch object:

Example

[basecm11]% device add switch myswitch

[basecm11->device*[myswitch*]]% set mac 12:34:56:78:90:AB

[basecm11->device*[myswitch*]]% set ip 1.2.3.4

https://opencomputeproject.github.io/onie/
https://community.cisco.com/t5/nso-developer-hub-blogs/day-1-day-0-day-1-day-2-n-configurations/ba-p/3658255
https://community.cisco.com/t5/nso-developer-hub-blogs/day-1-day-0-day-1-day-2-n-configurations/ba-p/3658255
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-54/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-CLI/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-CLI/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-CLI/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-CLI/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-API/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-API/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/System-Configuration/NVIDIA-User-Experience-NVUE/NVUE-API/

3.10 Configuring Cumulus Switches 137

[basecm11->device*[myswitch*]]% set network internalnet

[basecm11->device*[myswitch*]]% # hasclientdaemon: set if CMDaemon Lite should run on switch

[basecm11->device*[myswitch*]]% set hasclientdaemon yes

[basecm11->device*[myswitch*]]% commit

[basecm11->device[myswitch]]% status

myswitch [DOWN]

Cumulus access settings (described later on, starting from page 137) and ZTP settings (described
later on, starting from page 142) must also be configured for the switch to work correctly.

Committing the Cumulus switch object configuration automatically configures the DHCP and the
DNS services. The DHCP server is configured by CMDaemon to use the ZTP custom provisioning
script. The ZTP provisioning script is created on-demand, along with a directory, from a default tem-
plate (page 143) when the switch boots. The creation can alternatively be forced right away by running
the initialize command.

3.10.1 Cumulus Switches Access Configuration, Initialization And Network Device
Discovery

Cumulus Switches Access Configuration
By default, Cumulus switches use certificate-based authentication for CMDaemon access, just like reg-
ular nodes. DGX SuperPODS are configured in that manner.

However, CMDaemon Lite (section 2.6.7) is recommended instead of CMDaemon for Cumulus
switches on most other clusters. If CMDaemon Lite is to run on the switch, then the hasclientdaemon

parameter must be enabled for it:

Example

[basecm11]% device use mycumulus

[basecm11->device*[mycumulus*]]% set hasclientdaemon yes

[basecm11->device*[mycumulus*]]% commit

The cluster administrator must configure a username/password pair for SSH public key authentica-
tion with CMDaemon Lite.

• Since BCM version 10, Cumulus switch access via a username/password pair is configured in the
accesssettings submode and a force parameter.

• In earlier versions of BCM SNMP settings were used to set the username/password pair.

Example

[basecm11->device]% add switch mycumulus

[basecm11->device*[mycumulus*]]% accesssettings

[basecm11->device*[mycumulus*]->accesssettings*]% set username cumulus; set password 1234; set -e force true

[basecm11->device*[mycumulus*]->accesssettings*]% show

Parameter Value

-------------------------------- --

force true

Revision

Username cumulus

Password *********

Rest port 8765

[basecm11->device*[mycumulus*]->accesssettings*]% commit

If all switches are Cumulus switches, then setting the username/password can be carried out at
partition level with:

138 Configuring The Cluster

Example

[basecm11->partition[base]]% accesssettings

[basecm11->partition[base]]->accesssettings]% set username cumulus; set password 1234; set -e force true

[basecm11->partition*[base*]]->accesssettings*]% commit

Compared with a regular node (section 6.2), a Cumulus switch has these differences when setting a
username and password:

• The password change only takes effect on the switch after the switch reboots.

• The force key must be set to the value true, if cm-lite-daemon and ZTP are not installed. This
lets the configuration script mechanism carry out the image change during reboot via ZTP.

The REST API port, with a default value of 8765, can also be modified from the accesssettings

submode, to match the deployment specifications.
Other parameters for CMDaemon Lite integration are described in the section starting on page 139,

Custom Services Option 1: Cumulus With CMDaemon Lite. Also covered in that section, on page 142,
are the ZTP settings. ZTP settings are managed via the ZTP mode of cmsh, and are needed for the switch
to pick up its ZTP provisioning script.

The Cumulus Custom Discovery Script (Deprecated)
This is a legacy script that comes with BCM, and is at /cm/local/apps/cmd/scripts/

cm-cumulus-switch.py.
Setting the script and running the initialize command for the Cumulus switch in device mode

initializes access settings and carries out network discovery for the Cumulus switch, in versions of BCM
prior to version 10.

Since BCM version 10, the script is only needed for the Cumulus Linux version 4 series. Since Cu-
mulus Linux version 5, and since BCM version 10, the script is no longer required, due to the integration
of Cumulus with BCM.

A Cumulus switch running version 4 of Cumulus Linux can be set up and initialized on BCM version
10 with:

Example

[basecm11->device*[mycumulus*]]% set controlscript /cm/local/apps/cmd/scripts/cm-cumulus-switch.py

[basecm11->device*[mycumulus*]]% commit

[basecm11->device[mycumulus]]% initialize

3.10.2 Custom Service Setups For Cumulus Linux
There are two custom service setups that are supported for cluster management on top of Cumulus
Linux:

1. a setup that uses CMDaemon Lite (page 139, Custom Services Option 1: Cumulus With CMDae-
mon Lite)

2. a setup that uses YAML to configure the services (page 143, Custom Services Option 2: Cumulus
With A YAML Preconfiguration).

These can actually be run together, if the services do not conflict with each other. For example, the
nvued service can be installed via YAML, to provide the NVUE, independently of CMDaemon Lite. It is
however useful to describe these custom service setups individually.

/cm/local/apps/cmd/scripts/cm-cumulus-switch.py
/cm/local/apps/cmd/scripts/cm-cumulus-switch.py

3.10 Configuring Cumulus Switches 139

Custom Services Option 1: Cumulus With CMDaemon Lite
If the Cumulus switch is defined and configured with CMDaemon Lite, then this allows some Cumulus
features to be managed via BCM, as well as some of the standard features of BCM to work on the switch.
The following features can be managed:

• monitoring (Chapter 10). For example, the latest data values (section 10.6.3) of the switch, includ-
ing the bytes going through the many ports, can be seen with:

Example

[basecm11->device[myswitch]]% latestmonitoringdata

Measurable Parameter Type Value Age State Info

---------------- --------------- ------------ ------------- --------- --------- ---------

AlertLevel count Internal 0 1m 5s

AlertLevel maximum Internal 0 1m 5s

AlertLevel sum Internal 0 1m 5s

BufferMemory Memory 113 MiB 2m 5s

BytesRecv eth0 Network 22.3917 B/s 2m 5s

BytesRecv mgmt Network 6.79167 B/s 2m 5s

BytesRecv mirror Network 0 B/s 2m 5s

BytesRecv swid0_eth Network 0 B/s 2m 5s

BytesRecv swp1 Network 0 B/s 2m 5s

BytesRecv swp2 Network 0 B/s 2m 5s

BytesRecv swp3 Network 0 B/s 2m 5s

BytesRecv swp4 Network 0 B/s 2m 5s

...

• system information can be viewed with the sysinfo command:

Example

[basecm11->device[myswitch]]% sysinfo

Name Value

------------------------- ---

BIOS Version 1.3

BIOS Vendor American Megatrends Inc.

BIOS Date

Motherboard Manufacturer

Motherboard Name

System Manufacturer NVIDIA

System Name SN2201

Vendor Tag

Total Memory 8048771072 bytes (7.496GB)

Swap Memory 0 bytes (0B)

OS Name Linux

OS Version 5.10.0-cl-1-amd64

OS Flavor #1 SMP Debian 5.10.162-1+cl5.4.0u1 (2023-01-20)

Number of Physical CPUs 1

Number of Cores 2

Core 0-1 Intel(R) Atom(TM) CPU C3338R @ 1.80GHz

Number of Disks 1

Total Disk Space 115,923,419,136 bytes (115GB)

Disk /dev/nvme0n1p4 (19,320,569,856 bytes, 19.3GB) ()

SELinux no

FIPS no

140 Configuring The Cluster

Fabric no

Age 21h 58m

ZTP/date Tue Apr 11 09:50:21 2023 UTC

ZTP/method ZTP DHCP

ZTP/result success

ZTP/state enabled

ZTP/url http://10.141.255.254:8080/switch/myswitch/cumulus-ztp.sh

ZTP/version 1.0

[basecm11->device[myswitch]]%

• systemd services can be added for the device via roles, and listed in the services submode (sec-
tion 3.14). Management of services is a standard part of CMDaemon Lite since NVIDIA Base
Command Manager version 10.23.06.

• configuration via cmsh: can be set up via either a YAML file, or manually, or automatically with
some optional manual parts. The appropriate mode is set using the cumulusmode setting for the
Cumulus device:

[basecm11->device[cumulus02]]% set cumulusmode <tab><tab>
auto file manual

– auto: BCM settings such as for hostname or timezone for a Cumulus switch network configu-
ration are converted automatically to run as nv commands. All the nv commands carried out
on the switch via BCM, whether from an automatic conversion or not, can be viewed within
the cumulus submode. The nv commands that have been automatically converted from BCM
settings are assigned a type value of auto, and can be viewed within the cumulus submode:

Example

[basecm11->device[myswitch]->cumulus]% show

Type #Index Command

-------- -------- --

auto 1 nv set system hostname myswitch

auto 2 nv set system timezone Europe/Amsterdam

auto 3 nv set service snmp-server enable on

auto 4 nv set service snmp-server listening-address all

auto 5 nv set service snmp-server listening-address all-v6

auto 6 nv set service snmp-server readonly-community public access any

auto 7 nv set service ntp mgmt pool 10.141.255.254

auto 8 nv set service dns mgmt server 10.141.255.254

auto 9 nv set service syslog mgmt server 10.141.255.254 port 514

auto 10 nv set service syslog mgmt server 10.141.255.254 protocol udp

auto 11 nv set bridge domain br_default type vlan-aware

[basecm11->device[myswitch]->cumulus]%

The settings are applied to the switch when the apply command is run within the cumulus

mode.

– manual: If the cumulusmode setting is manual then the commands of type auto (as shown
within the preceding example) are ignored. Direct nv commands can be entered by the ad-
ministrator manually from within the manual Cumulus mode.
Direct nv commands can actually also be added within the auto Cumulus mode, and are in
that case also of type manual:

Example

3.10 Configuring Cumulus Switches 141

[basecm11->device[myswitch]->cumulus]% nv set interface swp27 ip address 10.141.255.123

[basecm11->device*[myswitch*]->cumulus*]% show

Type #Index Command

-------- -------- --

auto 1 nv set system hostname myswitch

...

auto 11 nv set bridge domain br_default type vlan-aware

manual 1 nv set interface swp27 ip address 10.141.255.123

The changes are applied when the apply command is run within the cumulus mode.
Only commands of type manual can be removed from the cumulus mode. The removal can
be carried out from within cumulus mode with the help of the manual command and the nv

del command:

Example

[basecm11->device*[myswitch]->cumulus]% ..; get cumulusmode; cumulus

AUTO

[basecm11->device*[myswitch]->cumulus]% show

...

auto 11 nv set bridge domain br_default type vlan-aware

manual 1 nv set interface swp27 ip address 10.141.255.123

manual 2 nv set system timezone Europe/Berlin

manual 3 nv set service snmp-server listening-address all-v6

[basecm11->device*[myswitch]->cumulus]% manual #cumulus mode changes to manual

#copies all types to be manual

[basecm11->device*[myswitch]->cumulus]% ..; get cumulusmode; cumulus

MANUAL

[basecm11->device*[myswitch]->cumulus]% show

manual 1 nv set interface swp27 ip address 10.141.255.123

manual 2 nv set system timezone Europe/Berlin

manual 3 nv set service snmp-server listening-address all-v6

[basecm11->device*[myswitch]->cumulus]% nv del 1-2

[basecm11->device*[myswitch]->cumulus]% commit

[basecm11->device*[myswitch]->cumulus]% apply #only now is switch updated

The manual command switches the cumulusmode to manual, and copies the stack of auto type
commands over to the stack in manual mode. The commit command saves the configuration
in the CMDaemon database. As usual, the configuration defined by the manual Cumulus
mode is only applied to the switch after using the apply command.
The stack in the manual mode stack is then what is used on the switch instead of the auto

mode stack, as per the CMDaemon state.

– file: If the cumulusmode setting is file, then a YAML file is used by BCM to carry out the
commands. A sample YAML file that uses the currently running configuration of the switch
can be displayed by running
nv config show

on the switch.

Example

[basecm11->device[myswitch]]% set cumulusmode file

[basecm11->device*[myswitch*]]% set cumulusfile startup.yaml

[basecm11->device*[myswitch*]]% commit

The apply command is not used for the file mode, since the commands are carried out over
ZTP.

142 Configuring The Cluster

• the ZTP configuration can be managed from ztpsettings mode:

Example

[basecm11->device[cumulus02]]% ztpsettings

[basecm11->device[cumulus02]->ztpsettings]% show

Parameter Value

------------------------------------ --

Revision

Script template cumulus-ztp.sh

Image cumulus-linux-5.5.0-mlx-amd64.bin

Check image on boot yes

Run ZTP on each boot yes

Authorized key file root /root/.ssh/authorized_keys

Authorized key file cumulus

Enable API no

Enable external access API no

Merge key value settings partition no

Key value settings <submode>

Notes about some of the ztpsettings:

– By default, authorizedkeyfileroot is not set, which means that user root cannot access the
switch with public key authentication.

– By default, authorizedkeyfilecumulus is not set. The user cumulus is the API user.

– Cumulus images for the switch, set by image, are provisioned from the head node. Cumulus
images can be picked up from https://enterprise-support.nvidia.com/s/downloader

and can then be placed on the head node at /cm/local/apps/cmd/etc/htdocs/switch/

images/.

– The checkimageonboot setting checks that the existing image on the switch matches the im-
age that can be offered via ZTP. If it does not, then the switch updates its image, picking it up
via ZTP.

– The file specified by scripttemplate is used to generate a ZTP provisioning file on-demand
when the switch boots. Running initialize from the switch object level (at cumulus02 level
in the preceding example) generates the file without a reboot.

• The switchoverview command returns output such as:

[basecm11->device[cumulus01]]% switchoverview

Device: cumulus01

State : [UP]

Model : Cumulus Linux 5.2.1

Port Name Status Assigned Uplink Speed Detected

---- ------ ------- ------------ ------ ----------- ----------------------------

1 swp1 DOWN no 0 b/s bridge domains: cm-default

2 swp2 DOWN no 0 b/s bridge domains: cm-default

3 swp3 DOWN no 0 b/s bridge domains: cm-default

4 swp4 DOWN no 0 b/s bridge domains: cm-default

5 swp5 UP node001-dpu no 100 Gb/s bridge domains: cm-default

6 swp6 DOWN no 0 b/s bridge domains: cm-default

7 swp7 UP node002-dpu no 100 Gb/s bridge domains: cm-default

• The switchports command (page 133) is used to configure the port assignment between the nodes
and the switch ports. Configuring the port assignment at interfaces level is needed to allow
CMDaemon Lite to manage Cumulus network configuration.

https://enterprise-support.nvidia.com/s/downloader
/cm/local/apps/cmd/etc/htdocs/switch/images/
/cm/local/apps/cmd/etc/htdocs/switch/images/

3.10 Configuring Cumulus Switches 143

Example

[basecm11->device[node002]]% interfaces node004

[basecm11->device[node004]->interfaces]% set DPU1 switchports cumulus01:4

Custom Services Option 2: Cumulus With A YAML Preconfiguration
A YAML configuration can be used outside of cmsh. DGX SuperPODS use this option during the stan-
dard BCM installation. It means that CMDaemon Lite running on the switch (section 3.10.2) does not
need to be used. Instead, two custom-generated YAML files are used.

The YAML files that are generated are:

• startup.yaml: this contains a sequence of Cumulus nv commands

• cm-startup.yaml: this contains the BCM DGX/switch definitions to be added by pythoncm

The cm-startup.yaml file is parsed, and the devices that are defined within it are configured with
the PythonCM (Chapter 1 of the Developer Manual) script, cm-import-startup.

The devices are then powered on in the correct order.
The YAML file startup.yaml can be handled manually (using scp and the nv apply command), or

by using ZTP, or by using Ansible.

Settings Applied Via ZTP
The configuration script cumulus-ztp.sh template, found under /cm/local/apps/cmd/etc/htdocs/

switch/template, can be customized to suit the requirements.
The YAML file startup.yaml is placed under:

/cm/local/apps/cmd/etc/htdocs/switch/<switch or host name>/

This allows it to be picked up automatically via ZTP, and the nv commands are applied it to the
switch on boot.

CMDaemon Lite is not required, but can be installed separately.

Settings Applied Via Ansible
Alternatively, Ansible can be used to push the YAML configuration to each switch.

With an Ansible installation, ZTP is not required, but it can be used. CMDaemon Lite is not required
for applying the settings via Ansible either, but can be installed separately.

3.10.3 Uplink Ports
Uplink ports are switch ports that are connected to other switches. CMDaemon must be told about any
switch ports that are uplink ports, or the traffic passing through an uplink port will lead to mistakes
in what CMDaemon knows about port and MAC correspondence. Uplink ports are thus ports that
CMDaemon is told to ignore.

To inform CMDaemon about what ports are uplink ports, Base View or cmsh are used:

• In Base View, the switch is selected, and uplinks can be added via the navigation path
Devices > Switches > Edit > Uplinks

(figure 3.16):

/cm/local/apps/cmd/etc/htdocs/switch/template
/cm/local/apps/cmd/etc/htdocs/switch/template

144 Configuring The Cluster

Figure 3.16: Notifying CMDaemon about uplinks with Base View

A dialog box then appears, and allows uplink port numbers to be added with a ⊕ button. The
state is saved with the SAVE button of figure 3.16.

• In cmsh, the switch is accessed from the device mode. The uplink port numbers can be appended
one-by-one with the append command, or set in one go by using space-separated numbers.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% set switch01 uplinks 15 16

[basecm11->device*]% set switch02 uplinks 01

[basecm11->device*]% commit

successfully committed 3 Devices

3.10.4 The showport MAC Address to Port Matching Tool
The showport command can be used in troubleshooting network topology issues, as well as checking
and setting up new nodes (section 5.4.2).

Basic Use Of showport
In the device mode of cmsh is the showport command, which works out which ports on which switch
are associated with a specified MAC address.

3.10 Configuring Cumulus Switches 145

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% showport 00:30:48:30:73:92

switch01:12

When running showport, CMDaemon on the head node queries all switches until a match is found.
If a switch is also specified using the “-s” option, then the query is carried out for that switch first.

Thus the preceding example can also be specified as:

[basecm11->device]% showport -s switch01 00:30:49.00:73:92

switch01:12

If there is no port number returned for the specified switch, then the scan continues on other switches.

Mapping All Port Connections In The Cluster With showport

A list indicating the port connections and switches for all connected devices that are up can be generated
using this script:

Example

#!/bin/bash

for nodename in $(cmsh -c "device; foreach * (get hostname)")

do

macad=$(cmsh -c "device use $nodename; get mac")

echo -n "$macad $nodename "

cmsh -c "device showport $macad"

done

The script may take a while to finish its run. It gives an output like:

Example

00:00:00:00:00:00 switch01: No ethernet switch found connected to this mac address

00:30:49.00:73:92 basecm11: switch01:12

00:26:6C:F2:AD:54 node001: switch01:1

00:00:00:00:00:00 node002: No ethernet switch found connected to this mac address

3.10.5 Disabling Port Detection
An administrator may wish to disable node identification based on port detection. For example, in the
case of switches with buggy firmware, the administrator may feel more comfortable relying on MAC-
based identification. Disabling port detection can be carried out by clearing the switchports setting of
a node, a category, or a group. For example, in cmsh, for a node:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% clear switchports

[basecm11->device*[node001*]]% commit

[basecm11->device[node001]]%

Or, for example for the default category, with the help of the foreach command:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]]% foreach -c default (clear switchports); commit

146 Configuring The Cluster

3.10.6 The switchoverview Command
Also within device mode, the switchoverview command gives an overview of MAC addresses detected
on the ports, and some related properties. The command works using SNMP queries. Output is similar
to the following (some lines ellipsized):

[basecm11->device]% switchoverview dell-switch1

Device: dell-switch1

State : [UP]

Model : 24G Ethernet Switch

Port Assignment:

Port Status Assigned Uplink Speed Detected

------ ------ ---------------- ------ -------- --------------------------\
--

1 UP false 1 Gb/s -

2 UP false 1 Gb/s -

3 UP false 1 Gb/s 74:86:7A:AD:3F:2F, node3

4 UP false 1 Gb/s 74:86:7A:AD:43:E9, node4

...

11 UP false 1 Gb/s 74:86:7A:AD:44:D8, node11

12 UP false 1 Gb/s 74:86:7A:AD:6F:55, node12

...

23 UP false 1 Gb/s 74:86:7A:E9:3E:85, node23

24 UP false 1 Gb/s 74:86:7A:AD:56:DF, node24

49 UP false 10 Gb/s 74:86:7A:AD:68:FD, node1

50 UP false 10 Gb/s 74:86:7A:AD:41:A0, node2

53 UP node34 false 1 Gb/s 5C:F9:DD:F5:79.0D, node34

54 UP node35 false 1 Gb/s 5C:F9:DD:F5:45:AC, node35

...

179 UP false 1 Gb/s 24:B6:FD:F6:20:6F,\
24:B6:FD:FA:64:2F, 74:86:7A:DF:7E:4C, 90:B1:1C:3F:3D:A9,\
90:B1:1C:3F:51:D1, D0:67:E5:B7:64:0F, D0:67:E5:B7:61:20

180 UP false 100 Mb/s QDR-switch

205 UP true 10 Gb/s -

206 DOWN false 10 Gb/s -

...

[basecm11 ->device]%

3.11 Configuring NetQ Network Management System
NetQ telemetry data values are produced by NetQ. A running NetQ server can be integrated with BCM
by configuring its credentials and connectivity settings in the netqsettings submode from within the
partition mode of BCM:

Example

[basecm11->partition[base]]% netqsettings

[basecm11->partition*[base*]->netqsettings*]% show

Parameter Value

-------------------------------- --

Revision

Server

User name

Password < not set >

Port 443

3.12 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 147

Verify SSL no

[basecm11->partition*[base*]->netqsettings*]% set username <NetQ username>

[basecm11->partition*[base*]->netqsettings*]% set password <NetQ password>

[basecm11->partition*[base*]->netqsettings*]% set server <NetQ hostname or IP address>

[basecm11->partition*[base*]->netqsettings*]% commit

Connecting to the NetQ server allows NetQ telemetry data values to be picked up by BCM. These
values are then treated as measurables (section 10.2.1). NetQ measurables (sections G.1.13 and G.2.4)
can be managed and displayed with BCM just like other measurables.

3.12 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration
Configuring the disk layout for head and regular nodes is done as part of the initial setup (section 3.3.16
of the Installation Manual). For regular nodes, the disk layout can also be re-configured by BCM once the
cluster is running. For a head node, however, the disk layout cannot be re-configured after installation
by BCM, and head node disk layout reconfiguration must then therefore be treated as a regular Linux
system administration task, typically involving backups and resizing partitions.

The remaining parts of this section on disk layouts therefore concern regular nodes, not head nodes.

3.12.1 Disk Layouts
A disk layout is specified using an XML schema (Appendix D.1). The disk layout typically specifies
the devices to be used, its partitioning scheme, and mount points. Possible disk layouts include the
following:

• Default layout (Appendix D.3)

• Hardware RAID setup (Appendix D.4)

• Software RAID setup (Appendix D.5)

• LVM setup (Appendix D.7)

• Diskless setup (Appendix D.9)

• Semi-diskless setup (Appendix D.10)

3.12.2 Disk Layout Assertions
Disk layouts can be set to assert

• that particular hardware be used, using XML element tags such as vendor or requiredSize (Ap-
pendix D.11)

• custom assertions using an XML assert element tag to run scripts placed in CDATA sections
(Appendix D.12)

3.12.3 Changing Disk Layouts
A disk layout applied to a category of nodes is inherited by default by the nodes in that category. A disk
layout that is then applied to an individual node within that category overrides the category setting.
This is an example of the standard behavior for categories, as mentioned in section 2.1.3.

By default, the cluster is configured with a standard layout specified in section D.3. The layouts
can be accessed from Base View or cmsh, as is illustrated by the example in section 3.12.4, which covers
changing a node from disked to diskless mode:

3.12.4 Changing A Disk Layout From Disked To Diskless
The XML schema for a node configured for diskless operation is shown in Appendix D.9. This can often
be deployed as is, or it can be modified during deployment using Base View or cmsh as follows:

148 Configuring The Cluster

Changing A Disk Layout Using Base View
To change a disk layout with Base View, the current disk layout is accessed by selecting a node category
or a specific node from the resource tree in the navigation panel. For a node, the navigation path is
Devices > Nodes > Edit > Settings > Installing > Disk setup

(figure 3.17):

3.12 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration 149

Figure 3.17: Changing a disked node to a diskless node with Base View

The Disk setup field can then be edited.
Clicking on the Select from template button shows several possible ready-made configurations

that can be loaded up from the CMDaemon database, and if desired, the copy stored for the node can

150 Configuring The Cluster

be edited to suit the situation.
To switch from the existing disk layout to a diskless one, the diskless XML configuration template is

loaded via the Select from template button, and saved to the node or node category.
The Browse button can be used to upload a custom configuration via the browser, and there is also a

Copy from Category:default button that can be used to copy the category configuration to the node.

Changing A Disk Layout Using cmsh

To edit an existing disk layout from within cmsh, the existing XML configuration is accessed by editing
the disksetup property in device mode for a particular node, or by editing the disksetup property in
category mode for a particular category. Editing is done using the set command, which opens up a
text editor:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set disksetup

After editing and saving the XML configuration, the change is then committed to CMDaemon with
the commit command. It should be understood that a disk layout XML configuration is not stored in a
file on the filesystem, but in the CMDaemon database. The XML configurations that exist on a default
cluster at
/cm/images/default-image/cm/local/apps/cmd/etc/htdocs/disk-setup/

and
/cm/local/apps/cmd/etc/htdocs/disk-setup/

are merely default configurations.
If the disksetup setting for a device is deleted, using the clear command, then the category level

disksetup property is used by the device. This is in accordance with the usual behavior for node values
that override category values (section 2.1.5).

Instead of editing an existing disk layout, another XML configuration can also be assigned. A disk-
less configuration may be chosen and set as follows:

Example

[basecm11->device[node001]]% set disksetup /cm/local/apps/cmd/\
etc/htdocs/disk-setup/slave-diskless.xml

In these preceding Base View and cmsh examples, after committing the change and rebooting the
node, the node then functions entirely from its RAM, without using its own disk.

However, RAM is usually a scarce resource, so administrators often wish to optimize diskless nodes
by freeing up the RAM on them from the OS that is using the RAM. Freeing up RAM can be accom-
plished by providing parts of the filesystem on the diskless node via NFS from the head node. That is,
mounting the regular node with filesystems exported via NFS from the head node. The details of how to
do this are a part of section 3.13, which covers the configuration of NFS exports and mounts in general.

3.13 Configuring NFS Volume Exports And Mounts
NFS allows unix NFS clients shared access to a filesystem on an NFS server. The accessed filesystem is
called an NFS volume by remote machines. The NFS server exports the filesystem to selected hosts or
networks, and the clients can then mount the exported volume locally.

An unformatted filesystem cannot be used. The drive must be partitioned beforehand with fdisk or
similar partitioning tools, and its filesystem formatted with mkfs or similar before it can be exported.

/cm/images/default-image/cm/local/apps/cmd/etc/htdocs/disk-setup/
/cm/local/apps/cmd/etc/htdocs/disk-setup/

3.13 Configuring NFS Volume Exports And Mounts 151

In BCM, the head node is typically used to export an NFS volume to the regular nodes, and the
regular nodes then mount the volume locally.

• NFS can be made to work at higher speeds with remote direct memory access (RDMA), by bypass-
ing the CPU. If there is RDMA hardware present, and if the rdma-core package is installed, then
the RDMA service works automatically in RHEL 8 and 9.

The settings that determine client module loading are set in the file /etc/rdma/modules/rdma.conf
so that the service auto-loads by default.

• An alternative to NFS over RDMA for very fast file systems is the massively parallel and free
(GPLv2) Lustre filesystem, running over InfiniBand.

If auto-mounting is used, then the configuration files for exporting should be set up on the NFS
server, and the mount configurations set up on the software images. The service “autofs” or the equiv-
alent can be set up using Base View via the “Services” option (section 3.14) on the head and regular
nodes or node categories. With cmsh the procedure to configure auto-mounting on the head and regular
nodes could be:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% services

[basecm11->device[basecm11]->services]% add autofs

[basecm11->device*[basecm11*]->services*[autofs*]]% show

Parameter Value

------------------------------ -------------------------------------

Autostart no

Belongs to role no

Monitored no

Revision

Run if ALWAYS

Service autofs

Sickness check interval 60

Sickness check script

Sickness check script timeout 10

Timeout -1

[basecm11->device*[basecm11*]->services*[autofs*]]% set autostart yes

[basecm11->device*[basecm11*]->services*[autofs*]]% commit

[basecm11->device[basecm11]->services[autofs]]% category use default

[basecm11->category[default]]% services

[basecm11->category[default]->services]% add autofs

[basecm11->category*[default*]->services*[autofs*]]% set autostart yes

[basecm11->category*[default*]->services*[autofs*]]% commit

[basecm11->category[default]->services[autofs]]%

Filesystems imported to a regular node via an auto-mount operation must explicitly be excluded in
excludelistupdate by the administrator, as explained in section 5.6.1, page 276.

The rest of this section describes the configuration of NFS for static mounts, using Base View or cmsh.
Sections 3.13.1 and 3.13.2 explain how exporting and mounting of filesystems is done in general by an

administrator using Base View and cmsh, and considers some mounting behavior that the administrator
should be aware of.

Section 3.13.3 discusses how filesystems in general on a diskless node can be replaced via mounts of
NFS exports.

Section 3.13.4 discusses how OFED InfiniBand or iWarp drivers can be used to provide NFS over
RDMA.

https://whamcloud.com
https://whamcloud.com

152 Configuring The Cluster

3.13.1 Exporting A Filesystem Using Base View And cmsh

Exporting A Filesystem Using Base View
As an example, if an NFS volume exists at “basecm11:/modeldata” it can be exported using Base View
using the head node navigation path:
Devices > Head nodes[basecm11] > Settings[JUMP TO] > Filesystem exports

This shows the list of exports (figure 3.18):

Figure 3.18: NFS exports from a head node viewed using Base View

Using the Add button, and selecting FSExport from the popup, a new entry (figure 3.19) can be
configured with values as shown:

3.13 Configuring NFS Volume Exports And Mounts 153

Figure 3.19: Setting up an NFS export using Base View

For this example, the value for “Name” is set arbitrarily to “Fluid Model Data”, the value for Path
is set to /modeldata, and the value for Network is set from the selection menu to allowing access to
internalnet (by default 10.141.0.0/16 in CIDR notation).

By having the Write option disabled, read-only access is kept.
Saving this preceding configuration means the NFS server now provides NFS access to this filesys-

tem for internalnet.
The network can be set to other network values using CIDR notation. It can also be set to particular

hosts such as just node001 and node002, by specifying a value of “node001 node002” instead. Other
settings and options are also possible and are given in detail in the man pages for exports(5).

Exporting A Filesystem Using cmsh

The equivalent to the preceding Base View NFS export procedure can be done in cmsh by using the
fsexports submode on the head node (some output elided):

154 Configuring The Cluster

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% fsexports

[...->fsexports]% add "Fluid Model Data"

[...->fsexports*[Fluid Model Data*]]% set path /modeldata

[...[Fluid Model Data*]]% set hosts 10.141.0.0/16

[...[Fluid Model Data*]]% commit

[...->fsexports[Fluid Model Data]]% list | grep Fluid

Name (key) Path Hosts Write

------------------- ------------- --------------- ------

Fluid Model Data /modeldata 10.141.0.0/16 no

General Considerations On Exporting A Filesystem
Built-in exports: In versions of NVIDIA Base Command Manager prior to version 9.0, all filesystem
exports could be removed from the fsexports submode, simply by using the remove command with
the name of the export.

From version 9.0 onward however, the following filesystem exports:

• /var/spool/burn

• /home

• /cm/shared

are treated as special built-ins.

Head node role and disableautomaticexports: Built-ins are exported automatically as part of the
headnode role, also introduced in NVIDIA Base Command Manager 9.0, and cannot simply be removed.

To disable export of the built-in file systems, the disableautomaticexports command must be run
in the headnode role for that node:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11

[basecm11->device[basecm11]]% roles

[basecm11->device[basecm11]->roles]% use headnode

[basecm11->device[basecm11]->roles[headnode]]% show

Parameter Value

-------------------------------- -----------------------

Name headnode

Revision

Type HeadNodeRole

Add services yes

Disable automatic exports no

Provisioning associations <2 internally used>

role use headnode

[basecm11->device[basecm11]->roles[headnode]]% set disableautomaticexports yes ; commit

Disabling exports that are not built-ins: Exports that are not built-ins can still simply be removed.
However, also from NVIDIA Base Command Manager 9.0 onward they can also simply be disabled in
the fsexports submode. For example there is an export created by the cluster administrator for /opt, it
can be disabled as follows:

3.13 Configuring NFS Volume Exports And Mounts 155

Example

[basecm11->device[basecm11]->fsexports]% list

Name (key) Path Network Disabled

---------------- ------- ... ----------- --------

opt /opt internalnet no

[basecm11->device[basecm11]->fsexports]% set opt disabled yes; commit

The reason for automating the export for nodes via a headnode role is that NVIDIA Base Com-
mand Manager 9.0 onward has multidistro and multiarch capabilities (section 9.7), which would
make manual management of exports harder for such nodes. The reason for the extra hurdle of
disableautomaticexports for built-ins is that that disabling these exports can result in an unbootable
system.

3.13.2 Mounting A Filesystem Using Base View And cmsh

Continuing on with the Fluid Model Data export example from the preceding section, the administra-
tor decides to mount the remote filesystem over the default category of nodes. Nodes can also mount
the remote filesystem individually, but that is usually not a common requirement in a cluster. The ad-
ministrator also decides not to re-use the exported name from the head node. That is, the remote mount
name modeldata is not used locally, even though NFS allows this and many administrators prefer to do
this. Instead, a local mount name of /modeldatagpu is used, perhaps because it avoids confusion about
which filesystem is local to a person who is logged in, and perhaps to emphasize the volume is being
mounted by nodes with GPUs.

Mounting A Filesystem Using Base View
In Base View the navigation path to manage the mount points of a category such as default is:

Grouping > Categories[default] > Edit > Settings[JUMP TO] > Filesystem mounts

A mount point can be added with the ADD button, and clicking on the popup FSMount. Values for
the remote mount point (basecm11:/modeldata), the filesystem type (nfs), and the local mount point
(/modeldatagpu) can then be set in category mode, while the remaining options stay at their default
values (figure 3.20):

156 Configuring The Cluster

Figure 3.20: Setting up NFS mounts on a node category using Base View

Saving the configuration saves the values and creates the local mount point, so that the volume can
then be accessed by nodes within that category.

Mounting A Filesystem Using cmsh

The equivalent to the preceding Base View NFS mount procedure can be done in cmsh by using the
fsmounts submode, for example on the default category. The addmethod under the fsmounts submode
sets the mountpoint path, in this case /modeldatagpu (some output elided):

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% fsmounts

[basecm11->category[default]->fsmounts]% add /modeldatagpu

[basecm11->...*[/modeldatagpu*]]% set device basecm11:/modeldata

[basecm11->...*[/modeldatagpu*]]% set filesystem nfs

[basecm11->category*[default*]->fsmounts*[/modeldatagpu*]]% commit

[basecm11->category[default]->fsmounts[/modeldatagpu]]%

Device Mountpoint (key) Filesystem

--------------------- ------------------ ----------

...

basecm11:/modeldata /modeldatagpu nfs

[basecm11->category[default]->fsmounts[/modeldatagpu]]% show

Parameter Value

------------------- ---------------------

Device basecm11:/modeldata

3.13 Configuring NFS Volume Exports And Mounts 157

Dump no

Filesystem nfs

Filesystem Check NONE

Mount options defaults

Mountpoint /modeldatagpu

Values can be set for Mount options other than default. For example, the noac flag can be added as
follows:

[basecm11->...[/modeldatagpu]]% set mountoptions defaults,noac; commit

Mounting a CIFS might use:

[basecm11->...[/modeldatagpu]]% set mountoptions gid,users,file_mode=0666,dir_mode=0777,\
iocharset=iso8859-15,credentials=/path/to/credential

[basecm11->...[/modeldatagpu*]]% commit

A _netdev mount option to make systemd wait until the network is up before it is mounted can be
added as follows:

[basecm11->...[/modeldatagpu]]% append mountoptions ,_netdev; commit

General Considerations On Mounting A Filesystem
There may be a requirement to segregate the access of nodes. For example, in the case of the preceding,
because some nodes have no associated GPUs.

Besides the “Allowed hosts” options of NFS exports mentioned earlier in section 3.13.1, BCM offers
two more methods to fine tune node access to mount points:

• Nodes can be placed in another category that does not have the mount point.

• Nodes can have the mount point set, not by category, but per device within the Nodes resource.
For this, the administrator must ensure that nodes that should have access have the mount point
explicitly set.

Other considerations on mounting are that:

• When adding a mount point object:

– The settings take effect right away by default on the nodes or node categories.

– If noauto is set as a mount option, then the option only takes effect on explicitly mounting
the filesystem.

– If “AutomaticMountAll=0” is set as a CMDaemon directive (Appendix C), then CMDaemon
changes for /etc/fstab are written to the file, but the mount -a command is not run by
CMDaemon. However, the administrator should be aware that since mount -a is run by the
distribution during booting, a node reboot implements the mount change.

• While a mount point object may have been removed, umount does not take place until reboot,
to prevent mount changes outside of the cluster manager. If a umount needs to be to done with-
out a reboot, then it should be done manually, for example, using the pdsh or pexec command
(section 14.1), to allow the administrator to take appropriate action if umounting goes wrong.

• When manipulating mount points, the administrator should be aware which mount points are
inherited by category, and which are set for the individual node.

– In Base View, for a node, inheritance by category is indicated in the navigation path Devices

> Nodes[node name] > Edit > Settings > Filesystem mounts, under the INHERITED column,
with the entry (Category).

158 Configuring The Cluster

– In cmsh, the category a mount belongs to is displayed in brackets. This is displayed from
within the fsmounts submode of the device mode for a specified node:

Example

[root@basecm11 ~]# cmsh -c "device; fsmounts node001; list"

Device Mountpoint (key) Filesystem

------------------------ -------------------- ----------

[default] none /dev/pts devpts

[default] none /proc proc

[default] none /sys sysfs

[default] none /dev/shm tmpfs

[default] $localnfsserv+ /cm/shared nfs

[default] basecm11:/home /home nfs

basecm11:/cm/shared/exa+ /home/examples nfs

[root@basecm11 ~]#

To remove a mount point defined at category level for a node, it must be removed from within the
category, and not from the specific node.

Mount Order Considerations
Care is sometimes needed in deciding the order in which mounts are carried out.

• For example, if both /usr/share/doc and a replacement directory subtree /usr/share/doc/

compat-gcc-34-3.4.6java are to be used, then the stacking order should be that /usr/share/doc
is mounted first. This order ensures that the replacement directory subtree overlays the first
mount. If, instead, the replacement directory were the first mount, then it would be overlaid,
inaccessible, and inactive.

• There may also be dependencies between the subtrees to consider, some of which may prevent
the start up of applications and services until they are resolved. In some cases, resolution may be
quite involved.

The order in which such mounts are mounted can be modified with the up and down commands
within the fsmounts submode of cmsh.

3.13.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS
NFS Vs tmpfs For Diskless Nodes
For diskless nodes (Appendix D.9), the software image (section 2.1.2) is typically installed from a pro-
visioning node by the node-installer during the provisioning stage, and held as a filesystem in RAM on
the diskless node with the tmpfs filesystem type.

It can be worthwhile to replace subtrees under the diskless node filesystem held in RAM with sub-
trees provided over NFS. This can be particularly worthwhile for less frequently accessed parts of the
diskless node filesystem. This is because, although providing the files over NFS is much slower than ac-
cessing it from RAM, it has the benefit of freeing up RAM for tasks and jobs that run on diskless nodes,
thereby increasing the cluster capacity.

An alternative “semi-diskless” way to free up RAM is to use a local disk on the node itself for sup-
plying the subtrees. This is outlined in Appendix D.10.

Moving A Filesystem Subtree Out Of tmpfs To NFS
To carry out subtree provisioning over NFS, the subtrees are exported and mounted using the methods
outlined in the previous examples in sections 3.13.1 and 3.13.2. For the diskless case, the exported
filesystem subtree is thus a particular path under /cm/images/<image>2 on the provisioning node, and
the subtree is mounted accordingly under / on the diskless node.

2by default <image> is default-image on a newly-installed cluster

/usr/share/doc
/usr/share/doc/compat-gcc-34-3.4.6java
/usr/share/doc/compat-gcc-34-3.4.6java
/usr/share/doc

3.13 Configuring NFS Volume Exports And Mounts 159

While there are no restrictions placed on the paths that may be mounted in NVIDIA Base Command
Manager 11, the administrator should be aware that mounting certain paths such as /bin is not possible.

When Base View or cmsh are used to manage the NFS export and mount of the subtree filesystem,
then tmpfs on the diskless node is reduced in size due to the administrator explicitly excluding the
subtree from tmpfs during provisioning.

An example might be to export /cm/images/default-image from the head node, and mount the
directory available under it, usr/share/doc, at a mount point /usr/share/doc on the diskless node. In
cmsh, such an export can be done by creating an FS export object corresponding to the software image
object defaultimage with the following indicated properties (some prompt output elided):

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11; fsexports

[basecm11->device[basecm11]->fsexports]% add defaultimage

[basecm11...defaultimage*]]% set path /cm/images/default-image

[basecm11...defaultimage*]]% set hosts 10.141.0.0/16

[basecm11...defaultimage*]]% commit

[basecm11...defaultimage]]% list | grep defaultimage

Name (key) Path Hosts Write

---------------- ------------------------ ------------- -----

defaultimage /cm/images/default-image 10.141.0.0/16 no

As the output to list shows, the NFS export should be kept read-only, which is the default. Ap-
propriate parts of the export can then be mounted by a node or node category. The mount is defined
by setting the mount point, the nfs filesystem property, and the export device. For example, for a node
category (some output elided):

[br...defaultimage]]% category use default

[basecm11->category[default]]% fsmounts

[basecm11->category[default]->fsmounts]% add /usr/share/doc

[basecm11->...*[/usr/share/doc*]]% set device basecm11:/cm/images/default-image/user/share/doc

[basecm11->...*[/usr/share/doc*]]% set filesystem nfs

[basecm11->category*[default*]->fsmounts*[/usr/share/doc*]]% commit

[basecm11->category[default]->fsmounts[/usr/share/doc]]% list

Device Mountpoint (key) Filesystem

--------------------- ------------------ ----------

...

basecm11:/cm/images/usr/share/doc /usr/share/doc nfs

[basecm11->category[default]->fsmounts[/usr/share/doc]]% show

Parameter Value

---------------- ---

Device basecm11:/cm/images/default-image/usr/share/doc

Dump no

Filesystem nfs

Filesystem Check 0

Mount options defaults

Mountpoint /usr/share/doc

Other mount points can be also be added according to the judgment of the system administrator.
Some consideration of mount order may be needed, as discussed on page 158 under the subheading
“Mount Order Considerations”.

An Example Of Several NFS Subtree Mounts
The following mounts save about 440MB from tmpfs on a diskless node with Rocky Linux 8, as can be
worked out from the following subtree sizes:

160 Configuring The Cluster

[root@basecm11 ~]# cd /cm/images/default-image/

[root@basecm11 default-image]# du -sh usr/share/locale usr/lib/jvm usr/share/doc usr/src

160M usr/share/locale

118M usr/lib/jvm

88M usr/share/doc

77M usr/src

The filesystem mounts can then be created using the techniques in this section. After doing that, the
result is then something like (some lines omitted):

[root@basecm11 default-image]# cmsh

[basecm11]% category use default; fsmounts

[basecm11->category[default]->fsmounts]% list -f device:53,mountpoint:17

device mountpoint (key)

-- -----------------

... ...

master:/cm/shared /cm/shared

master:/home /home

basecm11:/cm/images/default-image/usr/share/locale /usr/share/locale

basecm11:/cm/images/default-image/usr/lib/jvm /usr/lib/jvm

basecm11:/cm/images/default-image/usr/share/doc /usr/share/doc

basecm11:/cm/images/default-image/usr/src /usr/src

[basecm11->category[default]->fsmounts]%

Diskless nodes that have NFS subtree configuration carried out on them can be rebooted to start
them up with the new configuration.

3.13.4 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers
If running NFS over RDMA, then at least NFS version 4.0 is recommended. NFS version 3 will also
work with RDMA, but uses IPoIB encapsulation instead of native verbs. NFS version 4.1 uses the RDMA
Connection Manager (librdmacm), instead of the InfiniBand Connection Manager (ib_cm) and is thereby
also able to provide pNFS.

The administrator can set the version of NFS used by the cluster by setting the value of Nfsvers in
the file /etc/nfsmount.conf on all the nodes, including the head node.

Drivers To Use For NFS Over RDMA
BCM OFED drivers and DOCA OFED drivers (section 10 of the Installation Manual) can support using
the RDMA protocol (section 3.6) to provide NFS.

The distribution OFED drivers also support NFS over RDMA.
When using NFS over RDMA, ibnet, the IP network used for InfiniBand, should be set. Section 3.6.3

explains how that can be done.

Exporting With Base View And cmsh Using NFS Over RDMA
With the drivers installed, a volume export can be carried out using NFS over RDMA.

The procedure using Base View is much the same as done in section 3.13.1 (“Exporting A Filesys-
tem Using Base View”), except for that the ibnet network should be selected instead of the default
internalnet, and the “RDMA” option should be enabled.

The procedure using cmsh is much the same as done in section 3.13.1 (“Exporting A Filesystem Using
cmsh”), except that the ibnet network (normally with a recommended value of 10.149.0.0/16) should be
set, and the rdma option should be set.

Example

(based on the example in section 3.13.1)

/etc/nfsmount.conf

3.14 Managing And Configuring Services 161

...

[...->fsexports*[Fluid Model Data*]]% set path /modeldata

[...[Fluid Model Data*]]% set hosts ibnet

[...[Fluid Model Data*]]% set rdma yes

[...[Fluid Model Data*]]% commit

...

Mounting With Base View And cmsh Using NFS Over RDMA
The mounting of the exported filesystems using NFS over RDMA can then be done.

The procedure using Base View is largely like that in section 3.13.2, (“Mounting A Filesystem Using
Base View”), except that the Device entry must point to master.ib.cluster so that it resolves to the
correct NFS server address for RDMA, and the checkbox for NFS over RDMA must be ticked.

The procedure using cmsh is similar to that in section 3.13.2, (“Mounting A Filesystem Using cmsh”),
except that device must be mounted to the ibnet, and the rdma option must be set, as shown:

Example

(based on the example in section 3.13.2)

...

[basecm11->category[default]->fsmounts]% add /modeldatagpu

[basecm11->...*[/modeldatagpu*]]% set device basecm11.ib.cluster:/modeldata

[basecm11->...*[/modeldatagpu*]]% set filesystem nfs

[basecm11->...*[/modeldatagpu*]]% set rdma yes

[basecm11->category*[default*]->fsmounts*[/modeldatagpu*]]% commit

...

3.14 Managing And Configuring Services
3.14.1 Why Use The Cluster Manager For Services?
Linux administrators should be familiar with managing services from the command line using systemctl:

Example

systemctl start <service~name>.service

where <service name> indicates a service such as mysqld, mariabd, nfs, postfix and so on.
Services can also be managed with BCM. That is, they can also be started and stopped with Base

View and cmsh tools.
An additional convenience that comes with the cluster manager tools is that some CMDaemon pa-

rameters useful for managing services in a cluster are very easily configured, whether on the head node,
a regular node, or for a node category. These parameters are:

• monitored: checks periodically if a service is running. Information is displayed and logged the
first time it starts or the first time it dies

• autostart: restarts a failed service that is being monitored.

– If autostart is set to on, and a service is stopped using BCM, then no attempts are made
to restart the service. Attempted autostarts become possible again only after BCM starts the
service again.

– If autostart is set to on, and if a service is removed using BCM, then the service is stopped
before removal.

– If autostart is off, then a service that has not been stopped by CMDaemon still undergoes
an attempt to restart it, if

162 Configuring The Cluster

* CMDaemon is restarted

* its configuration files are updated by CMDaemon, for example in other modes, as in the
example on page 97.

• runif: (only honored for nodes used as part of a high availability configuration (chapter 15))
whether the service should run with a state of:

– active: run on the active node only

– passive: run on the passive only

– always: run both on the active and passive

– preferpassive: preferentially run on the passive if it is available. Valid only for head nodes.
Invalid for failover groups (section 15.5.3).

The details of a service configuration remain part of the configuration methods of the service soft-
ware itself.

• Thus BCM can run actions on typical services only at the generic service level to which all the unix
services conform. This means that CMDaemon can run actions such as starting and stopping the
service. If the restarting action is available in the script, then CMDaemon can also run that.

• The operating system configuration of the service itself, including its persistence on reboot, re-
mains under control of the operating system, and is not handled by CMDaemon. So, stopping a
service within CMDaemon means that by default the service may start up on reboot. Running

systemctl disable <service name>.service

from the command line can be used to configure the service to no longer start up on reboot.

BCM can be used to keep a service working across a failover event with an appropriate runif set-
ting and appropriate failover scripts such as the Prefailover script and the Postfailover script

(section 15.4.6). The details of how to do this will depend on the service.

3.14.2 Managing And Configuring Services—Examples
If, for example, the CUPS software is installed (“yum install cups”), then the CUPS service can be
managed in several ways:

Managing The Service From The Regular Shell, Outside Of CMDaemon
Standard unix commands from the bash prompt work, as shown by this session:

[root@basecm11 ~]# systemctl enable cups.service

... symlinks created...

[root@basecm11 ~]# systemctl start cups

Managing The Service From cmsh

Starting the service in cmsh: The following session illustrates adding the CUPS service from within
device mode and the services submode. The device in this case is a regular node, node001, but a head
node can also be chosen. Monitoring and auto-starting are also set in the session (some lines elided):

[basecm11]% device services node001

[basecm11->device[node001]->services]% add cups

[basecm11->device*[node001*]->services*[cups*]]% show

Parameter Value

------------------------------ ------------------------

Autostart no

Belongs to role no

Monitored no

3.14 Managing And Configuring Services 163

...

Run if ALWAYS

Service cups

...

[basecm11->device*[node001*]->services*[cups*]]% set monitored on

[basecm11->device*[node001*]->services*[cups*]]% set autostart on

[basecm11->device*[node001*]->services*[cups*]]% commit

[basecm11->device[node001]->services[cups]]%

Apr 14 14:02:16 2017 [notice] node001: Service cups was started

[basecm11->device[node001]->services[cups]]%

Other service options in cmsh: Within cmsh, the start, stop, restart, and reload options to the
service <service name> start|stop|restart|...

command can be used to manage the service at the services submode level. For example, continu-
ing with the preceding session, stopping the CUPS service can be done by running the cups service
command with the stop option as follows:

[basecm11->device[node001]->services[cups]]% stop

Fri Apr 14 14:03:40 2017 [notice] node001: Service cups was stopped

Successfully stopped service cups on: node001

[basecm11->device[node001]->services[cups]]%

The service is then in a STOPPED state according to the status command.

[basecm11->device[node001]->services[cups]]% status

cups [STOPPED]

Details on how a state is used when monitoring a service are given in the section “Monitoring A
Service With cmsh And Base View” on page 166.

Continuing from the preceding session, the CUPS service can also be added for a node category from
category mode:

[basecm11->device[node001]->services[cups]]% category

[basecm11->category]% services default

[basecm11->category[default]->services]% add cups

As before, after adding the service, the monitoring and autostart parameters can be set for the service.
Also as before, the options to the service <service name> start|stop|restart|... command can
be used to manage the service at the services submode level. The settings apply to the entire node
category (some lines elided):

Example

[basecm11->category*[default*]->services*[cups*]]% show

...

[basecm11->category*[default*]->services*[cups*]]% set autostart yes

[basecm11->category*[default*]->services*[cups*]]% set monitored yes

[basecm11->category*[default*]->services*[cups*]]% commit

[basecm11->category[default]->services[cups]]%

Fri Apr 14 14:06:27 2017 [notice] node002: Service cups was started

Fri Apr 14 14:06:27 2017 [notice] node005: Service cups was started

Fri Apr 14 14:06:27 2017 [notice] node004: Service cups was started

Fri Apr 14 14:06:27 2017 [notice] node003: Service cups was started

[basecm11->category[default]->services[cups]]% status

node001.................. cups [STOPPED]

node002.................. cups [UP]

node003.................. cups [UP]

node004.................. cups [UP]

node005.................. cups [UP]

164 Configuring The Cluster

Managing The Service From Base View
Using Base View, a service can be managed from an OSServiceConfig list window, accessible via the
Services button from the JUMP TO section of the Settings. The window is accessible for

• Head Nodes, for example via a navigation path of
Devices > Head Nodes[basecm11] > Settings > Services

• Nodes, for example via a navigation path of
Devices > Nodes[node001] > Settings > Services

(figure 3.21):

Figure 3.21: Operating system service configuration list window for nodes in Base View

• Node categories, for example via a navigation path of
Grouping > Node categories[default] > Settings > Services

By default, with the default software image, there are no services set at category level for nodes
(figure 3.22):

Figure 3.22: Operating system service configuration list window for the default category in Base View

The Service <service name> start|stop|restart... command options start, stop, restart, and
so on, are displayed as selection options to an OSService popup that appears when the ACTIONS button
is clicked (figure 3.23):

3.14 Managing And Configuring Services 165

Figure 3.23: Operating system service actions in Base View

A service can be added with the ADD button, and clicking on the OSServiceConfig popup. The fields
of the service can then be edited. The REVERT button reverts unsaved changes, while the DELETE button
removes the saved changes.

Figure 3.24 shows CUPS being set up from an Add dialog in the services window. The window is
accessible via the ADD button of figure 3.22.

166 Configuring The Cluster

Figure 3.24: Setting up a service using Base View

For a service in the services subwindow, clicking on the Status button in figure 3.22 displays a grid
of the state of services on a running node as either Up or Down.

Monitoring A Service With cmsh And Base View
The service is in a DOWN state if it is not running, and in a FAILING state if it is unable to run after 10 auto-
starts in a row. Event messages are sent during these first 10 auto-starts. After the first 10 auto-starts, no
more event messages are sent, but autostart attempts continue.

In case an autostart attempt has not yet restarted the service, the reset option may be used to attempt
an immediate restart. The reset option is not a service option in the regular shell, but is used by
CMDaemon (within cmsh and Base View) to clear a FAILING state of a service, reset the attempted auto-
starts count to zero, and attempt a restart of the service.

The monitoring system sets the ManagedServicesOk health check (Appendix G.2.1) to a state of FAIL
if any of the services it monitors is in the FAILING state. In cmsh, the statuses of the services are listed by
running the latesthealthdata command (section 10.6.3) from device mode.

Standard init.d script behavior is that the script return a non-zero exit code if the service is down,
and a zero exit code if the service is up. A non-zero exit code makes BCM decide that the service is
down, and should be restarted.

However, some scripts return a non-zero exit code even if the service is up. These services therefore
have BCM attempt to start them repetitively, even though they are actually running.

This behavior is normally best fixed by setting a zero exit code for when the service is up, and a
non-zero exit code for when the service is down.

3.15 Managing And Configuring A Rack 167

Removing A Service From CMDaemon Control Without Shutting It Down
Removing a service from BCM control while autostart is set to on stops the service on the nodes:

[basecm11->category[default]->services]% add cups

[basecm11->category*[default*]->services*[cups*]]% set monitored on

[basecm11->category*[default*]->services*[cups*]]% set autostart on

[basecm11->category*[default*]->services*[cups*]]% commit; exit

[basecm11->category[default]->services]% remove cups; commit

Wed May 23 12:53:58 2012 [notice] node001: Service cups was stopped

In the preceding cmsh session, cups starts up when the autostart parameter is committed, if cups is
not already up.

The behavior of having the service stop on removal is implemented because it is usually what is
wanted.

However, sometimes the administrator would like to remove the service from CMDaemon control
without it shutting down. To do this, autostart must be set to off first.

[basecm11->category[default]->services]% add cups

[basecm11->category*[default*]->services*[cups*]]% set monitored on

[basecm11->category*[default*]->services*[cups*]]% set autostart off

[basecm11->category*[default*]->services*[cups*]]% commit; exit

Wed May 23 12:54:40 2012 [notice] node001: Service cups was started

[basecm11->category[default]->services]% remove cups; commit

[basecm11->category[default]->services]% !# no change: cups stays up

3.15 Managing And Configuring A Rack
3.15.1 Racks
A cluster may have local nodes grouped physically into racks. A rack is 42 units in height by default,
and nodes normally take up one unit.

Rack List
Rack list in Base View: The Rack list pane can be opened up in Base View via the navigation path
Datacenter Infrastructure > Racks (figure 3.25):

Figure 3.25: Rack list using Base View

Racks can then be added, removed, or edited from the pane.
Within the Rack list pane:

• a new rack item can be added with the ADD button, and then clicking on the Rack popup. This
opens a Settings tab in the rack item window pane where rack configuration can be carried out
and saved (figure 3.26).

• an existing rack item can be edited with the Edit menu option, or by double-clicking on the item
itself. This also opens up the Settings tab in the rack item window pane where rack configuration
can be managed.

168 Configuring The Cluster

Racks overviews in cmsh:

• The list command in rack mode in cmsh allows racks defined in the cluster manager to be listed:

[basecm11->rack]% list

Name (key) Room x-Coordinate y-Coordinate Height

-------------- ------------- ------------- ------------- ------

rack2 skonk works 2 0 42

racknroll 1 0 42

• The rackoverview command displays information about the types of entities in a specified rack.
It also lists some more detailed information about some of the entity types:

Example

[basecm11->rack]% rackoverview <TAB><TAB>
a01 a02 a03 a04 a05 a06 a07 a08 a09 a10 a11 a12 b01 b02 b03 b04...

[basecm11->rack]% rackoverview a05

Type Up Down Closed Total

----------------- --------------- --------------- --------------- ---------------

Nodes 18 0 0 18

DPU nodes 0 0 0 0

Managed switches 0 0 0 0

NVLink switches 0 9 0 9

Power shelves 8 0 0 8

Devices 0 0 0 0

Cores 2,592 - - 2,592

GPUs 72 - - 72

Name Value

--------------------------- -----------------

User CPU 0.03%

System CPU 0.07%

Idle CPU 99.9%

Other CPU 0.0%

Memory used 1.28 TiB (4.53%)

Memory unused 27.4 TiB (96.6%)

Memory total 28.3 TiB

Total GPU utilization 0 W

Total GPU power usage 10.9 KW

Total GPU NVlink bandwidth 0 W

Average GPU temperature 30.5588 C

Node GPU Utilization Temperature Power usage Memory used Memory free Fabric status

------------------ ---- ------------ ------------ ------------ ------------ ------------ -------------

a05-p1-dgx-01-c01 gpu0 0.0% 30 C 166.551 W 0 B 185 GiB success

a05-p1-dgx-01-c01 gpu1 0.0% 30 C 158.166 W 1.00 MiB 185 GiB success

...

Switch Utilization Temperature Power usage Fan speed Links active Links inactive

--------------- ------------ ------------ ------------ ------------ ------------ --------------

a05-p1-nvsw-01 35.7% 0 C 0 W 0 RPM 0 0

a05-p1-nvsw-02 26.9% 0 C 0 W 0 RPM 0 0

...

3.15 Managing And Configuring A Rack 169

Power Input Output Fan Active Total

shelf power power Temperature speed PSU PSU

--------------- -------- -------- ---------- --------- ------- ------

a05-p1-pwr-01 0 W 0 W 0 C 0 RPM 0 6

a05-p1-pwr-02 0 W 0 W 0 C 0 RPM 0 6

...

[basecm11->rack]%

• The display command in rack mode is useful for visualizing where devices are located in the
rack, if the cluster administrator has recorded the device positions

Example

[basecm11->rack]% display |less -R

...

A05 B05

48 48

47 47

46 46

45 45

44 44

43 43

42 a05-p1-pwr-08 42 B05-P1-PWR-08

41 a05-p1-pwr-07 41 B05-P1-PWR-07

40 a05-p1-pwr-06 40 B05-P1-PWR-06

39 a05-p1-pwr-05 39 B05-P1-PWR-05

38 38

37 a05-p1-dgx-01-c18 37 b05-p1-dgx-05-c18

36 a05-p1-dgx-01-c17 36 b05-p1-dgx-05-c17

35 a05-p1-dgx-01-c16 35 b05-p1-dgx-05-c16

34 a05-p1-dgx-01-c15 34 b05-p1-dgx-05-c15

33 a05-p1-dgx-01-c14 33 b05-p1-dgx-05-c14

32 a05-p1-dgx-01-c13 32 b05-p1-dgx-05-c13

31 a05-p1-dgx-01-c12 31 b05-p1-dgx-05-c12

30 a05-p1-dgx-01-c11 30 b05-p1-dgx-05-c11

29 a05-p1-dgx-01-c10 29 b05-p1-dgx-05-c10

28 a05-p1-dgx-01-c09 28 b05-p1-dgx-05-c09

27 a05-p1-nvsw-09 27 B05-P1-NVSW-09

26 a05-p1-nvsw-08 26 B05-P1-NVSW-08

25 a05-p1-nvsw-07 25 B05-P1-NVSW-07

24 a05-p1-nvsw-06 24 B05-P1-NVSW-06

23 a05-p1-nvsw-05 23 B05-P1-NVSW-05

22 a05-p1-nvsw-04 22 B05-P1-NVSW-04

21 a05-p1-nvsw-03 21 B05-P1-NVSW-03

20 a05-p1-nvsw-02 20 B05-P1-NVSW-02

19 a05-p1-nvsw-01 19 B05-P1-NVSW-01

18 a05-p1-dgx-01-c08 18 b05-p1-dgx-05-c08

17 a05-p1-dgx-01-c07 17 b05-p1-dgx-05-c07

16 a05-p1-dgx-01-c06 16 b05-p1-dgx-05-c06

15 a05-p1-dgx-01-c05 15 b05-p1-dgx-05-c05

14 a05-p1-dgx-01-c04 14 b05-p1-dgx-05-c04

13 a05-p1-dgx-01-c03 13 b05-p1-dgx-05-c03

12 a05-p1-dgx-01-c02 12 b05-p1-dgx-05-c02

11 a05-p1-dgx-01-c01 11 b05-p1-dgx-05-c01

170 Configuring The Cluster

10 10

09 a05-p1-pwr-04 09 B05-P1-PWR-04

08 a05-p1-pwr-03 08 B05-P1-PWR-03

07 a05-p1-pwr-02 07 B05-P1-PWR-02

06 a05-p1-pwr-01 06 B05-P1-PWR-01

05 05

04 04

03 03

02 02

01 01

Other rack overview commands allow the electrical supply, liquid cooling, leak detection, and leak
detection-related actions to be viewed at rack level (section 3.3 of the NVIDIA Mission Control Manual).

Rack Configuration Settings
Rack configuration settings in Base View: A Settings tab for editing a rack item selected from the
Rack list pane is shown in figure 3.26.

Figure 3.26: Rack configuration settings using Base View

The rack item configuration settings are:

3.15 Managing And Configuring A Rack 171

• Name: A unique name for the rack item. Names such as rack001, rack002 are a sensible choice.

• Room: A unique name for the room the rack is in.

• Position: The x- and y-coordinates of the rack in a room. These coordinates are meant to be a
hint for the administrator about the positioning of the racks in the room, and as such are optional,
and can be arbitrary numbers. The Notes field can be used as a supplement or as an alternative
for hints.

• Height: by default this is the standard rack size of 42U.

• Inverted: Normally, a rack uses the number 1 to mark the top and 42 to mark the bottom position
for the places that a device can be positioned in a rack. However, some manufacturers invert this
and use 1 to mark the bottom instead. Enabling the Inverted setting records the numbering layout
accordingly for all racks, if the inverted rack is the first rack seen in Rackview.

Rack configuration settings in cmsh: In cmsh, tab-completion suggestions for the set command in
rack mode display the racks available for configuration. On selecting a particular rack (for example,
rack2 as in the following example), tab-completion suggestions then display the configuration settings
available for that rack:

Example

[basecm11->rack]% set rack

rack1 rack2 rack3

[basecm11->rack]% set rack2

angle inverted notes twin y-coordinate

building location revision type

depth model room width

height name row x-coordinate

The configuration settings for a particular rack obviously match with the parameters associated with
and discussed in figure 3.26.

Setting the values can be done as in this example:

Example

[basecm11->rack]% use rack2

[basecm11->rack[rack2]]% set room "skonk works"

[basecm11->rack*[rack2*]]% set x-coordinate 2

[basecm11->rack*[rack2*]]% set y-coordinate 0

[basecm11->rack*[rack2*]]% set inverted no

[basecm11->rack*[rack2*]]% commit

[basecm11->rack[rack2]]%

3.15.2 Assigning Devices To A Rack
Devices such as nodes, switches, and chassis, can be assigned to racks.

By default, no such devices are assigned to a rack.
Devices can be assigned to a particular rack and to a particular position within the rack as follows:

Assigning Devices To A Rack Using Base View
Using Base View, a device such as a node node001 can be assigned to a rack via the navigation path
Devices > Nodes[node001] > Settings > JUMP TO > Rack (figure 3.27):

172 Configuring The Cluster

Figure 3.27: Rack assignment using Base View

Assigning Devices To A Rack Using cmsh

• In device mode, nodes can be assigned to a position in a rack. For example:

– node001 to position 1

– node002 to position 2

– node003 to position 3

A looping instruction to do this in a rack rack2 is:

root@basecm11:~# for i in 1..3 ; do cmsh -c "device use node00$i; get hostname; set rack rack2; \
get rack; set deviceposition $i; get deviceposition; commit"; done

• The addrackposition command fills devices into a rack object more implicitly. By default the
command fills devices into the first free slots on the rack.

root@basecm11:~# cmsh-c "device; addrackposition -n node001.node010 --position 1 rack rack2

The first free deviceposition value that it uses can be set with the --position option. Forcing a
device into the the same position as another device is also possible, with the --force option.

More options can be found using the help text for the command.

[basecm11->device]% help addrackposition

Name:

addrackposition - Add a rack position information to one or more nodes

...

Examples:

addrackposition -n node001..node010 rack1

addrackposition -n node001..node010 --height 2 --position 4 rack rack2

3.15 Managing And Configuring A Rack 173

• The rackposition submode allows individual nodes to be managed directly:

[basecm11->device[node002]->rackposition]% show

Parameter Value

-------------------------------- --

Rack rack2

Revision

Device position 2

Device height 1

Tray ID

Tray name

The Convention Of The Top Of The Device Being Its Position
Since rack manufacturers usually number their racks from top to bottom, the position of a device in a
rack (using the parameter Position in Base View, and the parameter deviceposition in cmsh) is always
taken to be where the top of the device is located. This is the convention followed even for the less usual
case where the rack numbering is from bottom to top.

A position on a rack is 1U of space. Most devices have a height that fits in that 1U, so that the top of
the device is located at the same position as the bottom of the device, and no confusion is possible. The
administrator should however be aware that for any device that is greater than 1U in height such as, for
example, a blade enclosure chassis (section 3.15.3), the convention means that it is the position of the
top of the device that is where the device is considered to be. The position of the bottom of the device is
ignored.

3.15.3 Assigning Devices To A Chassis
A Chassis As A Physical Part Of A Cluster
In a cluster, several local nodes may be grouped together physically into a chassis. This is common for
clusters using blade systems. Clusters made up of blade systems use less space, less hardware, and less
electrical power than non-blade clusters with the same computing power. In blade systems, the blades
are the nodes, and the chassis is the blade enclosure.

A blade enclosure chassis is typically 6 to 10U in size, and the node density for server blades is
typically 2 blades per unit with 2014 technology.

Chassis Configuration And Node Assignment
Chassis list in Base View: The Chassis list pane can be opened up in Base View via the navigation
path
Datacenter Infrastructure > Chassis

or
Devices > Chassis

A chassis can then be added, removed, or edited from the pane.
Within the Chassis list pane:

• a new chassis item can be added with the ADD button, and then clicking on the Chassis popup.
This opens a Chassis pane where chassis configuration can be carried out and saved (figure 3.28).

• an existing chassis item can be edited with the Edit menu option, or by double-clicking on the
item itself. This also opens up the Chassis pane for chassis configuration.

174 Configuring The Cluster

Figure 3.28: Base View chassis configuration

The options that can be set within the Chassis pane include the following:

• Hostname: a name that can be assigned to the chassis operating system

• Tag: a hardware tag for the chassis

• Mac: the MAC address of the chassis

• Model: the hardware model name

• Rack: the rack in which the chassis is placed

• Members: the Members menu option allows devices to be assigned to a chassis (figure 3.29). An
item within the Device set can be any item from the subsets of Node, Switch, Power Distribution

Unit, Generic Device, Rack Sensor, and Gpu Unit. These items can be filtered for viewing, de-
pending on whether they are Assigned (members of the chassis), Not Assigned (not members of
the chassis), or they can All be viewed (both Assigned and Not Assigned items).

• Layout: how the nodes in a chassis are laid out visually.

• Network: which network the chassis is attached to.

• Username, Password: the user name and password to access the chassis operating system

• Power control, Custom power script, Custom power script argument: power-related items for
the chassis.

• Userdefined1, Userdefined2: administrator-defined variables that can be used by CMDaemon.

3.15 Managing And Configuring A Rack 175

Figure 3.29: Base View Chassis Members Menu Options

Basic chassis configuration and node assignment with cmsh: The chassis mode in cmsh allows con-
figuration related to a particular chassis. Tab-completion suggestions for a selected chassis with the set

command show possible parameters that may be set:

Example

[basecm11->device[chassis1]]% set

containerindex hostname partition switchports

custompingscript ip password tag

custompingscriptargument layout powercontrol userdefined1

custompowerscript mac powerdistributionunits userdefined2

custompowerscriptargument members rack userdefinedresources

defaultgateway model revision username

deviceheight network slots

deviceposition notes supportsgnss

Whether the suggested parameters are actually supported depends on the chassis hardware. For
example, if the chassis has no network interface of its own, then the ip and mac address settings may be
set, but cannot function.

The positioning parameters of the chassis within the rack can be set as follows with cmsh:

Example

[basecm11->device[chassis1]]% set rack rack2

[basecm11->device*[chassis1*]]% set deviceposition 1; set deviceheight 6

[basecm11->device*[chassis1*]]% commit

The members of the chassis can be set as follows with cmsh:

Example

[basecm11->device[chassis1]]% append members basecm11 node001..node005

[basecm11->device*[chassis1*]]% commit

176 Configuring The Cluster

3.16 Configuring GPU Settings
3.16.1 GPUs And GPU Units
GPUs (Graphics Processing Units) are processors that are heavily optimized for executing certain types
of parallel processing tasks. GPUs were originally used for rendering graphics, and one GPU typically
has hundreds of cores. When used for general processing, they are sometimes called General Processing
GPUs, or GPGPUs. For convenience, the “GP” prefix for General Processing is not used in this manual.

A GPU is typically placed on a PCIe card. GPUs can be physically inside the node that uses them, or
they can be physically external to the node that uses them. As far as the operating system on the node
making use of the physically external GPUs is concerned, the GPUs are internal to the node.

If the GPUs are physically external to the node, then they are typically in a GPU unit. A GPU unit is
a chassis that hosts only GPUs. It is typically able to provide GPU access to several nodes, usually via
PCIe extender connections. This ability means that external GPUs typically require more configuration
than internal GPUs. GPU units are not covered in this manual because they are not very popular due to
their greater cost and slowness.

Configuring GPU settings for GPUs—that is, for devices internal to a node—is covered next.

3.16.2 Configuring GPU Settings
The gpusettings Submode In cmsh

In cmsh, GPUs can be configured for a specified node via device mode.
Going into the gpusettings submode for that node then allows a type of GPU to be set, from the amd

or nvidia types, and a range to be specified for the GPU slots for that particular node:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% gpusettings

[basecm11->device[node001]->gpusettings]% add nvidia 1-3 ; commit

The range can be specified as

• a single number, for a particular slot, for example: 3

• a range, for a range of slots, for example: 0-2

• all, for all GPU slots on that node, using:

all

or

*

GPUs can also be configured for a specified category via category mode. For example, using the
category default, then entering into the gpusettings submode allows a type (nvidia or amd) and a
range to be set for the range of GPUs:

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% gpusettings

[basecm11->category[default]->gpusettings]% list

GPU range (key) Power limit ECC mode Compute mode Clock speeds

---------------- ------------ ------------ ------------- -------------

[basecm11->category[default]->gpusettings]% add nvidia 1-3 ; commit

[basecm11->category[default]->gpusettings[nvidia:1-3]]% show

3.16 Configuring GPU Settings 177

Parameter Value

------------------------------ ----------------------------------

Clock speeds

Clock sync boost mode

Compute mode

ECC mode

...

As usual, GPU settings for a node override those for a category (section 2.1.3).

GPU Settings With NVIDIA GPUs
The installation of the NVIDIA GPU software driver packages is covered in section 9.1 of the Installation
Manual. It should be noted that the cuda-dcgm package must be installed to access NVIDIA GPU metrics.

The present section is about configuring NVIDIA GPUs in BCM. The driver itself does not necessarily
have to be in place for the configuration to be done, although the configuration only becomes active
when the driver is installed.

After a GPU type has been set, the following NVIDIA GPU settings may be specified, if supported,
from within the gpusettings submode:

• clockspeeds: The pair of clock speeds (frequency in MHz) to be set for this parameter can be
selected from the list of available speeds. The available speeds can be seen by running the status

command. The values are specified in the form: <number for GPU processor>,<number for memory>

• clocksyncboostmode: GPU boosting. Exceed the maximum core and memory clock speeds if it is
safe. Choices are:

– enabled

– disabled

• computemode: Contexts can be computed with the following values for this mode:

– Default: Multiple contexts are allowed

– Exclusive thread: Only one context is allowed per device, usable from one thread at a time

– Exclusive process: Only one context is allowed per device, usable from multiple threads at
a time. This mode option is valid for CUDA 4.0 and higher. Earlier CUDA versions ran only
in this mode.

– Prohibited: No contexts are allowed per device

• eccmode: Sets the ECC bit error check, with:

– enabled

– disabled

When ECC is enabled:

– Single bit errors are detected, using the EccSBitGPU metric (page 925), and corrected auto-
matically.

– Double bit errors are also detected, using the EccDBitGPU metric (page 925), but cannot be
corrected.

• GPU range: range values can be set as follows:

– all: The GPU settings apply to all GPUs on the node.

– <number>: The GPU settings apply to an individual GPU, for example: 1

178 Configuring The Cluster

– <number range>: The GPU settings apply to a range of GPUs, for example: 1,3-5

• powerlimit: The administrator-defined upper power limit for the GPU. Only valid if powermode
is Supported.

– min: The minimum upper power limit that the hardware supports.

– max: The maximum upper power limit that the hardware supports.

– <number>: An arbitrary upper power limit, specified as a number between min and max

– default: Upper power limit based on the default hardware value.

If no value is specified for a GPU setting, then the hardware default is used.

The updatenodegpuconfig Command For Controlling Power Consumption
Above the gpusettings submode, within device mode, nodes with GPUs can have their power con-
sumption limited per specified GPU:

Without arguments, the updatenodegpuconfig command shows the current status:

Example

[basecm11->device[node001]]% updatenodegpuconfig

Node GPU Power limit Processor speed Memory speed

------------ ------------ ---------------- ---------------- ----------------

node001 0 350 W 135 MHz 958 MHz

node001 1 350 W 135 MHz 958 MHz

In the preceding example, the only node with a GPU is node001. The same result is therefore shown
if the command is run as updatenodegpuconfig -n node001.

The first and second GPUs on node001 can have their power limits set to the same value with a range
syntax:

[basecm11->device]% updatenodegpuconfig node001:0-1:330

Node GPU Power limit Processor speed Memory speed

------------ ------------ ---------------- ---------------- ----------------

node001 0 330 W 135 MHz 958 MHz

node001 1 330 W 135 MHz 958 MHz

For the first and second GPUs on node001, the power limit, in watts, can be set to different values:

Example

[basecm11->device]% updatenodegpuconfig node001:1:300 node001:0:330

Node GPU Power limit Processor speed Memory speed

------------ ------------ ---------------- ---------------- ----------------

node001 0 330 W 135 MHz 958 MHz

node001 1 300 W 135 MHz 958 MHz

A dry-run option shows the effect on both the GPUs:

[basecm11->device]% updatenodegpuconfig node001:0-1:350 --dry-run

Node GPU Power limit Processor speed Memory speed

------------ ------------ ---------------- ---------------- ----------------

node001 0 350 W - -

node001 1 350 W - -

The clock speed can be set with a 3rd colon delimited field, in Hz:

3.16 Configuring GPU Settings 179

[basecm11->device]% updatenodegpuconfig node001:0:350:142M

Node GPU Power limit Processor speed Memory speed

------------ ------------ ---------------- ---------------- ----------------

node001 0 350 W 135 MHz 142 MHz

Using both gpusettings values and updatenodegpuconfigs may cause conflict. For example with
the processor speed setting of updatenodgpuconfig and the value of clockspeeds in gpusettings.

If the clocks cannot be changed, then the driver is handling them dynamically.

GPU Settings With AMD GPUs
GPU settings for AMD Radeon GPUs are accessed via cmsh in the same way as NVIDIA GPU settings.
The AMD GPU setting parameters do differ from the NVIDIA ones.

The AMD GPUs supported are Radeon cards. A list of cards and operating systems com-
patible with the Linux driver used is at https://support.amd.com/en-us/kb-articles/Pages/

Radeon-Software-for-Linux-Release-Notes.aspx

AMD GPU driver installation is described in section 7.4 of the Installation Manual.
The Radeon Instinct MI25 shows the following settings in Ubuntu 16_06 running a Linux 4.4.0-72-

generic kernel:

Example

[basecm11->device[node001]->gpusettings]% list

Type GPU range Info

---- --------- ------------------

AMD 0 PowerPlay: manual

[basecm11->device[node001]->gpusettings]% use amd:0

[basecm11->device[node001]->gpusettings[amd:0]]% show

Parameter Value

-------------------------------- -----------------------------

Activity threshold 1

Fan speed 255

GPU clock level 5

GPU range 0

Hysteresis down 0

Hysteresis up 0

Info PowerPlay: manual

Memory clock level 3

Minimum GPU clock 0

Minimum memory clock 0

Overdrive percentage 1

PowerPlay mode manual

Revision

Type AMD

The possible values here are:

• activitythreshold: Percent GPU usage at a clock level that is required before clock levels change.
From 0 to 100.

• fanspeed: Maximum fan speed. From 0 to 255

• gpuclocklevel: GPU clock level setting. From 0 to 7.

• gpurange: The slots used.

• hysteresisdown: Delay in milliseconds before a clock level decrease is carried out.

https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx
https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx

180 Configuring The Cluster

• hysteresisup: Delay in milliseconds before a clock level increase is carried out.

• info: A compact informative line about the GPU status.

• memoryclocklevel: Memory clock speed setting. From 0-3. Other cards can show other values.

• minimumgpuclock: Minimum clock frequency for GPU, in MHz. The kernel only allows certain
values. Supported values can be seen using the status command.

• minimummemoryclock: Minimum clock frequency for the memory, in MHz. The kernel only allows
certain values. Supported values can be seen using the status command.

• overdrivepercentage: Percent overclocking. From 0 to 20%

• powerplaymode: Decides how the performance level power setting should be implemented.

– high: keep performance high, regardless of GPU workload

– low: keep performance low, regardless of GPU workload

– auto: Switch clock rates according to GPU workload

– manual: Use the memory clock level and GPU clock values.

The status command displays supported clock frequencies (some values ellipsized):

Example

[basecm11->device[node001]->gpusettings[amd:0]]% status

Index Name Property Value Supported

----- --------------------- ------------ ------------ -------------------------------------

0 Radeon Instinct MI25 Clock 1399Mhz 852Mhz, 991Mhz, ..., 1440Mhz, 1515Mhz

0 Radeon Instinct MI25 Memory 945Mhz 167Mhz, 500Mhz, 800Mhz, 945Mhz

GPU Settings In Base View
In Base View, GPU settings can be accessed within the settings options for a category or a device. This
brings up a GPU settings list.

GPU settings list in Base View: A GPU Settings list pane can be opened up in Base View for a
regular node, for example node001, with the navigation path:
Devices > Nodes[node001] > Edit > Settings > JUMP TO > GPU Settings

Similarly, a GPU Settings list pane can be opened up in Base View for nodes in a category, for
example gpunodes, with the navigation path:
Grouping > Categories[gpunodes] > Edit > Settings > JUMP TO > GPU Settings

Within the GPU Settings list pane:

• a new GPU settings item can be added with the ADD button, and then clicking on either the
AMDGPUSettings or the NVIDIAGPUSettings item in the popup. This opens an AMDGPU Settings

pane or an NVIDIA GPU Settings pane, where GPU configuration can be carried out and saved
(figure 3.30).

3.16 Configuring GPU Settings 181

Figure 3.30: GPU settings window for a node

• an existing GPU settings item can be edited with the Edit menu option, or by double-clicking
on the item itself. This also opens up the GPU Settings pane where GPU configuration can be
managed.

GPU Configuration For HPC Workload Managers
Slurm GPU configuration via direct slurm.conf changes: To configure NVIDIA GPUs for Slurm,
changes are made in slurm.conf when cm-wlm-setup configures GPUs for Slurm (section 7.3).

Changes made are kept in the AUTOGENERATED section and can be worked out by checking the dif-
ference between the slurm.conf.template file and the actual slurm.conf file. Changes made include
defining the GresTypes gpu and mps, and setting GPU plugins that allow Slurm generic resources to
work.

The configured gres options can be seen by running sbatch --gres=help:

Example

[fred@basecm11 ~]$ sbatch --gres=help

Valid gres options are:

gpu[[:type]:count]

mps[[:type]:count]

This means that a GPU can be requested in a job script with the Slurm gres option:

182 Configuring The Cluster

#SBATCH --gres=gpu:1

Similarly, MPS resources (https://slurm.schedmd.com/gres.html#MPS_Management) can be requested
with:

#SBATCH --gres=mps:100

If adding new parameters manually, care must be taken to avoid duplication of parameters already
in the file, because slurmd is unlikely to work properly with duplicated parameters.

The Slurm client role can be configured at configuration overlay, category, or node level. If configur-
ing the Slurm client role for GPU gres resources manually, then each GPU can be configured within the
role:

Example

[basecm11->configurationoverlay]% list

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- ----------------

slurm-accounting 500 yes slurmaccounting

slurm-client 500 no default slurmclient

slurm-server 500 yes slurmserver

slurm-submit 500 no default slurmsubmit

wlm-headnode-submit 600 yes slurmsubmit

[basecm11->configurationoverlay]% use slurm-client

[basecm11->configurationoverlay[slurm-client]]% roles

[basecm11->configurationoverlay[slurm-client]->roles]% use slurmclient

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% genericresources

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]->genericresources]%

[basecm11->...->roles[slurmclient]->genericresources]% add gpu0

[basecm11->...->roles*[slurmclient*]->genericresources*[gpu0*]]% set name gpu

[basecm11->...->roles*[slurmclient*]->genericresources*[gpu0*]]% set file /dev/nvidia0

[basecm11->...->roles*[slurmclient*]->genericresources*[gpu0*]]% commit

[basecm11->...->roles[slurmclient]->genericresources[gpu0]]%

(Repeat similar settings for the other GPUs, gpu1...gpu7)

[basecm11->...->roles[slurmclient]->genericresources]% list

Alias (key) Name Type Count File

----------- -------- -------- -------- ----------------

gpu0 gpu /dev/nvidia0

gpu1 gpu /dev/nvidia1

gpu2 gpu /dev/nvidia2

gpu3 gpu /dev/nvidia3

gpu4 gpu /dev/nvidia4

gpu5 gpu /dev/nvidia5

gpu6 gpu /dev/nvidia6

gpu7 gpu /dev/nvidia7

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]->genericresources]%

By default, Slurm just allows a single job to be executed per node. To change this behavior, it is
necessary to allow oversubscription. For example, to allow 8 jobs per node:

Example

[basecm11->wlm[slurm]]% jobqueue

[basecm11->wlm[slurm]->jobqueue]% use defq

[basecm11->wlm[slurm]->jobqueue[defq]]% set oversubscribe yes:8

[basecm11->wlm[slurm]->jobqueue*[defq*]]% commit

[basecm11->wlm[slurm]->jobqueue[defq]]%

https://slurm.schedmd.com/gres.html#MPS_Management

3.16 Configuring GPU Settings 183

Slurm GPU configuration via auto-detection: Instead of carrying out Slurm configuration by modify-
ing slurm.conf by hand, it may be configured via auto-detection. More details on this are to be found
starting at page 386.

PBS: NVIDIA Base Command Manager version 9.0 onward supports GPU configuration in PBS via
the cm-wlm-setup tool after installation (section 7.3.2).

LSF: Within LSF cluster configuration, GPU devices can be autodetected by setting the gpuautoconfig
parameter to yes. In cmsh this can be carried out with:

Example

[basecm11->wlm[lsf]]% set gpuautoconfig yes

[basecm11->wlm*[lsf*]]%

The parameter can also be set during LSF configuration via cm-wlm-setup (figure 3.31):

Figure 3.31: GPU settings screen for LSF in cm-wlm-setup

GPU resource enforcement can be configured for LSF as follows:

Example

[basecm11->wlm[lsf]->cgroups]% append resourceenforce gpu

[basecm11->wlm*[lsf*]->cgroups*]% commit

[basecm11->wlm[lsf]->cgroups]%

3.16.3 MIG Configuration
MIG configuration can be carried out for the cluster using the BCM MIG management as described in
this section.

An alternative for MIG configuration is to not use the BCM MIG management tool (cmsh), and to
instead use other MIG management tools, such as the DGX native nvidia-migmanager.service, or the
GPU operator-provided nvidia-mig-manager. If non-BCM MIG management tools are used, then BCM
leaves the MIG configuration alone. Using multiple MIG management tools simultaneously to configure
MIG should not be done.

What Is MIG?
An Ampere NVIDIA GPU is a GPU based on the GA100 microarchitecture. It has compute capability 8.0,
which means it can be configured into multiple logical GPU instances if it uses CUDA 11 and NVIDIA
driver 450.80.02 or later.

This configuration of multiple logical GPU instances is called Multi-Instance GPU (MIG). The logical
GPU instances are MIG devices, that are enabled by setting up the physical GPU to switch to MIG mode.

184 Configuring The Cluster

As a sanity check to see if MIG is supported: If the hardware and drivers are in place, then running
the nvidia-smi command on the node with the physical GPU should display its MIG capability:

root@basecm11:~# ssh node001 "nvidia-smi" | grep MIG

| | | MIG M. |

| MIG devices: |

| GPU GI CI MIG | Memory-Usage | Vol| Shared |

GPU utilization information changes on enabling MIG: Once enabled, the full physical GPU is no
longer available as a device, and GPU utilization metrics become unavailable by default.

GPU profiling metrics (section G.1.7) for the physical GPU can however still be enabled. For example,
it can be carried out with cmsh as follows, for a GPU on node001:

Example

basecm11->device[node001]]% gpuprofiling show

Hostname GPU Major ID Minor ID Field ID Metric Watched

----------- -------- ------------ ------------ ------------ ------------------------------ ----------

node001 0 0 1 1002 gpu_profiling_sm_active no

node001 0 0 1 1003 gpu_profiling_sm_occupancy no

...

basecm11->device[node001]]% gpuprofiling watch 1003

Hostname GPU Major ID Minor ID Field ID Metric Watched

----------- -------- ------------ ------------ ------------ ------------------------------ ----------

...

node001 0 0 1 1003 gpu_profiling_sm_occupancy yes

...

[basecm11->device[node001]]% metrics | grep gpu_profiling

Metric gpu_profiling_sm_occupancy gpu0 GPU GPUSampler

Enabling physical GPU profiling after MIG enablement should be done with caution, because:

• it may affect the performance

• newer drivers may support MIG profiling, which may be confusing

Overview Of MIG Concepts And Terminology
The logical GPU instances are composed of slices of GPU resources. Slices are the smallest fraction
possible of the resource that can be allocated in a logical GPU instance. Thus:

• memory slice: this is the smallest fraction of the memory of the physical GPU that can be allocated
to the GPU instance. For the Ampere architecture this is 1/8th of the total physical GPU memory.

• SM slice: this is the smallest fraction of the streaming multiprocessors (SMs) on the GPU that can
be allocated as a logical SM. An SM is composed of multiple cores (streaming processors). For the
Ampere architecture an SM slice is 1/7th of the total physical GPU SMs.

• GPU slice: this is the smallest fraction of the physical GPU that has a single GPU memory slice
and a single GPU SM slice. A maximum of 7 GPU slices can be specified from the original physical
GPU.

The preceding fractional slices can be combined in various mixes to compose a logical GPU instance:

• GPU instance: a combination of GPU slices and GPU engines. GPU engines are hardware compo-
nents that execute other work on the GPU, and can be encoders/decoders (NVENCs/NVDECs),
shortcut connectors (CE (copy engine) for DMA), etc.

3.16 Configuring GPU Settings 185

• compute instance: a part of a GPU instance. It consists of a subset of the parent GPU instance’s
SM slices and other GPU engines (DMAs, NVENCs ...). The compute instances can share memory
and GPU engines with other compute instances within their GPU instance.

Further details on the terminology and how slices can be allocated to GPU instances are given
in the NVIDIA documentation at https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

#concepts.
A use case for creating several GPU instances from a full physical GPU is when allocation of the full

physical GPU is wasteful.
For example, if a full physical GPU is allocated to a job, but the job only uses a fraction of the full

set of GPU cores, then the allocation is wasteful, because no other job can then be processed on the
remaining idle cores. Instead, if the physical GPU is split into several instances and the job allocated to
an instance with a closer match in resources, then it means that other GPU instances are still available
for processing other jobs.

When configuring GPU instances for the cluster, the administrator typically allocates all available
slices to all the GPU instances that are being configured. Leaving a slice unallocated means that that
slice cannot be available to jobs, and it means that the physical resources of that slice are lying idle. For
example, if some of the 7 SM slices from the physical GPU are not used, then they are wasted as their
processors are never available to jobs, and so that slice stays idle.

Cluster management of GPU instances is described in the following sections.

MIG Status Of Physical GPUs
The MIG status on a GPU can be viewed with the mig status command. For example, the following
shows 8 physical GPUs on node001 that have not yet become MIG enabled:

Example

[basecm11->device[node001]]% mig status

Node GPU Active Pending

---------------- -------- -------------------------------- --------------------------------

node001 0 no no

node001 1 no no

node001 2 no no

node001 3 no no

node001 4 no no

node001 5 no no

node001 6 no no

node001 7 no no

MIG enable And disable Options To Set Up Pending States For The Physical GPUs
If the enable or disable options are run, then by default all the physical GPUs are set to a pending state
for enabled (yes) and disabled (no) respectively:

Example

[basecm11->device[node001]]% mig enable

Node GPU Active Pending

---------------- -------- -------------------------------- --------------------------------

node001 0 no yes

node001 1 no yes

node001 2 no yes

node001 3 no yes

node001 4 no yes

node001 5 no yes

node001 6 no yes

node001 7 no yes

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#concepts
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#concepts

186 Configuring The Cluster

Individual physical GPUs can also be set to a pending state of enabled or disabled, following the
node list syntax (section 2.5.5):

[basecm11->device[node001]]% mig disable 3,5-7

Node GPU Active Pending

---------------- -------- -------------------------------- --------------------------------

node001 0 no yes

node001 1 no yes

node001 2 no yes

node001 3 no no

node001 4 no yes

node001 5 no no

node001 6 no no

node001 7 no no

Rebooting The MIG Instances To Activate/Deactivate Instances According To Pending State Settings
The pending states only become active after the node is rebooted for A100 GPUs:

Example

[basecm11->device[node001]]% reboot

Reboot in progress for: node001

...

node001 [UP]

[basecm11->device[node001]]% mig status

Node GPU Active Pending

---------------- -------- -------------------------------- --------------------------------

node001 0 yes yes

node001 1 yes yes

node001 2 yes yes

node001 3 no no

node001 4 yes yes

node001 5 no no

node001 6 no no

node001 7 no no

The effect of enable and disable persists after reboots, until the pending value changes once more.
For H100 GPUs, the changes do not require a reboot.

The MIG Profiles
Listing MIG Profiles: The full list of the existing available MIG profiles for each physical GPU is
displayed with the mig profiles command for the node. If there are 7 physical GPUs at the node, then
the listing might look something like:

Example

[basecm11->device[node001]]% mig profiles

Node GPU ID Name Instances Memory

---------------- -------- -------- ---------- --------- --------

node001 0 1 1g.5gb 7 4.7GiB

node001 0 1 1g.5gb+me 1 4.7GiB

node001 0 2 2g.10gb 3 9.7GiB

node001 0 3 3g.20gb 1 19.6GiB

node001 0 4 4g.20gb 1 19.6GiB

node001 0 7 7g.40gb 1 39GiB

...

3.16 Configuring GPU Settings 187

node001 7 2 2g.10gb 3 9.7GiB

node001 7 3 3g.20gb 1 19.6GiB

node001 7 4 4g.20gb 1 19.6GiB

node001 7 7 7g.40gb 1 39GiB

A list for physical GPU 1 can be displayed with:

Example

[basecm11->device[node001]]% mig profiles 1

Node GPU ID Name Instances Memory

---------------- -------- -------- ---------- --------- --------

node001 1 1 1g.5gb 7 4.7GiB

node001 1 1 1g.5gb+me 1 4.7GiB

node001 1 2 2g.10gb 3 9.7GiB

node001 1 3 3g.20gb 1 19.6GiB

node001 1 4 4g.20gb 1 19.6GiB

node001 1 7 7g.40gb 1 39GiB

MIG Profiles Naming Convention: The naming format for the profile takes the form

<number of GPU slices in the physical GPU>g.<memory for slice in GB>gb

The +me suffix implies media extensions being active. The number of GPU instances, the number of
GPU slices used, and the memory used by the instance can thus be worked out from the name.

For example:

• 1g.5gb implies that the size of the GPU slice used for the instances is 1. 4.7GiB of memory is used
by each of the 7 GPU instances,

• 2g.10gb implies that the size of the GPU slice used for the instances is 2. 9.7GiB of memory is used
by each of the 3 GPU instances.

Creating GPU instances, by setting the MIG profile for a GPU: The MIG profile is an attribute that
can be set within the GPU settings for its physical GPU. This can be done after having set up a CMDae-
mon entity for a physical GPU 0 (section 3.16.2):

Example

[basecm11->device[node001]]% gpusettings

[basecm11->device*[node001]->gpusettings]% list

Type GPU range Info

------ --------- --------

Nvidia 0 default

[basecm11->device[node001]->gpusettings]% use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% show

Parameter Value

-------------------------------- --

...

MIG profiles

• A simple existing set of profiles with 7 GPU instances with 1 GPU slice each, and 5 GB of memory
for each slice can be specified with:

Example

188 Configuring The Cluster

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 1g.5gb; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% show

Parameter Value

-------------------------------- --

...

MIG profiles 1g.5gb

Setting the profiles, and carrying out the commit configures the GPU instances, but does not yet
apply them:

Example

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig show

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

Applying the profile deploys the configuration, and shows the configuration:

Example

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 13 - 1g.5gb 19 6 1

node001 0 13 0 1g.5gb 0 0 1

In the preceding, 1 GPU instance has been deployed, with 1 compute instance slice using 5GB. The
instance with the - represents the hosting GPU instance, while the subsequent row represents the
compute instance.

• Setting a profile with mig apply --profile is an alternative to setting it within gpusettings.
However, only a profile set within gpusettings is persistent. The profile set with the --profile

option is lost if its node reboots. Multiple profiles can be set using comma-separation (instead of
using space-separation). Using multiple --profile options is also possible.

Example

[basecm11->device[node001]]% mig apply --profile 1g.5gb,2g.10gb

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 2g.10gb 1 0 2

node001 0 13 - 1g.5gb 19 6 1

node001 0 13 0 1g.5gb 0 0 1

[basecm11->device[node001]]% mig apply --profile 1g.5gb --profile 2g.10gb

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 2g.10gb 1 0 2

node001 0 13 - 1g.5gb 19 6 1

node001 0 13 0 1g.5gb 0 0 1

3.16 Configuring GPU Settings 189

• Multiple GPU instances can be specified, if the GPU allows it, using a <number>* prefix syntax.
So, to deploy 7 GPU instances, each hosting 1 compute instance with 5gb slices, the specification
can be:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 7*1g.5gb; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

--------------- -------- -------- -------- -------- -------- -------- --------

node001 0 7 - 1g.5gb 19 0 1

node001 0 7 0 1g.5gb 0 0 1

node001 0 8 - 1g.5gb 19 1 1

node001 0 8 0 1g.5gb 0 0 1

node001 0 9 - 1g.5gb 19 2 1

node001 0 9 0 1g.5gb 0 0 1

node001 0 10 0 1g.5gb 19 3 1

node001 0 10 0 1g.5gb 0 0 1

node001 0 11 - 1g.5gb 19 4 1

node001 0 11 0 1g.5gb 0 0 1

node001 0 12 - 1g.5gb 19 5 1

node001 0 12 0 1g.5gb 0 0 1

node001 0 13 - 1g.5gb 19 6 1

node001 0 13 0 1g.5gb 0 0 1

• GPU slices can be implied by default by the profile, and subsets of these slices can be specified
explicitly.

To deploy 1 GPU instance, with 7 GPU slices of compute instance resources, the specification can
be:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 7g.40gb; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 0 - 7g.40gb 0 0 8

node001 0 0 0 7g.40gb 4 0 7

If a profile with a more than 1 GPU slice is chosen, then GPU slice subsets can be set up via the
following syntax:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 2g.10gb; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 2g.10gb 1 0 2

190 Configuring The Cluster

• GPU slices use a colon syntax to explicitly specify subsets of GPU slices.

The configuration specification 2g.10gb can also be specified as 2g.10gb:1, where that :1 indicates
the number of GPU slices for the compute instance, counting from zero. That means the compute
instance has 2 GPU slices. The resulting configuration is exactly the same as 2g.10g.

If the specification 2g.10gb:0 is used instead, then the compute instance ends up looking like:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 2g.10gb:0; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- ----------- -------- -------- --------

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 1c.2g.10gb 0 0 1

Here the 1c indicates 1 GPU slice (here it is counting from 1).

Adding another slice to a separate compute instance within the same GPU instance can be speci-
fied with:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 2g.10gb:0:0; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- ----------- -------- -------- --------

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 1c.2g.10gb 0 0 1

node001 0 5 1 1c.2g.10gb 0 1 1

In the preceding set migprofiles command, the specification

2g.10gb:0:0

can alternatively be expanded out and written in the form:

2g.10gb:1c.2g.10gb:1c.2g.10gb

for more clarity, at the expense of more typing.

For a general profile that allows N GPU slices for an instance (with N ≤ 7), the mapping for the
colon syntax takes the form:

compact colon form expanded form

:0 1c.<profile>

:1 2c.<profile>

... ...

:N-1 Nc.<profile> or
<profile>

3.16 Configuring GPU Settings 191

In practice, there are hardware-based restrictions for what is permitted to be allocated. So for
example on the NVIDIA A100-PCIE-40GB:

7g.40gb:3 is allowed but

7g.40gb:4 is not.

Details on supported profiles for hardware can be found in the NVIDIA documentation. For ex-
ample, for the A30 profiles at:

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a30-profiles

and for the A100 profiles at:

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a100-profiles.

Increasing the number of GPU instances can also still be done using the earlier <number>* prefix
syntax together with the colon syntax, if the GPU allows it:

Example

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 3*2g.10gb:0:0; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device[node001]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- ----------- -------- -------- --------

node001 0 3 - 2g.10gb 14 0 2

node001 0 3 0 1c.2g.10gb 0 0 1

node001 0 3 1 1c.2g.10gb 0 1 1

node001 0 4 - 2g.10gb 14 2 2

node001 0 4 0 1c.2g.10gb 0 0 1

node001 0 4 1 1c.2g.10gb 0 1 1

node001 0 5 - 2g.10gb 14 4 2

node001 0 5 0 1c.2g.10gb 0 0 1

node001 0 5 1 1c.2g.10gb 0 1 1

• A heterogeneous set of existing profiles for GPU instances can also be defined for the GPU with
MIG profiles.

For example, 2 instances with the MIG profile 1g.5gb, and 1 instance with the MIG profile 2g.10gb
can be specified with:

[basecm11->device[node001]]% gpusettings; use nvidia:0

[basecm11->device[node001]->gpusettings[nvidia:0]]% set migprofiles 2*1g.5gb 2g.10gb; commit

[basecm11->device[node001]->gpusettings[nvidia:0]]% show

Parameter Value

-------------------------------- --

...

MIG profiles 2*1g.5gb,2g.10gb

[basecm11->device[node001]->gpusettings[nvidia:0]]% ..;..

[basecm11->device*[node001*]]% mig apply

Node GPU MIG Instance Name Profile Start Size

---------------- -------- -------- -------- -------- -------- -------- --------

node001 0 3 - 2g.10gb 14 0 2

node001 0 3 0 2g.10gb 1 0 2

node001 0 11 - 1g.5gb 19 4 1

node001 0 11 0 1g.5gb 0 0 1

node001 0 13 - 1g.5gb 19 6 1

node001 0 13 0 1g.5gb 0 0 1

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a30-profiles
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a100-profiles

192 Configuring The Cluster

• heterogeneous sets are useful when trying to use up all the slices available, to make the maxi-
mum resources available. So, while an administrator can carry out the preceding specification:

2*1g.5gb 2g.10gb

this is not a good allocation of resources since it only makes 4/7 of the GPU slices available, and
4/8 of the memory slices available. An administrator would more sensibly specify something like,
for example:

5*1g.5gb,2g.10gb

which uses up the full 7 GPU slices and 35GB (6/8 slices) of memory available from the physical
GPU. This makes full use of the SM resources derived from the physical GPU, so that these SM
resources are fully available to workloads.

• Overallocating slices for MIG configuration is not possible. If there is an attempt to overallocate,
then the slices that are allocated too late are simply not allocated. This can lead to unexpected
results for the unwary cluster administrator. For example:

– 5*1g.5gb,2g.10gb allocates the 5 slices of the 1g instance and the 2 slices of the 2g instance.
But

– 6*1g.5gb,2g.10gb allocates the 6 slices of the 1g instance and none of the 2g instance.

– 7*1g.5gb,2g.10gb allocates the 7 slices of the 1g instance and none of the 2g instance.

– 70*1g.5gb,2g.10gb allocates 7 slices of the 1g instance and none of the 2g instance.

3.17 Configuring Sampling From A Prometheus Exporter
CMDaemon can be configured to sample a Prometheus exporter, for example from the NVIDIA Unified
Fabric Manager (UFM) platform. A CMDaemon front end such as cmsh can have a data producer, for
example UFM, configured within the monitoring setup mode (section 10.5.4) to allow sampling of the
Prometheus exporter:

Example

[root@basecm11]# cmsh

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% add prometheus UFM #create a data producer of type Prometheus

[basecm11->monitoring->setup*[UFM*]]% set urls http://10.180.217.170:9001/metrics #end point

[basecm11->monitoring->setup*[UFM*]]% set -e NoPostAllowed yes #HTTP GET only, use for older exporters

[basecm11->monitoring->setup*[UFM*]]% nodeexecutionfilters

[basecm11->monitoring->setup*[UFM*]->nodeexecutionfilters]% active #run on active head node only

Added active resource filter

[basecm11->monitoring->setup*[UFM*]->nodeexecutionfilters]% commit

In the example, the URL needs to be set to the Prometheus export server endpoint. The value of
NoPostAllowed only needs to be set to yes for some older Prometheus versions that do not work with
HTTP POST. The data producer is set to run on only the active head node with the nodeexecutionfilter
setting (page 582).

The preceding example configures CMDaemon to sample from a Prometheus exporter. The other
way around, that is to have CMDaemon be the exporter of Prometheus data, can be achieved via the
EnablePrometheusExporterService directive (page 846).

3.18 Configuring Custom Scripts
Some scripts are used for custom purposes. These are used as replacements for certain default scripts,
for example, in the case of non-standard hardware where the default script does not do what is expected.
The custom scripts that can be set, along with their associated arguments are:

3.18 Configuring Custom Scripts 193

• custompowerscript and custompowerscriptargument (section 4.1.4)

• custompingscript and custompingscriptargument (section 3.18.2)

• customremoteconsolescript and customremoteconsolescriptargument (section 3.18.3)

In addition to the preceding custom* scripts, system information scripts can be set that provide extra
information to the sysinfo command in BCM (section 3.18.4).

The environment variables of CMDaemon (section 3.3.1 of the Developer Manual) can be used in the
scripts. Successful scripts, as is the norm, return 0 on exit.

3.18.1 custompowerscript

The use of custom power scripts is described in section 4.1.4.

3.18.2 custompingscript

The following example script:

Example

#!/bin/bash

/bin/ping -c1 $CMD_IP

can be defined and set for the cases where the default built-in ping script, cannot be used.
By default, the node device states are detected by the built-in ping script (section 5.5) using ICMP

ping. This results in the statuses that can be seen on running the list command of cmsh in device mode.
An example output, formatted for convenience, is:

Example

[root@basecm11]# cmsh -c "device; format hostname:15, status:15; list"

hostname (key) status

--------------- --------------

basecm11 [UP]

node001 [UP]

node002 [UP]

If some device is added to the cluster that blocks such pings, then the built-in ping can be replaced
by the custom ping of the example, which relies on standard ICMP ping.

However, the replacement custom ping script need not actually use a variety of ping at all. It could
be a script running web commands to query a chassis controller, asking if all its devices are up. The
script simply has to provide an exit status compatible with expected ping behavior. Thus an exit status
of 0 means all the devices are indeed up.

3.18.3 customremoteconsolescript

A custom remote console script can be used to run in the built-in remote console utility. This might be
used, for example, to allow the administrator remote console access through a proprietary KVM switch
client.

For example, a user may want to run a KVM console access script that is on the head node and with
an absolute path on the head node of /root/kvmaccesshack. The script is to run on the console, and
intended to be used for node node001, and takes the argument 1. This can then be set in cmsh as follows:

Example

194 Configuring The Cluster

[root@basecm11]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% get customremoteconsolescript; get customremoteconsolescriptargument

[basecm11->device[node001]]% set customremoteconsolescript /root/kvmaccesshack

[basecm11->device[node001]]% set customremoteconsolescriptargument 1

[basecm11->device[node001]]% rconsole

KVM console access session using the 1 argument option is displayed

In Base View, the corresponding navigation paths to access these script settings are:
Devices > Nodes > Edit > Settings > Custom remote console script

and
Devices > Nodes > Edit > Settings > Custom remote console script argument

while the remote console can be launched via the navigation path:
Devices > Nodes > Edit > Connect > Remote console

3.18.4 sysinfo Custom Scripts
Standard sysinfo

The sysinfo command in BCM is run from device mode in cmsh for a node. By default, sysinfo returns
some basic hardware information for the node.

Overview Of Running Custom Scripts In sysinfo

A cluster administrator may however wish to extract some additional hardware-related information
from the cluster. To do this, custom scripts associated with the sysinfo command can be created by the
cluster administrator. These sysinfo custom scripts run when the sysinfo command is executed via
cmsh, and they pick up the additional information.

Custom script types: The scripts can be of three types, with corresponding directory locations. as in-
dicated by the following table:

Type of script Script directory path on node

local /cm/local/apps/cmd/scripts/sysinfo/local/

director /cm/local/apps/cmd/scripts/sysinfo/director/

head /cm/local/apps/cmd/scripts/sysinfo/head/

Custom script process: When sysinfo runs for a particular node, the scripts that are called have the
following characteristics, and are run as follows:

• Any scripts of the local type are run on the node that sysinfo is executed on. The scripts must
be placed by the cluster administrator on the node itself. The node could be a head node, director
node, a regular node, or a cloud node. The output from the local scripts is picked up.

• Any scripts of the director type are run on the director node. The scripts must be placed by the
cluster administrator on the director node itself. The output from the scripts is picked up.

• Any scripts of the head type are run on the head node. The scripts themselves must be placed by
the cluster administrator on the head node. The output from the scripts is picked up.

3.18 Configuring Custom Scripts 195

Custom script output format: The script outputs are JSON format key value pairs (JSON object liter-
als).

The simplest standard JSON output form supported for sysinfo is:

{

"key":"value"

}

The format if getting output for N key-value pairs is:

{

"key1":"value1",

"key2":"value2",

...

"keyN":"valueN"

}

Nested sysinfo output: The key-value pairs can also be grouped, with the output presented in the
following format for a group:

{

"group":{

"key1":"value1",

"key2":"value2",

...

"keyN":"valueN"

}

}

The key-value pairs can also be structured with multiple groups. In the following example there are
two groups:

Example

{

"group1":{

"key1.1":"value1.1",

"key1.2":"value1.2"

}

"group2":{

"key2.1":"value2.1",

"key2.2":"value2.2",

"key2.3":"value2.3"

}

}

The nested multilayer output format can be useful for grouped. For example, dmidecode can output
key-value pairs that specify starting and ending ranges, which can be grouped according to the various
DMI types that are also available in the output.

Simple sysinfo custom script construction: For example, the following bash script can be run on the
head node:

Example

196 Configuring The Cluster

[root@basecm11 ~]# cat /cm/local/apps/cmd/scripts/sysinfo/head/outputscript.sh

#!/bin/bash

myhostname=$(hostname)

#next line extracts just the UUID value from the dmidecode output for the system for this particular hardware

myuuid=$(dmidecode | grep -A6 "^System Information" | grep UUID | sed -e 's/^\W*UUID: //')

echo '{'

echo '"script path is":"'$0'",'

echo '"CMDaemon running on":"'$CMD_HOSTNAME'",'

echo '"script running on":"'$myhostname'"',

echo '"'$myhostname' UUID":"'$myuuid'"'

echo '}'

If run directly, outside of CMDaemon, then this would display a JSON key-value output similar to
the following:

Example

[root@basecm11 ~]# /cm/local/apps/cmd/scripts/sysinfo/head/outputscript.sh

{

"script path is":"/cm/local/apps/cmd/scripts/sysinfo/head/outputscript.sh",

"CMDaemon running on":"",

"script running on":"basecm11",

"basecm11 UUID":"6733d33a-2933-41ea-aa3c-b218e784c8b9"

}

Custom script placement—overview for placing on a regular node: Placing this head script on a
regular node can be done by copying the script into a local directory on the node image, and rebooting
the regular node so that it picks up the image with the new local type script. After CMDaemon is
updated with the new sysinfo information, then, whenever sysinfo is run, the script is automatically
run by CMDaemon.

Examples Of Running Custom Scripts In sysinfo

The following example session makes the preceding concepts more explicit: the script is copied over
from the head node to the default image of a regular node. It goes into the directory location for custom
sysinfo scripts of the local type. Rebooting a node then installs the new script on the node:

Example

[root@basecm11 ~]# cp -r /cm/local/apps/cmd/scripts/sysinfo/head/outputscript.sh \
/cm/images/default-image/cm/local/apps/cmd/scripts/sysinfo/local/

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% reboot node001

[the reboot of the node has to complete]

To update cmdaemon with the values from the new scripts for the node, the --update option to the
sysinfo command can be run for the node. Running sysinfo for the node then displays the output of
the scripts for the node. The sysinfo output value for Age shows how long it has been since CMDaemon
was updated by the scripts for the node:

Example

[basecm11->device]% sysinfo node001 --update

[basecm11->device]% sysinfo node001

...

3.19 Cluster Configuration Without Execution By CMDaemon 197

Age 11s

CMDaemon running on node001


script running on node001
local scriptnode001 UUID 3b1c7973-07ef-419f-9324-4edf999690d5

script path is /cm/local/apps/cmd/scripts/sysinfo/local/outputscript.sh

CMDaemon running on node001


script running on basecm11
head scriptbasecm11 UUID 6733d33a-2933-41ea-aa3c-b218e784c8b9

script path is /cm/local/apps/cmd/scripts/sysinfo/head/outputscript.sh

In the preceding example, the grouping braces are not part of the actual output. They are just part of
this explanation, and show that the first four lines after the Age line are from the local type script running
on node001. The four lines after that are from the head type script running on head, even though its
corresponding CMDaemon is running on node001.

Considerations Before Running Custom Scripts With sysinfo

Although BCM gives the administrator the freedom to construct all kinds of custom sysinfo scripts,
some caution is urged before implementing the scripts. The following issues should at least be consid-
ered:

• The scripts should be speedy. The scripts run asynchronously, but a script is expected to take less
than 15 seconds to run.

• The data output should be small. JSON objects allow, for example, that megabyte-sized text could
be output by the sysinfo scripts. However, this is often unwise, given the nature of clusters. A
cluster with a 1000 nodes and 1MB blobs would mean that 1GB of memory is being moved around.

3.19 Cluster Configuration Without Execution By CMDaemon
3.19.1 Cluster Configuration: The Bigger Picture
The configurations carried out in this chapter so far are based almost entirely on configuring nodes, via
a CMDaemon front end (cmsh or Base View), using CMDaemon to execute the change. Indeed, much of
this manual is about this too because it is the preferred technique. It is preferred:

• because it is intended by design to be the easiest way to do common cluster tasks,

• and also generally keeps administration overhead minimal in the long run since it is CMDaemon
rather than the system administrator that then takes care of tracking the cluster state.

There are however other cluster configuration techniques besides execution by CMDaemon. To get some
perspective on these, it should be noted that cluster configuration techniques are always fundamentally
about modifying a cluster so that it functions in a different way. The techniques can then for convenience
be separated out into modification techniques that rely on CMDaemon execution and techniques that
do not, as follows:

1. Configuring nodes with execution by CMDaemon: As explained, this is the preferred technique.
The remaining techniques listed here should therefore usually only be considered if the task cannot
be done with Base View or cmsh.

2. Replacing the node image: The image on a node can be replaced by an entirely different one, so
that the node can function in another way. This is covered in section 3.19.2. It can be claimed that
since it is CMDaemon that selects the image, this technique should perhaps be classed as under

198 Configuring The Cluster

item 1. However, since the execution of the change is really carried out by the changed image
without CMDaemon running on the image, and because changing the entire image to implement
a change of functionality is rather extreme, this technique can be given a special mention outside
of CMDaemon execution.

3. Using a FrozenFile directive: Applied to a configuration file, this directive prevents CMDae-
mon from executing changes on that file for nodes. During updates, the frozen configuration may
therefore need to be changed manually. The prevention of CMDaemon acting on that file pre-
vents the standard cluster functionality that would run based on a fully CMDaemon-controlled
cluster configuration. The FrozenFile directive is introduced in section 2.6.5, and covered in the
configuration context in section 3.19.3.

4. Using an initialize or finalize script: This type of script is run during the initrd stage, much
before CMDaemon on the regular node starts up. It is run if the functionality provided by the
script is needed before CMDaemon starts up, or if the functionality that is needed cannot be made
available later on when CMDaemon is started on the regular nodes. CMDaemon does not execute
the functionality of the script itself, but the script is accessed and set on the initrd via a CMDaemon
front end (Appendix E.2), and executed during the initrd stage. It is often convenient to carry out
minor changes to configuration files inside a specific image in this way, as shown by the example
in Appendix E.5. The initialize and finalize scripts are introduced in section 3.19.4.

5. A shared directory: Nodes can be configured to access and execute a particular software stored
on a shared directory of the cluster. CMDaemon does not execute the functionality of the software
itself, but is able to mount and share directories, as covered in section 3.13.

Finally, outside the stricter scope of cluster configuration adjustment, but nonetheless a broader way to
modify how a cluster functions, and therefore mentioned here for more completeness, is:

6. Software management: the installation, maintenance, and removal of software packages. Stan-
dard post-installation software management based on repositories is covered in sections 9.2–9.6.
Third-party software management from outside the repositories, for software that is part of BCM
is covered in Chapter 7 of the Installation Manual.

Third-party software that is not part of BCM can be managed on the head node as on any other
Linux system, and is often placed under /opt or other recommended locations. If required by the
other nodes, then the software should typically be set up by the administrator so that it can be
accessed via a shared filesystem.

3.19.2 Making Nodes Function Differently By Image
Making All Nodes Function Differently By Image
To change the name of the image used for an entire cluster, for example after cloning the image and
modifying it (section 3.19.2), the following methods can be used:

• in Base View, via Cluster > Settings > Cluster name

• or in cmsh from within the base object of partition mode

A system administrator more commonly sets the software image on a per-category or per-node basis
(section 3.19.2).

Making Some Nodes Function Differently By Image
For minor changes, adjustments can often be made to node settings via initialize and finalize scripts so
that nodes or node categories function differently (section 3.19.4).

For major changes on a category of nodes, it is usually more appropriate to have nodes function
differently from each other by simply carrying out image changes per node category with CMDaemon.
Carrying out image changes per node is also possible. As usual, node settings override category settings.

/opt

3.19 Cluster Configuration Without Execution By CMDaemon 199

Modifying images via cloning primitives for a node or category: Setting a changed image for a cate-
gory can be done as follows with cmsh:

1. The image on which the new one will be based is cloned. The cloning operation not only copies
all the settings of the original (apart from the name), but also the data of the image:

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage

[basecm11->softwareimage]% clone default-image imagetwo

[basecm11->softwareimage*[imagetwo*]]% commit

... [notice] basecm11: Started to copy: /cm/images/default-image -> /cm/images/imagetwo

[basecm11->softwareimage*[imagetwo*]]%

... [notice] basecm11: Copied: /cm/images/default-image -> /cm/images/imagetwo

[basecm11->softwareimage[imagetwo]]%

2. After cloning, the settings can be modified in the new object. For example, if the kernel needs to be
changed to suit nodes with different hardware, kernel modules settings are changed (section 5.3.2)
and committed. This creates a new image with a new ramdisk.

Other ways of modifying and committing the image for the nodes are also possible, as discussed
in sections 9.2–9.6.

3. The modified image that is to be used by the differently functioning nodes is placed in a new
category in order to have the nodes be able to choose the image. To create a new category easily, it
can simply be cloned. The image that the category uses is then set:

[basecm11->softwareimage[imagetwo]]% category

[basecm11->category]% clone default categorytwo

[basecm11->category*[categorytwo*]]% set softwareimage imagetwo

[basecm11->category*[categorytwo*]]% commit

[basecm11->category[categorytwo]]%

4. • For just one node, or a few nodes, the node can be set from device mode to the new category
(which has the new image):

[basecm11->category[categorytwo]]% device

[basecm11->device]% use node099

[basecm11->device[node099]]% set category categorytwo

[basecm11->device*[node099*]]% commit; exit

• If there are many nodes, for example node100 sequentially up to node200, they can be set to
that category using a foreach loop like this:

Example

[basecm11->device]% foreach -n node100..node200 (set category categorytwo)

[basecm11->device*]% commit

5. Rebooting restarts the nodes that are assigned to the new category with the new image.

Modifying images by adding files in the cm/conf directory, for a category, node, or MAC address:
The preceding 5-step method is understandable. For just a few file changes it is perhaps overkill and
not very elegant. BCM has a more structured and efficient way to make some nodes function differently
by image if only a few file additions are to be carried out. The specification adds the files in the image
via a target path that is specified in special configuration locations in the image. It can be configured per
node, but also per category and MAC address.

200 Configuring The Cluster

• For a category, the specification takes the form:

/cm/images/<image>/cm/conf/category/<category>/<target>

Thus, if some file on the node is to be placed so that on a running node it is at /path/to/some.file,
and this needs to be configured for an image default-image, and a category default, then it
would be placed at this location on the head node:

Example

/cm/images/default-image/cm/conf/category/default/path/to/some.file

The file on the target node would be placed in the absolute directory /path/to/some.file

Multiple categories can be configured per image. Thus, for example, beside the default category,
an additional gpu category can exist:

Example

/cm/images/default-image/cm/conf/category/gpu/path/to/some.file

Also, multiple files can be specified per category per image. Thus, beside the file some.file, an
additional file some.other.file could be placed:

Example

/cm/images/default-image/cm/conf/category/gpu/path/to/some.file

/cm/images/default-image/cm/conf/category/gpu/path/to/some.other.file

• For a node, the configuration form is:

/cm/images/<image>/cm/conf/node/<node name>/<target>

An example for a node called node001 could then be:

Example

/cm/images/default-image/cm/conf/node/node001/path/to/some.file

• For a MAC address, the configuration form is:

/cm/images/<image>/cm/conf/node/<MAC address>/<target>

An example for a node with MAC address 00:aa:bb:cc:dd:ee could then be:

Example

/cm/images/default-image/cm/conf/node/00-aa-bb-cc-dd-ee/path/to/some.file

The copying of the specified files to the image is done just before the finalize stage of the node-
installer (section 5.4.11) during node provisioning.

A common theme in BCM is that node-level configuration overrides category-level configuration. In
keeping with this behavior, a file configuration at category level could be applied to the many nodes in
a category. And, a file configuration copy at node level (for a node that is in the category) overrides the
category level value for just that particular node.

/path/to/some.file

3.19 Cluster Configuration Without Execution By CMDaemon 201

3.19.3 Making All Nodes Function Differently From Normal Cluster Behavior With
FrozenFile

Configuration changes carried out by Base View or cmsh often generate, restore, or modify configuration
files (Appendix A).

However, sometimes an administrator may need to make a direct change (without using Base View
or cmsh) to a configuration file to set up a special configuration that cannot otherwise be done.

The FrozenFile directive to CMDaemon (Appendix C, page 853) applied to such a configuration file
stops CMDaemon from altering the file. The frozen configuration file is generally applicable to all nodes
and is therefore a possible way of making all nodes function differently from their standard behavior.

Freezing files is however best avoided, if possible, in favor of a CMDaemon-based method of con-
figuring nodes, for the sake of administrative maintainability.

3.19.4 Adding Functionality To Nodes Via An initialize Or finalize Script
CMDaemon can normally be used to allocate different images per node or node category as explained
in section 3.19.2. However, some configuration files do not survive a reboot (Appendix A), sometimes
hardware issues can prevent a consistent end configuration, and sometimes drivers need to be initial-
ized before provisioning of an image can happen. In such cases, an initialize or finalize script
(sections 5.4.5, 5.4.11, and Appendix E.5) can be used to initialize or configure nodes or node categories.

These scripts are also useful because they can be used to implement minor changes across nodes:

Example

Supposing that some nodes with a particular network interface have a problem auto-negotiating
their network speed, and default to 100Mbps instead of the maximum speed of 1000Mbps.
Such nodes can be set to ignore auto-negotiation and be forced to use the 1000Mbps speed
by using the ETHTOOL_OPTS configuration parameter in their network interface configuration file:
/etc/sysconfig/network-scripts/ifcfg-eth0 (or /etc/sysconfig/network/ifcfg-eth0 in SUSE).

The ETHTOOL_OPTS parameter takes the options to the “ethtool -s <device>” command as options.
The value of <device> (for example eth0) is specified by the filename that is used by the configuration file
itself (for example /etc/sysconfig/network-scripts/ifcfg-eth0). The ethtool package is installed
by default with BCM. Running the command:

ethtool -s autoneg off speed 1000 duplex full

turns out after some testing to be enough to reliably get the network card up and running at 1000Mbps
on the problem hardware.

However, since the network configuration file is overwritten by node-installer settings during reboot,
a way to bring persistence to the file setting is needed. One way to ensure persistence is to append
the configuration setting to the file with a finalize script, so that it gets tagged onto the end of the
configuration setting that the node-installer places for the file, just before the network interfaces are
taken down again in preparation for init.

The script may thus look something like this for a Red Hat system:

#!/bin/bash

node010..node014 get forced to 1000 duplex

if [[$CMD_HOSTNAME = node01[0-4]]]

then

echo 'ETHTOOL_OPTS="speed 1000 duplex full"'>>/localdisk/etc/sysconfig/network-scripts/ifcfg-eth0

fi

The method of enforcing an interface space just outlined is actually just for educational illustration,
and is not a recommended method.

202 Configuring The Cluster

In practice, the recommended way to enforce an interface speed is to simply set it in the CMDaemon
database. For example, for the boot interface of node001 it could be via the Base View navigation path:

Devices > Nodes[node001] > Edit > Settings > Interfaces[BOOTIF] > Edit > Speed

3.19.5 Examples Of Configuring Nodes With Or Without CMDaemon
A node or node category can often have its software configured in CMDaemon via Base View or cmsh:

Example

Configuring a software for nodes using Base View or cmsh: If the software under consideration is
CUPS, then a node or node category can manage it from Base View or cmsh as outlined in section 3.14.2.

A counterexample to this is:

Example

Configuring a software for nodes without using Base View or cmsh3, using an image: Software images
can be created with and without CUPS configured. Setting up nodes to load one of these two images via
a node category is an alternative way of letting nodes run CUPS.

Whether node configuration for a particular functionality is done with CMDaemon, or directly with
the software, depends on what an administrator prefers. In the preceding two examples, the first ex-
ample, that is the one with Base View or cmsh setting the CUPS service, is likely to be preferred over
the second example, where an entire separate image must be maintained. A new category must also be
created in the second case.

Generally, sometimes configuring the node via BCM, and not having to manage images is better,
sometimes configuring the software and making various images to be managed out of it is better, and
sometimes only one of these techniques is possible anyway.

Configuring Nodes Using Base View Or cmsh: Category Settings
When configuring nodes using Base View or cmsh, configuring particular nodes from a node category to
overrule the state of the rest of its category (as explained in section 2.1.3) is sensible for a small number
of nodes. For larger numbers it may not be organizationally practical to do this, and another category
can instead be created to handle nodes with the changes conveniently.

The CUPS service in the next two examples is carried out by implementing the changes via Base
View or cmsh acting on CMDaemon.

Example

Setting a few nodes in a category: If only a few nodes in a category are to run CUPS, then it can be done
by enabling CUPs just for those few nodes, thereby overriding (section 2.1.3) the category settings.

Example

Setting many nodes to a category: If there are many nodes that are to be set to run CUPS, then a sepa-
rate, new category can be created (cloning it from the existing one is easiest) and those many nodes are
moved into that category, while the image is kept unchanged. The CUPS service setting is then set at
category level to the appropriate value for the new category.

In contrast to these two examples, the software image method used in section 3.19.2 to implement
a functionality such as CUPS would load up CUPS as configured in an image, and would not handle

3except to link nodes to their appropriate image via the associated category

3.20 Saving A Backup Of Configuration Files With versionconfigfiles 203

it via CMDaemon3. So, in section 3.19.2, software images prepared by the administrator are set for a
node category. Since, by design, images are only selected for a category, a node cannot override the
image used by the category other than by creating a new category, and using it with the new image. The
administrative overhead of this can be inconvenient.

Administrators would therefore normally prefer letting CMDaemon track software functionality
across nodes as in the last two examples, rather than having to deal with tracking software images man-
ually. Indeed, the roles assignment option (section 2.1.5) is just a special pre-configured functionality
toggle that allows CMDaemon to set categories or regular nodes to provide certain functions, typically
by enabling services.

3.20 Saving A Backup Of Configuration Files With versionconfigfiles

If versionconfigfiles is set to the value yes for a node or a category, then if configuration files changed
for that node or category due to CMDaemon, then the old configuration files are saved.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set versionconfigfiles yes; commit

This is useful, for example, if an administrator would like to know what the configuration was just
before it was changed.

If a configuration change takes place, then the old configuration files are automatically sent from the
node where they changed, to the active head node. The configuration files:

• are saved on the active head node under the directory /var/spool/cmd/config_file_versions, un-
der their node name.

• have a modification time that indicates the time of the change.

• are given a suffix in the form of the local unix epoch time.

Example

[root@basecm11 ~]# cd /var/spool/cmd/

[root@basecm11 cmd]# tree -a --charset=C config_file_versions/

config_file_versions/

|-- node001

| |-- cm

| | `-- local

| | `-- modulefiles

| | `-- slurm

| | |-- .modulerc.lua.1970-01-01_01:00:00

| | `-- slurm

| | `-- 21.08.8.1970-01-01_01:00:00

...

[root@basecm11 cmd]# cd config_file_versions/node001/cm/local/modulefiles/slurm/

[root@basecm11 slurm]# ls -al .modulerc.lua.1970-01-01_01:00:00

-rw-r--r-- 1 root root 43 Mar 14 17:22 .modulerc.lua.1970-01-01_01:00:00

[root@basecm11 slurm]#

4
Power Management

Aspects of power management in NVIDIA Base Command Manager include:

• managing the main power supply to nodes through the use of power distribution units, baseboard
management controllers, or CMDaemon

• monitoring power consumption over time

• setting power-saving options in workload managers

• ensuring the passive head node can safely take over from the active head during failover (Chap-
ter 15)

• allowing cluster burn tests to be carried out (Chapter 11 of the Installation Manual)

The ability to control power inside a cluster is therefore important for cluster administration, and
also creates opportunities for power savings. This chapter describes BCM power management features.

In section 4.1 the configuration of the methods used for power operations is described.
Section 4.2 then describes the way the power operations commands themselves are used to allow the

administrator turn power on or off, reset the power, and retrieve the power status. It explains how these
operations can be applied to devices in various ways.

Section 4.3 briefly covers monitoring power.
The integration of power saving with workload management systems is covered in the chapter on

Workload Management (section 7.9).

4.1 Configuring Power Parameters
Several methods exist to control power to devices:

• Power Distribution Unit (PDU) based power control

• IPMI-based power control (for node devices only)

• Custom power control

• HP iLO-based power control (for node devices only)

• Dell DRAC-based power control (for node devices only)

• Cisco UCS CIMC-based power control (for node devices only)

• Redfish-based power control (for node devices only)

206 Power Management

4.1.1 PDU-based Power Control
Introduction To PDU-based Power Control
For PDU-based power control, the power supply of a device is plugged into a port on a PDU. The device
can be a node, but also anything else with a power supply, such as a switch or a blade chassis. The device
can then be turned on or off by changing the state of the PDU port.

Configuring The PDU Itself
To use PDU-based power control, the PDU itself must be added and configured as a device in the cluster,
and must be reachable over the network. PDU configuration was introduced in section 3.9. A summary
of the configuration of PDUs is as follows:

The PDU can be added via cmsh using device mode, and is set as an object with a type of
PowerDeviceUnit and is given a name. The value for Ports is automatically read, and is the number of
power ports available to the other devices in the cluster.

In Base View the corresponding navigation path for a PDU named mypdu is:

Devices > PowerDistribution Unit list > mypdu > Add

Configuring The Devices To Use The PDU
After the PDU itself is configured, then the devices that use it can be configured to use the PDU and its
ports.

For example, for a node node001 that is be powered by the PDU mypdu, in Base View the configura-
tion can be done using the navigation path:

Devices > Nodes > Physical Node list[node001] > Edit > Settings > JUMP TO > Power

Distribution Units > ADD > PDUPort

which opens up the PDU Port window (figure 4.1):

4.1 Configuring Power Parameters 207

Figure 4.1: PDU configuration settings for a node

and allows the PDU and port used by node001 to be set.

For the APC brand of PDUs: the Power control property (page 134) should be set to apc, or the list
of PDU ports is ignored by default. Overriding the default is described in section 4.1.3.

Power Ports: One-to-many And Many-to-one
Nodes may have multiple power feeds for redundancy reasons. Thus, there may be multiple PDU ports
and multiple PDUs defined for a single device. The cluster management takes care of operating all ports
of a device in the correct order when a power operation is done on the device.

For example, if a PDU mypdu has its ports 2 and 4 connected to a blade chassis mychassis, then the
configuration can be specified using cmsh with:

Example

[basecm11->device*[mychassis]]% set powerdistributionunits mypdu:2 mypdu:4; commit

It is also possible for multiple devices to share the same PDU port. This is the case for example when
twin nodes are used (i.e. two nodes sharing a single power supply). In this case, all power operations on
one device apply to all nodes sharing the same PDU port.

Non-manageable PDUs
If the PDUs defined for a node are not manageable, then the node’s baseboard management controllers
(that is, IPMI/iLO and similar) are assumed to be inoperative and are therefore assigned an unknown
state. This means that dumb PDUs, which cannot be managed remotely, are best not assigned to nodes
in BCM. It is suggested that administrators record that a dumb PDU is assigned to a node as follows:

• in Base View the Notes field or the Userdefined1/Userdefined2 fields can be used with the nav-
igation paths:

208 Power Management

Devices[device] > Settings > Partition > Notes

or
Devices[device] > Settings > User Defined > Userdefined1/Userdefined1

• in cmsh the equivalent is accessible on using the device from device mode, and running:

– set notes

– set userdefined1 or

– set userdefined2

Manageable PDUs And Node Power Status
For PDUs that are manageable:

• In cmsh, power-related options can be accessed from device mode, after selecting a device:

Example

[basecm11]% device use node001

[basecm11->device[node001]]% show | grep -i power

Custom power script argument

Ipmi/iLO power reset delay 0

Power control apc

PowerDistributionUnits apc01:6 apc01:7

The power status of a node can be accessed with:

Example

[basecm11->device[node001]]% power status

If the node is up and has one or more PDUs assigned to it, then the power status is one of ON, OFF,
RESET, FAILED, or UNKNOWN:

Power Status Description

ON Power is on

OFF Power is off

RESET Shows during the short time the power is off

during a power reset. The reset is a hard power

off for PDUs, but can be a soft or hard reset for

other power control devices.

FAILED Power status script communication failure.

UNKNOWN Power status script timeout

4.1.2 IPMI-Based Power Control
IPMI-based power control relies on the baseboard management controller (BMC) inside a node.
It is therefore only available for node devices. Blades inside a blade chassis typically use IPMI
for power management. Section 3.7 describes setting up networking and authentication for
IPMI/iLO/DRAC/CIMC/Redfish interfaces.

4.1 Configuring Power Parameters 209

To carry out IPMI-based power control operations, the Power control property (page 134) must
be set to the IPMI interface through which power operations should be relayed. Normally this IPMI
interface is configured to be ipmi0. Any list of configured APC PDU ports displayed in the GUI is
ignored by default when the Power control property is not apc.

Example

Configuring power parameters settings for all the nodes using cmsh, with IPMI interfaces that are called
ipmi0:

[mycluster]% device

[...device]% foreach -t physicalnode (set powercontrol ipmi0; commit)

Example

Configuring power parameters settings for a node using cmsh with APC:

[mycluster]% device use node001

[...device[node001]]% set powerdistributionunits apc01:6 apc01:7 apc01:8

[...device*[node001*]]% get powerdistributionunits

apc01:6 apc01:7 apc01:8

[...device*[node001*]]% removefrom powerdistributionunits apc01:7

[...device*[node001*]]% get powerdistributionunits

apc01:6 apc01:8

[...device*[node001*]]% set powercontrol apc

[...device*[node001*]]% get powercontrol

apc

[...device*[node001*]]% commit

4.1.3 Combining PDU- and IPMI-Based Power Control
By default when nodes are configured for IPMI Based Power Control, any configured PDU ports are
ignored. However, it is sometimes useful to change this behavior.

For example, in the CMDaemon configuration file directives in /cm/local/apps/cmd/etc/cmd.conf

(introduced in section 2.6.2 and listed in Appendix C), the default value of PowerOffPDUOutlet is false.
It can be set to true on the head node, and CMDaemon restarted to activate it.

With PowerOffPDUOutlet set to true it means that CMDaemon, after receiving an IPMI-based power
off instruction for a node, and after powering off that node, also subsequently powers off the PDU port.
Powering off the PDU port shuts down the BMC, which saves some additional power—typically a few
watts per node. When multiple nodes share the same PDU port, the PDU port only powers off when all
nodes served by that particular PDU port are powered off.

When a node has to be started up again the power is restored to the node. It is important that the
node BIOS is configured to automatically power on the node when power is restored.

4.1.4 Custom Power Control
For a device which cannot be controlled through any of the standard existing power control options, it
is possible to set a custom power management script. This is then invoked by the cluster management
daemon on the head node whenever a power operation for the device is done.

Power operations are described further in section 4.2.

Using custompowerscript

To set a custom power management script for a device, the powercontrol attribute is set by the admin-
istrator to custom using either Base View or cmsh, and the value of custompowerscript is specified by
the administrator. The value for custompowerscript is the full path to an executable custom power
management script on the head node(s) of a cluster.

A custom power script is invoked with the following mandatory arguments:

210 Power Management

myscript <operation> <device>

where <device> is the name of the device on which the power operation is done, and <operation>

is one of the following:

ON

OFF

RESET

STATUS

On success a custom power script exits with exit code 0. On failure, the script exits with a non-zero
exit-code.

Using custompowerscriptargument

The mandatory argument values for <operation> and <device> are passed to a custom script for pro-
cessing. For example, in bash the positional variables $1 and $2 are typically used for a custom power
script. A custom power script can also be passed a further argument value by setting the value of
custompowerscriptargument for the node via cmsh or Base View. This further argument value would
then be passed to the positional variable $3 in bash.

An example custom power script is located at /cm/local/examples/cmd/custompower. In it, setting
$3 to a positive integer delays the script via a sleep command by $3 seconds.

An example that is conceivably more useful than a “sleep $3” command is to have a “wakeonlan
$3” command instead. If the custompowerscriptargument value is set to the MAC address of the node,
that means the MAC value is passed on to $3. Using this technique, the power operation ON can then
carry out a Wake On LAN operation on the node from the head node.

Setting the custompowerscriptargument can be done like this for all nodes:

#!/bin/bash

for nodename in $(cmsh -c "device; foreach * (get hostname)")

do

macad=`cmsh -c "device use $nodename; get mac"`

cmsh -c "device use $nodename; set customscriptargument $macad; commit"

done

The preceding material usefully illustrates how custompowerscriptargument can be used to pass on
arbitrary parameters for execution to a custom script.

However, the goal of the task can be achieved in a simpler and quicker way using the environment
variables available in the cluster management daemon environment (section 3.3.1 of the Developer Man-
ual). This is explained next.

Using Environment Variables With custompowerscript

Simplification of the steps needed for custom scripts in CMDaemon is often possible because there are
values in the CMDaemon environment already available to the script. A line such as:

env > /tmp/env

added to the start of a custom script dumps the names and values of the environment variables to
/tmp/env for viewing.

One of the names is $CMD_MAC, and it holds the MAC address string of the node being considered.
So, it is not necessary to retrieve a MAC value for custompowerscriptargument with a bash script

as shown in the previous section, and then pass the argument via $3 such as done in the command
“wakeonlan $3”. Instead, custompowerscript can simply call “wakeonlan $CMD_MAC” directly in the
script when run as a power operation command from within CMDaemon.

/cm/local/examples/cmd/custompower

4.2 Power Operations 211

4.1.5 Hewlett Packard iLO-Based Power Control
iLO Configuration During Installation
If “Hewlett Packard” is chosen as the node manufacturer during installation (section 3.3.11 of the In-
stallation Manual), and the nodes have an iLO management interface, then Hewlett-Packard’s iLO man-
agement package, hponcfg, is installed by default on the nodes and head nodes.

iLO Configuration After Installation
If “Hewlett Packard” has not been specified as the node manufacturer during installation then it can
be configured after installation as follows:

The hponcfg rpm package is normally obtained and upgraded for specific HP hardware from the
HP website. Using an example of hponcfg-3.1.1-0.noarch.rpm as the package downloaded from the
HP website, and to be installed, the installation can then be done on the head node, the software image,
and in the node-installer as follows:

rpm -iv hponcfg-3.1.1-0.noarch.rpm

rpm --root /cm/images/default-image -iv hponcfg-3.1.1-0.noarch.rpm

rpm --root /cm/node-installer -iv hponcfg-3.1.1-0.noarch.rpm

To use iLO on a node, the iLO interface of the node is set up just like the IPMI interfaces as outlined
in section 4.1.2. That is, using “set powercontrol ilo0” instead of “set powercontrol ipmi0”. BCM
treats HP iLO interfaces just like regular IPMI interfaces, except that the interface names are ilo0, ilo1...
instead of ipmi0, ipmi1...

For example, nodes in the default category can be brought under iLO power control as follows:

Example

[mycluster]% device foreach -c default (set powercontrol ilo0)

[mycluster]% device commit

4.1.6 Dell drac-based Power Control
Dell drac configuration is covered on page 123.

4.1.7 Redfish-Based and CIMC-Based Power Control
Section 3.7 describes setting up networking and authentication for Redfish/CIMC, as well as for
IPMI/iLO/DRAC interfaces.

4.2 Power Operations
4.2.1 Power Operations Overview
Main Power Operations
Power operations may be carried out on devices from either Base View or cmsh. There are four main
power operations:

• Power On: power on a device

• Power Off: power off a device

• Power Reset: power off a device and power it on again after a brief delay

• Power Status: check power status of a device

212 Power Management

Scheduling-related Power Operations
There are also scheduling-related power operations, which are currently (December 2018) only accessible
via cmsh. Scheduling-related power operations are power operations associated with managing and
viewing explicitly-scheduled execution.

Scheduled execution of power operations can be carried out explicitly via the --at, --after, -d,
and --parallel-delay options. The scheduling-related power operations to manage and view such
scheduled power operations are:

• power wait: Identifies the devices that have power operations that are in the waiting state, i.e.
waiting to be carried out, and also outputs the number of operations that are waiting to be carried
out.

• power cancel: Cancels an operation in the waiting state. The devices on which they should be
cancelled can be specified.

• power list: Lists the power operations on the device and the states of the operations. Possible
states for operations are:

– waiting: waiting to be executed

– busy: are being executed

– canceled: have been canceled

– done: have been executed

It is possible that power operations without an explicitly-scheduled execution time setting show up very
briefly in the output of power list and power wait. However, the output displayed is almost always
about the explicitly-scheduled power operations.

4.2.2 Power Operations With Base View
In Base View, executing the main power operations can be carried out as follows:

• via the menu dropdown for a node. For example:

– for the head node, via the navigation path Devices > Head Nodes > Power

– for a regular node via the navigation path Devices > Nodes > Power

• via the menu dropdown for a category or group. For example, for the default category, via the
navigation path Grouping > Categories > Power

• via the Actions button. The Actions button is available when specific device has been selected.
For example, for the head node basecm11 the Actions button can be seen via the navigation path
Devices > Head Nodes[basecm11] > checkbox.

Clicking on the Actions button then makes power operation buttons available (figure 4.2).

4.2 Power Operations 213

Figure 4.2: Actions button, accessing the power operations

4.2.3 Power Operations Through cmsh

Power operations on nodes can be carried out from within the device mode of cmsh, via the power

command options.

Powering On
Powering on can be carried out on a list of nodes (page 67). Powering on node001, and nodes from
node018 to node033 (output truncated):

Example

[mycluster]% device power -n node001,node018..node033 on

apc01:1 [ON] node001

apc02:8 [ON] node018

apc02:9 [ON] node019

...

When a power operation is carried out on multiple devices, CMDaemon ensures that a 1 second delay
occurs by default between successive devices. This helps avoid power surges on the infrastructure.

Delay Period Between Nodes
The delay period can be modified from within the device mode of cmsh, by using the -d|--delay option
of the power command. For example, the preceding power command can be run with a shorter, 10ms
delay with:

[mycluster]% device power -n node001,node018..node033 -d 0.01 on

A 0-second delay (-d 0) should not be set for larger number of nodes, unless the power surge that
this would cause has been taken into consideration.

214 Power Management

Powering Up In Batches
Groups of nodes can be powered up “in batches”, according to power surge considerations. For exam-
ple, to power up 3 racks at a time (“in batches of 3”), the -p|--parallel option is used:

Example

[mycluster]% device power on -p 3 rack[01-12]

By default, there is a delay of 20s between batch commands. So, in the preceding example, there is
a 20s pause before the each batch of the next three racks is powered up. For batch operation a delay of
-d 0 is assumed, i.e. the nodes within in the rack are powered up without a built-in delay between the
nodes of the rack.

Thread Use During Powering Up
The default number of threads that are started up to handle powering up of all the nodes is 32. If the
hardware can cope with it, then it is possible to decrease startup time by increasing the default number of
threads used to handle powerup, by editing the PowerThreadPoolSize advanced configuration directive
in CMDaemon (page 852).

Powering Off Nodes
An example of powering off nodes is the following, where all nodes in the default category are powered
off, with a 100ms delay between nodes (some output elided):

Example

[mycluster]% device power off -c default -d 0.1

apc01:1 [OFF] node001

apc01:2 [OFF] node002

...

apc23:8 [OFF] node953

Getting The Power Status
The power status command lists the status for devices:

Example

[mycluster]% device power status -g mygroup

apc01:3 [ON] node003

apc01:4 [OFF] node004

Getting The Power History
The power history command lists the last few power operations on nodes. By default it lists up to the
last 8.

Example

[mycluster]% device power history

Device Time Operation Success

-------- ------------------------ ------------ ------------

node001 Sat Sep 14 03:35:03 2019 shutdown yes

node001 Fri Sep 20 14:28:38 2019 on yes

node002 Sat Sep 14 03:35:03 2019 shutdown yes

node002 Fri Sep 20 14:28:38 2019 on yes

node003 Sat Sep 14 03:35:03 2019 shutdown yes

node003 Fri Sep 20 14:28:38 2019 on yes

node004 Sat Sep 14 03:35:03 2019 shutdown yes

4.2 Power Operations 215

The power Command Help Text
The help text for the power command is:

[basecm11->device]% help power

Name:

power - Manipulate or retrieve power state of devices

Usage:

power [OPTIONS] status

power [OPTIONS] on

power [OPTIONS] off

power [OPTIONS] reset

power [OPTIONS] list

power [OPTIONS] history

power [OPTIONS] cancel

power [OPTIONS] wait <index>

Options:

-n, --nodes <node>

List of nodes, e.g. node001..node015,node020..node028,node030 or

^/some/file/containing/hostnames

-g, --group <group>

Include all nodes that belong to the node group, e.g. testnodes or test01,test03

-c, --category <category>

Include all nodes that belong to the category, e.g. default or default,gpu

-r, --rack <rack>

Include all nodes that are located in the given rack, e.g rack01 or

rack01..rack04

-h, --chassis <chassis>

Include all nodes that are located in the given chassis, e.g chassis01 or

chassis03..chassis05

-e, --overlay <overlay>

Include all nodes that are part of the given overlay, e.g overlay1 or

overlayA,overlayC

-m, --image <image>

Include all nodes that have the given image, e.g default-image or

default-image,gpu-image

-t, --type <type>

Type of devices, e.g node or virtualnode,cloudnode

-i, --intersection

Calculate the intersection of the above selections

-u, --union

Calculate the union of the above selections

-l, --role role

Filter all nodes that have the given role

216 Power Management

-s, --status <status>

Only run command on nodes with specified status, e.g. UP, "CLOSED|DOWN",

"INST.*"

-b, --background

Run in background, output will come as events

-d, --delay <seconds>

Wait <seconds> between executing two sequential power commands. This option is

ignored for the status command

-f, --force

Force power command on devices which have been closed

-w, --overview

Group all power operation results into an overview

-p, --parallel <number>

Number of parallel option-items to be used per batch, default 0 (disabled)

--at <time>

Execute the operation at the provided time

--after <seconds>

Wait <seconds> before executing the operation

--parallel-delay <seconds>

Wait <seconds> between executing the next batch of parallel commands, default

20s

--parallel-dry-run

Only display the times at which operations will be executed, do not perform

any power operations

--retry-count <number>

Number of times to retry operation if it failed the first time (default 0)

--retry-delay <seconds>

Delay between consecutive tries of a failed power operation (default 3s)

--port <pdu>:<port>

Do the power operation directly on a pdu port.

Examples:

power status Display power status for all devices or current device

power on node001 Power on node001

power on -n node00[1-2] Power on node001 and node002

power list List all pending power operations

power history List the last couple of power operations

power wait List all power operation that can be waited for

power wait 1 Wait for a power operation to be completed

power wait all Wait for all power operations to be completed

power wait last Wait for the last given power operation to be completed

power off --after 10m Power off the current node after 10 minutes

4.3 Monitoring Power 217

power off --at 23:55 Power off the current node today just before midnight

power cancel node001 Cancel all pending power operations for node001

power on -p 4 rack[01-80] Power on racks 1 to 80 in batches of 4. With a delay of 20s

between each batch. And a delay of 0s between nodes.

power on --port pdu1:1 Power on port 1 on pdu1

power on --port pdu1:[1-4] Power on port 1 through 4 on pdu1

4.3 Monitoring Power
Monitoring power consumption is important since electrical power is an important component of the
total cost of ownership for a cluster. The monitoring system of BCM collects power-related data from
PDUs in the following metrics:

• PDUBankLoad: Phase load (in amperes) for one (specified) bank in a PDU

• PDULoad: Total phase load (in amperes) for one PDU

Chapter 10 on cluster monitoring has more on metrics and how they can be visualized.

4.4 Switch Configuration To Survive Power Downs
Besides the nodes and the BMC interfaces being configured for power control, it may be necessary to
check that switches can handle power on and off network operations properly. Interfaces typically ne-
gotiate the link speed down to reduce power while still supporting Wake On Lan and other features.
During such renegotiations the switch may lose connectivity to the node or BMC interface. This can hap-
pen if dynamic speed negotiation is disabled on the switch. Dynamic speed negotiation should therefore
be configured to be on on the switch in order to reduce the chance that a node does not provision from
a powered down state.

5
Node Provisioning

This chapter covers node provisioning. Node provisioning is the process of how nodes obtain an image.
Typically, this happens during their stages of progress from power-up to becoming active in a cluster,
but node provisioning can also take place when updating a running node.

Section 5.1 describes the stages leading up to the loading of the kernel onto the node.
Section 5.2 covers configuration and behavior of the provisioning nodes that supply the software

images.
Section 5.3 describes the configuration and loading of the kernel, the ramdisk, and kernel modules.
Section 5.4 elaborates on how the node-installer identifies and places the software image on the node

in a 13-step process.
Section 5.5 explains node states during normal boot, as well node states that indicate boot problems.
Section 5.6 describes how running nodes can be updated, and modifications that can be done to the

update process.
Section 5.7 explains how to add new nodes to a cluster so that node provisioning will work for these

new nodes too. The Base View and cmsh front ends for creating new node objects and properties in
CMDaemon are described.

Section 5.8 describes troubleshooting the node provisioning process.

5.1 Before The Kernel Loads
Immediately after powering up a node, and before it is able to load up the Linux kernel, a node starts
its boot process in several possible ways:

5.1.1 PXE Booting
By default, nodes boot from the network when using BCM. This is called a network boot. On the x86
architectures it is known as a PXE boot (often pronounced as “pixie boot”). It is recommended as a BIOS
setting for nodes. The head node runs a tftpd server that is managed by systemd. The tftpd server
supplies the boot loader from within the default software image (section 2.1.2) offered to nodes.

The boot loader runs on the node and displays a menu (figure 5.1) based on loading a menu mod-
ule within a configuration file. The default configuration files offered to nodes are located under
/tftpboot/pxelinux.cfg/ on the head node. To implement changes in the files, CMDaemon may need
to be restarted, or the updateprovisioners command (page 229) can be run.

The default configuration files give instructions to the menu module of PXElinux. The instruction set
used is documented at http://www.syslinux.org/wiki/index.php/Comboot/menu.c32, and includes
the TIMEOUT, LABEL, MENU LABEL, DEFAULT, and MENU DEFAULT instructions.

The PXE TIMEOUT Instruction
During the display of the PXE boot menu, a selection can be made within a timeout period to boot the
node in a several ways. Among the options are some of the install mode options (section 5.4.4). If no

http://www.syslinux.org/wiki/index.php/Comboot/menu.c32

220 Node Provisioning

Figure 5.1: PXE boot menu options

selection is made by the user within the timeout period, then the AUTO install mode option is chosen by
default.

In the PXE menu configuration files under pxelinux.cfg/, the default timeout of 5 seconds can be
adjusted by changing the value of the “TIMEOUT 50” line. This value is specified in deciseconds.

Example

TIMEOUT 300 # changed timeout from 50 (=5 seconds)

The PXE LABEL And MENU LABEL Instructions
LABEL: The menu configuration files under pxelinux.cfg/ contain several multiline LABEL state-
ments.

Each LABEL statement is associated with a kernel image that can be loaded from the PXE boot menu
along with appropriate kernel options.

Each LABEL statement also has a text immediately following the LABEL tag. Typically the text is a
description, such as linux, main, RESCUE, and so on. If the PXE menu module is not used, then tab com-
pletion prompting displays the list of possible text values at the PXE boot prompt so that the associated
kernel image and options can be chosen by user intervention.

MENU LABEL: By default, the PXE menu module is used, and by default, each LABEL statement also
contains a MENU LABEL instruction. Each MENU LABEL instruction also has a text immediately following
the MENU LABEL tag. Typically the text is a description, such as AUTO, RESCUE and so on (figure 5.1). Using
the PXE menu module means that the list of the MENU LABEL text values is displayed when the PXE boot
menu is displayed, so that the associated kernel image and options can conveniently be selected by user
intervention.

The PXE DEFAULT And MENU DEFAULT Instructions
DEFAULT: If the PXE menu module is not used and if no MENU instructions are used, and if there is
no user intervention, then setting the same text that follows a LABEL tag immediately after the DEFAULT

instruction, results in the associated kernel image and its options being run by default after the timeout.
By default, as already explained, the PXE menu module is used. In particular it uses the setting:

DEFAULT menu.c32 to enable the menu.

MENU DEFAULT: If the PXE menu module is used and if MENU instructions are used, and if there is no
user intervention, then setting a MENU DEFAULT tag as a line within the multiline LABEL statement results
in the kernel image and options associated with that LABEL statement being loaded by default after the
timeout.

5.1 Before The Kernel Loads 221

The CMDaemon PXE Label Setting For Specific Nodes
The MENU DEFAULT value by default applies to every node using the software image that the PXE menu
configuration file under pxelinux.cfg/ is loaded from. To override its application on a per-node basis,
the value of PXE Label can be set for each node.

• Some simple examples of overriding the default MENU DEFAULT value are as follows:

– For example, using cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set pxelabel MEMTEST ; commit

Carrying it out for all nodes in the default category can be done, for example, with:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% foreach -c default (set pxelabel MEMTEST)

[basecm11->device*]% commit

The value of pxelabel can be cleared with:

Example

[root@basecm11 ~]# cmsh -c "device; foreach -c default (clear pxelabel); commit"

– In Base View, the PXE label can be set for a node node001 using the navigation path

Devices > Nodes > Physical Node list[node001] > Settings[Physical Node node001] >
Provisioning[PXE Label]

which leads to a screen as in (figure 5.2):

Figure 5.2: Base View PXE Label option

pxelinux.cfg/

222 Node Provisioning

• A more complicated example of overriding the default MENU DEFAULT value now follows. Al-
though it helps in understanding how PXE labels can be used, it can normally be skipped because
the use case for it is unlikely, and the details are involved.

In this example, pxelabel is set by the administrator via Base View or cmsh to localdrive. This
will then set the node to boot from the first local drive and not the node-installer. This is a setting
that is discouraged since it usually makes node management harder, but it can be used by admin-
istrators who do not wish to answer any prompt during node boot, and also want the node drives
to have no risk of being overwritten by the actions of the node-installer, and also want the system
to be up and running quite fully, even if not necessarily provisioned with the latest image from the
head node.

Here, the overwriting-avoidance method relies on the nodes being associated with a configuration
file under pxelinux.cfg at the time that the localdrive setting is done. However, nodes that are
unidentified, or are identified later on, will have their MENU DEFAULT value still set to a default
pxelabel value set in the files under /tftpboot/pxelinux.cfg/, which is the value linux by
default, and which is associated with a code block in that file with the label LABEL linux. To make
such (as yet) unidentified nodes boot to a localdrive setting instead, requires modifying the files
under /tftpboot/pxelinux.cfg/, so that the MENU DEFAULT line is associated with the code block
of LABEL localdrive rather than the code block of LABEL linux.

There are two methods other than using the preceding pxelabel method to deal with the risk of
overwriting. Unlike the pxelabel method however, these methods can interrupt node booting, so
that the node does not progress to being fully up until the administrator takes further action:

1. If it is acceptable that the administrator manually enters a confirmation as part of the boot
process when a possible overwrite risk is found, then the datanode method (section 5.4.4)
can be used.

2. If it is acceptable that the boot process halts on detecting a possible overwrite risk, then the
XML assertions method (Appendix D.11) is recommended.

Changing The Install Mode Or Default Image Offered To Nodes
The selections offered by the PXE menu are pre-configured by default so that the AUTO menu option by
default loads a kernel, runs the AUTO install mode, and eventually the default-image software image is
provisioned.

Normally administrators should not be changing the install mode, kernel, or kernel options in the
PXE menu configuration files under pxelinux.cfg/.

More on changing the install mode is given in section 5.4.4. More on changing software images,
image package management, kernels, and kernel options, is to be found in Chapter 9.

5.1.2 iPXE Booting From A Disk Drive
Also by default, on disked nodes, iPXE software is placed on the drive during node installation. If the
boot instructions from the BIOS for PXE booting fail, and if the BIOS instructions are that a boot attempt
should then be made from the hard drive, it means that a PXE network boot attempt is done again, as
instructed by the bootable hard drive. This can be a useful fallback option that works around certain
BIOS features or problems.

5.1.3 iPXE Booting Using InfiniBand
On clusters that have InfiniBand hardware, it is normally used for data transfer as a service after the
nodes have fully booted up (section 3.6). InfiniBand can also be used for PXE booting (described here)
and used for node provisioning (section 5.3.3). However these uses are not necessary, even if InfiniBand
is used for data transfer as a service later on, because booting and provisioning is available over Eth-
ernet by default. This section (about boot over InfiniBand) may therefore safely be skipped when first
configuring a cluster.

/tftpboot/pxelinux.cfg/
/tftpboot/pxelinux.cfg/

5.1 Before The Kernel Loads 223

Booting over InfiniBand via PXE is enabled by carrying out these 3 steps:

1. Making BCM aware that nodes are to be booted over InfiniBand. Node booting (section 3.2.3,
page 102) can be set from cmsh or Base View as follows:

(a) From cmsh’s network mode: If the InfiniBand network name is ibnet, then a cmsh command
that will set it is:
cmsh -c "network; set ibnet nodebooting yes; commit"

(b) From Base View: The Settings window for the InfiniBand network, for example ibnet,
can be accessed from the Networking resource via the navigation path Networking >
Networks[ibnet] > Edit > Settings (this is similar to figure 3.5, but for ibnet). The Node

booting option for ibnet is then enabled and saved.

If the InfiniBand network does not yet exist, then it must be created (section 3.2.2). The recom-
mended default values used are described in section 3.6.3. The MAC address of the interface in
CMDaemon defaults to using the GUID of the interface.

The administrator should also be aware that the interface from which a node boots, (conveniently
labeled BOOTIF), must not be an interface that is already configured for that node in CMDaemon.
For example, if BOOTIF is the device ib0, then ib0 must not already be configured in CMDaemon.
Either BOOTIF or the ib0 configuration should be changed so that node installation can succeed. It
is recommended to set BOOTIF to eth0 if the ib0 device should exist.

2. Flashing iPXE onto the InfiniBand HCAs. (The ROM image is obtained from the HCA vendor).

3. Configuring the BIOS of the nodes to boot from the InfiniBand HCA.

All MAC addresses become invalid for identification purposes when changing from booting over
Ethernet to booting over InfiniBand.

Administrators who enable iPXE booting almost always wish to provision over InfiniBand too. Con-
figuring provisioning over InfiniBand is described in section 5.3.3.

5.1.4 Using PXE To Boot From The Drive
Besides PXE booting from only the network, a node can also be configured via PXE to step over to using
its own drive to start booting and get to the stage of loading up its kernel entirely from its drive, just like
a normal standalone machine. This can be done by setting PXE LABEL to localdrive (page 219).

5.1.5 Network Booting Without PXE On The ARMv8 Architecture
ARMv8 nodes use a network boot implementation that differs slightly from the x86 PXE boot implemen-
tation. The actual firmware that starts up on ARMv8 nodes depends on the environment the hardware
is in. Networking is then started by the firmware and the network requests what to boot. The head node
however then sends out a GRUB binary instead of an iPXE binary. The GRUB binary then runs on the
regular node, and fetches the kernel and initrd via TFTP. The node-installer then runs on the nodes and
follows the same steps as in the x86 process.

5.1.6 Network Booting Protocol
The protocol used by network booting is set with the parameter bootloaderprotocol. It is set to HTTP
by default at category level:

Example

[basecm11->category[default-centos7-x86_64]]% get bootloaderprotocol

HTTP

It can be modified at category or node level, to one of the values HTTP, HTTPS, or TFTP:

224 Node Provisioning

Example

[basecm11->device[node001]]% get bootloaderprotocol

HTTP (default-centos7-x86_64)

[basecm11->device[node001]]% set bootloaderprotocol <TAB><TAB>
http https tftp

[basecm11->device[node001]]% set bootloaderprotocol tftp

[basecm11->device*[node001*]]% commit

[basecm11->device[node001]]% get bootloaderprotocol

TFTP

The HTTPS protocol for node booting should almost never be used, because it is rarely implemented
in hardware.

5.1.7 The Boot Role
The action of providing a boot image to a node via DHCP and TFTP is known as providing node booting.
Node provisioning (section 5.2), on the other hand, is about provisioning the node with the rest of the
node image.

Roles in general are introduced in section 2.1.5. The boot role is one such role that can be assigned to
a regular node. The boot role configures a regular node so that it can then provide node booting. The
role cannot be assigned or removed from the head node—the head node always has a boot role.

The boot role is assigned by administrators to regular nodes if there is a need to cope with the
scaling limitations of TFTP and DHCP. TFTP and DHCP services can be overwhelmed when there are
large numbers of nodes making use of them during boot. An example of the scaling limitations may be
observed, for example, when, during the powering up and network booting attempts of a large number
of regular nodes from the head node, it turns out that random different regular nodes are unable to boot,
typically due to network effects.

One implementation of boot role assignment might therefore be, for example, to have a several
groups of racks, with each rack in a subnet, and with one regular node in each subnet that is assigned
the boot role. The boot role regular nodes would thus take the DHCP and TFTP load off the head node
and onto themselves for all the nodes in their associated subnet, so that all nodes of the cluster are then
able to boot without networking issues.

5.2 Provisioning Nodes
The action of transferring the software image to the nodes is called node provisioning, and is done by
special nodes called the provisioning nodes. More complex clusters can have several provisioning nodes
configured by the administrator, thereby distributing network traffic loads when many nodes are boot-
ing.

Creating provisioning nodes is done by assigning a provisioning role to a node or category of nodes.
Similar to how the head node always has a boot role (section 5.1.7), the head node also always has a
provisioning role.

5.2.1 Provisioning Nodes: Configuration Settings
The provisioning role has several parameters that can be set:

5.2 Provisioning Nodes 225

Property Description

allImages The following values decide what images the provisioning node
provides:

• onlocaldisk (the default): all images on the local disk, regard-
less of any other parameters set

• onlocaldiskexceptsharedimages: all images on the local
disk, except for shared images

• onsharedstorage: all images on the shared storage, regardless
of any other parameters set

• no: only images listed in the localimages or sharedimages

parameters, described next

localimages A list of software images on the local disk that the provisioning node
accesses and provides. The list is used only if allImages is “no”.

sharedimages A list of software images on the shared storage that the provisioning
node accesses and provides. The list is used only if allImages is
“no”

Provisioning slots The maximum number of nodes that can be provisioned in parallel
by the provisioning node. The optimum number depends on the in-
frastructure. The default value is 10, which is safe for typical cluster
setups. Setting it lower may sometimes be needed to prevent net-
work and disk overload.

nodegroups A list of node groups (section 2.1.4). If set, the provisioning node
only provisions nodes in the listed groups. Conversely, nodes in one
of these groups can only be provisioned by provisioning nodes that
have that group set. Nodes without a group, or nodes in a group not
listed in nodegroups, can only be provisioned by provisioning nodes
that have no nodegroups values set. By default, the nodegroups list
is unset in the provisioning nodes.
The nodegroups setting is typically used to set up a convenient hier-
archy of provisioning, for example based on grouping by rack and
by groups of racks.

A provisioning node keeps a copy of all the images it provisions on its local drive, in the same
directory as where the head node keeps such images. The local drive of a provisioning node must
therefore have enough space available for these images, which may require changes in its disk layout.

5.2.2 Provisioning Nodes: Role Setup With cmsh

In the following cmsh example the administrator creates a new category called misc. The default cate-
gory default already exists in a newly installed cluster.

The administrator then assigns the role called provisioning, from the list of available assignable
roles, to nodes in the misc category. After the assign command has been typed in, but before entering
the command, tab-completion prompting can be used to list all the possible roles. Assignment creates
an association between the role and the category. When the assign command runs, the shell drops into
the level representing the provisioning role.

If the role called provisioning were already assigned, then the use provisioning command would
drop the shell into the provisioning role, without creating the association between the role and the
category.

226 Node Provisioning

As an aside from the topic of provisioning, from an organizational perspective, other assignable roles
include monitoring, storage, and failover.

Once the shell is within the role level, the role properties can be edited conveniently.
For example, the nodes in the misc category assigned the provisioning role can have

default-image set as the image that they provision to other nodes, and have 20 set as the maximum
number of other nodes to be provisioned simultaneously (some text is elided in the following example):

Example

[basecm11]% category add misc

[basecm11->category*[misc*]]% roles

[basecm11->category*[misc*]->roles]% assign provisioning

[basecm11...*]->roles*[provisioning*]]% set allimages no

[basecm11...*]->roles*[provisioning*]]% set localimages default-image

[basecm11...*]->roles*[provisioning*]]% set provisioningslots 20

[basecm11...*]->roles*[provisioning*]]% show

Parameter Value

--------------------------------- ---------------------------------

All Images no

Include revisions of local images yes

Local images default-image

Name provisioning

Nodegroups

Provisioning associations <0 internally used>

Revision

Shared images

Type ProvisioningRole

Provisioning slots 20

[basecm11->category*[misc*]->roles*[provisioning*]]% commit

[basecm11->category[misc]->roles[provisioning]]%

Assigning a provisioning role can also be done for an individual node instead, if using a category
is deemed overkill:

Example

[basecm11]% device use node001

[basecm11->device[node001]]% roles

[basecm11->device[node001]->roles]% assign provisioning

[basecm11->device*[node001*]->roles*[provisioning*]]%

...

A role change configures a provisioning node, but does not directly update the provisioning node
with images. After carrying out a role change, BCM runs the updateprovisioners command described
in section 5.2.4 automatically, so that regular images are propagated to the provisioners. The propa-
gation can be done by provisioners themselves if they have up-to-date images. CMDaemon tracks the
provisioning nodes role changes, as well as which provisioning nodes have up-to-date images available,
so that provisioning node configurations and regular node images propagate efficiently. Thus, for ex-
ample, image update requests by provisioning nodes take priority over provisioning update requests
from regular nodes.

5.2.3 Provisioning Nodes: Role Setup With Base View
The provisioning configuration outlined in cmsh mode in section 5.2.2 can be done via Base View too, as
follows:

5.2 Provisioning Nodes 227

A misc category can be added via the navigation path
Grouping > Categories > Add > Settings > <name>
Within the Settings tab, the node category should be given a name misc (figure 5.3), and saved:

Figure 5.3: Base View: Adding A misc Category

The Roles window can then be opened from within the JUMP TO section of the settings pane. To
add a role, the Add button in the Roles window is clicked. A scrollable list of available roles is then
displayed, (figure 5.4):

Figure 5.4: Base View: Setting A provisioning Role

After selecting a role, then navigating via the Back buttons to the Settings menu of figure 5.3, the
role can be saved using the Save button there.

228 Node Provisioning

The role has properties which can be edited (figure 5.5):

Figure 5.5: Base View: Configuring A provisioning Role

For example:

• the Provisioning slots setting decides how many images can be supplied simultaneously from
the provisioning node

• the All images setting decides if the role provides all images

• the Local images setting decides what images the provisioning node supplies from local storage

• the Shared images setting decides what images the provisioning node supplies shared storage.

The settings can be saved with the Save button of figure 5.5.
The images offered by the provisioning role should not be confused with the software image setting

of the misc category itself, which is the image the provisioning node requests for itself from the category.

5.2.4 Provisioning Nodes: Housekeeping
The head node does housekeeping tasks for the entire provisioning system. Provisioning is done on
request for all non-head nodes on a first-come, first-serve basis. Since provisioning nodes themselves,
too, need to be provisioned, it means that to cold boot an entire cluster up quickest, the head node
should be booted and be up first, followed by provisioning nodes, and finally by all other non-head
nodes. Following this start-up sequence ensures that all provisioning services are available when the
other non-head nodes are started up.

Some aspects of provisioning housekeeping are discussed next:

Provisioning Node Selection
When a node requests provisioning, the head node allocates the task to a provisioning node. If there
are several provisioning nodes that can provide the image required, then the task is allocated to the
provisioning node with the lowest number of already-started provisioning tasks.

Limiting Provisioning Tasks With MaxNumberOfProvisioningThreads

Besides limiting how much simultaneous provisioning per provisioning node is allowed with
Provisioning Slots (section 5.2.1), the head node also limits how many simultaneous provisioning

5.2 Provisioning Nodes 229

tasks are allowed to run on the entire cluster. This is set using the MaxNumberOfProvisioningThreads

directive in the head node’s CMDaemon configuration file, /etc/cmd.conf, as described in Appendix C.

Provisioning Tasks Deferral and Failure
A provisioning request is deferred if the head node is not able to immediately allocate a provisioning
node for the task. Whenever an ongoing provisioning task has finished, the head node tries to re-allocate
deferred requests.

A provisioning request fails if an image is not transferred. 5 retry attempts at provisioning the image
are made in case a provisioning request fails.

A provisioning node that is carrying out requests, and which loses connectivity, has its provisioning
requests remain allocated to it for 180 seconds from the time that connectivity was lost. After this time
the provisioning requests fail.

Provisioning Role Change Notification With updateprovisioners

The updateprovisioners command can be accessed from the softwareimage mode in cmsh. It can also
be accessed from Base View, via the navigation path Provisioning > Provisioning requests > Update

provisioning nodes.
In the examples in section 5.2.2, changes were made to provisioning role attributes for an individual

node as well as for a category of nodes. This automatically ran the updateprovisioners command.
The updateprovisioners command runs automatically if CMDaemon is involved during software

image changes or during a provisioning request. If on the other hand, the software image is changed
outside of the CMDaemon front ends (Base View and cmsh), for example by an administrator adding a
file by copying it into place from the bash prompt, then updateprovisioners should be run manually
to update the provisioners.

In any case, if it is not run manually, then by default it runs every midnight (UTC). The scheduling
period can be adjusted with the autoupdateperiod setting:

Example

[root@basecm11]# cmsh

[basecm11]% partition use base

[basecm11->partition[base]]% provisioningsettings

[basecm11->partition[base]->provisioningsettings]% get autoupdateperiod

[basecm11->partition[base]->provisioningsettings]% 86400

[basecm11->partition[base]->provisioningsettings]% # is UTC epoch start time modulo 24 hours

[basecm11->partition[base]->provisioningsettings]% # set UTC epoch start time modulo 18 hours:

[basecm11->partition[base]->provisioningsettings]% set autoupdateperiod 64800

[basecm11->partition*[base*]->provisioningsettings*]% commit

When the default updateprovisioners is invoked manually, the provisioning system waits for all
running provisioning tasks to end, and then updates all images located on any provisioning nodes by
using the images on the head node. It also re-initializes its internal state with the updated provisioning
role properties, i.e. keeps track of what nodes are provisioning nodes.

The default updateprovisioners command, run with no options, updates all images. If run from
cmsh with a specified image as an option, then the command only does the updates for that particular
image. A provisioning node undergoing an image update does not provision other nodes until the
update is completed.

Example

[basecm11]% softwareimage updateprovisioners

Provisioning nodes will be updated in the background.

Sun Dec 12 13:45:09 2010 basecm11: Starting update of software image(s)\

230 Node Provisioning

provisioning node(s). (user initiated).

[basecm11]% softwareimage updateprovisioners [basecm11]%

Sun Dec 12 13:45:41 2010 basecm11: Updating image default-image on prov\
isioning node node001.

[basecm11]%

Sun Dec 12 13:46:00 2010 basecm11: Updating image default-image on prov\
isioning node node001 completed.

Sun Dec 12 13:46:00 2010 basecm11: Provisioning node node001 was updated

Sun Dec 12 13:46:00 2010 basecm11: Finished updating software image(s) \
on provisioning node(s).

Provisioning Role Draining And Undraining Nodes With drain, undrain
The drain and undrain commands to control provisioning nodes are accessible from within the
softwareimage mode of cmsh.

If a node is put into a drain state, then all currently active provisioning requests continue until they
are completed. However, the node is not assigned any further pending requests, until the node is put
back into an undrain state.

Example

[basecm11->softwareimage]% drain -n master

Nodes drained

[basecm11->softwareimage]% provisioningstatus

Provisioning subsystem status

Pending request: node001, node002

Provisioning node status:

+ basecm11

Slots: 1 / 10

State: draining

Active nodes: node003

Up to date images: default-image

[basecm11->softwareimage]% provisioningstatus

Provisioning subsystem status

Pending request: node001, node002

Provisioning node status:

+ basecm11

Slots: 0 / 10

State: drained

Active nodes: none

Up to date images: default-image

To drain all nodes at once, the --role option can be used, with provisioning role as its value. All
pending requests then remain in the queue, until the nodes are undrained again.

Example

[basecm11->softwareimage]% drain --role provisioning

...Time passes. Pending
requests stay in the queue. Then
admin undrains it...

[basecm11->softwareimage]% undrain --role provisioning

Provisioning Node Update Safeguards And dirtyautoupdatetimeout

The updateprovisioners command is subject to safeguards that prevent it running too frequently.
The minimum period between provisioning updates can be adjusted with a timeout parameter
dirtyautoupdatetimeout, which has a default value of 300s.

5.2 Provisioning Nodes 231

Exceeding the timeout does not by itself trigger an update to the provisioning node.
When the head node receives a provisioning request, it checks if the last update of the provisioning

nodes is more than the timeout period. If true, then an update is triggered to the provisioning node. The
update is disabled if the dirtyautoupdatetimeout is set to zero (false).

The parameter can be accessed and set within cmsh from partition mode:

Example

[root@basecm11]# cmsh

[basecm11]% partition use base

[basecm11->partition[base]]% provisioningsettings

[basecm11->partition[base]->provisioningsettings]% get dirtyautoupdatetimeout

[basecm11->partition[base]->provisioningsettings]% 300

[basecm11->partition[base]->provisioningsettings]% set dirtyautoupdatetimeout 0

[basecm11->partition*[base*]->provisioningsettings*]% commit

Within Base View the parameter is accessible via the navigation path:
Cluster > Settings > Provisioning Settings > Dirty auto update timeout.

To prevent provisioning an image to the nodes, it can be locked (section 5.4.7). The provisioning
request is then deferred until the image is once more unlocked.

Synchronization Of Fspart Subdirectories To Provisioning Nodes
In BCM, an fspart is a subdirectory, and it is a filesystem part that can be synced during provisioning.

The fsparts can be listed with:

Example

[root@basecm11]# cmsh

[basecm11]% fspart

[basecm11->fspart]% list

Path (key) Type Image

------------------------------ --------------- ------------------------

/cm/images/default-image image default-image

/cm/images/default-image/boot boot default-image:boot

/cm/node-installer node-installer

/cm/shared cm-shared

/tftpboot tftpboot

/var/spool/cmd/monitoring monitoring

The updateprovisioners command (page 229) is used to update image fsparts to all nodes with a
provisioning role.

The trigger command: is used to update non-image fsparts to off-premises nodes, such as cloud
directors and edge directors. The directors have a provisioning role for the nodes that they direct.

All of the non-image types can be updated with the --all option:

Example

[basecm11->fspart]% trigger --all

The command help trigger in fspart mode gives further details.

232 Node Provisioning

The info command: shows the architecture, OS, and the number of inotify watchers that track rsyncs
in the fspart subdirectory.

[basecm11->fspart]% info

Path Architecture OS Inotify watchers

------------------------------ ---------------- ---------------- ----------------

/cm/images/default-image x86_64 rhel9 0

/cm/images/default-image/boot - - 0

/cm/node-installer x86_64 rhel9 0

/cm/shared x86_64 rhel9 0

/tftpboot - - 0

/var/spool/cmd/monitoring - - 0

[basecm11->fspart]% info -s (!#with size, takes longer)
Path Architecture OS Inotify watchers Size

------------------------------ ---------------- ---------------- ---------------- ----------------

/cm/images/default-image x86_64 rhel9 0 4.8 GiB

/cm/images/default-image/boot - - 0 313 MiB

/cm/node-installer x86_64 rhel9 0 2.84 GiB

/cm/shared x86_64 rhel9 0 1.16 GiB

/tftpboot - - 0 3.5 MiB

/var/spool/cmd/monitoring - - 0 1.02 GiB

The locked, lock, and unlock commands:

• The locked command lists fsparts that are prevented from syncing.

Example

[basecm11->fspart]% locked

No locked fsparts

• The lock command prevents a specific fspart from syncing.

Example

[basecm11->fspart]% lock /var/spool/cmd/monitoring

[basecm11->fspart]% locked

/var/spool/cmd/monitoring

• The unlock command unlocks a specific locked fspart again.

Example

[basecm11->fspart]% unlock /var/spool/cmd/monitoring

[basecm11->fspart]% locked

No locked fsparts

Access to excludelistsnippets: The properties of excludelistsnippets for a specific fspart can be
accessed from the excludelistsnippets submode:

Example

5.3 The Kernel Image, Ramdisk And Kernel Modules 233

[basecm11->fspart]% excludelistsnippets /tftpboot

[basecm11->fspart[/tftpboot]->excludelistsnippets]% list

Name (key) Lines Disabled Mode sync Mode full Mode update Mode grab Mode grab new

------------ ------- ------------ ----------- ----------- -------------- ----------- --------------

Default 2 no yes yes yes no no

[basecm11->fspart[/tftpboot]->excludelistsnippets]% show default

Parameter Value

-------------------------------- ---

Lines 2

Name Default

Revision

Exclude list # no need for rescue on nodes with a boot role,/rescue,/rescue/*

Disabled no

No new files no

Mode sync yes

Mode full yes

Mode update yes

Mode grab no

Mode grab new no

[basecm11->fspart[/tftpboot]->excludelistsnippets]% get default excludelist

no need for rescue on nodes with a boot role

/rescue

/rescue/*

5.3 The Kernel Image, Ramdisk And Kernel Modules
A software image is a complete Linux filesystem that is to be installed on a non-head node. Chapter 9
describes images and their management in detail.

The head node holds the head copy of the software images. Whenever files in the head copy are
changed using CMDaemon, the changes automatically propagate to all provisioning nodes via the
updateprovisioners command (section 5.2.4).

5.3.1 Booting To A “Good State” Software Image
When nodes boot from the network in simple clusters, the head node supplies them with a known good
state during node start up. The known good state is maintained by the administrator and is defined
using a software image that is kept in a directory of the filesystem on the head node. Supplementary
filesystems such as /home are served via NFS from the head node by default.

For a diskless node the known good state is copied over from the head node, after which the node
becomes available to cluster users.

For a disked node, by default, the hard disk contents on specified local directories of the node are
checked against the known good state on the head node. Content that differs on the node is changed to
that of the known good state. After the changes are done, the node becomes available to cluster users.

Each software image contains a Linux kernel and a ramdisk. These are the first parts of the image
that are loaded onto a node during early boot. The kernel is loaded first. The ramdisk is loaded next,
and contains driver modules for the node’s network card and local storage. The rest of the image is
loaded after that, during the node-installer stage (section 5.4).

5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes
Kernel modules can be managed in softwareimage mode (using an image), in category mode (using a
category), or in device mode (using a node), as indicated by the following cmsh tree view of a newly-

234 Node Provisioning

installed cluster with default values:

cmsh

|-- category[default]

| |-- kernelmodules

...

|-- device][node001]

| |-- kernelmodules

...

|-- softwareimage[default-image]

| |-- kernelmodules

...

As is usual in BCM, if there are values specified at the lower levels in the hierarchy, then their values
override the values set higher up in the hierarchy. For example, modules specified at node level override
modules specified at category or software image level. Similarly modules specified at the category level
override whatever is specified at the software image level. The cluster administrators should be aware
that “override” for kernel modules appended to a kernel image means that any kernel modules defined
at a higher level are totally ignored—the modules from a lower level exclude the modules at the higher
level. A misconfiguration of kernel modules in the lower levels can thus prevent the node from starting
up.

Modules are normally just set at softwareimage level, using cmsh or Base View.

Kernel Driver Modules With cmsh

In cmsh, the modules that are to go on the ramdisk can be placed using the kernelmodules submode of
the softwareimage mode. The order in which they are listed is the attempted load order.

Within the kernelmodules submode, the import command can be used to import the kernel modules
list from a software image, from a node, or from a category, replacing the original kernel modules list.

Whenever a change is made via the kernelmodules submode to the kernel module selection of a
software image, CMDaemon automatically runs the createramdisk command. The createramdisk

command regenerates the ramdisk inside the initrd image and sends the updated image to all provi-
sioning nodes, to the image directory, set by default to /cm/images/default-image/boot/. The original
initrd image is saved as a file with suffix “.orig” in that directory. An attempt is made to generate the
image for all software images that CMDaemon is aware of, regardless of category assignment, unless
the image is protected from modification by CMDaemon with a FrozenFile directive (Appendix C).

The createramdisk command can also be run manually from within the softwareimage mode.

Kernel Driver Modules With Base View
In Base View the kernel modules for a particular image are managed through the Software images

resource, and then choosing the Kernel modules menu option of that image. For example, for the image
default-image, the navigation path that can be followed is:
Provisioning > Software images[default-image] > Edit > Settings > Kernel modules

which opens up the Kernel Module list screen, which allows kernel modules to be removed or added
(figure 5.6):

5.3 The Kernel Image, Ramdisk And Kernel Modules 235

Figure 5.6: Base View: Selecting Kernel Modules For Software Images

New kernel modules can be added using the Add button, existing kernel modules can be removed
using the Delete button, and kernel module parameters can be edited using the Edit button.

Manually Regenerating A Ramdisk
Regenerating a ramdisk manually via cmsh or Base View is useful if the kernel or modules have changed
without using CMDaemon. For example, after running a YUM update which has modified the kernel or
modules of the nodes (section 9.3). In such a case, the distribution would normally update the ramdisk
on the machine, but this is not done for the extended ramdisk for nodes in BCM. Not regenerating the
BCM ramdisk for nodes after such an update means the nodes may fail on rebooting during the loading
of the ramdisk (section 5.8.4).

An example of regenerating the ramdisk is seen in section 5.8.5.

Implementation Of Kernel Driver Via Ramdisk Or Kernel Parameter
Sometimes, testing or setting a kernel driver as a kernel parameter may be more convenient. How to do
that is covered in section 9.3.4.

5.3.3 InfiniBand Provisioning
On clusters that have InfiniBand hardware, it is normally used for data transfer as a service after the
nodes have fully booted up (section 3.6). It can also be used for PXE booting (section 5.1.3) and for node
provisioning (described here), but these are not normally a requirement. This section (about InfiniBand
node provisioning) may therefore safely be skipped in almost all cases when first configuring a cluster.

During node start-up on a setup for which InfiniBand networking has been enabled, the init process
runs the rdma script. For SLES the openib script is used instead of the rdma script. The script loads
up InfiniBand modules into the kernel. When the cluster is finally fully up and running, the use of
InfiniBand is thus available for all processes that request it.

Provisioning nodes over InfiniBand is not implemented by default, because the init process, which
handles initialization scripts and daemons, takes place only after the node-provisioning stage launches.
InfiniBand modules are therefore not available for use during provisioning, which is why, for default
kernels, provisioning in BCM is done via Ethernet.

Provisioning at the faster InfiniBand speeds rather than Ethernet speeds is however a requirement
for some clusters. To get the cluster to provision using InfiniBand requires both of the following two
configuration changes to be carried out:

236 Node Provisioning

1. configuring InfiniBand drivers for the ramdisk image that the nodes first boot into, so that provi-
sioning via InfiniBand is possible during this pre-init stage

2. defining the provisioning interface of nodes that are to be provisioned with InfiniBand. It is as-
sumed that InfiniBand networking is already configured, as described in section 3.6.

The administrator should be aware that the interface from which a node boots, (conveniently la-
beled BOOTIF), must not be an interface that is already configured for that node in CMDaemon.
For example, if BOOTIF is the device ib0, then ib0 must not already be configured in CMDaemon.
Either BOOTIF or the ib0 configuration should be changed so that node installation can succeed.

How these two changes are carried out is described next:

InfiniBand Provisioning: Ramdisk Image Configuration
An easy way to see what modules must be added to the ramdisk for a particular HCA can be found by
running rdma (or openibd), and seeing what modules do load up on a fully booted regular node.

One way to do this is to run the following lines as root:

[root@basecm11 ~]# { service rdma stop; lsmod | cut -f1 -d" "; }>/tmp/a

[root@basecm11 ~]# { service rdma start; lsmod | cut -f1 -d" "; }>/tmp/b

The rdma service in the two lines should be replaced by openibd service instead when using SLES, or
distributions based on versions of Red Hat prior to version 6.

The first line stops the InfiniBand service, just in case it is running, in order to unload its modules,
and then lists the modules on the node.

The second line starts the service, so that the appropriate modules are loaded, and then lists the
modules on the node again. The output of the first step is stored in a file a, and the output from the
second step is stored in a file b.

Running diff on the output of these two steps then reveals the modules that get loaded. For rdma,
the output may display something like:

Example

[root@basecm11 ~]# diff /tmp/a /tmp/b

1,3c1

< Unloading OpenIB kernel modules:

< Failed to unload ib_core

< [FAILED]

> Loading OpenIB kernel modules: [OK]

4a3,14

> ib_ipoib

> rdma_ucm

> ib_ucm

> ib_uverbs

> ib_umad

> rdma_cm

> ib_cm

> iw_cm

> ib_addr

> ib_sa

> ib_mad

> ib_core

As suggested by the output, the modules ib_ipoib, rdma_ucm and so on are the modules loaded
when rdma starts, and are therefore the modules that are needed for this particular HCA. Other HCAs
may cause different modules to be loaded.

5.3 The Kernel Image, Ramdisk And Kernel Modules 237

For a default Red Hat from version 7 onward, the rdma service can only be started; it cannot be
stopped. Finding the modules that load can therefore only be done once for the default configuration,
until the next reboot.

The preceding lsmod lines in that case can be generated with:

Example

[root@basecm11 ~]# { lsmod | cut -f1 -d" "; }>/tmp/a

[root@basecm11 ~]# { systemctl start rdma-load-modules@rdma; lsmod | cut -f1 -d" "; }>/tmp/b

Here, systemctl is used instead of the older service command just because it is the modern way to
run such commands.

The InfiniBand modules that load are the ones that the initrd image needs, so that InfiniBand can be
used during the node provisioning stage. The administrator can therefore now create an initrd image
with the required InfiniBand modules.

Loading kernel modules into a ramdisk is covered in general in section 5.3.2. A typical Mellanox
HCA may have an initrd image created as follows (some text ellipsized in the following example):

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage use default-image

[basecm11->softwareimage[default-image]]% kernelmodules

[basecm11...age[default-image]->kernelmodules]% add mlx4_ib

[basecm11...age*[default-image*]->kernelmodules*[mlx4_ib*]]% add ib_ipoib

[basecm11...age*[default-image*]->kernelmodules*[ib_ipoib*]]% add ib_umad

[basecm11...age*[default-image*]->kernelmodules*[ib_umad*]]% commit

[basecm11->softwareimage[default-image]->kernelmodules[ib_umad]]%

Tue May 24 03:45:35 2011 basecm11: Initial ramdisk for image default-image was regenerated successfully.

If the modules are put in another image instead of default-image, then the default image that nodes
boot from should be set to the new image (section 3.19.2).

InfiniBand Provisioning: Network Configuration
It is assumed that the networking configuration for the final system for InfiniBand is configured follow-
ing the general guidelines of section 3.6. If it is not, that should be checked first to see if all is well with
the InfiniBand network.

The provisioning aspect is set by defining the provisioning interface. An example of how it may be
set up for 150 nodes with a working InfiniBand interface ib0 in cmsh is:

Example

[root@basecm11~]# cmsh

[basecm11]% device

[basecm11->device]% foreach -n node001..node150 (set provisioninginterface ib0)

[basecm11->device*]% commit

5.3.4 VLAN Provisioning
Nodes can be configured for provisioning over a VLAN interface, starting in NVIDIA Base Command
Manager version 8.2.

This requires:

• A VLAN network and node interface. The VLAN network is typically specified by the network
switch. The interface that connects the node to the switch can be configured as a VLAN interface
as outlined in section 3.4.

238 Node Provisioning

• The 8021q (rtnl-link-vlan) driver to be available in the software image that is provisioned. In
recent distributions this driver is not part of the base kernel, and is instead available as a module.
The module should be loaded into the software image that is to be provisioned. For example, for
node001 that is missing the module in the software image, the module could be configured to run
on the node from the software image as follows:

Example

[root@basecm11 ~]# ssh node001 "lsmod | grep 8021q"

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage

[basecm11]->softwareimage% use default-image

[basecm11->softwareimage[default-image]]% kernelmodules

[basecm11->softwareimage[default-image]->kernelmodules]% list | grep 8021q

[basecm11->softwareimage[default-image]->kernelmodules]% add 8021q

[basecm11->softwareimage*[default-image*]->kernelmodules*[8021q*]]% commit

[basecm11->softwareimage[default-image]->kernelmodules[8021q]]% device use node001

[basecm11->device[node001]]% reboot

...

some time after boot
[root@basecm11 ~]# ssh node001 "lsmod | grep 8021q"

8021q 40960 0

garp 16384 1 8021q

mrp 20480 1 8021q

Rebooted nodes that use the modified software image then have the VLAN module available in
the running kernel.

• The BIOS of the node must have the VLANID value set within the BIOS network options. If the
BIOS does not support this setting, then PXE over VLAN cannot work. For a NIC that is missing
this in the BIOS, the NIC hardware provider may sometimes have a BIOS update that supports
this setting.

• The VLANID value should be set in the kernel parameters. Kernel parameters for a node can be
specified in cmsh with the kernelparameters setting of softwareimage mode (section 9.3.4). An
example where the VLANID is appended to some existing parameters could be:

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage use default-image

[basecm11->softwareimage[default-image]]% append kernelparameters " VLANID=89"

[basecm11->softwareimage*[default-image*]]% commit

5.4 Node-Installer
After the kernel has started up, and the ramdisk kernel modules are in place on the node, the node
launches the node-installer.

The node-installer is a software image (section 9.4.4) provided by the head node. It interacts with
CMDaemon on the head node and takes care of the rest of the boot process.

As an aside, the node-installer modifies some files (Appendix A.2.3) on the node it is installing to,
so that they differ from the otherwise-expected pre-init stage Linux system. Such modifications can be
prevented by a frozenFilesPerNode or frozenFilesPerCategory directive, as documented within the
node-installer.conf file, and explained in greater detail on page 854.

5.4 Node-Installer 239

Once the node-installer has completed its tasks, the local drive of the node has a complete Linux
pre-init stage system. The node-installer ends by calling /sbin/init from the local drive and the boot
process then proceeds as a normal Linux boot.

The steps the node-installer goes through for each node are:

1. requesting a node certificate (section 5.4.1)

2. deciding or selecting node configuration (section 5.4.2)

3. starting up all network interfaces (section 5.4.3)

4. determining install-mode type and execution mode (section 5.4.4)

5. running initialize scripts (section 5.4.5)

6. checking partitions, mounting filesystems (section 5.4.6)

7. synchronizing the local drive with the correct software image (section 5.4.7)

8. writing network configuration files to the local drive (section 5.4.8)

9. creating an /etc/fstab file on the local drive (section 5.4.9)

10. installing GRUB bootloader if configured by BCM (section 5.4.10), and initializing SELinux if it has
been installed and configured (Chapter 12 of the Installation Manual)

11. running finalize scripts (section 5.4.11)

12. unloading specific drivers no longer needed (section 5.4.12)

13. switching the root device to the local drive and calling /sbin/init (section 5.4.13)

These 13 node-installer steps and related matters are described in detail in the corresponding sections
5.4.1–5.4.13.

5.4.1 Requesting A Node Certificate
Each node communicates with the CMDaemon on the head node using a certificate. If no certificate is
found, it automatically requests one from CMDaemon running on the head node (figure 5.7).

240 Node Provisioning

Figure 5.7: Certificate Request

The certificate is stored on the head node in /cm/node-installer/certificates/ by MAC address.

Certificate Auto-signing
Certificate auto-signing means the cluster management daemon automatically signs a certificate signing
request (CSR) that has been requested by a node. Certificate auto-signing can be configured from within
partition mode of cmsh, with the signinstallercertificates parameter. It can take one of the fol-
lowing values:

• AUTO (the default)

• MANUAL

Example

[root@basecm11 ~]# cmsh

[basecm11]% partition

[basecm11->partition[base]]% set signinstallercertificates auto

For untrusted networks, it may be wiser to approve certificate requests manually to prevent new nodes
being added automatically without getting noticed.

Disabling certificate auto-signing for all networks can be done by setting
signinstallercertificates to MANUAL.

Instead of disabling certificate autosigning for all networks, a finer tuning can be carried out for
individual networks. This requires that signinstallercertificates be set to AUTO in partition mode.
The allowautosign parameter in network mode can then be set for a particular network, and it can take
one of the following values:

• Always

• Automatic (the default)

• Never

/cm/node-installer/certificates/

5.4 Node-Installer 241

• Secret

Example

[root@basecm11 ~]# cmsh

[basecm11]% network use internalnet

[basecm11->network[internalnet]]% set allowautosign automatic <TAB><TAB>
always automatic never secret

If Always is set, then incoming CSRs from all types of networks are automatically auto-signed.
If Automatic is set, then only networks that are of type internal are automatically auto-signed.
If Never is set, then all incoming CSRs that come in for that network have to be manually approved.
The value Secret is required for the globalnet network, for edge sites. A node on an edge site uses

a shared secret that is passed along with the node request. The secret is set during edge site setup by
BCM (section 2.1.1 of the Edge Manual).

Manual Approval Of A CSR
Approval of the CSR from a regular node (not an edge node): Manual approval of a CSR is typi-
cally done from within certs mode. A list of requests can be found, and from the list, the appropriate
unsigned request can be signed and issued. The following session illustrates the process:

[basecm11->cert]% listrequests

Request ID Client type Session ID Autosign Name

------------ ------------ ------------ -------- ------------------

6 installer 42949672986 No fa-16-3e-22-cd-13

[basecm11->cert]% issuecertificate 6

Issued 6

Approval of the CSR from an edge node: If the shared secret has not been set for the edge director—
that is, if it has not been stored locally on the edge director, or if it has not been passed on via the
installation medium—then the node-installer prompts for the secret the first time that it boots. If the
secret that is typed in matches the site secret, then a CSR from the edge director is handled by the head
node, and a signed certificate is issued.

The edge compute nodes pick up their secret from the director. If the director does not have the
secret, then the compute node’s node-installer prompts for the secret on first boot. Once the secret is
set, then edge compute node sends its CSR to the head node (via the edge director) and gets a signed
certificate automatically.

Section 2.3 has more information on certificate management in general.

Certificate Storage And Removal Implications
After receiving a valid certificate, the node-installer stores it in
/cm/node-installer/certificates/<node mac address>/ on the head node. This directory is NFS
exported to the nodes, but can only be accessed by the root user. The node-installer does not request a
new certificate if it finds a certificate in this directory, valid or invalid.

If an invalid certificate is received, the screen displays a communication error. Removing the node’s
corresponding certificate directory allows the node-installer to request a new certificate and proceed
further.

5.4.2 Deciding Or Selecting Node Configuration
Once communication with the head node CMDaemon is established, the node-installer tries to identify
the node it is running on so that it can select a configuration from CMDaemon’s record for it, if any such
record exists. It correlates any node configuration the node is expected to have according to network
hardware detected. If there are issues during this correlation process then the administrator is prompted
to select a node configuration until all nodes finally have a configuration.

242 Node Provisioning

Possible Node Configuration Scenarios
The correlations process and corresponding scenarios are now covered in more detail:

It starts with the node-installer sending a query to CMDaemon to check if the MAC address used
for net booting the node is already associated with a node in the records of CMDaemon. In particular,
it checks the MAC address for a match against the existing node configuration properties, and decides
whether the node is known or new.

• the node is known if the query matches a node configuration. It means that node has been booted
before.

• the node is new if no configuration is found.

In both cases the node-installer then asks CMDaemon to find out if the node is connected to an
Ethernet switch, and if so, to which port. Setting up Ethernet switches for port detection is covered in
section 3.9.

If a port is detected for the node, the node-installer queries CMDaemon for a node configuration
associated with the detected Ethernet switch port. If a port is not detected for the node, then either
the hardware involved with port detection needs checking, or a node configuration must be selected
manually.

There are thus several scenarios:

1. The node is new, and an Ethernet switch port is detected. A node configuration associated with
the port is found. The node-installer suggests to the administrator that the new node should use
this configuration, and displays the configuration along with a confirmation dialog (figure 5.8).
This suggestion can be interrupted, and other node configurations can be selected manually in-
stead through a sub-dialog (figure 5.9). By default (in the main dialog), the original suggestion is
accepted after a timeout.

Figure 5.8: Scenarios: Configuration Found, Confirm Node Configuration

5.4 Node-Installer 243

Figure 5.9: Scenarios: Node Selection Sub-Dialog

2. The node is new, and an Ethernet switch port is detected. A node configuration associated with
the port is not found. The node-installer then displays a dialog that allows the administrator to
either retry Ethernet switch port detection (figure 5.10) or to drop into a sub-dialog to manually
select a node configuration (figure 5.9). By default, port detection is retried after a timeout.

Figure 5.10: Scenarios: Unknown Node, Ethernet Port Detected

3. The node is new, and an Ethernet switch port is not detected. The node-installer then displays a

244 Node Provisioning

dialog that allows the user to either retry Ethernet switch port detection (figure 5.11) or to drop
into a sub-dialog to manually select a node configuration (figure 5.9). By default, port detection is
retried after a timeout.

Figure 5.11: Scenarios: Unknown Node, No Ethernet Port Detected

4. The node is known, and an Ethernet switch port is detected. The configuration associated with the
port is the same as the configuration associated with the node’s MAC address. The node-installer
then displays the configuration as a suggestion along with a confirmation dialog (figure 5.8). The
suggestion can be interrupted, and other node configurations can be selected manually instead
through a sub-dialog (figure 5.9). By default (in the main dialog), the original suggestion is ac-
cepted after a timeout.

5. The node is known, and an Ethernet switch port is detected. However, the configuration associated
with the port is not the same as the configuration associated with the node’s MAC address. This is
called a port mismatch. This type of port mismatch situation occurs typically during a mistaken node
swap, when two nodes are taken out of the cluster and returned, but their positions are swapped
by mistake (or equivalently, they are returned to the correct place in the cluster, but the switch
ports they connect to are swapped by mistake). To prevent configuration mistakes, the node-
installer displays a port mismatch dialog (figure 5.12) allowing the user to retry, accept a node
configuration that is associated with the detected Ethernet port, or to manually select another
node configuration via a sub-dialog (figure 5.9). By default (in the main port mismatch dialog),
port detection is retried after a timeout.

5.4 Node-Installer 245

Figure 5.12: Scenarios: Port Mismatch Dialog

6. The node is known, and an Ethernet switch port is not detected. However, the configuration
associated with the node’s MAC address does have an Ethernet port associated with it. This is
also considered a port mismatch. To prevent configuration mistakes, the node-installer displays a
port mismatch dialog similar to figure 5.12, allowing the user to retry or to drop into a sub-dialog
and manually select a node configuration that may work.

However, a more likely solution in most cases is to:

• either clear the switch port configuration in the cluster manager so that switch port detection
is not attempted. For example, for node001, this can be done by running this cmsh command
on the head node:
cmsh -c "device clear node001 switchports; commit"

• or enable switch port detection on the switch. This is usually quite straightforward, but may
require going through the manuals or software application that the switch manufacturer has
provided.

By default (in the port mismatch dialog), port detection is retried after a timeout. This means
that if the administrator clears the switch port configuration or enables switch port detection, the
node-installer is able to continue automatically with a consistent configuration.

7. The node is known, and an Ethernet switch port is detected. However, the configuration associated
with the node’s MAC address has no Ethernet switch port associated with it. This is not considered
a port mismatch but an unset switch port configuration, and it typically occurs if switch port
configuration has not been carried out, whether by mistake or deliberately. The node-installer
displays the configuration as a suggestion along with a confirmation dialog (figure 5.13). The
suggestion can be interrupted, and other node configurations can be selected manually instead
using a sub-dialog. By default (in the main dialog) the configuration is accepted after a timeout.

246 Node Provisioning

Figure 5.13: Scenarios: Port Unset Dialog

A truth table summarizing the scenarios is helpful:

Scenario
Node
known?

Switch
port de-
tected?

Switch
port
config-
uration
found?

Switch port configuration conflicts with node configu-
ration?

1 No Yes Yes No

2 No Yes No No

3 No No No No

4 Yes Yes Yes No

5 Yes Yes Yes Yes (configurations differ)

6 Yes No Yes Yes (port expected by MAC configuration not found)

7 Yes Yes No No (port not expected by MAC configuration)

In these scenarios, whenever the user manually selects a node configuration in the prompt dialog,
an attempt to detect an Ethernet switch port is repeated. If a port mismatch still occurs, it is handled by
the system as if the user has not made a selection.

Summary Of Behavior During Hardware Changes
The logic of the scenarios means that an unpreconfigured node always boots to a dialog loop requiring
manual intervention during a first install (scenarios 2 and 3). For subsequent boots the behavior is:

• If the node MAC hardware has changed (scenarios 1, 2, 3):

– if the node is new and the detected port has a configuration, the node automatically boots to
that configuration (scenario 1).

– else manual intervention is needed (scenarios 2, 3)

5.4 Node-Installer 247

• If the node MAC hardware has not changed (scenarios 4, 5, 6, 7):

– if there is no port mismatch, the node automatically boots to its last configuration (scenarios
4, 7).

– else manual intervention is needed (scenarios 5, 6).

The newnodes Command
newnodes basic use: New nodes that have not been configured yet can be detected using the newnodes
command from within the device mode of cmsh. A new node is detected when it reaches the node-
installer stage after booting, and contacts the head node.

Example

[basecm11->device]% newnodes

The following nodes (in order of appearance) are waiting to be assigned:

MAC First appeared Detected on switch port

----------------- ----------------------------- -----------------------

00:0C:29:01:0F:F8 Mon, 14 Feb 2011 10:16:00 CET [no port detected]

At this point the node-installer is seen by the administrator to be looping, waiting for input on what
node name is to be assigned to the new node.

The nodes can be uniquely identified by their MAC address or switch port address.
The port and switch to which a particular MAC address is connected can be discovered by using

the showport command (section 3.10.4). After confirming that they are appropriate, the switchports

property for the specified device can be set to the port and switch values.

Example

[basecm11->device]% showport 00:0C:29:01:0F:F8

switch01:8

[basecm11->device]% set node003 switchports switch01:8

[basecm11->device*]% commit

When the node name (node003 in the preceding example) is assigned, the node-installer stops loop-
ing and goes ahead with the installation to the node.

The preceding basic use of newnodes is useful for small numbers of nodes. For larger number of
nodes, the advanced options of newnodes may help carry out node-to-MAC assignment with less effort.

newnodes advanced use—options: The list of MAC addresses discovered by a newnodes command can
be assigned in various ways to nodes specified by the administrator. Node objects should be created in
advance to allow the assignment to take place. The easiest way to set up node objects in cmsh is to use
the --clone option of the foreach command (section 2.5.5, page 65).

The advanced options of newnodes are particularly useful for quickly assigning node names to spe-
cific physical nodes. All that is needed is to power the nodes up in the right order. For nodes with the
same hardware, the node that is powered up first reaches the stage where it tries to connect with the
node-installer first. So its MAC address is detected first, and arrives on the list generated by newnodes

first. If some time after the first node is powered up, the second node is powered up, then its MAC
address becomes the second MAC address on the list, and so on for the third, fourth, and further nodes.

When assigning node names to a physical node, on a cluster that has no such assignment already,
the first node that arrived on the list gets assigned the name node001, the second node that arrived on
the list gets assigned the name node002 and so on.

The advanced options are shown in device mode by running the help newnodes command. The
options can be introduced as being of three kinds: straightforward, grouping, and miscellaneous:

• The straightforward options:

248 Node Provisioning

-n|--nodes

-w|--write

-s|--save

Usually the most straightforward way to assign the nodes is to use the -n option, which accepts
a list of nodes, together with a -w or -s option. The -w (--write) option sets the order of nodes
to the corresponding order of listed MAC addresses, and is the same as setting an object in cmsh.
The -s (--save) option is the same as setting and committing an object in cmsh, so -s implies a -w

option is run at the same time.

So, for example, if 8 new nodes are discovered by the node-installer on a cluster with no nodes so
far, then:

Example

[basecm11->device]% newnodes -w -n node001..node008

assigns (but does not commit) the sequence node001 to node008 the new MAC address according
to the sequence of MAC addresses displaying on the list.

• The grouping options:

-g|--group

-c|--category

-h|--chassis

-r|--rack

The “help newnodes” command in device mode shows assignment options other than -n for a
node range are possible. For example, the assignments can also be made for a group (-g), per
category (-c), per chassis (-h), and per rack (-r).

• The miscellaneous options:

-f|--force

-o|--offset

By default, the newnodes command fails when it attempts to set a node name that is already taken.
The -f (--force) option forces the new MAC address to be associated with the old node name.
When used with an assignment grouping, (node range, group, category, chassis, or rack) all the
nodes in the grouping lose their node-to-MAC assignments and get new assignments. The -f

option should therefore be used with care.

The -o (--offset) option takes a number <number> and skips <number> nodes in the list of de-
tected unknown nodes, before setting or saving values from the assignment grouping.

Examples of how to use the advanced options follow.

newnodes advanced use—range assignment behavior example: For example, supposing there is a
cluster with nodes assigned all the way up to node022. That is, CMDaemon knows what node is
assigned to what MAC address. For the discussion that follows, the three nodes node020, node021,
node022 can be imagined as being physically in a rack of their own. This is simply to help to visualize a
layout in the discussion and tables that follow and has no other significance. An additional 3 new, that
is unassigned, nodes are placed in the rack, and allowed to boot and get to the node-installer stage.

The newnodes command discovers the new MAC addresses of the new nodes when they reach their
node-installer stage, as before (the switch port column is omitted in the following text for convenience):

5.4 Node-Installer 249

Example

[basecm11->device]% newnodes

MAC First appeared

----------------- -----------------------------

00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET

00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET

00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET

The assignment of MAC to node address could be carried out as follows:

Example

[basecm11->device]% newnodes -s -n node023..node025

MAC First appeared Hostname

-------------------- ----------------------------- --------

00:0C:29:EF:40:2A Tue, 01 Nov 2011 11:42:31 CET node023

00:0C:29:95:D3:5B Tue, 01 Nov 2011 11:46:25 CET node024

00:0C:29:65:9A:3C Tue, 01 Nov 2011 11:47:13 CET node025

Once this is done, the node-installer is able to stop looping, and to go ahead and install the new
nodes with an image.

The physical layout in the rack may then look as indicated by this:

before after MAC

node020 node020

node021 node021

node022 node022

node023 ...A

node024 ...B

node025 ...C

Here, node023 is the node with the MAC address ending in A.
If instead of the previous newnodes command, an offset of 1 is used to skip assigning the first new

node:

Example

[basecm11->device]% newnodes -s -o 1 node024..node025

then the rack layout looks like:

before after MAC

node020 node020

node021 node021

node022 node022

unassigned ...A

node024 ...B

node025 ...C

Here, unassigned is where node023 of the previous example is physically located, that is, the node
with the MAC address ...A. The lack of assignment means there is actually no association of the name

250 Node Provisioning

node023 with that MAC address, due to the newnodes command having skipped over it with the -o

option.
If instead the assignment is done with:

Example

[basecm11->device]% newnodes -s 1 node024..node026

then the node023 name is unassigned, and the name node024 is assigned instead to the node with the
MAC address ...A, so that the rack layout looks like:

before after MAC

node020 node020

node021 node021

node022 node022

node024 ...A

node025 ...B

node026 ...C

newnodes advanced use—assignment grouping example: Node range assignments are one way of
using newnodes. However assignments can also be made to a category, a rack, or a chassis. For example,
with Base View assigning node names to a rack can be done from the Racks option of the node. For
example, to add a node001 to a rack1, the navigation path would be:
Devices > Settings[node001] > Rack[rack1].

In cmsh, the assignment of multiple node names to a rack can conveniently be done with a foreach

loop from within device mode:

Example

[basecm11->device]% foreach -n node020..node029 (set rack rack02)

[basecm11->device*]% commit

[basecm11->device]% foreach -n node030..node039 (set rack rack03)

[basecm11->device*]% commit

The assignment of node names with the physical node in the rack can then be arranged as follows: If
the nodes are identical hardware, and are powered up in numerical sequence, from node020 to node039,
with a few seconds in between, then the list that the basic newnodes command (without options) displays
is arranged in the same numerical sequence. Assigning the list in the rack order can then be done by
running:

Example

[basecm11->device]% newnodes -s -r rack02..rack03

If it turns out that the boot order was done very randomly and incorrectly for all of rack02, and that
the assignment for rack02 needs to be done again, then a simple way to deal with it is to bring down the
nodes of rack02, then clear out all of the rack02 current MAC associations, and redo them according to
the correct boot order:

Example

5.4 Node-Installer 251

[basecm11->device]% foreach -r rack02 (clear mac) ; commit

...removes MAC association with nodes from CMDaemon...

...now reboot nodes in rack02 in sequence (not with BCM)...

[basecm11->device]% newnodes

...shows sequence as the nodes come up...

[basecm11->device]% newnodes -s -r rack02

...assigns sequence in boot order...

newnodes advanced use—assignment forcing example: The --force option can be used in the follow-
ing case: Supposing that node022 fails, and a new node hardware comes in to replace it. The new regular
node has a new MAC address. So, as explained by scenario 3 (section 5.4.2), if there is no switch port
assignment in operation for the nodes, then the node-installer loops around, waiting for intervention.1

This situation can be dealt with from the command line by:

• accepting the node configuration at the regular node console, via a sub-dialog

• accepting the node configuration via cmsh, without needing to be at the regular node console:

[basecm11->device]% newnodes -s -f -n node022

Node Identification
The node identification resource can be accessed via the Base View navigation path:

Devices > Nodes Identification.
The node identification resource is roughly the Base View equivalent to the newnodes command of

cmsh, and it opens up the New Node list window (figure 5.14).
As is the case for newnodes in cmsh, the New Node list window of Base View lists the MAC address

of any unassigned node that the head node detects, and shows the associated detected switch port for
the node. Also, just as for newnodes, New Node list can help assign a node name to the node, assuming
the node object exists. After assignment is done, the new status should be saved.

1with switch port assignment in place, scenario 1 means the new node simply boots up by default and becomes the new
node022 without further intervention

252 Node Provisioning

Figure 5.14: Node Identification Resource

The most useful way of using the node identification resource is for node assignment in large clus-
ters.

To do this, it is assumed that the node objects have already been created for the new nodes. The
creation of the node objects means that the node names exist, and so assignment to the node names is
able to take place. An easy way to create many nodes in Base View, set their provisioning interface, and
set their IP addresses is described in the section on the node creation wizard (section 5.7.2). Node objects
can also be created easily in large numbers by using cmsh’s foreach loop command on a node with the
--clone option (section 2.5.5, page 65).

The nodes are also assumed to be set for net booting, typically set from a BIOS setting.
The physical nodes are then powered up in an arranged order. Because they are unknown new

nodes, the node-installer keeps looping after a timeout. The head node in the meantime detects the new
MAC addresses and switch ports in the sequence in which they first have come up and lists them in that
order.

By default, all these newly detected nodes are set to an install mode of auto (section 5.4.4), which
means that their numbering goes up sequentially from whatever number is assigned to the preceding
node in the list. Thus, if there are 10 new unassigned nodes that are brought into the cluster, and
the first node in the list is assigned to the first available number, say node327; then clicking on assign
automatically assigns the remaining nodes to the next 9 available numbers, say node328�node336.

After the assignment, the node-installer looping process on the new nodes notices that the nodes are
now known. The node-installer then breaks out of the loop, and installation goes ahead without any
intervention needed at the node console.

5.4.3 Starting Up All Network Interfaces
At the end of section 5.4.2, the node-installer knows which node it is running on, and has decided what
its node configuration is.

Starting Up All Provisioning Network Interfaces
It now gets on with setting up the IP addresses on the provisioning interfaces required for the node-
installer, while taking care of matters that come up on the way:

Avoiding duplicate IP addresses: The node-installer brings up all the network interfaces configured
for the node. Before starting each interface, the node-installer first checks if the IP address that is about
to be used is not already in use by another device. If it is, then a warning and retry dialog is displayed
until the IP address conflict is resolved.

5.4 Node-Installer 253

Using BOOTIF to specify the boot interface: BOOTIF is a special name for one of the possible interfaces.
The node-installer automatically translates BOOTIF into the name of the device, such as eth0 or eth1,
used for network booting. This is useful for a machine with multiple network interfaces where it can be
unclear whether to specify, for example, eth0 or eth1 for the interface that was used for booting. Using
the name BOOTIF instead means that the underlying device, eth0 or eth1 in this example, does not need
to be specified in the first place.

Halting on missing kernel modules for the interface: For some interface types like VLAN and chan-
nel bonding, the node-installer halts if the required kernel modules are not loaded or are loaded with the
wrong module options. In this case the kernel modules configuration for the relevant software image
should be reviewed. Recreating the ramdisk and rebooting the node to get the interfaces up again may
be necessary, as described in section 5.8.5.

Bringing Up Non-Provisioning Network Interfaces
Provisioning interfaces are by default automatically brought up during the init stage, as the node is fully
booted up. The BMC and non-provisioning interfaces on the other hand have a different behavior:

Bringing Up And Initializing BMC Interfaces: If a BMC interface is present and powered up, then it
is expected to be running at least with layer 2 activity (ethernet). It can be initialized in the node config-
uration (section 3.7) with an IP address, netmask and user/password settings so that layer 3 (TCP/IP)
networking works for it. BMC networking runs independently of node networking.

Bringing up non-BMC, non-provisioning network interfaces: Non-provisioning interfaces are inac-
tive unless they are explicitly brought up. BCM can configure how these non-provisioning interfaces are
brought up by using the bringupduringinstall parameter, which can take the following values:

• yes: Brings the interface up during the pre-init stage

• no: Keeps the interface down during the pre-init stage. This is the default for non-provisioning
interfaces.

• yesandkeep: Brings the interface up during the pre-init stage, and keeps it up during the transition
to the init stage.

Bringing Up And Keeping Up Provisioning Network Interfaces
The preceding bringupduringinstall parameter is not generally supported for provisioning interfaces.
However the yesandkeep value does work for provisioning interfaces too, under some conditions:

• yesandkeep: Brings the interface up during the pre-init stage, and keeps it up during the transition
to the init stage, for the following provisioning devices:

– Ethernet device interfaces using a leased DHCP address

– InfiniBand device interfaces running with distribution OFED stacks

Restarting The Network Interfaces
At the end of this step (i.e. section 5.4.3) the network interfaces are up. When the node-installer has
completed the remainder of its 13 steps (sections 5.4.4–5.4.13), control is handed over to the local init
process running on the local drive. During this handover, the node-installer brings down all network
devices. These are then brought back up again by init by the distribution’s standard networking init

scripts, which run from the local drive and expect networking devices to be down to begin with.

254 Node Provisioning

5.4.4 Determining Install-mode Type And Execution Mode
Stored install-mode values decide whether synchronization is to be applied fully to the local drive of the
node, only for some parts of its filesystem, not at all, or even whether to drop into a maintenance mode
instead.

Related to install-mode values are execution mode values (page 255) that determine whether to apply
the install-mode values to the next boot, to new nodes only, to individual nodes or to a category of nodes.

Related to execution mode values is the confirmation requirement toggle value (page 257) in case a
full installation is to take place.

These values are merely determined at this stage; nothing is executed yet.

Install-mode Values
The install-mode can have one of five values: AUTO, FULL, MAIN, NOSYNC, and SKIP. It should be un-
derstood that the term “install-mode” implies that these values operate only during the node-installer
phase.2

• If the install-mode is set to FULL, then the node-installer re-partitions, creates new filesystems and
synchronizes a full image onto the local drive according a partition layout. This process wipes out
all pre-boot drive content.

A partition layout (Appendix D) includes defined values for the partitions, sizes, and filesystem
types for the nodes being installed. An example of a partition layout is the default partition layout
(Appendix D.3).

• If the install-mode is set to AUTO, then the node-installer checks the partition layout of the local
drive against the node’s stored configuration. If these do not match because, for example, the node
is new, or if they are corrupted, then the node-installer recreates the partitions and filesystems by
carrying out a FULL install. If however the drive partitions and filesystems are healthy, the node-
installer only does an incremental software image synchronization. Synchronization tends to be
quick because the software image and the local drive usually do not differ much.

Synchronization also removes any extra local files that do not exist on the image, for the files and
directories considered. Section 5.4.7 gives details on how it is decided what files and directories
are considered.

• If the install-mode is set to MAIN, then the node-installer does not carry out a disk check, and goes
on to maintenance mode, allowing manual investigation of specific problems. The local drive is
untouched.

• If the install-mode is set to NOSYNC, and the partition layout check matches the stored XML config-
uration, then the node-installer skips synchronizing the image to the node, so that contents on the
local drive persist from the previous boot. An exception to this is the node certificate and key, that
is the files /cm/local/apps/cmd/etc/cert.{pem|key}. These are updated from the head node if
missing.

If however the partition layout does not match the stored configuration, a FULL image sync is
triggered. Thus, for example, a burn session (Chapter 11 of the Installation Manual), with the
default burn configuration which destroys the existing partition layout on a node, will trigger
a FULL image sync on reboot after the burn session.

The NOSYNC setting should therefore not be regarded as a way to protect data. Ways to preserve
data across node reboots are discussed in the section that discusses the FULL install confirmation
settings (page 257).

2For example, imageupdate (section 5.6.2), which is run by CMDaemon, ignores these settings, which is as expected. This
means that, for example, if imageupdate is run with NOSYNC set, then the head node image is still synchronized over as usual
to the regular node while the node is up. It is only during node boot, during the installer stage, that setting NOSYNC prevents
synchronization.

/cm/local/apps/cmd/etc/cert.

5.4 Node-Installer 255

NOSYNC is useful during mass planned node reboots when set with the nextinstallmode option
of device mode. This sets the nodes to use the OS on the hard drive, during the next boot only,
without an image sync:

Example

[basecm11]% device foreach -n node001..node999 (set nextinstallmode nosync)

[basecm11]% device commit

• If the install-mode is set to SKIP, then the node-installer does not carry out a check of the partitions
and filesystems, and it also does not carry out a software image synchronization. If a node runs
into problems with its drive content during a normal start up attempt, then this mode can perhaps
be used to attempt data recovery on the node.

Install-mode Logging
The decision that is made is normally logged to the node-installer file, /var/log/node-installer on
the head node.

Example

08:40:58 node001 node-installer: Installmode is: AUTO

08:40:58 node001 node-installer: Fetching disks setup.

08:40:58 node001 node-installer: Setting up environment for initialize scripts.

08:40:58 node001 node-installer: Initialize script for category default is empty.

08:40:59 node001 node-installer: Checking partitions and filesystems.

08:40:59 node001 node-installer: Updating device status: checking disks

08:40:59 node001 node-installer: Detecting device '/dev/sda': found

08:41:00 node001 node-installer: Number of partitions on sda is ok.

08:41:00 node001 node-installer: Size for /dev/sda1 is ok.

08:41:00 node001 node-installer: Checking if /dev/sda1 contains ext3 filesystem.

08:41:01 node001 node-installer: fsck.ext3 -a /dev/sda1

08:41:01 node001 node-installer: /dev/sda1: recovering journal

08:41:02 node001 node-installer: /dev/sda1: clean, 129522/1250928 files, 886932/5000000 blocks

08:41:02 node001 node-installer: Filesystem check on /dev/sda1 is ok.

08:41:02 node001 node-installer: Size for /dev/sda2 is wrong.

08:41:02 node001 node-installer: Partitions and/or filesystems are missing/corrupt. (Exit code\

18, signal 0)

08:41:03 node001 node-installer: Creating new disk layout.

In this case the node-installer detects that the size of /dev/sda2 on the disk no longer matches the
stored configuration, and triggers a full re-install. For further detail beyond that given by the node-
installer log, the disks script at /cm/node-installer/scripts/disks on the head node can be exam-
ined. The node-installer checks the disk by calling the disks script. Exit codes, such as the 18 reported
in the log example, are defined near the top of the disks script.

Install-mode’s Execution Modes
Execution of an install-mode setting is possible in several ways, both permanently or just temporarily
for the next boot. Execution can be set to apply to categories or individual nodes. The node-installer
looks for install-mode execution settings in this order:

1. The “New node installmode” property of the node’s category. This decides the install mode for a
node that is detected to be new.

It can be set for the default category using a Base View navigation path such as:

Grouping > Node categories[default] > Edit > Settings > Install mode

or using cmsh with a one-liner such as:

/var/log/node-installer
/dev/sda2
/cm/node-installer/scripts/disks

256 Node Provisioning

cmsh -c "category use default; set newnodeinstallmode FULL; commit"

By default, the “New node installmode” property is set to FULL.

2. The Install-mode setting as set by choosing a PXE menu option on the console of the node before
it loads the kernel and ramdisk (figure 5.15). This only affects the current boot. By default the PXE
menu install mode option is set to AUTO.

Figure 5.15: PXE Menu With Install-mode Set To AUTO

3. The “Next boot install-mode” property of the node configuration. This can be set for a node
such as node001 using a Base View navigation path such as:
Devices > Nodes[node001] > Edit > Settings > Install mode

It can also be set using cmsh with a one-liner:

cmsh -c "device use node001; set nextinstallmode FULL; commit"

The property is cleared when the node starts up again, after the node-installer finishes its installa-
tion tasks. So it is empty unless specifically set by the administrator during the current uptime for
the node.

4. The install-mode property can be set in the node configuration using Base View via
Devices > Nodes[node001] > Edit > Settings > Install mode or using cmsh with a one-liner
such as:

cmsh -c "device use node001; set installmode FULL; commit"

By default, the install-mode property is auto-linked to the property set for install-mode for that
category of node. Since the property for that node’s category defaults to AUTO, the property for the
install-mode of the node configuration defaults to “AUTO (Category)”.

5. The install-mode property of the node’s category. This can be set using Base View with a navi-
gation path such as:
Grouping > Node categories[default] > Edit > Settings > Install mode

or using cmsh with a one-liner such as:

cmsh -c "category use default; set installmode FULL; commit"

5.4 Node-Installer 257

As already mentioned in a previous point, the install-mode is set by default to AUTO.

6. A dialog on the console of the node (figure 5.16) gives the user a last opportunity to overrule the
install-mode value as determined by the node-installer. By default, it is set to AUTO:

Figure 5.16: Install-mode Setting Option During Node-Installer Run

FULL Install Confirmation via datanode Setting
Related to execution mode values is the ability to carry out a FULL install only after explicit confirma-
tion, via the datanode property. This must be set in order to prompt for a confirmation, when a FULL
installation is about to take place. If it is set, then the node-installer only goes ahead with the FULL
install after the administrator has explicitly confirmed it.

The datanode property can be set in the node configuration of, for example, node001 with Base View
via the navigation path:
Devices > Nodes[node001] > Edit > Settings > Data node[Yes]

Alternatively, the parameter datanode can be set using a cmsh one-liner as follows:

[root@basecm11 ~]# cmsh -c "device use node001; set datanode yes; commit"

The property can also be set at a category level. Since datanode is a boolean value, the actual value
that is used used for a node is the result of the or operation for that value across the levels. The level at
which a value works due to its boolean or non-boolean type is explained more on page 27.

Why the FULL install confirmation is useful: The reason for such a setting is that a FULL installation
can be triggered by disk or partition changes, or by a change in the MAC address. If that happens, then:

• considering a drive, say, /dev/sda that fails, this means that any drive /dev/sdb would then nor-
mally become /dev/sda upon reboot. In that case an unwanted FULL install would not only be
triggered by an install-mode settings of FULL, but also by the install-mode settings of AUTO or
NOSYNC. Having the new, “accidental” /dev/sda have a FULL install is unlikely to be the inten-
tion, since it would probably contain useful data that the node-installer earlier left untouched.

258 Node Provisioning

• considering a node with a new MAC address, but with local storage containing useful data from
earlier. In this case, too, an unwanted FULL install would not only be triggered by an install-mode
setting of FULL, but also by the install-mode settings AUTO or NOSYNC.

Thus, in cases where nodes are used to store data, an explicit confirmation before overwriting lo-
cal storage contents is a good idea. However, by default, no confirmation is asked for when a FULL
installation is about to take place.

Carrying out the confirmation: When the confirmation is required, then it can be carried out by the
administrator as follows:

• From the node console. A remote console launched from Base View or cmsh will also work if SOL
connectivity has been configured.

• From cmsh, within device mode, using the installerinteractions command (some output
elided):

Example

[basecm11->device]% installerinteractions -w -n node001 --confirm

Hostname Action

--------- ---

node001 Requesting FULL Install (partition mismatch)

[basecm11->device]%

...07:57:36 [notice] basecm11: node001 [INSTALLER_CALLINGINIT]...

[basecm11->device]%

...07:58:20 [notice] basecm11: node001 [UP]

The installerinteractions command then sets the node to a confirmed state. The other possible
states are deny and pending.

Besides confirmation, the installerinteractions command has options that include letting it:

– deny the installation, and put it into maintenance mode

– carry out a dry-run

– carry out its actions for node groupings such as: node lists, node categories, node groups,
chassis, racks, as are possible in the grouping options (page 64).

Further details on the command can be viewed by running help installerinteractions.

An alternative way to avoid overwriting node storage: Besides the method of FULL install confirma-
tion for datanode, there is a method based on XML assertions, that can also be used to prevent data loss
on nodes.

It uses XML assertions to confirm that the physical drive is recognized (Appendix D.11).

A way to overwrite a specified block device: A related method is that sometimes, for reasons of per-
formance or convenience, it may be desirable to clear data on particular block devices for a node, and
carry it out during the next boot only. This can done by setting the block device names to be cleared
as values to the parameter Block devices cleared on next boot. The values can be set in cmsh as
follows:

[basecm11->device[node001]]% append blockdevicesclearedonnextboot /dev/sda /dev/sdb ; commit

The value of blockdevicesclearedonnextboot is automatically cleared after the node is rebooted.
Clearing data in this way ignores any datanode or nextinstallmode settings, and should therefore be
used with due care.

5.4 Node-Installer 259

5.4.5 Running Initialize Scripts
An initialize script is used when custom commands need to be executed before checking partitions and
mounting devices (section 3.19.4). For example, to initialize some not explicitly supported hardware, or
to do a RAID configuration lookup for a particular node. In such cases the custom commands are added
to an initialize script. How to edit an initialize script is described in Appendix E.2.

An initialize script can be added to both a node’s category and the node configuration. The node-
installer first runs an initialize script, if it exists, from the node’s category, and then an initialize

script, if it exists, from the node’s configuration.
The node-installer sets several environment variables which can be used by the initialize script.

Appendix E contains an example script documenting these variables.
Related to the initialize script is the finalize script (section 5.4.11). This may run after node

provisioning is done, but just before the init process on the node runs.

5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems
Behavior As Decided By The Install-Mode Value
In section 5.4.4 the node-installer determines the install-mode value, along with when to apply it to a
node.

AUTO: The install-mode value is typically set to default to AUTO. If AUTO applies to the current node,
it means the node-installer then checks the partitions of the local drive and its filesystems and recreates
them in case of errors. Partitions are checked by comparing the partition layout of the local drive(s)
against the drive layout as configured in the node’s category configuration and the node configuration.

After the node-installer checks the drive(s) and, if required, recreates the layout, it mounts all filesys-
tems to allow the drive contents to be synchronized with the contents of the software image.

FULL, MAIN, or SKIP: If install-mode values of FULL, MAIN, or SKIP apply to the current node instead,
then no partition checking or filesystem checking is done by the node-installer.

NOSYNC: If the install-mode value of NOSYNC applies, then if the partition and filesystem checks both
show no errors, the node starts up without getting an image synced to it from the provisioning node.
If the partition or the filesystem check show errors, then the node partition is rewritten, and a known
good image is synced across.

Behavior As Decided By XML Configuration Settings
The node-installer is capable of creating advanced drive layouts, including LVM setups, and hardware
and software RAID setups. Drive layout examples and relevant documentation are in Appendix D.

The XML description used to set the drive layouts can be deployed for a single device or to a category
of devices.

Hardware RAID: BCM supports hardware RAID levels 0, 1, 5, 10, and 50, and supports the following
options:

• stripe size:

Option

64kB

128kB

256kB

512kB

1024kB

260 Node Provisioning

• cache policy:
Option

Cached

Direct

• read policy:

Option Description

NORA No Read Ahead

RA Read Ahead

ADRA Adaptive Read

• write policy:
Option Description

WT Write Through

WB Write Back

5.4.7 Synchronizing The Local Drive With The Software Image
After having mounted the local filesystems, these can be synchronized with the contents of the software
image associated with the node (through its category). Synchronization is skipped if the install-mode
values of NOSYNC or SKIP are set, and takes place FULL or AUTO are set. Synchronization is delegated by
the node-installer to the CMDaemon provisioning system. The node-installer just sends a provisioning
request to CMDaemon on the head node.

For an install-mode of FULL, or for an install-mode of AUTO where the local filesystem is detected as
being corrupted, full provisioning is done. For an install-mode of AUTO where the local filesystem is
healthy and agrees with that of the software image, sync provisioning is done.

The lock, unlock, And islocked Commands For Software Images
The software image that is requested is available to nodes by default. Its availability can be altered and
checked with the following commands:

• lock: this locks an image so that the image cannot be provisioned until the image is unlocked.

• unlock: this unlocks a locked image, so that request for provisioning the image is no longer pre-
vented by a lock

• islocked: this lists the locked or unlocked states of images.

Locking an image is sometimes useful, for example, to make changes to an image when nodes are
booting:

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage list

Name (key) Path Kernel version Nodes

-------------------- -- ---------------------------- --------

default-image /cm/images/default-image 3.10.0-1062.12.1.el7.x86_64 3

[basecm11]% softwareimage

[basecm11->softwareimage]% lock default-image

[basecm11->softwareimage]% islocked

Name Locked

-------------- --------

default-image yes

5.4 Node-Installer 261

[basecm11->softwareimage]% lock default-image

[basecm11->softwareimage]% device

[basecm11->device]% reboot node001

...the cluster administrator makes changes to the node image during a boot, as it waits for
the image to unlock...
[basecm11->device]% softwareimage unlock default-image

For an unlocked image, on receiving the provisioning request, CMDaemon assigns the provisioning
task to one of the provisioning nodes. The node-installer is notified when image synchronization starts,
and also when the image synchronization task ends—whether it is completed successfully or not.

Exclude Lists: excludelistsyncinstall And excludelistfullinstall

What files are synchronized is decided by an exclude list. An exclude list is a property of the node cate-
gory, and is a list of directories and files that are excluded from consideration during synchronization.
The excluded list that is used is decided by the type of synchronization chosen: full or sync:

• A full type of synchronization rewrites the partition table of the node, then copies the filesystem
from a software image to the node, using a list to specify files and directories to exclude from
consideration when copying over the filesystem. The list of exclusions used is specified by the
excludelistfullinstall property.

The intention of full synchronization is to allow a complete working filesystem to be copied
over from a known good software image to the node. By default the excludelistfullinstall

list contains /proc/, /sys/, and lost+found/, which have no content in BCM’s default software
image. The list can be modified to suit the requirements of a cluster, but it is recommended to have
the list adhere to the principle of allowing a complete working node filesystem to be copied over
from a known good software image.

• A sync type of synchronization uses the property excludelistsyncinstall to specify what files
and directories to exclude from consideration when copying parts of the filesystem from a known
good software image to the node. The excludelistsyncinstall property is in the form of a list
of exclusions, or more accurately in the form of two sub-lists.

The contents of the sub-lists specify the parts of the filesystem that should be retained or not
copied over from the software image during sync synchronization when the node is booting. The
intention behind this is to have the node boot up quickly, updating only the files from the image
to the node that need updating due to the reboot of the node, and otherwise keeping files that are
already on the node hard disk unchanged. The contents of the sub-lists are thus items such as the
node log files, or items such as the /proc and /sys pseudo-filesystems which are generated during
node boot.

The administrator should be aware that nothing on a node hard drive can be regarded as persistent
because a FULL sync takes place if any error is noticed during a partition or filesystem check.

Anything already on the node that matches the content of these sub-lists is not overwritten by
image content during an excludelistsyncinstall sync. However, image content that is not on
the node is copied over to the node only for items matching the first sub-list. The remaining files
and directories on the node, that is, the ones that are not in the sub-lists, lose their original contents,
and are copied over from the software image.

A cmsh one-liner to get an exclude list for a category is:

cmsh -c "category use default; get excludelistfullinstall"

Similarly, to set the list:

cmsh -c "category use default; set excludelistfullinstall; commit"

262 Node Provisioning

where a text-editor opens up to allow changes to be made to the list. In Base View the navigation path is:

Grouping > Node Categories > Edit > Node Category > Settings > Exclude list full install

Image synchronization is done using rsync, and the syntax of the items in the exclude lists conforms
to the “INCLUDE/EXCLUDE PATTERN RULES” section of the rsync(1) man page, which includes patterns
such as “**”, “?”, and “[[:alpha:]]”.

The excludelistfullinstall and excludelistsyncinstall properties decide how a node syn-
chronizes to an image during boot. For a node that is already fully up, the related excludelistupdate

property decides how a running node synchronizes to an image without a reboot event, and is discussed
in section 5.6.

Interface Used To Receive Image Data: provisioninginterface
For regular nodes with multiple interfaces, one interface may be faster than the others. If so,
it can be convenient to receive the image data via the fastest interface. Setting the value of
provisioninginterface, which is a property of the node configuration, allows this.

By default it is set to BOOTIF for regular nodes. Using BOOTIF is not recommended for node configu-
rations with multiple interfaces.

When listing the network interfaces in cmsh, the provisioning interface has a [prov] flag appended
to its name.

Example

[basecm11->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

physical BOOTIF [prov] 10.141.0.1 internalnet

physical eth1 10.141.1.1 internalnet

physical eth2 10.141.2.1 internalnet

Head nodes and provisioninginterface: A head node in a single-head cluster does not use the
provisioninginterface setting.

Head nodes in a failover configuration (Chapter 15), however, do have a value set for
provisioninginterface, corresponding to the interface on the head that is being provisioned over
internalnet by the other head (eth0 in figure 15.1).

Transport Protocol Used For Image Data: provisioningtransport
The provisioningtransport property of the node sets whether the image data is sent encrypted or
unencrypted to the node from the provisioner. The property value is set via the device mode for the
receiving node to one of these values:

• rsyncdaemon, which sends the data unencrypted

• rsyncssh, which sends the data encrypted

The provisioningtransport value can be set for all nodes, including provisioning nodes, head nodes,
and cloud-director (section 3.2 of the Cloudbursting Manual) nodes. Because encryption severely in-
creases the load on the provisioning node, using rsyncssh is only suggested if the users on the net-
work cannot be trusted. By default, provisioningtransport is set to rsyncdaemon. If high availability
(Chapter 15) is set up with the head nodes exposed to the outside world on the external network, the
administrator should consider setting up rsyncssh for the head nodes.

The rsyncssh transport requires passwordless root access via ssh from the provisioner to the node
being provisioned. This is configured by default in the default BCM nodes. However, if a new image is
created with the --exclude options for cm-create-image as explained in (section 9.6.2), the keys must
be copied over from /root/.ssh/ on the existing nodes.

5.4 Node-Installer 263

Tracking The Status Of Image Data Provisioning: provisioningstatus
The provisioningstatus command within the softwareimage mode of cmsh displays an updated state
of the provisioning system. As a one-liner, it can be run as:

basecm11:~ # cmsh -c "softwareimage provisioningstatus"

Provisioning subsystem status: idle, accepting requests

Update of provisioning nodes requested: no

Maximum number of nodes provisioning: 10000

Nodes currently provisioning: 0

Nodes waiting to be provisioned: <none>

Provisioning node basecm11:

Max number of provisioning nodes: 10

Nodes provisioning: 0

Nodes currently being provisioned: <none>

The provisioningstatus command has several options that allow the requests to be tracked. The -r

option displays the basic status information on provisioning requests, while the -a option displays all
status information on provisioning requests. Both of these options display the request IDs.

The Base View equivalent to provisioningstatus is accessed via the navigation path:
Provisioning > Provisioning nodes

By default, it displays basic status information on provisioning requests.

Tracking The Provisioning Log Changes: synclog
For a closer look into the image file changes carried out during provisioning requests, the synclog

command from device mode can be used (lines elided in the following output):

Example

[basecm11->device]% synclog node001

Tue, 11 Jan 2011 13:27:17 CET - Starting rsync daemon based provisioning. Mode is SYNC.

sending incremental file list

./

...

deleting var/lib/ntp/etc/localtime

var/lib/ntp/var/run/ntp/

...

sent 2258383 bytes received 6989 bytes 156232.55 bytes/sec

total size is 1797091769 speedup is 793.29

Tue, 11 Jan 2011 13:27:31 CET - Rsync completed.

Path Of The Provisioning Log File
The path of the log file can be found with the -p option:

Example

[basecm11->device]% synclog -p node001

/var/spool/cmd/node001-
rsync

[basecm11->device]%

Statistical Analysis Of Provisioning Sessions: syncinfo
A provisioning session takes place between a provisioning image and a filesystem partition on a node.
Statistics can be presented for the sessions using the syncinfo command. The statistical information
presented is for number of files considered for transfer, the number of files that were actually transfered,
how long the transfer took, which image and node were involved, and so on. The syncinfo command
is run in device mode (output ellipsized and truncated):

264 Node Provisioning

Example

[head->device]% syncinfo

Node Path Provisioner Age Duration Total files Transfered files ...

------- ------------------------ ----------- ---- -------- ----------- ---------------- ...

node001 /cm/images/default-image head 34s 21s 171,504 328 ...

node002 /cm/images/default-image head 34s 22s 171,504 328 ...

...

The syncinfo command has options to run it per node, category, rack, and so on. Details on the
options can be seen by running the help command (help syncinfo).

Aborting Provisioning With cancelprovisioningrequest

The cancelprovisioningrequest command cancels provisioning.
Its usage is:

cancelprovisioningrequest [OPTIONS] [<requestid> ...]

To cancel all provisioning requests, it can be run as:

basecm11:~ # cmsh -c "softwareimage cancelprovisioningrequest -a"

The provisioningstatus command of cmsh, can be used to find request IDs. Individual request IDs,
for example 10 and 13, can then be specified in the cancelprovisioningrequest command, as:

basecm11:~ # cmsh -c "softwareimage cancelprovisioningrequest 10 13"

The help page for cancelprovisioningrequest shows how to run the command on node ranges,
groups, categories, racks, chassis, and so on.

The Base View equivalents to the cmsh versions for managing provisioning requests can be accessed
via the navigation path Provisioning > Provisioning Requests

5.4.8 Writing Network Configuration Files
In the previous section, the local drive of the node is synchronized according to install-mode settings
with the software image from the provisioning node. The node-installer now sets up configuration files
for each configured network interface. These are files like:

/etc/sysconfig/network-scripts/ifcfg-eth0

for Red Hat, Scientific Linux, CentOS, and Rocky Linux, while SUSE would use:
/etc/sysconfig/network/ifcfg-eth0

These files are placed on the local drive.
When the node-installer finishes its remaining tasks (sections 5.4.9–5.4.13) it brings down all network

devices and hands over control to the local /sbin/init process. Eventually a local init script uses the
network configuration files to bring the interfaces back up.

5.4.9 Creating A Local /etc/fstab File
The /etc/fstab file on the local drive contains local partitions on which filesystems are mounted as
the init process runs. The actual drive layout is configured in the category configuration or the node
configuration, so the node-installer is able to generate and place a valid local /etc/fstab file. In addition
to all the mount points defined in the drive layout, several extra mount points can be added. These
extra mount points, such as NFS imports, /proc, /sys and /dev/shm, can be defined and managed in
the node’s category and in the specific configuration of the node configuration, using Base View or cmsh
(section 3.13.2).

/etc/sysconfig/network-scripts/ifcfg-eth0
/etc/sysconfig/network/ifcfg-eth0
/dev/shm

5.4 Node-Installer 265

5.4.10 Booting From The Local Hard Drive
By default, a node-installer boots from the software image on the head node via the network.

The node-installer can, optionally, during image synchronization, install a local drive boot record
on the local hard drive if the installbootrecord boolean property of the node configuration or node
category is set to on. Setting the local drive boot record means that the node tries to use a local hard
drive boot installer during the next boot. This is a step toward having it become a standalone node that
does not boot from the network. This step, and the other steps needed to allow booting from the local
hard drive are covered next.

Setting The Boot Record To Allow The Node To Be Standalone
The local drive boot record is installed in the MBR of the local drive, overwriting the default iPXE boot
record (section 5.1.2).

With a working custom software image, the boot record can be installed with cmsh commands for a
node node001 with:

cmsh -c "device use node001; set installbootrecord yes; commit"

or for a category default with:

cmsh -c "category use default; set installbootrecord yes; commit"

Since installbootrecord is a boolean property, it means that if the node or if the node category
have the value set, then the node uses that value.

In Base View, the equivalent is the Install boot record option. This can similarly be enabled and
saved in the Base View node configuration or node category.

Setting the local drive boot record allows the next boot to be from the local hard drive, if the node is
set up right to boot from the local hard drive.

Booting from the local hard drive often requires some further changes, as explained next.

Managing Boot Sequence And Bootloader To Ensure The Node Can Be Standalone
For a local hard drive boot to work:

1. hard drive booting must be set to have a higher priority than network booting in the BIOS of the
node. Otherwise regular PXE booting is attempted, despite whatever value installbootrecord

has.

2. A working bootloader must be present.

By default, the node image for BCM has nodes set to use a SYSLINUX bootloader.

If the administrator is not using the default software image, but is using a custom software image
(section 9.6.1), and if the image is based on a running node filessystem that has not been built
directly from a parent distribution, then the GRUB boot configuration may not be appropriate
for a standalone GRUB boot to work. This is because the parent distribution installers often use
special logic for setting up the GRUB boot configuration. Carrying out this same special logic for
all distributions using the custom software image creation tool cm-create-image (section 9.6.2) is
impractical.

Providing a custom working image from a standalone node that has been customized after direct
installation from the parent distribution, ensures the GRUB boot configuration layout of the cus-
tom image is as expected by the parent distribution. This then allows a standalone GRUB boot on
the node to run properly.

Nodes can be set to use a GRUB bootloader from within device mode, or from within category

mode, by changing the bootloader parameter within the mode. For example, for a node node001:

Example

266 Node Provisioning

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% get bootloader

syslinux (default)

[basecm11->device[node001]]% set bootloader grub

[basecm11->device*[node001*]]% commit

or, for the default category:

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% get bootloader

syslinux

[basecm11->category[default]]% set bootloader grub

[basecm11->category*[default*]]% commit

Arranging for the two items in the preceding list ensures that the next boot is from GRUB on the
hard drive. However, the BOOTIF also needs to be changed for booting to be successful. How it can be
changed, and why it needs to be changed, is described next.

Changing BOOTIF To Ensure The Node Can Be Standalone
If the BIOS is set to boot from the hard drive, and if there is a working boot loader, and if the boot record
has been installed, then the node boots via the boot record on the hard drive.

BOOTIF is the default value for the network interface for a node that is configured as a BCM software
image. However, the BOOTIF interface is undefined during hard drive booting, because it depends on
the network provisioning setup, which is not running. This means that the networking interface would
fail during hard drive boot for a standard image. To remedy this, the interface should be set to a defined
network device name, such as eth0, or the modern equivalents such as en01 (section 5.8.1). The defined
network device name, as the kernel sees it, can be found by logging into the node and taking a look at
the output of ip link:

Example

[root@basecm11 ~]# ssh node001 ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ...

In BCM the provisioning interface is mandatory, even if it is not provisioning. So it is set to the value
of kernel-defined network device name instead of BOOTIF:

Example

[basecm11]% device interfaces node001

[basecm11->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

physical BOOTIF [prov] 10.141.0.1 internalnet

[basecm11->device[node001]->interfaces]% set bootif networkdevicename eth0

[basecm11->device*[node001*]->interfaces*]% commit

[basecm11->device[node001]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

physical eth0 [prov] 10.141.0.1 internalnet

Tue Mar 31 13:46:44 2020 [notice] basecm11: node001 [UP], restart required (eth0)

5.4 Node-Installer 267

In the preceding example, the kernel-defined network device name is assumed to be eth0. It should
be modified as required.

In addition, the new IP address is assumed to be on the same internal network. If the administrator
intends the node to be standalone on another network, then the network and the IP address can be set
to appropriate values.

When interface changes are carried out to make the node standalone, warnings show up saying that
a reboot is required. A reboot of the node should be done when the interface configuration is complete.

During reboot, the node then boots from the hard drive as a standalone, with a non-BOOTIF network
interface.

Bringing A Node That Boots From Its Hard Drive Back Into A Cluster
If the node is to be brought back into the cluster, then simply unsetting “Install boot record” and reboot-
ing the node does not restore its iPXE boot record and hence its ability to iPXE boot. To restore the iPXE
boot record, the node can be booted from the default image copy on the head node via a network boot
again. Typically this is done by manual intervention during node boot to select network booting from
the BIOS of the node.

Setting the value of provisioninginterface in cmsh for the node to BOOTIF is also recommended.
As suggested by the BCM iPXE boot prompt, setting network booting to work from the BIOS (regular

“PXE” booting) is preferred to the relatively roundabout way of iPXE booting from the disk.

SELinux Initialization For Hard Drive Boot And PXE Boot
If configured, SELinux (Chapter 12 of the Installation Manual) is initialized at this point. For a boot
from the hard drive, the initialization occurs if an SELinux filesystem has been saved to disk previously.
For a PXE boot, the initialization takes place if the SELinuxInitialize directive is set to true in the
node-installer.conf file.

5.4.11 Running Finalize Scripts
A finalize script is similar to an initialize script (section 5.4.5), only it runs a few stages later in the
node-provisioning process.

In the context of configuration (section 3.19.4) it is used when custom commands need to be executed
after the preceding mounting, provisioning, and housekeeping steps, but before handing over control
to the node’s local init process. For example, custom commands may be needed to:

• initialize some not explicitly supported hardware before init takes over

• supply a configuration file for the software image that cannot simply be added to the software
image and used by init because it needs node-specific settings

• load a slightly altered standard software image on particular nodes, typically with the change
depending on automatically detecting the hardware of the node it is being loaded onto. While this
could also be done by creating a full new software image and loading it on to the nodes according
to the hardware, it usually turns out to be better for simplicity’s sake (future maintainability) to
minimize the number of software images for the cluster.

The custom commands used to implement such changes are then added to the finalize script. How
to edit a finalize script is described in Appendix E.2.

A finalize script can be added to both a node’s category and the node configuration. The node-
installer first runs a finalize script, if it exists, from the node’s category, and then a finalize script, if
it exists, from the node’s configuration.

The node-installer sets several environment variables which can be used by the finalize script.
Appendix E contains an example script which documents these variables.

268 Node Provisioning

5.4.12 Unloading Specific Drivers
Many kernel drivers are only required during the installation of the node. After installation they are not
needed and can degrade node performance.

Baseboard Management Controllers (BMCs, section 3.7) that use IPMI drivers are an egregious exam-
ple of this. The IPMI drivers are required to have the node-installer configure the IP address of any IPMI
cards. Once the node is configured, these drivers are no longer needed, but they continue to consume
significant CPU cycles and power if they stay loaded, which can affect job performance.

To solve this, the node-installer can be configured to unload a specified set of drivers just before
it hands over control to the local init process. This is done by editing the removeModulesBeforeInit

setting in the node-installer configuration file
/cm/node-installer/scripts/node-installer.conf,
For the node-installer.conf file in multidistro and multiarch (section 9.7) configurations, the di-

rectory path /cm/node-installer takes the form:
/cm/node-installer-<distribution>-<architecture>

The values for <distribution> and <architecture> can take the values outlined on page 524.
By default, the IPMI drivers are placed in the removeModulesBeforeInit setting.
To pick up IPMI-related data values, IPMI access is then carried out over the network without the

drivers.

5.4.13 Switching To The Local init Process
At this point the node-installer is done. The node’s local drive now contains a complete Linux installa-
tion and is ready to be started. The node-installer hands over control to the local /sbin/init process,
which continues the boot process and starts all runlevel services. From here on the boot process contin-
ues as if the machine was started from the drive just like any other regular Linux machine.

5.5 Node States
During the boot process, several state change messages are sent to the head node CMDaemon or de-
tected by polling from the head node CMDaemon. The most important node states for a cluster after
boot up are introduced in section 2.1.1. These states are described again, along with some less common
ones to give a more complete picture of node states.

5.5.1 Node States Icons In Base View
In the node icons used by Base View:

• Nodes in the UP state are indicated by an up-arrow.

– If all health checks (section 10.2.4) for the node are successful, the up-arrow is green.

– If there is a health check that fails or if the node requires a reboot, the up-arrow is red.

• Nodes in the DOWN state are indicated by a blue down-arrow.

• There are some other states, including:

– Nodes in a CLOSED state are indicated by an X

– Nodes in a DOWN state that are installing are indicated by a underscored down-arrow icon: ↓_

5.5.2 Node States Shown In cmsh

In cmsh, the node state can be found using the status command from device mode for a node:

Example

[basecm11->device]% status -n node001..node002

node001 [UP] restart-required, health check failed

node002 [DOWN] (hostname changed) restart-required

/cm/node-installer/scripts/node-installer.conf

5.5 Node States 269

Devices in general can have their states conveniently listed with the list -f (page 54) command:

Example

[basecm11->device]% list -f "hostname:10, status:48"

hostname (status

---------- --

apc01 [UP]

basecm11 [UP]

devhp [UP]

node001 [UP] restart-required, health check failed

node002 [DOWN] (hostname changed) restart-required

The reason for a red icon as shown in section 5.5.1 can be found within the parentheses. In this
example it is (hostname changed).

5.5.3 Node States Indicating Regular Start Up
During a successful boot process the node goes through the following states:

• BOOTING. This is the state while the kernel and initrd are being downloaded by the node during
network booting.

To allow the BOOTING state to be detected for a node:

– BOOTIF must be defined as an interface, or

– if there is no interface with the value BOOTIF, but a particular network device, such as eth0,
is the boot interface, then a special revision tag of bootif can be used for no more than one
interface:

Example

[basecm11->device[node001]->interfaces[eth0]]% set revision bootif

• INSTALLING. This state is normally entered as soon as the node-installer has determined on which
node the node-installer is running. Within this state, information messages display indicating
what is being done while the node is in the INSTALLING state. Possible messages under the status
column for the node within cmsh and Base View are normally, in sequence:

1. node-installer started

2. Optionally, the following two messages:

(a) waiting for user input

(b) installation was resumed

3. checking disks

4. recreating partitions and filesystems

5. mounting disks

6. One of these following two messages:

(a) waiting for FULL provisioning to start

(b) waiting for SYNC provisioning to start

7. provisioning started, waiting for completion

8. provisioning complete

9. initializing SELinux

Between steps 1 and 3 in the preceding, these optional messages can also show up:

270 Node Provisioning

– If burn mode is entered or left:

running burn-in tests

burn-in test completed successfully

– If maintenance mode is entered:

entered maintenance mode

• INSTALLER_CALLINGINIT. This state is entered as soon as the node-installer has handed over con-
trol to the local init process. The associated message normally seen with it in cmsh and Base View
is:

– switching to local root

• UP. This state is entered as soon as the CMDaemon of the node connects to the head node CMDae-
mon.

5.5.4 Node States That May Indicate Problems
Other node states are often associated with problems in the boot process:

• DOWN. This state is registered as soon as the CMDaemon on the regular node is no longer detected
by CMDaemon on the head node. In this state, the state of the regular node is still tracked, so that
CMDaemon is aware if the node state changes.

• CLOSED. This state is appended to the UP or DOWN state of the regular node by the administrator,
and causes most CMDaemon monitoring actions for the node to cease. The state of the node is
however still tracked by default, so that CMDaemon is aware if the node state changes.

The CLOSED state can be set from the device mode of cmsh using the close command. The help

text for the command gives details on how it can be applied to categories, groups and so on. The
-m option sets a message by the administrator for the closed node or nodes.

Example

root@headymcheadface ~]# cmsh

[headymcheadface]% device

[headymcheadface->device]% close -m "fan dead" -n node001,node009,node020

Mon May 2 16:32:01 [notice] headymcheadface: node001 ...[DOWN/CLOSED] (fan dead)

Mon May 2 16:32:01 [notice] headymcheadface: node009 ...[DOWN/CLOSED] (fan dead)

Mon May 2 16:32:01 [notice] headymcheadface: node020 ...[DOWN/CLOSED] (fan dead)

The CLOSED state can also be set from Base View via the navigation path

Devices > Nodes > Edit > Monitored state > Open/Close.

When the CLOSED state is set for a device, CMDaemon commands can still attempt to act upon it.
For example, in the device mode of cmsh:

– open: This is the converse to the close command. It has the same options, including the -m

option that logs a message. It also has the following extra options:

* --reset: Resets whatever the status is of the devicestatus check. However, this reset
by itself does not solve any underlying issue. The issue may still require a fix, despite the
status having been reset.
For example, the --reset option can be used to reset the restart-required flag (section 5.5.2).
However, the reason that set the restart-required flag is not solved by the reset. Restarts
are required for regular nodes if there have been changes in the following: network set-
tings, disk setup, software image, or category.

5.5 Node States 271

* -f|--failbeforedown <count>: Specifies the number of failed pings before a device is
marked as down (default is 1).

– drain and undrain (Appendix G.4.1)

– For nodes that have power control3:

* power -f on

* power -f off

* power -f reset

In Base View, the equivalents for a node node001 for example, are via the navigation paths:

– Devices > Nodes[node001] > Edit > Monitored state > Open/Close

– Devices > Nodes[node001] > Edit > Workload > Drain/Undrain

– Devices > Nodes[node001] > Edit > Power > On/Off/Reset.

CMDaemon on the head node only maintains device monitoring logs for a device that is in the UP

state. If the device is in a state other than UP, then CMDaemon only tracks its state, and can display
the state if queried.

For example: if a node displays the state UP when queried about its state, and is given a ‘close’ com-
mand, it then goes into a CLOSED state. Querying the node state then displays the state UP/CLOSED.
It remains in that CLOSED state when the node is powered down. Querying the node state after
being powered down displays DOWN/CLOSED. Next, powering up the node from that state, and hav-
ing it go through the boot process, has the node displaying various CLOSED states during queries.
Typically the query responses show it transitioning from DOWN/CLOSED, to INSTALLING/CLOSED, to
INSTALLER_CALLINGINIT/CLOSED, and ending up displaying the UP/CLOSED state.

Thus, a node set to a CLOSED state remains in a CLOSED state regardless of whether the node is in
an UP or DOWN state. The only way out of a CLOSED state is for the administrator to tell the node to
open via the cmsh “open” option discussed earlier. The node, as far as CMDaemon is concerned,
then switches from the CLOSED state to the OPEN state. Whether the node listens or not does not
matter—the head node records it as being in an OPENING state for a short time, and during this
time the next OPEN state (UP/OPEN, DOWN/OPEN, etc.) is agreed upon by the head node and the node.

When querying the state of a node, an OPEN tag is not displayed in the response, because it is the
“standard” state. For example, UP is displayed rather than UP/OPEN. In contrast, a CLOSED tag is
displayed when it is active, because it is a “special” state.

The CLOSED state is normally set to take a node that is unhealthy out of the cluster management
system. The node can then still be in the UP state, displaying UP/CLOSED. It can even continue
running workload jobs in this state, since workload managers run independent of CMDaemon.
So, if the workload manager is still running, the jobs themselves are still handled by the workload
manager, even if CMDaemon is no longer aware of the node state until the node is re-opened. For
this reason, draining a node is often done before closing a node, although it is not obligatory.

• OPENING. This transitional state is entered as soon as the CMDaemon of the node rescinds the
CLOSED state with an “open” command from cmsh. The state usually lasts no more than about 5
seconds, and never more than 30 seconds in the default configuration settings of BCM. The help

text for the open command of cmsh gives details on its options.

• INSTALLER_FAILED. This state is entered from the INSTALLING state when the node-installer has
detected an unrecoverable problem during the boot process. For instance, it cannot find the
local drive, or a network interface cannot be started. This state can also be entered from the

3power control mechanisms such as PDUs, custom power scripts, and BMCs using IPMI/HP iLO/DRAC/CIMC/Redfish, are
described in Chapter 4

272 Node Provisioning

INSTALLER_CALLINGINIT state when the node takes too long to enter the UP state. This could
indicate that handing over control to the local init process failed, or the local init process was
not able to start the CMDaemon on the node. Lastly, this state can be entered when the previous
state was INSTALLER_REBOOTING and the reboot takes too long.

• INSTALLER_UNREACHABLE. This state is entered from the INSTALLING state when the head node
CMDaemon can no longer ping the node. It could indicate the node has crashed while running
the node-installer.

• INSTALLER_REBOOTING. In some cases the node-installer has to reboot the node to load the correct
kernel. Before rebooting it sets this state. If the subsequent reboot takes too long, the head node
CMDaemon sets the state to INSTALLER_FAILED.

5.6 Updating Running Nodes
Updating Running Nodes From A Stored Image By Rebooting
Changes made to the contents of the software image for nodes, kept on the head node, become a part of
any other provisioning nodes according to the housekeeping system on the head node (section 5.2.4).

Thus, when a regular node reboots, the latest image is installed from the provisioning system onto
the regular node via a provisioning request (section 5.4.7).

Updating Running Nodes From A Stored Image Without Rebooting
However, updating a running node with the latest software image changes is also possible without
rebooting it. Such an update can be requested using cmsh or Base View, and is queued and dele-
gated to a provisioning node, just like a regular provisioning request. The properties that apply to
the regular provisioning of an image also apply to such an update. For example, the value of the
provisioninginterface setting (section 5.4.7) on the node being updated determines which interface
is used to receive the image.

• In cmsh the request is submitted with the imageupdate option (section 5.6.2).

• In Base View, it is submitted, for a node node001 for example, using the navigation path:

Devices > Nodes[node001] > Edit > Software image > Update node (section 5.6.3).

The imageupdate command and “Update node” menu option use a configuration file called
excludelistupdate, which is, as its name suggests, a list of exclusions to the update.

The running node is thus updated from a stored image with the help of that configuration file when
imageupdate or “Update node” are run. More details are given in the rest of this section (section 5.6).

Updating A Stored Image From A Running Node
The converse, that is, to update a stored image from what is on a running node, can be also be carried
out. This converse can be viewed as grabbing from a node, and synchronizing what is grabbed, to an
image. It can be done using grabimage (cmsh), or Grab to image (Base View), and involves further
exclude lists excludelistgrab or excludelistgrabnew. The grabimage command and Grab to image

option are covered in detail in section 9.5.2.

5.6.1 Updating Running Nodes: Configuration With excludelistupdate

The exclude list excludelistupdate used by the imageupdate command is defined as a property of the
node’s category. It has the same structure and rsync patterns syntax as that used by the exclude lists for
provisioning the nodes during installation (section 5.4.7).

5.6 Updating Running Nodes 273

Distinguishing Between The Intention Behind The Various Exclude Lists
The administrator should note that it is the excludelistupdate list that is being discussed here, in con-
trast with the excludelistsyncinstall/excludelistfullinstall lists which are discussed in section 5.4.7,
and also in contrast with the excludelistgrab/excludelistgrabnew lists of section 9.5.2.

So, for the imageupdate command the excludelistupdate list concerns an update to a run-
ning system, while for installation sync or full provisioning, the corresponding exclude lists
(excludelistsyncinstall and excludelistfullinstall) from section 5.4.7 are about an install during
node start-up. Because the copying intention during updates is to be speedy, the imageupdate command
synchronizes files rather than unnecessarily overwriting unchanged files. Thus, the excludelistupdate
exclusion list it uses is actually analogous to the excludelistsyncinstall exclusion list used in the sync
case of section 5.4.7, rather than being analogous to the excludelistfullinstall list.

Similarly, the excludelistgrab/excludelistgrabnew lists of section 9.5.2 are about a grab from the
running node to the image.

• The excludelistgrab list here is intended for the case of synchronizing the existing image with
the running node, and is thus analogous to the excludelistsyncinstall exclusion list.

• The excludelistgrabnew list here is intended for the case of copying a full image from the running
node, and is thus analogous to the excludelistfullinstall list.

The following table summarizes this:

During: Exclude list used is: Copy intention:

update excludelistupdate sync, image to running node

install
excludelistfullinstall full, image to starting node

excludelistsyncinstall sync, image to starting node

grab
excludelistgrabnew full, running node to image

excludelistgrab sync, running node to image

The preceding table is rather terse. It may help to understand it if is expanded with some in-place
footnotes, where the footnotes indicate what actions can cause the use of the exclude lists:

274 Node Provisioning

During: Exclude list used is: Copy intention:

update
excludelistupdate sync, image to running node

eg: imageupdate

install excludelistfullinstall full, image to starting node

eg: node-provisioning eg: node provisioning

process during pre- with installmode FULL

init stage depending

on installmode decision excludelistsyncinstall sync, image to starting node

eg: node provisioning AUTO

with healthy partition

grab excludelistgrabnew full, running node to image

eg: grabimage (cmsh), grabimage -i/Grab to image for a new image

Grab to image

(Base View) excludelistgrab sync, running node to image

grabimage/Grab to image for the original image

The Exclude List Logic For excludelistupdate
During an imageupdate command, the synchronization process uses the excludelistupdate list, which
is a list of files and directories. One of the cross checking actions that may run during the synchroniza-
tion is that the items on the list are excluded when copying parts of the filesystem from a known good
software image to the node. The detailed behavior is as follows:

The exludelistupdate list is in the form of two sublists. Both sublists are lists of paths, except that
the second sublist is prefixed with the text “no-new-files: ” (without the double quotes). For the node
being updated, all of its files are looked at during an imageupdate synchronization run. During such a
run, the logic that is followed is:

• if an excluded path from excludelistupdate exists on the node, then nothing from that path is
copied over from the software image to the node

• if an excluded path from excludelistupdate does not exist on the node, then

– if the path is on the first, non-prefixed list, then the path is copied over from the software
image to the node.

– if the path is on the second, prefixed list, then the path is not copied over from the software
image to the node. That is, no new files are copied over, like the prefix text implies.

This is illustrated by figure 5.17.

5.6 Updating Running Nodes 275

 COPY sublist 1
...
FOO
BAR
...

sublist 2
...
no new files: BAZ
...

 COPY

FOO FOO

BAR

BAZ

BAR

BAZ

BAR

FOO

No change

New file

No new file

excludelistupdate What happens to files on nodes

For files already on the node:

For files not already on the node:

R
esult

XX
X

Figure 5.17: Exclude list logic

The files and directories on the node that are not in the sub-lists lose their original contents, and are
copied over from the software image. So, content not covered by the sub-lists at that time is normally
not protected from deletion.

Thus, the provisioning system excludes paths described according to the excludelistupdate prop-
erty.

The provisioning system also excludes a statically-imported filesystem on a node if the filesystem
is a member of the following special list: NFS, Lustre, FUSE, CephFS, CIFS, PanFS, FhGFS, BeeGFS,
GlusterFS, or GPFS. If this exclusion were not done, then all data on these imported filesystems would

276 Node Provisioning

be wiped, since they are not part of the software image. The automatic exclusion for these imported
filesystems does not rely on the excludelist values maintained by CMDaemon—instead, CMDaemon
carries out the check on-the-fly when provisioning starts.

Statically-imported filesystems that have their mounts managed by BCM via the fsmounts mode
can be excluded from being mounted on the nodes in the first place, by removing them from the listed
mounts within the fsmounts mode.

Imported filesystems not on the special list can have their data wiped out during provisioning or
sync updates, if the statically-imported filesystems are placed in the image manually—that is, if the
filesystems are mounted manually into the image on the head node via /etc/fstab without using cmsh

or Base View.

Filesystems mounted dynamically cannot have their appearance or disappearance detected reliably:
Any filesystem that may be imported via an auto-mount operation must therefore explicitly be excluded
by the administrator manually adding the filesystem to the exclude list. This is to prevent an incor-
rect execution of imageupdate. Neglecting to do this may wipe out the filesystem, if it happens to be
mounted in the middle of an imageupdate operation.

The fstab system is a statically mounting system, and not an auto-mounter: While fstab mounts
filesystems automatically, system administrators should not confuse that with auto-mounting. Auto-
mounting as provided by autofs is designed for the dynamic mounting of filesystems on demand by
regular users. The fstab table is designed for mounting as carried out by the system, as occurs during
boot, which is why it is regarded as a static, non-auto-mounting system.

Editing An Exclude List
A sample cmsh one-liner which opens up a text editor in a category so that the exclude list for updates
can be edited is:

cmsh -c "category use default; set excludelistupdate; commit"

Similarly, the exclude list for updates can also be edited in Base View via the navigation path:
Grouping > Node categories > Edit > Settings > Exclude list update

Provisioning Modifications Via excludelistmanipulatescript

Sometimes the administrator has a need to slightly modify the execution of exclude lists during pro-
visioning. The excludelistmanipulatescript file takes as an input the exclude list inherited from a
category, modifies it in some way, and then produces a new exclude list. Conceptually it is a bit like how
an administrator might use sed if it worked without a pipe. As usual, setting it for node level overrides
the category level.

A script that manipulates the exclude lists of a node can be specified as follows within cmsh:

[basecm11]% device use node001

[basecm11->device[node001]]% set excludelistmanipulatescript

(a vi session will start. A script is edited and saved)
[basecm11->device[node001*]]% commit

The script can be as simple as:

Example

#!/bin/bash

echo "- *"

echo 'no-new-files: - *'

5.6 Updating Running Nodes 277

If provisioning a node from the head node, then the script modifies the node-provisioning exclude
lists—excludelistfullinstall, excludelistsyncinstall, and excludelistupdate—so that they ap-
pear to contain these items only:

- *

no-new-files: - *

The provisioning node then excludes everything during provisioning.
Careful editing and testing of the script is advised. Saving a script with just a single whitespace, for

example, usually has undesirable results.
A more useful script template is the following:

Example

#!/bin/bash

while read; do

echo "$REPLY"

done

echo "# This and next line added by category excludelistmanipulatescript."

echo "# The command line arguments were: $@"

The provisioning exclude lists are simply read in, then sent out again without any change, except
that the last two lines add comment lines to the exclude lists that are to be used.

Internally, the arguments taken by the excludelistmanipulatescript are the destination path and
the sync mode (one of install|update|full|grab|grabnew). This can be seen in the output of $@, if
running an imageupdate command to execute a dry run with the preceding example:

[basecm11]% device use node001

[basecm11->device[node001]]% get excludelistmanipulatescript

(the script is put in)

[basecm11->device[node001*]]% commit; imageupdate

Performing dry run (use synclog command to review result, then pass -w to perform real update)...

Wed Apr 15 04:55:46 2015 [notice] basecm11: Provisioning started: sendi\
ng basecm11:/cm/images/default-image to node001:/, mode UPDATE, dry run\
= yes, no data changes!

[basecm11->device[node001]]%

Wed Apr 15 04:55:51 2015 [notice] basecm11: Provisioning completed: sen\
t basecm11:/cm/images/default-image to node001:/, mode UPDATE, dry run \
= yes, no data changes!

imageupdate [COMPLETED]

An excerpt from the sync log, after running the synclog command, then shows output similar to
(some output elided):

...

- /cm/shared/*

- /cm/shared/

- /home/*

- /home/

- /cm/shared/apps/slurm/*

- /cm/shared/apps/slurm/

This and next line added by category excludelistmanipulatescript.

The command line arguments were: update /

278 Node Provisioning

Rsync output:

sending incremental file list

cm/local/apps/cmd/scripts/healthchecks/configfiles/

...

Here, the sync mode is update and the destination path is “/”. Which of the exclude lists is being
modified can be determined by the excludelistmanipulatescript by parsing the sync mode.

The bash variable that accepts the exclude list text is set to a safely-marked form using curly braces.
This is done to avoid expansion surprises, due to wild card characters in the exclude lists. For example,
if $REPLY were used instead of ${REPLY}, and the script were to accept an exclude list line containing “-
/proc/*”, then it would give quite confusing output.

Other Exclude List Handling Options
The excludelistfailover and excludelistnormal files: are two further exclude list files that modify
standard provisioning behavior. These are discussed in section 15.4.8.

The excludelistsnippets tool: When synchronizing to a cloud director, or to an edge director, it is
sometimes useful to exclude unneeded files and paths from the synchronization, in order to speed it up.
The excludelistsmanipulatescript tool is powerful enough to do it, but it has some issues due to its
power. For example, it is a script, which means that it is called whenever it is used, and so uses up some
extra resources. Also, it is a bit tricky to set up.

An easier way to manipulate exclude lists for the unneeded files and paths is via the
excludelistsnippets tool, described in section 4.3.1 of the Cloudbursting Manual. This tool allows
additional exclusion to be specified in a simpler way.

The provisioningassociations mode: Somewhat related to excludelistsnippets is the use of the
provisioningassociations mode. This is described in section 4.3.2 of the Cloudbursting Manual. This
mode is used to modify some properties of provisioned file systems.

Exclude List State At Node Level
Exclude lists at category level and node level: An exclude list can be set at node level, as well as at
category level. Roles and overlays can add implied exclude lists too.

At category level, an exclude list such as excludelistfullinstall can be set up explicitly with:

Example

[basecm11->category[default]]% set excludelistfullinstall

...a text editor such as vi opens up and the list can be edited...
[basecm11->category*[default*]]% commit

At node level, an exclude list can be set in the same way:

Example

[basecm11->device[node001]]% set excludelistfullinstall

...a text editor such as vi opens up and the list can be edited...
[basecm11->device*[node001*]]% commit

An exclude list that is not empty at node level overrules its corresponding category list. Exclude lists
brought in via roles are however simply included in the exclude list.

5.6 Updating Running Nodes 279

The excludelist command: At node level it can be unclear what the resulting exclude list (“opera-
tional exclude list”) actually is. The exclude list state at node level can therefore be viewed using the
excludelist command options. The excludelist command becomes active if a software image has
been set at the node level.

• The list option to excludelist lists the source and destination paths:

Example

[basecm11->device[node001]]% excludelist list

Source path (on the head node) Destination path (on the node)

-------------------------------- --------------------------------

/cm/images/default-image /

• The get option to the excludelist command has synchronization mode and destination subop-
tions for a node.

Earlier on (page 273), the intention behind the various exclude lists, according to the type of update
or synchronization, were distinguished.

The excludelist get command can have a destination path specified, and have the type of up-
date or synchronization specified according to those distinguishing concepts.

The output to the excludelist get command then shows the operational exclude list as seen by
a node for that path and for that update or synchronization.

Thus, for example:

– The full install operational exclude list for the path / on node node001, intended for a full
installation to a node that is starting up, can be found as follows:

Example

[basecm11->device[node001]]% excludelist get full /

For details on the exclude patterns defined here please refer to

the FILTER RULES section of the rsync man page.

#

Files that match these patterns will not be installed onto the node.

- lost+found/

- /proc/*

- /sys/*

- /boot/efi

extra defaults

- /proc/*

- /sys/*

– Similarly, the sync install operational exclude list for the path / on node node001, intended
for a sync installation to a node that is starting up, can be found as follows:

[basecm11->device[node001]]% excludelist get sync /

For details on the exclude patterns defined here please refer to

the FILTER RULES section of the rsync man page.

#

Files that exist on a node and match one of these patterns will not be

modified or deleted. Any files that match one of these patterns and that

280 Node Provisioning

exist in the image but are absent on the node, will be copied to the node.

- /.autofsck

- /boot/grub*/grub.cfg

- /cm/local/apps/openldap/etc/certs/ldap.key

- /cm/local/apps/openldap/etc/certs/ldap.pem

- /data/*

- /home/*

...

– Other excludelist get options, besides full and sync, are:

* grab (a grab from a running node for a sync back to an existing image)

* grabnew (a grab from a running node for a full install to a new image)

* update (a sync update of a running node from an image).

All excludelist get options correspond to the intentions of the associated exclude list types
as distinguished on page 273.

5.6.2 Updating Running Nodes: With cmsh Using imageupdate

Using a defined excludelistupdate property (section 5.6.1), the imageupdate command of cmsh is used
to start an update on a running node:

Example

[basecm11->device]% imageupdate -n node001

Performing dry run (use synclog command to review result, then pass -w to perform real update)...

Tue Jan 11 12:13:33 2011 basecm11: Provisioning started on node node001

[basecm11->device]% imageupdate -n node001: image update in progress ...

[basecm11->device]%

Tue Jan 11 12:13:44 2011 basecm11: Provisioning completed on node node001

By default the imageupdate command performs a dry run, which means no data on the node is
actually written. Before passing the “-w” switch, it is recommended to analyze the rsync output using
the synclog command (section 5.4.7).

If the user is now satisfied with the changes that are to be made, the imageupdate command is
invoked again with the “-w” switch to implement them:

Example

[basecm11->device]% imageupdate -n node001 -w

Provisioning started on node node001

node001: image update in progress ...

[basecm11->device]% Provisioning completed on node node001

5.6.3 Updating Running Nodes: With Base View Using the Update node Option
In Base View, an image update can be carried out by selecting the specific node or category, for example
node001, and updating it via the navigation path:
Devices > Nodes[node001] > Edit > Software image > Update node

5.6.4 Updating Running Nodes: Considerations
An attempt to update the image on a running node can run into some issues:

• Updating an image via cmsh or Base View automatically updates the provisioners first via the
updateprovisioners command (section 5.2.4) if the provisioners have not been updated in the last
5 minutes. The conditional update period can be set with the dirtyautoupdatetimeout parameter
(section 5.2.4).

5.7 Adding New Nodes 281

So, with the default setting of 5 minutes, if there has been a new image created within the last 5
minutes, then provisioners do not get the updated image when doing the updates, which means
that nodes in turn do not get those updates. Running the updateprovisioners command just
before running the imageupdate command therefore usually makes sense.

• By default, BCM does not allow provisioning if automount (page 864) is running.

• Also, when updating services, the services on the nodes may not restart since the init process
may not notice the replacement.

For these reasons, especially for more extensive changes, it can be safer for the administrator to simply
reboot the nodes instead of using imageupdate to provision the images to the nodes. A reboot by default
ensures that a node places the latest image with an AUTO install (section 5.4.7), and restarts all services.

The Reinstall node option, which can be run, for example, on a node node001, using a navigation
path of Devices > Nodes[node001] > Edit > Software image > Reinstall node also does the same as a
reboot with default settings, except for that it unconditionally places the latest image with a FULL install,
and so may take longer to complete.

5.7 Adding New Nodes
How the administrator can add a single node to a cluster is described in section 1.3 of the Installation
Manual. This section explains how nodes can be added in ways that are more convenient for larger
numbers of nodes.

5.7.1 Adding New Nodes With cmsh And Base View Add Functions
Node objects can be added from within the device mode of cmsh by running the add command:

Example

[basecm11->device]% add physicalnode node002 10.141.0.2

[basecm11->device*[node002*]% commit

The Base View equivalent of this is following the navigation path:
Devices > Nodes > ADD > PhysicalNode[Settings] > Hostname

then adding the value node002 to Hostname, and saving it.
When adding the node objects in cmsh and Base View, some values (the MAC addresses for example)

may need to be filled in before the object validates. For regular nodes, there should be an interface and
an IP address for the network that it boots from, as well as for the network that manages the nodes. A
regular node typically has only one interface, which means that the same interface provides boot and
management services. This interface is then the boot interface, BOOTIF, during the pre-init stage, but is
also the management interface, typically eth0 or whatever the device is called, after the pre-init stage.
The IP address for BOOTIF is normally provided via DHCP, while the IP address for the management
interface can be set to a static IP address via cmsh or Base View by the administrator.

Adding new node objects as “placeholders” can also be done from cmsh or Base View. By placehold-
ers, here it is meant that an incomplete node object is set. For example, sometimes it is useful to create a
node object with the MAC address setting unfilled because it is still unknown. Why this can be useful
is covered shortly.

5.7.2 Adding New Nodes With The Node Creation Wizard
Besides adding nodes using the add command of cmsh or the ADD button of Base View as in the preceding
text, there is also a Base View wizard that guides the administrator through the process—the node creation
wizard. This is useful when adding many nodes at a time. It is available via the navigation path:

Devices > Nodes > CREATE NODES

282 Node Provisioning

This wizard should not be confused with the closely-related node identification resource described in
section 5.4.2, which identifies unassigned MAC addresses and switch ports, and helps assign them node
names.

• The node creation wizard creates an object for nodes, assigns them node names, but it leaves the
MAC address field for these nodes unfilled, keeping the node object as a “placeholder”.

• The node identification resource assigns MAC addresses so that node names are associated with a
MAC address.

If a node is left with an unassigned MAC address—that is, in a “placeholder” state—then it means
that when the node starts up, the provisioning system lets the administrator associate a MAC address
and switch port number at the node console for the node. This occurs when the node-installer reaches
the node configuration stage during node boot as described in section 5.4.2. This is sometimes preferable
to associating the node name with a MAC address remotely with the node identification resource.

In the first screen of the node creation wizard, IP address range suggestions are displayed for the new
placeholder nodes. The administrator can override the range. The same screen also allows a category to
be selected for the nodes (figure 5.18).

Figure 5.18: Node Creation Wizard: Setting Interfaces

The remaining screens of the wizard configure the interface assignment and excutes the object cre-
ation. Once the object has been created, node identification (section 5.4.2) can be carried out.

The cmsh equivalent of the node creation wizard is running foreach --clone on a node that is to be
cloned over a node range (section 2.5.5, page 65).

5.8 Troubleshooting The Node Boot Process 283

5.8 Troubleshooting The Node Boot Process
During the node boot process there are several common issues that can lead to an unsuccessful boot.
This section describes these issues and their solutions. It also provides general hints on how to analyze
boot problems.

Before looking at the various stages in detail, the administrator may find that simply updating soft-
ware or firmware may fix the issue. In general, it is recommended that all available updates are deployed
on a cluster.

• Updating software is covered in Chapter 9.

– On the head node, the most relevant software can be updated with yum, zypper, or apt, as
explained in section 9.2. For example, with yum:

Example

yum update cmdaemon node-installer

– Similarly for the software image, the most relevant software can be updated too. This is done
via a procedure involving a chroot installation., as described in section 9.4. If using yum, then
the update can be carried out within the image, <software image>, with:

Example

yum update --installroot=/cm/images/<software image> cmdaemon node-installer-slave

• UEFI or BIOS firmware should be updated as per the vendor recommendation

The various stages that may fail during node boot are now examined.

5.8.1 Node Fails To PXE Boot
Possible reasons to consider if a node is not even starting to network boot (PXE boot for x86 nodes) in
the first place:

• DHCP may not be running. A check can be done to confirm that DHCP is running on the internal
network interface (usually eth0):

[root@basecm11 ~]# ps u -C dhcpd

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 2448 0.0 0.0 11208 436 ? Ss Jan22 0:05 /usr/sbin/dhcpd eth0

This may indicate that Node booting is disabled in Base View (figure 3.5, page 92) and needs to be
enabled. The equivalent in cmsh is to check if the response to:

cmsh -c "network use internalnet; get nodebooting"

needs to be set to yes.

• The DHCP daemon may be “locked down” (section 3.2.1: figure 3.5 and table 3.1). New nodes are
granted leases only after lockdowndhcpd is set to no in cmsh, or Lock down dhcpd is disabled in
Base View for the network.

• A rogue DHCP server may be running. If there are all sorts of other machines on the network the
nodes are on, then it is possible that there is a rogue DHCP server active on it, perhaps on an IP
address that the administrator has forgotten, and interfering with the expected PXE booting. Such
stray DHCP servers should be eliminated.

284 Node Provisioning

– One way to identify the problem is to remove all the connections and switches and just con-
nect the head node directly to a problem node, NIC-to-NIC. This should allow a normal net-
work boot to happen. If a normal network boot then does happen, it indicates the problem is
indeed due to a rogue DHCP server on the more-connected network.

– For a more cerebral approach, which avoids recabling, the nmap utility may be useful.
The nmap utility since version 7.90 can discover and list multiple DHCP servers using its
broadcast-dhcp-discover script. The following session output shows the configuration and
installation of the utility on to node002 on the internal network. It then runs it for the internal
network interface ens3. If it finds a second DHCP server on the network (in this test case
on node001 at 10.141.0.1), then it may show responses in the output similar to the following
(some output ellipsized):

Example

[root@node002 ~]# wget https://nmap.org/dist/nmap-7.90.tgz

...

[root@node002 ~]# tar xvzf nmap-7.90

...

[root@node002 ~]# cd nmap-7.90

[root@node002 nmap-7.90]# make distclean && ./configure --disable-rdma && make

...

[root@node002 nmap-7.90]# ./nmap --script broadcast-dhcp-discover -e ens3

Starting Nmap 7.90 (https://nmap.org) at 2022-09-08 16:55 CEST

Pre-scan script results:

| broadcast-dhcp-discover:

| Response 1 of 2:

| IP Offered: 10.141.163.254

| DHCP Message Type: DHCPOFFER

| Server Identifier: 10.141.0.1

...

| Response 2 of 2:

| IP Offered: 10.141.167.255

| DHCP Message Type: DHCPOFFER

| Server Identifier: 10.141.255.254

...

[root@node002 nmap-7.90]#

• The boot sequence may be set wrongly in the BIOS. The boot interface should normally be set to
be the first boot item in the BIOS.

• The node may be set to boot from UEFI mode. If UEFI mode has a buggy network boot imple-
mentation, then it may fail to network boot. For x86 nodes, setting the node to PXE boot using the
legacy BIOS mode can be tried instead, or perhaps the UEFI firmware can be updated.

• There may a bad cable connection. This can be due to moving the machine, or heat creep, or
another physical connection problem. Firmly inserting the cable into its slot may help. Replacing
the cable or interface as appropriate may be required.

• There may a problem with the switch. Removing the switch and connecting a head node and a
regular node directly with a cable can help troubleshoot this.

Disabling the Spanning Tree Protocol (STP) functions of a managed switch is recommended. With
STP on, nodes may randomly fail to network boot.

• The cable may be connected to the wrong interface. By default, on the head node, for a type 1
network, the first consistent network device name, for example eno1, is normally assigned the

5.8 Troubleshooting The Node Boot Process 285

internal network interface, and the second one, for example en02, is assigned the external network
interface. However, the following possibilities should be considered during troubleshooting:

– The two interfaces can be confused when physically viewing them and a connection to the
wrong interface can therefore be made.

– It is also possible that the administrator has changed the default assignment.

– The interface may have been set by the administrator to follow the network device naming
scheme that has been used prior to RHEL7. Interfaces with names such as eth0 and eth1 on
the head node are suggestive of this. The problem with the pre-RHEL7 scheme is that it can
sometimes lead to network interfaces swapping after reboot, which is why the scheme is no
longer recommended. The workaround for this issue in pre-RHEL7 schemes was to define a
persistent name in the udev ruleset for network interfaces.
From NVIDIA Base Command Manager version 9.0 onward, the default scheme is the con-
sistent network device naming scheme, and it is recommended.

Interface Naming Conventions Post-RHEL7 (Recommended)

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/

Networking_Guide/ch-Consistent_Network_Device_Naming.html describes the consistent
network device scheme for interfaces post-RHEL7. This scheme sets an interface assignment
on iPXE boot for multiple interfaces that is also valid by default during the very first iPXE
boot. This means that an administrator can know which interface is used for provisioning
and can connect the provisioning cable accordingly.
Some care may need to be taken in unusual naming assignments, in order to avoid exceeding
the 16-character limit that Linux has for the naming of network interfaces.

Reverting To The Pre-RHEL7 Interface Naming Conventions (Not Recommended)

To revert to the pre-RHEL7 behavior, the text:

net.ifnames=0 biosdevname=0

can be appended to the line starting with GRUB_CMDLINE_LINUX in /etc/default/grub within
the head node. For this:

* The biosdevname parameter only works if the dev helper is installed. The dev helper
is available from the biosdevname RPM package. The parameter also requires that the
system supports SMBIOS 2.6 or ACPI DSM.

* The net.ifnames parameter is needed if biosdevname is not installed.

Example

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/swap vconsole.keymap=us \

crashkernel=auto rd.lvm.lv=centos/root vconsole.font=latarcyr\

heb-sun16 rhgb quiet net.ifnames=0 biosdevname=0"

A cautious system administrator may back up the original grub.cfg file:

[root@basecm11 ~]# cp --preserve /boot/grub2/grub.cfg /boot/grub2/grub.cfg.orig

The GRUB configuration should be generated with:

[root@basecm11 ~]# grub2-mkconfig -o /boot/grub2/grub.cfg

If for some reason the administrator would like to carry out the pre-RHEL7 naming conven-
tion on a regular node, then the text net.ifnames=0 biosdevname=0 can be appended to the
kernelparameters property, for an image selected from softwareimage mode.

Example

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html
/etc/default/grub

286 Node Provisioning

[basecm11->softwareimage]% list

Name (key) Path

-------------------- ------------------------------

default-image /cm/images/default-image

openstack-image /cm/images/openstack-image

[basecm11->softwareimage]% use default-image

[basecm11->softwareimage[default-image]]% append kernelparame\
ters " net.ifnames=0 biosdevname=0"

[basecm11->softwareimage*[default-image*]]% commit

The append command requires a space at the start of the quote, in order to separate the kernel
parameters from any pre-existing ones.

• The TFTP server that sends out the image may have hung. During a normal run, an output similar
to this appears when an image is in the process of being served:

[root@basecm11 ~]# ps ax | grep [t]ftp

7512 ? Ss 0:03 in.tftpd --maxthread 500 /tftpboot

If the TFTP server is in a zombie state, the head node should be rebooted. If the TFTP service
hangs regularly, there is likely a networking hardware issue that requires resolution.

Incidentally, grepping the process list for a TFTP service returns nothing when the head node
is listening for TFTP requests, but not actively serving a TFTP image. This is because the TFTP
service runs under xinet.d and is called on demand. Running

[root@basecm11 ~]# chkconfig --list

should include in its output the line:

tftp: on

if TFTP is running under xinet.d.

• The switchover process from TFTP to HTTP may have hung. During a normal provisioning run,
assuming that CMDaemon uses the default bootloaderprotocol setting of HTTP, then TFTP is
used to load the initial boot loader, but the kernel and ramdisk are loaded up via HTTP for speed.
Some hardware has problems with switching over to using HTTP.

In that case, setting bootloaderprotocol to TFTP keeps the node using TFTP for loading the kernel
and ramdisk, and should work. Another possible way to solve this is to upgrade the PXE boot
BIOS to a version that does not have this problem.

ARMv8 hardware can boot only via TFTP.

Setting bootloaderprotocol to HTTPS only works for some special hardware.

• VLAN tagging may have been set up incorrectly in the BIOS of the node. VLAN provisioning
(section 5.3.4) requires several changes in VLAN configuration for it to work.

• Sometimes a manufacturer releases hardware with buggy drivers that have a variety of problems.
For instance: Ethernet frames may be detected at the interface (for example, by ethtool), but
TCP/IP packets may not be detected (for example, by wireshark). In that case, the manufacturer
should be contacted to upgrade their driver.

• The interface may have a hardware failure. In that case, the interface should be replaced.

5.8 Troubleshooting The Node Boot Process 287

5.8.2 Node-installer Logging
If the node manages to get beyond the net booting stage to the node-installer stage, then the first place
to look for hints on node boot failure is usually the node-installer log file. The node-installer runs on the
node that is being provisioned, and sends logging output to the syslog daemon running on that node.
This forwards all log data to the IP address from which the node received its DHCP lease, which is
typically the IP address of the head node or failover node. In a default BCM setup, the local5 facility of
the syslog daemon is used on the node that is being provisioned to forward all node-installer messages
to the log file /var/log/node-installer on the head node.

After the node-installer has finished running, its log is also stored in /var/log/node-installer on
the regular nodes.

If there is no node-installer log file anywhere yet, then it is possible that the node-installer is not yet
deployed on the node. Sometimes this is due to a system administrator having forgotten to change a
provisioning-related configuration setting. One possibility is that the nodegroups setting (section 5.2.1),
if used, may be misconfigured. Another possibility is that the image was set to a locked state (sec-
tion 5.4.7). The provisioningstatus -a command can indicate this:

Example

[basecm11->softwareimage]% provisioningstatus -a | grep locked

Scheduler info: requested software image is locked, request deferred

To get the image to install properly, the locked state should be removed for a locked image.

Example

[root@basecm11 ~]# cmsh -c "softwareimage islocked"

Name Locked

-------------- --------

default-image yes

[root@basecm11 ~]# cmsh -c "softwareimage unlock default-image"

[root@basecm11 ~]# cmsh -c "softwareimage islocked"

Name Locked

-------------- --------

default-image no

The node automatically picks up the image after it is unlocked.
Optionally, extra log information can be written by enabling debug logging, which sets the

syslog importance level at LOG_DEBUG. To enable debug logging, the debug field is changed in
/cm/node-installer/scripts/node-installer.conf.

For the node-installer.conf file in multidistro and multiarch (section 9.7) configurations, the di-
rectory path /cm/node-installer takes the form:

/cm/node-installer-<distribution>-<architecture>
The values for <distribution> and <architecture> can take the values outlined on page 524.

From the console of the booting node the log file is generally accessible by pressing Alt+F7 on the
keyboard. Debug logging is however excluded from being viewed in this way, due to the output volume
making this impractical.

A booting node console can be accessed remotely if Serial Over LAN (SOL) is enabled (section 14.7),
to allow the viewing of console messages directly. A further depth in logging can be achieved by setting
the kernel option loglevel=N, where N is a number from 0 (KERN_EMERG) to 7 (KERN_DEBUG).

One possible point at which the node-installer can fail on some hardware is if SOL (section 14.7)
is enabled in the BIOS, but the hardware is unable to cope with the flow. The installation can freeze
completely at that point. This should not be confused with the viewing quirk described in section 14.7.4,
even though the freeze typically appears to take place at the same point, that point being when the
console shows “freeing unused kernel memory” as the last text. One workaround to the freeze would
be to disable SOL.

288 Node Provisioning

5.8.3 Provisioning Logging
The provisioning system sends log information to the CMDaemon log file. By default this is in
/var/log/cmdaemon on the local host, that is, the provisioning host. The host this log runs on can be
configured with the CMDaemon directive SyslogHost (Appendix C).

The image synchronization log file can be retrieved with the synclog command (page 263) running
from device mode in cmsh. Hints on provisioning problems are often found by looking at the tail end of
the log.

If the tail end of the log shows an rsync exit code of 23, then it suggests a transfer error. Sometimes
the cause of the error can be determined by examining the file or filesystem for which the error occurs.
For the rsync transport, logs for node installation are kept under /var/spool/cmd/, with a log written
for each node during provisioning. The name of the node is set as the prefix to the log name. For
example node002 generates the log:

/var/spool/cmd/node002-\.rsync

5.8.4 Ramdisk Fails During Loading Or Sometime Later
One issue that may come up after a software image update via yum, zypper, or apt (section 9.4), is
that the ramdisk stage may fail during loading or sometime later, for a node that is rebooted after the
update. This occurs if there are instructions to modify the ramdisk by the update. In a normal machine
the ramdisk would be regenerated. In a cluster, the extended ramdisk that is used requires an update,
but BCM is not aware of this. Running the createramdisk command from cmsh or the Recreate Initrd

command via the Base View navigation paths:

• Devices > Nodes > Edit > Kernel > Recreate Initrd

• Grouping > Node Categories > Edit > Kernel > Recreate Initrd

• Provisioning > Software Images > Edit > Recreate Initrd

(section 5.3.2) generates an updated ramdisk for the cluster, and solves the failure for this case.

Another, somewhat related possible cause of a halt at this stage, is that the kernel modules that are
to be loaded may have been specified at a wrongly by the administrator in the hierarchy of software
image, category, or node (page 233). A check of the kernel modules specified in softwareimage mode,
category mode, or device mode (for the particular node) may reveal a misconfiguration.

5.8.5 Ramdisk Cannot Start Network
The ramdisk must activate the node’s network interface in order to fetch the node-installer. To activate
the network device, the correct kernel module needs to be loaded. If this does not happen, booting fails,
and the console of the node displays something similar to figure 5.19.

/var/spool/cmd/

5.8 Troubleshooting The Node Boot Process 289

Figure 5.19: No Network Interface

To solve this issue the correct kernel module should be added to the software image’s kernel module
configuration (section 5.3.2). For example, to add the e1000 module to the default image using cmsh:

Example

[mc]% softwareimage use default-image

[mc->softwareimage[default-image]]% kernelmodules

[mc->softwareimage[default-image]->kernelmodules]% add e1000

[mc->softwareimage[default-image]->kernelmodules[e1000]]% commit

Initial ramdisk for image default-image was regenerated successfully

[mc->softwareimage[default-image]->kernelmodules[e1000]]%

After committing the change it typically takes about a minute before the initial ramdisk creation is
completed via a mkinitrd run by CMDaemon.

5.8.6 Node-Installer Cannot Create Disk Layout
When the node-installer is not able to create a drive layout it displays a message similar to figure 5.20.
The node-installer log file (section 5.8.2) contains something like:

Mar 24 13:55:31 10.141.0.1 node-installer: Installmode is: AUTO

Mar 24 13:55:31 10.141.0.1 node-installer: Fetching disks setup.

Mar 24 13:55:31 10.141.0.1 node-installer: Checking partitions and

filesystems.

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev/sda /dev/hda).

Mar 24 13:55:32 10.141.0.1 node-installer: Partitions and/or filesystems

are missing/corrupt. (Exit code 4, signal 0)

Mar 24 13:55:32 10.141.0.1 node-installer: Creating new disk layout.

290 Node Provisioning

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/sda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Detecting device '/dev/hda':

not found

Mar 24 13:55:32 10.141.0.1 node-installer: Can not find device(s) (/dev/sda /dev/hda).

Mar 24 13:55:32 10.141.0.1 node-installer: Failed to create disk layout.

(Exit code 4, signal 0)

Mar 24 13:55:32 10.141.0.1 node-installer: There was a fatal problem. This node can not be\

installed until the problem is corrected.

Figure 5.20: No Disk

Disk layout failures can have several reasons.

BIOS And Order Issues
One reason may be that the drive may be disabled in the BIOS. It should be enabled.

Another reason may be that the drive order was changed. This could happen if, for example, a
defective motherboard has been replaced. The drive order should be kept the same as it was before a
motherboard change.

Read-only Mode Issues
Another reason may be due to SSDs that have a hardware jumper or toggle switch that sets a drive to
read-only mode. A read-only mode drive will typically fail at this point. The drive should be made
writeable.

Hardware Issues
If the node-installer log for the node shows lines with the text Input/output error, then it generally
indicates a hardware issue. Possible hardware issues include:

• a drive failure

• a faulty cable between storage and controller

5.8 Troubleshooting The Node Boot Process 291

• a faulty storage controller

• a faulty backplane in the server

If the node has enough RAM, then it is possible to boot up the node up as a diskless node, to carry out
further diagnosis with disk tools such as smartmontools.

Software Driver Issues
One of the most common software issues is that the correct storage driver is not being loaded. To
solve this issue, the correct kernel module should be added to the software image’s kernel module
configuration (section 5.3.2).

Experienced system administrators work out what drivers may be missing by checking the results
of hardware probes. For example, going into the node-installer shell using Alt-F2, and then looking at
the output of lspci, shows a list of hardware detected in the PCI slots and gives the chipset name of the
storage controller hardware in this case:

Example

[<installer> root@node001 ~]# lspci | grep SCSI

00:10.0 Serial Attached SCSI controller: LSI Logic / Symbios Logic SAS2\
008 PCI-Express Fusion-MPT SAS-2 [Falcon] (rev 03)

The next step is to Google with likely search strings based on that output.
The Linux Kernel Driver DataBase (LKDDb) is a hardware database built from kernel sources that

lists driver availability for Linux. It is available at http://cateee.net/lkddb/. Using the Google search
engine’s “site” operator to restrict results to the cateee.net web site only, a likely string to try might
be:

Example

SAS2008 site:cateee.net

The search result indicates that the mpt2sas kernel module needs to be added to the node kernels. A
look in the modules directory of the software image shows if it is available:

Example

find /cm/images/default-image/lib/modules/ -name "*mpt2sas*"

If it is not available, the driver module must then be obtained. If it is a source file, it will need to
be compiled. By default, nodes run on standard distribution kernels, so that only standard procedures
need to be followed to compile modules.

If the module is available, it can be added to the default image, by using cmsh in softwareimage

mode to create the associated object. The object is given the same name as the module, i.e. mp2sas in
this case:

Example

[basecm11]% softwareimage use default-image

[basecm11->softwareimage[default-image]]% kernelmodules

[basecm11->softwareimage[default-image]->kernelmodules]% add mpt2sas

[basecm11->softwareimage[default-image]->kernelmodules*[mpt2sas*]]% commit

[basecm11->softwareimage[default-image]->kernelmodules[mpt2sas]]%

Thu May 19 16:54:52 2011 [notice] basecm11: Initial ramdisk for image de\
fault-image is being generated

[basecm11->softwareimage[default-image]->kernelmodules[mpt2sas]]%

Thu May 19 16:55:43 2011 [notice] basecm11: Initial ramdisk for image de\
fault-image was regenerated successfully.

[basecm11->softwareimage[default-image]->kernelmodules[mpt2sas]]%

http://cateee.net/lkddb/

292 Node Provisioning

After committing the change it can take some time before ramdisk creation is completed—typically
about a minute, as the example shows. Once the ramdisk is created, the module can be seen in the list
displayed from kernelmodules mode. On rebooting the node, it should now continue past the disk
layout stage.

5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface
In some cases the node-installer is not able to configure a node’s BMC interface, and displays an error
message similar to figure 5.21.

Figure 5.21: No BMC Interface

Usually the issue can be solved by adding the correct BMC (IPMI/iLO) kernel modules to the soft-
ware image’s kernel module configuration. However, in some cases the node-installer is still not able to
configure the BMC interface. If this is the case the BMC probably does not support one of the commands
the node-installer uses to set specific settings, or there may be a hardware glitch in the BMC.

The setupBmc Node-Installer Configuration Setting
To solve this issue, setting up BMC interfaces can be disabled globally by setting the setupBmc field
to false in the node-installer configuration file /cm/node-installer/scripts/node-installer.conf

(for multiarch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf).

Doing this disables configuration of all BMC interfaces by the node-installer. A custom finalize

script (Appendix E) can then be used to run the required commands instead.
The setupBmc field in the node-installer should not be confused with the SetupBMC directive in

cmd.conf (Appendix C). The former is about enabling the BMC interface, while the latter is about en-
abling automated passwords to the BMC interface (an interface that must of course be enabled in the
first place to work).

The failOnMissingBmc Node-Installer Configuration Setting
If the kernel modules for the BMC are loaded up correctly, and the BMC is configured, but it is not
detected by the node-installer, then the node-installer halts by default. This corresponds to the set-

/cm/node-installer/scripts/node-installer.conf

5.8 Troubleshooting The Node Boot Process 293

ting failOnMissingBmc = true in the node-installer configuration file /cm/node-installer/scripts/

node-installer.conf. Toggling this to false skips BMC network device detection, and lets the node-
installer continue past the BMC detection and configuration stage. This can be convenient, for example,
if the BMC is not yet configured and the aim is to get on with setting up the rest of the cluster.

The failOnFailedBmcCommand Node-Installer Configuration Setting
If a BMC command fails, then the node-installer by default terminates node installation. The idea behind
this is to allow the administrator to fix the problem. Sometimes, however, hardware can wrongly signal
a failure. That is, it can signal a false failure, as opposed to a true failure.

A common case is the case of ipmitool. ipmitool is used by BCM to configure the BMC. With
most hardware vendors it works as expected, signaling success and failure correctly. As per the default
behavior: with success, node installation proceeds, while with failure, it terminates.

With certain hardware vendors however ipmitool fails with an exit code 1, even though the BMC
is properly configured. Again, as per the default behavior: success has node installation proceed, while
failure has node installation terminate. Only this time, because the failure signal is incorrect, the termi-
nation on failure is also incorrect behavior.

To get around the default behavior for false failure cases, the administrator can force
the node-installer to set the value of failOnFailedBmcCommand to false in the node-
installer configuration file /cm/node-installer/scripts/node-installer.conf (for multi-
arch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf). The installation then skips past the false failure.

BMC Hardware Glitch And Cold Reset
Sometimes, typically due to a hardware glitch, a BMC can get into a state where it is not providing
services, but the BMC is still up (responding to pings). Contrariwise, a BMC may not respond to pings,
but still respond to IPMI commands. A fix for such glitchy states is usually to power cycle the BMC.
This is typically done, either physically, or by using a BMC management tool such as ipmitool.

Physically resetting the power supply to the BMC is done typically by pulling the power cable out
and then pushing it in again. For typical rack-based servers the server can just be pulled out and in
again. Just doing a shutdown of the server with the power cable still in place normally does not power
down the BMC.

BMC management does allow the BMC to power down and be reset from software, without having
to physically handle the server. This software-based cold reset is a BIOS-manufacturer-dependent feature.
A popular tool used for managing BMCs that can do such a cold reset is ipmitool. This can be run
remotely, but also on the node console if the node cannot be reached remotely.

With ipmitool, a cold reset is typically carried out with a command such as:

[root@basecm11 ~]# module load ipmitool

[root@basecm11 ~]# ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> -I lanplus mc reset cold

The values for <bmcusername> and <bmcpassword> can be obtained as shown in section 3.7.2.

BMC Troubleshooting With The System Event Log
The System Event Log (SEL) can be read with:

[root@basecm11 ~]# module load ipmitool

[root@basecm11 ~]# ipmitool -U <bmcusername> -P <bmcpassword> -H <host IP> -I lanplus sel list

The timestamped output can be inspected for errors related to the CPU, ECC, or memory.

Other BMC Troubleshooting
Some more specific commands for handling IPMI might be via the service ipmi <option> commands,
which can show the IPMI service has failed to start up:

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf

294 Node Provisioning

Example

[root@basecm11 ~]# service ipmi status

Redirecting to /bin/systemctl status ipmi.service

ipmi.service - IPMI Driver

Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)

Active: inactive (dead)

In the preceding session the driver has simply not been started up. It can be started up with the start

option:

Example

[root@basecm11 ~]# service ipmi start

Redirecting to /bin/systemctl start ipmi.service

Job for ipmi.service failed because the control process exited with error code. See "systemctl\
status ipmi.service" and "journalctl -xe" for details.

In the preceding session, the start up failed. The service status output shows:

Example

[root@basecm11 ~]# service ipmi status -l

Redirecting to /bin/systemctl status -l ipmi.service

ipmi.service - IPMI Driver

Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)

Active: failed (Result: exit-code) since Mon 2016-12-19 14:34:27 CET; 2min 3s ago

Process: 8930 ExecStart=/usr/libexec/openipmi-helper start (code=exited, status=1/FAILURE)

Main PID: 8930 (code=exited, status=1/FAILURE)

Dec 19 14:34:27 basecm11 systemd[1]: Starting IPMI Driver...

Dec 19 14:34:27 basecm11 openipmi-helper[8930]: Startup failed.

Dec 19 14:34:27 basecm11 systemd[1]: ipmi.service: main process exited, code=exited, status=1/\
FAILURE

Dec 19 14:34:27 basecm11 systemd[1]: Failed to start IPMI Driver.

Dec 19 14:34:27 basecm11 systemd[1]: Unit ipmi.service entered failed state.

Dec 19 14:34:27 basecm11 systemd[1]: ipmi.service failed.

Further details can be found in the journal:

Example

[root@basecm11 ~]# journalctl -xe | grep -i ipmi

...

-- Unit ipmi.service has begun starting up.

Dec 19 14:34:27 basecm11 kernel: ipmi message handler version 39.2

Dec 19 14:34:27 basecm11 kernel: IPMI System Interface driver.

Dec 19 14:34:27 basecm11 kernel: ipmi_si: Unable to find any System Interface(s)

Dec 19 14:34:27 basecm11 openipmi-helper[8930]: Startup failed.

...

In the preceding session, the failure is due to a missing BMC interface (Unable to find any System

Interface(s). A configured BMC interface should show an output status similar to:

Example

5.8 Troubleshooting The Node Boot Process 295

[root@basecm11 ~]# service ipmi status

Redirecting to /bin/systemctl status ipmi.service

ipmi.service - IPMI Driver

Loaded: loaded (/usr/lib/systemd/system/ipmi.service; disabled; vendor preset: enabled)

Active: active (exited) since Mon 2016-12-19 14:37:10 CET; 2min 0s ago

Process: 61019 ExecStart=/usr/libexec/openipmi-helper start (code=exited, status=0/SUCCESS)

Main PID: 61019 (code=exited, status=0/SUCCESS)

Dec 19 14:37:10 basecm11 systemd[1]: Starting IPMI Driver...

Dec 19 14:37:10 basecm11 systemd[1]: Started IPMI Driver.

Sometimes the issue may be an incorrect networking specification for the BMC interfaces. MAC and
IP details that have been set for the BMC interface can be viewed with the lan print option to ipmitool

if the service has been started:

Example

[root@basecm11 ~]# module load ipmitool

[root@basecm11 ~]# ipmitool lan print

Set in Progress : Set Complete

Auth Type Support : MD5 PASSWORD

Auth Type Enable : Callback : MD5 PASSWORD

: User : MD5 PASSWORD

: Operator : MD5 PASSWORD

: Admin : MD5 PASSWORD

: OEM :

IP Address Source : Static Address

IP Address : 93.184.216.34

Subnet Mask : 255.255.255.0

MAC Address : aa:bb:01:02:cd:ef

SNMP Community String : public

IP Header : TTL=0x00 Flags=0x00 Precedence=0x00 TOS=0x00

BMC ARP Control : ARP Responses Enabled, Gratuitous ARP Disabled

Gratituous ARP Intrvl : 0.0 seconds

Default Gateway IP : 93.184.216.1

Default Gateway MAC : 00:00:00:00:00:00

Backup Gateway IP : 0.0.0.0

Backup Gateway MAC : 00:00:00:00:00:00

802.1q VLAN ID : Disabled

802.1q VLAN Priority : 0

RMCP+ Cipher Suites : 0,1,2,3,4,6,7,8,9,11,12,13,15,16,17,18

Cipher Suite Priv Max : caaaaaaaaaaaaaa

: X=Cipher Suite Unused

: c=CALLBACK

: u=USER

: o=OPERATOR

: a=ADMIN

: O=OEM

During normal operation the metrics (Appendix G) displayed by BCM are useful. However, if those
are not available for some reason, then the direct output from BMC sensor metrics may be helpful for
troubleshooting:

Example

[root@basecm11 ~]# module load ipmitool

[root@basecm11 ~]# ipmitool sensor list all

296 Node Provisioning

ipmitool sensor list

Ambient Temp | 22.000 | degrees C | ok | na | na | na | 38.000 | 41.000 | 45.000

AVG Power | 300.000 | Watts | ok | na | na | na | na | na | na

Fan 1 Tach | 4125.000 | RPM | ok | na | 750.000 | na | na | na | na

...

6
User Management

Users and groups for the cluster are presented to the administrator in a single system paradigm. That
is, if the administrator manages them with BCM, then the changes are automatically shared across the
cluster (the single system).

BCM runs its own LDAP service to manage users, rather than using unix user and group files. In
other words, users and groups are managed via the centralizing LDAP database server running on the
head node, and not via entries in /etc/passwd or /etc/group files.

Sections 6.1 and 6.2 cover the most basic aspects of how to add, remove and edit users and groups
using BCM.

Section 6.3 describes how an external LDAP server can be used for authentication services instead of
the one provided by BCM.

Section 6.4 discusses how users can be assigned only selected capabilities when using Base View or
cmsh, using profiles with sets of tokens.

6.1 Managing Users And Groups With Base View
Within Base View:

• users can be managed via the navigation path Identity Management > Users

• groups can be managed via the navigation path Identity Management > Groups.

For users (figure 6.1) the LDAP entries for users are displayed. These entries are editable and each user
can then be managed in further detail.

There is already one user on a newly-installed BCM: cmsupport. This user has no password set by
default, which means (section 6.2.2) no logins to this account are allowed by default. BCM uses the user
cmsupport to run various diagnostics utilities, so it should not be removed, and the default contents of
its home directory should not be removed.

The + ADD button allows users to be added via a User parameters window (figure 6.2). The changes
in parameter values can be committed via the SAVE button in the User parameter window.

298 User Management

Figure 6.1: Base View User Management

Figure 6.2: Base View User Management: Add Dialog

When saving an addition or modification:

• User and group ID numbers are automatically assigned from UID and GID 1000 onward.

• A home directory is created and a login shell is set. Users with unset passwords cannot log in.

Group management in Base View is carried out via the navigation path Identity Management >
Groups. Clickable LDAP object entries for regular groups then show up, similar to the user entries
already covered. Management of these entries is done with the same functions as for user management.

6.2 Managing Users And Groups With cmsh 299

6.2 Managing Users And Groups With cmsh

User management tasks as carried out by Base View in section 6.1, can be carried with the same end
results in cmsh too.

A cmsh session is run here in order to cover the functions corresponding to the user management
functions of Base View of section 6.1. These functions are run from within the user mode of cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% user

[basecm11->user]%

6.2.1 Adding A User
This part of the session corresponds to the functionality of the Add button operation in section 6.1. In user
mode, the process of adding a user maureen to the LDAP directory is started with the add command:

Example

[basecm11->user]% add maureen

[basecm11->user*[maureen*]]%

The cmsh utility helpfully drops into the user object just added, and the prompt shows the user name
to reflect this. Going into user object would otherwise be done manually by typing use maureen at the
user mode level.

Asterisks in the prompt are a helpful reminder of a modified state, with each asterisk indicating that
there is an unsaved, modified property at that asterisk’s level.

The modified command displays a list of modified objects that have not yet been committed:

Example

[basecm11->user*[maureen*]]% modified

State Type Name

------ ----------------------- ---------------

+ User maureen

This corresponds roughly to what is displayed by the Unsaved entities icon in the top right corner of
the Base View standard display (figure 10.5).

Running show at this point reveals a user name entry, but empty fields for the other properties of
user maureen. So the account in preparation, while it is modified, is clearly not yet ready for use:

Example

[basecm11->user*[maureen*]]% show

Parameter Value

----------------------------------- --

Accounts

Managees

Name maureen

Primary group

Revision

Secondary groups

ID

Common name

Surname

Group ID

Login shell

300 User Management

Password < not set >

Home directory

Home directory operation yes

Email

Profile

Write ssh proxy config no

Create ssh key no

Disable password ssh no

Allow GPU workload power profiles no

Authorized ssh keys <0B>

Shadow min 0

Shadow max 999999

Shadow warning 7

Shadow inactive 0

Last change 1970/1/1

Expiration date 2038/1/1

Project manager <submode>

Notes <0B>

6.2.2 Saving The Modified State
This part of the session corresponds to the functionality of the SAVE button operation in section 6.1.

In section 6.2.1 above, user maureen was added. maureen now exists as a proposed modification, but
has not yet been committed to the LDAP database.

Running the commit command now at the maureen prompt stores the modified state at the user
maureen object level:

Example

[basecm11->user*[maureen*]]% commit

[basecm11->user[maureen]]% show

Parameter Value

----------------------------------- --

Accounts

Managees

Name maureen

Primary group 1001

Revision

Secondary groups

ID 1001

Common name maureen

Surname maureen

Group ID 1001

Login shell /bin/bash

Password ********

Home directory /home/maureen

Home directory operation yes

Email

Profile

Write ssh proxy config no

Create ssh key no

Disable password ssh no

Allow GPU workload power profiles no

Authorized ssh keys <0B>

Shadow min 0

Shadow max 999999

Shadow warning 7

6.2 Managing Users And Groups With cmsh 301

Shadow inactive 0

Last change 2025/5/20

Expiration date 2038/1/1

Project manager <submode>

Notes <0B>

If, however, commit were to be run at the user mode level without dropping into the maureen object
level, then instead of just that modified user, all modified users would be committed.

When the commit is done, all the empty fields for the user are automatically filled in with defaults
based the underlying Linux distribution used. Also, as a security precaution, if an empty field (that is, a
“not set”) password entry is committed, then a login to the account is not allowed. So, in the example,
the account for user maureen exists at this stage, but still cannot be logged into until the password is set.
Editing passwords and other properties is covered in section 6.2.3.

The default permissions for file and directories under the home directory of the user are defined by
the umask settings in /etc/login.defs, as would be expected if the administrator were to use the stan-
dard useradd command. Setting a path for the homedirectory parameter for a user sets a default home
directory path. By default the default path is /home/<username> for a user <username>. If homedirectory
is unset, then the default is determined by the HomeRoot directive (Appendix C).

6.2.3 Editing Properties Of Users And Groups
This corresponds roughly to the functionality of the Edit operation in section 6.1.

In the preceding section 6.2.2, a user account maureen was made, with an unset password as one of
its properties. Logins to accounts with an unset password are refused. The password therefore needs to
be set if the account is to function.

Editing Users With set And clear

The tool used to set user and group properties is the set command. Typing set and then either using
tab to see the possible completions, or following it up with the enter key, suggests several parameters
that can be set, one of which is password:

Example

[basecm11->user[maureen]]% set

Name:

set - Set specific user property

Usage:

set [OPTIONS] [user] <parameter> <value> [<value> ...]

Options:

-e, --extra

Set an extra free key/value parameter

-v, --vector

Set extra parameter values as a vector even for a single value

-t, --type <type>

Convert extra parameter values, type: [i]nt, [u]unsigned, f[float], d[double]

Arguments:

user name of the user, omit if current is set

Parameters:

name User login (e.g. donald)

id User ID number

/home/

302 User Management

commonname Full name (e.g. Donald Duck)

surname Surname (e.g. Duck)

groupid Base group of this user

loginshell Login shell

homedirectory Home directory

password Password

homedirectoryoperation Set to false to not create or move home directory

shadowmin Minimum number of days required between password changes

shadowmax Maximum number of days for which the user password remains valid.

shadowwarning Number of days of advance warning given to the user before the user password expires

shadowinactive Number of days of inactivity allowed for the user

expirationdate Date on which the user login will be disabled

email Email

profile Profile for Authorization

projectmanager Project manager

notes Administrator notes

writesshproxyconfig . Write ssh proxy config

createsshkey Create ssh key for added users

disablepasswordssh .. Disable password ssh

authorizedsshkeys ... Authorized ssh keys

allowgpuworkloadpowerprofiles Allow changing GPU workload power profiles from jobs

revision Entity revision

[basecm11->user[maureen]]%

Continuing the session from the end of section 6.2.2, the password can be set at the user context
prompt like this:

Example

[basecm11->user[maureen]]% set password seteca5tr0n0my

[basecm11->user*[maureen*]]% commit

[basecm11->user[maureen]]%

At this point, the account maureen is finally ready for use.
The converse of the set command is the clear command, which clears properties:

Example

[basecm11->user[maureen]]% clear password; commit

Setting a password in cmsh is also possible by setting the LDAP hash (the encrypted storage format)
that is generated from the password within cmsh. When setting passwords in cmsh, a string starting with
{MD5}, {CRYPT} or {SSHA} is considered to be the hash of the password:

Example

[root@basecm11 ~]# #first create the LDAP salted SHA-1 hash of the password:
[root@basecm11 ~]# /cm/local/apps/openldap/sbin/slappasswd -h {SSHA} -s seteca5tr0n0my

[root@basecm11 ~]# {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d

[root@basecm11 ~]# cmsh

[basecm11]% user use maureen

[basecm11->user[maureen]]% set password

enter new password: #here and in the next line {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d is typed in
retype new password:

[basecm11->user[maureen]]% commit

[basecm11->user[maureen]]% !ssh maureen@node001 #now will test the password that generated the hash
Warning: Permanently added 'node001' (ECDSA) to the list of known hosts.

6.2 Managing Users And Groups With cmsh 303

maureen@node001's password: #here seteca5tr0n0my is typed in
Creating ECDSA key for ssh

[maureen@node001 ~]$ #successfully logged in with the password associated with the hash

Managing passwords in cmsh via direct LDAP hash entry is not normally done.

Editing Groups With append And removefrom

While the preceding commands set and clear also work with groups, there are two other commands
available which suit the special nature of groups. These supplementary commands are append and
removefrom. They are used to add extra users to, and remove extra users from a group.

For example, it may be useful to have a printer group so that several users can share access to a
printer. For the sake of this example (continuing the session from where it was left off in the preceding),
tim and fred are now added to the LDAP directory, along with a group printer:

Example

[basecm11->user[maureen]]% add tim; add fred

[basecm11->user*[fred*]]% exit; group; add printer

[basecm11->group*[printer*]]% commit

[basecm11->group[printer]]% exit; exit; user

[basecm11->user*]%

The context switch that takes place in the preceding session should be noted: The context of user
maureen was eventually replaced by the context of group printer. As a result, the group printer is
committed, but the users tim and fred are not yet committed, which is indicated by the asterisk at the
user mode level.

Continuing onward, to add users to a group the append command is used. A list of users maureen,
tim and fred can be added to the group printer like this:

Example

[basecm11->user*]% commit

Successfully committed 2 Users

[basecm11->user]% group use printer

[basecm11->group[printer]]% append members maureen tim fred; commit

[basecm11->group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members maureen,tim,fred

To remove users from a group, the removefrom command is used. A list of specific users, for example,
tim and fred, can be removed from a group like this:

[basecm11->group[printer]]% removefrom members tim fred; commit

[basecm11->group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members maureen

The clear command can also be used to clear members—but it also clears all of the extras from the
group:

304 User Management

Example

[basecm11->group[printer]]% clear members

[basecm11->group*[printer*]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members

The commit command is intentionally left out at this point in the session in order to illustrate how
reversion is used in the next section.

6.2.4 Reverting To The Unmodified State
This corresponds roughly to the functionality of the Revert operation in section 6.1.

This section (6.2.4) continues on from the state of the session at the end of section 6.2.3. There, the
state of group printers was cleared so that the extra added members were removed. This state (the
state with no group members showing) was however not yet committed.

The refresh command reverts an uncommitted object back to the last committed state.
This happens at the level of the object it is using. For example, the object that is being handled here is

the properties of the group object printer. Running revert at a higher level prompt—say, in the group

mode level—would revert everything at that level and below. So, in order to affect only the properties
of the group object printer, the refresh command is used at the group object printer level prompt.
It then reverts the properties of group object printer back to their last committed state, and does not
affect other objects:

Example

[basecm11->group*[printer*]]% refresh

[basecm11->group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members maureen

Here, the user maureen reappears because she was stored in the last save. Also, because only the
group object printer has been committed, the asterisk indicates the existence of other uncommitted,
modified objects.

6.2.5 Removing A User
Removing a user using cmsh corresponds roughly to the functionality of the Delete operation in sec-
tion 6.1.

The remove command removes a user or group. The useful “-d|--data” flag added to the end of
the username removes the user’s home directory too. For example, within user mode, the command
“remove user maureen -d; commit” removes user maureen, along with her home directory. Continu-
ing the session at the end of section 6.2.4 from where it was left off, as follows, shows this result:

Example

[basecm11->group[printer]]% user use maureen

[basecm11->user[maureen]]% remove -d; commit

Successfully removed 1 Users

6.3 Using An External LDAP Server 305

Successfully committed 0 Users

[basecm11->user]% !ls -d /home/*| grep maureen #no maureen left behind

[basecm11->user]%

6.3 Using An External LDAP Server
Sometimes, an external LDAP server is used to serve the user database. If, instead of just using the
database for authentication, the user database is also to be managed, then its LDAP schema must match
the BCM LDAP schema.

For RHEL8, the /etc/nslcd.conf, /etc/openldap/ldap.conf, and the certificate files under /cm/
local/apps/openldap/etc/certs/ should be copied over. For RHEL9, /etc/sssd/sssd.conf is copied
over instead of /etc/nslcd.conf.

Port 636 on ShoreWall running on the head node should be open for LDAP communication over the
external network, if external nodes are using it on the external network. In addition, the external nodes
and the head node must be able to resolve each other.

By default, BCM runs an LDAP health check using the cmsupport user on the LDAP server. The
LDAP health check may need to be modified or disabled by the administrator to prevent spurious health
warnings with an external LDAP server:

Modifying Or Disabling The ldap Healthcheck
Modifying the ldap health check: To keep a functional ldap health check with an external LDAP
server, a permanent external LDAP user name, for example ldapcheck, can be added. This user can
then be set as the parameter for BCM’s ldap health check object that is used to monitor the LDAP
service. Health checks and health check objects are discussed in Chapter 10.

• If user management is not configured to work on CMDaemon for the external LDAP server, then
the user management tool that is used with the external LDAP server should be used by the ad-
ministrator to create the ldapcheck user instead.

• If user management is still being done via CMDaemon, then an example session for configuring
the ldap script object to work with the new external LDAP user is (some prompt text elided):

Example

[root@basecm11 ~]# cmsh

[basecm11]% user

[basecm11->user]% add ldapcheck; commit

[basecm11->user[ldapcheck]]% monitoring setup use ldap

[basecm11->monitoring->setup[ldap]]% show

Parameter Value

-------------------------------- ---

...

Arguments

...

[basecm11->monitoring->setup[ldap]]% set arguments "ldapcheck"; commit

[basecm11->monitoring->setup[ldap:ldapcheck]]%

Disabling the ldap health check: Instead of modifying the ldap health check to work when using an
external LDAP server, it can be disabled entirely via Base View or cmsh.

• Base View: the ldap health check is disabled via the navigation path:

Monitoring > Data Producers > ldap > Edit

/etc/nslcd.conf
/etc/openldap/ldap.conf
/cm/local/apps/openldap/etc/certs/
/cm/local/apps/openldap/etc/certs/
/etc/sssd/sssd.conf
/etc/nslcd.conf

306 User Management

• cmsh: the disabled parameter of the ldap health check object is set to yes. The disabled parameter
for the ldap health check can be set as follows:

[root@basecm11 ~]# cmsh -c "monitoring setup use ldap; set disabled yes; commit"

Configuring The Cluster To Authenticate Against An External LDAP Server
The cluster can be configured in different ways to authenticate against an external LDAP server.

For smaller clusters, a configuration where LDAP clients on all nodes point directly to the external
server is recommended. An easy way to set this up is as follows:

• On the head node:

– In distributions that are derived from the RHEL 8.x series: The files in which the changes need
to be made are /etc/nslcd.conf and /etc/openldap/ldap.conf. To implement the changes,
the nslcd daemon must then be restarted, for example with systemctl nslcd restart.
For the RHEL 9.x series, /etc/nslcd.conf is replaced by /etc/sssd/sssd.conf, and it is the
sssd daemon that must be restarted, for example with: /bin/systemctl restart sssd.

– the updateprovisioners command (section 5.2.4) is run to update any other provisioners.

• Then, the configuration files are updated in the software images that the nodes use. If the nodes
use the default-image, and if the nodes are based on RHEL8 and derivatives, then the files to up-
date are /cm/images/default-image/etc/nslcd.conf and /cm/images/default/etc/openldap/

ldap.conf.

For RHEL9 and derivatives /cm/images/default-image/etc/sssd/sssd.conf is used instead
/cm/images/default-image/etc/nslcd.conf.

After the configuration change has been made, and the nodes have picked up the new configura-
tion, the regular nodes can then carry out LDAP lookups.

– Nodes can simply be rebooted to pick up the updated configuration, along with the new
software image.

– Alternatively, to avoid a reboot, the imageupdate command (section 5.6.2) can be run to pick
up the new software image from a provisioner.

• The CMDaemon configuration file cmd.conf (Appendix C) has LDAP user management direc-
tives. These may need to be adjusted:

– If another LDAP tool is to be used for external LDAP user management instead of Base View
or cmsh, then altering cmd.conf is not required, and BCM’s user management capabilities do
nothing in any case.

– If, however, system users and groups are to be managed via Base View or cmsh, then CMDae-
mon, too, must refer to the external LDAP server instead of the default LDAP server. This
configuration change is actually rare, because the external LDAP database schema is usually
an existing schema generated outside of BCM, and so it is very unlikely to match BCM LDAP
database schema. To implement the changes:

* On the node that is to manage the database, which is normally the head node, the
LDAPHost, LDAPUser, LDAPPass, and LDAPSearchDN directives in cmd.conf are changed
so that they refer to the external LDAP server.

* CMDaemon is restarted to enable the new configurations.

For larger clusters the preceding solution can cause issues due to traffic, latency, security and connec-
tivity fault tolerance. If such occur, a better solution is to replicate the external LDAP server onto the
head node, hence keeping all cluster authentication local, and making the presence of the external LDAP
server unnecessary except for updates. This optimization is described in the next section.

/etc/sssd/sssd.conf
/cm/images/default-image/etc/nslcd.conf
/cm/images/default/etc/openldap/ldap.conf
/cm/images/default/etc/openldap/ldap.conf
/cm/images/default-image/etc/sssd/sssd.conf
/cm/images/default-image/etc/nslcd.conf

6.3 Using An External LDAP Server 307

6.3.1 External LDAP Server Replication
This section explains how to set up replication for an external LDAP server to an LDAP server that is
local to the cluster, if improved LDAP services are needed. Section 6.3.2 then explains how this can then
be made to work with a high availability setup.

Typically, the BCM LDAP server is configured as a replica (consumer) to the external LDAP server
(provider), with the consumer refreshing its local database at set timed intervals. How the configuration
is done varies according to the LDAP server used. The description in this section assumes the provider
and consumer both use OpenLDAP.

External LDAP Server Replication: Configuring The Provider
It is advisable to back up any configuration files before editing them.

The provider is assumed to be an external LDAP server, and not necessarily part of the BCM cluster.
The LDAP TCP ports 389 and 689 may therefore need to be made accessible between the consumer and
the provider by changing firewall settings.
If a provider LDAP server is already configured then the following synchronization directives must be
in the slapd.conf file to allow replication:

index entryCSN eq

index entryUUID eq

overlay syncprov

syncprov-checkpoint <ops> <minutes>

syncprov-sessionlog <size>

The openldap documentation (http://www.openldap.org/doc/) has more on the meanings of these
directives. If the values for <ops>, <minutes>, and <size> are not already set, typical values are:

syncprov-checkpoint 1000 60

and:

syncprov-sessionlog 100

To allow the consumer to read the provider database, the consumer’s access rights need to be config-
ured. In particular, the userPassword attribute must be accessible. LDAP servers are often configured
to prevent unauthorized users reading the userPassword attribute.

Read access to all attributes is available to users with replication privileges. So one way to allow the
consumer to read the provider database is to bind it to replication requests.

Sometimes a user for replication requests already exists on the provider, or the root account is used
for consumer access. If not, a user for replication access must be configured.

A replication user, syncuser with password secret can be added to the provider LDAP with ade-
quate rights using the following syncuser.ldif file:

dn: cn=syncuser,<suffix>

objectClass: person

cn: syncuser

sn: syncuser

userPassword: secret

Here, <suffix> is the suffix set in slapd.conf, which is originally something like dc=example,dc=com.
The syncuser is added using:

ldapadd -x -D "cn=root,<suffix>" -W -f syncuser.ldif

This prompts for the root password configured in slapd.conf.
To verify syncuser is in the LDAP database the output of ldapsearch can be checked:

ldapsearch -x "(sn=syncuser)"

http://www.openldap.org/doc/

308 User Management

To allow access to the userPassword attribute for syncuser the following lines in slapd.conf are
changed, from:

access to attrs=userPassword

by self write

by anonymous auth

by * none

to:

access to attrs=userPassword

by self write

by dn="cn=syncuser,<suffix>" read

by anonymous auth

by * none

Provider configuration is now complete. The server can be restarted using

systemctl restart slapd.service

in RHEL8.x and RHEL9.x.

External LDAP Server Replication: Configuring The Consumer(s)
The consumer is an LDAP server on a BCM head node. It is configured to replicate with the provider
by adding the following lines to /cm/local/apps/openldap/etc/slapd.conf:

syncrepl rid=2

provider=ldap://external.ldap.server

type=refreshOnly

interval=01:00:00:00

searchbase=<suffix>

scope=sub

schemachecking=off

binddn="cn=syncuser,<suffix>"

bindmethod=simple

credentials=secret

Here:

• The rid=2 value is chosen to avoid conflict with the rid=1 setting used during high availability
configuration (section 6.3.2).

• The provider argument points to the external LDAP server.

• The interval argument (format DD:HH:MM:SS) specifies the time interval before the consumer
refreshes the database from the external LDAP. Here, the database is updated once a day.

• The credentials argument specifies the password chosen for the syncuser on the external LDAP
server.

More on the syncrepl directive can be found in the openldap documentation (http://www.openldap.
org/doc/).

The configuration files must also be edited so that:

• The <suffix> and rootdn settings in slapd.conf both use the correct <suffix> value, as used by the
provider.

• The base value in /etc/ldap.conf uses the correct <suffix> value as used by the provider. This is
set on all BCM nodes including the head node(s). If the /etc/ldap.conf file does not exist, then
the note on page 306 applies.

/cm/local/apps/openldap/etc/slapd.conf
http://www.openldap.org/doc/
http://www.openldap.org/doc/

6.3 Using An External LDAP Server 309

Finally, before replication takes place, the consumer database is cleared. This can be done by re-
moving all files, except for the DB_CONFIG file, from under the configured database directory, which by
default is at /var/lib/ldap/.

The consumer is restarted using systemctl restart slapd. This replicates the provider’s LDAP
database, and continues to do so at the specified intervals.

6.3.2 High Availability
No External LDAP Server Case
If the LDAP server is not external—that is, if BCM is set to its high availability configuration, with its
LDAP servers running internally, on its own head nodes—then by default LDAP services are provided
from both the active and the passive node. The high-availability setting ensures that CMDaemon takes
care of any changes needed in the slapd.conf file when a head node changes state from passive to
active or vice versa, and also ensures that the active head node propagates its LDAP database changes
to the passive node via a syncprov/syncrepl configuration in slapd.conf.

External LDAP Server With No Replication Locally Case
In the case of an external LDAP server being used, but with no local replication involved, no special
high-availability configuration is required. The LDAP client configuration in /etc/ldap.conf simply
remains the same for both active and passive head nodes, pointing to the external LDAP server. The
file /cm/images/default-image/etc/ldap.conf, in each software image also point to the same external
LDAP server. If the /etc/ldap.conf files referred to here in the head and software images do not exist,
then the note on page 306 applies.

External LDAP Server With Replication Locally Case
In the case of an external LDAP server being used, with the external LDAP provider being replicated to
the high-availability cluster, it is generally more efficient for the passive node to have its LDAP database
propagated and updated only from the active node to the passive node, and not updated from the
external LDAP server.

The configuration should therefore be:

• an active head node that updates its consumer LDAP database from the external provider LDAP
server

• a passive head node that updates its LDAP database from the active head node’s LDAP database

Although the final configuration is the same, the sequence in which LDAP replication configuration
and high availability configuration are done has implications on what configuration files need to be
adjusted.

1. For LDAP replication configuration done after high availability configuration, adjusting the new
suffix in /cm/local/apps/openldap/etc/slapd.conf and in /etc/ldap.conf on the passive node
to the local cluster suffix suffices as a configuration. If the ldap.conf file does not exist, then the
note on page 306 applies.

2. For high availability configuration done after LDAP replication configuration, the initial LDAP
configurations and database are propagated to the passive node. To set replication to the passive
node from the active node, and not to the passive node from an external server, the provider option
in the syncrepl directive on the passive node must be changed to point to the active node, and the
suffix in /cm/local/apps/openldap/etc/slapd.conf on the passive node must be set identical to
the head node.

The high availability replication event occurs once only for configuration and database files in BCM’s
high availability system. Configuration changes made on the passive node after the event are therefore
persistent.

/var/lib/ldap/
/cm/images/default-image/etc/ldap.conf
/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf

310 User Management

6.4 Tokens And Profiles
Access to Base View and cmsh is based on user certificates (section 2.3.3).

Tokens can be assigned by the administrator to users so that users can carry out some of the operations
that the administrator does with Base View or cmsh. Every cluster management operation requires that
each user, including the administrator, has the relevant tokens in their profile for the operation.

The tokens for a user are grouped into a profile, and such a profile is typically given a name
by the administrator according to the assigned capabilities. For example the profile might be called
readmonitoringonly if it allows the user to read the monitoring data only, or it may be called
powerhandler if the user is only allowed to carry out power operations. Each profile thus consists
of a set of tokens, typically relevant to the name of the profile, and is typically assigned to several users.

The profile is stored as part of the authentication certificate (section 2.3) which is generated for run-
ning authentication operations to the cluster manager for the certificate owner.

Profiles are handled with the profiles mode of cmsh, or from the Base View Profiles window,
accessible via a navigation path of Identity Management > Profiles

The following preconfigured profiles are available from cmsh:

Profile name Default Tasks Allowed nonuser ?

admin all tasks no

autonomous-hardware-recovery autonomous hardware recovery tasks yes

autonomous-job-recovery autonomous job recovery tasks yes

bootstrap bootstrap tasks yes

cmhealth health-related prejob tasks yes

cmpam BCM PAM tasks yes

litenode CMDaemon Lite (section 2.6.7) tasks yes

monitoringpush pushing raw monitoring data to CMDaemon via
a JSON POST (page 59 of the Developer Manual)

yes

mqtt MQTT tasks yes

node node-related tasks, for example by the node-
installer

yes

portal user portal viewing no

power device power yes

prs PRS tasks yes

readonly view-only no

The last column in the preceding table indicates whether the preconfigured profile is a nonuser

profile or not. A cmsh one-liner that indicates this is:

[root@basecm11 ~]# cmsh -c "profile; foreach * (get name; get nonuser)" | paste - -

• Most of the preconfigured profiles are nonuser profiles. Such a profile is used by cluster manager
clients, and should never be modified by the cluster administrator.

• The preconfigured profiles that are not nonuser profiles are admin, readonly, and portal. These
can be modified by the cluster administrator and used for human users.

The cluster manager services that use the available preconfigured profiles can be viewed in cmsh the
list command in profile mode.

The tokens, and other properties of a particular profile can be seen within profile mode as follows:

Example

6.4 Tokens And Profiles 311

[basecm11->profile]% show readonly

Parameter Value

------------ --

Name readonly

Non user no

Revision

Services CMDevice CMNet CMPart CMMon CMJob CMAuth CMServ CMUser CMSession CMMain CMGui CMP+

Tokens GET_DEVICE_TOKEN GET_CATEGORY_TOKEN GET_NODEGROUP_TOKEN POWER_STATUS_TOKEN GET_DE+

For screens that are not wide enough to view the parameter values, the values can also be listed:

Example

[basecm11->profile]% get readonly tokens

GET_DEVICE_TOKEN

GET_CATEGORY_TOKEN

GET_NODEGROUP_TOKEN

...

A profile can be set with cmsh for a user within user mode as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% user use conner

[basecm11->user[conner]]% get profile

[basecm11->user[conner]]% set profile readonly; commit

Only a subset of the predefined profiles are available to users. The ones that are made available to users
are readonly, admin, and portal.

6.4.1 Modifying Profiles
A profile can be modified by adding or removing appropriate tokens to it. For example, the readonly

group by default has access to the burn status and burn log results. Removing the appropriate tokens
stops users in that group from seeing these results.

In cmsh the removal can be done from within profile mode as follows:

[root@basecm11 ~]# cmsh

[basecm11]% profile use readonly

[...[readonly]]% removefrom tokens burn_status_token get_burn_log_token

[basecm11]%->profile*[readonly*]]% commit

Tab-completion after typing in removefrom tokens helps in filling in the tokens that can be removed.
In Base View (figure 6.3), the same removal action can be carried out via the navigation path:

Identity Management > Profiles > readonly > Edit > Tokens

In the resulting display it is convenient to maximize the window. Also convenient is running a search
for burn, which will show the relevant tokens:

BURN_STATUS_TOKEN and GET_BURN_LOG_TOKEN

as well as the subgroup they are in, which is the device subgroup.
The ticks can be removed from the BURN_STATUS_TOKEN and GET_BURN_LOG_TOKEN checkboxes, and

the changed settings can then be saved.

312 User Management

Figure 6.3: Base View Profile Token Management

6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By BCM’s Internal
LDAP

Custom profiles can be created to include a custom collection of capabilities in cmsh and Base View.
Cloning of profiles is also possible from cmsh.

A certificate file, with an associated expiry date, can be created based on a profile. The time of expiry
for a certificate cannot be extended after creation. An entirely new certificate is required after expiry of
the old one.

The creation of custom certificates using cmsh (page 314) or Base View (page 315) is described later on.
After creating such a certificate, the openssl utility can be used to examine its structure and properties.
In the following example most of the output has been elided in order to highlight the expiry date (30
days from the time of generation), the common name (democert), the key size (2048), profile properties
(readonly), and system login name (peter), for such a certificate:

[root@basecm11]# openssl x509 -in peterfile.pem -text -noout Certificate:

Data:

...

Not After : Sep 21 13:18:27 2014 GMT

Subject: ... CN=democert

Public-Key: (2048 bit)

...

X509v3 extensions:

1.3.6.1.4.4324.1:

..readonly

1.3.6.1.4.4324.2:

..peter

[root@basecm11]#

However, using the openssl utility for managing certificates is rather inconvenient. BCM provides
more convenient ways to do so, as described next.

Listing Certificates
All certificates that have been generated by the cluster are noted by CMDaemon.

6.4 Tokens And Profiles 313

Listing certificates with cmsh: Within the cert mode of cmsh, the listcertificates command lists
all cluster certificates and their properties:

[root@basecm11 ~]# cmsh

[basecm11]% cert

[basecm11-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- ------------------------------

1 No 5214w 1d admin root Administrator

2 No 5214w 1d cmhealth CMHealth

3 No 5214w 1d cmhealth CMHealth

4 No 5214w 1d power Slurm

5 No 5214w 1d bootstrap CertificateRequest

6 No 5214w 1d cmpam CMPam

7 No 5214w 1d portal WebPortal

...

Listing certificates with Base View: The Base View equivalent for listing certificates is via the naviga-
tion path Identity Management > Certificates (figure 6.4):

Figure 6.4: Base View Certificates List Window

Node Certificates
In the certificates list, node certificates that are generated by the node-installer (section 5.4.1) for each
node for CMDaemon use are listed. These are entries that look like:

[basecm11-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- ------------------------------

...

10 No 5214w 1d node fa-16-3e-74-24-dc

11 No 5214w 1d node fa-16-3e-57-2c-8e

12 No 5214w 1d node fa-16-3e-b6-c7-4a

314 User Management

13 No 5214w 1d node fa-16-3e-bd-cd-05

14 No 5214w 1d node fa-16-3e-0d-ab-ea

...

Creating A Custom Certificate
Custom certificates are also listed in the certificates list.

Unlike node certificates, which are normally system-generated, custom certificates are typically gen-
erated by a user with the appropriate tokens in their profile, such as root with the admin profile. Such a
user can create a certificate containing a specified profile, as discussed in the next section, by using:

• cmsh: with the createcertificate operation from within cert mode

• Base View: via the navigation path Identity Management > Users > Edit > Profile to set the
Profile.

Creating a new certificate for cmsh users: Creating a new certificate in cmsh is done from cert mode
using the createcertificate command, which has the following help text:

[basecm11->cert]% help createcertificate

Name:

createcertificate - Create a new certificate

Usage:

createcertificate <key-length> <common-name> <organization> <organizational-unit> <loca\
lity> <state> <country> <profile> <sys-login> <days> <key-file> <cert-file>

Arguments:

key-file

Path to key file that will be generated

cert-file

Path to pem file that will be generated

Accordingly, as an example, a certificate file with a read-only profile set to expire in 30 days, to be
run with the privileges of user peter, can be created with:

Example

[basecm11->cert]% createcertificate 2048 democert a b c d ef readonly peter 30 /home/peter\
/peterfile.key /home/peter/peterfile.pem

Thu Jan 5 15:13:01 2023 [notice] basecm11: New certificate request with ID: 16

[basecm11->cert]% createcertificate 2048 democert a b c d ef readonly peter 30 /home/peter\
/peterfile.key /home/peter/peterfile.pem

Certificate key written to file: /home/peter/peterfile.key

Certificate pem written to file: /home/peter/peterfile.pem

The certificate list would show it as something like:

[basecm11-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- ------------------------------

...

23 No 4w 1d readonly peter democert

6.4 Tokens And Profiles 315

Setting the ownership of the new custom certificate: The certificates are owned by the owner gener-
ating them, so they are root-owned if root was running cmsh. This means that user peter cannot use
them until their ownership is changed to user peter:

Example

[root@basecm11 ~]# cd /home/peter

[root@basecm11 peter]# ls -l peterfile.*

-rw------- 1 root root 1704 Aug 22 06:18 peterfile.key

-rw------- 1 root root 1107 Aug 22 06:18 peterfile.pem

[root@basecm11 peter]# chown peter:peter peterfile.*

Other users must have the certificate ownership changed to their own user names.

Associating users with paths to the new custom certificate: Users associated with such a certificate
can then carry out cmdaemon tasks that have a read-only profile, and CMDaemon sees such users as
being user peter. Two ways of being associated with the certificate are:

1. The paths to the pem and key files can be set with the -i and -k options respectively of cmsh. For
example, in the home directory of peter, for the files generated in the preceding session, cmsh can
be launched with these keys with:

[peter@basecm11 ~] cmsh -i peterfile.pem -k peterfile.key

[basecm11]% quit

2. If the -i and -k options are not used, then cmsh searches for default keys. The default keys for
cmsh are under these paths under $HOME, in the following order of priority:

(a) .cm/admin.{pem,key}

(b) .cm/cert.{pem,key}

Creating a custom certificate for Base View users: As in the case of cmsh, a Base View user having a
sufficiently privileged tokens profile, such as the admin profile, can create a certificate and key file for
themselves or another user. This is done by associating a value for the Profile from the Add or Edit
dialog for the user (figure 6.2).

The certificate files, cert.pem and cert.key, are then automatically placed in the following paths
and names, under $HOME for the user:

• .cm/admin.{pem,key}

• .cm/cert.{pem,key}

Users that authenticate with their user name and password when running Base View use this cer-
tificate for their Base View clients, and are then restricted to the set of tasks allowed by their associated
profile.

6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External
LDAP

The use of an external LDAP server instead of BCM’s for user management is described in section 6.3.
Generating a certificate for an external LDAP user must be done explicitly in BCM. This can be carried
out with the external-user-cert script, which is provided with the cluster-tools package. The
package is installed by default with BCM.

Running the external-user-cert script embeds the user and profile in the certificate during certifi-
cate generation. The script has the following usage:

316 User Management

external-user-cert -h

Usage: for a single profile: external-user-cert <profile> <user> [<user> ...]

--home=<home-prefix> [-g <group>] [-o]

for several profiles: external-user-cert --home=<home-prefix>

--file=<inputfile> [-g <group>]

where lines of <inputfile> have the syntax

<profile> <user> [<user> ...]

Options:

-h, --help show this help message and exit

--file=FILE input FILE

--home=HOME_PATH path for home directories, default /home/

-g GROUP name of primary group, e.g. wheel

-o overwrite existing certificates

Here,

• <profile> should be a valid profile

• <user> should be an existing user

• <home-prefix> is usually /home

• <group> is a group, such as wheel

• <inputfile> is a file with each line having the syntax

<profile> <user> [<user> ...]

One or more external LDAP user certificates can be created by the script. The certificate files generated
are cert.pem and cert.key. They are stored in the home directory of the user.

For example, a user spongebob that is managed on the external server, can have a read-only certificate
generated with:

external-user-cert readonly spongebob --home=/home

If the home directory of spongebob is /home/spongebob, then the key files that are generated are
/home/spongebob/.cm/cert.key and /home/spongebob/.cm/cert.pem.

Assuming no other keys are used by cmsh, a cmsh session that runs as user spongebob with readonly

privileges can now be launched:

$ module load cmsh

$ cmsh

If other keys do exist, then they may be used according to the logic explained in item 2 on page 315.

6.4.4 Logging The Actions Of CMDaemon Users
The following directives allow control over the logging of CMDaemon user actions.

• CMDaemonAudit: Enables logging

• CMDaemonAuditorFile: Sets log location

• DisableAuditorForProfiles: Disables logging for particular profiles

Details on these directives are given in Appendix C.

6.4 Tokens And Profiles 317

6.4.5 Creation Of Certificates For Nodes With cm-component-certificate

The cm-component-certificate utility can be used to generate or update SSL certificates for compo-
nents of services. The cluster administrator is not expected to use this utility because the cluster manager
manages the certificates without bothering the administrator about it during normal operations. If the
utilty is to be used, then it should be used with caution, to avoid failure in the components that use these
certificates.

One of the SSL client components for which this utility works is LDAP.
Options include setting a new CA and creating a new certificate or key for nodes.
Some examples of how it can be used are:

LDAP PEM And Key Creation For A Standalone Node
A standalone node (page 903) is a node that is not provisioned from the head node, but is configured to
boot from its own drive. A standalone node <mynode> may have a PEM and key certificate created on
the head node with:

Example

[root@basecm11 ~]# cm-component-certificate --generate=<mynode>
Certificate saved to ./ldap.{pem,key}

Done.

The certificates are saved to the working directory. They should be copied over manually to the
location of the LDAP certificates on mynode. The nslcd daemon on mynode for RHEL8 (or the sssd

daemon for RHEL9) should then be restarted.

LDAP PEM And Key Creation For A Regular Node
If a node node001 that is provisioned has a lost or corrupted LDAP key or certificate, then replacements
for these can be made with:

Example

[root@basecm11 ~]# cm-component-certificate -n node001

Sending request to recreate certificates for 1 node to cmd on basecm11

[(38654705666, 1)] 1 0 0

1 certificates were successfully recreated

Done.

The ldap.{pem,key} files are automatically placed on node001, by default at the location specified
by the CMDaemon LDAPCertificate and LDAPPrivateKey directives (page 844).

The files /cm/node-installer/certificates/<node001-mac>/ldap.{pem,key} should be removed
on the head node.

The nslcd, sssd, and LDAP daemons should be restarted on node001, or more simply it can be
rebooted if it is not in use. The reboot replaces the ldap.{pem,key} files on the head node with the
newly-generated ones.

LDAP CA Certificate Creation
If a new LDAP CA certificate is needed, then a replacement can be made with:

[root@basecm11 ~]# cm-component-certificate --ca

Sending request to recreate the CA to cmd on basecm11

Done.

The following steps must be done manually:

• If there is another head node, then the CA files, by default ca.pem and ca.key under /cm/local/
apps/openldap/etc/certs/, should be copied over the other head node.

/cm/local/apps/openldap/etc/certs/
/cm/local/apps/openldap/etc/certs/

318 User Management

• The key/PEM certificate files on all the nodes should be recreated using:
cm-component-certificate --allnodes

• The old component PEM/key files for each regular node, ldap.pem and ldap.key, under the
node-installer directory of the head node(s), should be removed. These certificates are kept
under a directory named for the MAC address of the regular node, and follow the pattern:
/cm/node-installer/certificates/<MAC address>/<LDAP.{pem,key}>

• The node CA files, by default ca.pem and ca.key under /cm/local/apps/openldap/etc/certs/
should be copied to the nodes:

Example

[root@basecm11 ~]# export ldapcertdir="/cm/local/apps/openldap/etc/certs/"

for i in {01..12}

do

scp $ldapcertdir/ca.pem node0$i:/$ldapcertdir

scp $ldapcertdir/ca.key node0$i:/$ldapcertdir

done

• The nslcd, sssd and LDAP daemons should be restarted on all nodes

• CMDaemon should be restarted on the active head node

/cm/local/apps/openldap/etc/certs/

7
Workload Management

For clusters that have many users and a significant load, a workload manager (WLM) system allows a
more efficient use of resources to be enforced for all users than if there were no such system in place. This
is because without resource management, there is a tendency for each individual user to over-exploit
common resources.

When a WLM is used, the end user can submit a job to it. This can be done interactively, but it is
typically done as a non-interactive batch job.

The WLM assigns resources to the job, and checks the current availability as well as checking its
estimates of the future availability of the cluster resources that the job is asking for. The WLM then
schedules and executes the job based on the assignment criteria that the administrator has set for the
WLM system. After the job has finished executing, the job output is delivered back to the user.

Among the hardware resources that can be used for a job are GPUs. Installing CUDA software to
enable the use of GPUs is described in section 9 of the Installation Manual. Configuring GPU settings
for BCM is described in section 3.16.2 of the Administration Manual. Configuring GPU settings for an
individual WLM is described in the section on getting that particular WLM up and running.

The details of job submission from a user’s perspective are covered in the User Manual.
Sections 7.1–7.5 cover the installation procedure to get a WLM up and running.
Sections 7.6 –7.7 describe how Base View and cmsh are used to view and handle jobs, queues and

node drainage.
Section 7.8 shows examples of WLM assignments handled by BCM.
Section 7.9 describes the power saving features of WLMs.
Section 7.10 describes cgroups, a resources limiter, mostly in the context of WLMs.
Section 7.11 describes WLM customizations for settings other than the common settings covered by

BCM.

7.1 Workload Managers Choices
Some WLM packages are installed by default, others require registration from the distributor before
installation.

During cluster installation, a WLM can be chosen (figure 3.9 of the Installation Manual) for setting up.
The choices are:

• PBS: An HPC job scheduler, originally developed at NASA, now developed by Altair. This is
integrated with BCM in these variants:

1. PBS Professional: A commercial variant, with commercial support from Altair. Available as:

– PBS Professional version 2022

2. OpenPBS: A community-supported variant. The variant was known as PBS Pro CE before
version 20. OpenPBS is available as:

320 Workload Management

– OpenPBS version 22.05
– OpenPBS version 23.06

• Slurm: Available as version 24.05, 24.11, or 25.05. Slurm is a free (GPL) job scheduler, with com-
mercial support.

• LSF v10.1: IBM Spectrum LSF (Load Sharing Facility) version 10.1, is a further development of
what used to be IBM Platform LSF.

• None: For clusters that need no HPC job-scheduling.

The WLMs in the preceding list can also be chosen and set up later using the cm-wlm-setup tool
(section 7.3).

After installation, if there are no major changes in the WLM for updated versions of the workload
managers, then

• WLMs that are packaged with BCM (Slurm, PBS) can have their packages updated using standard
package update commands (yum update and similar). The installation and configuration of the
WLM from the updated packages is carried out as described later on in this chapter.

• WLMs such as LSF that are installed by picking up software from the vendor can be updated by
following vendor guidelines.

7.2 Forcing Jobs To Run In A Workload Management System
Another preliminary step is to consider forcing users to run jobs only within the WLM system. Having
jobs run via a WLM is normally a best practice.

For convenience, BCM defaults to allowing users to log in via ssh to a node, using the authorized
keys files stored in each users directory in /home (section 2.3.2). This allows users to run their processes
without restriction, that is, outside the WLM system. For clusters with a significant load this policy
results in a sub-optimal use of resources, since such unplanned-for jobs disturb any already-running
jobs.

Disallowing user logins to nodes, so that users have to run their jobs through the WLM system,
means that jobs are then distributed to the nodes only according to the planning of the WLM. If planning
is based on sensible assignment criteria, then resources use is optimized—which is the entire aim of a
WLM in the first place.

7.2.1 Disallowing User Logins To Regular Nodes Via cmsh

The usernodelogin setting of cmsh restricts direct user logins from outside the WLM, and is thus one
way of preventing the user from using node resources in an unaccountable manner. The usernodelogin
setting is applicable to node categories only, rather than to individual nodes.

In cmsh the attribute of usernodelogin is set from within category mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% set usernodelogin onlywhenjob

[basecm11->category*[default*]]% commit

The attributes for usernodelogin are:

• always (the default): This allows all users to ssh directly into a node at any time.

• never: This allows no user other than root to directly ssh into the node.

7.2 Forcing Jobs To Run In A Workload Management System 321

• onlywhenjob: This allows the user to ssh directly into the node when a job is running on it. It
typically also prevents other users from doing a direct ssh into the same node during the job run,
since typically the WLM is set up so that only one job runs per node. However, an ssh session that
is already running is not automatically terminated after the job is done.

– Some cluster administrators may wish to allow some special user accounts to override the
onlywhenjob setting, for example for diagnostic purposes. Before giving the details of how
to override the setting, some background explanation is probably useful:
The onlywhenjob setting works with the PAM system, and adds the following line to /etc/

pam.d/sshd on the regular nodes:

account required pam_bright.so

Nodes with the onlywhenjob restriction can be configured to allow a particular set of users
to access them, despite the restriction, by allowing them with the PAM system, as follows:
Within the software image <node image> used by the node, that is under /cm/images/<node
image>, the administrator can add the set of user accounts to the file etc/security/pam_

bright.d/pam_allow.conf. This file is installed in the software image with a chroot installa-
tion (section 9.4) of the cm-libpam package.
Groups of users can be allowed using the file etc/security/pam_bright.d/pam_allow_

group.conf.
Other adjustments to PAM configuration, such as the number of attempted logins and the
associated wait time per login, can be carried by editing the /etc/security/pam_bright.d/

cm-check-alloc.conf file.
The image can then be updated to allow the users, by running the imageupdate command in
cmsh (section 5.6.2), or by clicking the Update node option in Base View (section 5.6.3).

7.2.2 Disallowing User Logins To Regular Nodes Via Base View
In Base View, user node login access is set via a category setting, for example for the default category
via the navigation path in figure 7.1:
Grouping > Categories[default] > Edit > Settings > User node login

Figure 7.1: Disallowing user logins to nodes via Base View

/etc/pam.d/sshd
/etc/pam.d/sshd
etc/security/pam_bright.d/pam_allow.conf
etc/security/pam_bright.d/pam_allow.conf
etc/security/pam_bright.d/pam_allow_group.conf
etc/security/pam_bright.d/pam_allow_group.conf
/etc/security/pam_bright.d/cm-check-alloc.conf
/etc/security/pam_bright.d/cm-check-alloc.conf

322 Workload Management

7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes
Besides disabling user logins, administrators may choose to disable interactive jobs in the WLM as an
additional measure to prevent users from starting jobs on other nodes.

Administrators may also choose to set up scripts that run after job execution. Such scripts can termi-
nate user processes outside the WLM, as part of a policy, or for general administrative hygiene. These
are Epilog scripts and are part of the WLM.

The WLM documentation has more on configuring these options.

7.2.4 High Availability By Workload Managers
NVIDIA Base Command Manager uses the existing built-in high availability (HA) functionalities of
workload managers as much as possible. A double server HA configuration with the existing built-
in HA functionality can be carried out using the cm-wlm-setup utility (section 7.3), or using the Base
View HA wizard (section 7.4.1). The built-in functionality makes use of the primary WLM server and
secondary WLM server, which are placed on separate nodes.

The HA configuration aspect (section 15.1.3) in this case means that a WLM server role is assigned
to both the WLM primary and the WLM secondary nodes. These primary WLM and secondary WLM
servers can then:

• both be on head nodes,

• both be on regular (compute) nodes

It is not possible to configure a mixed setup—that is with one head node and one regular node—for the
WLM servers on an HA setup.

In a non-HA cluster, the WLM primaryserver value is set to the head node by default.

Example

[head->wlm[slurm]]% get primaryserver

head

This is because NVIDIA Base Command Manager always configures the primary WLM server on the
primary cluster head node.

If both the head nodes are configured with the WLM server roles, then the WLM primaryserver

value is set to the primary cluster head node. This is because NVIDIA Base Command Manager always
configures the primary WLM server on the primary cluster head node, and the backup WLM server on
the secondary head node.

Example

[head1->wlm[slurm]]% get primaryserver

head1

[head1->wlm[slurm]]% exit

root@head1:~# ssh head2 "cmha makeactive"

...

...[logging into the newly active head node, and checking where the primary server is:]...
[head2->wlm[slurm]]% get primaryserver

head1

If the parameter primaryserver is unset in wlm mode, and the Slurm server role is assigned to the
head nodes, then the slurmctld service is always started on both head nodes. During a failover, the
Slurm configuration is regenerated and both slurmctld services are restarted. The primary slurmctld

is always on the active head node.
If two regular nodes are configured with the WLM server roles instead, then in the cluster entity

configuration the primaryserver parameter is set to one of the compute nodes.

7.2 Forcing Jobs To Run In A Workload Management System 323

The cluster primary head node and the WLM primary server should not be confused. In particular,
the active cluster head node and active workload manager server are not necessarily the same for the
case of the Slurm, PBS Professional, or LSF workload managers. For these, if the passive cluster head
node becomes an active cluster head node without a crash, then this does not trigger a passive WLM
server on the newly active head node to also become an active WLM server. Thus, the WLM server can
be active on a passive head node, and vice versa, because the WLM primary server is independent of
the cluster primary head node.

Slurm High Availability, scontrol takeover And slurmstartpolicy

This section considers some Slurm high availability issues on running scontrol takeover with BCM
integration.

Logical steps during the Slurm takeover between head nodes: Slurm high availability normally waits
a short while with moving its control activity over to a passive head node that has just been made active.
After a short delay, the Slurm failover algorithm is followed so that the Slurm controller (slurmctld)
takes over operations on the newly active head node.

Slurm can speed up takeover by running scontrol takeover from the Bash shell on the node with
the secondary slurmctld. Running scontrol takeover stops the primary slurmctld and triggers the
Slurm failover algorithm.

This can be useful if the administrator wants to carry out maintenance on the usually active head
node. Carrying out the takeover lets the Slurm service remain available, and stops the Slurm primary
controller following the newly active head node.

The logic on how this works in BCM is:

1. The production state starts with

• an active primary

• a passive secondary

• the primary head node set up as the primary Slurm controller

2. the administrator runs cmha makeactive on the secondary passive. This causes the following to
happen:

• scontrol takeover is run by CMDaemon on the secondary passive

• CMDaemon goes into the passive state on the primary node, and slurmctld on the primary
node stops

• CMDaemon goes into the active state on the secondary node, and slurmctld on the sec-
ondary node starts

3. there is no interruption in Slurm services, because with scontrol takeover CMDaemon has
forced the backup slurmctld to take over

4. the administrator can now carry out maintenance on the primary (now passive) head node

5. once maintenance has been completed, the administrator can optionally reboot the primary (pas-
sive) head node, and then make it active again with cmha makeactive to get back to the original
production state

The problem with the preceding logic is that by default BCM automatically restarts a stopped
slurmctld that it notices. This means that the results of scontrol takeover in steps 2 and 3 are un-
known if carried out manually. That is, it is not practical to run the scontrol takeover command di-
rectly from Bash because it is possible to unintentionally configure the primary and backup slurmctld

with an incorrect status.
To deal with this problem cleanly, CMDaemon provides the slurmctldstartpolicy parameter, de-

scribed next.

324 Workload Management

The slurmctldstartpolicy parameter and Slurm takeover behavior: The slurmctldstartpolicy

parameter can take the following values to decide the slurmctld behavior during scontrol takeover:

• TAKEOVER: The default value on an HA cluster.

• ALWAYS: The default value on a non-HA cluster.

• ACTIVEONLY: Useful only if /cm/shared is not mounted on both head nodes at the same time. For
example, as in DAS (Direct Attached Storage), which should never be used anyway for shared
storage in a production system.

1. If within NVIDIA Base Command Manager, in the SlurmServerRole, the slurmctldstartpolicy

parameter is set to TAKEOVER, then disabling the automatic restart of the slurmctld service is un-
necessary:

[root@basecm11 ~]# cmsh

[basecm11-]% configurationoverlay

[basecm11-]>configurationoverlay]% use slurm-server

[basecm11->configurationoverlay[slurm-server]]% roles

[basecm11->configurationoverlay[slurm-server]->roles]% use slurmserver

[basecm11->configurationoverlay[slurm-server]->roles[slurmserver]]% set slurmctldstartpolicy TAKEOVER

[basecm11->configurationoverlay*[slurm-server*]->roles*[slurmserver*]]% commit

The setting value can be cleared with:

[basecm11->configurationoverlay[slurm-server]->roles[slurmserver]]% set slurmctldstartpolicy ALWAYS

[basecm11->configurationoverlay*[slurm-server*]->roles*[slurmserver*]]% commit

2. If cm-wlm-setup installs Slurm on an HA cluster, then the slurmctldstartpolicy parameter can
be set in one of the TUI screens during the session. Before HA is configured, the parameter has
a default value of ALWAYS. After HA is configured it has a default value of TAKEOVER. The default
value of TAKEOVER causes prefailoverscript in the failover submode (section 15.4.6) to take the
value /cm/local/apps/cmd/scripts/slurm.takeover.sh

3. If cm-wlm-setup installs Slurm on a non-HA cluster, then the prefailoverscript parameter must
be set within the failover submode of partition mode:

[basecm11->partition[base]->failover]% set prefailoverscript /cm/local/apps/cmd/scripts/slurm.takeover.sh

[basecm11->partition*[base*]->failover*]% commit

This ensures that the active head node is taken over by Slurm during a change of the active head
node.

The takeover is temporary. If the head node which has the Slurm primary slurmctld on it is
restarted, or if the service itself is restarted manually, then the primary slurmctld takes back its role, as
per Slurm documentation.

For a Slurm cluster with a single slurmctld, where the Slurm server role is assigned to a single com-
pute node or the BCM cluster has only one head node, the parameter slurmctldstartpolicy should be
set to ALWAYS, which is the default.

Table 7.2.4 shows what slurmctld does when the slurmctldstartpolicy parameter is set to
TAKEOVER and when in SlurmWlmCluster the parameter primaryserver is set. The detailed behavior
per head node depends on whether the head nodes are active or primary:

/cm/shared

7.3 Installation Of Workload Managers 325

Node Is slurmctldstartpolicy Active node? Slurm primary slurmctld
pair TAKEOVER? node? starts?

Head001 no * * yes
Head002 no * * yes

Head001 yes yes yes yes
Head002 yes no no yes

Head001 yes yes no yes
Head002 yes no yes no

Head001 yes no yes no
Head002 yes yes no yes

Head001 yes no no yes
Head002 yes yes yes yes

* any value of yes or no
Table 7.2.4 slurmctldstartpolicy parameter and slurmctld

7.3 Installation Of Workload Managers
Normally the administrator selects a WLM to be used during BCM installation (figure 3.9 of the Installa-
tion Manual). A WLM may however also be added and configured after BCM has been installed, using
cm-wlm-setup, or the Base View WLM wizard.

With most other objects, BCM front ends—cmsh and Base View—can be used to create a new object
from scratch, or can clone a new object from another existing object. However, the front ends cannot
do this for a WLM object. An attempt to create or clone a new WLM object via cmsh or Base View is
prohibited by the front ends, because there are many pitfalls possible in configuration.

A new WLM object, and WLM instance, can therefore only be installed via cm-wlm-setup, the Base
View WLM wizard, or by selecting a WLM during the initial BCM installation.

7.3.1 Running cm-wlm-setup In CLI Mode
The recommended way to run the cm-wlm-setup utility is without options or arguments, in which case
a TUI dialog starts up. A TUI session run with cm-wlm-setup is covered in section 7.3.2.

However, the cm-wlm-setup utility can alternatively be used in a non-GUI, command-line, mode,
with options and arguments. The utility has the following usage:

[root@basecm11 ~]# cm-wlm-setup -h

usage: Workload manager setup cm-wlm-setup [-c <config_file>]

[--setup | --disable]

[--wlm <name>]

[--server-nodes SERVER_NODES]

[--server-primary SERVER_PRIMARY]

[--server-overlay-name SERVER_OVERLAY_NAME]

[--server-overlay-priority SERVER_OVERLAY_PRIORITY]

[--client-categories CLIENT_CATEGORIES]

[--client-nodes CLIENT_NODES]

[--client-overlay-name CLIENT_OVERLAY_NAME]

[--client-overlay-priority CLIENT_OVERLAY_PRIORITY]

[--client-slots <slots>]

[--submit-categories SUBMIT_CATEGORIES]

[--submit-nodes SUBMIT_NODES]

[--submit-overlay-name SUBMIT_OVERLAY_NAME]

[--submit-overlay-priority SUBMIT_OVERLAY_PRIORITY]

326 Workload Management

[--wlm-cluster-name WLM_CLUSTER_NAME]

[--reboot] [--reset-cgroups]

[--yes-i-really-mean-it]

[--archives-location <path>]

[--license <license>] [--purge]

[--accounting-overlay-name ACCOUNTING_OVERLAY_NAME]

[--accounting-overlay-priority ACCOUNTING_OVERLAY_PRIORITY]

[--with-pyxis]

[--add-pyxis]

[--reinstall-pyxis]

[--remove-pyxis]

[--pyxis-data-directory <path>]

[--nvidia-gpus NVIDIA_GPUS] [-v]

[--no-distro-checks] [--json]

[--output-remote-execution-runner]

[--on-error-action {debug,remotedebug,undo,abort}]

[--skip-packages]

[--min-reboot-timeout <reboot_timeout_seconds>]

[--allow-running-from-secondary]

[--dev] [-h]

The help output from running cm-wlm-setup -h continues on beyond the preceding text output,
and presents more options.

These options can be grouped as follows:

Optional Arguments
• --setup: Helps set up a server, enable roles, and create the default queues/partitions

• --disable: Disable WLM services

• -h, --help: Displays the help screen

Common Arguments
• -c <YAML configuration file>: Loads a runtime configuration for plugins, from a YAML configura-

tion file.

Options For Installing Or Managing A WLM
• --wlm <WLM name>: Specifies which WLM is to be set up. Choices for <WLM name> are:

– openpbs

– pbspro

– slurm

– lsf

• --wlm-cluster-name <WLM cluster name>: Specifies the name for the new WLM cluster that is to be
set up.

• --reboot: Reboot after install

Server Role Settings
• --server-nodes <server nodes>: Sets the server roles of the WLM to the value set for <server nodes>,

which is a comma-separated list of nodes. Default value: HEAD, which is a reserved name for the
head node.

• --server-primary <primary server>: Sets the hostname used for the primary server to <primary
server>. Default name: HEAD.

7.3 Installation Of Workload Managers 327

• --server-overlay-name <server overlay name>: Sets the server role configuration overlay name to
<server overlay name>. Default name: <WLM name>-server, where <WLM name> is the name spec-
ified in the --wlm option.

• --server-overlay-priority <server overlay priority>: Sets the server role configuration overlay pri-
ority to <server overlay priority>. Default value: 500.

Client Role Settings
• --client-categories <client categories>: Sets the client roles of the WLM to the value set for <client

categories nodes>, which is a comma-separated list of node categories. Default value: default.

• --client-nodes <client nodes>: Sets the client roles of the WLM to the value set for <client nodes>,
which is a comma-separated list of nodes. No value set by default.

• --client-overlay-name <client overlay name>: Sets the client role configuration overlay name to
<client overlay name>. Default name: <WLM name>-client, where <WLM name> is the name speci-
fied in the --wlm option.

• --client-overlay-priority <client overlay priority>: Sets the client role configuration overlay prior-
ity to <client overlay priority>. Default value: 500.

• --client-slots <slots>: Sets the number of slots on the client to <slots>.

Submit Role Settings
• --submit-categories <submit categories>: Sets the submit roles of the WLM to the value set for

<submit categories nodes>, which is a comma-separated list of node categories that are submit nodes.
Default value: default.

• --submit-nodes <submit nodes>: Sets the submit roles of the WLM to the value set for <submit
nodes>, which is a comma-separated list of submit nodes. No value set by default.

• --submit-overlay-name <submit overlay name>: Sets the submit role configuration overlay name to
<submit overlay name>. Default name: <WLM name>-submit, where <WLM name> is the name
specified in the --wlm option.

• --submit-overlay-priority <submit overlay priority>: Sets the submit role configuration overlay pri-
ority to <submit overlay priority>. Default value: 500.

Disable Options
• --reset-cgroups: Disable joining cgroup controllers with systemd setting JoinControllers

• --yes-i-really-mean-it: Required for additional safety

Workload Manager Specific Options
• --archives-location <path>: Set the directory path for the archive files, only for LSF. This param-

eter is mandatory for LSF installation.

• --license <path>: Set the path to the PBSPro, or LSF license.

• --purge: Remove the directories on disable, for LSF.

Slurm Accounting Role Settings
• --accounting-overlay-name <accounting overlay name>: Sets the accounting role configuration over-

lay

• --accounting-overlay-priority <accounting overlay priority>: Sets the accounting role configura-
tion overlay priority to <accounting overlay priority>. Default value: 500.

328 Workload Management

Slurm Pyxis Settings
• --add-pyxis: Add Pyxis to an existing cluster

• --reinstall-pyxis: Reinstall or upgrade Pyxis on all the clusters using it

• --remove-pyxis: Remove Pyxis from an existing cluster

• --with-pyxis: Enable Pyxis

• --pyxis-data-directory <path>: Sets directory where images will be stored

Slurm GPU Settings
• --nvidia-gpus <NVIDIA GPUs specification>: Sets the NVIDIA GPUs that will be used in the con-

figuration, specifying type and number of GPUs. For example: --nvidia-gpus=A100:4

• --gpu-client-nodes <NVIDIA GPU client nodes>: Sets a comma-separated list of nodes assigned to
the GPU overlay.

• --gpu-client-categories <NVIDIA GPU client categories>: Sets a comma-separated list of node cat-
egories assigned to the GPU overlay.

Advanced Options
• -v, --verbose: This displays a more verbose output. It can be helpful in troubleshooting.

• --no-distro-checks: Disables distribution checks based on ds.json.

• --json: Use json formatting for logs printed to STDOUT.

• --output-remote-execution-runner: Format output for CMDaemon.

• --on-error-action {debug,remotedebug,undo,abort}: Upon encountering a critical error, instead
of asking the user for choice, the setup will do the selected action.

• --skip-packages: Skip the stages which install packages. Requires packages to be already in-
stalled.

• --min-reboot-timeout <timeout>: How long to wait for nodes to finish reboot, in seconds. Mini-
mum value: 300. Default value: 300.

• --allow-running-from-secondary: Allow the wizard to be run from the secondary when it is the
active head node.

• --dev: Enables additional command line arguments for developers.

7.3.2 Running cm-wlm-setup As A TUI
Running cm-wlm-setup with no options and with no arguments brings up a TUI screen (figure 7.2).

Figure 7.2: cm-wlm-setup TUI initial screen

7.3 Installation Of Workload Managers 329

Express Installation
The Setup (Express) menu option allows the administrator to select the workload manager in the next
screen (figure 7.3), and to install it with a minimal number of configuration steps. If it has already been
installed, but disabled via cm-wlm-setup, then it can also be re-enabled, instead of installed from scratch.

Figure 7.3: cm-wlm-setup TUI WLM selection screen

Step-by-step Installation
If the Setup (Step By Step) menu option is chosen instead of the express option, then this also allows
the administrator to select the workload manager in figure 7.3. But after selection, there are a number
of extra configuration steps that can be carried out which are not available in the express configuration.
Guidance is given for these extra steps, and sensible default values are already filled in for many options.

One part of the step-by-step session involves assigning the WLM client role to the compute nodes of
the cluster. Only the non-GPU compute nodes should be assigned the (standard, non-GPU) WLM client
role. The GPU compute nodes are assigned a GPU WLM client role in the section of the TUI wizard that
deals with GPU configuration.

The WLM client role is assigned to the entire category—the default category— of non-head nodes
by default (figure 7.4):

Figure 7.4: Slurm with cm-wlm-setup: WLM Client role category configuration screen

The WLM client role can be assigned to selected nodes only by setting the default category checkbox
to blank, and then selecting the non-GPU nodes in the following screen. For example, as illustrated in
figure 7.4, where the standard, non-GPU nodes are node002 and node003:

330 Workload Management

Figure 7.5: Slurm with cm-wlm-setup: WLM client role node configuration screen

GPU Configuration Screens
The GPU configuration screens are extra steps available during a Setup (Step By Step) session. The
GPU configuration steps are discussed summarily in the quickstart section for GPUs, on page 13 of the
Installation Manual.

The GPU configuration steps are covered in this section in more detail:
After configuring the WLM server, WLM submission and WLM client roles for the nodes of the

cluster, a screen that asks if GPU resources should be configured is displayed (figure 7.6):

Figure 7.6: Slurm With cm-wlm-setup: GPU Configuration Entry Screen

Choosing yes means that some extra GPU configuration screens are presented. These are screens
that allow:

• the configuration overlay (section 2.1.6) name to be set for the GPU WLM clients. By default the
name is set to slurm-client-gpu.

• a GPU WLM client role to be assigned to a category, if, for example, all the GPU nodes have been
given their own category.

• the GPU WLM client role to be assigned to individual nodes instead of to a category.

• a configuration overlay priority to be set for a GPU WLM client role. By default, this has a value
of 450.

• automatic GPU detection, with the following options:

– Automatic NVIDIA GPU configuration

– Automatic AMD GPU configuration

– Manual GPU configuration

– Skip

Slurm Accounting Database Configuration
In the step-by-step configuration for the Slurm WLM, after the server and client parameters have been
set, the Slurm accounting database configuration can be set.

This requires setting:

• one or two accounting nodes

• a primary accounting node

7.3 Installation Of Workload Managers 331

All nodes must be reachable from slurmctld.
The accounting nodes can be set with the Select accounting nodes screen (figure 7.7):

Figure 7.7: cm-wlm-setup selection of accounting nodes

Head nodes and compute nodes cannot be mixed for the accounting nodes. If two accounting nodes
are set, then the slurmdbd high availability configuration is automatically set up.

The primary accounting node—that is, the node that is AccountingStorageHost in slurm.conf—can
then be set in the Select the primary accounting server node screen (figure 7.8):

Figure 7.8: cm-wlm-setup selection of primary accounting node

The other accounting node is automatically set to be AccountingStorageBackupHost.
The type of node on which the slurmdbd database runs can then be set (figure 7.9):

Figure 7.9: cm-wlm-setup selection of the type of node on which the Slurm accounting database runs

• If Use accounting node is selected, then the database is stored on the primary accounting node

• If Select cluster node is selected, then the next screen allows the selection of the BCM node on
which the database is to be installed (figure 7.10)

Figure 7.10: cm-wlm-setup Selection of host where the Slurm accounting database used by slurmdbd is
stored

• If Select external node is selected, then a non-BCM hostname is asked for, and the cluster ad-

332 Workload Management

ministrator is responsible for the installation and configuration of the DBMS

Modifying the settings after installation is discussed on page 369.

Disabling An Installation
The Disable option in figure 7.2 allows the administrator to disable an existing instance.

Summary Screen
The screen that appears after the configuration steps are completed, is the Summary screen (figure 7.11).
This screen allows the configuration to be viewed, saved, or saved and deployed.

Figure 7.11: cm-wlm-setup TUI summary screen

If deployment is carried out, then several screens of output are displayed. After the deployment is
completed, the log file can be viewed at /var/log/cm-wlm-setup.log.

7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Containerized
Jobs

What Is Enroot?
As the README file for Enroot says, Enroot is an open source tool to turn container images into un-
privileged sandboxes. Enroot can be thought of as an enhanced unprivileged chroot. It uses user and
mount namespaces, as well as other modern kernel features, in order to create such sandboxes. It
uses the same underlying technologies as containers, but removes much of the isolation that they in-
herently provide, while preserving filesystem separation. Further details on Enroot can be found at
https://github.com/NVIDIA/enroot.

Enroot can be used with different workload managers, but for now only Slurm has been tightly
integrated.

What Is Pyxis?
Pyxis (https://github.com/NVIDIA/pyxis) is a SPANK plugin for Slurm. SPANK (Slurm Plug-in ar-
chitecture for Node and job (K)control, man spank.8) is a generic interface for job launch code control in
Slurm. The Pyxis plugin requires the Enroot utility, and allows the user’s jobs to be executed seamlessly
over Enroot in unprivileged containers. The plugin enables the Slurm submission utilities to provide
container-related command line options.

Enroot And Pyxis Packages
BCM provides two Enroot package flavors: standard and hardened. The standard binaries are compiled
as follows:

• Open file descriptors are inherited

• Spectre variant 2 (IBPB/STIBP) mitigations are disabled

/var/log/cm-wlm-setup.log
https://github.com/NVIDIA/enroot/blob/master/README.md
https://github.com/NVIDIA/enroot
https://github.com/NVIDIA/pyxis

7.3 Installation Of Workload Managers 333

• Spectre variant 4 (SSBD) mitigations are disabled

As a rule of thumb: the hardened flavor is slightly more secure but suffers a larger overhead.

• The standard packages that are installed by default on new clusters are:

– enroot: provides the main utility and helper files.

– enroot+caps: a nearly empty package which runs a post-installation script to grant extra
capabilities to unprivileged users. This allows them to import and convert container images.

– pyxis-sources: installs a tarball with the Pyxis plugin source files. The tarball is used by
cm-wlm-setup to compile the Pyxis plugin on a cluster. The version of the package (sec-
tion 9.1), found using yum info pyxis-sources or apt-cache show pyxis-sources, implies the
Pyxis source version that is provided. For example: pyxis-sources-0.20.0-[...].rpm pro-
vides the Pyxis source for version 0.20.0.

• The hardened packages that can be installed from the BCM repositories to replace the standard
enroot and enroot+caps are:

– enroot-hardened: provides hardened main utility and helper files.

– enroot-hardened+caps: Provides extra capabilities to unprivileged users so that they can
import and convert containers themselves.

The package pyxis-sources installs the tarball at /cm/local/apps/slurm/var/pyxis/

pyxis-sources.tar.gz. If the administrator needs a version of Pyxis other than the one provided by
the package, then the archive can be replaced with a source tarball of the same name.

How Are Enroot And Pyxis Set Up In BCM?
Pyxis and Enroot can be set up by the administrator by choosing the appropriate options when Slurm
is set up. In order to choose the appropriate options, cm-wlm-setup can be run in step-by-step mode
(page 329). Alternatively, Pyxis-related command line options can be specified for the cm-wlm-setup

arguments --add-pyxis and --reinstall-pyxis.
The step-by-step mode eventually presents a screen where the Pyxis setup can be enabled via a

plugin:

Figure 7.12: cm-wlm-setup Pyxis setup screen

The Pyxis screen is available for RHEL8-based systems and Ubuntu 20 and beyond. Older systems
are not supported.

If the plugin is enabled in the Pyxis setup screen, then cm-wlm-setup installs the enroot and
enroot+caps packages from https://github.com/NVIDIA/enroot/releases into the software images
where the Slurm client role is to be assigned. The cm-wlm-setup uitility also installs them directly on
the head node if the head node was selected to run jobs. Pyxis sources are downloaded from GitHub,
compiled with the installed Slurm, and installed in the appropriate Slurm directory.

If the administrator enables the Pyxis plugin, then a new screen with Enroot settings is shown:

https://github.com/NVIDIA/enroot/blob/master/doc/installation.md
/cm/local/apps/slurm/var/pyxis/pyxis-sources.tar.gz
/cm/local/apps/slurm/var/pyxis/pyxis-sources.tar.gz
https://github.com/NVIDIA/enroot/releases

334 Workload Management

Figure 7.13: cm-wlm-setup Enroot settings screen

The Enroot settings have reasonable default values. The administrator can change these:

• Share raw images among users and nodes: If enabled, then the raw container image is shared
among users and nodes, and the administrator must ensure that the cache directory is shared
among all the compute nodes. Enabling the option disables the creation of a UID subdirectory by
the Enroot prolog script.

The following points about implementing Enroot cache sharing should be considered by the ad-
ministrator:

– Enabling the checkbox for the option normally changes the default value of the Enroot cache
directory, as defined in the TUI in the Cache directory field, to ${XDG_CACHE_HOME}/enroot.
This field is normally evaluated by the Enroot installation to the home directory of the user:
~/.cache/enroot

when a job is executed.
The default value can also be changed in the TUI to any shared directory. If the specified
directory does not exist, then cm-wlm-setup creates it with Unix directory permissions set to
chmod 00777, which allows all users to share container images in the cache with each other
on all the nodes.

– Restrictions can be placed on the ability of regular users to share images and to create files
in the cache, by setting more restrictive permissions for the directory manually, after the
cm-wlm-setup run.
For example, the permissions can be set to 00770, while the ownership group of the directory
is changed to a group with all the Pyxis users in it. In this case, only the users within the
Pyxis users group can create the image layers in the cache.

– An alternative to cache sharing of images among users and nodes is to save Squashfs images
in a shared directory, outside the cache. Then the users can specify a full path to a shared
Squashfs image on the cluster in the srun/sbatch command line. In this case there is no need
to share the cache among the nodes, as the Squashfs images are not copied over to cache
before execution.

Only the administrator should have access to updating the image.

• Share unpacked container images among nodes: Enables sharing of unpacked container im-
ages (image filesystems) among nodes. A user job can modify the filesystem, so it is not recom-
mended to share this directory among users.

Enabling the option disables removal of the Enroot data directory, if the container name is speci-
fied. This allows a user to keep the container filesystem between jobs run by the user. It is up to
the user or the administrator to clean up the data directory if the option is enabled.

7.3 Installation Of Workload Managers 335

If the data directory is shared among nodes, then it is up to a user to ensure that the container
filesystem is unpacked at least once before real jobs start. Otherwise, a race condition is possible
when the images are extracted simultaneously on several nodes.

• Cache directory: Path to the cache directory where raw container image layers are stored.

If the directory is not shared, then the Slurm prolog script creates a subdirectory with a name that
is the job user ID, while epilog cleans up that subdirectory. If the directory is shared, then neither
prolog nor epilog touches the directory.

• Data directory: Directory where the container filesystems (unpackaged images) are stored. If
the directory is shared, then the epilog script checks if the container name is specified for the job,
and skips removal of the container subdirectory.

• Runtime directory: A working directory with temporary files created by Enroot.

When Pyxis is set up, cm-wlm-setup also prepares the following configuration files for the compute
nodes:

• /etc/enroot/enroot.conf: This is a symlink to /cm/shared/apps/slurm/etc/enroot.conf. The
configuration file provides reasonable default settings that allows Enroot to be used by many users.
Important settings in the file are:

– ENROOT_RUNTIME_PATH: working directory for enroot, created per user. Default value: /run/
enroot/runtime/$(id -u)

– ENROOT_CACHE_PATH: directory where container layers are stored. Default value: /run/enroot/
cache/$(id -u)

– ENROOT_DATA_PATH: directory where the filesystems of running containers are stored. Default
value: /run/enroot/data/$(id -u)

– ENROOT_SQUASH_OPTIONS: options passed to mksquashfs to produce container images. De-
fault value: -noI -noD -noF -noX -no-duplicates

– ENROOT_MOUNT_HOME: mount the current user’s home directory by default. Default value: yes.

The administrator can change the symlink, or replace the file with a customized enroot.conf, if
other values are preferred.

• /etc/sysctl.d/80-enroot.conf: symlink to /cm/shared/apps/slurm/etc/enroot-sysctl.conf.
The file tunes sysctl parameters for Enroot.

• /cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh: symlink to /cm/shared/apps/

slurm/prologs/prolog-enroot.sh. This is the slurmd prolog that creates appropriate directo-
ries, with appropriate user permissions, that are used by Enroot.

• /cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh: symlink to /cm/shared/apps/

slurm/epilogs/epilog-enroot.sh. Cleans the user directories used by Enroot.

When cm-wlm-setup finishes its Pyxis configuration run, then there is no need for the nodes to be
rebooted. The plugin works immediately.

The new Slurm submission command option names start with either --container or --no-container.
The full list of options can be displayed with the --help option. For example:

Example

/etc/enroot/enroot.conf
/cm/shared/apps/slurm/etc/enroot.conf
/run/enroot/runtime/
/run/enroot/runtime/
/run/enroot/cache/
/run/enroot/cache/
/run/enroot/data/
/etc/sysctl.d/80-enroot.conf
/cm/shared/apps/slurm/etc/enroot-sysctl.conf
/cm/local/apps/slurm/var/prologs/50-prolog-enroot.sh
/cm/shared/apps/slurm/prologs/prolog-enroot.sh
/cm/shared/apps/slurm/prologs/prolog-enroot.sh
/cm/local/apps/slurm/var/epilogs/50-epilog-enroot.sh
/cm/shared/apps/slurm/epilogs/epilog-enroot.sh
/cm/shared/apps/slurm/epilogs/epilog-enroot.sh

336 Workload Management

[user@basecm11 ~]$ srun --help | grep container

--container Path to OCI container bundle

--container-image=[USER@][REGISTRY#]IMAGE[:TAG]|PATH

[pyxis] the image to use for the container

--container-mounts=SRC:DST[:FLAGS][,SRC:DST...]

[pyxis] bind mount[s] inside the container. Mount

--container-workdir=PATH

[pyxis] working directory inside the container

--container-name=NAME [pyxis] name to use for saving and loading the

container on the host. Unnamed containers are

containers are not. If a container with this name

already exists, the existing container is used and

--container-save=PATH [pyxis] Save the container state to a squashfs

--container-mount-home [pyxis] bind mount the user's home directory.

--no-container-mount-home

--container-remap-root [pyxis] ask to be remapped to root inside the

container. Does not grant elevated system

--no-container-remap-root

[pyxis] do not remap to root inside the container

--container-entrypoint [pyxis] execute the entrypoint from the container

--no-container-entrypoint

container image

--container-writable [pyxis] make the container filesystem writable

--container-readonly [pyxis] make the container filesystem read-only

Simple installation validation: The simplest way to validate the Pyxis/Enroot setup after Slurm setup
is to try out an srun command:

Example

[user@basecm11 ~]$ module load slurm

[user@basecm11 ~]$ srun --container-image=ubuntu grep PRETTY /etc/os-release

pyxis: importing docker image: ubuntu

PRETTY_NAME="Ubuntu 24.04.2 LTS"

A more thorough installation validation: In order to perform a more thorough test of Pyxis/Enroot,
an NCCL-based test can be used. NCCL is the NVIDIA Collective Communications Library (https:
//docs.nvidia.com/deeplearning/nccl), which is a library of multi-GPU collective communication
primitives. The test can be found at https://github.com/NVIDIA/nccl-tests. A prebuilt container
image, with the NCCL test already installed, can be started as shown in the example that follows.

It should be noted that running a multi-tenant cluster with all the export flags enabled as in the
example may compromise security. It is therefore not recommended as a standard configuration.

Example

[user@basecm11 ~]$ module load slurm

[user@basecm11 ~]$ srun --export="NCCL_DEBUG=INFO,NCCL_IB_DISABLE=1,PMIX_MCA_gds=hash" -N 2 \
--ntasks-per-node=1 --gpus-per-task=1 --mpi=pmix --container-image=deepops/mpi-nccl-test \
/nccl_tests/build/all_reduce_perf -b 1M -e 4G -f 2 -g 1

pyxis: imported docker image: deepops/mpi-nccl-test

pyxis: imported docker image: deepops/mpi-nccl-test

nThread 1 nGpus 1 minBytes 1048576 maxBytes 4294967296 step: 2(factor) warmup iters: 5 iters: 20 validation: 1

#

https://docs.nvidia.com/deeplearning/nccl
https://docs.nvidia.com/deeplearning/nccl
https://github.com/NVIDIA/nccl-tests

7.3 Installation Of Workload Managers 337

Using devices

Rank 0 Pid 175945 on node001 device 0 [0x00] Tesla V100-SXM3-32GB

Rank 1 Pid 180379 on node002 device 0 [0x00] Tesla V100-SXM3-32GB

node001:175945:175945 [0] NCCL INFO Bootstrap : Using ens3:10.141.0.5<0>

node001:175945:175945 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation

node001:175945:175945 [0] NCCL INFO NCCL_IB_DISABLE set by environment to 1.

node001:175945:175945 [0] NCCL INFO NET/Socket : Using [0]ens3:10.141.0.5<0>

node001:175945:175945 [0] NCCL INFO Using network Socket

NCCL version 2.11.4+cuda11.6

node002:180379:180379 [0] NCCL INFO Bootstrap : Using ens3:10.141.0.6<0>

node002:180379:180379 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation

node002:180379:180379 [0] NCCL INFO NCCL_IB_DISABLE set by environment to 1.

node002:180379:180379 [0] NCCL INFO NET/Socket : Using [0]ens3:10.141.0.6<0>

node002:180379:180379 [0] NCCL INFO Using network Socket

node002:180379:182573 [0] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1

node001:175945:177561 [0] NCCL INFO Channel 00/02 : 0 1

node001:175945:177561 [0] NCCL INFO Channel 01/02 : 0 1

node001:175945:177561 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1

node001:175945:177561 [0] NCCL INFO Channel 00 : 1[60] -> 0[60] [receive] via NET/Socket/0

node002:180379:182573 [0] NCCL INFO Channel 00 : 0[60] -> 1[60] [receive] via NET/Socket/0

node001:175945:177561 [0] NCCL INFO Channel 01 : 1[60] -> 0[60] [receive] via NET/Socket/0

node002:180379:182573 [0] NCCL INFO Channel 01 : 0[60] -> 1[60] [receive] via NET/Socket/0

node001:175945:177561 [0] NCCL INFO Channel 00 : 0[60] -> 1[60] [send] via NET/Socket/0

node002:180379:182573 [0] NCCL INFO Channel 00 : 1[60] -> 0[60] [send] via NET/Socket/0

node001:175945:177561 [0] NCCL INFO Channel 01 : 0[60] -> 1[60] [send] via NET/Socket/0

node002:180379:182573 [0] NCCL INFO Channel 01 : 1[60] -> 0[60] [send] via NET/Socket/0

node001:175945:177561 [0] NCCL INFO Connected all rings

node002:180379:182573 [0] NCCL INFO Connected all rings

node001:175945:177561 [0] NCCL INFO Connected all trees

node001:175945:177561 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 8/8/512

node001:175945:177561 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer

node002:180379:182573 [0] NCCL INFO Connected all trees

node002:180379:182573 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 8/8/512

node002:180379:182573 [0] NCCL INFO 2 coll channels, 2 p2p channels, 1 p2p channels per peer

node001:175945:177561 [0] NCCL INFO comm 0x1551f0001000 rank 0 nranks 2 cudaDev 0 busId 60 - Init COMPLETE

#

out-of-place in-place

size count type redop time algbw busbw error time algbw busbw error

(B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)

node001:175945:175945 [0] NCCL INFO Launch mode Parallel

node002:180379:182573 [0] NCCL INFO comm 0x1551f8001000 rank 1 nranks 2 cudaDev 0 busId 60 - Init COMPLETE

1048576 262144 float sum 1491.5 0.70 0.70 0e+00 1421.3 0.74 0.74 0e+00

2097152 524288 float sum 3077.5 0.68 0.68 0e+00 2568.8 0.82 0.82 0e+00

4194304 1048576 float sum 4617.3 0.91 0.91 0e+00 4622.5 0.91 0.91 0e+00

8388608 2097152 float sum 9483.1 0.88 0.88 0e+00 8911.9 0.94 0.94 0e+00

16777216 4194304 float sum 17516 0.96 0.96 0e+00 18613 0.90 0.90 0e+00

33554432 8388608 float sum 34799 0.96 0.96 0e+00 41837 0.80 0.80 0e+00

67108864 16777216 float sum 99790 0.67 0.67 0e+00 83126 0.81 0.81 0e+00

134217728 33554432 float sum 204614 0.66 0.66 0e+00 199530 0.67 0.67 0e+00

268435456 67108864 float sum 319701 0.84 0.84 0e+00 341630 0.79 0.79 0e+00

536870912 134217728 float sum 608809 0.88 0.88 0e+00 683016 0.79 0.79 0e+00

1073741824 268435456 float sum 1337187 0.80 0.80 0e+00 1247369 0.86 0.86 0e+00

2147483648 536870912 float sum 2638741 0.81 0.81 0e+00 2743454 0.78 0.78 0e+00

4294967296 1073741824 float sum 5996381 0.72 0.72 0e+00 5430549 0.79 0.79 0e+00

Out of bounds values : 0 OK

338 Workload Management

Avg bus bandwidth : 0.810575

#

The test demonstrates the usage of PMIX, MPI, and GPU in Enroot containers on multiple nodes. In
the preceding example, 2 nodes with 1 GPU on each is requested by the job. For better results the cluster
administrator can tune the test parameters.

It should be noted that the image is quite large, and requires enough free space under /var. Also, the
transfer timeout (ENROOT_TRANSFER_TIMEOUT) in enroot.conf must be large enough to download such
a large container image to the compute nodes. A value of at least 600 seconds is recommended.

If there are issues when executing MPI jobs with PMIX, then to help debug the issues the Pyxis doc-
umentation (https://github.com/NVIDIA/pyxis/wiki/Setup) suggests setting up the following envi-
ronment variables:

• PMIX_MCA_ptl=^usock

• PMIX_MCA_psec=none

• PMIX_SYSTEM_TMPDIR=/var/empty

• PMIX_MCA_gds=hash (as configured on page 336)

This configuration change is typically carried out in the software image of the regular nodes. For
example, for a node category called default:

[root@basecm11 ~]# category=default

[root@basecm11 ~]# cat <<EOF >> /cm/images/${category}/etc/default/slurmd

PMIX_MCA_ptl=^usock

PMIX_MCA_psec=none

PMIX_SYSTEM_TMPDIR=/var/empty

PMIX_MCA_gds=hash

EOF

[root@basecm11 ~]# systemctl restart slurmd

[root@basecm11 ~]# cmsh -c "device; imageupdate -c ${category} -w"

7.3.4 Prolog And Epilog Scripts
What Prolog And Epilog Scripts Do
The workload manager runs prolog scripts before job execution, and epilog scripts after job execution.
The purpose of these scripts can include:

• checking if a node is ready before submitting a job execution that may use it

• preparing a node in some way to handle the job execution

• cleaning up resources after job execution has ended.

The administrator can run custom prolog or epilog scripts for the queues from CMDaemon for LSF,
by setting such scripts in the Base View or cmsh front ends.

Example

[basecm11->wlm[lsf]->jobqueue]% use normal

[basecm11->wlm[lsf]->jobqueue[normal]]% show | grep -i epilog

Prolog/Epilog user root

Epilog

Host epilog /cm/local/apps/cmd/scripts/epilog

For PBS and Slurm, there are global prolog and epilog scripts, but editing them is not recommended.
Indeed, in order to discourage editing them, the scripts cannot be set via the cluster manager front ends.
Instead the scripts must be placed by the administrator in the software image, and the relevant nodes
updated from the image.

https://github.com/NVIDIA/pyxis/wiki/Setup

7.3 Installation Of Workload Managers 339

Detailed Workings Of Prolog And Epilog Scripts
Even though it is not recommended, some administrators may nonetheless wish to link and edit the
scripts directly for their own needs, outside of the Base View or cmsh front ends. A more detailed
explanation of how the prolog scripts work therefore follows:

When a workload manager is configured via cm-wlm-setup or via the Base View setup wizard,
then the workload manager is configured to run the generic prolog located in /cm/local/apps/cmd/

scripts/prolog, and the generic epilog located in /cm/local/apps/cmd/scripts/epilog. The generic
prolog and epilog scripts call a sequence of scripts for a particular workload manager in special directo-
ries. The directories have paths in the format:

1. /cm/local/apps/<workload manager>/var/prologs/

2. /cm/local/apps/<workload manager>/var/epilogs/

In these directories, scripts are stored with names that have suffixes and prefixes associated with
them that make them run in special ways, as follows:

• suffixes used in the prolog/epilog directory:

◦ -prejob script runs prior to all jobs

• prefixes used in the prolog/epilog directory:

◦ 00- to

◦ 99-

Number prefixes determine the order of script execution, with scripts with a lower number run-
ning earlier.

The script names can therefore look like:

Example

• 01-prolog-prejob

• 10-prolog-prejob

Return values for the prolog/epilog scripts have these meanings:

• 0: the next script in the directory is run.

• A non-zero return value: no further scripts are executed from the prolog/epilog directory.

Often, the script in a prolog/epilog directory is not a real script but a symlink, with the symlink
going to a real file located in a different directory. The general script is then able to take care of what is
expected of the symlink. The name of the symlink, and destination file, usually hints at what the script
is expected to do.

For example, if any health checks are marked to run as prejob checks during cm-wlm-setup configu-
ration, then each of the PBS workload manager variants use the symlink 01-prolog-prejob within the
prolog directory /cm/local/apps/<workload manager>/var/prologs/. The symlink links to the script
/cm/local/apps/cmd/scripts/prolog-prejob. In this case, the script is expected to run prior to the
job.

Example

/cm/local/apps/cmd/scripts/prolog
/cm/local/apps/cmd/scripts/prolog
/cm/local/apps/cmd/scripts/epilog
/cm/local/apps/cmd/scripts/prolog-prejob

340 Workload Management

[root@basecm11 apps]# pwd

/cm/local/apps

[root@basecm11 apps]# ls -l *pbs*/var/prologs/

openpbs/var/prologs/:

total 0

lrwxrwxrwx 1 root root ... 01-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

pbspro/var/prologs/:

total 0

lrwxrwxrwx 1 root root ... 01-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

Epilog scripts (which run after a job run) have the location /cm/local/apps/<workload man-
ager>/var/epilogs/. Epilog script names follow the same execution sequence pattern as prolog script
names.

It should be noted that that the 01-prolog-prejob symlink is created and removed by BCM on each
compute node where prejob is enabled in the workload manager entity. Each such entity provides a
Enable Prejob parameter that affects the symlink existence:

Example

[head->wlm[openpbs]]% get enableprejob

yes

[head->wlm[openpbs]]%

This parameter is set to yes by cm-wlm-setup when at least one health check is selected as a prejob one. If
any healthcheck was configured as a prejob check before cm-wlm-setup execution, and the administrator
had a checkmark for that health check, then the prejob is considered enabled.

Workload Manager Configuration For Prolog And Epilog Scripts
BCM configures generic prologs and epilogs during workload manager setup with cm-wlm-setup. The
administrator can configure prologs and epilogs using appropriate parameters in the configuration of
the workload managers, by creating the symlinks in the local prologs and epilogs directories.

Generic prologs and epilogs are configured by default to run on job compute nodes (one run per
each node per job) for Slurm, PBS variants and LSF.

The following parameters for prologs and epilogs can be configured with cmsh or Base View:

• Slurm

– Prolog Slurmctld: the fully qualified path of a program to execute before granting a new
job allocation. The program is executed on the same node where the slurmserver role is
assigned. The parth corresponds to the PrologSlurmctld parameter in slurm.conf.

– Epilog Slurmctld: the fully qualified path of a program to execute upon termination of a
job allocation. The program is executed on the same node where the slurmserver role is
assigned. Corresponds with the EpilogSlurmctld parameter in slurm.conf.

– Prolog: the fully qualified path of a program to execute on job compute nodes before granting
a new job or step allocation. The program corresponds to the Prolog parameter, and by
default points to the generic prolog. This prolog runs on every node of the job if the Prolog

flags parameter contains the flag Alloc (the default value), otherwise it is executed only on
the first node of the job.

– Epilog: the fully qualified path of a program to execute on job compute nodes when the job
allocation is released.

• LSF

7.3 Installation Of Workload Managers 341

– Prolog: the fully qualified path of a program to execute on the LSF server node on job alloca-
tion. As an LSF queue parameter, it corresponds to the PRE_EXEC parameter in lsb.queues.

– Epilog: the fully qualified path of a program to execute on the LSF server node on job al-
location release. As an LSF queue parameter, it corresponds to the POST_EXEC parameter in
lsb.queues

– Host prolog: the fully qualified path of a program to execute on each node of a job before
the job is started. Corresponds to the HOST_PRE_EXEC parameter in lsb.queues. By default it
is configured to run the generic prolog

– Host epilog: the fully qualified path of a program to execute on each node of a job after the
job is finished. Corresponds to the HOST_POST_EXEC parameter in lsb.queues. By default it
is configured to run the generic epilog.

• PBS variants

– Pelogs: prolog and epilog hooks that emulate the classic PBS prologue and epilogue scripts
located in the pbs_mom directory. The pelogs are configured in the appropriate workload
manager instance, within pelogs mode when configuring the PBS cluster entity. For example,
in cmsh:

Example

[basecm11]% wlm use openpbs

[basecm11->wlm[openpbs]]% pelogs

[basecm11->wlm[openpbs]->pelogs]% list

Name (key) Enabled Order

---------- -------- --------

cm_epilog yes 99

cm_prolog yes 1

[basecm11->wlm[openpbs]->pelogs]%

[basecm11->wlm[openpbs]->pelogs]% show cm_prolog

Parameter Value

-------------------------------- --

Enabled yes

Name cm_prolog

Events execjob_begin

Path /cm/shared/apps/pbspro/var/cm/cm-pelog-hook.py

Default action RERUN

Enable parallel yes

Verbose user output no

Torque compatible no

Order 1

Alarm 35

Debug no

[basecm11->wlm[openpbs]->pelogs]% show cm_epilog

Parameter Value

-------------------------------- --

Enabled yes

Name cm_epilog

Events execjob_end

Path /cm/shared/apps/pbspro/var/cm/cm-pelog-hook.py

Default action RERUN

Enable parallel yes

Verbose user output no

Torque compatible no

Order 99

342 Workload Management

Alarm 35

Debug no

[basecm11->wlm[openpbs]->pelogs]%

The parameters of each pelog correspond to appropriate parameters of PBS hooks:

* Name: hook name that will be used in PBS

* Enabled: flag to enable the hook in PBS

* Events: list of PBS events that the hook will run on

* Path: path to the hook script that will be imported to PBS in case the hook is not found.
The script will not be imported if a hook with the same name already exists in PBS

* Order: the hook execution order

* Alarm: the hook alarm time (timeout), in seconds

Additional parameters related to the prolog and epilog hooks only are:

* Default action: The PBS default action when a prolog or epilog fails

* Enable parallel: enable parallel prologues and epilogues, that run on sister moms

* Verbose user output: provide verbose hook output to the user’s .o/.e file

* Torque compatible: make torque compatible from prolog/epilog command line argu-
ments point of view

By default, two pelogs are added. These are to run the generic prolog and the generic epilog.
If needed, the administrator can add more pelog hooks that will run on different events.

7.4 Enabling, Disabling, And Monitoring Workload Managers
Enabling And Disabling A WLM
A WLM can be disabled for all nodes with cm-wlm-setup. Disabling the WLM means the workload
management services are stopped by removing roles, and removing the WLM cluster object.

Alternatively, a WLM can be enabled or disabled by the administrator via role addition and role
removal with Base View or cmsh. This is described further on in this section.

Multiple WLM instances of the same type: Versions of NVIDIA Base Command Manager prior to 9.0
already had the ability to have different workload managers run at the same time. However, NVIDIA
Base Command Manager version 9.0 introduced the additional ability to run many workload managers
of the same kind at the same time.

Example

Two WLM instances, Slurm and OpenPBS, are already running at the same time in the cluster, with each
WLM assigned to one category. Then, BCM can start up a third WLM instance, such as another Slurm
WLM instance. These WLM instances are alternatively called WLM clusters, because they effectively
allow one cluster to function as many separate clusters as far as running WLMs is concerned.

From the Base View or cmsh point of view a WLM consists of

• a WLM server, usually on the head node

• WLM clients, usually on the compute nodes

For the administrator, enabling or disabling the servers or clients is then simply a matter of assign-
ing or unassigning a particular WLM server or client role on the head or compute nodes, as deemed
appropriate.

The administrator typically also sets up an appropriate WLM environment module (slurm, openpbs,
pbspro, lsf), so that it is loaded up for the end user (section 2.2.3).

7.4 Enabling, Disabling, And Monitoring Workload Managers 343

7.4.1 Enabling And Disabling A WLM With Base View
A particular WLM package may be installed, but the WLM may not be enabled. This can happen, for
example, if disabling a WLM that was previously enabled.

If a WLM instance exists, then the WLM client, submission, and server roles can be enabled or dis-
abled from Base View by assigning or removing the appropriate roles to nodes, categories, or configura-
tion overlays. Within the role, the properties of the WLM may be further configured by setting options.

Workload Manager Role Assignment To An Individual Node With Base View
Workload Manager Server The following roles are WLM roles that can be assigned to a node:

• server

• submit

• accounting (for the Slurm WLM only, to configure and run the slurmdbd service)

• client

For example, a Slurm server role can be assigned to a head node, basecm11, via the navigation path:

Devices > Head Nodes[basecm11] > Edit > Settings > Role > Role list[ADD] > SlurmServerRole

Figure 7.14: Workload management role assignment on a head node

344 Workload Management

The role window for the server then opens up, and allows role options to be set for the workload
manager server. For example, for Slurm, a builtin or backfill option can be set for the Scheduler

parameter. The workload manager server role is then saved with the selected options (figure 7.15).
To have the server start up on non-head nodes (but not for a head node), the imageupdate command

(section 5.6.2) can be run. The workload manager server process and any associated schedulers then
automatically start up.

Figure 7.15: Workload management role assignment options on a head node

Workload Manager Client Similarly, the workload manager client process can be enabled on a node
or head node by having the workload manager client role assigned to it. Some basic options can be set
for the client role right away.

Saving the role, and then running imageupdate (section 5.6.2), automatically starts up the client
process with the options chosen, and managed by CMDaemon.

Workload Manager Role Assignment To A Category With Base View
It is true that workload manager role assignment can be done as described in the preceding text for
individual non-head nodes. However it is usually more efficient to assign roles using categories or
configuration overlays, due to the large number of compute nodes in typical clusters.

For example, the case can be considered of all physical on-premises non-head nodes. By default these
are in the default category. This means that, by default, roles in the category are automatically assigned
to all those non-head nodes, unless, as an exception, an individual node configuration overrides the
category setting and uses a role setting instead at node level.

7.4 Enabling, Disabling, And Monitoring Workload Managers 345

Viewing the possible workload manager roles for the category default is done by using the naviga-
tion path:
Grouping > Categories[default] > Edit > Settings > Roles > Add

Once the role is selected, its options can be edited and saved.
For compute nodes, the role assigned is usually a workload manager client. If the assigned role

is that of a workload manager client, then the node with that role can have queues, GPUs, and other
parameters specified for it.

For example, queues can then be assigned via the navigation path:
HPC > WLM Management Clusters[cluster instance] > Job Queues

while GPUs, if using Slurm as the workload manager with default settings, can then be specified via the
navigation path:
Configuration Overlays > slurm-client-gpu > roles > slurmclient > edit > Generic Resources >
gpu

The workload manager server role can also be assigned to a non-head node. For example, a Slurm
server role can be taken on by a non-head node. This is the equivalent to the --server-nodes option of
cm-wlm-setup.

Saving the roles with their options and then running imageupdate (section 5.6.2) automatically starts
up the newly-configured workload manager.

Workload Manager Role Options With Base View
Each compute node role (workload manager client role) has options that can be set for GPUs, Queues,
and Slots. Generally, the value that is set for Slots is the number of jobs expected to run on a node
simultaneously. This number can, for example, be set to the number of threads. Threads (virtual cores)
in the x86_64 architecture are provided by Intel’s hyper-threading (HT), or by AMD’s simultaneous
multithreading (SMT).

The physical CPU, the cores on the CPU, and the threads of a core (HT, SMT) should not be confused
with each other, they are distinct concepts, and can all have different values.

• Slots, in a workload manager, corresponds in BCM to:

– the CPUs setting (a NodeName parameter) in Slurm’s slurm.conf

– the nproc setting in PBS,

In LSF setting the number of slots for the client role to 0 means that the client node does not run
jobs on itself, but becomes a submit host, which means it is able to forward jobs to other client
nodes.

The default value for Slots is AUTO, which means that the value for Slots is auto-detected. The
parameter may be alternatively be set to a non-negative number. Each WLM has a different im-
plementation on how this is done. For instance, for Slurm, BCM uses Slurm’s own auto-detection
implementation.

• Queues with a specified name are available in their associated role after they are created. The
creation of queues is described in sections 7.6.2 (using Base View) and 7.7.2 (using cmsh).

All server roles also provide the option to enable or disable the External Server setting. Enabling
that means that the server is no longer managed by BCM, but provided by an external device.

The cmsh equivalent of enabling an external server is described on page 350.

7.4.2 Enabling And Disabling A Workload Manager With cmsh

A particular workload manager package may be set up, but not enabled. This can happen, for example,
if no WLM server or WLM client role has been assigned.

346 Workload Management

If a WLM instance exists, then the WLM client, server, or submit roles can be enabled from cmsh by
assigning it from within the roles submode. Within the assigned role, the properties of the WLM may
be further configured by setting options.

Workload Manager Role Assignment To A Configuration Overlay With cmsh

In cmsh, workload manager role assignment to a configuration overlay (section 2.1.5) can be done using
configurationoverlaymode. By default cm-wlm-setup run as a TUI session creates some configuration
overlays with suggestive names, and assigns roles to the configuration overlays according to what the
names suggest. Thus, for example, with the cm-wlm-setup TUI session used to carry out an express
setup for Slurm, the configuration overlays that get created are the following:

Example

[basecm11->configurationoverlay]% list

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- ----------------

slurm-accounting 500 yes slurmaccounting

slurm-client 500 no default slurmclient

slurm-server 500 yes slurmserver

slurm-submit 500 no default slurmsubmit

wlm-headnode-submit 600 yes slurmsubmit

Nodes in the default category can take on the slurmclient or slurmsubmit role by setting the nodes
for the role using the associated configuration overlays slurm-client or slurm-submit.

The wlm-headnode-submit configuration overlay is a special overlay. It is applied only to the head
node, and is shared among all installed workload managers. Setting this overlay means that the head
node, by default, has a submit role for a given workload manager.

Example

[basecm11->configurationoverlay]% use slurm-client

[basecm11->configurationoverlay[slurm-client]]% show

Parameter Value

-------------------------------- --

Name slurm-client

Revision

All head nodes no

Priority 500

Nodes

Categories default

Roles slurmclient

Customizations <0 in submode>

[basecm11->configurationoverlay[slurm-client]]% set nodes

node001 node002 node003 basecm11

[basecm11->configurationoverlay[slurm-client]]% set nodes node001..node002

[basecm11->configurationoverlay*[slurm-client*]]% commit

[basecm11->configurationoverlay[slurm-client]]% list

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- ----------------

slurm-accounting 500 yes slurmaccounting

slurm-client 500 no node001,node002 default slurmclient

slurm-server 500 yes slurmserver

slurm-submit 500 no default slurmsubmit

wlm-headnode-submit 600 yes slurmsubmit

[basecm11->configurationoverlay[slurm-client]]%

7.4 Enabling, Disabling, And Monitoring Workload Managers 347

All the head nodes can also be made to take on the configuration overlay role by setting its All head

nodes value to yes. The union set of All head nodes with Nodes is the set of nodes to which the role is
applied for that configuration overlay.

Values for the parameters in a role, such as the slurmclient role, can be set within the configuration
overlay:

Example

[basecm11->configurationoverlay[slurm-client]]% roles

[basecm11->configurationoverlay[slurm-client]->roles]% use slurmclient

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% show

Parameter Value

-------------------------------- --

Name slurmclient

Revision

Type SlurmClientRole

Add services yes

WLM cluster slurm

Slots 0

All Queues no

Queues defq

Provisioning associations <0 internally used>

Power Saving Allowed no

Features

Sockets 0

Cores Per Socket 0

ThreadsPerCore 0

Boards 0

SocketsPerBoard 0

RealMemory 0B

NodeAddr

Weight 0

Port 0

TmpDisk 0

Reason

CPU Spec List

Core Spec Count 0

Mem Spec Limit 0B

Node Customizations <0 in submode>

Generic Resources <0 in submode>

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]%

After the workload manager roles are assigned or unassigned, and after running imageupdate (sec-
tion 5.6.2) for non-head nodes, the associated workload manager services automatically start up or stop
as appropriate.

The configuration overlay role values are inherited by categories and nodes, unless the categories
and nodes have their own values set. Thus, for role properties, a value set at node level overrides values
set at category level, and a value set at configuration overlay level overrides a value set at category level.
This is typical of how properties of objects are inherited in BCM levels.

Workload Manager Role Assignment To A Category With cmsh

In cmsh, workload manager role assignment to a node category can be done using category mode, using
the category name, assigning a role from the roles submode, setting the WLM instance for that role,
and committing the modified role:

Example

348 Workload Management

[root@basecm11 ~]# cmsh

[basecm11]% category

[basecm11->category]% use default

[basecm11->category[default]]% roles

[basecm11->category[default]->roles]% assign slurmclient

[basecm11->category[default]->roles*[slurmclient*]]% wlm list

Type Name (key) Server nodes Submit nodes Client nodes

------- --------------------- ------------ ---------------- ----------------

slurm slurm1 basecm11 basecm11,node001 node001,node002

[basecm11->category[default]->roles*[slurmclient*]]% set wlmcluster slurm1

[basecm11->category[default]->roles*[slurmclient*]]% commit

Settings that are assigned in the slurmclient role of the category overrule the slurmclient role
configuration overlay settings.

The role assignment at category level requires the value for a WLM instance to be specified for
wlmcluster before the commit command is successful.

Workload Manager Role Assignment To An Individual Node With cmsh

In cmsh, assigning a workload manager role to a head node can be done in device mode. This can be
done by using the head node name as the device, assigning the workload manager role to the device,
setting the WLM instance value to the role within the role submode, and committing the modified role.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% use basecm11

[basecm11->device[basecm11]]% roles

[basecm11->device[basecm11]->roles]% assign slurmserver

[basecm11->category[default]->roles*[slurmserver*]]% wlm list

Type Name (key) Server nodes Submit nodes Client nodes

------- --------------------- ------------ ---------------- ----------------

slurm slurm1 basecm11 basecm11,node001 node001,node002

[basecm11->category[default]->roles*[slurmserver*]]% set wlmcluster slurm1

[basecm11->device*[basecm11*]->roles*[slurmserver*]]% commit

[basecm11->device[basecm11]->roles[slurmserver]]%

For regular nodes, role assignment is done via device mode, using the node name. Th node name is
assigned the workload manager role, the WLM instance value is set for that role in the role submode,
and the modified role is committed.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% use node001

[basecm11->device[node001]]% roles

[basecm11->device[node001]->roles]% assign slurmclient

[basecm11->device[node001]->roles*[slurmclient*]]% wlm list

Type Name (key) Server nodes Submit nodes Client nodes

------- --------------------- ------------ ---------------- ----------------

slurm slurm1 basecm11 basecm11,node001 node001,node002

[basecm11->device[node001]->roles*[slurmclient*]]% set wlmcluster slurm1

[basecm11->device[node001]->roles*[slurmclient*]]% commit

[basecm11->device[node001]->roles[slurmclient]]%

7.4 Enabling, Disabling, And Monitoring Workload Managers 349

The role assignment at node level requires the value for a WLM instance to be specified for wlmcluster
before the commit command is successful.

Role assignment values set in device mode have precedence over any role assignment values set in
category mode for that node. This means, for example, that if a node is originally in a node category
with a slurmclient role and queues set, then when the node is assigned a slurmclient role from device

mode, its queue properties are empty by default.

Setting Options For Workload Manager Settings With cmsh

In the preceding text, it is explained how the workload manager client or server is assigned a role (such
as slurmclient or slurmserver) within the roles submode. It is done from within a main mode of
cmsh. The main modes from which role assignment can be done are: configurationoverlay, category
or device.

Options for workload managers in general: Whatever main mode is used, the workload manager
options for a role can then be set with the usual object commands introduced in section 2.5.3.

• WLM client options: For example, the configuration options of a WLM client, such as the PBS
Professional client, can be seen by using the show command on the role. Here it can be seen at a
category level, for the default category default:

Example

[basecm11->category[default]->roles[pbsproclient]]% show

Parameter Value

-------------------------------- --

Add services yes

All Queues no

GPUs 0

Name pbsproclient

Properties

Provisioning associations <0 internally used>

Queues

Revision

Slots 1

Type PbsProClientRole

WLM cluster

Mom Settings <submode>

Comm Settings <submode>

Node Customizations <0 in submode>

The Slots option can be set in the role

Example

[basecm11->category[default]->roles[pbsproclient]]% set slots 2

[basecm11->category*[default*]->roles*[pbsproclient*]]% commit

[basecm11->category[default]->roles[pbsproclient]]%

• WLM server options: Similarly, WLM server options can be managed from an assigned server
role. For PBS, the pbsproserver role for a device shows:

Example

350 Workload Management

[basecm11->device[basecm11]->roles]% use pbsproserver

[basecm11->device[basecm11]->roles[pbsproserver]]% show

Parameter Value

-------------------------------- --

Name pbsproserver

Revision

Type PbsProServerRole

Add services yes

WLM cluster

Provisioning associations <0 internally used>

External Server no

Comm Settings <submode>

Option to set an external workload manager: A workload manager can be set to run as an external
server from within a device mode role:

Example

[basecm11->device[basecm11]->roles[pbsproserver]]% set externalserver on

[basecm11->device[basecm11]->roles[pbsproserver*]]% commit

For convenience, setting it on the head node is recommended.
The Base View equivalent of configuring externalserver is described on page 345.

7.4.3 Monitoring The Workload Manager Services
By default, the workload manager services are monitored. BCM attempts to restart the services using
the service tools (section 3.14), unless the role for that workload manager service is disabled, or the
service has been stopped.

Workload manager roles and corresponding services can be disabled using cm-wlm-setup (section
7.3), Base View role configuration (section 7.4.1), or cmsh role configuration (section 7.4.2).

The daemon service states can be viewed for each node via the shell, cmsh, or Base View (section 3.14).
Queue submission and scheduling daemons normally run on the head node. From Base View their

states are viewable via the navigation path to the services running on the node. For example, on a head
node (figure 7.16), via:

Devices > Head Nodes > [basecm11] > Settings > JUMP TO > Services

Figure 7.16: Services seen on head node in Base View

For a regular node, a similar navigation path for node001, for example, is:
Devices > Nodes > node001 > Settings > JUMP TO > Services

7.4 Enabling, Disabling, And Monitoring Workload Managers 351

and leads to a view of services on the regular nodes (figure 7.17):

Figure 7.17: Services seen on regular node in Base View

Considering only the WLMs: in figure 7.16 the pbsserver is seen running on the head node, while
in figure 7.17 the pbsmom server is seen running on the compute node.

The navigation path:
Devices > Head Nodes > basecm11 > Settings > JUMP TO > Roles

shows the roles that result in the servers running on the head node (figure 7.18):

Figure 7.18: Roles seen on head node in Base View

Similarly, the navigation path:
Devices > Nodes > node001 > Settings > JUMP TO > Roles

shows the roles on a regular node such as node001 (figure 7.19):

352 Workload Management

Figure 7.19: Roles seen on regular node in Base View

The roles seen in these figures are from the defaults that cm-wlm-setup provides in an express setup.
For regular nodes, the inheritance of roles from category level or configuration overlay level is indi-

cated by the values in the INHERITED column. Thus, in figure 7.19, the pbsprosubmit and pbsproclient

roles are decided by the default setting from the category level.
The assignment of roles can be varied to taste for WLMs. This allows WLM services to run on the

head node or on the regular nodes.
From cmsh the services states are viewable from within device mode, using the services command.

One-liners from the shell to illustrate this are (output elided):

Example

[root@basecm11 ~]# cmsh -c "device services node001; status"

Service Status

------------ -----------

nslcd [UP]

pbsmom [UP]

[root@basecm11 ~]# cmsh -c "device services basecm11; status"

Service Status

------------ -----------

...

pbsserver [UP]

Roles can be viewed from within the main modes of configurationoverlay, category, or device.
One-liners to view these are:

Example

[root@basecm11 ~]# cmsh -c "configurationoverlay; list"

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- ----------------

openpbs-client 500 no default pbsproclient

openpbs-server 500 yes pbsproserver

openpbs-submit 500 no default pbsprosubmit

wlm-headnode-submit 600 yes pbsprosubmit

[root@basecm11 ~]# cmsh -c "category; use default; roles; list -p"

Name (key)

7.5 Configuring And Running Individual Workload Managers 353

[overlay:openpbs-client:500] pbsproclient

[overlay:openpbs-submit:500] pbsprosubmit

[root@basecm11 ~]# cmsh -c "device use node001; roles; list -p"

Name (key)

--

[overlay:openpbs-client:500] pbsproclient

[overlay:openpbs-submit:500] pbsprosubmit

[root@basecm11 ~]# cmsh -c "device use basecm11; roles; list -p"

Name (key)

--

[750] backup

[750] boot

[750] firewall

[750] headnode

[750] monitoring

[750] provisioning

[750] storage

[overlay:openpbs-server:500] pbsproserver

[overlay:openpbs-submit:500] pbsprosubmit

The -p|--priority option displays of the list command the priority setting for the roles.

7.5 Configuring And Running Individual Workload Managers
BCM deals with the various choices of workload managers in as generic a way as possible. This means
that not all features of a particular workload manager can be controlled, so that fine-tuning must be
done through the workload manager configuration files. Workload manager configuration files that are
controlled by BCM should normally not be changed directly because BCM overwrites them. However,
overwriting by CMDaemon is prevented on setting the directive:

FreezeChangesTo<workload manager>Config = <true|false>

in cmd.conf (Appendix C), where <workload manager> takes the value of Slurm, LSF, or PBSPro, as ap-
propriate. The value of the directive defaults to false.

A list of configuration files that are changed by CMDaemon, the items changed, and the events
causing such a change are listed in Appendix H.

A very short guide to some specific workload manager commands that can be used outside of the
NVIDIA Base Command Manager 11 system is given in Appendix F.

7.5.1 Configuring And Running Slurm
Slurm Packages
At the time of writing (April 2025), BCM is integrated with Slurm packages for Slurm versions 24.05,
24.11 and 25.05. Slurm version 24.11 is installed by default.

For Slurm version 24.05, the following packages are available from the BCM repositories for Ubuntu
24.04:

• slurm24.05: Simple Linux Utility for Resource Management, Slurm Workload Management.

• slurm24.05-contribs: Perl tool to print Slurm job state information.

• slurm24.05-devel: Development package for SLURM. Includes the header files and static li-
braries for the SLURM API.

354 Workload Management

• slurm24.05-libpmi: Slurm’s implementation of the pmi libraries.

• slurm24.05-openlava: openlava/LSF wrappers for transition from OpenLava/LSF to Slurm.

• slurm24.05-pam: PAM module for restricting access to compute nodes via Slurm.

• slurm24.05-perlapi: Perl API to Slurm.

• slurm24.05-prs: Slurm PRS plugin.

• slurm24.05-sackd: Slurm authentication daemon. Used on login nodes that are not running
slurmd daemons to allow authentication to the cluster.

• slurm24.05-slurmctld: Slurm control daemon.

• slurm24.05-slurmd: Slurm compute node daemon.

• slurm24.05-slurmdbd: Slurm database daemon.

• slurm24.05-slurmrestd: Slurm REST API translator.

• slurm24.05-torque: Torque/PBS wrappers for transition from Torque/PBS to Slurm.

For Slurm version 24.11, the value of 24.05 is simply replaced by 24.11 in the preceding list of pack-
ages. Similarly, for Slurm version 25.05, the value of 24.05 is simply replaced by 25.05 in the preceding
list of packages.

The distribution version of Slurm (package: slurm) is not integrated with BCM and conflicts with
the preceding packages. It should not be used.

Important updates from upstream are patched into the BCM repositories. If updating Slurm pack-
ages, all the Slurm packages should be updated to the same version, on the compute nodes as well as
on the scheduling node.

Updating From Earlier Slurm Versions To slurm24.11

Upgrading between major versions of Slurm is generally possible. It is a good idea to upgrade one
version at a time, rather than jumping 2 or more versions ahead, which requires a full wipe of the Slurm
configuration.

If Slurm is using Pyxis (section 7.3.3), then upgrading the Slurm version means that Pyxis needs to be
reinstalled using cm-wlm-setup. The reinstallation run for Pyxis compiles Pyxis and recreates a plugin
directory for the new Slurm version under /cm/local/apps/slurm/.

An upgrade from one major version of Slurm to another can be carried out according to the fol-
lowing example, which is for an update from major version 22.05 to version 24.11, and avoids total
reconfiguration of the Slurm configuration:

• It is recommended that no jobs are running. Draining nodes (section 7.7.3) is one way to arrange
this over time. No new jobs run on a drained node, but old ones are allowed to finish.

• When all running jobs are finished, then Slurm server services—slurmctld and slurmdbd—should
be stopped using cmsh or Base View (section 3.14.2):

Example

[basecm11->device[basecm11]->services]% stop slurmctld

[basecm11->device[basecm11]->services]% stop slurmdbd

• The old Slurm packages should then be removed. There can be only one version of Slurm at a
time, so there will be a package installation conflict if a new version is installed while an old one
is still there.

Removal can be carried out on RHEL-based systems with, for example:

/cm/local/apps/slurm/

7.5 Configuring And Running Individual Workload Managers 355

[root@basecm11 ~]# yum remove slurm22.05*

The old packages must also be removed from each software image that uses it:

[root@basecm11 ~]# cm-chroot-sw-img /cm/images/<software image>
...

[root@<software image> /]# yum remove slurm22.05*

...removal takes place...
[root@<software image> /]# exit

The cm-chroot-sw-img wrapper utility is discussed in section 9.4.1.

• The new packages can then be installed. For installation onto the RHEL head node, the installation
might be carried out as follows:

[root@basecm11 ~]# yum install slurm24.11 slurm24.11-client slurm24.11-contribs \
slurm24.11-perlapi slurm24.11-devel slurm24.11-pam slurm24.11-slurmdbd \
slurm24.11-slurmrestd

The client package can be installed in each software image with, for example:

[root@basecm11 ~]# cm-chroot-sw-img /cm/images/<software image>
...

[root@<software image> /]# yum install slurm24.11-client

...installation takes place
[root@<software image> /]# exit

Other Slurm packages from the repository may also be installed on the head node and within the
software images, as needed.

• The new Slurm version is then set in cmsh or Base View, in the Slurm WLM cluster configuration:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% set version 24.11; commit

• Slurm server services slurmctld and slurmdbd should then be started again using cmsh or Base
View:

Example

[basecm11->device[basecm11]->services]% start slurmdbd

[basecm11->device[basecm11]->services]% start slurmctld

• The nodes can then have their new image placed on them, and the new Slurm configuration can
then be taken up. This can be done in the following two ways:

1. The regular nodes can then be restarted to supply the live nodes with the new image and get
the new Slurm configuration running.

356 Workload Management

2. Alternatively, the imageupdate command (section 5.6.2) can be run on the live nodes to sup-
ply them with the image.
Running the imageupdate command in dry mode (the default) first is recommended. The
synclog command can then be run to check there are no unexpected changes that will take
place due to the update. If all is well, then imageupdate’s wet mode flag -w can be used in
order to really carry out the task.
For example, the change can be checked, and then actually carried out, for the image on
node001 with:

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% imageupdate

Performing dry run (use synclog command to review result, then pass -w to perform real update)...

...some messages...
imageupdate [COMPLETED]

[basecm11->device[node001]]% synclog

...rsync dry run output...
[basecm11->device[node001]]% imageupdate -w

...same messages as before, but this time it really happens...
[basecm11->device[node001]]% commit

The last commit command triggers the reconfiguration of the file /etc/systemd/system/

slurmd.service.d/99-cmd.conf on the node. After a short time—around 30 seconds—the
file is regenerated. The slurmd service on the node can then be restarted with:

[root@basecm11 ~]# ssh node001 "systemctl daemon-reload"

cmsh -c "device services node001; use slurmd; restart"

IMEX
NVIDIA IMEX (Internode Memory Exchange Service) is a secure service that facilitates the mapping of
GPU memory over NVLink between the GPUs in an NVLIink domain.

BCM can enable the IMEX daemon either globally, or per job for Slurm.

Enabling the IMEX daemon globally for Slurm: If IMEX is set globally, it means that it is set to run
on all nodes.

The advantage of this configuration is that it is easy to set up, and easy to test to see if it is all working.
A disadvantage is that a user running a job on one node can read memory from a job run by another

user on another node. It requires overcoming difficult hurdles to carry out, but it is not impossible. The
administrator should therefore weigh up if this seems a significant issue for the cluster being adminis-
tered

The IMEX global service can be run by setting the values for the service for the compute nodes. For
example, nodes in a dgx-gb200 category can have the service added and set to:

[basecm11->category[dgx-gb200]->services[nvidia-imex]]% show

Parameter Value

-------------------------------- --

Revision

Service nvidia-imex

Run if always

Monitored yes

Autostart yes

Managed yes

/etc/systemd/system/slurmd.service.d/99-cmd.conf
/etc/systemd/system/slurmd.service.d/99-cmd.conf

7.5 Configuring And Running Individual Workload Managers 357

Enabling and disabling the IMEX daemon per job for Slurm: Configuring per job means that IMEX
runs just before the job starts, and that the service runs on only a node that need it.

A disadvantage is that verifying that it actually works requires a job run.
Running the IMEX daemon per job has the advantage that one user running a job cannot read the

memory of a job run by another user on another node.
To run IMEX per job, any global IMEX setting must first be cleared away. This can be done by first:

• removing the nvidia-imex service configuration entirely from CMDaemon

Example

[basecm11->category[dgx-gb200]->services[nvidia-imex]]% remove nvidia-imex; commit

• stopping the service on the compute nodes, for example with pdssh or pdexec, or simply carrying
out a reboot

The value of imex in the slurmclient role can then be set:

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay roles slurm-client-gpu

[basecm11->configurationoverlay[slurm-client-gpu]->roles]% use slurmclient

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]]% set imex yes

[basecm11->configurationoverlay*[slurm-client-gpu*]->roles*[slurmclient*]]% commit

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]]%

Committing that imex setting configures Slurm prolog and epilog scripts in the backend as follows:

• the prolog script configures the IMEX daemon with the nodes allocated to the GPU job and starts
the IMEX daemon on the node

• the epilog cleans up the configuration and stops the IMEX daemon on the node

Workload Power Profile Settings (WPPS)
NVIDIA Blackwell GPUs support workload power profiles. Each GPU in a job can have a specific
workload power profile set for it; the profile can vary per GPU. For these power profles to work as
expected, a node that has a job allocated to it must have the job allocated exclusively to it.

BCM allows the user who is running a Slurm job to change its power profiles in two ways:

1. Statically: the job prolog script switches the power profiles for all GPUs allocated to the job just
before the job starts

2. Dynamically: the job process sets power profiles for each allocated GPU during job execution

In both cases, when the job is finished, the epilog script resets the GPU power profiles back to the default.
Workload power profiles settings are a part of the slurmclient role, located within the Power profiles

submode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay roles slurm-client-gpu

[basecm11->configurationoverlay[slurm-client-gpu]->roles]% use slurmclient

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]]% powerprofiles

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]->powerprofiles]% show

Parameter Value

-------------------------------- --

358 Workload Management

Disabled yes

Fail on error no

Job keyword wpps

Jobs profiles directory /var/run/nvidia/workload-power-profiles

Debug no

Debug log directory /var/spool/cmd/wlm/wpps

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]->powerprofiles]% set disabled no

[basecm11->configurationoverlay*[slurm-client-gpu*]->roles*[slurmclient*]->powerprofiles*]% commit

[basecm11->configurationoverlay[slurm-client-gpu]->roles[slurmclient]]%

The Power profiles parameters are:

1. Disabled: forbids a job from changing workload power profiles (yes by default)

2. Fail on error: allows prolog and epilog to fail if a workload power profiles change fails for any
reason

3. Job keyword: a keyword in the JSON object, used by the WLM job, to specify a workload power
profiles setting in the comment field

4. Jobs profiles directory: a top directory which includes job ID directories, and used by the job
to change the workload power profiles

5. Debug: setting it to yes enables prolog and epilog debug messages The prolog and epilog then
write debug logs to the location set by the Debug log directory parameter,

6. Debug log directory: directory where prolog and epilog create debug log files per job. This is
/var/spool/cmd/wlm/wpps/<JOBID>.log by default. The log files are not cleaned up automati-
cally.

If WPPS is enabled, then special BCM prolog and epilog scripts are enabled in Slurm on compute
nodes. The scripts parse the SLURM_JOB_COMMENT environment variable that is passed by Slurm. The
scripts search for a JSON object that includes the key wpps. The key used can be changed using the Job

keyword parameter. The expected format of the JSON object is:

{"wpps": {"profiles": PROFILES}}

Here, PROFILES is either

• a JSON list of strings (workload profile names or their numbers) or

• a single string (one workload profile name) or

• a workload profile number.

The values that PROFILES can take are:

• max_p

• max_q

• llm_training

• llm_inference

On matching, the specified profiles are set for all the GPUs on the node that are allocated for the job
when the job starts.

For example, the following job submission command instructs the prolog script to set the workload
profiles to max_p and compute:

/var/spool/cmd/wlm/wpps/<JOB ID>.log

7.5 Configuring And Running Individual Workload Managers 359

$ sbatch --gres=gpu:b100:8 --comment='{"wpps": {"profiles": ["max_p", "compute"]}}' job.sh

All allocated GPUs on the node get the specified workload profiles, which means that job allocation
must be configured to run on that node as a job that excludes other jobs running on it. If the cluster
administrator has set oversubscribe for Slurm, then that takes precedence over exclusivity, and must
therefore be taken into account.

If a job requires dynamic profiles management, then the job process can notify BCM to update the
power profiles of specific GPUs during job execution. The prolog creates a directory of the form /var/

run/nvidia/workload-power-profiles/<JOB_ID>/ per job. The following files are created within the
directory:

1. username: read-only (for users) file that includes the current job user name. Used by BCM.

2. uuids: read-only (for users) file that includes a list of GPU UUIDs (one per line) allocated for this
job.

3. profiles: file that can be used by the job process to set new profiles. The file is empty by default.
An empty file means that BCM does not modify the profiles. If the job process writes two lines:

max_p

compute

then BCM reads this file almost immediately, and applies these two workload profiles to the GPUs
whose UUIDs are specified in uuids file.

What users are running in each workload power profile can be viewed with a PromQL query, as
explained on page 363.

Management of node workload profiles by regular users: The user, for example John, can be given
access to checking and managing GPU power profiles by running the allowgpuworkloadpowerprofiles
command.

Example

[basecm11->user[john]]% set allowgpuworkloadpowerprofiles yes

The gpuworkloadpowerprofiles command can then be run to check the current node profiles:

Example

[basecm11->device]% gpuworkloadpowerprofiles show -n node001

Node GPU Profiles

------------ -------- ------------

node001 0 COMPUTE(2)

node001 1 MAX_P(0)

node001 2 MAX_P(0)

node001 3 MAX_P(0)

node001 4 MAX_P(0)

node001 5 MAX_P(0)

node001 6 MAX_P(0)

node001 7 MAX_P(0)

[basecm11->device]%

This may be useful for debug purposes.
The BCM script cm-gpu-workload-power-profiles can then be used to change the profiles as fol-

lows:

/var/run/nvidia/workload-power-profiles/<JOB_ID>/
/var/run/nvidia/workload-power-profiles/<JOB_ID>/

360 Workload Management

• The user first gets the GPU UUIDs:

Example

root@dgx-gb200-n07-c2:~# nvidia-smi --query-gpu=uuid --format=csv,noheader --id=0,1,2,3

GPU-1e72bc8d-b967-6031-24bd-c5a08ad090e1

GPU-3a6ac832-3423-68cc-ed1f-64f2b46d248d

GPU-f40fabb7-eb9b-0253-4bd5-08b4a12916ea

• The user can then use the script to change the profile. For example, just for the GPUs 1 and 2:

Example

root@dgx-gb200-n07-c2:~# /cm/local/apps/cmd/sbin/cm-gpu-workload-power-profiles -p compute -u john \
3a6ac832-3423-68cc-ed1f-64f2b46d248d f40fabb7-eb9b-0253-4bd5-08b4a12916ea

The script carries the profile change out with the help of CMDaemon in the back end.

Slurm’s prolog and epilog actually work with the script in BCM when carrying out dynamic pro-
files management, so that the user does not need to use the script manually.

Management of external users to allow them to use profiles: External users, that is users managed
by an external LDAP and not managed by the BCM LDAP, can use the workload power profile settings
if their user name or UID is added to the file:

/cm/local/apps/cmd/etc/allow-users-wpps.conf

The file must be created on the head node, or on both head nodes if the cluster has HA. The file
should have its mode set to 0600. The user name or UID should be added on its own line in the file.

Advanced Slurm Job Accounting
PromQL queries can be run and then filtered by Slurm job labels with BCM. The labels are taken either
from a job comment or from an account name used by the job. After the labels for the job are ex-
tracted, the labeled entity is stored in the monitoring data. The administrator can then run PromQL
queries, and filter results by label. Examples of such PromQL queries are the job_gpu_wasted or
job_gpu_utilization queries (section 12.4.1).

Extract accounting info must be set to yes to enable labels to be extracted from job comments or
account names:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% accounting

[basecm11->wlm[slurm]->show]% accounting

Parameter Value

-------------------------------- --

Managed hierarchy

Separator _

Job comment labels

Extract accounting info no

[basecm11->wlm[slurm]->accounting]% set extractaccountinginfo yes

[basecm11->wlm*[slurm*]->accounting*]% commit

In addition, the administrator must configure the job comment label format and the format of Slurm
account names, if they exist. Without that configuration, BCM cannot parse the labels.

/cm/local/apps/cmd/etc/allow-users-wpps.conf

7.5 Configuring And Running Individual Workload Managers 361

Job comment labels: A user running the job can specify the label for the job comment in a special
format. Such a label could be, for example, a tag to indicate the artificial neural network model, where
different groups of jobs use different models. The administrator (after having enabled accounting in-
formation extraction) can set a regex for the tag in a Job comment field parameter in accounting sub-
mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% accounting

[basecm11->wlm[slurm]->accounting]% set jobcommentlabels model

[basecm11->wlm*[slurm*]->accounting*]% commit

In the preceding example, the label model is set in the monitoring data when the job comment in-
cludes a JSON object with model as a key. The value must be a string that will be a value for the label
model. For example "model": "llm123". The JSON object may contain other information that will be
ignored by BCM when it reads the labels from the comment.

Account name labels: Several labels can be assigned by BCM to a job parsed from an associated ac-
count name. The labels can be used to represent a hierarchy of organizational entities, such as depart-
ment, project, team, and so on. The following configuration options allow this representation:

1. Managed hierarchy: representation of the account name as a list of organizational entity labels.

2. Separator: a separator for the labels in the account names. By default this is the underscore char-
acter, _. The last entity is separated with double separator. This means that the last entity (and
only the last entity) can have a single separator in the name itself.

For instance, if Slurm account names use the following format:

DEPARTMENT_PROJECT_TEAM

then Managed hierarchy values can be set as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% accounting

[basecm11->wlm[slurm]->accounting]% set managedhierarchy department project team

[basecm11->wlm*[slurm*]->accounting*]% commit

It is up to the administrator to create the accounting hierarchy in Slurm, and set names as described
by the Managed hierarchy parameter.

Example

[root@basecm11 ~]# module load slurm

[root@basecm11 ~]# sacctmgr add account NVIDIA Description="NVIDIA account" Organization=NVIDIA parent=root -i

[root@basecm11 ~]# sacctmgr add account Department1 Organization=NVIDIA parent=NVIDIA -i

[root@basecm11 ~]# sacctmgr add account Department1_Project1 Organization=NVIDIA parent=Department1 -i

[root@basecm11 ~]# sacctmgr add account Department1_Project1__Team_1 Organization=NVIDIA parent=Department1 -i

[root@basecm11 ~]# sacctmgr add account Department1__Team_2 Organization=NVIDIA parent=Department1 -i

In the preceding example two teams have been made. Team 1 is defined according to the full entities
hierarchy (department, project, team), while Team 2 is defined only under a department. BCM correctly
recognizes such "clipped" hierarchy locations for a team in the account names.

Similar to the Slurm command sshare, an administrator can display the Slurm account hierarchy
with the fairshare command in cmsh:

362 Workload Management

Example

[basecm11->wlm[slurm]]% fairshare -t

Account fairshare raw_shares raw_usage norm_shares norm_usage parent

----------------------------- ------------ ---------- ---------- ----------- ---------- -------------------

root (top account) 0.0 0 0 0.0 0.0

nvidia 0.0 1 0 0.5 0.0 root (top account)

department1 0.0 1 0 1.0 0.0 nvidia

department1__team_2 0.0 1 0 0.333333 0.0 department1

department1_project1 0.0 1 0 0.333333 0.0 department1

department1_project1__team_1 0.0 1 0 0.333333 0.0 department1

root 1.0 1 0 0.5 0.0 root (top account)

[basecm11->wlm[slurm]]% fairshare -f ""

root

nvidia

department1

department1__team_2

department1_project1

department1_project1__team_1

root

The following command options can be used:

1. -t|--table: print accounts fairshare parameters as a table

2. -a|--account <name>: print information for specific account

3. -f|--fields <PARAMETERS>: display only specified fairshare account parameters (comma-delimited)
Format:

<FIELD>[%<MIN>[-<MAX>]][,<FIELD>[%<MIN>[-<MAX>]],...] ;

where MIN and MAX are minimum and maximum value lengths. The parameter can be combined
with others.

The following example uses labels from both job comment and account names:

Example

[root@basecm11 ~]# su - alice

[alice@basecm11 ~]$ module load slurm

[alice@basecm11 ~]$ sbatch -A department1_project1__team_1 --comment='{"model": "llm123"}' --wrap="hostname"

Submitted batch job 1

[alice@basecm11 ~]$

PromQL queries with these labels are run later on.
In cmsh the administrator can validate how BCM parses the job labels from both job comment and

from the Slurm account name:

[basecm11->wlm[slurm]->jobs]% info 1 | grep "accounting info" -i

Accounting info {"department":"department1","model":"llm123","project":"project1","team":"team_1"}

[basecm11->wlm[slurm]->jobs]%

Jobs information can also be displayed by filtering using the labels (some output elided for clarity):

7.5 Configuring And Running Individual Workload Managers 363

[basecm11->wlm[slurm]->jobs]% filter -i team="team_1"

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------- ---------- ------ ------- ------------ ----------- --------- --------- ----------

1 wrap alice 13:28:46 13:28:46 13:28:46 1

2 wrap alice defq 13:28:59 13:28:59 13:30:00 node001 0

3 wrap alice defq 13:30:39 13:30:39 13:31:40 node001 0

[basecm11->wlm[slurm]->jobs]%

The following query filters the team:

[basecm11->monitoring->labeledentity]% instantquery "job_gpu_wasted{team=\"team_1\"}[1h]"
Name category department group hostname job_id job_name project queue team user wlm ...

--------------- -------- ------------ ------ -------- ------- -------- --------- ------ ------- ------ ----- ...

job_gpu_wasted default department1 alice node001 1 wrap project1 defq team_1 alice slurm ...

job_gpu_wasted default department1 alice node002 2 wrap project1 defq team_1 alice slurm ...

The following query filters the model name:

[basecm11->monitoring->labeledentity]% instantquery "job_gpu_wasted{model=\"llm123\"}[1h]"
Name category group hostname job_id job_name model queue user wlm ...

--------------- -------- ------ -------- -------- -------- -------- -------- ------ ----- ...

job_gpu_wasted default alice node001 1 wrap foo defq alice slurm ...

job_gpu_wasted default alice node002 2 wrap foo defq alice slurm ...

The following query show what users are running in each WPPS profile:

[-head-01->monitoring->labeledentity]% instantquery -q job_gpu_workload_power_profile_for_user

Name gpu_workload_power_profile user Timestamp ... Value

-- -------------------------- ---------- -----------... -----

job_gpu_workload_power_profile_for_user COMPUTE avolkov Mon Jun 2 ... 2

job_gpu_workload_power_profile_for_user LLM_INFERENCE avolkov Mon Jun 2 ... 2133

job_gpu_workload_power_profile_for_user LLM_INFERENCE root Mon Jun 2 ... 23

job_gpu_workload_power_profile_for_user LLM_INFERENCE shoreline Mon Jun 2 ... 336

job_gpu_workload_power_profile_for_user LLM_INFERENCE wglantz Mon Jun 2 ... 12

job_gpu_workload_power_profile_for_user LLM_TRAINING root Mon Jun 2 ... 7

job_gpu_workload_power_profile_for_user LLM_TRAINING shoreline Mon Jun 2 ... 331

job_gpu_workload_power_profile_for_user MAX_P avolkov Mon Jun 2 ... 2134

job_gpu_workload_power_profile_for_user MAX_P root Mon Jun 2 ... 60

job_gpu_workload_power_profile_for_user MAX_P shoreline Mon Jun 2 ... 379

job_gpu_workload_power_profile_for_user MAX_P wglantz Mon Jun 2 ... 12

job_gpu_workload_power_profile_for_user MAX_Q root Mon Jun 2 ... 8

job_gpu_workload_power_profile_for_user MAX_Q shoreline Mon Jun 2 ... 320

Slurm NVIDIA Sharp Plugin
NVIDIA’s Sharp packages are packages that offload some operations from CPUs and GPUs to the net-
work. Sharp is the abbreviation used for the Scalable Hierarchical Aggregation and Reduction Protocol.
The protocol refers to the reduction in the amount of data traversing the network and the reduction in
the time for collective operations. Using Sharp frees up more CPUs and GPU resources for computation.

The Sharp binaries are available in various packages.
Slurm versions 24.05 and 24.11 have a special version that includes an NVIDIA Sharp plugin. To use

it, the existing Slurm packages must be substituted by packages with the -sharp suffix. This allows the
plugin and associated extra options to be used.

Example

The following session on an Ubuntu system illustrates the existing Slurm version 24.05 packages, and
then carrying out a replacement of these with the corresponding Sharp versions:

364 Workload Management

basecm11:~# dpkg --get-selections | grep slurm | cut -f1 | tr "\n" " " ; echo

slurm24.05 slurm24.05-client slurm24.05-contribs slurm24.05-devel slurm24.05-perlapi slurm24.05-slurmdbd

basecm11:~# apt install slurm24.05-sharp slurm24.05-sharp-client slurm24.05-sharp-contribs\
slurm24.05-sharp-devel slurm24.05-sharp-perlapi slurm24.05-sharp-slurmdbd

The change should be treated like the upgrade procedure on page 354, and should likewise end with
the cluster administrator selecting the -sharp Slurm version parameter in cmsh and committing it.

Example

root@basecm11:~# cmsh -c "wlm use slurm; get version"

24.05-sharp

This plugin is only useful for a network that has the necessary hardware and services configured.
Further information about Sharp can be found at https://docs.nvidia.com/networking/display/

sharpv300.

Configuring Slurm
After Slurm setup is configured and installed with cm-wlm-setup (section 7.3), the Slurm software com-
ponents are installed in a symlinked directory /cm/local/apps/slurm/current. The same set of Slurm
packages should be installed on the head nodes and in each software image where any of the Slurm
services run.

Slurm clients and servers can be configured to some extent via role assignment (sections 7.4.1
and 7.4.2).

Using cmsh, advanced option parameters can be set under the slurmclient and slurmserver

roles. The settings for the roles can be done at configuration overlay, category, or node level (sec-
tions 2.1.5, 2.1.6).

By default, the cm-wlm-setup utility configures Slurm using configuration overlays.

Example

[basecm11->configurationoverlay]% list

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- ----------------

slurm-accounting 500 yes slurmaccounting

slurm-client 500 no default slurmclient

slurm-server 500 yes slurmserver

slurm-submit 500 no default slurmsubmit

wlm-headnode-submit 600 yes slurmsubmit

The settings within the roles can be viewed and modified. For example, the slurmclient role of the
slurm-client configuration overlay can be viewed:

Example

[basecm11->configurationoverlay]% roles slurm-client

[basecm11->configurationoverlay[slurm-client]->roles]% show slurmclient

Parameter Value

-------------------------------- --

Name slurmclient

Revision

Type SlurmClientRole

Add services yes

WLM cluster slurm

Slots 0

https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/sharpv300
/cm/local/apps/slurm/current

7.5 Configuring And Running Individual Workload Managers 365

All Queues no

Queues defq

Features

Sockets 0

Cores Per Socket 0

ThreadsPerCore 0

Boards 0

SocketsPerBoard 0

RealMemory 0B

NodeAddr

Weight 0

Port 0

TmpDisk 0

Reason

CPU Spec List

Core Spec Count 0

Mem Spec Limit 0B

GPU auto detect BCM

Node Customizations <0 in submode>

Generic Resources <0 in submode>

Cpu Bindings None

Slurm hardware probe autodetect yes

Memory autodetection slack 0.0%

IMEX no

Assigning nodes to Slurm queues: Slurm can configure nodesets (man slurm.conf.5). Nodesets are a
way to conveniently group nodes under a unique arbitary name, so that features can be assigned to a
group of nodes.

Starting with BCM version 11, BCM can be used to configure Slurm nodesets using the Nodesets

and Nodeset features options within the slurmclient role options:

• Nodesets: An arbitrary name can be set for the Nodesets parameter. Names that are set are au-
tomatically added to slurm.conf. Nodes with the slurmclient role are then associated with this
arbitrary nodeset name in slurm.conf. For example, if the nodesets parameter is set to ns1 and
the role is assigned only to node node001, then BCM translates this configuration after a short time
into a slurm.conf line that looks like:

NodeSet=ns1 Nodes=node001

In an express Slurm setup by cm-wlm-setup (page 329), the slurmclient role is set by default for
all nodes via the configuration overlay. This means that setting the nodesets parameter in the
slurmclient role there sets it for all nodes. After a short while, the NodeSet line in slurm.conf

changes to match the parameter change:

Example

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient] get nodesets

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient] set nodesets ns1; commit

then, after a minute or so:

[basecm11->...->roles[slurmclient] !grep -i nodeset /cm/shared/apps/slurm/etc/slurm/slurm.conf

[basecm11->...->roles[slurmclient] NodeSet=ns1 Nodes=node[001-003] for a 3-node cluster

• Nodeset features: All values of the Nodeset features parameter are added to nodes that have
the slurmclient role. They are added as Slurm node features, which means that there is no need

https://slurm.schedmd.com/slurm.conf.html
/cm/shared/apps/slurm/etc/slurm/slurm.conf
/cm/shared/apps/slurm/etc/slurm/slurm.conf

366 Workload Management

to duplicate them in the Features parameter of the slurmclient role. The values that are set are
a list of strings.

The Slurm nodesets are added to slurm.conf with the same name as these features. This is useful
when the administrator needs to assign sets of nodes to queues based on the node features.

For example, if the parameter has a value bigmem, and the slurmclient role is assigned to node
node001, then BCM adds lines with:

NodeName=node001 Features=bigmem ...

and
NodeSet=bigmem Feature=bigmem

to slurm.conf.

For the 3-node case specified by the configuration overlay of earlier, the change is illustrated by
the following:

Example

[basecm11->...->roles[slurmclient]]% get nodesetfeatures

[basecm11->...]->roles[slurmclient]]% !grep -i ^Node /cm/shared/apps/slurm/etc/slurm/slurm.conf

NodeName=node[001-003] ... Features=location=local

NodeSet=ns1 Nodes=node[001..003]

[basecm11->...->roles[slurmclient]]% set nodesetfeatures bigmem

... wait a little for the change to happen...
[basecm11->...->roles[slurmclient]]% !grep -i ^Node /cm/shared/apps/slurm/etc/slurm/slurm.conf

NodeName=node[001-003] ... Features=location=local,bigmem

NodeSet=ns1 Nodes=node[001-003]

NodeSet=bigmem Feature=bigmem

The Nodeset features parameter does not automatically add the nodesets to any queues. The
administrator must add the nodesets to the queues separately.

Specifying nodesets for Slurm via wlm mode with jobqueues, vs specifying nodes using the
slurmclient role’s queues parameter:

Specifying which nodes go into Slurm job queues can be specified using either nodesets or nodes.

• The administrator can specify which nodesets are included in Slurm job queues by setting the
nodesets parameter for a job queue, within a jobqueue submode.

For example, the nodeset ns1 defined in the slurmclient role earlier can be included in defq with:

Example

root@basecm11:~# cmsh

[basecm11]% wlm jobqueue

[basecm11->wlm[slurm]->jobqueue]% use defq

[basecm11->wlm[slurm]->jobqueue[defq]]% set nodesets ns1; commit

If the nodesets parameter is set for a queue, then BCM does not add any nodes that are specified
by the Compute nodes parameter, but only adds the nodes in the nodesets specification to a line
with the format:

PartitionName=... Nodes=<nodesets> ...

in slurm.conf. As a reminder, a queue in Slurm terminology is a partition.

7.5 Configuring And Running Individual Workload Managers 367

• The administrator can specify the nodes that are associated with a job queue.

– Prior to BCM version 11, job queues were specified for nodes only by using the queues pa-
rameter of the slurmclient role at the device, category, or configurationoverlay mode
level.
For example, for the configuration overlay slurm-client that defines the Slurm client con-
figuration by default, the nodes for the Slurm client role are the nodes in the default category
default. Within the configuration overlay, within the slurmclient role, the default queue to
be used is set to defq by default:

Example

root@basecm11:~# cmsh

[basecm11]% configurationoverlay use slurm-client

[basecm11->configurationoverlay[slurm-client]]% get categories

default

[basecm11->configurationoverlay[slurm-client]]% roles

[basecm11->configurationoverlay[slurm-client]->roles]% use slurmclient

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% get queues

defq

– Starting with BCM version 11, the administrator can also add nodes to queues directly from
within wlm mode for a particular WLM, within the jobqueue mode for a particular queue, by
setting nodes for particular node grouping parameters. For example, for Slurm the following
queue parameters are available:

Example

[basecm11->wlm[slurm]->jobqueue[defq]]% show | egrep -i '(overlay|nodegroups|compute|catego|nodeset)'

Nodesets

Overlays

Categories

Nodegroups

Compute nodes

Thus defq is used by nodes that have been specified in the following groupings:

* Nodesets: nodes in these nodesets

* Overlays: nodes in these configuration overlays (including nodes of categories that are
in this overlay)

* Categories: nodes in these categories

* Nodegroups: nodes in these node groups

* Compute nodes: nodes listed in this parameter

Slurm Hardware Autodetection (non-GPU): The setting Slurm hardware probe autodetect in the
Slurm role enables automated hardware detection for Slurm for non-GPU hardware. (Specifically for
GPUs is the related Slurm GPU auto detect setting (page 369)).

Slurm hardware probe autodetect enables detection for the following Slurm parameters:

• corespersocket

• threadspercore

• boards

• socketsperboard

368 Workload Management

• sockets

• realmemory

The autodetected parameters are placed in the NodeName line in slurm.conf.
The Slurm client role parameters can be modified. For example Core Spec Count:

Example

[basecm11->configurationoverlay[slurm-client]->roles]% set slurmclient corespeccount 2

[basecm11->configurationoverlay*[slurm-client*]->roles*]% commit

As usual, values set at node level override the values set at categories and configuration overlays
level.

For example, to set corespeccount to 4, only for node001 but not for other nodes, the session might
run further as:

Example

[basecm11->configurationoverlay[slurm-client]->roles]% device use node001

[basecm11->device[node001]]% roles

[basecm11->device[node001]->roles]% assign slurmclient

[basecm11->device*[node001*]->roles*[slurmclient*]]% set corespeccount 4

[basecm11->device*[node001*]->roles*[slurmclient*]]% commit

Field Message

------------------------ --

wlmCluster Error: The WLM cluster should be set

[basecm11->device*[node001*]->roles*[slurmclient*]]% wlm list

Type Name (key) Server nodes Submit nodes Client nodes

------ ------------------------ ------------ ---------------- ----------------

Slurm slurm basecm11 basecm11,node001 node001,node001

[basecm11->device*[node001*]->roles*[slurmclient*]]% set wlmcluster slurm

[basecm11->device*[node001*]->roles*[slurmclient*]]% commit

In the preceding session, the role needs to be assigned at node level with assign slurmclient be-
cause it does not initially exist at node level. If it already existed, then use slurmclient could have
been used to descend into that role.

Also in the preceding session, one of the values that the Slurm client needs to know is wlmcluster,
which decides which WLM it is to work with on the cluster. The value is selected from the list of WLM
instance names in wlm mode.

The level of the active role can be seen with the list command. For example, the Slurm client role
assignment at node level is seen here:

Example

[basecm11->device[node001]->roles[slurmclient]]% list

Name (key)

[overlay:slurm-submit] slurmsubmit

slurmclient

Removing the assignment has the list command display the configuration overlay Slurm client role
assignment:

Example

7.5 Configuring And Running Individual Workload Managers 369

[basecm11->device[node001]->roles[slurmclient]]% unassign slurmclient; commit

[basecm11->device[node001]->roles[slurmclient]]% list

Name (key)

[overlay:slurm-submit] slurmsubmit

[overlay:slurm-client] slurmclient

Slurm Hardware Autodetection For GPUs: The Slurm GPU auto detect setting is a setting seen in
the session output of page 364. It manages Slurm GRES configuration (https://slurm.schedmd.com/
gres.conf.html) automatically, and can be set:

• globally, for all Slurm compute nodes in a Slurm instance, from within the wlm mode of cmsh

• for a particular role, such as in a device role, a category role, and a configuration overlay role for a
Slurm client

Example

[basecm11->configurationoverlay[slurm-client]->roles[slurmclient]]% set gpuautodetect <TAB><TAB>
bcm none nrt nvml off oneapi rsmi

If GPU auto detect is assigned a value, then a corresponding value is assigned to the autodetect pa-
rameter in Slurm’s gres.conf file. One out of 7 values can be assigned to GPU auto detect:

1. bcm: to use BCM values, which are the values that CMDaemon automatically puts in for the vendor
(NVIDIA, Intel, AWS, AMD) and for the number of GPUs.

2. none: to not have the autodetect parameter exist in gres.conf. In this case, there is actually no
corresponding value that can be assigned to the autodetect of gres.conf.

3. nrt: to detect AWS Trainium/Inferentia devices. <— not yet, in October 2024, trunk, or bcm10.24.09

4. nvml: to detect NVIDIA GPUs.

5. off: to turn Slurm GPU autodetection off.

6. oneapi: to detect Intel GPUs.

7. rsmi: to detect AMD GPUs

Slurm GPU autodetection is described further on page 386.

Slurm accounting database configuration in cmsh: After package setup is carried out with
cm-wlm-setup (section 7.3), cmsh can be used to modify the settings for the Slurm accounting database.
Changes can be carried out in the slurm-accounting configuration overlay:

[basecm11->configurationoverlay[slurm-accounting]]% show

Parameter Value

-------------------------------- ---------------------------

Name slurm-accounting

Revision

All head nodes no

Priority 500

Nodes node001,node002

Categories

Roles slurmaccounting

Customizations <0 in submode>

https://slurm.schedmd.com/gres.conf.html
https://slurm.schedmd.com/gres.conf.html

370 Workload Management

In the preceding overlay, slurmdbd runs on the accounting node(s). It is possible to run slurmdbd on
both head nodes or on one or two compute nodes, as set in the configuration overlay. It is not possible
to mix up head nodes and compute nodes for this configuration, and it is not possible to run slurmdbd

on more than two nodes.
Further Slurm accounting changes can be carried out within the slurmaccounting role:

[basecm11->configurationoverlay[slurm-accounting]->roles[slurmaccounting]]% show

Parameter Value

-------------------------------- --------------------------

Name slurmaccounting

Revision

Type SlurmAccountingRole

Add services yes

High availability yes

Primary accounting server node001

DbdPort 6819

StorageHost node001

StoragePort 3306

StorageLoc slurm_acct_db

StorageUser slurm

The primaryaccountingserver parameter defines which node is primary, that is, which one is
AccountingStorageHost in slurm.conf. The other node setting in the configuration overlay is the
AccountingStorageBackupHost.

StorageHost, StoragePort, StorageLoc and StorageUser are settings for connecting to the MySQL
database, If these are for an external host, then they must be configured manually so that they are
reachable by the nodes running slurmdbd.

The highavailability parameter sets the high availability mode for slurmdbd. If set to yes, then
the service runs on both nodes at the same time.

Generic resources (gres) configuration in Slurm: In order to configure generic resources, the
genericresources mode can be used to set a list of objects. Each object then represents one generic
resource available on nodes.

Each value of name in genericresources must already be defined in the list of GresTypes. The list
of GresTypes is defined in the wlm role for the instance.

Example

[basecm11->wlm[slurm]]% get grestypes

gpu

Several generic resources entries can have the same value for name (for example gpu), but must have
a unique alias. The alias is a string that is used to manage the resource entry in cmsh or in Base View.
The string is enclosed in square brackets in cmsh, and is used instead of the name for the object. The alias
does not affect Slurm configuration.

For example, to add two GPUs for all the nodes in the default category which are of type k20xm, and
to assign them to different CPU cores, the following cmsh commands can be run:

Example

[basecm11]% configurationoverlay use slurm-client

[basecm11->configurationoverlay[slurm-client]]% roles

[basecm11->configurationoverlay[slurm-client]->roles*]% use slurmclient

[...[slurmclient]]% genericresources

[...[slurmclient]->genericresources]% add gpu0

7.5 Configuring And Running Individual Workload Managers 371

[...[slurmclient*]->genericresources*[gpu0*]]% set name gpu

[...[slurmclient*]->genericresources*[gpu0*]]% set file /dev/nvidia0

[...[slurmclient*]->genericresources*[gpu0*]]% set cores 0-7

[...[slurmclient*]->genericresources*[gpu0*]]% set type k20xm

[...[slurmclient*]->genericresources*[gpu0*]]% add gpu1

[...[slurmclient*]->genericresources*[gpu1*]]% set name gpu

[...[slurmclient*]->genericresources*[gpu1*]]% set file /dev/nvidia1

[...[slurmclient*]->genericresources*[gpu1*]]% set cores 8-15

[...[slurmclient*]->genericresources*[gpu1*]]% set type k20xm

[...[slurmclient*]->genericresources*[gpu1*]]% commit

[...[slurmclient]->genericresources[gpu1]]% list

Alias (key) Name Type Count File

----------- -------- -------- -------- ----------------

gpu0 gpu k20xm /dev/nvidia0

gpu1 gpu k20xm /dev/nvidia1

[...[slurmclient]->genericresources[gpu1]]%

Typically this configuration is done automatically during the GPU configuration process as outlined
in the GPU Configuration Screens section on page 330, where by default the configuration overlay is
given the name slurm-client-gpu.

In Base View, the navigation path:

Configuration Overlays > slurm-client-gpu > Edit > Roles > slurmclient > Edit > Generic

Resources > ADD

provides the equivalent (figure 7.20):

Figure 7.20: Base View access to NVIDIA GPU configuration options

After the generic resources are committed, BCM updates the gres.conf file.
Since NVIDIA Base Command Manager version 8.2 and higher, a single gres.conf configuration

file, located at /cm/shared/apps/slurm/etc/slurm/gres.conf is used.
If the category consists of node001 and node002, then the entries to the gres.conf file in this case

/cm/shared/apps/slurm/etc/slurm/gres.conf

372 Workload Management

would look like:

Example

This section of this file was automatically generated by cmd. Do not edit manually!

BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

NodeName=node[001,002] Name=gpu Type=k20xm Count=1 File=/dev/nvidia0 Cores=0-7

NodeName=node[001,002] Name=gpu Type=k20xm Count=1 File=/dev/nvidia1 Cores=8-15

END AUTOGENERATED SECTION -- DO NOT REMOVE

[root@basecm11 ~]#

Slurm topology configuration: Slurm supports topology-aware resource allocation to optimize job
performance. BCM supports configuration for the topology/tree and topology/block Slurm plugins
using the topograph service (page 377):

• topology/tree: models the cluster network as a hierarchical structure, where Slurm allocates
resources to jobs to minimize network contention. Nodes are grouped under leaf switches, which
connect to higher-level switches. The plugin helps to allocate nodes that are close together in the
network hierarchy. The plugin requires all nodes for a single job be connected via switches. The
configuration of the plugin is defined via switches and their relationships.

• topology/block: models the network as non-overlapping blocks of nodes. The plugin aims to
keep jobs contiguous within blocks for better communication. The plugin does not require all
nodes to be part of blocks. The configuration is defined via blocks of nodes and their groupings.

The network topology configuration for a Slurm instance <slurmcluster> is described by:
/cm/shared/apps/slurm/etc/<slurmcluster>/topology.conf

The file is modified in an autogenerated section when the cluster administrator modifies the inter-
nal topology settings in BCM, or when the topology arrangement record is fetched from Topograph,
the topology generation service (page 377). The topology settings can be modified in BCM via the
topologysettings submode of the WLM instance in cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% topologysettings

[basecm11->wlm[slurm]->topologysettings]% show

Located Parameter Value

-------------------------------- --

Topology plugin Block

Topology source Internal

Parameters <submode>

Tree settings <submode>

Block settings <submode>

Topograph settings <submode>

A visualization (figure 7.21) of topologysettings, and its submodes and settings may be useful
when reading the contents of this section:

7.5 Configuring And Running Individual Workload Managers 373

topologysettings

Topology plugin

Topology source

Parameters

Tree settings

Block settings

Topograph settings

3d torus

default

block

none

tree

internal

none

topograph

Topo optional
Route part

Dragonfly

Route tree

Switch as node rank

Topology ephemeral
switches

Topology switches

Block sizes

Block entity
Allowed racks

Allowed nodegroups

Hostname

Config path

HTTP parameters

Pass cloud credentials

Fetch timeout

Fetch attempts

Fetch wait time

Nodegroup
Rack

Figure 7.21: Visualization of settings under topologysettings

BCM allows a topology configuration to be generated for both the topology/tree and
topology/block Slurm plugins. By default neither of these plugins is enabled. To enable topology
generation, the administrator can select the plugin type within WLM mode using the Topology plugin

parameter, and can select the Topology source:

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% set topologyplugin<TAB><TAB>
3d torus block default none tree

[basecm11->wlm*[slurm*]]% set topologyplugin tree

Tree

[basecm11->wlm*[slurm*]]% set topologysource<TAB><TAB>
internal none topograph

[basecm11->wlm*[slurm*]]% set topologysource internal

[basecm11->wlm*[slurm*]]% commit

By default, both Topology source and Topology plugin are set to none, which means that
topology.conf is not updated by BCM.

Within topologysettings, the Topology plugin parameter configures plugins in the Slurm-related
.conf files:

Example

[basecm11->wlm[slurm]->topologysettings]% set topologyplugin<TAB><TAB>
3d torus block default none tree

• none: no plugin is configured in slurm.conf

• default: the topology/default plugin is set in slurm.conf

• 3d torus: the topology/3d_torus plugin is set in slurm.conf

• block: the topology/block plugin is set in slurm.conf and topology.conf is updated

t

374 Workload Management

• tree: the topology/tree plugin is set in slurm.conf and topology.conf is updated

The topology settings can be configured in a similar way in Base View.
Within topologysettings, there are these 4 submodes: Parameters, Tree settings, Block

settings, and Topograph settings:

1. The parameters submode manages parameters that are common for all plugins:

Example

[basecm11->wlm[slurm]->topologysettings]% parameters

[basecm11->wlm[slurm]->topologysettings->parameters]% show

Parameter Value

-------------------------------- --

Dragonfly no

Route part no

Switch as node rank no

Route tree no

Topo Optional no

These correspond to values of TopologyParam in slurm.conf (man slurm.conf.5).

2. The treesettings submode allows access to some parameters that modify the topology for the
topology/tree plugin:

Example

[basecm11->wlm[slurm]->topologysettings]% treesettings

[basecm11->wlm[slurm]->topologysettings->treesettings]% show

Parameter Value

-------------------------------- --

Topology switches

Topology ephemeral switches yes

The treesettings parameters are:

• topologyephemeralswitches: A boolean to allow ephemeral switches to be added to
topology.conf

• topology switches: A Slurm cluster configuration parameter that defines the list of switches
used to write the topology file:

Example

[basecm11->wlm[slurm]->topologysettings->treesettings]% set topologyswitches switch01 switch02 switch03

[basecm11->wlm[slurm*]]% commit

The switches-to-nodes mapping does not require the switch devices to exist. The mapping
can be defined in one of the following ways:

– Definitions using the switchports parameter: the port definitions (page 133) for a node
or a switch must normally be configured to let BCM construct the topology tree in
topology.conf. The definitions can be carried out using their switchports parameter:

Example

t
slurm.conf

7.5 Configuring And Running Individual Workload Managers 375

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set switchports switch01:3

[basecm11->device[node001*]]% commit

[basecm11->device[node001]]% use switch01

[basecm11->device[switch01]]% set switchports switch02:15

[basecm11->device[switch01*]]% commit

– Definitions using the SlurmTopology parameter: the Slurm network topology can be con-
figured without configuring the ports in BCM, by using their SlurmTopology parameter:
Example
[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% set node001 -e SlurmTopology switch02 switch01

[basecm11->device*]% set node002 -e SlurmTopology switch02 switch01

[basecm11->device*]% set node003 -e SlurmTopology switch03

[basecm11->device*]% commit

The preceding example populates the autogenerated section of topology.conf as fol-
lows:

Example
SwitchName=switch01 Switches=switch02

SwitchName=switch02 Nodes=node[001,002]

SwitchName=switch03 Nodes=node003

The following AdvancedConfig directives (page 858) can be used to control the topology pa-
rameters layout further.

– SlurmStraightExtraTopology: If set to a value of 0, then the order of switches is
reversed when setting the extra values. For example, to get the same content of
topology.conf as in the preceding example, the following lines can then be committed:

Example
[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% set node001 -e SlurmTopology switch01 switch02

[basecm11->device*]% set node002 -e SlurmTopology switch01 switch02

[basecm11->device*]% set node003 -e SlurmTopology switch03

[basecm11->device*]% commit

In topology/plugin configuration, switches and nodes cannot both be connected to the
same switch. This is consistent with the description in man topology.conf.5. If the
configuration in BCM has both nodes and switches connected to the same switch, then
only the nodes-to-switch connection is written to topology.conf.

– SlurmConcatTopologySwitchName: If set to 1, then it allows concatenation of the
switch names in the topology defined via the SlurmTopology node extra setting. The
SlurmTopology setting is described earlier on. The concatenation starts in order of par-
ent switches first. Thus, switch switch02 that is directly connected to switch switch01 is
named switch01-switch02 in topology.conf.

Example
[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% set node001 -e SlurmTopology switch01 switch03

[basecm11->device*]% set node002 -e SlurmTopology switch01 switch03

[basecm11->device*]% set node002 -e SlurmTopology switch01 switch03

[basecm11->device*]% set node003 -e SlurmTopology switch01 switch03

[basecm11->device*]% set node003 -e SlurmTopology switch01 switch03

376 Workload Management

[basecm11->device*]% set node004 -e SlurmTopology switch02 switch03

[basecm11->device*]% set node005 -e SlurmTopology switch02 switch03

[basecm11->device*]% set node006 -e SlurmTopology switch02 switch03

[basecm11->device*]% commit

The preceding results in the following content within topology.conf:
Example
SwitchName=switch03 Switches=switch03-switch[01,02]

SwitchName=switch03-switch01 Nodes=node[001-003]

SwitchName=switch03-switch02 Nodes=node[004-006]

3. The blocksettings submode under topologysettings is where the topology/block plugin set-
tings are located:

Example

[basecm11->wlm[slurm]->topologysettings]% blocksettings

[basecm11->wlm[slurm]->topologysettings->blocksettings]% show

Parameter Value

-------------------------------- --

Block entity NodeGroup

Block sizes 2 4

The parameters of the topology/block plugin are:

• Block entity: what BCM entity type defines a block. Possible entity type values are:

– nodegroup: if a node is in several nodegroups then it goes to the first block
– rack: if a pair of racks is configured as twins, then nodes from both racks go to a single

block

Nodes with a slurmclient role that belong to the specified entity are grouped in a single
block. For instance, if two nodegroups are defined in BCM as:

– ng1: a nodegroup that includes node001 and node002, both with the slurmclient role
and

– ng2: a nodegroup that includes node003 and node004, both with the slurmclient role

then topology.conf is updated with the following lines:

Example

BlockName=ng1 Nodes=node[001,002]

BlockName=ng2 Nodes=node[003,004]

• Block sizes: corresponds to the parameter in topology.conf with the same name. It dis-
plays a list of the planning base block size, alongside any higher-level block sizes that would
be enforced. More details can be found in man topology.conf.5.

4. Topograph settings can be found within the topographsettings submode, under
topologysettings. The settings are described further on.

7.5 Configuring And Running Individual Workload Managers 377

Topograph service integration: A topograph in real life can be a monument that shows important geo-
graphical properties (for example altitude, latitude, roads, and so on) in a very visible location (typically
on a hilltop). In BCM, Topograph is used to mean the topological record that is visible to the cluster
manager in BCM. Topograph runs a a system service, while BCM fetches topology information from the
service when required and updates topology.conf.

Currently, Topograph, when used with cloud services, supports only cloud GPU nodes that are sup-
ported by the topology API that the cloud providers provide. The nodes in the cloud must exist—that
is, it must be possible to stop them—during topology generation. If Topograph cannot get the topology
for a node, then the node in topology.conf is put under a special fake switch (if node is set to tree
topology) or block (if the node is set to block topology).

The integration between BCM and Topograph is configured within the topographsettings sub-
mode:

Example

[basecm11->wlm[slurm]->topologysettings]% topographsettings

[basecm11->wlm[slurm]->topologysettings->topographsettings]% show

Parameter Value

-------------------------------- --

Hostname localhost

Config path /etc/topograph/topograph-config.yaml

HTTP parameters

Pass cloud credentials yes

Fetch timeout 20

Fetch attempts 12

Fetch wait time 15

The Topograph settings are:

• Hostname: the hostname where these settings run

• Config path: a path for the YAML configuration of the topograph settings

• HTTP parameters: used to pass a string of HTTP parameters to the HTTP API service

• Pass cloud credentials: if set to yes, then cloud service provider credentials are passed on to
the topology generator

• Fetch timeout: the Topograph API timeout value (in seconds)

• Fetch attempts: the number of attempts to carry out when trying to get a topology from Topo-
graph

• Fetch waittime: the wait time between fetch attempts (in seconds)

The service has its own configuration file (topography-config.yaml) which is read by BCM, but
BCM does not modify it. The administrator can modify it manually if needed, but by default no changes
are required on BCM clusters.

The topograph package is available from the BCM repositories for Ubuntu 22.04 or higher, and for
RHEL9-compatible distributions:

Example

root@basecm11:~# apt install topograph

...

Need to get 30.1 MB of archives.

After this operation, 0 B of additional disk space will be used.

...

378 Workload Management

After picking up the package, the service can be set up on any node. The hostname parame-
ter in topographsettings is set to localhost by default, which is taken from the node that has the
slurmserver role assigned to it. The value should be the Topograph server hostname or IP address,
which means that if the Topograph service is running on a node without the slurmserver role, then the
value must be manually adjusted.

Typically, since slurmserver usually runs on the head node, topograph also runs on the head node,
and if the cluster is an HA cluster (Chapter 15) then it should be set up on both head nodes.

The service can be set up on the head node(s) in BCM using the services submode of device mode:

Example

[basecm11->device[basecm11]]% services

[basecm11->device[basecm11]->services]% add topograph

[basecm11->device*[basecm11*]->services*[topograph*]]% set autostart yes

[basecm11->device*[basecm11*]->services*[topograph*]]% set monitored yes

[basecm11->device*[basecm11*]->services*[topograph*]]% commit

[basecm11->device[basecm11]->services[topograph]]% status

Service Status

--------------------------- -----------

topograph [UP]

repeated for the other head node if using HA

The certificates for the topograph service are under /etc/topograph/ssl/ and they are generated
automatically when the package is installed. The certificates are used by BCM to carry out service API
calls.

After restarting CMDaemon on nodes with the slurmserver role with:
systemctl restart cmd

a topology.conf file is generated in /cm/shared/apps/slurm/etc/<slurmcluster>/topology.conf.

A Slurm topology configuration for the Slurm topology/tree plugin (https://slurm.schedmd.
com/topology.conf.html) is generated if a Slurm compute node is affected by:

• poweroff, shutdown, or power up

• creation or termination in cloud nodes

• a Slurm-related configuration change due to a BCM configuration change

For cloud service providers managed by BCM there are some extra considerations for the
topograph service:

• For AWS clouds the compute nodes must be running (exist), and must have a flavor that
supports the AWS topology API (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-topology.html). One of the supported flavors is the p5.48xlarge instance cur-
rently used by DGX Cloud.

Requirements:

– To access the AWS instance topology API using the topograph service, a prerequisite for an
IAM identity is to have permissions for ec2:DescribeInstanceTopology. This permission
can be enabled through an AWS-managed policy called AmazonEC2ReadOnlyAccess.

– Topograph needs credentials to perform the AWS API call.

* If the administrator sets the value of Pass cloud credentials to yes, then BCM sends
the credentials to the topograph service on each topology fetch.

/etc/topograph/ssl/
https://slurm.schedmd.com/topology.conf.html
https://slurm.schedmd.com/topology.conf.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-topology.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-topology.html

7.5 Configuring And Running Individual Workload Managers 379

* If the administrator sets the value of Pass cloud credentials to no in BCM, then
the profile of the EC2 instance where topograph runs has an IAM role with the
AmazonEC2ReadOnlyAccess policy enabled. AWS EC2 instances support an IMDS API
that provides metadata related to the instance itself. One of the features of this API is the
support of a profile role for an instance.

• For OCI clouds the nodes must exist in OCI, and

– the administrator can set the value of Pass cloud credentials to yes

or

– the administrator can set the value of Pass cloud credentials to no and specify
some named dynamic group (https://docs.oracle.com/en-us/iaas/Content/Identity/
Tasks/managingdynamicgroups.htm) policies in the tenancy.
Each named dynamic group must have permissions to inspect certain resources. Ad-
ditionally, the special BCM thebcmnonprod-topo-dg dynamic group must have various
permissions set to use a variety of resources. The permissions can be set according to
the OCI policy syntax (https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/
callingservicesfrominstances.htm#Writing) as follows:

Allow dynamic-group <dynamic_group_name> to inspect compute-capacity-topologies in tenancy

Allow dynamic-group <dynamic_group_name> to inspect compute-bare-metal-hosts in tenancy

Allow dynamic-group <dynamic_group_name> to inspect compute-hpc-islands in tenancy

Allow dynamic-group <dynamic_group_name> to inspect compute-network-blocks in tenancy

Allow dynamic-group <dynamic_group_name> to inspect compute-local-blocks in tenancy

• For GCP clouds the requirement is that the placement policy for VMs should be compact.

After the Topograph package is installed, the service started, and the administrator has met the
requirements for the cloud topology API, then the topologyplugin and topologysource values must
be set:

Example

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% topologysettings

[basecm11->wlm[slurm]->topologysettings]% set topologyplugin tree

[basecm11->wlm[slurm]->topologysettings*]% set topologysource topograph

[basecm11->wlm[slurm]->topologysettings*]% commit

If topologysource is set to a value of none, then topology.conf content is not updated by BCM.
Setting a value of topograph causes the Slurm topology to be fetched from the topograph service. The
topograph service currently supports only the tree and block plugins.

Two additional cmsh commands allow testing:

• The topology update command starts a topology update in the background.

• The topology print command prints the generated content for Slurm topology.conf to STD-
OUT. This is a synchronous operation, which means that it can freeze for 10-15 seconds when
Topograph is in use.

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% topology update

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingdynamicgroups.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingdynamicgroups.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm#Writing
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm#Writing

380 Workload Management

Topology update initiated

[basecm11->wlm[slurm]]% topology print

SwitchName=nn-468b60a0020d2b170 Switches=nn-7a2f7858c1f7d5cd1

SwitchName=nn-7a2f7858c1f7d5cd1 Switches=nn-73d157eb3d683970e,nn-400810bf9f5e465d6

SwitchName=nn-400810bf9f5e465d6 Nodes=cnode001

SwitchName=nn-73d157eb3d683970e Nodes=cnode002

The topograph service logs can be seen with the systemd command: journalctl -u topograph -f

Prometheus exporter sampling of the topograph service can be configured in CMDaemon. The
topograph service sends out Prometheus metrics, which can be added to BCM as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% add prometheus topograph

[basecm11->monitoring->setup*[topograph*]]% set urls https://localhost:49021/metrics

[basecm11->monitoring->setup*[topograph*]]% set -e NoPostAllowed yes

[basecm11->monitoring->setup*[topograph*]]% set https yes

[basecm11->monitoring->setup*[topograph*]]% set cacertificatepath /etc/topograph/ssl/ca-cert.pem

[basecm11->monitoring->setup*[topograph*]]% set privatekeypath /etc/topograph/ssl/server-key.pem

[basecm11->monitoring->setup*[topograph*]]% set certificatepath /etc/topograph/ssl/server-cert.pem

[basecm11->monitoring->setup*[topograph*]]% nodeexecutionfilters

[basecm11->monitoring->setup*[topograph*]->nodeexecutionfilters]% active

Added active resource filter

[basecm11->monitoring->setup*[topograph*]->nodeexecutionfilters]% commit

If, in the following session, the numerator (the first number in the line starting with Measurables) is
not zero, then it is a confirmation that the metrics are consumed by BCM:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% use topograph

[basecm11->monitoring->setup[topograph]]% show | grep measurables -i

Measurables 26 / 986

Slurm drain reason policy: CMDaemon allows nodes to be drained:

• either by user request, using the drain command (section 7.7.3) or

• automatically, when a monitoring trigger (section 10.4.5) is configured. For example, if some
healthcheck fails, then the appropriate node can be drained automatically.

The administrator can also manually drain a node outside of cmsh, using the Slurm scontrol command
from the terminal, as described in man scontrol.1.

In all these cases the drain reason can be specified. By default, if a node is already drained, then a
second drain command with a new drain reason replaces the old drain reason.

The behavior can be configured with the parameter Drain reason policy, within the Slurm cluster
settings. The Drain reason policy can take one of the following (case-insensitive) values:

• REPLACE: the old drain reason(s) is replaced by a new one

• APPEND: the new drain reason is separated by a comma, and appended to the existing one(s).

7.5 Configuring And Running Individual Workload Managers 381

• SKIP:

– If a drain reason already exists, then setting the new drain reason is skipped.
– If no drain reason already exists, then the new drain reason is applied.

In the following example, the drain reason policy is set to APPEND. This means that CMDaemon
always appends a new drain reason to any existing ones.

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% set drainreasonpolicy APPEND

[basecm11->wlm[slurm*]]% commit

It is also possible to temporarily set an append policy in cmsh when draining a node, by using the +

operator as a prefix to the drain reason:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node00

[basecm11->device[node001]]% drain --reason="+this will be appended regardless of the current policy"

Slurm services restart or reconfiguration conditions:

• When parameters in the Slurm configuration files are changed by BCM via CMDaemon, typi-
cally via actions of cmsh or Base View, then Slurm services automatically restart, and scontrol

reconfigure is automatically run, as required.

• When parameters in the Slurm configuration files are changed directly, then BCM does not detect
a change automatically, and therefore does not automatically restart or reconfigure Slurm.

Slurm subsystems are restarted and reconfigured based on the following list of conditions:

• slurmctld and slurmd are restarted if:

1. any of the following global slurm.conf parameters managed by CMDaemon are changed:
– SelectType

– SelectTypeParameters

– GresTypes

– StateSaveLocation

– SchedulerType

– SchedulerParameters

– SlurmctldParameters

2. gres.conf is changed (by CMDaemon)
3. oci.conf (https://slurm.schedmd.com/oci.conf.html) is changed (by CMDaemon). In

cmsh this typically this happens via the ocisettings submode under the wlm mode.
4. nodes are changed (by CMDaemon) in slurm.conf (nodes are renamed, added, or removed).

• An scontrol reconfigure is carried out if:

1. any Slurm parameters managed by BCM, that are not mentioned in the preceding list of
conditions, are changed. This is true also for the Partition and Node parameters within the
slurm.conf file, except for the NodeName and PartitionName parameters specifically.

2. cgroups.conf is changed (by CMDaemon)
3. topology.conf is changed (by CMDaemon)

A restart or a reconfigure is not done by CMDaemon under other conditions.

https://slurm.schedmd.com/oci.conf.html
https://slurm.schedmd.com/oci.conf.html

382 Workload Management

Slurm resource consumption monitoring configuration: Slurm allows the configuration of how con-
sumable resources (core, CPU, memory, etc) are tracked and shared among jobs on a node. At the time
of writing of this section (November 2022), cmsh or Base View can be used to configure the tracking and
sharing of resources as in the following text.

• SelectType: this plugin configures the algorithm used to select resources for jobs. By default,
NVIDIA Base Command Manager configures the select/cons_tres plugin. This is an advanced
version of select/cons_res plugin, and it also allows GPUs to be tracked separately from other
consumable resources.

Further details on cons_res can be found in the Slurm documentation at https://slurm.schedmd.
com/cons_res.html and https://slurm.schedmd.com/cons_res_share.html.

The SelectType parameter is configured in cmsh or Base View, from within the Slurm cluster
configuration settings:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% set selecttype select<TAB><TAB>
select/cons_res select/cons_tres select/linear

[basecm11->wlm[slurm]]%

• SelectTypeParameters: allows the configuration of the resource selection plugin that is spec-
ified for the SelectType parameter. The possible values depend on the plugin type. For
select/cons_tres, the values follow the pattern:

– CR_Memory or

– CR_<COMPUTE_UNIT>[_Memory] where <COMPUTE_UNIT> takes one of the following val-
ues:

* Core

* CPU

* Socket

* Board

The value of SelectTypeParameters specifies if the <COMPUTE_UNIT> resource is tracked, or if
the <COMPUTE_UNIT> resource is tracked together with memory, or if only memory is tracked.

There are also a few special values that can be applied to SelectTypeParameters:

– CR_ONE_TASK_PER_CORE: allocate one task per core (used only with the select/linear plu-
gin)

– CR_CORE_DEFAULT_DIST_BLOCK: allocate cores within a node using a block distribution

– CR_LLN: schedule resources to jobs on the least loaded nodes

– CR_Pack_Nodes: if a job allocation contains more resources than will be used for launching
tasks, then rather than distributing a job’s tasks evenly across its allocated nodes, pack them
as tightly as possible on these nodes.

• OverSubscribe (page 182):

– if the select/linear plugin is used, then the OverSubscribe parameter controls whether or
not the nodes are shared among jobs

https://slurm.schedmd.com/cons_res.html
https://slurm.schedmd.com/cons_res.html
https://slurm.schedmd.com/cons_res_share.html

7.5 Configuring And Running Individual Workload Managers 383

– if the select/cons_res or select/cons_tres plugins are used, then the OverSubscribe pa-
rameter controls whether or not the configured consumable resources are shared among jobs.
For these plugins, when a consumable resource such as a core, socket, CPU, or other, is shared,
it means that more than one job can be assigned to it. The parameter is set per Slurm partition
(queue) and accepts the following values:

* EXCLUSIVE: allocate entire node for a job;

* FORCE: makes all resources (except for GRES) in the Slurm partition available for over-
subscription without any means for users to disable it (may be followed with a colon and
maximum number of jobs in running or suspended state);

* YES: makes all resources (except for GRES) in the Slurm partition available for sharing
upon request by the job (may be followed with a colon and maximum number of jobs in
running or suspended state);

* NO: no resource is allocated to more than one job.

• AccountingStorageTRES: A comma-separated list of resources that the administrator wants to
track on the cluster. By default the following resources (TRES) are tracked:

– billing

– CPU

– energy

– memory

– node

– fs/disk

– pages

– vmem

These default TRES cannot be disabled, but only appended to. Resources use is recorded when
used on the cluster. If GPUs of different types are tracked, then job requests with matching type
specifications are recorded.

Example

If:
AccountingStorageTRES=gres/gpu:tesla,gres/gpu:volta is set
then:
gres/gpu:tesla and gres/gpu:volta track only jobs that explicitly request those two GPU types.

Slurm REST API: slurmrestd is Slurm’s REST API daemon. It is installed with the BCM package
slurm24.05-slurmrestd, or slurm24.11-slurmrestd. The distribution package, slurm-slurmrestd,
should not be installed, and indeed its installation is not suggested by the package manager in a cluster
that is correctly configured.

Slurm REST API package installation and version matching: If installing the REST API package, then
care must be taken to match the versions exactly to its sibling Slurm packages (page 353). For example,
if the already-installed packages have version 24.05:

Example

384 Workload Management

root@basecm11 ~]# rpm -qa slurm* #what are the already installed packages?

slurm24.05-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-perlapi-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-slurmdbd-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-slurmd-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-slurmctld-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-contribs-24.05.3-100806_cm11.0_9c8dc03511.x86_64

slurm24.05-devel-24.05.3-100806_cm11.0_9c8dc03511.x86_64

and if the Slurm REST API package version to be installed is as indicated by the following:

Example

root@basecm11 ~]# yum info slurm24.05-slurmrestd | egrep '(Name|Release|Source)' #what will install?

Name : slurm24.05-slurmrestd

Release : 100807_cm11.0_b3c3ec09a3

Source : slurm24.05-24.05.4-100807_cm11.0_b3c3ec09a3.src.rpm

then it means that all already-installed Slurm packages must be upgraded to re-
lease 100807_cm11.0_b3c3ec09a3 too.

The reason behind matching versions exactly is that the upstream versions can have signifcant con-
figuration changes between subminor versions (here subminor 24.05.03 changing to 24.05.4). These
changes may result in a non-functioning workload manager. This is true, not only when considering the
Slurm REST API package, but also true when considering the other Slurm packages.

The user daemon cannot be in the bin group for slurm25.05-slurmrestd on SLES15: Slurm 25.05
expects that the user daemon should be a member of only the group daemon. The groups command lists
the groups that a user is in, so it can be used to check to see if the user daemon is in the group bin as well
in the group daemon with:

Example

root@basecm11 ~]# groups daemon

daemon : daemon bin

Here the user daemon is in the group bin and as well as in the group daemon. For slurmrestd to work
properly, the group bin must have user daemon deleted from it. The gpasswd command can do that with:

Example

root@basecm11 ~]# gpasswd -d daemon bin

If slurmrestd is running on a compute node, then the gpasswd command must be run in the image
of the compute node instead. For example, if the image is default-image:

Example

root@basecm11 ~]# cm-chroot-sw-img /cm/images/default-image gpasswd -d daemon bin

The imageupdate command can then be run so that the change is picked up by the node.
The gpasswd command should be run for any group, other than group daemon, that user daemon is a

member of.

7.5 Configuring And Running Individual Workload Managers 385

Slurm REST API and authentication: The slurmrestd service can be configured with JWT (JSON Web
Token) authentication as follows:

1. The JWT key is generated in the Slurm cluster configuration directory, and its ownership and
permissions are then changed:

Example

[root@basecm11 ~]# module load slurm # Loads SLURM_CONF environment variable from modulefile

[root@basecm11 ~]# JWT_KEY=`dirname $SLURM_CONF`/jwt.key

[root@basecm11 ~]# install -m 0600 -o slurm -g slurm <(dd if=/dev/random bs=32 count=1) $JWT_KEY

The location of the key can differ, but user slurm must have read access to the file.

2. The JWT plugin is configured in slurm.conf for the Slurm cluster instance. For example, for a
Slurm cluster instance <cluster name>:

Example

AuthAltTypes=auth/jwt

AuthAltParameters=jwt_key=/cm/shared/apps/slurm/etc/<cluster name>/jwt.key

The slurmctld service is restarted to apply the plugin settings. For example, if it is running on the
head node:

[root@basecm11 ~]# systemctl restart slurmctld.service

3. A systemd drop-in file is created for the new slurmrestd service:

Example

[root@basecm11 ~]# slurmrestapidir="/etc/systemd/system/slurmrestd.service.d"

[root@basecm11 ~]# mkdir $slurmrestapidir

[root@basecm11 ~]# echo "[Service]" > $slurmrestapidir/99-cmd.conf

[root@basecm11 ~]# echo "Environment=SLURM_CONF=$SLURM_CONF" >> $slurmrestapidir/99-cmd.conf

Future versions of BCM may automatically create or update the file 99-cmd.conf. It is therefore
recommended to use that file name as a best practice for cluster administration.

4. The slurmrestd service is configured within cmsh so that it can be monitored by BCM:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device services master

[basecm11->device[basecm11]->services]% add slurmrestd

[basecm11->device*[basecm11*]->services*[slurmrestd*]]% set monitored yes

[basecm11->device*[basecm11*]->services*[slurmrestd*]]% set autostart yes

[basecm11->device*[basecm11*]->services*[slurmrestd*]]% commit

[basecm11->device[basecm11]->services[slurmrestd]]%.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

386 Workload Management

5. A ping-like curl check can be run with custom extra headers to ensure that the Slurm REST API
service is running properly, as follows:

Example

[root@basecm11 ~]# export $(scontrol token username=cmsupport)

[root@basecm11 ~]# curl 0.0.0.0:6820/openapi \
-H "X-SLURM-USER-TOKEN: $SLURM_JWT" \
-H "X-SLURM-USER-NAME: cmsupport"

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0

{

"tags": [

{

"name": "slurm",

"description": "methods that query slurmdbd"

},

{

"name": "openapi",

"description": "methods that query for OpenAPI specifications"

}

[...]

The slurmrestd daemon configuration is specified by its command line arguments. These can be
made permanent in /etc/sysconfig/slurmrestd.

GPU autodetection: Slurm supports GPU autodetection from version 20 onward, using the
AutoDetect flag in gres.conf.

Slurm GPU autodetection allows AMD, Intel, and NVIDIA GPUs to have their GPU parameters be
set automatically, if autodetection is also enabled in gres.conf. Slurm GPU autodetection removes the
need for explicit GPU configuration in gres.conf.

The number of GPUs must however still be specified explicitly by the administrator. This is because
at the time of writing (October 2024) Slurm has no GPU autodetection by default.

In BCM, the Slurm GPU hardware detection setting has 7 options, as covered on page 369.

• Setting the bcm option for Slurm GPU autodetection removes the need to specify any further GPU
autodetect option.

• Setting a GPU vendor (NVIDIA, Intel, AMD) option for Slurm GPU autodetection means that the
Gres=... parameter in NodeName lines in slurm.conf is still required in order to tell slurmctld
how many GRES to expect. This means that the administrator must define GPUs in BCM, in the
genericresources mode of the slurmclient role, if that has not already been specified during
cm-wlm-setup.

However there is no need in this case to specify all the details. It is enough to add a single generic
resource named gpu, and to specify the number of such GPUs. In order to skip adding the generic
resources to gres.conf, while still allowing GRES information to be added the slurm.conf file,
the flag AddToGresConfig should be set to no in the genericresource entity. For example:

Example

/etc/sysconfig/slurmrestd
https://slurm.schedmd.com/gres.conf.html

7.5 Configuring And Running Individual Workload Managers 387

[basecm11]% configurationoverlay use slurm-client

[basecm11->configurationoverlay[slurm-client]]% roles

[basecm11->configurationoverlay[slurm-client]->roles]% use slurmclient

[...[slurmclient]]% genericresources

[...[slurmclient]->genericresources]% add autodetected-gpus

[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set name gpu

[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set count 8

[...[slurmclient*]->genericresources*[autodetected-gpus*]]% set addtogresconfig no

[...[slurmclient*]->genericresources*[autodetected-gpus*]]% commit

[...[slurmclient]->genericresources[autodetected-gpus]]% wlm use slurm

[basecm11->wlm[slurm]]% set gpuautodetect nvml

[basecm11->wlm*[slurm*]]% commit

[basecm11->wlm[slurm]]%

Initial generic resources configuration for Slurm GPU autodetection can also be done during Slurm
setup by cm-wlm-setup. If GPU configuration is chosen in the TUI screen of cm-wlm-setup (figure 7.22):

Figure 7.22: The screen prompting for GPU configuration in cm-wlm-setup

then the TUI allows Slurm GPU autodetection options to be selected (figure 7.23):

Figure 7.23: The GPU configuration screen of cm-wlm-setup

The options are the same as those described in the list of 7 options for GPU auto detect (page 369).
The options result in the following actions:

• BCM autodetects GPUs: BCM automatically detects numbers and types of GPUs on the selected
nodes and configures slurm.conf appropriately. The administrator is not asked to configure any-
thing. This option does not work if the nodes have GPUs from a mix of vendors.

• Slurm autodetects <vendor> GPU details: the administrator is prompted to specify numbers
and types of GPUs later on. These values are then added to the Gres parameter of NodeName lines

slurm.conf

388 Workload Management

in slurm.conf, while Slurm autodetects the rest of the GPU details.

• Manual GPU configuration in cm-wlm-setup: the administrator is prompted to enter the GPU
parameters manually. The manual entries are then converted to appropriate lines in gres.conf.

Slurm GPU cluster settings: When a GPU is configured the following parameters can be configured
with BCM:

Base View Slurm Object Value Within
Description

Option WLM Mode Of cmsh

Select Type SelectType Identifies the type of resource selection algorithm
to be used. Changing this value causes the
slurmctld daemon to be restarted. Default: Con-
sumable trackable resource:select/cons_tres

Select Type

Parameters

SelectTypeParameters Parameters for the resource selection algorithm.
Acceptable values for these parameters depend
upon the algorithm selected. Default: Core as a
consumable resource: CR_Core

Accounting

Storage TRES

AccountingStorageTRES Comma-separated list of resources to be tracked on
the cluster, requested by an sbatch/srun job on
submission. Default: GPU as a generic resource:
gres/gpu

Example

[basecm11->wlm[slurm]]% get selecttype

select/cons_tres

MIG and Slurm: NVIDIA’s Multi-Instance GPU (MIG) technology is a way to optimize GPU use.
MIG allows a single GPU to be partitioned into up to 7 separate logical GPU instances, each providing
separate GPU resources to user jobs. Slurm is MIG-capable since version 21.08.

BCM automates the configuration of MIG profiles as GPU generic resource types. This means that a
user can request GPUs by type, and Slurm then tracks the MIG profiles usage.

MIG detection on Slurm compute nodes (nodes with the slurmclient role assigned) means that the
slurm.conf and gres.conf files are automatically configured by CMDaemon as follows:

• slurm.conf:

1. For each node, NodeName parameter lines have a Gres specification (generic resource type
specification) with the MIG profile names appended as strings. The strings take the format:

gpu:<profile>:<number>
where <number> is the number of instances with the profile name of gpu:<profile>. For exam-

ple:

(a) A GPU on node001 is partitioned into two MIG instances, one with a profile name of
3g.40gb, and the other with a profile name of 4g.40gb:
Example

slurm.conf
gres.conf

7.5 Configuring And Running Individual Workload Managers 389

NodeName=node001 ... Gres=gpu:3g.40gb:1,gpu:4g.40gb:1 ...

(b) A GPU on node001 is partitioned into two MIG instances, both with same profile name
3g.20gb. Also present is a regular GPU, a40, that is configured manually as a generic
resource:
Example
NodeName=node001 ... Gres=gpu:a40:1,gpu:3g.20gb:2 ...

2. The GresTypes parameter line has the MIG profiles from all the compute nodes.

Example

GresTypes=3g.40gb,4g.40gb,gpu

3. The AccountingStorageTRES parameter line includes the new generic resource per MIG pro-
file.

Example

AccountingStorageTRES=gres/gpu,gres/gpu:3g.40gb,gres/gpu:4g.40gb

• gres.conf: the AutoDetect parameter is set to NVML for the nodes where MIGs are detected.

Example

NodeName=node[001-016] AutoDetect=NVML

In this case Slurm detects the MIG details (links, file, cores, and so on) automatically.

If the GPUs are repartitioned by BCM, then the Slurm configuration is by default automatically
updated with the new GPU types according to the new MIG profiles. The default value of yes can be
modified with the configuremigs parameter in Slurm cluster settings:

Example

[basecm11->wlm[slurm]]% set configuremigs no; commit

The administrator can validate that the MIG devices are correctly recognized by Slurm, by checking
the Gres line output of the scontrol show node command:

Example

[root@basecm11 ~]# scontrol show node node001 | grep "Gres="

Gres=gpu:4g.40gb:1(S:0),gpu:3g.40gb:1(S:0)

The presence of a socket value such as S:0 indicates that Slurm detected the MIG details on the node as
expected.

Slurm node settings: The parameter value for a Slurm option in slurm.conf is set by CMDaemon, if
its value is not: 0.

A parameter value of 0 means that the default values of Slurm are used. These usually have the
value: 0.

The advanced options that CMDaemon manages for Slurm are:

390 Workload Management

Base View Option Slurm Option Description

Features Feature=<string>
entry in the file
slurm.conf

Arbitrary strings can be entered to indicate some character-
istics of a node, one string per entry. For example:
text1

text2

and so on. These become part of the:
Feature=text1,text2...

attribute to the
NodeName=<node name>

entry line in slurm.conf, as indicated in man

slurm.conf.5. The strings also become added attributes to
the GresTypes entry of that file.
Default: blank.

Slots CPU Number of logical processors on the node. For Slurm 20 and
beyond, CMDaemon detects the number of CPU cores, and
sets procs=number of cores via slots autodetection. Default
for Slurm prior to version 20: 0

Sockets Sockets Processor chips on node. If this is defined, then
SocketsPerBoard must not be defined. Default: 0

Cores per

socket

CoresPerSocket Number of cores per socket. Default: 0

ThreadsPerCore ThreadsPerCore Number of logical threads for a single core. Default: 0

Boards Boards Number of baseboards in a node. Default: 0

SocketsPerBoard SocketsPerBoard Number of processor chips on baseboard. If this is defined,
then Sockets must not be defined. Default: 0

RealMemory RealMemory Size of real memory on the node, MB. Default: 0

NodeHostname NodeHostname Default: as defined by Slurm’s NodeName parameter.

...continues

7.5 Configuring And Running Individual Workload Managers 391

...continued

Base View Option Slurm Option Description

NodeAddr NodeAddr Default: as set by Slurm’s NodeHostname parameter.

State State State of the node with user jobs. Possible Slurm values are:
DOWN, DRAIN, FAIL, FAILING, and UNKNOWN. Default: UNKNOWN

Weight Weight The priority of the node for scheduling. Default: 0

Port Port Port that slurmd listens to on the compute node. Default:
as defined by SlurmdPort parameter. If SlurmdPort is not
specified during build: Default: 6818.

TmpDisk TmpDisk Total size of Slurm’s temporary filesystem, TmpFS, typically
/tmp, in MB. TmpFS is the storage location available to user
jobs for temporary storage. Default: 0

Options extra options Extra options that are added to slurm.conf

Further Slurm documentation is available:

• via man pages under /cm/local/apps/slurm/current/man/

• as HTML documentation in the version dependent directory of the form:

/cm/local/apps/slurm/current/share/doc/slurm-<version>/html, or

• at the Slurm website at http://slurm.schedmd.com/documentation.html

Slurm is set up with reasonable defaults, but administrators familiar with Slurm can reconfigure the
configuration file using a web browser. The web browser can be used, depending on the Slurm version
being used, with one of the following paths:

• /cm/local/apps/slurm/current/share/doc/slurm-24.05.4/html/ or

• /cm/local/apps/slurm/current/share/doc/slurm-24.11.0/html/

The choice of JavaScript-based configuration generators is then:

• configurator.easy.html: for a simplified configurator

• configurator.html: for a full version of the configurator.

If the configuration file becomes mangled beyond repair, the original default can be regenerated once
again by re-installing the Slurm package, then running the script /cm/local/apps/slurm/current/

scripts/cm-restore-db-password, and then running cm-wlm-setup. Care must be taken to avoid
duplicate parameters being set in the configuration file—slurmd may not function correctly in such a
configuration.

/cm/local/apps/slurm/current/man/
http://slurm.schedmd.com/documentation.html
/cm/local/apps/slurm/current/share/doc/slurm-24.05.4/html/
/cm/local/apps/slurm/current/share/doc/slurm-24.11.0/html/
configurator.easy.html
configurator.html
/cm/local/apps/slurm/current/scripts/cm-restore-db-password
/cm/local/apps/slurm/current/scripts/cm-restore-db-password

392 Workload Management

Slurm NVIDIA Sharp settings: The Sharp plugin can be enabled by setting the following:

• SelectType to select/select/nvidia_sharp

Example

[basecm11->wlm[slurm]]% get selecttype

select/nvidia_sharp

• SelectTypeParameters with these mandatory parameters:

– CR_CPU or CR_Core or CR_Socket

– OTHER_CONS_TRES

– CR_NVIDIA_SHARP_V3

Example

[basecm11->wlm*[slurm*]]% get selecttypeparameters

CR_SOCKET,OTHER_CONS_TRES,CR_NVIDIA_SHARP_V3

• the Topology plugin must be set to topology/tree (page 372)

• the value for Licenses must be set:

Example

Licenses=pod01:32,ibcleaf01-01:8,ibcleaf01-02:8,ibcleaf01-03:8,ibcleaf01-04:8

Here, pod01, and ibcleaf01-01...ibcleaf01-04 are switches. The number after the colon (:) is
the Sharp allocation, which is the job connection limit for the switch. A job running on a node does
not connect to a switch if that would exceed the Sharp allocation.

SelectType and SelectTypeParameters are simple parameters inside the cluster entity, while
Licenses is a submode:

Example

[basecm11->wlm[slurm]]% licenses

[basecm11->wlm[slurm]->licenses[ibcleaf01-02]]% show

Parameter Value

-------------------------------- --

Name ibcleaf01-02

Count 8

Running Slurm
Slurm can be disabled and re-initialized with the cm-wlm-setup tool (section 7.3) during package in-
stallation itself.

Alternatively, role assignment and role removal can be used to adjust what nodes, if any, run Slurm.
The assignment and removal of roles can be carried out from Base View (section 7.4.1) or cmsh (sec-
tion 7.4.2).

The Slurm workload manager runs these daemons:

1. as servers:

(a) slurmdbd: The database that tracks job accounting. It is part of the slurmdbd service.

7.5 Configuring And Running Individual Workload Managers 393

(b) slurmctld: The controller daemon. Monitors Slurm processes, accepts jobs, and assigns re-
sources. It is part of the slurm service.

(c) munged: The authentication (client-and-server) daemon. It is part of the munge service.

2. as clients:

(a) slurmd: The compute node daemon that monitors and handles tasks allocated by slurmctld

to the node. It is part of the slurm service.

(b) slurmstepd: A temporary process spawned by the slurmd compute node daemon to handle
Slurm job steps. It is not initiated directly by users or administrators.

(c) munged: The authentication (client-and-server) daemon. It is part of the munge service.

Logs for the daemons are saved on the node that they run on. Accordingly, the locations are:

• /var/log/slurmdbd

• /var/log/slurmd

• /var/log/slurmctld

• /var/log/munge/munged.log

7.5.2 Configuring And Running PBS
PBS Variants And Versions
BCM is integrated with PBS Professional Commercial workload manager version 2022, and with OpenPBS
workload manager version 22.05.

• PBS Professional: This is the commercial variant. It requires a license or a license server in order to
run jobs. This information can be provided during a run of the setup wizard, or it can be manually
configured after setup.

– The packages for version 2022 are available as:

* pbspro2022 for the server,

* pbspro2022-client for the compute nodes.

Pre-2020 major versions of this commercial PBS variant were denoted by 2 digits (such as 18
or 19) to signify the year. Since version 20 the version numbering is denoted by 4 digits (such
as 2021 and 2022).

• OpenPBS: This is the open source variant with community support (http://openpbs.org). The
community edition packages are available as:

– openpbs22.05 for the server,

– openpbs22.05-client for the compute nodes.

and as

– openpbs23.06 for the server,

– openpbs23.06-client for the compute nodes.

When no particular PBS variant is specified in BCM documentation, then the text is valid for both
variants. BCM provides a similar level of integration for the commercial and the community packages.
It is up to the cluster administrator to decide which variant is set up.

Both variants can be installed as a selection option during NVIDIA Base Command Manager 11 in-
stallation, at the point when a workload manager must be selected (figure 3.9 of the Installation Manual).
Alternatively they can be installed later on, when the cluster has already been set up.

/var/log/slurmdbd
/var/log/slurmd
/var/log/slurmctld
/var/log/munge/munged.log
http://openpbs.org

394 Workload Management

The PBS packages that the BCM repositories provide should be used instead of other available ver-
sions, such as from the Linux distribution.

If the PBS packages themselves have not been picked up, they can be installed and removed with a
package manager such as YUM.

Example

[root@basecm11 ~]# yum install pbspro2022 pbspro2022-client

[root@basecm11 ~]# yum install --installroot=/cm/images/default-image pbspro2022-client

If BCM has already been set up without PBS, but with PBS packages installed via YUM, then the
cm-wlm-setup tool (section 7.3) should be used to install and initialize PBS.

Installing PBS
After package installation via the package manager, as described in the preceding section, PBS can be
installed and initialized to work with BCM via cm-wlm-setup. With no options, a TUI session is started
to guide the process. The alternative CLI process with options might take the following forms:

Example

[root@basecm11 ~]# cm-wlm-setup --wlm pbspro --wlm-cluster-name ppro --license <license information>

or

[root@basecm11 ~]# cm-wlm-setup --wlm openpbs --wlm-cluster-name opbs

The option --wlm pbspro installs the commercial version, while --wlm openpbs installs the community
version.

The license information is either a path to a license file, or it is a Altair license server address list in the
format:

<port1>@<host1>:<port2>@<host2>:<...>@<...>:<portN>@<hostN>

This license information can also be set manually for the pbs_license_info attribute. For example if
there is just one license server, pbspro-license-server, serving on port 6200, it could be set with qmgr

as follows:

Example

qmgr -c "set server pbs_license_info = 6200@pbspro-license-server"

The software components are installed and initialized by default under the Spool directory, which
is defined by the PBS_HOME environment variable. The directory is named after the WLM cluster name,
and follows a path of the form:
/cm/shared/apps/pbspro/var/spool/<WLM cluster name>
or
/cm/shared/apps/openpbs/var/spool/<WLM cluster name>
as appropriate.

The paths /cm/shared/apps/pbspro or /cm/shared/apps/openpbs are the Prefix settings of the
WLM, and depend on whether the WLM is running PBS Professional, or OpenPBS.

Users must load an environment module associated with the cluster name to set $PBS_HOME and
other environment variables, in order to use that cluster.

Example

[root@basecm11 ~]# module load pbspro

/cm/shared/apps/pbspro
/cm/shared/apps/openpbs

7.5 Configuring And Running Individual Workload Managers 395

Updating From PBS v2021 To v2022
An old PBS v2021 version can be upgraded to v2022.

The release notes in the guide at https://2022.help.altair.com/2022.1.1/PBS%20Professional/
PBS_RN_2022.1.1.pdf should be checked to identify possible upgrade issues.

To preserve the job history from v2021, steps to carry out the upgrade are as follows:

1. Scheduling should be disabled:

Example

[root@basecm11 ~]# qmgr -c 'set server scheduling = false' #remember to set to true later

A BCM way of preventing nodes from taking on jobs is to drain all the nodes that can run jobs.
For example all the compute nodes that have the status UP:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device drain -s UP #remember to undrain later

Engine Node Status Reason

-------- ---------------- ---------------- --------------------

pbspro node001 Drained Drained by CMDaemon

The cluster administrator should check that there are no running jobs.

[root@basecm11 ~]# cmsh

[basecm11]% wlm jobs; list

Type Job ID User Queue Running time Status Nodes

------------ ------------ ------------ ------------ ------------ -------- --------------

Queued jobs, where the Status column shows the value Q, are not an issue.

2. The autostart setting for the pbsserver service must be set to no:

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11; services

[basecm11->device[basecm11]->services]% set pbsserver autostart no; commit

This is to prevent CMDaemon restarting the PBS server automatically and interfering with the
next few housekeeping steps.

3. The pbsserver service on the head node is stopped from within cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use master

[basecm11->device[basecm11]]% services

[basecm11->device[basecm11]->services]% stop pbsserver

...

[basecm11->device[basecm11]->services]% status pbsserver

Service Status

------------ -----------

pbsserver [STOPPED]

https://2022.help.altair.com/2022.1.1/PBS%20Professional/PBS_RN_2022.1.1.pdf
https://2022.help.altair.com/2022.1.1/PBS%20Professional/PBS_RN_2022.1.1.pdf

396 Workload Management

4. The cluster administrator would be wise to make a backup of the PBS instance <PBS instance>
at /cm/shared/apps/pbspro/var/spool/<PBS instance> directory on the head node, in case of a
contingency.

5. The cluster administrator must remove the pbspro2021 and pbspro2021-client packages from
the head node and software image(s) using the package manager.

6. The cluster administrator must install the pbspro2022 and pbspro22-client packages on the head
node, and the pbspro2022-client package in the software image(s) using the package manager.

7. The PBS version must be set to 22 in cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm use <PBS instance>
[basecm11[<PBS instance>]% set version 22; commit

8. The PBS service on the head node must be manually restarted (outside of CMDaemon). That
means running, for example:

[root@basecm11 ~]# pbs_server

Connecting to PBS dataservice...connected to PBS dataservice@basecm11.cm.cluster

Using license server at 6200@pbspro-license-server

[root@basecm11 ~]#

This is to allow for enough time for the PBS database upgrades and any other PBS server upgrades
to occur. This may take upwards of 10 minutes to complete.

Its status can be checked with:

[root@basecm11 ~]# /etc/init.d/pbs status

pbs_server is pid 1045633

pbs_sched is pid 762684

pbs_comm is 762669

or

[root@basecm11 ~]# cmsh -c "device use master; services; status pbsserver"

Service Status

------------ -----------

pbsserver [UP]

Any post-upgrade steps outlined in the release notes documentation can now be carried out
(https://2022.help.altair.com/2022.1.1/PBS%20Professional/PBS_RN_2022.1.1.pdf).

After the post-upgrade steps, the PBS service on the head node can be stopped again, outside of
CMDaemon:

[root@basecm11 ~]# qterm

The status can be checked with:
/etc/init.d/pbs status

or with:

cmsh -c "device use master; services; status pbsserver"

https://2022.help.altair.com/2022.1.1/PBS%20Professional/PBS_RN_2022.1.1.pdf

7.5 Configuring And Running Individual Workload Managers 397

9. The autostart setting for the pbsserver service can now be set to yes again:

[root@basecm11 ~]# cmsh

[basecm11]% device use basecm11; services

[basecm11->device[basecm11]->services]% set pbsserver autostart yes; commit

10. The pbserver service on the head node is restarted:

Example

[basecm11->device[basecm11]->services]% start pbsserver

...

[basecm11->device[basecm11]->services]% status pbsserver

Service Status

------------ -----------

pbsserver [UP]

11. The pbsmom services on the compute nodes are then restarted:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device foreach -l pbsproclient (services; restart pbsmom)

12. Scheduling should be enabled again:

Example

[root@basecm11 ~]# qmgr -c 'set server scheduling = true'

If the nodes were drained, then they can be undrained:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device undrain -s UP

Engine Node Status Reason

-------- ---------------- ---------------- --------------------

pbspro node001

13. The administrator can then run the tracejob command for PBS to check if the previous job infor-
mation can still be accessed.

PBS Configuration
PBS documentation is to be found in the PBS Professional Guides, which can be accessed from: https:
//community.altair.com/community?id=altair_product_documentation.

By default, PBS examples are available under the directory /cm/shared/examples/workload/pbspro/

jobscripts/

Some PBS configuration under BCM can be done using roles. The roles are the same for the variants
of PBS, and are denoted as pbspro roles:

• In Base View the roles setting allows the configuration of PBS client and server roles.

https://community.altair.com/community?id=altair_product_documentation
https://community.altair.com/community?id=altair_product_documentation
/cm/shared/examples/workload/pbspro/jobscripts/
/cm/shared/examples/workload/pbspro/jobscripts/

398 Workload Management

– For the PBS server role, the role is enabled, for example on a head node basecm11, via a
navigation path of:
Devices > Head Nodes > basecm11 > Settings > Roles > Add > PBS pro server role

* Within the role window for the server role, its installation path and server spool path can
be specified.

– For the PBS client role, the role is enabled along a similar navigation path, just ending at
PBS pro client role. The number of slots, GPUs and other properties can be specified, and
queues can be selected.

• In cmsh the client and server roles can be managed for the individual nodes in device mode,
or managed for a node category in category mode, or they can be managed for a configuration
overlay in configurationoverlay mode.

For example, if there is a PBS cluster instance called pbsfast, then the head node could be assigned
a pbsproserver role, with the following properties:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles basecm11

[basecm11->device[basecm11]->roles]% assign pbsproserver

[basecm11->device*[basecm11*]->roles*[pbsproserver*]]% show

Parameter Value

-------------------------------- --

Name pbsproserver

Revision

Type PbsProServerRole

Add services yes

WLM cluster

Provisioning associations <0 internally used>

External Server no

Comm Settings <submode>

[basecm11->device*[basecm11*]->roles*[pbsproserver*]]% set wlmcluster pbsfast; commit

[basecm11->device[basecm11]->roles[pbsproserver]]%

Similarly, a category of nodes that can be used by the instance pbsfast, and called fastnodes,
may have a PBS client role assigned and set with the following properties:

Example

[basecm11->category[fastnodes]->roles[pbsproclient]]% show

Parameter Value

-------------------------------- --

Name pbsproclient

Revision

Type PbsProClientRole

Add services yes

WLM cluster pbsfast

Slots 1

GPUs 0

All Queues no

Queues

Properties

Provisioning associations <0 internally used>

Mom Settings <submode>

Comm Settings <submode>

Node Customizations <0 in submode>

7.5 Configuring And Running Individual Workload Managers 399

Specifing nodes for job queues for PBS: The administrator can specify the nodes that are associated
with a job queue.

• Prior to BCM version 11, job queues were specified for nodes only by using the queues parameter
of the pbsproclient role at the device, category, or configurationoverlay mode level.

For example, for the configuration overlay openpbs-client that defines the PBS client configu-
ration by default, the nodes for the PBS client role are the nodes in the default category workq.
Within the configuration overlay, within the pbsproclient role, the default queue to be used is set
to workq by default:

Example

root@basecm11:~# cmsh

[basecm11]% configurationoverlay use openpbs-client

[basecm11->configurationoverlay[openpbs-client]]% get categories

default

[basecm11->configurationoverlay[openpbs-client]]% roles

[basecm11->configurationoverlay[openpbs-client]->roles]% use pbsproclient

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]]% get queues

workq

• Starting with BCM version 11, the administrator can also add nodes to queues directly from within
wlm mode for a particular WLM, within the jobqueue mode for a particular queue, by setting nodes
for particular node grouping parameters. For example, for PBS the following queue parameters
are available:

Example

[basecm11->wlm[openpbs]->jobqueue[workq]]% show | egrep -i '(overlay|nodegroups|compute|catego)'

Overlays

Categories

Nodegroups

Compute nodes

Thus workq is used by nodes that have been specified in the following groupings:

– Overlays: nodes in these configuration overlays (including nodes of categories that are in
this overlay)

– Categories: nodes in these categories

– Nodegroups: nodes in these node groups

– Compute nodes: nodes listed in this parameter

Cloudbursting with cluster extension may need special handling for PBS. If this feature is needed,
then the administrator should contact BCM support via the website https://www.nvidia.com/en-us/

data-center/bright-cluster-manager/support/.
Further configuration of PBS is done using its qmgr command and is covered in the PBS documenta-

tion.

https://www.nvidia.com/en-us/data-center/bright-cluster-manager/support/
https://www.nvidia.com/en-us/data-center/bright-cluster-manager/support/

400 Workload Management

Running PBS
For the WLM cluster instances, PBS runs the following four daemons:

1. a pbs_server daemon running, typically on the head node. This handles submissions acceptance,
and talks to the execution daemons on the compute nodes when sending and receiving jobs. It
writes logs to the var/spool/<WLM cluster instance>/server_logs/ directory, which is a directory
that is under /cm/shared/apps/pbspro or /cm/shared/apps/openpbs. Queues for this service are
configured with the qmgr command.

2. a pbs_sched scheduler daemon, also typically running on the head node. It writes logs to
the var/spool<WLM cluster instance>/sched_logs/ directory under /cm/shared/apps/pbspro or
/cm/shared/apps/openpbs.

3. a pbs_mom execution daemon running on each compute node. This accepts, manages, and returns
the results of jobs on the compute nodes. By default, it writes logs

• to the relative directory var/spool/<WLM cluster instance>/mom_logs/, which is under /cm/
shared/apps/pbspro or /cm/shared/apps/openpbs
and

• to /cm/local/apps/pbspro/var/spool/mom_logs/ on nodes with the client role.

4. a pbs_comm communication daemon usually running on the head node. This handles communica-
tion between PBS daemons, except for server-to-scheduler and server-to-server daemons commu-
nications. It writes logs

• to the relative directory var/spool/<WLM cluster instance>/comm_logs/, which is under /cm/
shared/apps/pbspro or /cm/shared/apps/openpbs
and

• to /cm/local/apps/pbspro/var/spool/comm_logs/ on nodes with the client role.

Running PBS On Cluster Extension
Running PBS on a cluster extension must not involve any form of NAT, including netmap from iptables.
Communication for both the commercial and the community PBS variants fail under the default NAT
netmap via OpenVPN. Using a hardware VPN, Direct Connect (for AWS) or ExpressRoute (for Azure)
is a workaround for using OpenVPN/netmap.

When PBS is set up with cm-wlm-setup or during the installation of the head node, then the
pbsproclient role is assigned by default via a configuration overlay to the default node category only.

[root@basecm11 ~]# cmsh -c "category; roles default; list"

Name (key)

--

[overlay:openpbs-client] pbsproclient

...

In order to add cloud nodes to PBS, the administrator can assign the pbsproclient role manually.
There are two types of PBS configuration in this case. The configurations can be applied to both the

commercial and to the community editions.

1. pbs_mom daemons on cloud compute nodes communicate to the pbs_server directly.

This scenario is suited to a non-VPN setup where cloud nodes have addresses on the same IP
subnet for the cloud and for the on-premises parts of the cluster. Usually this kind of setup is used
with Amazon DirectConnection or Azure ExpressRoute. In order to add new cloud nodes, the
administrator just needs to assign the pbsproclient role to the cloud node category or the cloud
nodes directly.

/cm/shared/apps/pbspro
/cm/shared/apps/openpbs
/cm/shared/apps/pbspro
/cm/shared/apps/openpbs
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro
/cm/shared/apps/openpbs
/cm/local/apps/pbspro/var/spool/mom_logs/
/cm/shared/apps/pbspro
/cm/shared/apps/pbspro
/cm/shared/apps/openpbs
/cm/local/apps/pbspro/var/spool/comm_logs/

7.5 Configuring And Running Individual Workload Managers 401

2. pbs_mom daemons on cloud compute nodes communicate to the pbs_server via a separate
pbs_comm server. For BCM the use of the cloud-director is recommended for this purpose.

This can be useful if cluster extension is configured with a VPN tunnel setup. In this case the
pbs_mom running on a cloud node communicates with the pbs_server by using the VPN con-
nection, and the communication traffic goes via an OpenVPN server. The OpenVPN connection
adds overhead on the cloud-director where the OpenVPN daemon runs. If the traffic is routed
via pbs_comm running on cloud-director, then the OpenVPN server is not used. This is because
pbs_comm daemon on the cloud director resolves the cloud pbs_mom addresses with cloud IP ad-
dresses, while pbs_server resolves pbs_comm on the cloud director by using the VPN tunnel IP.

In order to configure PBS to pass the communication traffic via pbs_comm, the administrator should
assign pbsproclient roles to not only the compute cloud nodes, but also to the cloud-director.
On the cloud director, the administrator should enable pbs_comm daemon to start, and pbs_mom

daemon to not start, automatically. These actions are done in the commsettings and momsettings

submodes of pbsproclient role.

For the pbsproclient role assigned in the configuration overlay, the settings can be accessed in
cmsh as in the following:

Example

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use openpbs-client

[basecm11->configurationoverlay[openpbs-client]]% roles

[basecm11->configurationoverlay[openpbs-client]->roles]% use pbsproclient

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]]% show

Parameter Value

-------------------------------- --

Name pbsproclient

Revision

Type PbsProClientRole

Add services yes

WLM cluster openpbs

Slots 1

GPUs 0

All Queues no

Queues workq

Properties

Provisioning associations <0 internally used>

Mom Settings <submode>

Comm Settings <submode>

Node Customizations <0 in submode>

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]]% commsettings

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]->commsettings]% show

Parameter Value

-------------------------------- --

Comm Routers

Revision

Comm Threads 4

Start Comm no

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]->commsettings]% ..

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]]% momsettings

[basecm11->configurationoverlay[openpbs-client]->roles[pbsproclient]->momsettings]% show

Parameter Value

402 Workload Management

-------------------------------- --

Output Hostname

Revision

Leaf Routers

Leaf Name

Leaf Management FQDN no

Start Mom yes

Spool /cm/local/apps/openpbs/var/spool

Further configuration that should be carried out is to set the commrouters parameter on the cloud
director to master, and set the leafrouters parameter on the compute cloud nodes to the host-
name of the cloud director.

For example (some text elided):

Example

[root@basecm11 ~]# cmsh

[basecm11]% category roles cloud-nodes

[basecm11->category[cloud-nodes]->roles]% assign pbsproclient

[basecm11->category*[cloud-nodes*]->roles*[pbsproclient*]]% set queues cloudq

[basecm11->...*]->roles*[pbsproclient*]->momsettings*]% momsettings

[basecm11->...*]->roles*[pbsproclient*]->momsettings*]% set leafrouters director

[basecm11->...*]->roles*[pbsproclient*]->momsettings*]% commit

[basecm11->...*]->roles[pbsproclient]->momsettings]% device roles director

[basecm11->...*]->roles]% assign pbsproclient

[basecm11->...*]->roles*[pbsproclient*]]% momsettings

[basecm11->...*]->roles*[pbsproclient*]->momsettings*]% set startmom no

[basecm11->...*]->roles*[pbsproclient*]->momsettings*]% ..

[basecm11->...*]->roles*[pbsproclient*]]% commsettings

[basecm11->...*]->roles*[pbsproclient*]->commsettings*]% set startcomm yes

[basecm11->...*]->roles*[pbsproclient*]->commsettings*]% set commrouters master

[basecm11->...*]->roles*[pbsproclient*]->commsettings*]% commit

[basecm11->...]->roles[pbsproclient]->commsettings]%

7.5.3 Installing, Configuring, And Running LSF
IBM prefers to make LSF available directly from their Passport Advantage Online website, which is why
it is not available by direct selection in figure 3.9 of the Installation Manual.

IBM provides LSF in 2 ways.

1. IBM Spectrum LSF Suites (https://www.ibm.com/products/hpc-workload-management?mhsrc=
ibmsearch_a&mhq=lsf (April 2024)). These are not supported by BCM.

2. IBM LSF Standard Edition v10.1 (https://www.ibm.com/support/pages/node/631591 (April
2024)). This is supported by BCM.

Installation is carried out with cm-wlm-setup as explained later on in this section 7.5.3. LSF Stan-
dard Edition 10.1 requires a licence (“entitlement”) from IBM. The product is updated with patch
releases. Patch releases can be interim fixes, or they can be a bundle of interim fixes, called a fix
pack. The fixes for 64-bit Linux can be viewed at:

https://www.ibm.com/support/fixcentral/swg/selectFixes?parent=IBM%20Spectrum%

20Computing&product=ibm/Other+software/IBM+Spectrum+LSF&release=10.1&platform=

Linux+64-bit,x86_64&function=all

(April 2024), and filters can be selected to fine tune the fixes that are displayed.

http://www.ibm.com/software/passportadvantage
https://www.ibm.com/products/hpc-workload-management?mhsrc=ibmsearch_a&mhq=lsf
https://www.ibm.com/products/hpc-workload-management?mhsrc=ibmsearch_a&mhq=lsf
https://www.ibm.com/support/pages/node/631591
https://www.ibm.com/support/fixcentral/swg/selectFixes?parent=IBM%20Spectrum%20Computing&product=ibm/Other+software/IBM+Spectrum+LSF&release=10.1&platform=Linux+64-bit,x86_64&function=all
https://www.ibm.com/support/fixcentral/swg/selectFixes?parent=IBM%20Spectrum%20Computing&product=ibm/Other+software/IBM+Spectrum+LSF&release=10.1&platform=Linux+64-bit,x86_64&function=all
https://www.ibm.com/support/fixcentral/swg/selectFixes?parent=IBM%20Spectrum%20Computing&product=ibm/Other+software/IBM+Spectrum+LSF&release=10.1&platform=Linux+64-bit,x86_64&function=all

7.5 Configuring And Running Individual Workload Managers 403

Fix packs use a versioning that follows the format:

10.1.0.<version>

where <version> can be a string such as:

14-spk-2023-Apr-build601547

Patches are installed by downloading the patches and installing them manually as new patches
are released.

Somewhat confusingly, the archived IBM Spectrum LSF Suite version 10.2.0.9 has LSF Standard edi-
tion 10.1 as a component. The component is supported, but installation from the suite is not supported
by BCM. That is, installation using the official IBM method or by carrying out a manual installation are
both not supported by BCM. A cluster administrator should therefore not try to install LSF Standard
Edition 10.1 from a IBM Spectrum LSF Suite release.

Installing LSF
The workload manager LSF version 10.1 is installed and integrated into NVIDIA Base Command Man-
ager 11 with the following steps:

1. The following LSF files should be downloaded from the IBM web site into a directory on the head
node:

• Installation package: lsf<lsf_ver>_lsfinstall_linux_<cpu_arch>.tar.Z

• Distribution package: lsf<lsf_ver>_linux<kern_ver>-glibc<glibc_ver>-<cpu_arch>.tar.Z

• Documentation package (optional): lsf<lsf_ver>_documentation.tar.Z

Here:

• <lsf_ver> is the LSF version, for example: 10.1

• <kern_ver> is the Linux kernel version, for example: 2.6

• <glibc_ver> is the glibc library version, for example: 2.3

• <cpu_arch> is the CPU architecture, for example: x86_64

A check should be done to ensure that the tar.Z files have not been renamed or had their names
changed to lower case during the download, in order to avoid installation issues. All the files must
be in the same directory before installation.

In case of an existing failover setup, the installation is done on the active head node.

A license file for LSF may also be needed for the installation, but it does not have to be in the same
directory as the other tar.Z files.

2. The cm-lsf package must be installed on the head node. The cm-lsf-client package must be
installed on both the head node and within the software images. By default they should have
been already installed. If not then they can be installed manually from the BCM repository. For
RHEL-based distributions the procedure looks like:

[root@basecm11 ~]# yum install cm-lsf cm-lsf-client

[root@basecm11 ~]# chroot <IMAGE> yum install cm-lsf-client

For SLES distributions the procedure looks like:

[root@basecm11 ~]# zypper install cm-lsf cm-lsf-client

[root@basecm11 ~]# chroot <IMAGE> zypper install cm-lsf-client

For Ubuntu distributions the procedure looks like:

404 Workload Management

[root@basecm11 ~]# apt-get install cm-lsf cm-lsf-client

[root@basecm11 ~]# cm-chroot-sw-img <IMAGE>
[root@basecm11 ~]# apt-get install cm-lsf-client

...

[root@basecm11 ~]# exit

The cm-lsf and cm-lsf-client packages contain a template for an environment module file, an
installation configuration file, and systemd unit files. The installation configuration file may be
tuned by the administrator if required. It is passed to the lsfinstall script distributed with LSF,
which is executed by cm-wlm-setup during setup. To change the default values in the installation
configuration file, the administrator should change the template file:

[root@basecm11 ~]# cd /cm/shared/apps/lsf/var/cm/

[root@basecm11 cm]# vi install.config.template

...

Values enclosed by a percentage sign, ‘%’, are replaced by cm-wlm-setup during installation. If
such values are replaced by custom values, then cm-wlm-setup does not change them, and the
custom values are used during installation.

If install.config is changed instead of the template file, then cm-wlm-setup replaces it with
the configuration file generated from the template. So, changing install.config directly should
almost certainly not ever be done.

3. cm-wlm-setup is run. The directory where the LSF files were downloaded is specified on one of
the setup screens, or with the --archives-location option.

Example

[root@basecm11 ~]# cm-wlm-setup --wlm lsf --setup --archives-location /root/lsf

The same can be achieved by executing cm-wlm-setup without any command line arguments. The
required information can be specified within the TUI configuration screens in this case. Also the
same can be achieved with the WLM Wizard in Base View.

4. The nodes are then rebooted, and the LSF command bhosts then displays an output similar to:

Example

[root@basecm11 ~]# module load lsf

[root@basecm11 ~]# bhosts

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP ...

basecm11 ok - 2 0 0 0 ...

head2 ok - 0 0 0 0 ...

node001 ok - 1 0 0 0 ...

node002 ok - 1 0 0 0 ...

node003 unavail - 1 0 0 0 ...

node004 closed - 1 0 0 0 ...

node005 ok - 1 0 0 0 ...

The output in the preceding example has been truncated for this manual, for convenience.

The installation status can be checked with the service lfsd (some output elided):

7.5 Configuring And Running Individual Workload Managers 405

[root@basecm11 ~]# systemctl status lsfd

lsfd.service - IBM Spectrum LSF

Loaded: loaded (/usr/lib/systemd/system/lsfd.service; enabled; vendor preset: disabled)

Active: active (running) since Sat 2023-01-14 17:48:05 CET; 1 day 15h ago

Process: 54334 ExecStart=/cm/shared/apps/lsf/current/etc/lsf_daemons start (code=exited, status=0/SUCCESS)

Tasks: 13 (limit: 23269)

Memory: 179.5M

CGroup: /system.slice/lsfd.service

|- 54410 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/res

|- 54412 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/sbatchd

|- 54427 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/mbatchd -d

/cm/shared/apps/l...

|-102312 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/eauth -s

|-344591 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/lim -d

| /cm/shared/apps/l..

|-344595 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/pim -d

/cm/shared/apps/...

|-344612 /cm/shared/apps/lsf/...10.1/linux2.6-glibc2.3-x86_64/etc/melim

|-344647 /cm/shared/apps/lsf/...10.1_linux2.6-glibc2.3-x86_64/10.1...

`-457629 /cm/shared/apps/lsf/...10.1_linux2.6-glibc2.3-x86_64/10.1/...

Jan 14 23:29:30 basecm11 mbatchd[54427]: Jan 14 23:29:30 2023 54427:54427 3 10.1 ...

...

[root@basecm11 ~]#

while default queues can be seen by running:

[root@basecm11 ~]# module load lsf

[root@basecm11 ~]# bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P ...

owners 43 Open:Active - - - ...

priority 43 Open:Active - - - ...

night 40 Open:Active - - - ...

chkpnt_rerun_qu 40 Open:Active - - - ...

short 35 Open:Active - - - ...

license 33 Open:Active - - - ...

normal 30 Open:Active - - - ...

interactive 30 Open:Active - - - ...

idle 20 Open:Active - - - ...

The output in the preceding example has been truncated for this manual, for convenience.

If more than one instance of an LSF cluster is set up, then the full modulefile name should be
specified. For example:

[root@basecm11 ~]# module load lsf/lsf1/10.1

Configuring LSF
LSF server configuration: After LSF is set up with cm-wlm-setup, the following CMDaemon settings
can be modified for the LSF server role:

• External Server: a value of yes means that LSF server daemons are running on an external server
that is not managed by BCM.

The following settings are available in LSF cluster settings, and are applied to all the LSF roles of the
LSF cluster:

406 Workload Management

• Prefix: this sets the path to the root location of the LSF installation. The default value is /cm/

shared/apps/lsf/current.

• Var: this sets the path to the var directory of LSF. The default value is /cm/shared/apps/lsf/var.

• Cgroups: this is a submode that contains LSF-related cgroups settings.

The cgroups settings that affect LSF behavior are available via the LSF instance. For example, for
an instance lsf, the settings can be accessed within cmsh via cmsh->wlm[lsf]->cgroups. The settings
available are:

• Automount: if yes, then the workload manager tries to mount a subsystem if it is not mounted yet.
The default value is No.

• Job Cgroup Template: this is the template relative job cgroup path. The token $CLUSTER specified
in this template path is replaced with the actual LSF cluster name, and $JOBID is replaced by the job
ID. The path is used by the BCM monitoring system in order collect job metrics from the cgroups.
By default, the path is set to "lsf/$CLUSTER/job.$JOBID.*".

• Process Tracking: if yes, then processes are tracked based on job control functions such as: termi-
nation, suspension, resume, and other signaling. These are used on Linux systems that support the
freezer subsystem under cgroups. The parameter sets LSF_PROCESS_TRACKING in lsf.conf.

• Linux Cgroup Accounting: if yes, then LSF tracks processes based on CPU and memory ac-
counting. This is for Linux systems that support the memory and cpuacct subsystems un-
der cgroups. Once enabled, this parameter takes effect for new jobs. The parameter sets
LSF_LINUX_CGROUP_ACCT in lsf.conf.

If this parameter and Process Tracking are both enabled, then they take precedence over the
parameters LSF_PIM_LINUX_ENHANCE and EGO_PIM_SWAP_REPORT in lsf.conf.

• Mount Point: specifies a path where cgroups is mounted. It only makes sense to set this when the
location is not standard for the operating system.

• Resource Enforce: If yes, then resource enforcement is carried out through the Linux memory
and cpuset subsystems under cgroups. This is for Linux systems with cgroup support. The pa-
rameter sets LSB_RESOURCE_ENFORCE in lsf.conf.

The server role settings can be modified as follows:

• Within Base View: For example for a head node basecm11, via a navigation path of
Devices > Head Nodes > basecm11 > Settings > Roles > LSF server role

• Within cmsh: For a particular category in the category mode, or a particular device in the device

mode, the roles submode is chosen. Within the roles submode, the lsfserver object can be
assigned or used. The following example shows how to set the LSF prefix parameter for the
default category.

Example

[root@basecm11~]# cmsh

[basecm11]% configurationoverlay use lsf-server; roles

[basecm11->configurationoverlay[lsf-server]->roles]% use lsfserver

[basecm11->...[lsfserver]]% set externalserver yes

[basecm11->...[lsfserver*]]% commit

The global LSF cluster settings can be modified as follows:

/cm/shared/apps/lsf/current
/cm/shared/apps/lsf/current
/cm/shared/apps/lsf/var

7.5 Configuring And Running Individual Workload Managers 407

• Within Base View:
For example, for a head node basecm11, via a navigation path of:
HPC > Wlm Clusters > CLUSTER_NAME > Settings

• Within cmsh:
A particular LSF cluster instance can be chosen within wlm mode, to set its global parameters. The
following example shows how to set the LSF prefix parameter for the lsf1 cluster.

Example

[root@basecm11~]# cmsh

[basecm11]% wlm use lsf1

[basecm11->wlm[lsf1]]% set prefix /cm/shared/apps/lsf2

[basecm11->wlm*[lsf1*]]% commit

LSF client configuration: After installation, the following CMDaemon settings can be specified for the
LSF client role:

• Queues In cmsh, queues can be added using jobqueue mode. In LSF, the default queue is normal.
More arbitrarily-named queues can be specified with:

Example

[basecm11->wlm[lsf]->jobqueue]% add abnormal

[basecm11->wlm[lsf]->jobqueue*[abnormal*]]% add subnormal

[basecm11->wlm[lsf]->jobqueue*[subnormal*]]% add supernormal

[basecm11->wlm[lsf]->jobqueue*[supernormal*]]% commit

[basecm11->wlm[lsf]->jobqueue*[supernormal]]% ..

[basecm11->wlm[lsf]->jobqueue*]% list

Name (key) Nodes

------------ ------------------------

abnormal

normal node001..node005

subnormal

supernormal

The jobqueue values can be set for the LSF client role:

Example

[basecm11->wlm[lsf]->jobqueue*]% configurationoverlay

[basecm11->configurationoverlay]% use lsf-client

[basecm11->configurationoverlay[lsf-client]]% roles

[basecm11->...->roles]% use lsfclient

[basecm11->...->roles[lsfclient]]% get queues

normal

[basecm11->...->roles[lsfclient]]% set queues abnormal subnormal supernormal normal

[basecm11->...->roles*[lsfclient*]]% commit

[basecm11->...->roles*[lsfclient*]]% show

Parameter Value

-------------------------------- --

Name lsfclient

Revision

Type LSFClientRole

Add services yes

408 Workload Management

WLM cluster lsf

Provisioning associations <0 internally used>

Slots auto

All Queues no

Queues subnormal,supernormal,abnormal,normal

Server yes

Host Model

Host Type LINUX

GPUs 0

Node Customizations <0 in submode>

Alternatively, queues can be managed using Base View (section 7.6.2).

• Specifying nodes for job queues for LSF The administrator can specify the nodes that are
associated with a job queue.

– Prior to BCM version 11, job queues were specified for nodes only by using the queues param-
eter of the lsfclient role at the device, category, or configurationoverlay mode level.
For example, for the configuration overlay lsf-client that defines the LSF client configura-
tion by default, the nodes for the LSF client role are the nodes in the default category normal.
Within the configuration overlay, within the lsfclient role, the default queue to be used is
set to normal by default:

Example

root@basecm11:~# cmsh

[basecm11]% configurationoverlay use lsf-client

[basecm11->configurationoverlay[lsf-client]]% get categories

default

[basecm11->configurationoverlay[lsf-client]]% roles

[basecm11->configurationoverlay[lsf-client]->roles]% use lsfclient

[basecm11->configurationoverlay[lsf-client]->roles[lsfclient]]% get queues

normal

– Starting with BCM version 11, the administrator can also add nodes to queues directly from
within wlm mode for a particular WLM, within the jobqueue mode for a particular queue, by
setting nodes for particular node grouping parameters. For example, for LSF the following
queue parameters are available:

Example

[basecm11->wlm[lsf]->jobqueue[normal]]% show | egrep -i '(overlay|nodegroups|compute|catego)'

Overlays

Categories

Nodegroups

Compute nodes

Thus normal is used by nodes that have been specified in the following groupings:

* Overlays: nodes in these configuration overlays (including nodes of categories that are
in this overlay)

* Categories: nodes in these categories

* Nodegroups: nodes in these node groups

* Compute nodes: nodes listed in this parameter

7.5 Configuring And Running Individual Workload Managers 409

• Options A navigation path of:
Devices > Nodes[node001] > Edit > Settings > Roles > Add > LSF client role

lets options be set for a regular node node001 (figure 7.24):

Figure 7.24: Base View access to LSF configuration options via roles window options

Available options are:

– Slots: The number of CPUs per node. By default LSF tries to determine the value automat-
ically with the auto setting. If the number of slots is set to 0, then the node becomes an LSF
submit host, so that no jobs can run on the host, but users can submit their jobs from this host
using the LSF utilities.

– Queues: All queues can be set, or queues can be selected.

– Server: Whether the node is an LSF server

– Host Model, Host Type: Possible values for these are defined in lsf.shared

– GPUs: The number of GPUs per node.

– Node Customizations: LSF node custom properties (section 7.11).

From cmsh these properties are accessible from within the appropriate node or category roles

submode (section 7.4.2).

Submission hosts: By default, all compute nodes to which the lsfclient role is assigned, also become
submission hosts. This means that LSF users can submit their jobs from those compute nodes. If the
administrator wants to allow users to submit their jobs from a non-compute node—for example from a
login node—then the lsfsubmit role should be assigned, for example:

Example

[root@basecm11~]# cmsh

[...->configurationoverlay[lsf1-submit]]% roles

[...->roles]% assign lsfsubmit

410 Workload Management

[...->roles*[lsfsubmit*]]% append lsfclusters lsf1

[...->roles*[lsfsubmit*]]% commit

[...->roles[lsfsubmit]]%

Configuring a node according to the preceding steps then allows users to submit their jobs from that
node, without the submitted jobs getting scheduled to run on that node.

If more than one LSF cluster is set up, and they share the same submit host, then a single lsfsubmit

role can be used. In this case, all the LSF cluster names should be appended to the lsfcluster parameter
of the role.

Further configuration: For further configuration the Administering Platform LSF manual provided with
the LSF software should be consulted.

Running LSF
Role assignment and role removal enables and disables LSF from Base View (sections 7.4.1) or cmsh

(section 7.4.2).
An active LSF master service (typically, but not necessarily on a head node) has the following LSF-

related processes running on it:

Process/Service Description

res Remote Execution Server*

sbatchd client batch job execution daemon*

mbatchd master batch job execution daemon

eauth External Authentication method

lim Load Information Manager*

pim Process Information Manager*

pem Process Execution Manager*

vemkd Platform LSF Kernel Daemon

egosc Enterprise Grid Orchestrator service controller

mbschd master batch scheduler daemon
*These services/processes run on compute nodes.

Non-active LSF-masters running as compute nodes run the processes marked with an asterisk only.
LSF daemon logs are kept under /cm/local/apps/lsf/var/log/, on each of the nodes where LSF

services run.

7.6 Using Base View With Workload Management
Viewing the workload manager services from Base View is described in section 7.4.3. The HPC (High
Performance Computing) icon, which looks like a speedometer, is the Base View resource that allows
the following items to be accessed:

• WLM clusters: for WLM cluster settings for a WLM cluster instance to be viewed and managed

• jobs: for jobs to be viewed and managed

• queues: for queues to be viewed and managed

• job queue stats: for job queue statistics to be viewed

These items are described next.

7.6 Using Base View With Workload Management 411

7.6.1 Jobs Display And Handling In Base View
The navigation path HPC > Jobs opens up the Job list window. This displays a list of recent job IDs,
along with the user, status, scheduler used, queue, and nodes allocated to the job (figure 7.25).

Figure 7.25: Workload manager job list window

Buttons in the last two columns allow the jobs to be examined and managed:

• The Show button, , is a window-opener button. It opens up a window with further details of the
selected job.

• The Actions button, , brings up a pop-up menu. The menu options allow the selected job to be
managed as follows:

– The Hold option stops selected queued jobs from being considered for running by putting
them in a Hold state (H in the Status column).

– The Release option releases selected queued jobs in the Hold state so that they are considered
for running again.

– The Suspend option suspends selected running jobs (S in the Status column).

– The Resume option allows selected suspended jobs to run again.

– The Cancel option removes selected jobs from the queue.

7.6.2 Queues Display And Handling In Base View
The navigation path HPC > Wlm Clusters > Edit > Job Queues displays a list of queues available (fig-
ure 7.26).

412 Workload Management

Figure 7.26: Workload manager queues

Queues can be added or deleted. An Edit option allows existing queue parameters to be set, for
example as in figure 7.27.

Figure 7.27: Workload manager queue parameters configuration

7.7 Using cmsh With Workload Management
The wlm mode in cmsh gives the administrator access to the WLM instances running on the cluster.

7.7 Using cmsh With Workload Management 413

The cmsh tree (Appendix M) has the following submodes structure under the wlm mode:

`-- wlm

|-- accounting

|-- cgroups

|-- chargeback

|-- jobqueue

|-- jobs

|-- ocisettings

|-- pelogs

`-- placeholders

• accounting: provides ways to set some advanced Slurm job accounting properties (page 360)

• cgroups: provides ways to configure WLMs via the cgroup mechanism of the Linux kernel (sec-
tion 7.10)

• chargeback: provides ways to measure the costs of requested IT resources for WLM jobs (Chap-
ter 13)

• jobqueue: allows WLM job queues to be managed (section 7.7.2)

• jobs: allows WLM jobs to be viewed and managed (section 7.7.1)

• ocisettings: allows OCI settings (Chapter 2 of the Cloudbursting Manual) to be viewed and man-
aged

• pelogs: allows access to prolog and epilog hooks (page 341) for PBS

• placeholders: allows nodes to be configured in advance, for planning resource use in WLMs
(section 8.4.8)

For basic WLM management via cmsh, the administrator is expected to use wlm mode with the jobs

and jobqueue submodes.
If there is just one WLM instance running on the cluster, then an administrator that accesses wlm

mode drops straight into the object representing that WLM instance, and can then access the submodes.
If there is more than one WLM running, then the administrator must select a WLM instance from the

top level wlm mode, with the use command, in order to access the submodes.
While at the top level wlm mode, the instances can be listed. The list shows the nodes used by the

instance, and the node roles assigned to the nodes.
Suppose BCM is being used to manage two WLM instances:

• one Slurm WLM, named slr

• one GE WLM, named uc

with their nodes having been allocated roles as follows:

Example

[basecm11->wlm]% list

Type Name (key) Server nodes Submit nodes Client nodes

------ ------------------------ ------------ ------------------------- ----------------

Slurm slr node001 basecm11,node001..node003 node002,node003

UGE uc node004 basecm11,node004..node006 node005,node006

Then one way to list all jobs running per WLM instance, queue, and user, is with the filter com-
mand:

414 Workload Management

[basecm11->wlm]% filter --running

WLM Job ID Job name User Queue Submit time Start time End time Nodes Exit code

---- ------ --------- ----- ------ ----------- ------------ --------- ----------------- ----------

slr 103 sjob maud defq 15:43:02 15:43:03 N/A node002,node003 0

slr 104 sjob maud defq 15:43:02 15:43:25 N/A node002,node003 0

slr 105 sjob maud defq 15:43:02 15:43:33 N/A node002,node003 0

slr 106 sjob maud defq 15:43:02 15:43:36 N/A node002,node003 0

slr 171 sjob maud defq 14:20:09 14:20:23 N/A node002,node003 0

uc 200 ugjob fred all.q 14:22:18 14:23:20 N/A node005,node006 0

The filter command can also be run within the jobs mode, for a particular WLM instance, and is
described in more detail on page 417.

An alternate way to list all jobs from wlm mode is with a foreach command to descend into jobs

submode to list the jobs for each WLM instance:

Example

[basecm11->wlm]% foreach * (jobs ; list)

Type Job ID User Queue Running time Status Nodes

----- ------- ----- ------ ------------ ---------- ----------------

Slurm 55 maud defq 18m 10s COMPLETED node002,node003

Slurm 56 maud defq 18m 5s COMPLETED node002,node003

Slurm 57 maud defq 2m 11s RUNNING node002,node003

Slurm 58 maud defq 0s PENDING

Type Job ID User Queue Running time Status Nodes

----- ------- ----- ------ ------------ ---------- ----------------

UGE 96 maud all.q 2m 30s r node005,node006

UGE 97 maud 0s qw

UGE 98 maud 0s qw

The jobs submode is now discussed further.

7.7.1 The jobs Submode In cmsh

Within the jobs submode of a WLM instance, the administrator can list jobs that are running or queued
up for that particular instance. For example, the running and queued jobs listed for a PBS instance may
be displayed as:

Example

[basecm11->wlm[openpbs]->jobs]% list

Type Job ID User Queue Running time Status Nodes

--------- ------------- ----------- ------------ ------------ -------- -------------

PBSPro 3117.basecm11 pbuser1 hydroq 1s R node002

PBSPro 3118.basecm11 pbuser2 workq 1s R node001

PBSPro 3119.basecm11 pbuser1 hydroq 0s Q

PBSPro 3120.basecm11 pbuser3 hydroq 0s Q

PBSPro 3121.basecm11 pbuser1 hydroq 0s Q

PBSPro 3122.basecm11 pbuser1 hydroq 0s Q

The number of jobs can be very large. The wait command in jobs mode can be used to provide a
shorter running summary. The following wait command displays a running summary that regularly
displays a tally of the running and pending jobs; waits for all of them to complete; and has the waiting-
for-completion condition overruled by a timeout of 10 minutes:

Example

7.7 Using cmsh With Workload Management 415

[basecm11->wlm[slurm]->jobs]% wait --timeout 10m --all

0s| running: 4, pending: 12

1m| running: 3, pending: 12

2m| running: 4, pending: 11

5m| running: 4, pending: 10

7m| running: 4, pending: 9

9m| running: 3, pending: 8

* timeout *

By default wait runs every minute until the specified timeout. Also, by default, as indicated by the
missing 3rd and 4th minutes in the example, the outputs are only displayed with the tally changes.
Further options to the wait command within jobs mode can be found in the help text display output
when help wait is run.

In the foreach jobs listings for the Slurm and GE WLM instances shown earlier, the jobs are in a
running, queued up, or completed state. They are also all being run by a user maud, who happens to be
making use of both workload managers.

For Slurm, completed jobs are shown for a short time with the status COMPLETED.

Commands That Change The Status Of A Queued Or Running Job
Within a jobs submode, the following commands, used with a job ID, can change the status of a partic-
ular queued or running job:

• hold: puts a queued job into a hold state. This prevents the job from being considered for running.

• release: releases a job from a hold state, putting it back in the queue, so that it can be considered
for running.

• suspend: pauses a running job

• resume: resumes a suspended job

• remove: removes a job

For example, continuing the case earlier on of the cmsh session with the foreach listing (page 414):

The administrator can suspend the running job with job ID 57 on the Slurm instance as follows:

Example

[basecm11->wlm]% jobs slr; suspend 57

[basecm11->wlm[slr]->jobs]% list | head -2; list | grep 57

Type Job ID User Queue Running time Status Nodes

----- ------- ----- ------ ------------ ---------- ----------------

Slurm 57 maud defq 2m 51s SUSPENDED node002,node003

and can hold the queued waiting job with job ID 98 on the GE instance as follows:

Example

[basecm11->wlm]% jobs uc; hold 98

[basecm11->wlm[uc]->jobs]% list | head -2; list | grep 98

Type Job ID User Queue Running time Status Nodes

----- ------- ----- ------ ------------ ---------- ----------------

UGE 98 maud 0s hqw

The administrator can then resume the suspended job ID 57, and can release the held job ID 98 as
follows:

416 Workload Management

Example

[basecm11->wlm[uc]->jobs]% wlm; jobs uc; release 98

[basecm11->wlm[uc]->jobs]% wlm; jobs slr; resume 57

Commands To Inspect Jobs:
Within the jobs submode, the following commands can be used to inspect a job:

• show <job ID>: properties are shown for a running or pending job.

The properties that are displayed are taken directly from commands associated with particular
workload managers:

– For Slurm: scontrol show jobs

– For PBS flavors: qstat

– For LSF: bjobs

• info <job ID>: details are shown about a particular job ID. The job can be pending, running, or
completed jobs. The data is taken from the BCM database.

• statistics: statistics are shown for jobs. More detail on the statistics command is given on
page 418.

• list: lists pending and running job IDs along with some other associated properties. Recently
completed jobs are also displayed. Completed jobs do not remain listed for longer than a few
minutes. The filter command (section 7.7.1) can be used instead to display all jobs for that WLM
instance, using data taken from the BCM database.

• dumpmonitoringdata [OPTIONS] [<start-time> <end-time>] <metric> <job id>: Displays the
monitoring data for a specific metric or healthcheck for a running or completed job. Example:
dumpmonitoringdata CtxtSwitches 170

More detail is given on the dumpmonitoringdata command in section 10.6.4.

• latestmonitoringdata [OPTIONS]<job ID>: Displays the last measured job monitoring data for
the job.

– latesthealthdata <job ID>: The subset of health checks within the last measured monitor-
ing data.

– latestmetricdata <job ID>: The subset of metrics within the last measured monitoring data.

More detail is given on the latest*data commands in section 10.6.3.

• measurables <job ID>: The measurables used for job monitoring data.

– healthchecks <job ID>: The subset of health checks within the measurables used for job
monitoring data.

– metrics <job ID>: The subset of metrics within the measurables used for job monitoring data.

– enummetrics <job ID>: The subset of enummetrics within the measurables used for job mon-
itoring data.

7.7 Using cmsh With Workload Management 417

The info Command Within jobs Submode
Within the jobs submode of wlm, the info <job ID> command shows job information details stored in
the BCM database. BCM starts updating the job information in its database as soon as it detects a new
job. When the job is completed BCM pulls a final job state and exit code from the workload manager.

Example

[basecm11->wlm[slr]->jobs]% info 2

Parameter Value

-------------------------------- --

Job ID 2

Job name hpl

Job Array ID

Job Task ID

User alice

Group alice

Account

Accounting info < not set >

WlmCluster slr

Queue defq

Nodes node001,node002

Submit time 04/12/2024 14:35:00

Start time 04/12/2024 14:35:00

End time N/A

Run time N/A

Persistent no

Exit code 0

Status RUNNING

Requested CPUs 32

Requested GPU 8

Requested memory 1.83GiB

Monitoring yes

Comment

Run directory /home/alice

Stdin file

Stdout file

Stderr file

Total power usage < not set >

Total GPU power usage < not set >

Total CPU power usage < not set >

Total power under allocation < not set >

QOS normal

[basecm11->wlm[slurm]->jobs]%

The filter Command Within jobs Submode
If run at the top-level wlm mode, then the filter command lists jobs for all WLM instances.

It can also be run at the submode-level jobs mode, for a particular WLM instance, in which case it
lists only the jobs for that instance (section 11.5).

The filter command without any options is a bit like an extension of the list command in that it
lists currently pending and running jobs, although in a different format. However, in addition, it also
lists past tasks, with their start and end times.

An example to illustrate the output format for a Slurm instance, somewhat simplified for clarity, is:

Example

[basecm11->wlm[myslurminstance]]% filter

418 Workload Management

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ -------------- ----- ----- ----------- ---------- -------- ---------------- ---------

2 hello fred defq 15:00:51 15:00:51 15:00:52 node001 0

3 mpirun fred defq 15:03:17 15:03:17 15:03:18 node001 0

...

25 slurmhello.sh fred defq 16:17:30 16:17:31 16:17:33 node001..node004 0

26 slurmhello.sh fred defq 16:18:39 16:18:40 16:19:02 node001..node004 0

27 slurmhello.sh fred defq 16:18:41 16:19:03 16:19:25 node001..node004 0

28 slurmhello.sh fred defq 16:18:41 N/A N/A node001..node004 0

29 slurmhello.sh fred defq 16:18:42 N/A N/A node001..node004 0

In the preceding example, the start and end times for jobs 28 and 29 are not yet available because the
jobs are still pending.

Because all jobs for that WLM instance—historic and present—are displayed by the filter com-
mand, it means that finding a particular job in the output displayed can be hard. The displayed output
can therefore be filtered further.

The following options to the filter command are therefore available in order to find particular
groupings of jobs:

• -w|--wlm: by WLM instance

• -u|--user: by user

• -g|--group: by group

• --ended: by jobs that ended successfully, with a zero exit status

• --running: by jobs that are running

• --pending: by jobs that are pending

• --failed: by jobs that finished unsuccessfully, with a non-zero exit status

It may take about a minute for CMDaemon to become aware of job data. This means that, for example,
a job submitted 10s ago may not show up in the output.

Further options to filter command can be seen by running the command help filter within the
wlm or jobs modes.

The statistics Command
The statistics command without any options displays an overview of states for all past and present
jobs:

Example

[basecm11->wlm[uc]]% statistics

Pending Running Finished Error Nodes

---------- ---------- ---------- ---------- ----------

4 0 154 5 309

The options available include the following:

• -w|--wlm <WLM instance>: by WLM instance

• -u|--user: by user

• -g|--group: by group

• -a|--account: by account

7.7 Using cmsh With Workload Management 419

• -p|--parentid: by job parent ID

• --hour : by hour

• --day: by day

• --week: by week

• --interval: by interval

The jobs statistics can be split across users. An example of the output format in this case, somewhat
simplified for clarity, is:

Example

[basecm11->wlm[slurm]->jobs]% statistics --user

User Pending Running Finished Error Nodes

---------------------- ---------- ---------- ---------- ----------

alice 0 0 2 0 1

bob 0 0 5 0 4

charline 0 1 2 0 2

dennis 0 0 6 0 4

eve 0 0 4 0 1

frank 0 0 1 0 1

The job statistics can be displayed over various time periods, if there are jobs within the associated
period. An example of the output format for an interval of 60s is:

Example

[basecm11->wlm[slurm]->jobs]% statistics --interval 60

Date Pending Running Finished Error Nodes

-------------------- ---------- ---------- ---------- ---------- ----------

2020/05/13 15:00:00 0 0 1 0 1

2020/05/13 15:03:00 0 0 7 0 7

2020/05/13 15:04:00 0 0 1 1 2

2020/05/13 15:06:00 0 0 3 0 7

2020/05/13 15:07:00 0 0 1 0 0

2020/05/13 15:08:00 0 0 6 0 8

2020/05/13 16:17:00 0 0 1 0 4

2020/05/13 16:19:00 0 0 9 0 36

2020/05/13 16:20:00 0 0 6 0 24

2020/05/13 16:21:00 0 0 3 0 12

In the preceding example there are no jobs within the period associated with the time 15:01 and 15:02.
For readability the statistics for those intervals are not displayed.

Job Directives
Job directives configure some of the ways in which CMDaemon manages job information processing.

The administrator can configure the following directives:

• JobInformationKeepCount: The maximal number of jobs that are kept in the cache, default 8192,
maximal value 100 million (page 867).

• JobInformationKeepDuration: How long to keep jobs in the CMDaemon database, default 28
days (page 867).

• JobInformationMinimalJobDuration: Minimal duration for jobs to place them in the cache, de-
fault 0s (page 868).

420 Workload Management

• JobInformationFlushInterval: Over what time period to flush the cache to storage (page 868).

• JobInformationDisabled: Disables job information processing (page 866).

7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode
The jobqueue submode under the top level wlmmode can be used to manage queues for a WLM instance.
Queue properties can be viewed and set.

From the top level wlm mode, a list of queues can be seen for each WLM instance by descending into
the WLM instance with a foreach:

Example

[basecm11->wlm]% foreach * (get name; jobqueue; list)

slr

Name (key) Nodes

------------ ------------------------

defq node002,node003

uc

Name (key) Nodes

------------ ------------------------

all.q node005,node006

[basecm11->wlm]%

The usual object manipulation commands (show, get, set and others) of section 2.5.3 work in the
jobqueue submode.

Job Queue Parameters For Slurm
For example, for a Slurm instance, the show command might display the following properties:

[basecm11->wlm[slr]->jobqueue]% show defq

Parameter Value

-------------------------------- --

All nodes node001..node003

Name defq

Revision

Type Slurm

WlmCluster slr

Ordering 0

Default yes

Hidden no

Min nodes 1

Max nodes UNLIMITED

Default time UNLIMITED

Max time UNLIMITED

Priority Job Factor 1

Priority Tier 1

OverSubscribe NO

Alternate

Grace time 0

Preemption mode OFF

Require reservation NO

Select Type Parameters

LLN no

TRES Billing Weights

Alloc nodes

CPU bindings None

7.7 Using cmsh With Workload Management 421

QOS

Default memory per CPU UNLIMITED

Max memory per CPU UNLIMITED

Default memory per Node UNLIMITED

Max memory per Node UNLIMITED

Max CPUs per node UNLIMITED

Default memory per GPU UNLIMITED

Default CPU per GPU UNLIMITED

Disable root no

Root only no

Allow groups ALL

Allow accounts ALL

Allow QOS ALL

Deny Accounts

Deny QOS

ExclusiveUser no

Queue State None

Nodesets ns1

Overlays

Categories

Nodegroups

Compute nodes

Options

Job Queue Parameters For PBS
Likewise, for a PBS instance, the show command might display the following properties:

[basecm11->wlm[pb]->jobqueue]% show workq

Parameter Value

-------------------------------- --

ACL host enable no

Default Queue yes

Default runtime

Enabled yes

From Route Only no

Maximal Queued 0

Maximal runtime 240:00:00

Minimal runtime 00:00:00

Name workq

Nodes node008,node009

Options

Priority 0

Queue Type EXECUTION

Revision

Route Held Jobs no

Route Lifetime 0

Route Retry Time 0

Route Waiting Jobs no

Routes

Started yes

Type PBSPro

WlmCluster pb

7.7.3 Nodes Drainage Status And Handling In cmsh

Running the device mode command drainstatus displays if a specified node is in a Drained state or
not. In a Drained state jobs are not allowed to start running on that node.

422 Workload Management

Running the device mode command drain puts a specified node in a Drained state:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% drainstatus

Node Queue Status

------------------------ ------------------------ ----------------

node001 PbsPro/pb:workq

node002 UGE/uc/all.q

[basecm11->device]% drain node001

Node Queue Status

------------------------ ------------------------ ----------------

node001 PbsPro/pb:workq Drained

The undrain command unsets the Drained state so that jobs may start running on the node again.
The drain, undrain, and drainstatus commands have the same grouping options. The grouping

options can make the command apply to not just one node, but to a list of nodes, a group of nodes, a
category of nodes, a rack, a chassis, an overlay, a role, or a status. Continuing the example:

[basecm11->device]% drain -c default; !# for a category of nodes

Node Queue Status

------------------------ ------------------------ ----------------

node001 PbsPro/pb:workq Drained

node002 UGE/uc/all.q Drained

The help text for each command indicates the syntax:

Example

[root@basecm11 ~]# cmsh -c "device help drain"

Name: drain - Drain jobs (not data) on a set of nodes

Usage: drain [OPTIONS/node]

Options: -n, --nodes <node>

List of nodes, e.g.

node001..node015,node020..node028,node030 or

^/some/file/containing/hostnames

-g, --group <group>

Include all nodes that belong to the node group, e.g.

testnodes or test01,test03

-c, --category <category>

Include all nodes that belong to the category, e.g. default

or default,gpu

-r, --rack <rack>

Include all nodes that are located in the given rack, e.g

rack01 or rack01..rack04

-h, --chassis <chassis>

Include all nodes that are located in the given chassis, e.g

chassis01 or chassis03..chassis05

7.7 Using cmsh With Workload Management 423

-e, --overlay <overlay>

Include all nodes that are part of the given overlay, e.g

overlay1 or overlayA,overlayC

-m, --image <image>

Include all nodes that have the given image, e.g default-image

or default-image,gpu-image

-t, --type <type>

Type of devices, e.g node or virtualnode,cloudnode

-i, --intersection

Calculate the intersection of the above selections

-u, --union

Calculate the union of the above selections

-l, --role <role>

Filter all nodes that have the given

role

-s, --status <status>

Only run command on nodes with specified status, e.g. UP,

"CLOSED|DOWN", "INST.*"

--setactions <actions>

set drain actions, actions already set will be removed

(comma-separated)

--appendactions <actions>

append drain actions to already existing drain actions

(comma-separated)

--removeactions <actions>

remove drain actions

--listactions

list all drain actions

--clearactions

remove all drain actions

Examples: drain Drain the current node

drain node001 Drain node001

drain -r rack01 Drain all nodes in rack01

drain --setactions reboot Drain the current node, and reboot when all jobs are completed

A useful one-liner to reboot and reprovision a sequence of nodes could be in the following format:

Example

cmsh -c 'device; drain -n <nodes> --setactions powerreset ; drain -n <nodes> --appendactions undrain'

This drains the nodes and does a power reset action, which provisions the nodes. After the nodes
are up again, they are undrained so that they are ready to accept jobs again. The command allows the

424 Workload Management

sequence of nodes to be rebooted, for example for the purpose of upgrading a kernel, without needing
to schedule a downtime for the cluster.

The cluster administrator should be aware that that using the preceding one-liner is not a universal
solution. For example, it is not a good solution if the drain takes a long time, because it means that
nodes that drain early could be idle for a long time.

7.8 Examples Of Workload Management Assignment
7.8.1 Setting Up A New Category And A New Queue For It
Suppose a new node with processor optimized to handle Shor’s algorithm is added to a cluster that
originally has no such nodes. This merits a new category, shornodes, so that administrators can config-
ure more such new nodes efficiently. It also merits a new queue, shorq, so that users are aware that they
can submit suitably-optimized jobs to this category.

Ways to configure the cluster manager for this are described next.

A New Category And A New Queue With Base View For An Existing Workload Manager Cluster
Queues can be added to a WLM cluster by running the WLM wizard (navigation path HPC > Wlm

Wizard) if the WLM cluster does not yet exist. The wizard provides an option during WLM cluster
creation for adding queues.

To create a new queue in an existing WLM cluster, the navigation path:
HPC > Workload Management Clusters > <WLM cluster name> > Job queues > Add

is followed. A pop-up menu appears to allow the WLM cluster to be chosen for the queue, and the
properties of the new queue can then be set in the dialog window of the queue (figure 7.28). At least the
queue name must be set for the queue.

7.8 Examples Of Workload Management Assignment 425

Figure 7.28: Adding a new queue via Base View

The configuration for the queue properties is saved, and then the job queue scheduler configuration
is saved.

Next, a new category can be added via
Grouping > Categories > Add > Category > Settings

Parameters settings in the new category can be set—at least the category name should be set—to suit
the new machines (figure 7.29). The name shornodes can therefore be set here.

426 Workload Management

Figure 7.29: Adding a new category via Base View

Another option within the category is to set the queue. The queue, shorq, is therefore set here for
this new category.

Setting a queue for the category means configuring the options of the queue scheduler role, for
example the Slurm client role, for the category. Continuing from within the Node categories options
window of figure 7.29, the relative navigation path to set a queue is:
JUMP TO > Roles > Slurmclient role > Edit > Queues

The appropriate queue can be selected from the queue scheduler menu option (figure 7.30):

Figure 7.30: Setting a queue for a new category via Base View

In this case, the shorq created earlier on in figure 7.28 is presented for selection. After selection, the

7.8 Examples Of Workload Management Assignment 427

configuration settings can then be saved by clicking on the Save button.
Nodes that are to use the queue should be members of the shornodes category. The final step is then

to allocate such nodes to the category. This can be done, for example for a node001, by going into the
settings of the node, via Devices > Nodes > node001 > Edit > Settings > Category and setting the
category to shornodes.

A New Category And A New Queue With cmsh

The preceding example can also be configured in cmsh as follows:
The new queue can be added from within jobqueue mode, for the workload manager. For example,

if Slurm is the WLM cluster that is enabled:

[basecm11]% wlm; use slurm; jobqueue; add shorq

[basecm11->wlm[slurm]->jobqueue*[shorq*]]% commit

The new category, shornodes, can be created by cloning an old category, such as default:

[basecm11->wlm[slurm]->jobqueue[shorq]]% category

[basecm11->category]% clone default shornodes

[basecm11->category*[shornodes*]]% commit

Then, going into the roles submode, appropriate workload manager roles can be assigned, and ap-
propriate queues can be appended and committed for that category:

[basecm11->category[shornodes]]% roles

[basecm11->category[shornodes]->roles]% assign slurmclient; commit

[basecm11->category[shornodes]->roles[slurmclient]]% append queues shorq

[basecm11->category[shornodes*]->roles*]% commit

The nodes belonging to the shornodes category can then be placed by going into device mode to
select the nodes to be placed in that category. For example:

[basecm11->category[shornodes]->roles]% device use node002

[basecm11->device[node002]]% set category shornodes

[basecm11->device*[node002*]]% commit

7.8.2 Setting Up A Prejob Or Postjob Check
How It Works
Measurables such as health checks (section 10.2.4) by default run as scheduled tasks at timed intervals
(page 554). They can independently be configured to run as prejob or postjob checks.

If a health check is configured as a prejob or postjob check, then its response means the same as that
of a health check, that is:

• If the response to a prejob or postjob health check is PASS, then it shows that the node is displaying
healthy behavior for that particular health check.

• If the response to a prejob or postjob health check is FAIL, then it implies that the node is unhealthy
at the time of the check, at least for that particular health check.

Sometimes the strain of running a job can itself cause a health issue on the node. If that is the
case, then sometimes the issue can be spotted by an immediate check of the node health after a job has
completed—which is what the postjob health check does. A postjob health check is otherwise the same
as a regular health check.

• If a postjob health check response is FAIL, then the node is unhealthy, even though the job com-
pleted. What effect the unhealthy node had on the job may need consideration by the cluster
administrator.

428 Workload Management

• If a prejob health check response is FAIL, then the node is also unhealthy, but the job is prevented
by the WLM from running on that node.

A node that has failed a prejob health check is not allowed to run a job. This is because an unhealthy
node means that a job submitted to the node may fail, may not be able to start, or may even vanish
outright. The way in which a job can vanish in some cases, without any information beyond the job
submission “event horizon” leads to this behavior sometimes being called the Black Hole Node Syndrome.

Draining On A Prejob Or Postjob Health Check Failure: It can be troublesome for a system admin-
istrator to pinpoint the reason for such job failures, since a node may only fail under certain conditions
that are hard to reproduce later on. It is therefore a good policy to disallow passing a job to a node which
has just been flagged as unhealthy by a health check. Thus, a sensible action (section 10.2.6) taken by
a prejob or postbjob health check on receiving a FAIL response would be to put the node in a Drained

state (section 7.7.3). The drain state means that BCM arranges a rescheduling of the job so that the job
runs only on nodes that are believed to be healthy.

A node that has been put in a Drained state with a health check is not automatically undrained. The
administrator must clear such a state manually.

The failedprejob health check (page 969) is enabled by default, and logs any prejob health check
passes and failures. By default there are no prejob health checks configured, so by default this health
check should always pass.

Configuration Using cmsh

Prejob and postjob health checks can be enabled for a WLM instance:

[basecm11->wlm[slurm]]% show | grep -i job

Enable pre job no

Enable post job no

[basecm11->wlm[slurm]]% set enableprejob yes; commit

Each health check can then be enabled individually within the monitoring setup mode.

Example

For example, for the ib health check:

[basecm11->monitoring->setup]% get ib prejob

no

[basecm11->monitoring->setup]% set ib prejob <TAB><TAB>
yes no

[basecm11->monitoring->setup]% set ib prejob yes

[basecm11->monitoring->setup*]% commit

================================= ib ==

Field Message

------------------------ --

when warning: Prejob is selected, but no WLM has prejob

To allow the healtcheck to run for the prejob with the workload manager, prejob must also be enabled
appropriately for the associated workload manager:

Example

[basecm11->wlm[slurm]]% get enableprejob

no

[basecm11->wlm[slurm]]% set enableprejob yes

[basecm11->wlm*[slurm*]]% commit

7.9 Power Saving With cm-scale 429

Configuration Using Base View
A similar configuration for prejob and postjob checks can be carried out with Base View.

For example, to configure the monitoring of nodes with a prejob check in Base View, the the Pre job

value can be set for a data producer with the navigation path:
Monitoring > Data Producers > Monitoring data producers > Edit > Pre job

Prejob should also be enabled appropriately for the associated workload manager with the naviga-
tion path:

HPC > Workload Management Clusters > Settings > Enable prejob

Configuration Of Prejob Health Checks With cm-wlm-setup

To set a prejob health check up via cm-wlm-setup, cm-wlm-setup is run in step-by-step mode. During
one of the steps the administrator is prompted to select, with a tick on a checkbox, which of the available
health checks are to run as prejob health checks in BCM (figure 7.31):

Figure 7.31: Prejob healthcheck selection in the cm-wlm-setup screen

If a selected health check was already set as a prejob—-that is, if the prejob parameter within the
monitoring setup mode for that particular health check is already set to yes—then the checkbox is
already ticked.

Custom Prejob Configuration
For more unusual prejob or postjob checking requirements, further details on how prologs and epilogs
are configured are given in section 7.3.4.

7.9 Power Saving With cm-scale

The cm-scale service can be used by an administrator to reduce the energy and storage costs of compute
nodes by changing their power state, or their existence state, according to workload demands. That is,
cm-scale automatically scales a cluster up or down, on-demand, by powering up physical nodes, cloud

430 Workload Management

nodes, or virtual nodes. The scaling is carried out according to settings in the ScaleServer role which
set the nodes that are to use the cm-scale service.

The cm-scale service is covered extensively in Chapter 8.

7.10 Cgroups
Linux system processes and all their future children can be gathered into sets called process aggrega-
tions. These sets can be made into hierarchical groups with specialized behavior using the Control
Groups (cgroups) mechanism. The behavior is controlled by different subsystems that are attached to
the cgroup. A subsystem may, for example, allow particular CPU cores to be allocated, or it may restrict
memory, or it may reduce swap usage by processes that belong to the group, and so on.

Details about Linux cgroups and their subsystems can be found at https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.

As far as workload management is concerned, it makes sense to distinguish between workload man-
ager cgroup settings and system-wide cgroup parameters. The workload manager cgroup settings al-
low the administrator to configure a workload manager to use cgroups in a particular way, whereas the
system-wide cgroup settings allow the administrator to manage cgroups whether a workload manager
is used or not.

7.10.1 Cgroups Settings For Workload Managers
If the workload manager allows cgroups usage, then BCM provides capabilities to manage the cgroup
parameters within the workload manager.

Slurm Cgroups
Slurm supports 3 cgroups-related plugins. These are all enabled by default, and are:

1. proctrack/cgroup: enables process tracking and suspend/resume capability using cgroups. This
plugin is more reliable for tracking and control than the former proctrack/linux.

2. task/cgroup: provides the ability to

• confine jobs and steps to their allocated cpuset

• bind tasks to sockets, cores and threads

• confine jobs and steps to specific memory resources and gres devices

3. jobacct_gather/cgroup: collects accounting statistics for jobs, steps and tasks using the cpuacct,
memory, and blkio cgroups subsystems.

Slurm uses configuration files to store the parameters and devices used for cgroup support.
The file /cm/shared/apps/slurm/etc/<cluster name>/cgroup.conf defines parameters used by Slurm’s

Linux cgroup-related plugins. The file contains a section that is autogenerated by CMDaemon, with
cgroups-related parameters defined in the SlurmServer role.

For Slurm, the administrator can set cgroups parameters using cmsh by going into the cgroups sub-
mode of the WLM instance.

Parameters that can be managed include:

Parameter Description Configuration Parameter

In cgroup.conf

...continues

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

7.10 Cgroups 431

...continued

Parameter Description Configuration Parameter

In cgroup.conf

Auto Mount∗ Force Slurm to mount cgroup subsystems
if they are not mounted yet

CgroupAutomount

Mount Point Where cgroup root is mounted CgroupMountpoint

Task Affinity∗ Set a default task affinity to bind each step
task to a subset of the allocated cores using
sched_setaffinity

TaskAffinity

Release Agent Dir Directory containing Slurm cgroup re-
lease_agent files

CgroupReleaseAgentDir

Constrain Cores∗ Constrain allowed cores to the subset of
allocated resources

ConstrainCores

Constrain RAM

Space∗
Constrain the job’s RAM usage ConstrainRAMSpace

Constrain Swap

Space∗
Constrain the job’s swap space usage ConstrainSwapSpace

Constrain Devices∗ Constrain the job’s allowed devices (also
constrain GPUs) based on GRES allocated
resources

ConstrainDevices

Allowed RAM Space Percentage memory (default is 100%) out
of the allocated RAM allowed for the job
cgroup RAM. If this percentage is ex-
ceeded, then the job steps will be killed
and a warning message will be written to
standard error.

AllowedRAMSpace

...continues

432 Workload Management

...continued

Parameter Description Configuration Parameter

In cgroup.conf

Allowed Swap Space Percent allocated memory allowed for the
job cgroup swap space

AllowedSwapSpace

Max RAM Percent Maximum percent of total RAM for a job MaxRAMPercent

Max Swap Percent Maximum percent of total RAM for the
amount of RAM+Swap that may be used
for a job

MaxSwapPercent

Min RAM Space Minimum MB for the memory limits de-
fined by Allowed RAM Space and Allowed

Swap Space

MinRAMSpace

* Boolean (takes yes or no as a value)

The options are always written in the cgroup.conf file. More details on these options can be found
in the man page man cgroup.conf.5.

PBS Cgroups
PBS supports cgroups through a special Python hook that is installed by cm-wlm-setup by default. The
hook name is pbs_cgroups.

PBS cgroup options can be set to manage cgroups in cmsh or Base View. For example, in cmsh the
options can be shown with:

Example

[basecm11->wlm[openpbs]->cgroups]% show

Parameter Value

-------------------------------- --

Mount Point /sys/fs/cgroup

Revision

Type PbsProCgroupsSettings

...

Memsw reserve amount 64MiB

The following table shows the more important cgroup options that can be set:

Parameter Description Default Value

Mount Point Where cgroup root is mounted /sys/fs/cgroup

Revision Entity revision

...continues

cgroup.conf

7.10 Cgroups 433

...continued

Parameter Description Default Value

Type Type of entity PbsProCgroupsSettings

Job cgroup template Template for job cgroup path
($ESCAPE_JOBID will be replaced by
systemd-escape of job id)

pbspro.slice/

pbspro-$ESCAPE_JOBID.slice

Cgroup prefix Cgroup prefix used by PBS when the
cgroup is created

pbspro

Auto Mount∗ If true then workload manager tries to
mount a subsystem if it is not mounted yet

no

Enabled∗ When set the cgroups hook is enabled (in
the hook config: enabled)

yes

Nvidia SMI The location of the nvidia-smi command
(in the hook config: nvidia-smi)

/usr/bin/nvidia-smi

Kill timeout Maximum number of seconds the hook
spends attempting to kill job processes be-
fore destroying cgroups (in the hook config:
kill_timeout)

10s

Server timeout Maximum number of seconds the hook
spends attempting to fetch node info
from the server (in the hook config:
server_timeout)

15s

Use hyperthreads∗ All CPU threads are made available to jobs
(in the hook config: use_hyperthreads)

no

Ncpus are cores∗ Ncpus of a vnode is the number of
cores, and the hook assigns all threads of
each core to a job (in the hook config:
ncpus_are_cores)

no

Cpuacct enabled∗ Enable cpuacct cgroup controller for jobs yes

Cpuset enabled∗ Enable cpuset cgroup controller for jobs yes

Devices enabled∗ Enable devices cgroup controller for jobs yes

Devices allow Parameter specifies how access to devices
will be controlled

b *:* rwm,c *:* rwm

Hugetlb enabled∗ Enable hugetlb cgroup controller for jobs no

...continues

434 Workload Management

...continued

Parameter Description Default Value

Hugetlb default The amount of huge page memory as-
signed to the cgroup when the job does not
request hpmem

0B

Hugetlb reserve

percent

The percentage of available huge page
memory (hpmem) that is not to be assigned
to jobs

0

Hugetlb reserve

amount

An amount of available huge page memory
(hpmem) that is not to be assigned to job

0B

Memory enabled∗ Enable memory cgroup controller for jobs yes

Memory soft limit∗ If false, then PBS uses hard memory limits
which prevent the processes from ever ex-
ceeding their requested memory usage

yes

Memory default Amount of memory assigned to the job if it
doesn’t request any memory

64MiB

Memory reserve

percent

The percentage of available physical mem-
ory that is not to be assigned to jobs

0

Memory reserve amount A specific amount of available physical
memory that is not to be assigned to jobs

64MiB

Memsw enabled∗ Enable memsw cgroup controller for jobs no

Memsw default Specifies the amount of memory + swap as-
signed to the job if it doesn’t request any
memory

256MiB

Memsw reserve percent Percentage of available swap that is not to
be assigned to jobs

0

Memsw reserve amount An amount of available swap that is not to
be assigned to jobs

64MiB

* Boolean (takes yes or no as a value)

PBS cgroups, hyperthreading, and ncpu: By default the cluster manager enables the pbs_cgroups

hook (page 432). By default, this sets ncpus_are_cores and use_hyperthreading both to false. The
PBS Professional 2021.1 Administrator’s Guide says the following about the disabled hyperthread-
ing configuration (https://2021.help.altair.com/2021.1/PBSProfessional/PBSAdminGuide2021.
1.pdf#M19.9.62244.Heading3.15433.Configuring.Hyperthreading.Support):

In this model PBS makes only the first thread of each core visible to PBS jobs, so if your
workload cannot leverage hyperthreading well, you don’t need to disable hyperthreading
in the BIOS. The other CPU threads are still usable by the operating system, which means
throughput is better than if hyperthreading support is disabled in the BIOS. The value of
resources_available.ncpus reflects the number of cores associated with a vnode.

https://2021.help.altair.com/2021.1/PBSProfessional/PBSAdminGuide2021.1.pdf#M19.9.62244.Heading3.15433.Configuring.Hyperthreading.Support
https://2021.help.altair.com/2021.1/PBSProfessional/PBSAdminGuide2021.1.pdf#M19.9.62244.Heading3.15433.Configuring.Hyperthreading.Support

7.11 Custom Node Parameters 435

The value of ncpus can be made to match the number of hyperthreads (logical processors) in the
node with

Example

[root@basecm11 ~]# cmsh -c 'wlm; use pbspro; cgroups; set usehyperthreads yes; commit'

If usehyperthreads remains at its default value of no, then it means that a restart of the pbs_mom

service causes ncpus to match the number of cores rather than the full number of logical processors that
simultaneous multi-threading provides. Here, the value set for the attribute slots in the pbsproclient

role is ignored. This is a deliberate design choice of PBS Professional, which may seem counter-intuitive
without the background information given in this section.

LSF
LSF allows resource enforcement to be controlled with the Linux cgroup memory and cpuset subsys-
tems. By default, when LSF is set up with cm-wlm-setup, then both subsystems are enabled for LSF jobs.
If job processes on a host use more memory than the defined limit, then the job is immediately killed by
the Linux cgroup memory subsystem. The cgroups-related configuration options are available in cmsh

or Base View, and can be found in the cgroups submode of the LSF cluster settings:

Parameter Description Configuration Parameter

In lsf.conf

Resource Enforce Controls resource enforcement through
the Linux cgroups memory and cpuset
subsystem, on Linux systems with
cgroups support. The resource can be
either memory or cpu, or both cpu and
memory, in either order (default: memory

cpu)

LSB_RESOURCE_ENFORCE

Process

Tracking∗
This parameter, when enabled, has LSF
track processes based on job control func-
tions such as termination, suspension, re-
sume, and other signals, on Linux systems
which support the cgroups freezer subsys-
tem

LSF_PROCESS_TRACKING

Linux Cgroup

Accounting∗
When enabled, processes are tracked
based on CPU and memory accounting
for Linux systems that support cgroup’s
memory and cpuacct subsystems

LSF_LINUX_CGROUP_ACCT

* Boolean (takes yes or no as a value)

7.11 Custom Node Parameters
NVIDIA Base Command Manager 11 allows the administrator to specify the most important node pa-
rameters when a node is configured in a workload manager. But sometimes the workload manager
allows the configuration of other advanced or user-defined settings for the nodes. When an adminis-
trator clones a node in BCM, or creates it from scratch, then those advanced settings may need to be
configured manually per node in the workload manager. Sometimes the nodes are created or cloned
automatically, for example cm-scale (Chapter 8), in which case node parameters customization is not
possible without manual intervention in the workload manager configuration.

Since NVIDIA Base Command Manager version 8.2, the administrator can configure the advanced
node settings in the node customizations mode of cmsh or Base View. The customizations are available

436 Workload Management

in the workload manager client roles, so they can be applied at the node, node category or configuration
overlay levels.

In order to configure a custom node parameter for the workload manager, the administrator adds the
node customization entry and sets its value to True or False. The entry is enabled by default, that is, an
associated parameter Enabled is yes by default. The workload manager can take a minute to implement
the new value.

For example, in order to add a new customization entry, for the resv_enable setting for PBS, the
following cmsh commands can be used:

Example

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use pbspro-client

[basecm11->configurationoverlay[pbspro-client]]% roles

[basecm11->configurationoverlay[pbspro-client]-roles]% use pbsproclient

...->roles[pbsproclient]]% nodecustomizations

...->roles[pbsproclient]->nodecustomizations]% list

Key (key) Value Enabled

------------ ------------ -------

...->roles[pbsproclient]->nodecustomizations]% add resv_enable

...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% set value False

...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% show

Parameter Value

-------------------------------- --

Key recv_enable

Value False

Enabled yes

Notes <0 bytes>

...->roles*[pbsproclient*]->nodecustomizations*[resv_enable*]]% commit

...->roles[pbsproclient]->nodecustomizations[resv_enable]]% quit

On a cluster with two nodes, the change would show up within a minute:

[root@basecm11 ~]# pbsnodes -av | egrep '(^node|resv)' ; sleep 60 ; pbsnodes -av | egrep '(^node|resv)'

node001

resv_enable = True

node002

resv_enable = True

node001

resv_enable = False

node002

resv_enable = False

Different workload managers allow different kinds of node settings to be set. For example, for PBS,
the node settings are built-in, and so the administrator can only change their values but not their names.
So when the administrator configures node customization entries, BCM configures them differently
depending on the workload manager that is used.

Thus if the administrator creates a new customization entry with key name <KEY> and value
<VALUE>, then this is applied to the workload managers as follows:

• Slurm: The node customization entry is appended to the NodeName line of the particular nodes
in slurm.conf in the form <KEY>=<VALUE>. If the entry is removed or disabled in the BCM
configuration, then the entry <KEY>=<VALUE> pair is removed from the NodeName line.

• PBS Professional and OpenPBS: The entry is configured with the qmgr utility, using this command
syntax: set node NODENAME <KEY>=<VALUE>. If the entry is removed or disabled, then it is unset
in the qmgr.

slurm.conf

7.11 Custom Node Parameters 437

• LSF: The entry is set in the lsb.hosts file, in the Hosts section. If the <KEY> of the entry is defined
as one of the section columns, then the parameter value is replaced by BCM to <VALUE>. When
the customization entry is removed or disabled, then its value is replaced by () in the section.

7.11.1 Other PBS Professional Customizations Examples
For PBS, node customization can be carried out within the pbsproclient role, within the
nodecustomizations object, as explained earlier on page 436.

The following are other customizations that can be carried out for PBS with the qmgr command:

Setting a default value for ncpus: To avoid having to add directives when submitting jobs, the default
value for ncpus can be configured with the following qmgr command:

[root@basecm11 ~]# qmgr -c "set server resources_default.ncpus = 4"

Disallowing users from querying the job status of other users: To disallow users from querying a job
status other than their own, the query_other_jobs option can be configured with the following qmgr

command:

[root@basecm11 ~]# qmgr -c "set server query_other_jobs = False"

Creating and configuring a resource: A resource switch can be created and configured with the fol-
lowing qmgr command:

[root@basecm11 ~]# qmgr -c "create resource switch type=string,flag=h"

Setting an ACL for a queue: The queue workq can have its acl_groups attribute set to users with the
following qmgr command:

[root@basecm11 ~]# qmgr -c "set q workq acl_groups=users"

8
NVIDIA Base Command

Manager Auto Scaler
8.1 Introduction
NVIDIA Base Command Manager Auto Scaler can be used by an administrator to reduce the energy
costs, and the costs associated with (cloud) storage, by compute nodes. This can be done by changing
their power state, or their existence state, according to workload demands. The idea behind Auto Scaler
is that it automatically scales a cluster up or down, on-demand, by powering up physical nodes or cloud
nodes.

On the cluster itself, Auto Scaler is implemented by the cm-scale service. The scaling is carried out
according to settings in the ScaleServer role which set the nodes that are to use the cm-scale service.

The cm-scale service runs as a daemon. It collects information about workloads from different
workload engines, and it uses knowledge of the nodes in the cluster. In the case of HPC jobs, the daemon
also gathers knowledge of the queues that the jobs are to be assigned to, and also gathers knowledge on
which of the HPC jobs are requesting exclusive node access.

Based on the workload engine information and queues knowledge, the cm-scale service can clone
and start compute nodes when the workloads are ready to start. The service also stops or terminates
compute nodes, when no queued or running workloads remain on the managed nodes.

8.1.1 Use Cases
The cm-scale service can be considered as a basis for the construction of different kinds of dynamic
data centers. Within such centers, nodes can be automatically re-purposed from one workload engine
setup to another, or they can be powered on and off based on the current workload demand.

A few use cases are discussed next, to show how this basis can be built upon:

1. An organization wants to run PBS Professional and Slurm on the same cluster, but how much one
workload engine is used relative to the other varies over time. For this case, nodes can be placed
in the same pool and shared. When a node finishes an existing job, the cm-scale service can then
re-purpose that node from one node category to another if needed, pretty much immediately. The
re-purposing decision for the node is based on the jobs situation in the PBS Professional and Slurm
queues.

2. An organization would like to use their cluster for both Kubernetes and for Slurm jobs. For this
case, the admin adds Kubernetes- and Slurm-related settings to the ScaleServer role. Using these
settings, the cm-scale service then switches nodes from one configuration overlay to another. For
example, if Slurm jobs are pending and there is a free Kubernetes node, then the node is turned
into a Slurm node pretty much immediately. A configuration example for this case is given in
section 8.4.9.

440 NVIDIA Base Command Manager Auto Scaler

3. An organization has a small cluster with Slurm installed on it, and would like to be able to run
more jobs on it. This can be carried out using BCM’s Cluster Extension cloudbursting capability
(Chapter 3 of the Cloudbursting Manual) to extend the cluster when there are too many jobs for
the local cluster. The extension to the cluster is made to a public cloud provider, such as AWS or
Azure. The cm-scale service then tracks the Slurm queues, and decides whether or not new cloud
nodes should be added from the cloud as extensions to the local network and queues. When the
jobs are finished, then the cloud nodes are terminated automatically. Cluster extension typically
takes several minutes from prepared images, and longer if starting up from scratch, but in any
case this change takes longer than simple re-purposing does.

4. An organization runs PBS Professional only and would like to power down free, local, physical
nodes automatically, and start up such nodes when new jobs come in, if needed. In this case,
cm-scale follows the queues and decides to stop or to start the nodes automatically depending on
workload demand. Nodes typically power up in several minutes, so this change takes longer than
simple re-purposing does.

8.1.2 Resource Constraints
When the service considers whether or not the node is suited for the workload

1. it matches the following requested node resources:

(a) the number of CPUs (in Kubernetes this value can be fractional);

(b) the number and type of GPUs (only the number of NVIDIA GPUs is considered for the Ku-
bernetes engine);

(c) the amount of memory;

2. and, for Kubernetes, the following additional resources:

(a) pods;

(b) ephemeral storage;

(c) extended resources.

Other types of resources are not considered.

An extended resource is considered by cm-scale if the administrator adds it to the
KUBE_EXTENDED_RESOURCES list in config.py. For example:

Example

opts: dict[str, Any] = {

...

KUBE_EXTENDED_RESOURCES": ["fpga"],

}

For HPC workload engines that are unsupported by cm-scale, the resources validation is carried
out by the HPC engine. If a resource that is requested by the workload cannot be provided by the
node, then the HPC engine specifies a pending reason. The pending reason is used by cm-scale

to decide on node operations.

For Kubernetes, all the used resources must explicitly be specified as extended resources.

When the Kubernetes engine is configured, then cm-scale uses the maxPods value from the kubelet
role as a maximum for the available pod slots per node.

The parallelism parameter in the job definition YAML sets the number of pod copies to start.
If a Kubernetes job sets the parallelism parameter, then cm-scale tries to find nodes to satisfy
the number of pod copies for the job. The metric kube_job_spec_parallelism (page 957) tracks the
parallelism value for a job.

8.1 Introduction 441

For Kubernetes, cm-scale for now supports only NVIDIA GPUs. However, other types of GPUs can
be configured in cm-scale as extended resources. If a pod or a job requests a resource with the name
nvidia.com/gpu, then cm-scale gets the number of allocatable resources per node in the cluster with
this particular resource name, and tries to match it with the pod or job request.

In cmsh, the wlmresources command displays the workload manager engine resources that Auto
Scaler considers.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[basecm11->device]% wlmresources

WLM Name Amount Nodes

-------- ----------------- -------------- ----------------

pbspro cpu_total 32 node001..node006

pbspro gpu_free 1 node005

pbspro gpu_free 2 node001..node00+

pbspro mem_free 8,108,032,000 node004,node005

pbspro mem_free 948,224,000 node006

slurm cpu_alloc 2 node001..node006

slurm cpu_total 16 node006

slurm cpu_total 8 node001..node005

slurm gpu_free 1 node005

slurm gpu_free 2 node001..node004

slurm mem_free 1,000,000,000 node006

slurm mem_free 380,000,000 node004

slurm mem_free 6,778,000,000 node005

slurm mem_free 7,257,000,000 node001..node003

uge cpu_total 32 node001..node00+

uge gpu_free 1 node005

uge gpu_free 2 node001..node00+

uge mem_free 0 node001..node003

uge mem_free 1,396,000,000 node004

uge mem_free 7,456,000,000 node005

uge mem_free 990,900,000 node006

uge mem_free_per_cpu 1,396,000,000 node004

uge mem_free_per_cpu 990,900,000 node006

[basecm11->device]%

These resources are taken from the workload managers, and are not necessarily equal to the available
physical resources on the nodes.

Number Of CPU Cores Calculation
The cm-scale service uses the number of CPU cores on a node in order to decide on whether a workload
should run on the node. The calculation of this number is optimized for many node scenarios.

For each node, at the beginning of each cm-scale iteration, the following procedure is followed step-
by-step to determine the CPU cores number. The procedure for the current iteration stops when a step
yields a non-zero value, otherwise the next step is tried.

1. If the engine is an HPC workload manager, then the workload manager client role is considered
and its slots parameter is used. In the very unusual case of several workload manager roles as-
signed to the node at the same time, then the minimum number of slots is calculated.

2. If the node is a cloud node, then its flavor Type parameter in the case of EC2, or VMSize in case of
Azure, is used. These parameters are accessible via cmsh, within device mode for the cloud node,
within the cloudsettings submode. For EC2 nodes the flavor value (Type) can be set to a long

442 NVIDIA Base Command Manager Auto Scaler

statement such as: "62 EC2 Compute Units (16 virtual cores with 3.00 EC2 Compute Units each)",
and for this statement 16 is used as the number of CPU cores. If the flavor is not defined on the
node, then its cloud provider is considered.

3. If a template node (page 456) is defined in the dynamic node provider, and it is a cloud node,
then the template node flavor is used for the CPU core number in the same way as shown in the
preceding step.

4. If the Default Resources parameter (in a resource provider) contains cpus:engine=N, where N is
a number of CPU cores, then N is used. For Kubernetes, the number of CPUs can be fractional.

5. If the node exists at this moment (for example, it is not just cloned in BCM), then the CPU cores
number is requested from CMDaemon, which collects nodes system information. This is used as
one of the last methods because it is slow.

6. If the node is defined in the ScaleServer role via the dynamic resource provider, then the CPU
cores number is retrieved from its template node. This method is as slow as the preceding method.
It is therefore not recommended when many nodes are managed by cm-scale, otherwise the it-
eration can take several minutes. In such a case, setting the slots parameter manually is typically
wiser, so that step 1 is the step that decides the CPU cores number.

If cm-scale does not manage to find a value for the node, then it prints a warning in the log file and
does not make use of the node during the iteration. It is usually wise for the administrator to set the
slots parameter manually for nodes that otherwise persistently stay unused, so that resources are not
wasted.

Requested GPUs
When a user of a workload manager requests a number of GPUs for the job that is to be run, then
Auto Scaler presents nodes that have enough available GPUs for this job. For Slurm, in addition to
the number of GPUs, Auto Scaler recognizes the GPU type if the user specifies it. For other workload
managers only the number of GPUs is counted.

Auto Scaler knows from CMDaemon via the workload manager what GPUs and what types are
available for that workload manager. Auto Scalar tracks the number of GPUs in use, or whether the
administrator has configured fewer GPUs than the node actually has. Auto Scaler is therefore aware of
what GPUs the workload managers can use during their job scheduling.

If debug messages are enabled in ScaleServer role. then the number and type of requested GPUs, as
well as the number and types of available GPUs, can be found in the log file at /var/log/cm-scale.log

Requested Memory
A memory request is considered by Auto Scaler if a user specifies this request when the job is submitted.

For Kubernetes, if a job or a pod defines a limit, then cm-scale uses that limit. If a limit is not set,
then Kubernetes limits are followed.

For Slurm, if no memory requirement is specified by the job, then Slurm often sets its own defaults,
and cm-scale then uses those implicit values.

GE does not provide the amount of memory requested by a user per node, but allocates memory per
CPU core. Thus, Auto Scaler by default operates with a memory amount per CPU core, which can also
be seen in the logs.

Default Resources Specification
Sometimes the available consumable resources must be defined explicitly by the administrator. This is
needed in the case of LSF, because when a node is down, LSF does not provide the available consumable
resources configured for the node. Therefore in this case Auto Scaler does not know if the node actually
has any of the resources known to LSF. The mechanism used for defining explicitly can also be used for
other workload managers, for testing purposes.

/var/log/cm-scale.log

8.1 Introduction 443

For now, only the following types of consumable resources can be specified as default resources to
the Default Resources setting, under the Resource Provider parameter. The setting is a list of strings,
where each string specifies one of the following resources:

1. cpus: the number of available CPU cores or Kubernetes CPUs, if other sources for this information
do not provide a value (the calculation for the number of CPU cores is described on page 441).

The cpus specification has the following format:

cpus:<engine>=<amount>

where <engine> is the name of the workload engine being used and <amount> is the amount of
available CPUs.

Example

cpus:kube=8.5

or

cpus:slurm=16

2. mem_free: the amount of available memory. If no units are specified, then bytes are assumed. It is
also possible to append one of the following units:

Multiple-byte units

Decimal SI-style Binary IEC-style

name unit or abbreviation name unit or abbreviation
kilobytes KB or K kibibytes KiB or Ki

megabytes MB or M mebibytes MiB or Mi

gigabytes GB or G gigibytes GiB or Gi

terabytes TB or T tebibytes TiB or Ti

petabytes PB or P pebibytes PiB or Pi

The format of the memory specification is the following:

mem_free:<engine>=<amount>

where <engine> is the name of the workload engine which "provides" this value, and <amount> is
the amount of memory.

Example

mem_free:lsf1=32GB

3. gpu_free: the number of available GPUs. The format of the GPUs specification is:

gpu_free[:<type>]:<engine>=<number>

where <type> is a string that specifies the GPUs type (available only for Slurm). Only a single
GPU type per node is currently supported. <number> is a number of GPUs, and <engine> is the
name of the workload engine which "provides" this value.

Example

gpu_free:a100:uge3=8

or

gpu_free:lsf=1

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission

444 NVIDIA Base Command Manager Auto Scaler

8.1.3 Setup
In order to set up Auto Scaler the administrator can run the cm-auto-scaler-setup script. The setup
allows one of the three base scenarios to be configured. This is possible in express mode as well as in
step-by-step mode. When the setup is complete, the administrator can further tune the behaviour of
Auto Scaler within the ScaleServer role. The Scaleserver role is always assigned to the head nodes,
via a new configuration overlay named autoscaler.

The setup tool assigns the role. The role, in turn, starts the cm-scale system service (Auto Scaler).
Auto Scaler can be disabled by running cm-auto-scaler-setup again, and selecting the menu item
Disable. When Auto Scaler is disabled, the configuration overlay is removed.

The service writes logs to /var/log/cm-scale.log. Running the cm-scale daemon in the fore-
ground for debugging or demonstration purposes is also possible, using the -f option. Other additional
options that may be used, including at the same time, are:

• -d: debug logs

• -i <N>: number (<N>) of iterations

The logs are then duplicated to STDOUT:

Example

root@basecm11$ module load cm-scale

root@basecm11$ cm-scale -f

[...]

When cm-auto-scaler-setup is started the administrator can select from one of the following setup
operations (figure 8.1):

• express setup,

• step-by-step setup,

• disable.

Figure 8.1: Auto Scaler Setup Operations

• Express setup allows an initial setup to be carried out, without many questions being asked. It
applies default values whereever possible. Some inputs that do not have default values are still
needed. Express setup is a good start for the administrators who have never used Auto Scaler
before.

• Step-by-step setup allows an initial setup to be carried out too, but with some more questions to
help tune the cluster to the needs of the administrator. This is more suitable for administrators
with some experience in Auto Scaler configuration.

/var/log/cm-scale.log

8.1 Introduction 445

After the wizard has carried out the deployment, both the express and the step-by-step configuration
can have their configurations tuned further via cmsh, within the scaleserver role.

Express setup and step-by-step setup both allow one of the 4 pre-defined use case scenarios to be
selected (figure 8.2):

Figure 8.2: Auto Scaler Setup Scenario Selection

These use cases are:

1. Workload Manager (On-premises): Auto Scaler tracks selected workload manager queues, and
starts or stops specified on-premises nodes on demand. A static node provider is automatically
added to the role for this scenario.

2. Workload Manager (Cluster Extension): Auto Scaler dynamically clones nodes from a cloud tem-
plate node, on demand. The nodes can be terminated or stopped when idle. This scenario is used
when cloudbursting is set up, and there is a cloud director. A dynamic node provider is added
automatically to the role for this scenario.

3. Workload Manager (Cluster in Cloud): As in the preceding use case, Auto Scaler dynamically
clones nodes from a cloud template node, on demand. In this scenario, there is no cloud director,
and the entire cluster must reside in the cloud.

4. Kubernetes (On-premises): Auto Scaler tracks Kubernetes jobs or individual pods, and starts or
stops the nodes on demand. A static node provider is automatically added to the role for this
scenario.

Static nodes and dynamic nodes providers are discussed in section 8.2.2.
In step-by-step mode, for the next step, the dialog suggests specifying Auto Scaler base options

(figure 8.3):

Figure 8.3: Auto Scaler Setup Base Options

The Auto Scaler base options are:

• Enable debug messages: Auto Scaler adds debug messages to its log file (default: /var/log/

cm-scale).

/var/log/cm-scale
/var/log/cm-scale

446 NVIDIA Base Command Manager Auto Scaler

• Dry run mode: Disables actual execution of any operation on the cluster. Auto Scaler decisions are
still all written to the log file.

• Run interval: Number of seconds that Auto Scaler waits before making new decisions regarding
cluster auto scaling.

Use Case: Workload Manager (On-premises)
When this scenario is selected, then the next step is to configure the static nodes provider. First, cate-
gories and individual nodes to be managed by Auto Scaler are selected. The nodes of a selected category,
or individual nodes, are added to the node provider (figures 8.4 and 8.5):

Figure 8.4: Auto Scaler Setup Categories Selection For Static Node Provider

Figure 8.5: Auto Scaler Setup Individual Nodes Selection For Static Node Provider

The next step is to pick the workload manager cluster (figure 8.6):

Figure 8.6: Auto Scaler Setup Workload Manager Selection

8.1 Introduction 447

If only one workload manager instance exists, then the screen is skipped. The screen provides a list
of workload manager names that cm-wlm-setup has set up. The cm-auto-scaler-setup wizard only
configures one workload manager cluster, but others can be added later as separate workload engines
with the ScaleServer role.

If running express mode, then the summary screen is displayed. The summary screen includes
options to just show the configuration file, or to save the configuration and deploy the setup (figure 8.7):

Figure 8.7: Auto Scaler Setup Summary

If running step-by-step mode for the workload manager, then there are some additional tune up
screens:

Values can be set for resources in the default node resources screen (figure 8.8):

Figure 8.8: Auto Scaler Setup Default Resources

Resources that can be set are:

1. number of CPU cores per node. Format: <number>

2. number (and optionally, type) of GPUs per node. Format: [<type>]:<number>

3. available memory for jobs per node. Units can be specified as: KB, K, KiB, MB, M, MiB, GB, G, GiB,
TB, T, TiB, PB, P, PiB. Format: <amount>[<unit>]. If no units are specified, then bytes are assumed.

When Auto Scaler considers whether or not the node is suited for the workload, it considers the follow-
ing requested resources:

In cmsh, the wlmresources command, executed in devices mode, displays the resources that Auto
Scaler considers. These resources are taken from the corresponding workload manager, and are not
necessarily equal to the available physical resources on the nodes. Sometimes the available consumable
resources must be defined explicitly by the administrator. This is needed if the node never started, or

448 NVIDIA Base Command Manager Auto Scaler

if the WLM (such as in the case of LSF) does not provide node resource information when the node is
down. It is recommended that these values are always defined. If nodes vary in their resource require-
ments, then, after setup, an administrator can add new resource providers (within the ScaleServer role)
and set the various default resources for the various groups of nodes.

In the next screen the administrator can specify some WLM engine settings (figure 8.9):

Figure 8.9: Auto Scaler Setup Engine Settings

The settings are:

• Engine Priority: The workload engine priority. This value is used when the final (global) work-
load priority is calculated by Auto Scaler. If 0, then this priority is not taken into account.

• Workloads Per Node: The maximum number of WLM jobs that can be started on a node.

Auto Scaler fetches the workload priority values from the settings specified in the next screen (fig-
ure 8.10):

Figure 8.10: Auto Scaler Setup Workload Priorities Source Selection

The settings are:

• Fetched: Priorities are fetched from workload engine. Age and engine priorities are ignored. This
option sets the age factor to 0.0, and engine priority to 0

• Calculated: Priorities are calculated from the workload age and engine priority. Both can be
tuned by the administrator in ScaleServer role. This option sets the age factor to 1.0, and the
external priority factor to 0.0

Workload trackers settings can be set in the next screen (figure 8.11):

8.1 Introduction 449

Figure 8.11: Auto Scaler Setup Tracker Settings

The settings are:

• Queue Length Threshold: Number of pending workloads. If this number is reached, then nodes
are triggered to start up.

• Age Threshold: Workload pending time threshold, in seconds. If a workload reaches this age
while pending, then nodes are triggerd to start up for that workload.

• Workloads Per Node: The maximum number of WLM jobs that can be started on a node for that
tracker. A value of 0 means no limit is set.

The settings are applied to all configuring queue trackers. The values can be tuned further afterwards
in the ScaleServer role.

Use Case: Workload Manager (Cluster Extension)
In the case of workload manager cluster extension scenario, a dynamic node provider with a template
node is configured. In this scenario the administrator should expect cloud nodes to be triggered, which
run in a previously configured and deployed cluster extension.

Cluster extension configuration and deployment in BCM is described in Chapter 3 of the Cloudburst-
ing Manual, and can be carried out, for example, for a particular cloud provider. For command line
deployment, the cm-cluster-extension setup script can be run.

Cloud nodes are thus cluster nodes that extend into a cloud provider, and which are cloned and
terminated depending on workload demand.

To configure a cluster extension with Auto Scaler, the administrator is asked to pick a cloud provider
(figure 8.12):

Figure 8.12: Auto Scaler Setup Cloud Provider

With the express setup, the next screen asks for workload manager selection (figure 8.6).
With the step-by-step setup, however, some additional screens are presented before getting to the

workload manager selection screen. These extra screens are described next.

450 NVIDIA Base Command Manager Auto Scaler

The Auto Scaler template node selection screen (figure 8.13) prompts for the selection of a template
node that is to be used for cloud node cloning.

Figure 8.13: Auto Scaler Setup Template Node

The selected template node is then set in the dynamic node provider.
The Auto Scaler incrementing network interface screen (figure 8.14) prompts the administrator to

select the network interface on the template node that is automatically incremented when the node is
cloned.

Figure 8.14: Auto Scaler Setup Incremented Network Interface Selection

The Auto Scaler node range specification screen (figure 8.15) prompts the administrator to specify a
node range. Range format can be used. Nodes are automatically created by Auto Scaler on demand in
the cloud according to the range specified.

Figure 8.15: Auto Scaler Setup Node Range

8.1 Introduction 451

The remaining screens in this use case have been covered in the earlier section (Use Case: Workload
Manager (On-premises), page 446) , and are:

• default node resources (figure 8.8),

• engine settings (figure 8.9),

• workload priorities (figure 8.10),

• tracker settings (figure 8.11).

Use Case: Workload Manager (Cluster in Cloud)
If a workload manager (Cluster in Cloud) option is chosen from figure 8.2, then the screens that are
displayed next follow the same steps as in the preceding case of a workload manager (Cluster Extension)
(starting at page 449).

Use Case: Kubernetes (On-premises)
If a Kubernetes (On-premises) scenario is chosen from figure 8.2, and if Kubernetes has been set up
(Chapter 4 of the Containerization Manual) then the screens that are displayed next are related to Kuber-
netes and Auto Scaler integration. Auto Scaler tracks Kubernetes jobs or individual pods, and can start
or stop the on-premises nodes on demand.

The first screen displayed after the scenario is selected, is a screen that asks for node categories and
individual nodes that are to be configured in the static resource provider. Such nodes are the only ones
to be managed by Auto Scaler. Category and node selection screens are then displayed as in the earlier
sections (figures 8.4 and 8.5).

The administrator is then prompted to select a Kubernetes cluster (figure 8.16).

Figure 8.16: Auto Scaler Setup Kubernetes Cluster Selection

If there is only one Kubernetes cluster, then this screen is skipped, and the Kubernetes configuration
is used for the integration with Auto Scaler.

The next screen prompts for the Kubernetes engine settings (figure 8.17):

• Engine Priority: A workload engine priority. This value is used when the final (global) work-
load priority is calculated by Auto Scaler. If 0, then this priority is not taken into account.

• Workloads Per Node: The maximum number of Kubernetes jobs, or individual Kubernetes pods
without a controller, that can be started on a node.

• CPU Busy Threshold: The CPU load % that defines if node is too busy for new pods.

• Memory Busy Threshold: The Memory load % that defines if node is too busy for new pods.

452 NVIDIA Base Command Manager Auto Scaler

Figure 8.17: Auto Scaler Setup Kubernetes Engine Settings

The administrator is then prompted to pick the Kubernetes namespace that will be tracked by Auto
Scaler (figure 8.18):

Figure 8.18: Auto Scaler Setup Kubernetes Namespace Selection

In step-by-step mode, the namespace tracker settings are then displayed (figure 8.18):

Figure 8.19: Auto Scaler Setup Kubernetes Namespace Tracker Settings

The settings are:

• Queue Length Threshold: If this number of pending workloads is exceeded, then that triggers
nodes starting up.

• Age Threshold: Workload pending time threshold, in seconds. If the age of the workload is
greater than this, then nodes are triggered to start for this workload.

8.2 Configuration 453

• Workloads Per Node: The maximum number of Kubernetes jobs, or individual Kubernetes pods
without a controller, that can be started on a node for that namespace tracker. A value of 0 means
no limit is set.

The settings are applied to all configuring namespace trackers. The values can be tuned further
afterwards within the ScaleServer role.

The summary screen is displayed next (figure 8.7). Selecting Save config & deploy saves the con-
figuration and starts the setup procedure.

8.1.4 Workload Roles Assignment Limitations Per Node With cm-scale

The cm-scale service allows multiple workload managers to be considered on the same cluster, and
besides supporting HPC workload managers, also supports Kubernetes as a type of workload engine.

However, more than one engine role should not be assigned to a node at one time. Thus, for example,
assigning a Slurm role and a PBS role at the same time to a node should not be done. Nor, for example,
should there be a Kubernetes role and a workload management role assigned at the same time to a node.

8.2 Configuration
8.2.1 The ScaleServer Role
To configure cm-scale, the cluster administrator configures the ScaleServer role. The role is typically
assigned to head nodes:

Example

[basecm11]% device use master

[basecm11->device[basecm11]]% roles

[basecm11->device[basecm11]->roles]% assign scaleserver

The role is configured by setting values to its settings. There are some advanced settings for less common
options:

[basecm11->device*[basecm11*]->roles*[scaleserver*]]% show

Parameter Value

-------------------------------- --

Name scaleserver

Revision

Type ScaleServerRole

Add services yes

Engines <0 in submode>

Resource Providers <0 in submode>

Dry Run no

Debug no

Run Interval 120

Advanced Settings <submode>

[basecm11->device*[basecm11*]->roles*[scaleserver*]]% advancedsettings

[basecm11->device*[basecm11*]->roles*[scaleserver*]->advancedsettings*]% show

Parameter Value

-------------------------------- --

Debug2 no

Max Threads 16

Power Operation Timeout 30

Connection Retry Interval 5

Log File /var/log/cm-scale.log

Pin Queues no

Mix Locations yes

Failed Node Is Healthy no

454 NVIDIA Base Command Manager Auto Scaler

Azure Disk Image Name images

Azure Disk Container Name vhds

Azure Disk Account Prefix

Node Selection Alphabetically

Node Selection Uptime Period 2w

The advanced settings are:

• Debug2: Enable printing very low level debug messages in the log file. This setting must be used
with caution because it leads to a rapid increase in the log file size.

• Max Threads: Maximum number of threads for sequential RPCs to CMDaemon.

• Power Operation Timeout: Power operation RPC timeout, in seconds.

• Connection Retry Interval: Connection to CMDaemon retry interval, in seconds.

• Log File: Path to the log file (Default /var/log/cm-scale.log).

• Pin Queues: Pin workloads to their queue nodes.

• Mix Locations: Allow workload to be be offered to different locations (cloud and local).

• Failed Node Is Healthy: Do not start a new node instead of a failed one.

• Azure Disk Image Name: Image name for Azure disks.

• Azure Disk Container Name: Container name for Azure disks.

• Azure Disk Account Prefix: Prefix for randomly-generated Azure disk account names.

• Node Selection: Type of node selection used by Auto Scaler. The values this can take are:

– Alphabetically: This means that Auto Scaler picks next node to start according the node
name.

– Randomly: This means that the nodes are picked randomly, which helps make the node usage
more even.

– Uptime: This means that the nodes that have been used the least amount of time are picked
first.

• Node Selection Uptime Period: If Node Selection is set to uptime, then the Node Selection

Uptime Period is the time period from now into the past, over which Auto Scaler calculates the
total uptime for nodes. So, with the default setting of 2w this means that the uptime of nodes is
calculated over the last 2 weeks.

An overview of the parameters and submodes is given next. An example showing how they can be
configured is given afterwards, in section 8.3.

ScaleServer Role Global Parameters
The ScaleServer role has the following global parameters for controlling the cm-scale service itself:

• Debug: Print debug messages to the log.

• Dry Run: If set, then the service runs in dry run mode. In this mode it may claim that actions have
been carried out on the nodes that use the cm-scale service, however, no action is actually carried
out on nodes. This mode is useful for demonstration or debug purposes

• Run Interval: interval, in seconds, between cm-scale decision-making

/var/log/cm-scale.log

8.2 Configuration 455

ScaleServer Role Submodes
Within the ScaleServer role are the following three submodes:

• advancedsettings: allows some advanced properties to be set for cm-scale, using the parameters
displayed on page 453.

• resourceproviders: defines the nodes used by cm-scale. More explicitly, this submode is used
to define resource provider objects. The resource providers can be added as static or dynamic

types, and can then have nodes and settings defined within them. The nodes allocated to these
resource provider objects are what provide resources to cm-scale when that resource provider is
requested.

• engines: define the engines used by cm-scale. This can be an instance of the type hpc, generic,
or kubernetes (page 461).

– trackers (within engines submode): define the trackers used by cm-scale (page 462)

The parameters are enforced only when the next decision-making iteration takes place.

8.2.2 Resource Providers
The cm-scale service allows nodes to change state according to the workload demand. These man-
aged nodes are defined by the administrator within the resourceproviders submode of ScaleServer.
NVIDIA Base Command Manager 11 supports two types of resource providers: static and dynamic

node providers.

Static Node Provider
When managed nodes are well-known and will not be extended or shrunk dynamically, then a static

node provider can be used. Specifying settings for the static node provider allows cm-scale to power
on, power off, or re-purpose nodes, based on nodegroups or a list of nodes nodes specified with a node
list syntax (page 67).

The static node provider supports the following properties:

• Enabled: The static node provider is currently enabled.

• Nodes: A list of nodes managed by cm-scale. These can be regular local compute nodes (nodes)
or cluster extension cloud compute nodes (cnodes). For the purposes of this section on cm-scale,
these compute nodes can conveniently be called nodes and cnodes. Since compute nodes are
typically the most common cluster nodes, significant resources can typically be saved by having
the cm-scale service decide on whether to bring them up or down according to demand.

– cnodes can be cloned and terminated as needed. Cloning and terminating saves on cloud
storage costs associated with keeping virtual machine images.

– regular local compute nodes can be started and stopped as needed. This reduces power
consumption.

• Nodegroups: List of node groups (section 2.1.4) with nodes to be managed by cm-scale. Node
groups are classed into types. The class of node group types is independent of the class of node types,
and should not be confused with it.

Node types are shown in the first column of the output of the default list command in device

mode (page 48). The node types that can be managed by cm-scale are physicalnode and cloudnode.

• Priority: The provider priority. Nodes in the pool of a provider with a higher priority are used
first by workloads. By default a resource provider has a priority value 0. These priority values
should not be confused with the fairsharing priorities of page 460.

456 NVIDIA Base Command Manager Auto Scaler

Dynamic Node Provider
When managed nodes can be cloned or removed from the configuration, then a dynamic node provider
should be used. A compute node that is managed by cm-scale as a dynamic node provider is configured
as a template node within the dynamic submode of the ScaleServer role.

The dynamic node provider supports the following properties:

• Template Node: A node that will be used as a template for cloning other nodes in the pool. The
following restrictions apply to the template node:

– A workload manager client role must be assigned with a positive number of slots.

– New node names should not conflict with the node names of nodes in a nodegroup defined
for the queue.

– A specific template node is restricted to a specific queue.

A template node only has to exist as an object in BCM, with an associated node image. A template
node does not need to be up and running physically in order for it to be used to create clones.
Sometimes, however, an administrator may want it to run too, like the other nodes that are based
upon it, in which case the Start Template Node and Stop Template Node values apply.

– Start Template Node: The template node specified in the Template Node parameter is also
started automatically on demand.

– Stop Template Node: The template node specified in the Template Node parameter is also
stopped automatically on demand.

An alternative to a template node is to use a snapshot (Chapter 3.4 of the Cloudbursting Manual),
for greater cloud node startup speed.

• Never Terminate: Number of cloud nodes that are never terminated even if no jobs need them.
If there are this number or fewer cloud nodes, then cm-scale no longer terminates them. Cloud
nodes that cannot be terminated can, however, still be powered off, allowing them to remain con-
figured in BCM. As an aside, local nodes that are under cm-scale control are powered off auto-
matically when no jobs need them, regardless of the Never Terminate value.

• Never Terminate Nodes: A list of nodes specified with a node list syntax (page 67). These cloud
nodes are never terminated, even if no jobs need them. Cloud nodes that cannot be terminated
can, however, still be powered off. The nodes must already exist in the BCM configuration when
Never Terminate Nodes is configured.

• Enabled: Node provider is currently enabled.

• Priority: Node provider priority.

• Node Range: Range of nodes that can be created and managed by cm-scale.

• Network Interface: Which node network interface is changed on cloning (incremented).

• Remove Nodes: Should the new node be removed from BCM when the node terminates? If the
node is not going to be terminated, but just stopped, then it is never removed.

• Leave Failed Nodes: If nodes are discovered to be in a state of INSTALLER_FAILED or
INSTALLER_UNREACHABLE (section 5.5.4) then this setting decides if they can be left alone, so that
the administrator can decide what do with them later on.

• Default Resources: List of default resources, in format [name=value].

– cpu: value is the number of CPUs

– mem: value is in bytes

These must be set when no real node instance is associated with a node defined in BCM.

8.2 Configuration 457

Extra Nodes Settings For Node Providers
Both the dynamic and static node providers support extra node settings. If configured, then cm-scale

can start the extra nodes before the first workload is started, and can stop them after the last job from
the managed queue is finished.

The most common use case scenario for extra nodes in the case of cloud nodes is a cloud direc-
tor node. The cloud director node provisions cloud compute nodes and performs other management
operations in a cloud.

In the case of non-cloud non-head nodes, extra nodes can be, for example, a license server, a provi-
sioning node, or an additional storage node.

The configuration settings include:

• Extra Nodes: A list of extra nodes.

• Extra Node Idle Time: The maximum time, in seconds, that extra nodes can remain unused. The
cm-scale service checks for the existence of queued and active workloads using the extra node,
when the time elapsed since the last check reaches Extra Node Idle Time. If there are workloads
using the extra node, then the time elapsed is reset to zero and a time stamp is written into the
file cm-scale.state under the directory set by the Spool role parameter. The time stamp is used
to decide when the next check is to take place. Setting Extra Node Idle Time=0 means the extra
node is stopped whenever it is found to be idle, and started again whenever workloads require it,
which may result in a lot of stops and starts.

• Extra Node Start: Extra node is started by cm-scale before the first compute node is started.

• Extra Node Stop: Extra node is stopped by cm-scale after the last compute node stops.

Additional Settings For Node Providers
All of the node providers include the following settings that allows the Auto Scaler behavior to be tuned:

• Keep Running: Nodes that should not be stopped or terminated even if they are unused (range
format).

• Shutdown Before Power Off: Shutdown nodes instead of just power off, and wait until a set
timeout before doing a hard power off.

• Shutdown Timeout: Shutdown timeout before powering off.

• Allocation Prolog: Script that is executed when a node is allocated to a workload.

• Allocation Epilog: Script that is executed when a node is deallocated.

• Long starting node action: Action that is applied to a long starting node. A long starting node
is a node that takes too long to start. Options:

– none (default)

– power off

– terminate (applied to dynamic node provider only)

• Long starting node timeout: How long Auto Scaler should wait before the action is applied for
a long starting node.

The following table summarizes the default attributes in cmsh for the resource providers, along the
cmsh path cmsh->device[]->roles->scaleserver->resourceproviders[dynamic/static]:

458 NVIDIA Base Command Manager Auto Scaler

Parameter static dynamic

--------------------------- ------------------------- ------------------------

Name static dynamic

Revision

Type static dynamic

Enabled yes yes

Priority 0 0

Whole Time 0 0

Stopping Allowance Period 0 0

Keep Running

Extra Node

Extra Node Idle Time 1h 1h

Extra Node Start yes yes

Extra Node Stop yes yes

Allocation Prolog

Allocation Epilog

Allocation Scripts Timeout 10s 10s

Nodes N/A

Template Node N/A

Node Range N/A

Network Interface N/A tun0

Start Template Node N/A no

Stop Template Node N/A no

Remove Nodes N/A no

Leave Failed Nodes N/A yes

Never Terminate N/A 32

Never Terminate Nodes N/A

Nodegroups N/A

Default Resources cpus=1 cpus=1

Shutdown Before Power Off yes yes

Shutdown Timeout 3m 3m

Long starting node action None None

Long starting node timeout 10m 10m

In the preceding table, the entry N/A means that the parameter is not available for the corresponding
resource provider.

8.2.3 Time Quanta Optimization
Time quanta optimization is an additional feature that cm-scale can use for further cost-saving with cer-
tain cloud providers.

For instance, a cloud provider may charge per whole unit of time, or time quantum, used per cloud
node, even if only a fraction of that unit of time was actually used. The aim of BCM’s time quanta
optimization is to keep a node up as long as possible within the already-paid-for time quantum, but
without incurring further cloud provider charges for a node that is not currently useful. That is, the aim
is to:

• keep a node up if it is running jobs in the cloud

• keep a node up if it is not running jobs in the cloud, if its cloud time has already been paid for,
until that cloud time is about to run out

• take a node down if it is not running jobs in the cloud, if its cloud time is about to run out, in order
to avoid being charged another unit of cloud time

Time quanta optimization is implemented with some guidance from the administrator for its asso-
ciated parameters. The following parameters are common for both static and dynamic node resource
providers:

8.2 Configuration 459

• Whole time. A compute node running time (in minutes) before it is stopped if no workload re-
quires it. For example, the cloud provider may have a time quantum of 60 minutes. By default,
BCM uses a value of Whole Time=0, which is a special value that means Whole Time is ignored.
Ignoring it means that BCM does no time quanta optimization to try to optimize how costs are
minimized, but instead simply takes down nodes when they are no longer running jobs.

• Stopping Allowance Period. A time (in minutes) just before the end of the Whole Time period,
prior to which all power off (or terminate) operations must be started. The parameter associated
with time quanta optimization is the Stopping Allowance Period. This parameter can also be set
by the administrator. The Stopping Allowance Period can be understood by considering the last
call time period. The last call time period is the period between the last call time, and the time that
the next whole-time period starts. If the node is to be stopped before the next whole-time charge
is applied, then the last call time period must be at least more than the maximum time period
that the node takes to stop. The node stopping period in a cluster involves cleanly stopping many
processes, rather than just terminating the node instance, and can therefore take some minutes.
The maximum period in minutes allowed for stopping the node can be set by the administrator in
the parameter Stopping Allowance Period. By default, Stopping Allowance Period=0. Thus,
for nodes that are idling and have no jobs scheduled for them, only if the last call time period is
more than Stopping Allowance Period, does cm-scale stop the node.

The preceding parameters are explained next.
Figure 8.20 illustrates a time line with the parameters used in time quanta optimization.

STOPPING_ALLOWANCE_PERIODsRUN_INTERVAL

WHOLE_TIME periods
(Time quanta)

time

cm-scale runs, RUN_INTERVAL starts

a time quantum ends and next one starts

STOPPING_ALLOWANCE_PERIOD starts

legend for instances on time line:

last call

Figure 8.20: Time Quanta Optimization

The algorithm that cm-scale follows, with and without time quanta optimization, can now be de-
scribed using the two parameters explained so far:

1. cm-scale as part of its normal working, checks every Run Interval seconds to see if it should
start up nodes on demand or shut down idling nodes.

2. If it sees idling nodes, then:

(a) If Whole Time has not been set, or is 0, then there is no time quanta optimization that takes
place. The cm-scale service then just goes ahead as part of its normal working, and shuts
down nodes that have nothing running on them or nothing about to run on them.

460 NVIDIA Base Command Manager Auto Scaler

(b) If a non-zero Whole Time has been set, then a time quanta optimization attempt is made. The
cm-scale service calculates the time period until the next time quantum from public cloud
starts. This time period is the current closing time period. Its value changes each time that
cm-scale is run. If

• the current closing time period is long enough to let the node stop cleanly before the next
time quantum starts, and

• the next closing time period—as calculated by the next cm-scale run but also running
within the current time quantum—is not long enough for the node to stop cleanly before
the next quantum starts

then the current closing time period starts at a time called the last call.
In drinking bars, the last call time by a bartender allows some time for a drinker to place the
final orders. This allows a drinker to finish drinking in a civilized manner. The drinker is
meant to stop drinking before closing time. If the drinker is still drinking beyond that time,
then a vigilant law enforcement officer will fine the bartender.
Similarly, the last call time in a scaling cluster allows some time for a node to place its orders
to stop running. It allows the node to finish running cleanly. The node is meant to stop
running before the next time quantum starts. If the node is still running beyond that time,
then a vigilant cloud provider will charge for the next whole time period.
The last call time is the last time that cm-scale can run during the current whole-time period
and still have the node stop cleanly within that current whole-time period, and before the
next whole-time period starts. Thus, when Whole Time has been set to a non-zero time:

i. If the node is at the last call time, then the node begins with stopping
ii. If the node is not at the last call time, then the node does not begin with stopping

The algorithm goes back again to step 1.

8.2.4 Fairsharing Priority Calculation And Node Management
At intervals of Run Interval, cm-scale collects workloads using trackers configured in the
ScaleServer role, and puts all the workloads in a single internal queue. This queue is then sorted
by priorities. The priorities are calculated for each workload using the following fairsharing formula:

pij = k1 × ai + k2 × bj + k3 × cj (8.1)

where:

pij is the global priority for the i-th workload of the j-th engine. Its value is used to re-order the
queue.

k1 is the age factor. This is the agefactor parameter that can be set via cmsh in the engine submode
of the ScaleServer role. Usually it has the value 1.

ai is the age of the workload. That is, how long has passed since the i-th job submission, in seconds.
This typically dominates the priority calculation, and makes older workloads a higher priority.

k2 is the external priority factor. It is a floating point number in the range [0, 1], and is theExternal
Priority Factor parameter that can be set via cmsh in the engine submode of the ScaleServer role.

bi is the workload priority retrieved from the engine.
k3 is the engine factor. It is a floating point number in the range [0, 1], and is the enginefactor

parameter in the engine submode of the ScaleServer role.
cj is the engine priority. This is the priority parameter in the engine submode of the ScaleServer

role.

When all the workload priorities are calculated and the queue is re-ordered, then cm-scale starts to
find appropriate nodes for workloads. The workloads are selected in order, from the top of the queue

8.2 Configuration 461

where the higher priority workloads are, to the bottom. This way a higher priority engine has a greater
chance of getting nodes for its workloads than a lower priority engine.

The factors k1, k2 and k3 in the equation 8.1 allow the significance of the related priority value in the
final result to be controlled. For example if only the priority fetched from the engine should be taken
into account, then k1 and k3 should be set to 0, and k2 to 1. Or, for example, when both the age and
engine priorities should be treated as equally important, then k1 and k3 can be set to 0.5 and k2 to 0.

8.2.5 Engines
Each workload engine considered by cm-scale must be configured within the engines submode within
the ScaleServer role. NVIDIA Base Command Manager 11 supports the following workload engines:

• Slurm

• PBS (OpenPBS and PBS Professional)

• LSF

Engines can be of three types:

• hpc: for all HPC (High Performance Computing) workload managers

• kubernetes: for Kubernetes

• generic: for a generic type

Common Parameters For The cm-scale Engines
All three engine types have the following parameters and submode in common, although their values
may differ:

• Workloads Per Node: The number of workloads, Kubernetes jobs, or individual Kubernetes pods
without a controller, that can be scheduled to run on the same node at the same time.

– For a Kubernetes engine this parameter restricts the number of jobs or individual pods per
node. It does not restrict the total number of pods that can be run per node by the cm-scale

scheduler. The parameter is taken into consideration by the cm-scale scheduler when it is
searching for new nodes to start up, and does not configure Kubernetes itself.
For example, a Kubernetes job, or Job with a capital ‘J’ in Kubernetes terminology, may consist
of many pods. Then, if Workload Per Node is, for example, 2, then only 2 Jobs are run on the
node.
The number of pods is also taken into account by cm-scale, but this number is taken from the
kubelet role, where the Max Pods option can be set. If the role is not assigned to a node, using
a configuration overlay, cateogry, or node, then cm-scale assumes that there is no possibility
for any pods to run on the node.

• Priority: The engine priority

• Age Factor: Fairsharing coefficient for workload age

• Engine Factor: Fairsharing coefficient for engine priority

• External Priority Factor: Fairsharing coefficient for external priority significance

• Trackers: Enters the workload trackers submode

462 NVIDIA Base Command Manager Auto Scaler

Non-common parameters for the cm-scale engines:
• For the hpc engine:

– WLM Cluster: A workload manager cluster name. The name is set during workload manager
setup as the instance name. In cmsh the WLM cluster names are listed under wlm mode. In
Base View they can be seen along the navigation path HPC > Wlm Clusters.

• For the kubernetes engine, the following parameters can be set:

– Cluster: These are the Kubernetes clusters for which pods are to be tracked. BCM allows
multiple Kubernetes clusters to run on a single compute cluster. Kubernetes must be already
set up before this setting is configured.

– CPU Busy Threshold: The CPU load is a value that can range from 0 to 1. The CPU Busy

Threshold value defines if the node is too busy for new pods. Its default value is: 0.9.

– Memory Busy Threshold: The Memory load is a value that can range from 0 to 1. The Memory
Busy Threshold defines if the node is too busy for new pods. Its default value is: 0.9.

The CPU and Memory thresholds configured in the Kubernetes engine help cm-scale to decide
when more nodes are needed. But cm-scale also retrieves the number of pods that are already running
on the node and compares it with the Max Pods parameter that is configured in the kubelet role assigned
to the node via at the configuration overlay level, category level, or node level. If the number of running
pods is already equal or greater than the value of Max Pods, then (from the cm-scale point of view) the
node cannot fit more pods, which means that a new node is needed.

8.2.6 Trackers
A workload tracker is a way to specify the workload and its node requirements to cm-scale. For HPC,
the tracker may be associated with a specific queue, and cm-scale then tracks the jobs in that queue.

One or more trackers can be named and enabled within the trackers submode, which is located
within the engines submode of the ScaleServer role. A queue (for workload managers) can be assigned
to each tracker.

Example

There are three types of tracker objects supported in NVIDIA Base Command Manager 11:

• queue: Used with an HPC type engine, where each workload (job) is associated with a particular
queue. The attribute Type takes the value ScaleHpcQueueTracker, and the attribute Queue is set to
the queue name for the job.

• namespace: Used with a kubernetes type engine.

• generic: Used with a generic type engine.

The following settings are common for both types of trackers:

• Enabled: Enabled means that workloads from this tracker are considered by cm-scale.

• Allowed Resource Providers: Only the specified resource providers (in the scaleserver role) will
be used for a workload of this tracker (if empty than all allowed).

• Assign Category: A node category name that should be assigned to the managed nodes. When
a node is supposed to be used by a workload, then cm-scale should assign the node category to
that node. If the node is already running, and has no workloads running on it, but its category
differs from the category specified for the jobs of the queue, then the node is drained, stopped and
restarted on the next decision-making iteration of cm-scale, and takes on the assigned category.
Further details on this are given in the section on dynamic nodes re-purposing, page 478.

8.2 Configuration 463

• Primary Overlays: A list of configuration overlays.

If a workload is associated with the tracker for which the overlays are specified by Primary

Overlays, then BCM-managed nodes are appended to those configuration overlays by cm-scale.
This takes place after the node is removed from the previous overlays that it is associated with.

If the node is already running, but has not yet been appended to the overlays specified for the
workloads of the tracker, then the node is restarted when no other workloads run on the node,
before going on to run the workloads with the new overlays.

– When a workload is associated with the tracker that has Primary Overlays set, then the pool
of cm-scale-managed nodes is checked.
The check is to decide on if a node is to be made available for the workload.
If the node is appended to the Primary Overlays already and is not running workloads, then
cm-scale simply hands over a workload from the tracker to run on the node.
If the node is not appended to the Primary Overlays already, and is not running workloads,
then cm-scale prepares and boots the node as follows:

* the node is drained and rebooted if it is up, or

* the node is undrained and merely booted if it is not up

The node is removed from any previous overlays that it was with, before booting up, and it
is appended to the new overlays of Primary Overlays.

• The threshold settings:

– Queue Length Threshold: number of pending workloads that triggers cloudbursting.

– Age Threshold: workload pending time threshold, in seconds, that triggers cloudbursting
for this workload.

The queue length and age thresholds allow the administrator to set when cm-scale starts or creates
cloudbursting nodes. Both thresholds can be used at the same time, or just one of them can be used
and the other can be ignored by setting it to 0.

If the queue length threshold is set, then cm-scale ignores pending workloads that are located
higher (added later) than the threshold in the managed queue.

Example

Assuming there are 5 jobs in the queue, with job IDs 1, 2, 3, 4, and 5, where the 1st one is the first
in the queue. If the queue length threshold is 3, then only jobs 1, 2 and 3 are taken into account,
while jobs 4 and 5 are ignored.

Example

If the age threshold is set to 100, then only workloads older than 100 seconds are taken into ac-
count, while younger jobs are ignored.

The queue type tracker has only one parameter specific to the tracker: Queue. This is set to the
workload queue that is being tracked.

464 NVIDIA Base Command Manager Auto Scaler

Namespace Tracker
The namespace tracker of cm-scale is used to track Kubernetes workloads. It tracks Kubernetes jobs
(via its Job controllers) and tracks individual pods. It does not start new nodes for pending pods owned
by other types of Kubernetes pod controllers, such as ReplicaSet, DaemonSet, and so on. If non-Job
controllers are running, then cm-scale will not stop or terminate those nodes.

The tracker settings in cmsh or Base View include additional parameters that are in common with
other trackers:

1. Controller Namespace: Tracks the Kubernetes namespace name. Only Kubernetes workloads
from this namespace are tracked. To track more than one namespace, one tracker must be created
per namespace.

2. Object: Type of Kubernetes objects to track. BCM supports the following object types:

(a) Job: A Kubernetes Job controller type represents one or several pods that are expected to
eventually terminate. The controller nature makes this type of Kubernetes workload very
suited to dynamic data centers.

(b) Pod: Individual pod, without any controller.

If the specified namespace does not exist in Kubernetes, then the tracked jobs or individual pods in
this namespace are ignored by cm-scale.

Generic Engine And Tracker
The cm-scale service is able to deal with workloads that use various workload types. In order to add
suuport of a new type of workload, the administrator

• adds an engine of type generic

• adds one or more trackers of type generic to the ScaleServer role

• implements Tracker and Workload classes in the Python programming language

When cm-scale starts a new iteration, it re-reads the engines and trackers settings from the
ScaleServer role, and searches for the appropriate modules in its directories. In the case of a custom
tracker, the module is always loaded according to the tracker handler path. When the tracker module
is loaded, cm-scale requests a list of workloads from each of the tracker modules. So, the aim of the
tracker module is to collect and provide the workloads to cm-scale in the correct format.

The path to the tracker module should be specified in the handler parameter of the generic tracker
entity using cmsh or Base View as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles master

[basecm11->device[basecm11]->roles]% use scaleserver

[basecm11->device[basecm11]->roles[scaleserver]]% engines

...->roles[scaleserver]->engines]% add generic myengine

...*]->roles*[scaleserver*]->engines*[myengine*]]% trackers

...*[myengine*]->trackers]% add generic mytracker

...*[mytracker*]]% set handler /cm/local/apps/cm-scale/examples/custom_tracker/tracker.py

...*]->roles*[scaleserver*]->engines*[myengine*]->trackers*[mytracker*]]% commit

...->roles[scaleserver]->engines[myengine]->trackers[mytracker]]%

In the preceding example, the handler file .../examples/tracker.py is an example that is provided
with the cm-scale package. Another example module file provided with the package is .../examples/
workload.py, which implements the ExampleWorkload class. Together, the two examples can be used

.../examples/tracker.py
.../examples/workload.py
.../examples/workload.py

8.2 Configuration 465

to generate any amount of simple workloads during each cm-scale iteration. It is recommended to use
the tracker and workload classes as templates for custom tracker and workload modules created by the
administrator.

The generic engine does not have any specific parameters associated with its type. It only has pa-
rameters common to all of the engine types.

If the generic engine is configured with at least one generic tracker in its role, then cm-scale loads
the handler module and uses two functions that are implemented in the class. The class name can be
chosen arbitrarily, but should contain the string “Tracker”, without the quotes. The two class functions
used are:

1. __init__: initializes the tracker object. This can be omitted if there are no additional data values to
initialize.

2. get_workloads: returns a list of objects belonging to a new class inherited from the Workload class.
This new class should be created by the administrator.

The new workload class must provide the following functions and properties. The class name can
be chosen arbitrarily:

1. __init__: initializes the workload object.

2. to_string: returns a string that identifies the workload. This is printed to the log file.

3. begin_timestamp: property that returns a unix timestamp that should be >0 if the workload is not
allowed to start before that time. If it is 0 then it is ignored by cm-scale.

For example, the following very simple tracker and workload classes can be implemented:

Example

class ExampleTracker(Tracker):

def get_workloads(self):

return [ExampleWorkload(self)]

class ExampleWorkload(Workload):

def __init__(self):

Workload.__init__(self, tracker)

self.set_id("1")

self._update_state()

self._update_age()

self._update_resources()

def to_string(self):

return "workload %s" % self._id

def _update_state():

self._set_pending()

def _update_age(self):

self._age = 0

def _update_resources(self):

node_res = NodeResource("*")

cpus_res = CpusResource(1)

node_res.add_resource(cpu_res)

466 NVIDIA Base Command Manager Auto Scaler

engine_res = EngineResource("myengine")

node_res.add_resource(engine_res)

self.add_resource(node_res)

The classes should be located in different files, as Python module files. It is recommended, but not
required, to keep both the files in the same directory. The ExampleWorkload class initializes the workload
object with a state, age, and required resources. These values are described next.

State: The state can be pending, running or failed, which can be set with these appropriate functions:

• self._set_pending()

• self._set_running()

• self._set_failed()

If the state is running, then the workload is treated as one that occupies the nodes defined in the
resources list. Each NodeResource object in the resources thus represents one occupied node.

If the state is pending, then the workload is treated as one that waits for free nodes. In this case
cm-scale tries to find (start or clone) some more nodes in order to allow the workload engine to start
this workload.

The failed workload state is considered by cm-scale as exceptional. Such a workload is logged
in the log file, but is not considered when cm-scale decides what nodes to start or clone. Any other
workload state is also ignored by cm-scale.

Age: The age defines how many seconds the workload is waiting for its resources since being added
to the engine. Usually the engine can provide such information, so in the example age is set to 0, which
means the workload has been added to the workload engine just now. The age is used in the fairsharing
workload priority calculation (page 460). The value of age is not re-calculated by cm-scale after a
while. This means that the number that the module sets in the class is used during the iteration, and
then forgotten by cm-scale until the workload object is recreated from scratch on the next iteration.

Resources: The Workload class (a base class) includes the resources property with list types. This list
includes resource objects that are used by cm-scale in order to find appropriate nodes for the work-
load. The top level resource type is always NodeResource. There can be one or several node resources
requested by the workload.

If the node names are known, then one NodeResource object is created per compute node.
Otherwise a single NodeResource object is used as many times as the number of requested nodes,

with the name set to *, which is treated by cm-scale as any suitable node. The number of nodes can be
set in the NodeResource object with the set_amount(number) function of the resource.

In the preceding example one (any) node resource is added to the workload request, and the require-
ment for CPU (cores) number is set to 1. The engine resource is used in order to restrict the running of
workloads from different engines to one node. Thus if a node has this resource assigned, then the node
can take on the workload. If no engine resource is assigned to the node, then it can also take on the
workload, but the engine resource of the workload is assigned to the node before other workloads are
considered.

The resource types that can be added to the workload are defined in the Python module core/

resource.py:

• NodeResource: top level resource, contains all other resources.

• CpusResource: defines the number of cpu cores required or already used by the workload.

core/resource.py
core/resource.py

8.2 Configuration 467

• CategoryResource: node category required by the workload.

• OverlayResource: required configuration overlay.

• QueueResource: HPC queue that the workload (job) belongs to. Used only with engines that
support queues.

• EngineResource: engine name that the workload belongs to.

• FeatureResource: required node feature (node property, in other terminology) that should be
supported by the engine.

Custom resource types are not supported for now.
In order to drain a node in the custom engine before the node is stopped, and to undrain it before

the node is started, the administrator can write and configure three scripts:

• Drain script: called before a node is drained by Auto Scaler.

• Undrain script: called before node is undrained by Auto Scaler.

• Drain status script: called when Auto Scaler retrieves information about the current node
drain status.

Either all of the three scripts must be configured, or none of them.
It is useful to drain and undrain the nodes in order to ensure that the engine does not start new jobs

in time period between the instant that Auto Scaler decides to stop the node, and the instant that the
actual power operation is performed.

The scripts are configured in the file:

/cm/local/apps/cm-scale/lib/python3.9/site-packages/cmscale/config.py

with the GENERIC_DRAIN_COMMANDS parameter appended to the opts dictionary:

Example

"GENERIC_DRAIN_COMMANDS": {

"MyEngine":

{"drain": "/cm/local/apps/cm-scale//examples/custom_drain/drain.py",

"undrain": "/cm/local/apps/cm-scale/examples/custom_drain/undrain.py",

"status": "/cm/local/apps/cm-scale/examples/custom_drain/drainstatus.py"}

},

Here, for each generic engine, a new dictionary is created that includes three items that correspond
to, and specify, the script paths. In the preceding example MyEngine is the engine name, and should be
the same as that defined in the ScaleServer role. If more then one generic engine is used then all of
them can be added to GENERIC_DRAIN_COMMANDS.

It should be noted that if GENERIC_DRAIN_COMMANDS is defined in config.py, then CMDaemon does
not drain, or undrain, via cm-scale.

All three scripts accept the same set of parameters, following the form:

<script name> <engine name> <host name> [host name ...]

Example

drain.py MyEngine node001 node002 node003

Each of those three scripts print the following information to standard output:

• stdout: JSON structure that represents a map: hostname -> latest (new) drain status. For example:

python3.9

468 NVIDIA Base Command Manager Auto Scaler

Example

{"node001": 2, "node002": 2, "node003": 2}

Here the numbers are enum values defined in pythoncm in the DrainResult class.

• stderr: debug logs that are appended to cm-scale.log.

Enabling Node Shutdown
By default, cm-scale powers off nodes belonging to a resource pool once there is no more workload
for them. Resource providers can also enable shutdown, to allow the node to terminate gracefully.
Shutdown has two options that set its behavior directly:

• Shutdown Enable: If set to yes, then the shutdown command is run to terminate the system ser-
vices first, and after that a command is run to power off the system. A waiting time of Shutdown
Timeout seconds takes place between the two commands.

• Shutdown Timeout: The number of seconds to wait before powering off a node that is in a shut-
down state.

It may take more than Shutdown Timeout seconds for a node to power off, depending on the Run

Interval setting. For example, if Shutdown Timeout is 60, and Run Interval 50, then effectively the
Shutdown Timeout is 100, because the power off event only happens during an iteration execution of
cm-scale.

Multi-partition Slurm jobs
Slurm allows a user to submit a job that requests multiple queues. Auto Scaler detects such jobs and
tries to start nodes for the job. The queue with the maximum priority is first considered. If no nodes are
found in that partition, then the next requested partition in order of priority, is considered.

The queue priority is taken from Slurm partition PriorityTier parameter, accessible via cmsh or
Base View.

• In cmsh, the queue priorities can be seen from within jobqueue mode. In the following example
there are 3 queues with different priorities:

Example

[root@basecm11 ~]# cmsh

[basecm11]% wlm jobqueue; list

Name (key) Nodes

------------ ------------------------

defq node001..node005

medq node006..node009

topq node010..node012

[basecm11->wlm[slurm]->jobqueue]% get defq prioritytier; get medq prioritytier; get topq prioritytier

1

5

10

[basecm11->wlm[slurm]->jobqueue]% use defq; help set | grep tier

prioritytier Jobs submitted to a partition with a higher priority tier value will be

dispatched before pending jobs in partition with lower priority tier value

• In Base View the navigation path for the queue defq is:
HPC > Workload Management Clusters > slurm > Job Queues > defq > Priority Tier

8.3 Examples Of cm-scale Use 469

If multiple queue trackers are configured, and if queues are requested by the Slurm job that are
tracked by different trackers, then only one tracker sees the job—the tracker for which tracking queue
priority is the highest.

If two queues have the same priority, then the next selection criterion is the order of placement of its
trackers (section 8.2.6) in the trackers list.

For example, if the Auto Scaler (as defined by the scaleserver role) is running on the head node
basecm11, and if the trackers are, for example, mytracker and secondtracker, and if the engine is, for
example, myengine, then the order of placement can be listed in cmsh via the path indicated by:

Example

[basecm11->device[basecm11]->roles[scaleserver]->engines[myengine]->trackers]% list

Name (key) Enabled

---------------- -------

mytracker yes

secondtracker yes

8.3 Examples Of cm-scale Use
8.3.1 Simple Static Node Provider Usage Example
The example session that follows explains how a static node provider (page 455) can be configured and
used with cm-scale. The session considers a default cluster with a head node and 5 regular nodes which
have been previously defined in the BCM configuration. 3 of the regular nodes are powered down at the
start of the run. The power control for the nodes must be functioning properly, or otherwise cm-scale

cannot power nodes on and off.
The head node has the Slurm server role by default, and the regular nodes run with the Slurm client

role by default. So, on a freshly-installed cluster, the roleoverview command should show something
like:

Example

[basecm11->device[basecm11]]% roleoverview | head -2; roleoverview | grep slurm

Role Nodes Categories Configuration Overlays Nodes up

---------------- ------------------------- ---------- --------------------------------- --------

slurmaccounting basecm11 slurm-accounting 1 of 1

slurmclient node001..node005 default slurm-client 2 of 5

slurmserver basecm11 slurm-server 1 of 1

slurmsubmit basecm11,node001..node005 default slurm-submit, wlm-headnode-submit 3 of 6

A test user, fred can be created by the administrator (section 6.2), and an MPI hello executable
based on the hello.c code (from section 3.5.1 of the User Manual) can be built:

Example

[fred@basecm11 ~]$ module add shared openmpi/gcc/64 slurm

[fred@basecm11 ~]$ mpicc hello.c -o hello

A batch file slurmhello.sh (from section 5.3.1 of the User Manual) can be set up. Restricting it to 1
process per node so that it spreads over nodes easier for the purposes of the test can be done with the
settings:

Example

[fred@basecm11 ~]$ cat slurmhello.sh

#!/bin/sh

#SBATCH -o my.stdout

470 NVIDIA Base Command Manager Auto Scaler

#SBATCH --time=30 #time limit to batch job

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=1

module add shared openmpi/gcc/64/ slurm

mpirun /home/fred/hello

The user fred can now flood the default queue, defq, with the batch file:

Example

[fred@basecm11 ~]$ while (true); do sbatch slurmhello.sh; done

After putting enough jobs into the queue (a few thousand should be enough, and keeping it less than
5000 would be sensible) the flooding can be stopped with a ctrl-c.

The activity in the queue can be watched:

Example

[root@basecm11 ~]# watch "squeue | head -3 ; squeue | tail -3"

Every 2.0s: squeue | head -3 ; squeue | tail -3 Thu Sep 15 10:33:17 2016

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

6423 defq slurmhel fred CF 0:00 1 node001

6424 defq slurmhel fred CF 0:00 1 node002

6572 defq slurmhel fred PD 0:00 1 (Priority)

6422 defq slurmhel fred R 0:00 1 node001

6423 defq slurmhel fred R 0:00 1 node002

The preceding indicates that node001 and node002 are being kept busy running the batch jobs, while
the remaining nodes are not in use. The ST column is a status column, and indicates whether the job is
CF (configuring), PD (pending), or R (running).

Abusing squeue in a loop like this is regarded as a bad practice, and doing it should be minimized.
The administrator can check on the job status via the job metrics of cmsh too, using the options to the

filter command, such as --pending or --running:

Example

[root@basecm11 ~]# cmsh -c "wlm use slurm; jobs; watch filter --running -u fred"

Every 2.0s: filter --running -u fred Wed May 7 12:50:05 2017

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ ------------- ---- ----- ----------- ---------- -------- --------------- ---------

406 slurmhello.sh fred defq 16:16:56 16:27:21 N/A node001,node002 0

and eventually, when jobs are no longer running, it should show something like:

[root@basecm11 ~]# cmsh -c "wlm use slurm; jobs; watch filter --running -u fred"

Every 2.0s: filter --running Wed May 7 12:56:53 2017

No jobs found

So far, the cluster is queuing or running jobs without cm-scale being used.
The next steps are to modify the behavior by bringing in cm-scale. The administrator assigns the

ScaleServer role to the head node. Within the role a new static node provider, Slurm engine, and queue
tracker for the defq are set as follows:

8.3 Examples Of cm-scale Use 471

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles master

[basecm11->device[basecm11]->roles]% use scaleserver

[basecm11->device[basecm11]->roles[scaleserver]]% resourceproviders

...->roles[scaleserver]->resourceproviders]% add static pool1

...*]->roles*[scaleserver*]->resourceproviders*[pool1*]]% set nodes node001..node005

...*]->roles*[scaleserver*]->resourceproviders*[pool1*]]% commit

...]->roles[scaleserver]->resourceproviders[pool1]]% ..;..

...]->roles[scaleserver]]% engines

...]->roles[scaleserver]->engines]% add hpc slurm1

...*]->roles*[scaleserver*]->engines*[slurm1*]]% set wlmcluster slurm

...*]->roles*[scaleserver*]->engines*[slurm1*]]% trackers

...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers]% add queue tr1

...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers*[tr1*]]% set queue defq

...*]->roles*[scaleserver*]->engines*[slurm1*]->trackers*[tr1*]]% commit

...->roles[scaleserver]->engines[slurm1]->trackers[tr1]]%

The nodes node001..node005 should already be in the queue defq, as assigned to them by default
when they were assigned the SlurmClient role. With these settings, they can now be powered up or
down on demand by cm-scale service, depending on the number of jobs that are pending. When the
new ScaleServer role is committed in cmsh or Base View, then the cm-scale service is started. If needed,
the administrator can check the log file /var/log/cm-scale to see what the service is doing.

On each iteration cm-scale checks whether the node states should be changed. Thus after a while,
the nodes node003..node005 are started. Once up, they can start to process the jobs in the queue too.

Watching the running jobs should show the newly-started nodes running too:

Example

[root@basecm11 ~]# cmsh -c "wlm use slurm; jobs ; watch filter --running"

Every 2.0s: filter --running Thu Apr 25 16:21:59 2024

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ ------------- ---- ----- ----------- ---------- -------- -------- ----------

6147 slurmhello.sh fred defq 16:16:37 16:20:17 N/A node004 0

6148 slurmhello.sh fred defq 16:16:37 16:20:17 N/A node001 0

6149 slurmhello.sh fred defq 16:16:37 16:20:17 N/A node003 0

Eventually, cm-scale finds that all jobs have been dealt with, and the nodes are then powered down.

High-availability And Using A Configuration Overlay For The ScaleServer Role
For high-availability clusters, where there are two head nodes, the scaleserver should run on the active
head node. One labor-intensive way to set this up is to assign the service to both the head nodes,
and match the scaleserver settings on both head nodes. A simpler way is to define a configuration
overlay for the head nodes for the scaleserver. If the head nodes are basecm11-1 and basecm11-2, then
a configuration overlay called basecm11heads can be created and assigned the service as follows:

Example

[basecm11-1]% configurationoverlay add basecm11heads

[basecm11-1->configurationoverlay*[basecm11heads*]]% append nodes basecm11-1 basecm11-2

[basecm11-1->configurationoverlay*[basecm11heads*]]% roles

[basecm11-1->configurationoverlay*[basecm11heads*]->roles]% assign scaleserver

[basecm11-1->configurationoverlay*[basecm11heads*]->roles*[scaleserver*]]%

/var/log/cm-scale

472 NVIDIA Base Command Manager Auto Scaler

The scaleserver can then be configured within the configuration overlay instead of on a single head as
was done previously in the example of page 470. After carrying out a commit, the scaleserver settings
modifications are then mirrored automatically between the two head nodes.

Outside the scaleserver settings, one extra modification is to set the cm-scale service to run on a
head node if the head node is active. This can be done with:

Example

[basecm11-1->configurationoverlay[basecm11heads]->roles[scaleserver]]% device services basecm11-1

[basecm11-1->device[basecm11-1]->services]% use cm-scale

[basecm11-1->device[basecm11-1]->services[cm-scale]]% set runif active

[basecm11-1->device*[basecm11-1*]->services*[cm-scale*]]% commit

[basecm11-1->device[basecm11-1]->services]% device use basecm11-2

[basecm11-1->device[basecm11-2]->services]% use cm-scale

[basecm11-1->device[basecm11-2]->services[cm-scale]]% set runif active

[basecm11-1->device*[basecm11-2*]->services*[cm-scale*]]% commit

The result is a scaleserver that runs when the head node is active.

8.3.2 Simple Dynamic Node Provider Usage Example
The following example session explains how a dynamic node provider (page 456) can be configured
and used with cm-scale. The session considers a default cluster with a head node and 2 regular nodes
which have been previously defined in the BCM configuration, and also 1 cloud director node and 2
cloud compute nodes. The cloud nodes can be configured using cm-cluster-extension. Only the head
node is running at the start of the session, while the regular nodes and cloud nodes are all powered
down at the start of the run.

At the start, the device status shows something like:

Example

[basecm11->device]% ds

eu-west-1-cnode001 [DOWN] (Unassigned)

eu-west-1-cnode002 [DOWN] (Unassigned)

eu-west-1-cnode003 [DOWN] (Unassigned)

eu-west-1-director [DOWN]

node001 [DOWN]

node002 [DOWN]

basecm11 [UP]

The power control for the regular nodes must be functioning properly, or otherwise cm-scale cannot
power them on and off.

If the head node has the slurmserver role, and the regular nodes have the slurmclient role, then

8.3 Examples Of cm-scale Use 473

the roleoverview command should show something like:

Example

[basecm11->device[basecm11]]% roleoverview

Role Nodes Categories Nodes up

----------------- -------------------------------------- ---------------------------- --------

boot basecm11 1 of 1

cgroupsupervisor eu-west-1-cnode001..eu-west-1-cnode002 aws-cloud-director,default 1 of 6

,eu-west-1-director,node001..node002 ,eu-west-1-cloud-node

,basecm11

clouddirector eu-west-1-director 0 of 1

cloudgateway basecm11 1 of 1

login basecm11 1 of 1

master basecm11 1 of 1

monitoring basecm11 1 of 1

provisioning eu-west-1-director,basecm11 1 of 2

slurmclient eu-west-1-cnode001..eu-west-1-cnode002 default,eu-west-1-cloud-node 0 of 3

,node001..node002

slurmserver basecm11 1 of 1

storage eu-west-1-director,basecm11 aws-cloud-director 1 of 2

A test user, fred can be created by the administrator (section 6.2), and an MPI hello executable
based on the hello.c code (from section 3.5.1 of the User Manual) can be built:

Example

[fred@basecm11 ~]$ module add shared openmpi/gcc/64 slurm

[fred@basecm11 ~]$ mpicc hello.c -o hello

A batch file slurmhello.sh (from section 5.3.1 of the User Manual) can be set up. Restricting it to 1
process per node so that it spreads over nodes easier for the purposes of the test can be done with the
settings:

Example

[fred@basecm11 ~]$ cat slurmhello.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --time=30 #time limit to batch job

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=1

module add shared openmpi/gcc/64 slurm

mpirun /home/fred/hello

A default cluster can queue or run jobs without cm-scale being used. The default behavior is modi-
fied in the next steps, which bring in the cm-scale service:

The administrator assigns the ScaleServer role to the head node.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles master

[basecm11->device[basecm11]->roles]% assign scaleserver

Within the assigned scaleserver role, a new dynamic node provider can be set, and properties for
the dynamic pool of nodes can be set for the cloud compute nodes. Here the properties that are set are
priority (page 455), templatenode (page 456), noderange (page 456), and extranodes (page 457).

474 NVIDIA Base Command Manager Auto Scaler

Example

[basecm11->device*[basecm11*]->roles*[scaleserver*]]% resourceproviders

...->roles[scaleserver]->resourceproviders]% add dynamic pool2

...resourceproviders*[pool2*]]% set priority 2

...resourceproviders*[pool2*]]% set noderange eu-west-1-cnode001..eu-west-1-cnode002

...resourceproviders*[pool2*]]% set templatenode eu-west-1-cnode001

...resourceproviders*[pool2*]]% set extranodes eu-west-1-director

...resourceproviders*[pool2*]]% commit

...resourceproviders[pool2]]%

The regular compute nodes, node001..node002 should be specified as nodes in the static pool.
The administrator may notice the similarity of dynamic and static pool configuration. The BCM front

end has deliberately been set up to present dynamic pool and static pool nodes to the cluster admin-
istrator as two different configuration methods. This is because separating the pool types as dynamic
and static pools is simpler for the cluster administrator to deal with. This way, regular compute nodes
are treated, not as a special case of a dynamic pool, but simply as static pool nodes. The fundamental
reason behind this separate treatment is because physical nodes cannot “materialize” dynamically with
properties in the way the cloud compute nodes–which are virtualized nodes—can, due to the need to
associate a MAC address with a physical node.

Assigning regular compute nodes to a static pool can be done in a similar way to what was shown
before in the example on page 470.

Continuing with the current session, the nodes node001..node002 are added to the static pool of
nodes, on-premises-nodes. For this example they are set to a lower priority than the cloud nodes:

Example

...->roles[scaleserver]->resourceproviders]% add static on-premises-nodes

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% set nodes node001..node002

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% set priority 1

...->roles*[scaleserver*]->resourceproviders*[on-premises-nodes*]]% commit

...->roles[scaleserver]->resourceproviders[on-premises-nodes]]%

What this lower priority means is that a node that is not up and is in the static pool of nodes, is only
powered on after all the cloud nodes are powered on and busy running jobs. If there happen to be nodes
from the static pool that are already up, but are not running jobs, then these nodes take a job, despite
the lower priority of the static pool, and irrespective of whether the dynamic pool nodes are in use.

Job priorities can be overridden in cm-scale by:

• allowing locations by setting Mix Locations to true (page 480) or

• pinning queues by setting Pin Queues to true (page 482)

A Slurm engine, and queue tracker for the defq are set as follows:

Example

...]->roles[scaleserver]]% engines

...]->roles[scaleserver]->engines]% add hpc slurm2

...*]->roles*[scaleserver*]->engines*[slurm2]]% set wlmcluster slurm

...*]->roles*[scaleserver*]->engines*[slurm2]]% trackers

...*]->roles*[scaleserver*]->engines*[slurm2]->trackers]% add queue tr2

...*]->roles*[scaleserver*]->engines*[slurm2]->trackers*[tr2*]]% set queue defq

...*]->roles*[scaleserver*]->engines*[slurm2*]->trackers*[tr2*]]% commit

...->roles[scaleserver]->engines[slurm2]->trackers[tr2]]%

8.3 Examples Of cm-scale Use 475

The nodes node001..node002 and eu-west-1-cnode001..eu-west-1-cnode002 should already be
in the queue defq by default, ready to run the jobs:

Example

...->roles[scaleserver]->engines[slurm2]->trackers[tr2]]% wlm use slurm; jobqueue; get defq nodes

eu-west-1-cnode001

eu-west-1-cnode002

node001

node002

The roleoverview (page 473) command is also handy for an overview, and to confirm that the role
assignment of these nodes are all set to the SlurmClient role:

With these settings, the nodes in the dynamic pool can now be powered up or down on demand by
cm-scale service, depending on the number of jobs that are pending. When the new ScaleServer role
is committed in cmsh or Base View, then the cm-scale is run periodically. Each time it is run, cm-scale
checks whether the node states should be changed. If needed, the administrator can check the log file
/var/log/cm-scale to see what the service is doing.

Job submission can now be carried out, and the scaleserver assignment carried out earlier scales the
cluster to cope with jobs according to the configuration that has been carried out in the session.

Before submitting the batch jobs, the administrator or user can check the jobs that are queued and
running with the squeue command. If there are no jobs yet submitted, the output is simply the squeue

headers, with no job IDs listed:

Example

[fred@basecm11 ~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

As in the previous example for the static pool only case (page 469), a way for user fred to flood the
default queue defq is to run the batch file in a loop:

Example

[fred@basecm11 ~]$ while (true); do sbatch slurmhello.sh; done

Submitted batch job 1

Submitted batch job 2

Submitted batch job 3

...

After putting enough jobs into the queue (a few thousand should be enough, not more than five
thousand would be sensible), the flooding can be stopped with a ctrl-c.

The changes in the queue can be watched by user fred:

Example

[fred@basecm11 ~]$ watch "squeue | head -5 ; squeue | tail -4"

Every 2.0s: squeue | head -5 ; squeue | tail -4 Wed Nov 22 16:08:52 2017

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1 defq slurmhel fred PD 0:00 1 (Resources)

2 defq slurmhel fred PD 0:00 1 (Resources)

3 defq slurmhel fred PD 0:00 1 (Resources)

4 defq slurmhel fred PD 0:00 1 (Resources)

3556 defq slurmhel fred PD 0:00 1 (Resources)

3557 defq slurmhel fred PD 0:00 1 (Resources)

3558 defq slurmhel fred PD 0:00 1 (Resources)

3559 defq slurmhel fred PD 0:00 1 (Resources)

/var/log/cm-scale

476 NVIDIA Base Command Manager Auto Scaler

The head -4 and tail -4 filters here are convenient for showing just the first 4 rows and last 4 rows
of the very long squeue output, and skipping the bulk of the queue.

The preceding output illustrates how, with the jobs queued up, nothing is being processed yet from
jobs number 1 to 3559 due to the resources not yet being available.

At this point cm-scale should have noticed that jobs are queued and that resources are needed to
handle the jobs.

It should be noted that, at the time of writing of this section (January 2023), Slurm job processing
with Auto Scaler currently only works as expected if sbatch rather than srun is used for dynamic jobs.
The reason behind this srun quirk is explained on page 920.

At the start of this example session the cloud director is not up. So, cm-scale powers it up. This can
be seen by running the ds command, or from CMDaemon info messages:

[basecm11->device]% ds | grep director

eu-west-1-director [DOWN]

then some time later:
eu-west-1-director [PENDING] (External ip assigned: 34.249.166.63, setting up tunnel)

then some time later:
eu-west-1-director [INSTALLING] (node installer started)

then some time later:
eu-west-1-director [INSTALLER_CALLINGINIT] (switching to local root)

then some time later:
eu-west-1-director [UP]

If the cloud director is yet to be provisioned to the cloud from the head node for the very first time
(“from scratch”), then that can take a while. Then, because the cloud compute nodes are in turn provi-
sioned from the cloud director, it takes a while for the cloud compute nodes to be ready to run the jobs.
So, the jobs just have to wait around in the queue until the cloud compute nodes are ready, before they
are handled. Fortunately, the startup of a cloud director is by default much faster after the very first
time.

A quick aside about how provisioning is speeded up the next time around: The cloud compute nodes
will be stopped if they are idle, and after there are no more jobs in the queue, because the jobs have all
been dealt with. Then, when the extranodeidletime setting has been exceeded, the cloud director is
also stopped. The next time that jobs are queued up, all the cloud nodes are provisioned from a stopped
state, rather than from scratch, and so they are ready for job execution much faster. Therefore, unlike
the first time, the jobs queued up the next time are processed with less waiting around.

Getting back to how things proceed in the example session after the cloud director is up: cm-scale
then provisions the cloud compute nodes eu-west-1-node001 and eu-west-1-node002 from the cloud
director.

Example

[basecm11->device]% ds | grep cnode

eu-west-1-cnode001 [PENDING] (Waiting for instance to start)

eu-west-1-cnode002 [PENDING] (Waiting for instance to start)

then some time later:
eu-west-1-cnode002 [INSTALLING] (node installer started)

eu-west-1-cnode001 [INSTALLING] (node installer started)

and so on

Once these cloud compute nodes reach the state of UP, they can start to process the jobs in the queue.
The queue activity then would show something like:

Example

8.3 Examples Of cm-scale Use 477

when the dynamic pool nodes are being readied for job execution:
[fred@basecm11 ~]$ squeue | head -5 ; squeue | tail -4

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1 defq slurmhel fred PD 0:00 1 (Resources)

2 defq slurmhel fred PD 0:00 1 (Resources)

3 defq slurmhel fred PD 0:00 1 (Resources)

4 defq slurmhel fred PD 0:00 1 (Resources)

3556 defq slurmhel fred PD 0:00 1 (Resources)

3557 defq slurmhel fred PD 0:00 1 (Resources)

3558 defq slurmhel fred PD 0:00 1 (Resources)

3559 defq slurmhel fred PD 0:00 1 (Resources)

then later:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

11 defq slurmhel fred CF 0:00 1 eu-west-1-cnode001

12 defq slurmhel fred CF 0:00 1 eu-west-1-cnode002

13 defq slurmhel fred CF 0:00 1 (priority)

14 defq slurmhel fred CG 0:00 1 (priority)

3556 defq slurmhel fred PD 0:00 1 (Priority)

3557 defq slurmhel fred PD 0:00 1 (Priority)

3558 defq slurmhel fred PD 0:00 1 (Priority)

3559 defq slurmhel fred PD 0:00 1 (Priority)

then later, when cm-scale sees all of the dynamic pool is used up, the lower priority static pool gets started up:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

165 defq slurmhel fred CF 0:00 1 eu-west-1-cnode001

166 defq slurmhel fred CF 0:00 1 node001

168 defq slurmhel fred CG 0:00 1 node002

3556 defq slurmhel fred PD 0:00 1 (Priority)

3557 defq slurmhel fred PD 0:00 1 (Priority)

3558 defq slurmhel fred PD 0:00 1 (Priority)

3559 defq slurmhel fred PD 0:00 1 (Priority)

167 defq slurmhel fred R 0:00 1 eu-west-1-cnode002

In cmsh, the priority can be checked with:

Example

[basecm11 ->device[basecm11]->roles[scaleserver]->resourceproviders]% list

Name (key) Priority Enabled

----------------- ------------ -------

on-premises-nodes 1 yes

pool2 2 yes

Also in cmsh, the jobs can be listed via the jobs submode:

Example

[basecm11->wlm[slurm]->jobs]% list | head -5 ; list | tail -4

Type Job ID User Queue Running time Status Nodes

------ ------ ----- ----- ------------ ---------- ------------------

Slurm 334 fred defq 1s COMPLETED eu-west-1-cnode001

Slurm 336 fred defq 1s COMPLETED node001

Slurm 3556 fred defq 0s PENDING

Slurm 3557 fred defq 0s PENDING

478 NVIDIA Base Command Manager Auto Scaler

Slurm 3558 fred defq 0s PENDING

Slurm 3559 fred defq 0s PENDING

Slurm 335 fred defq 1s RUNNING eu-west-1-cnode002

[basecm11->wlm[slurm]->jobs]%

Eventually, when the queue has been fully processed, the jobs are all gone:

Example

[fred@basecm11 ~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

With the current configuration the cloud compute nodes in the dynamic pool pool2 are powered up
before the regular compute nodes in the static pool on-premises-nodes. That is because the cloud com-
pute nodes have been set by the administrator in this example to have a higher priority. This is typically
sub-optimal, and is actually configured this way just for illustrative purposes. In a real production clus-
ter, the priority of regular nodes is typically going to be set higher than that for cloud compute nodes,
because using on-premises nodes is likely to be cheaper.

The administrator can also check on the job status via the job metrics of cmsh too, using the options
to the filter command, such as --pending or --running:

Initially, before the jobs are being run, something like this will show up:

Example

[root@basecm11 ~]# cmsh -c "wlm use slurm; jobs ; watch filter --running -u fred"

Every 2.0s: filter --running -u fred Wed Nov 22 16:03:18 2017

No jobs found

Then, eventually, when the jobs are being run, the cloud nodes, which have a higher priority, start
job execution, so that the output looks like:

Example

Every 2.0s: filter --running -u fred Wed Nov 22 16:50:35 2017

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ ------------- ---- ----- ----------- ---------- -------- --------------- ---------

406 slurmhello.sh fred defq 16:16:56 16:27:21 N/A eu-west1-cnode001 0

407 slurmhello.sh fred defq 16:16:56 16:27:21 N/A eu-west1-cnode002 0

and eventually the regular on-site nodes which are originally down are started up by the ScaleServer
and are also listed.

8.4 Further cm-scale Configuration And Examples
8.4.1 Dynamic Nodes Re-purposing
Sometimes it is useful to share the same nodes among several queues, and reuse the nodes for jobs
from other queues. This can be done by dynamically assigning node categories in cm-scale. Different
settings, or a different software image, then run on the re-assigned node after re-provisioning.

The feature is enabled by setting Assign Category parameter in the tracker settings.
For example, the following case uses Slurm as the workload engine, and sets up two queues chem_q

and phys_q. Assuming in this example that jobs that are to go to chem_q require chemistry software on the
node, but jobs for phys_q require physics software on the node, and that for some reason the softwares
cannot run on the node at the same time. Then, the nodes can be re-purposed dynamically. That is, the
same node can be used for chemistry or physics jobs by setting up the appropriate configuration for it.
In this case the same node can be used by jobs that require a different configuration, software, or even
operating system. The trackers configuration may then look as follows:

8.4 Further cm-scale Configuration And Examples 479

Example

[basecm11->device[basecm11]->roles[scaleserver]->engines[slurm]->trackers[chem]]% show

Parameter Value

-------------------------------- --

Type ScaleHpcQueueTracker

Name chem

Queue chem_q

Enabled yes

Assign Category chem_cat

Primary Overlays

[basecm11->device[basecm11]->roles[scaleserver]->engines[slurm]->trackers[chem]]% use phys

[basecm11->device[basecm11]->roles[scaleserver]->engines[slurm]->trackers[phys]]% show

Parameter Value

-------------------------------- --

Type ScaleHpcQueueTracker

Name chem

Queue chem_q

Enabled yes

Assign Category phys_cat

Primary Overlays

[basecm11->device[basecm11]->roles[scaleserver]->engines[slurm]->trackers[phys]]%

Assuming that initially there are two nodes, node001 and node002, both in category chem_cat. Then,
when cm-scale finds a pending job in queue phys_q, it may decide to assign category phys_cat to either
node001, or to node002. In this way the number of nodes serving queue phys_q increases and number
of nodes serving chem_q decreases, in order to handle the current workload. When the job is finished,
the old node category is not assigned back to the node, until a new job appears in chem_q and requires
this node to have the old category.

8.4.2 Pending Reasons
This section is related only to HPC engines (workload managers). In this section, the term job is used
instead of workload.

If cm-scale makes a decision on how many nodes should be started for a job, then it checks the
status of the job first. If the job status is pending, then it checks the list of pending reasons for that job.
The checks are to find pending reasons that prevent the job from starting when more free nodes become
available.

A pending reason can be one of the following 3 types:

Type 1: allows a job to start when new free nodes become available

Type 2: prevents a job from starting on particular nodes only

Type 3: prevents a job from starting anywhere

Each pending reason has a text associated with it. The text is usually printed by the
workload manager job statistics utilities. The list of pending reasons texts of types 1 and 2
can be found in the pending reasons exclude file, /cm/local/apps/cm-scale/lib/python3.

9/site-packages/cmscale/trackers/hpc_queue/pending_reasons/WLM.exclude, where WLM is a
name of workload manager specified in the configuration of the engine in ScaleServer role.

In the pending reasons exclude file, the pending reason texts are listed as one reason per line. The
reasons are grouped in two sublists, with headers:

• [IGNORE_ALWAYS]

• [IGNORE_NO_NODE]

python3.9
python3.9

480 NVIDIA Base Command Manager Auto Scaler

The [IGNORE_ALWAYS] sublist lists the type 1 pending reason texts. If a job has only this group of
reasons, then cm-scale considers the job as ready to start, and attempts to create or boot compute nodes
for it.

The [IGNORE_NO_NODE] sublist lists the type 2 pending reason texts. If the reason does not specify
the hostname of a new free node at the end of a pending reason after the colon (“:”), then the job can
start on the node. If the reason does specify the hostname of a new free node after the colon, and if
the hostname is owned by one of the managed nodes—nodes that can be stopped/started/created by
cm-scale—then the job is considered as one that is not to start, when nodes become available.

If a job has a pending reason text that is not in the pending reasons exclude file, then it is assumed to
be a type 3 reason. New free nodes for such a job do not get the job started.

If there are several pending reason texts for a job, then cm-scale checks all the pending reasons one
by one. If all reasons are from the IGNORE_ALWAYS or IGNORE_NO_NODE sublists, and if a pending reason text
matched in the IGNORE_NO_NODE sublist does not include hostnames for the managed nodes, only then
will the job be considered as one that can be started just with new nodes.

Custom Pending Reasons
If the workload manager supports them, then custom pending reason texts are also supported. The
administrator can add a pending reason text to one of the sections in the pending reasons exclude file.

The cm-scale service checks only if the pending reason text for the job starts with a text from the
pending reasons file. It is therefore enough to specify just a part of the text of the reason in order to
make cm-scale take it into account. Regular expressions are also supported. For example, the next two
pending reason expressions are equivalent when used to match the pending reason text Not enough

job slot(s):

Example

• Not enough

• Not enough [a-z]* slot(s)

The workload manager statistics utility can be used to find out what custom pending reason texts
there are, and to add them to the pending reasons file. To do this, some test job can be forced to have
such a pending reason, and the output of the job statistics utility can then be copy-pasted. For example,
LSF shows custom pending reasons that look like this:

Example

Customized pending reason number <integer>

Here, <integer> is an identifier (an unsigned integer) for the pending reason, as defined by the ad-
ministrator.

8.4.3 Locations
Sometimes it makes sense to restrict the workload manager to run jobs only on a defined subset of nodes.
For example, if a user submits a multi-node job, then it is typically better to run all the job processes
either on the on-premises nodes, or on the cloud nodes. That is, without mixing the node types used for
the job. The locations feature of cm-scale allows this kind of restriction for HPC workload managers.

The cm-scale configuration allows one of these two modes to be selected:

1. forced location: when the workload is forced to use one of the locations chosen by cm-scale,

2. unforced location: when workloads are free to run on any of the compute nodes that are already
managed (running, freed or started) by cm-scale. This is the default if Auto Scaler is set up.

In NVIDIA Base Command Manager 11, for a forced location, cm-scale supports these two different
locations:

8.4 Further cm-scale Configuration And Examples 481

1. local: on-premises nodes,

2. cloud: AWS instances (Chapter 3 of the Cloudbursting Manual) or Azure instances (Chapter 5 of
the Cloudbursting Manual)

To restrict the WLM location—that is to choose a forced location—the mixlocations advanced set-
ting in the scaleserver role for the node must be set to no

Example

[basecm11->device[basecm11]->roles[scaleserver]->advancedsettings]% set mixlocations no

[basecm11->device*[basecm11*]->roles*[scaleserver*]->advancedsettings*]% commit

The location is automatically configured by BCM when the node is added to the workload manager.
Details per workload manager are described next.

Slurm
Slurm does not allow the assignment of node properties—features, in Slurm terminology—to jobs if no
node exists that is labeled by this property. Thus any property used must be added to some node. This
can be the template node if a dynamic resource provider is used, or it can be an appropriate off-premises
node if a static resource provider is used. If the slurmclient role is assigned to a node—for example, a
template node—then the location value for this node is automatically configured by BCM.

The current location value can be found using the scontrol command. For example, for node001:

Example

[root@basecm11 ~]# module load slurm

[root@basecm11 ~]# scontrol show node node001 | grep AvailableFeatures

PBS
A new generic resource, resources_available.location, lets the administrator decide the locations
where cm-scale can run PBS jobs.

If the pbsproclient role is assigned to a node, then the location value for this node is automatically
configured by BCM.

The current location value for a node can be found using the qmgr command. For example, for
node001:

Example

[root@basecm11 ~]# module load openpbs

[root@basecm11 ~]# qmgr -c "print node node001" | grep location

set node node001 resources_available.location = local

LSF
In order to allow cm-scale to restrict LSF jobs, BCM configures a generic resource called location per
node. The resource is added as a string resource in lsf.cluster.<CLUSTER_NAME:> configuration file.

The location value for this node is automatically configured by BCM.
To verify that the resource is added, the lshosts -s command can be run:

Example

[root@basecm11 ~]# lshosts -s location | head -1; lshosts -s location | grep node001

RESOURCE VALUE LOCATION

location local node001.cm.cluster

482 NVIDIA Base Command Manager Auto Scaler

8.4.4 Azure Storage Accounts Assignment
If an Azure node is cloned manually from some node or node template, then the Azure node gets the
same storage account as the node it has been cloned from. This may slow the nodes down if too many
nodes use the same storage account. The cm-scale utility can therefore assign different storage accounts
to nodes that are cloned like this.

The maximum number of nodes for such a storage account is defined by the
AZURE_DISK_ACCOUNT_NODES parameter. This parameter has a value of 20 by default, and can
be changed in the configuration file /cm/local/apps/cm-scale/lib/python3.9/site-packages/

cmscale/config.py. The cm-scale utility must be restarted after the change.
The newly-cloned-by-cm-scale Azure node gets a randomly-generated storage account name if

other storage accounts already have enough nodes associated with them. That is, if other storage ac-
counts have AZURE_DISK_ACCOUNT_NODES or more nodes.

The storage account name is assigned in the node cloud settings in storage submode. For example,
in cmsh, the assigned storage accounts can be viewed as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use cnode001

[basecm11->device[cnode001]]% cloudsettings

[basecm11->device[cnode001]->cloudsettings]% storage

[basecm11->...[cnode001]->cloudsettings->storage]% get root-disk storageaccountname

azurepaclogzjus1

[basecm11->...[cnode001]->cloudsettings->storage]% get node-installer-disk storageaccountname

azurepaclogzjus1

[basecm11->device[cnode001]->cloudsettings->storage]% ..

[basecm11->device[cnode001]->cloudsettings]% get bootdiagnosticsstorageaccountname

azurepaclogzjus1

[basecm11->device[cnode001]->cloudsettings]%

If a node is terminated and removed from the BCM configuration, then the storage account remains
in Azure. It has to be explicitly manually removed by the administrator.

8.4.5 Uptake of HPC Jobs By Particular Types Of Nodes
By default, cm-scale assumes that an HPC job submitted to a particular queue can take a node from
outside the queue. This is because by assigning a category, or moving the node to a configuration
overlay, the node will be moved to the appropriate queue eventually. From this point of view, the nodes
form a single resource pool, and the nodes in the pool are re-purposed on demand.

In some scenarios there is a need for certain types of HPC jobs run only on particular types of nodes,
without the nodes being re-purposed. A typical example: jobs with GPU code require cloud nodes that
have access to GPU accelerators, while jobs that do not have GPU code can use the less expensive non-
GPU cloud nodes. For this case then, the GPU cloud node is started when the GPU job requires a node,
and otherwise a non-GPU node is started.

Job segregation is achieved in cm-scale as follows:

1. The Pin Queues setting, which is an advanced setting in the scaleserver role for the node, is
enabled:

[basecm11->device[basecm11]->roles[scaleserver]->advancedsettings]% set pinqueues yes

[basecm11->device*[basecm11*]->roles*[scaleserver*]->advancedsettings*]% commit

2. A new queue is created, or an existing one is used. The queue is used for the jobs that require a
particular node type.

/cm/local/apps/cm-scale/lib/python3.9/site-packages/cmscale/config.py
/cm/local/apps/cm-scale/lib/python3.9/site-packages/cmscale/config.py

8.4 Further cm-scale Configuration And Examples 483

3. The particular node type is added to this queue. If the node is already defined in BCM, then the
administrator can assign the queue to the node in the workload manager client role. For example,
if the workload manager is Slurm, then the queue is assigned to the nodes in the slurmclient

role. If the node has not been defined yet and will be cloned on demand (according to the dynamic
resource provider settings, page 456), then its template node is assigned to the queue. When a new
node is cloned from the template, the queue is then inherited from the template node.

4. The previous two steps are repeated for each job type.

After that, if a user submits a job to one of the queues, then cm-scale starts or clones a node that is
linked with the job queue.

The following cmsh session snippet shows a configuration example:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device roles master

[basecm11->device[basecm11]->roles]% use scaleserver

[basecm11->...roles[scaleserver]]% resourceproviders

[basecm11->...roles[scaleserver]->resourceproviders]% add dynamic rp1

[basecm11->...roles[scaleserver]->resourceproviders*[rp1*]]% set templatenode tnode1

[basecm11->...roles[scaleserver]->resourceproviders*[rp1*]]% set noderange cnode001..cnode100

[basecm11->...roles[scaleserver]->resourceproviders*[rp1*]]% commit

[basecm11->...roles[scaleserver]->resourceproviders[rp1]]% clone rp2

[basecm11->...roles[scaleserver]->resourceproviders*[rp2*]]% set templatenode tnode2

[basecm11->...roles[scaleserver]->resourceproviders*[rp2*]]% set noderange cnode101..cnode200

[basecm11->...roles[scaleserver]->resourceproviders*[rp2*]]% commit

[basecm11->...roles[scaleserver]->resourceproviders[rp2]]% ..;..

[basecm11->...roles[scaleserver]]% engines

[basecm11->...roles[scaleserver]->engines]% add hpc s1

[basecm11->...roles[scaleserver]->engines*[e1*]]% set workloadmanager slurm

[basecm11->...roles[scaleserver]->engines*[e1*]]% trackers

[basecm11->...roles[scaleserver]->engines*[e1*]->trackers]]% add queue tr1

[basecm11->...roles[scaleserver]->engines*[e1*]->trackers*[tr1*]]% set queue q1

[basecm11->...roles[scaleserver]->engines*[e1*]->trackers*[tr1*]]% commit

[basecm11->...roles[scaleserver]->engines[e1]->trackers[tr1]]% clone tr2

[basecm11->...roles[scaleserver]->engines*[e1*]->trackers*[tr2*]]% set queue q2

[basecm11->...roles[scaleserver]->engines*[e1*]->trackers*[tr2*]]% commit

[basecm11->...roles[scaleserver]->engines[e1]->trackers[tr2]]% category

[basecm11->category]% clone default cat1

[basecm11->category*[cat1*]]% roles

[basecm11->category*[cat1*]->roles*]% assign slurmclient

[basecm11->category*[cat1*]->roles*[slurmclient*]]% set queues q1

[basecm11->category*[cat1*]->roles*[slurmclient*]]% commit

[basecm11->category[cat1]->roles[slurmclient]]% category clone cat1 cat2

[basecm11->category*[cat2*]->roles*[slurmclient*]]% set queues q2

[basecm11->category*[cat2*]->roles*[slurmclient*]]% commit

[basecm11->category[cat2]->roles[slurmclient]]% device use tnode1

[basecm11->device[tnode1]]% set category cat1

[basecm11->device*[tnode1*]]% commit

[basecm11->device[tnode1]]% device use tnode2

[basecm11->device[tnode2]]% set category cat2

[basecm11->device*[tnode2*]]% commit

[basecm11->device[tnode2]]%

Using the preceding configuration, the user may submit a job with a regular workload manager

484 NVIDIA Base Command Manager Auto Scaler

submission utility specifying the queue q1 or q2, depending on whether the job requires nodes that
should be cloned from tnode1 or from tnode2.

8.4.6 How To Exclude Unused Nodes From Being Stopped
If a node is idle, then by default cm-scale automatically stops or terminates the node.

However, in some cases there may be a need to start a node on demand, and when it becomes
idle, there may be a need to keep the node running. This can be useful if the administrator would
like to investigate the performance of an application, or to debug some issues. After completing the
investigation or debug session, the administrator can stop the node manually.

The parameter KEEP_RUNNING_RANGES keeps such nodes from being stopped or terminated. The
parameter should be added to the configuration file /cm/local/apps/cm-scale/lib/python3.9/

site-packages/cmscale/config.py. To have the changed setting take effect, the cm-scale service must
be restarted.

KEEP_RUNNING_RANGES defines a map of resource provider names to node name ranges.
Extra nodes can be added to the range of the nodes. However, if the extra node must not be stopped

or terminated by cm-scale, then for each resource provider that has such an extra node, the value of
extranodestop must be set to yes.

In the following example, nodes cnode002, cnode003, cnode004, and cnode010, are associated with
the azurenodes1 resource provider. They are therefore never stopped or terminated by cm-scale. They
are only started on demand by cm-scale.

The nodes cnode012 and cnode014 are associated with the azurenodes2 resource provider. They are
therefore also not stopped or terminated by cm-scale.

Example

opts = {

[...]

"KEEP_RUNNING_RANGES": {

"azurenodes1": "cnode002..cnode004,cnode010",

"azurenodes2": "cnode012,cnode014"

}

}

8.4.7 Prolog And Epilog Scripts With Auto Scaler
Sometimes the administrator would like some actions to be performed for a workload when the Auto
Scaler allocates and starts using a node, or when the Auto Scaler deallocates and stops using a node.
The administrator can arrange such actions by configuring prolog and epilog scripts (section 7.3.4) in
the resource provider. The scripts are then executed on the nodes running the Auto Scaler service, i.e.
with the ScaleServer role.

Both the dynamic and the static resource providers (section 8.2.2) support the following options:

1. allocationProlog: path to a shell script that is executed just before a node is started up by Auto
Scaler

2. allocationEpilog: path to a shell script that is executed just before a node is powered off by Auto
Scaler

3. allocationScriptsTimeout: the prolog and epilog scripts timeout (the script that is running is
killed if the timeout is exceeded).

The prolog script runs when an existing node is about to start, and also runs when a node has just
been cloned and is also about start.

The epilog script runs when a node is stopped or when a cloud node is terminated.

/cm/local/apps/cm-scale/lib/python3.9/site-packages/cmscale/config.py
/cm/local/apps/cm-scale/lib/python3.9/site-packages/cmscale/config.py

8.4 Further cm-scale Configuration And Examples 485

The prolog and epilog scripts are run per node, and can run in parallel. Thus if synchronization
between them is needed, then it should be implemented by the scripts themselves.

The standard output and error messages of the executed scripts are mixed and added to the Auto
Scaler as debug2 log messages (the debug2 logs can be enabled in the AdvancedSettings submode of the
ScaleServer role). It therefore makes sense to keep the output reasonably small, informative, and human
readable.

When the scripts are run, Auto Scaler passes environment variables that can be used inside the scripts
in order to decide what to do. These environment variables are:

1. AS_NODE: node short hostname which the script started for;

2. AS_SCRIPT_TYPE: either "epilog" or "prolog";

3. AS_RESOURCE_PROVIDER: name of the resource provider where this script is configured;

4. AS_ENGINE: workload engine name, which workload requires the node ("unknown" if no workload
requires the node).

By default the scripts are not defined, and therefore nothing is executed by default when nodes are
stopped, terminated or started.

8.4.8 Queue Node Placeholders
A queue node placeholder is a node that does not yet exist, but has a corresponding object that exists,
and the object has queues defined, amongst other properties. It can be used to plan resource use.

Job Rejection For Exceeding Total Cluster Resources
At the time of job submission, the workload manager checks the total available number of slots (used
and unused) in a queue. This is the sum of the available slots (used and unused) provided by each node
in that queue.

• Jobs that require less than the total number of slots are normally made to wait until more slots
become available.

• Jobs that require more than this total number of slots are normally rejected outright by the work-
load manager, without being put into a wait state. This is because workload managers normally
follow a logic that relies on the assumption that if the job demands more slots than can exist on the
cluster as it is configured at present, then the cluster will never have enough slots to allow a job to
run.

Assuming The Resources Can Never Be Provided
The latter assumption, that a cluster will never have enough slots to allow a job to run, is not true when
the number of slots is dynamic, as is the case when cm-scale is used. When cm-scale starts up nodes,
it adds them to a job queue, and the workload manager is automatically configured to allow users to
submit jobs to the enlarged queue. That is, the newly available slots are configured as soon as possible
so that waiting jobs are dealt with as soon as possible. For jobs that have already been rejected, and are
not waiting, this is irrelevant, and users would have to submit the jobs once again.

Ideally, in this case, the workload manager should be configured to know about the number of nodes
and slots that can be started up in the future, even if they do not exist yet. Based on that, jobs that would
normally be rejected, could then also get told to wait until the resources are available, if it turns out that
configured future resources will be enough to run the job.

Slurm Resources Planning With Placeholders
Slurm allows nodes that do not exist yet to be defined. These are nodes with hostnames that do not
resolve, and have the Slurm setting of state=CLOUD for cloud nodes, and state=FUTURE for other nodes.

486 NVIDIA Base Command Manager Auto Scaler

BCM allows Slurm to add such “fake” nodes to Slurm queues dynamically, when not enough real nodes
have yet been added. BCM supports this feature only for Slurm at present.

This feature is not yet implemented for the other workload managers because they require the host-
name of nodes that have been added to the workload manager configuration to be resolved.

Within the Slurm WLM instance it is possible to set a list of placeholder objects. In cmsh this can be
done within the main wlm mode, selecting the Slurm instance, and then going into the placeholders

submode. Each placeholder allows the following values to be set:

• queue: the queue name, used as key

• maxnodes: the maximum number of nodes that this queue allows

• basenodename: the base node name that is used when a new node name is generated

• templatenode: a template node that is used to provide user properties taken from its slurmclient
role when new fake nodes are added.

For example, the following cmsh session uses the head node with an existing slurm instance to illus-
trate how the Slurm queue defq could be configured so that it always has a maximum of 32 nodes, with
the nodes being like node001:

Example

[root@basecm11 ~]# scontrol show part defq | grep " Nodes="

Nodes=node001

[root@basecm11 ~]# cmsh

[basecm11]% wlm use slurm

[basecm11->wlm[slurm]]% placeholders

[basecm11->wlm[slurm]->placeholders]% add defq

[basecm11->wlm*[slurm*]->placeholders*[defq*]]% set maxnodes 32

[basecm11->wlm*[slurm*]->placeholders*[defq*]]% set basenodename placeholder

[basecm11->wlm*[slurm*]->placeholders*[defq*]]% set templatenode node001

[basecm11->wlm*[slurm*]->placeholders*[defq*]]% commit

[basecm11->wlm[slurm]->placeholders[defq]]%

[root@basecm11 ~]# scontrol show part defq | grep " Nodes="

Nodes=node001,placeholder[01-31]

If a new real node is added to the queue, then the number of placeholder nodes is decreased by one.
The placeholders can also be configured in Base View via the HPC resource, using the navigation

path:
HPC > Workload Management Clusters > <Slurm instance> > JUMP TO Placeholders

Preventing slurmctld From Restarting
If the number of nodes is changed, or if their names are changed in slurm.conf, then CMDaemon restarts
the Slurm server daemon, slurmctld, to apply the changes. If the administrator needs to prevent
slurmctld from restarting each time that a new node is added to Slurm, then the nodes can be added, or
cloned, to the BCM configuration manually, even if they do not have any IP address assigned yet. This
is assuming that they get their IP addresses assigned over DHCP later on.

If the nodes are added to the configuration manually, then CMDaemon restarts slurmctld only once.
This means that, when cm-scale starts the nodes, CMDaemon does not restart slurmctld.

8.4.9 Auto Scaling A Job On-premises To A Workload Manager And Kubernetes
In the session for this section, a cluster with 4 nodes is assumed. A workload manager such as Slurm is
assumed to be already set as the engine (Use Case: Workload Manager (On-premises), page 446).

If the cluster administrator now would also like to make a Kubernetes engine available to jobs, as
suggested in the use case 2 on page 439, then it can be added within the scaleserver role as follows:

s

8.4 Further cm-scale Configuration And Examples 487

Example

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->engines]% list

Name (key) Priority

---------------- ------------

slurm 0

[basecm11->configurationoverlay...->engines]% add kubernetes k8s

[basecm11->configurationoverlay*...->engines*[k8s*]]% set cluster default

[basecm11->configurationoverlay*...->engines*[k8s*]]% trackers

[basecm11->configurationoverlay*...->engines*[k8s*]->trackers]% add namespace default

[basecm11->configurationoverlay*...[k8s*]->trackers*[default*]]% set controllernamespace default

[basecm11->configurationoverlay*...->engines*[k8s*]->trackers*[default*]]% commit

[basecm11->configurationoverlay...->engines[k8s]->trackers[default]]%

In the trackers for each engine, the overlay to move to must be specified:

Example

[basecm11->configurationoverlay...->engines[k8s]->trackers[default]]% set primaryoverlays kube-default-worker

[basecm11->configurationoverlay*...->engines*[k8s*]->trackers*[default*]]% commit

[basecm11->configurationoverlay...->engines[k8s]->trackers[default]]% ..

[basecm11->configurationoverlay...->engines[k8s]->trackers]% ..

[basecm11->configurationoverlay...->engines[k8s]]% ..

[basecm11->configurationoverlay...->engines]% use slurm

[basecm11->configurationoverlay...->engines[slurm]]% trackers

[basecm11->configurationoverlay...->engines[slurm]->trackers]% use defq

[basecm11->configurationoverlay...->engines[slurm]->trackers[defq]]% set primaryoverlays slurm-client

[basecm11->configurationoverlay*...->engines*[slurm*]->trackers*[defq*]]% commit

[basecm11->configurationoverlay...->engines[slurm]->trackers[defq]]%

Since the cluster is entirely on-premises, and no cloud nodes are to be used, there is no need to
configure a dynamic provider (section 8.3.2).

To allow movement of jobs from one queue to another, queue pinning must be disabled:

Example

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->advancedsettings]% set pinqueues no

[basecm11->configurationoverlay*[autoscaler*]->roles*[scaleserver*]->advancedsettings*]% commit

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->advancedsettings]%

Auto scaler normally takes the amount of memory into account from the workload manager. How-
ever, Slurm does not know about the memory of nodes that are not managed by it. A default memory
size should therefore be set for when a job requirement is matched to Slurm, using the default resources
specification (page 442):

Example

[basecm11->configurationoverlay...->resourceproviders[static]]% set defaultresources "mem_free:slurm=7GB"

[basecm11->configurationoverlay*[autoscaler*]->roles*[scaleserver*]->resourceproviders*[static*]]% commit

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->resourceproviders[static]]%

The nodes reboot when a job requires it:

Example

488 NVIDIA Base Command Manager Auto Scaler

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->resourceproviders[static]]%

Tue Aug 16 11:43:40 2022 [notice] basecm11: node003 [BOOTING] (ldlinux.c32 from basecm11)

Tue Aug 16 11:43:40 2022 [notice] basecm11: node004 [BOOTING] (ldlinux.c32 from basecm11)

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->resourceproviders[static]]%

Tue Aug 16 11:44:22 2022 [notice] basecm11: node004 [INSTALLING] (node installer started)

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->resourceproviders[static]]%

Tue Aug 16 11:44:24 2022 [notice] basecm11: node003 [INSTALLING] (node installer started)

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->resourceproviders[static]]%

8.4.10 AWS Spot Instances And Availability Zones
Amazon cloud regions consist of multiple, isolated, availability zones. The number of spot instances that
can be started in each zone is limited by the capacity of a zone. If the spot instances are configured to
start in several different availability zones, then Auto Scaler detects this and tries to start nodes in those
various different availability zones. At the start of each iteration of cm-scale, if cm-scale sees that the
capacity of a zone is exhausted, then all nodes in that zone are considered to be unavailable for starting
up by cm-scale.

Configuring several sets of spot instances in availability zones allows running nodes to be started up,
even if the capacity in one or more zones is exhausted. For this configuration, the cluster administrator
has two options:

1. Configuring the nodes from different availability zones in one workload manager job queue or
Kubernetes namespace.

2. Having the nodes in different queues/namespaces, and letting users submit the jobs to multi-
ple queues at the same time, so that cm-scale goes through the queues when selecting a node
to start. This option requires multi-queue support in the workload manager. In this case, the
allowedresourceproviders parameter should not be set within the trackers submode (sec-
tion 8.2.6) for the engine.

If cloud nodes (spot instances) from different availability zones are added to the scaleserver role,
then the lack of capacity is recognized by cm-scale automatically, and no additional configuration is
needed.

The cluster administrator can however still override the availability zones information for cm-scale.
This can be carried out by modifying the cm-scale configuration file:
/cm/local/apps/cm-scale/lib/*/site-packages/cmscale/config.py

In the file, a new parameter AVAILABILITY_ZONES must be added to the opts dictionary. The format the
parameter takes is as follows:

Example

{"AVAILABILITY_ZONES" : {<provider name> : {<availability zone name> : <node list in node range format>}}

For example, for the us-west-* availability zones:

Example

"AVAILABILITY_ZONES": {

"aws": {

"us-west-2a": "cpu-001..cpu-005, cpu-spot-a-001..cpu-spot-a-010",

"us-west-2c": "cpu-spot-c-001..cpu-spot-c-010",

"us-west-2d": "cpu-spot-d-001..cpu-spot-d-010",

},

},

Currently, availability zones are supported by Auto Scaler only for AWS. Auto Scaler ignores any
lack of capacity in the availability zones of other cloud providers.

/cm/local/apps/cm-scale/lib/*/site-packages/cmscale/config.py

8.4 Further cm-scale Configuration And Examples 489

8.4.11 Auto Scaler Statistics
Internal Auto Scaler metrics can be collected and visualized with BCM monitoring. The metrics can be
used to help debug some issues, or can be used to analyze how Auto Scaler works over longer periods
of time.

When statistics collection is enabled, Auto Scaler pushes its metrics to CMDaemon. The metric data
values are then accessible using cmsh and Base View.

Statistics collection can be enabled

• by enabling the option during Auto Scaler setup with cm-auto-scaler-setup. The option can be
enabled in the Auto Scaler base options screen (figure 8.3)
or

• by setting the collectstatistics parameter within the advanced settings of the scaleserver

role.

Example

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->advancedsettings]% set collectstatistics yes

[basecm11->configurationoverlay*[autoscaler*]->roles*[scaleserver*]->advancedsettings*]% commit

[basecm11->configurationoverlay[autoscaler]->roles[scaleserver]->advancedsettings]%

During Auto Scaler setup with cm-auto-scaler-setup, the AutoScaler standalone monitoring en-
tity is added. This is what is used for metrics aggregation and viewing:

Example

[basecm11->monitoring]% standalone

[basecm11->monitoring->standalone]% use autoscaler

[basecm11->monitoring->standalone[AutoScaler]]% latestmetricdata

Measurable Parameter Type Value Age State Info

---------------------------------- ------------ ------------ ---------- ---------- ---------- ----------

no_resources_workloads Workloads 4 24.1s

pending_workloads Workload 4 24.1s

pre_iteration_down_nodes Nodes 16 24.1s

pre_iteration_completely_up_nodes Nodes 16 24.1s

running_workloads Workload 2 24.1s

no_capacity_spot_requests eu-west-2a Nodes 2 24.1s

no_capacity_availability_zones Nodes 1 24.1s

[basecm11->monitoring->standalone[AutoScaler]]%

In Base View, the Auto Scaler metrics can be found, after collection has started, via the navigation
path:

Monitoring > Auto Scaler

The statistic metrics are divided into three classes: Actions, Nodes and Workloads:

1. Actions:

• assigned_categories: number of node category assignments performed by Auto Scaler

• cloned_nodes: number of nodes cloned by Auto Scaler

• terminated_nodes: number of nodes terminated by Auto Scaler

• spot_requests_terminations: number of spot instance requests terminated by Auto Scaler

• removed_nodes: number of nodes removed by Auto Scaler

• moved_to_overlays_nodes: number of nodes moved to overlays by Auto Scaler

• deleted_from_overlays_nodes: number of nodes deleted from overlays by Auto Scaler

490 NVIDIA Base Command Manager Auto Scaler

• drained_nodes: number of nodes drained by Auto Scaler

• undrained_nodes: number of nodes undrained by Auto Scaler

• started_nodes: number of nodes started (powered on) by Auto Scaler

• stopped_nodes: number of nodes stopped (powered off) by Auto Scaler

• shutdown_nodes: number of nodes shut down by Auto Scaler

• executed_prologs: number of prologs executed by Auto Scaler

• executed_epilogs: number of epilogs executed by Auto Scaler

• constrained_workloads: number of workloads (jobs, pods, ...) constrained by Auto Scaler

2. Nodes:

• pre_iteration_completely_up_nodes: number of nodes running (completely up) at the be-
ginning of each iteration

• pre_iteration_down_nodes: number of nodes in state down at the beginning of each itera-
tion

• pre_iteration_pending_nodes: number of pending nodes at the beginning of each iteration

• no_capacity_spot_requests: number of pending spot instance requests that could not be
fulfilled due to the lack of capacity per availability zone

• no_capacity_availability_zones: number of availability zones that nodes could not start
due to the lack of capacity

3. Workloads:

• not_allowed_workloads: number of workloads for which a start was not allowed

• no_resources_workloads: number of workloads for which a resources request could not be
satisfied

• pending_workloads: number of pending workloads

• running_workloads: number of running workloads

• failed_workloads: number of failed workloads

• unknown_workloads: number of workloads in an unknown state

9
Post-installation Software

Management
Introduction: What Is Post-installation Software Management?
After NVIDIA Base Command Manager has been installed, administrators are expected to manage and
update the distribution software and the cluster software as updates are packaged and made available
by the distribution and by the BCM software development team. Managing and updating means carry-
ing out software management actions such as installation, removal, updating, version checking, and so
on.

Security And Hardening
For security vulnerabilities in BCM packages, BCM support can be contacted directly (section 14.2).
Vulnerabilities that are part of the underlying distribution are dealt with by the distribution itself.

By default, BCM aims to keep the distribution unchanged from its original release.

Security updates: Security updates are normally handled by package managers.

• Security updates that the distributions provide as package updates are handled by updating the
distribution that underlies BCM.

• Security updates that BCM provides as package updates are handled by updating the BCM pack-
ages as usual.

In both cases the package managers (one of yum, zypper, or apt) are used to update the distribution
(one of RHEL/Rocky, SUSE, or Ubuntu) that underlies BCM, or to update the BCM packages.

Security changes outside of BCM package management are normally outside the scope of BCM sup-
port.

Hardening: Hardening the distribution can include the following actions:

• removing packages

• blocking off ports

• disabling input hardware (USB ports, keyboards, mice...) in software

• adding disk encryption

• configuring SELinux

• adding binaries hardened in some way

492 Post-installation Software Management

Hardening is often possible but is not performed by default because BCM aims to keep the distribution
as close to standard as possible.

Hardening can have unexpected side effects, including impacts on performance. Since hardening
always involves balancing performance, usability, and security, it is the cluster administrator’s responsi-
bility to decide what to harden. Any hardening measures outside of BCM software typically fall outside
the scope of BCM support.

An Aside About Upgrading The OS Or BCM
Upgrading from an earlier major release of the OS upon which BCM runs, to the next major release of
the OS (for example, RHEL8 to RHEL9) while keeping BCM as it is, is not supported due to the OS
dependencies that BCM has. If the OS is to be upgraded, then the recommendation is to install BCM
once again from scratch on the upgraded OS.

Upgrading packages is only possible within the existing major OS release or existing BCM release.
Upgrading and updating are often ambiguously used as synonyms:

• When the OS upgrades to the next major release—for example, when the operating system is up-
graded from RHEL8 to RHEL9—and the package is updated as part of that release, then updating
the package is called a package upgrade or a release upgrade.

• Within an operating system major release—for example, when the operating system is still at a
particular major version such as RHEL8 or RHEL9—updating a package is called a package update,
or somewhat confusingly, also called a package upgrade, with the latter term being used in the
context of it being the complement of a release upgrade.

Release upgrade packages are typically incompatible with packages from other releases, as many
system administrators typically discover early on in their careers when they try to put a package up-
date into a release upgrade, or the other way round. Even minor version package differences can be
incompatible, as shown by the documentation and policies explaining compatibility levels (https://
access.redhat.com/articles/rhel8-abi-compatibility, https://access.redhat.com/articles/

rhel9-abi-compatibility). Letting the package manager sort it all out is what the sensible cluster
administrator does.

Post-installation Software Management Typically Uses The Default Package Managers
Since BCM is built on top of an existing Linux distribution, the administrator should use the package
utilities that are specific for the distribution (such as YUM and rpm, APT and dpkg, or YaST and Zypper)
for software package management.

Packages managed by the distribution are hosted by distribution repositories. SUSE and RHEL dis-
tributions require the purchase of their license in order to access their repositories. The other distribu-
tions do not.

DGX OS, which is Ubuntu-based, relies on Ubuntu repositories. While BCM manuals cover much of
DGX OS management, package and release upgrades for DGX OS are covered in the dedicated DGX OS
documentation at

• https://docs.nvidia.com/dgx/dgx-os-7-user-guide/upgrading-the-os.htmlwhich covers up-
grading an existing DGX OS 7.

• https://docs.nvidia.com/dgx/dgx-os-7-user-guide/additional_software.html which cov-
ers upgrading other software on DGX OS 7.

Packages managed by BCM are hosted by the BCM repository. Access to the BCM repositories also
requires a license (Chapter 4 of the Installation Manual). Available packages for a particular BCM version
and distribution can be viewed via the package dashboard at https://support.brightcomputing.com/
packages-dashboard/.

https://access.redhat.com/articles/rhel8-abi-compatibility
https://access.redhat.com/articles/rhel8-abi-compatibility
https://access.redhat.com/articles/rhel9-abi-compatibility
https://access.redhat.com/articles/rhel9-abi-compatibility
https://docs.nvidia.com/dgx/dgx-os-7-user-guide/upgrading-the-os.html
https://docs.nvidia.com/dgx/dgx-os-7-user-guide/additional_software.html
https://support.brightcomputing.com/packages-dashboard/
https://support.brightcomputing.com/packages-dashboard/

9.1 NVIDIA Base Command Manager Packages, Their Naming Convention And Version 493

Software Outside Of Default Package Management
There may also be software that the administrator would like to install that is outside the default pack-
ages collection. These could be source files that need compilation, or packages in other repositories.

Software Image Management
A software image (section 2.1.2) is a filesystem that a node picks up from a provisioner (a head node or
a provisioning node) during provisioning so that the node can run as a linux system after provisioning.
A subtopic of software management on a cluster is software image management—the management of
software on a software image. By default, a node uses the same distribution as the head node for its base
image along with necessary minimal, cluster-mandated changes. A node may however deviate from the
default, and be customized by having software added to it in several ways.

Techniques Of Software Management Covered
This chapter covers the techniques of software management for the cluster.

Section 9.1 describes the naming convention for a BCM RPM or .deb package.
Section 9.2 describes how an RPM or .deb package is managed for the head node.
Section 9.3 describes how an RPM or .deb kernel package can be managed on a head node or image.
Section 9.4 describes how an RPM or .deb package can be managed on a software image.
Section 9.5 describes how a software other than an RPM or .deb package can be managed on a soft-

ware image.
Section 9.6 describes how custom software images are created that are completely independent of

the existing software image distribution and version.
Section 9.7 describes how multi-architecture and multi-distribution images can be created.

9.1 NVIDIA Base Command Manager Packages, Their Naming Convention
And Version

Like the distributions it runs on top of, BCM uses

• either .rpm packages, managed by RPM (RPM Package Manager) or Zypper (ZYpp package man-
ager)

• or .deb (Debian) packages, managed by APT (Advanced Package Tool)

For example, the cmdaemon package built by BCM has the following .rpm and .deb packages:

cmdaemon-HEAD-152061_cmHEAD_ec0ea0f4d1.x86_64.rpm # for Rocky8 and SUSE

cmdaemon_HEAD-152061-cmHEAD-ec0ea0f4d1_amd64.deb # for Ubuntu BCM9.2

The file name has the following structure:

package-version-revision_cmx.y_hash.architecture.rpm

and

package_version-revision-cmx.y-hash_architecture.deb

where:

• package (cmdaemon) is the name of the package

• version (HEAD) is the version number of the package

• revision (152061) is the revision number of the package

• cm is used to indicate it is a package built by BCM for the cluster manager

494 Post-installation Software Management

• x.y (HEAD) is the version of BCM for which the RPM was built

• hash (ec0ea0f4d1) is a hash, and is only present for BCM packages. It is used for reference by the
developers of BCM.

• architecture (x86_64 for RPMs or amd64 for APT) is the architecture for which the package was
built. The architecture name of x86_64 or amd64 refers the same 64-bit x86 physical hardware in
either case.

The differences in .rpm versus .deb package names are just some underbar/hyphen (_/-) changes,
the hash (only for BCM packages), and the architecture naming convention.

Among the distributions supported by BCM, only Ubuntu uses .deb packages. The rest of the distri-
butions use .rpm packages.

Querying The Packages
To check whether BCM or the distribution has provided a file that is already installed on the system, the
package it has come from can be found.

For RPM-based systems: rpm -qf can be used with the full path of the file:

Example

[root@basecm11 ~]# rpm -qf /usr/bin/zless

gzip-1.9-9.el8.x86_64

[root@basecm11 ~]# rpm -qf /cm/local/apps/cmd/sbin/cmd

cmdaemon-HEAD-146965_cmHEAD_e6f593b676.x86_64

In the example, /usr/bin/zless is supplied by the distribution, while /cm/local/apps/cmd/sbin/

cmd is supplied by BCM, as indicated by the “_cm” in the nomenclature.

For APT-based systems: A similar check can be done using dpkg -S to find the .deb package that
provided the file, and then dpkg -s on the package name to reveal further information:

Example

[root@basecm11:~# dpkg -S /cm/local/apps/cmd/etc/cmd.env

cmdaemon: /cm/local/apps/cmd/etc/cmd.env

[root@basecm11:~# dpkg -s cmdaemon

Package: cmdaemon

Status: install ok installed

Priority: optional

Section: devel

Installed-Size: 78631

Maintainer: Cluster Manager Development <dev@brightcomputing.com>

Architecture: amd64

Version: HEAD-152061-cmHEAD-ec0ea0f4d1

Provides: cmdaemon

...

As an aside, system administrators should be aware that the BCM version of a package is provided
and used instead of a distribution-provided version for various technical reasons. The most important
one is that it is tested and supported by BCM. Replacing the BCM version with a distribution-provided
version can result in subtle and hard-to-trace problems in the cluster, and support cannot be provided
for a cluster that is in such a state, although some guidance may be given in special cases.

More information about the RPM Package Manager is available at http://www.rpm.org, while APT
is documented for Ubuntu at http://manpages.ubuntu.com/manpages/.

/cm/local/apps/cmd/sbin/cmd
/cm/local/apps/cmd/sbin/cmd
http://www.rpm.org
http://manpages.ubuntu.com/manpages/

9.1 NVIDIA Base Command Manager Packages, Their Naming Convention And Version 495

9.1.1 The packages Command
BCM also provides the packages command in the device mode of cmsh. This should not be con-
fused with the packages command used by zypper. The packages command used by cmsh displays
an overview of the installed packages, independent of rpm or deb package management.

The -a|--all option can be used to list all the packages installed on a particular node:

Example

[basecm11]% device use node001

[basecm11->device[node001]]% packages -a

Node Type Name Version Arch Size Install date

-------- ------- ----------------- ------------------ -------- ------- --------------------

node001 deb accountsservice 0.6.45-1ubuntu1 amd64 440kB 2019/02/14 10:51:06

node001 deb acl 2.2.52-3build1 amd64 200kB 2019/02/14 10:51:19

node001 deb acpid 1:2.0.28-1ubuntu1 amd64 139kB 2019/02/14 10:51:19

node001 deb adduser 3.116ubuntu1 all 624kB 2019/02/14 10:49:53

...

The -c|--category option can be used to list all the packages installed in a node category:

Example

[basecm11]% device

[basecm11->device]% packages -a -c default

Node Type Name Version Arch Size Install date

-------- ------ ------------------ --------------------------- ------- --------------------

node001 deb accountsservice 0.6.45-1ubuntu1 amd64 440kB 2019/02/14 10:51:06

node001 deb acl 2.2.52-3build1 amd64 200kB 2019/02/14 10:51:19

...

node002 deb accountsservice 0.6.45-1ubuntu1 amd64 440kB 2019/02/14 10:51:06

node002 deb acl 2.2.52-3build1 amd64 200kB 2019/02/14 10:51:19

...

Running the -a option for many nodes can be user-unfriendly. That is because per node this com-
mand typically returns about 100KB of data. So, for a 1000 nodes this would output about 100MB and a
table with nearly a million lines.

When checking packages for many nodes, it is best to request the package by name. Multiple
-f|--find options can be used in the command line to display several packages.

Example

[basecm11]% device

[basecm11->device]% packages -c default -f cmdaemon

Node Type Name Version Release Arch Size ... Install date

-------- ----- -------- -------- ------------------------- ------- ------ --- -------------------

node001 rpm cmdaemon 10.0 157349_cm10.0_5f6db110aa x86_64 85MiB 2024/03/28 07:28:36

...

Further options, and examples, can be listed by running the help packages command within the
device mode of cmsh.

9.1.2 BCM Package Point Release Versions And The cm-package-release-info Command
The cm-package-release-info command displays a precise package release version (package version)
for each BCM package used in the cluster, and shows the BCM point release versions that should use
that package version.

496 Post-installation Software Management

Background Information On BCM Version Nomenclature
The cluster manager version is a release number with one decimal point—10.0 in the preceding example.
This is recorded in the file /etc/cm-release, and can also be seen in the output of the versioninfo

command:

[root@basecm11 ~]# cmsh -c "main; versioninfo"

Version Information

------------------- ------

Cluster Manager 10.0

...

The release number is the main way to refer to the software release version. It is a tag that is asso-
ciated with the whole collection of packages that is released as BCM. Using the release number for this
avoids confusion with the point release number. A point release number based on 10.0 is a numbering
sequence with two decimal points, and might look like:

10.23.09

Point releases are interim releases, based on the main release version, but with fixes and updates.
A point release based on 10.0 takes the format:

10.<YY>.<MM>

For example, for 10.23.09 of earlier, the .0 from 10.0 is dropped for convenience, the year 2023 is
indicated by 23, and the month of September is indicated by 09. Release numbers prior to 10.0 had other
point release formats.

One more addition to the point release number is a letter suffix, in lower case, alphabetical order.
This is typically for a “hotfix” release, where an existing point release is deemed to need an important
fix right away, instead of having the fix wait until it goes into the next point release. For example, if the
10.23.09 point release needs a new fix a day after its initial release, then the release is given the label:

10.23.09a

Using a package manager means knowing about point releases is typically unnecessary: Point re-
leases and other fixes for the release number may have dependencies. The package manager typically
resolves these issues by keeping BCM packages correctly updated within the major release number,
so that typically a cluster administrator does not need to track the exact point release. Referring to
a point release during regular cluster administration is therefore typically avoided. Indeed, referring
to a specific point release is often inappropriate, as discussed in https://kb.brightcomputing.com/

knowledge-base/how-to-tell-what-bcm-version-are-you-running/, where it is pointed out that
different packages may be updated to different point releases.

Using The cm-package-release-info Command To Get A BCM Package Point Release Version
Yet, on some occasions it may be necessary to know the exact point release versions available for BCM
packages. For example, in order to override dependencies if customizing a cluster in a non-standard
way. Usually the point release information is needed for the main package, cmdaemon. Running the
cm-package-release-info command displays the version of a BCM package, and for which point re-
leases it is available for the current release number of the cluster.

Example

[root@basecm11 ~]# cm-package-release-info

Name Version Release(s)

--------------------- -------- ---

Lmod 100094 10.24.03, 10.24.01, 10.23.09a, 10.23.10, 10.23.11, 10.23.12, 10.23.09

atftp-server 619 10.24.03

base-view 106987 10.24.03

https://kb.brightcomputing.com/knowledge-base/how-to-tell-what-bcm-version-are-you-running/
https://kb.brightcomputing.com/knowledge-base/how-to-tell-what-bcm-version-are-you-running/

9.2 Managing Packages On The Head Node 497

blacs-openmpi-gcc-64 116 10.24.03, 10.24.01, 10.23.09a, 10.23.10, 10.23.11, 10.23.12, 10.23.09

blas-gcc-64 87 10.24.03, 10.24.01, 10.23.09a, 10.23.10, 10.23.11, 10.23.12, 10.23.09

bonnie++ 83 10.24.03, 10.24.01, 10.23.09a, 10.23.10, 10.23.11, 10.23.12, 10.23.09

...

A package can be specified with the -f option:

Example

[root@basecm11 ~]# cm-package-release-info -f cmdaemon,cluster-tools

Name Version Release(s)

------------- -------- ----------

cluster-tools 119838 10.23.11

cmdaemon 156713 10.23.10

9.2 Managing Packages On The Head Node
9.2.1 Managing RPM Or .deb Packages On The Head Node
Once BCM has been installed, distribution packages and BCM software packages are conveniently man-
aged using the yum, zypper or apt repository and package managers. The zypper tool is recommended
for use with the SUSE distribution, the apt utility is recommended for use with Ubuntu, and yum is
recommended for use with the other distributions that BCM supports. YUM is not set up by default
in SUSE, and it is better not to install and use it with SUSE unless the administrator is familiar with
configuring YUM.

Listing Packages On The Head Node With YUM and Zypper
For YUM and zypper, the following commands list all available packages:

yum list

or
zypper refresh; zypper packages

For zypper, the short command option pa can also be used instead of packages.

Listing Packages On The Head Node With APT
For Ubuntu, the apt-cache command is used to view available packages. To generate the cache used by
the command, the command:

apt-cache gencaches

can be run.
A verbose list of available packages can then be seen by running:

apt-cache dumpavail

It is usually more useful to use the search option to apt-cache to search for the package with a regex:

apt-cache search <regex>

A similar, but slightly more verbose option is the search option for apt:
apt search <regex>

498 Post-installation Software Management

Updating/Installing Packages On The Head Node
To install a new package called <package name> into a distribution, the corresponding package managers
are used as follows:

yum install <package name>
zypper in <package name> #for SLES

apt install <package name> #for Ubuntu

Installed packages can be updated to the latest by the corresponding package manager as follows:

yum update

zypper refresh; zypper up #refresh recommended to update package metadata

apt update; apt upgrade #update recommended to update package metadata

An aside on the differences between the update, refresh/up, and update/upgrade options of the
package managers: The update option in YUM by default installs any new packages. On the other
hand, the refresh option in zypper, and the update option in APT only update the meta-data (the
repository indices). Only if the meta-data is up-to-date will an update via zypper, or an upgrade via apt

install any newly-known packages. For convenience, in the BCM manuals, the term update is used in
the YUM sense in general—that is, to mean including the installation of new packages—unless other-
wise stated.

The BCM repository has YUM and zypper repositories of its packages at:

http://updates.brightcomputing.com/yum

and updates are fetched by YUM and zypper for BCM packages from there by default, to overwrite
older package versions by default.

For Ubuntu, the BCM .deb package repositories are at:

http://updates.brightcomputing.com/deb

Accessing the repositories manually (i.e. not using yum, zypper, or apt) requires a username and
password. Authentication credentials can be provided upon request by opening a support ticket (sec-
tion 14.2).

Cleaning Package Caches On The Head Node
The repository managers use caches to speed up their operations. Occasionally these caches may need
flushing to clean up the index files associated with the repository. This can be done by the appropriate
package manager with:

yum clean all

zypper clean -a #for SUSE

apt-get clean #for Ubuntu

Signed Package Verification
As an extra protection to prevent BCM installations from receiving malicious updates, all BCM packages
are signed with the Bright Computing GPG public key (0x5D849C16), installed by default in /etc/pki/

rpm-gpg/RPM-GPG-KEY-cm for Red Hat and derivaties. The Bright Computing public key is also listed
in Appendix B.

The first time YUM or zypper are used to install updates, the user is asked whether the Bright Com-
puting public key should be imported into the local repository packages database. Before answering
with a “Y”, yum users may choose to compare the contents of /etc/pki/rpm-gpg/RPM-GPG-KEY-cm with
the key listed in Appendix B to verify its integrity. Alternatively, the key may be imported into the local
RPM database directly, using the following command:

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-cm

/etc/pki/rpm-gpg/RPM-GPG-KEY-cm
/etc/pki/rpm-gpg/RPM-GPG-KEY-cm
/etc/pki/rpm-gpg/RPM-GPG-KEY-cm

9.3 Kernel Management On A Head Node Or Image 499

With APT, the BCM keyring is already imported into /etc/apt/trusted.gpg.d/

brightcomputing-archive-cm.gpg if the cm-config-apt package, provided by the Bright Com-
puting repository, has been installed. The cm-config-apt package is installed by default for the Ubuntu
edition of BCM.

Third Party Packages
The third party packages in the following list may be repackaged for BCM for installation purposes. The
packages are described in Chapter 7 of the Installation Manual:

• Modules (section 7.1)

• Shorewall (section 7.2)

• GCC (section 7.3)

Exclusion of packages on the head node can be carried out as explained in section 9.3.2, where the
kernel package is used as an example for exclusion.

9.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm Packages
Sometimes a package is not packaged as an RPM or .deb package for BCM or for the distribution. In
that case, the software can usually be treated as for installation onto a standard distribution. There may
be special considerations on placement of components that the administrator may feel appropriate due
to the particulars of a cluster configuration.

For example, for compilation and installation of the software, some consideration may be made
of the options available on where to install parts of the software within the default shared filesys-
tem. A software may have a compile option, say --prefix, that places an application <application>
in a directory specified by the administrator. If the administrator decides that <application> should be
placed in the shared directory, so that everyone can access it, the option could then be specified as:
“--prefix=/cm/shared/apps/<application>”.

Other commonly provided components of software for the applications that are placed in shared may
be documentation, licenses, configuration settings, and examples. These may be placed in the directories
/cm/shared/docs, /cm/shared/licenses, /cm/shared/etc, and /cm/shared/examples. The placement
may be done with a compiler option, or, if that is not done or not possible, it could be done by modifying
the placement by hand later. It is not obligatory to do the change of placement, but it helps with cluster
administration to stay consistent as packages are added.

Module files (section 2.2 of this manual, and 7.1 of the Installation Manual) may sometimes be pro-
vided by the software, or created by the administrator to make the application work for users easily
with the right components. The directory /cm/shared/modulefiles is recommended for module files
to do with such software.

To summarize the above considerations on where to place software components, the directories un-
der /cm/shared that can be used for these components are:

/cm/shared/

|-- apps

|-- docs

|-- etc

|-- examples

|-- licenses

`-- modulefiles

9.3 Kernel Management On A Head Node Or Image
Care should be taken when updating a head node or a software image. This is particularly true when
custom kernel modules compiled against a particular kernel version are being used.

/etc/apt/trusted.gpg.d/brightcomputing-archive-cm.gpg
/etc/apt/trusted.gpg.d/brightcomputing-archive-cm.gpg
/cm/shared/docs
/cm/shared/licenses
/cm/shared/etc
/cm/shared/examples
/cm/shared/modulefiles

500 Post-installation Software Management

A package can be managed in a software image and the image deployed to nodes. A careful ad-
ministrator typically clones a copy of a working image that is known to work, before modifying the
image.

9.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node
A standard distribution kernel is treated almost like any other package in a distribution.

This means that:

• For head nodes, installing a standard kernel is done according to the normal procedures of man-
aging a package on a head node (section 9.2).

• For regular nodes, installing a standard distribution kernel is done according to the normal proce-
dures of managing an package inside an image, via a changed root (chroot) directory (section 9.4),
but with some special aspects that are discussed in this section.

When a kernel is updated or reinstalled (section 9.3.3), kernel-specific drivers, such as OFED drivers
may need to be updated or reinstalled. OFED driver installation details are given in section 10 of the
Installation Manual.

Kernel Package Name Formats
For RHEL, individual kernel package names take a form such as:

kernel-3.10.0-327.3.1.el7.x86_64.rpm

The actual one suited to a cluster varies according to the distribution used. RPM Packages with names
that begin with “kernel-devel-” are development packages that can be used to compile custom kernels,
and are not required when installing standard distribution kernels.

For Ubuntu, individual Linux kernel image package names take a form such as:
linux-image-*.deb

or
linux-signed-image-*.deb

Running apt-cache search �linux | grep 'kernel image' shows the various packaged kernel
images in the distribution.

Other Extra Considerations
When installing a kernel, besides the chroot steps of section 9.4, extra considerations for kernel packages
are:

• The kernel must also be explicitly set in CMDaemon (section 9.3.3) before it may be used by the
regular nodes.

• If using the chroot method to install the kernel rather than the cm-chroot-sw-img method (sec-
tion 9.4.1), some other warnings to do with missing /proc paths may appear. For RHEL and
derivatives, these warnings can be ignored.

• The ramdisk of a regular node must be regenerated using the createramdisk command (sec-
tion 9.4.3).

• If the cluster is in a high availability configuration, then installing a new kernel on to the active
head node may in some edge cases stop its network interface, and trigger a failover. It is therefore
usually wiser to make the change on the passive head node first, or to disable automatic failover,
before carrying out a change that could initiate a failover.

As is standard for Linux, both head or regular nodes must be rebooted to use the new kernel.

9.3 Kernel Management On A Head Node Or Image 501

9.3.2 Excluding Kernels And Other Packages From Updates
Specifying A Kernel Or Other Package For Update Exclusion
Sometimes it may be desirable to exclude the kernel from updates on the head node.

• When using yum, to prevent an automatic update of a package, the package is listed after using
the --exclude flag. So, to exclude the kernel from the list of packages that should be updated, the
following command can be used:

yum --exclude kernel update

To exclude a package such as kernel permanently from all YUM updates, without having to spec-
ify it on the command line each time, the package can instead be excluded inside the repository
configuration file. YUM repository configuration files are located in the /etc/yum.repos.d direc-
tory, and the packages to be excluded are specified with a space-separated format like this:

exclude = <package 1> <package 2> ...

• The zypper command can also carry out the task of excluding the kernel package from getting
updated when updating. To do this, the kernel package is first locked (prevented from change)
using the addlock command, and the update command is run. Optionally, the kernel package is
unlocked again using the removelock command:

zypper addlock kernel

zypper update

zypper removelock kernel #optional

• One APT way to upgrade the software while excluding the kernel image package is to first update
the system, then to mark the kernel as a package that is to be held, and then to upgrade the system.
Optionally, after the upgrade, the hold mark can be removed:

apt update

apt-mark hold <linux-image-version>
apt upgrade

apt-mark unhold <linux-image-version> #optional

The complementary way to carry out an upgrade in APT while holding the kernel back, is to use
pinning. Pinning can be used to set dependency priorities during upgrades. Once set, it can hold a
particular package back while the rest of the system upgrades.

Specifying A Repository For Update Exclusion
Sometimes it is useful to exclude an entire repository from an update on the head node. For example,
the administrator may wish to exclude updates to the parent distribution, and only want updates for the
cluster manager to be pulled in. In that case, in RHEL-derivatives a construction such as the following
may be used to specify that only the repository IDs matching the glob cm* are used, from the repositories
in /etc/yum.repos.d/:

[root@basecm11 ~]# yum repolist

...

122 packages excluded due to repository priority protections

repo id repo name status

base/7/x86_64 CentOS-7 - Base 10,067+30

cm-rhel7-HEAD/x86_64 CM HEAD for Red Hat Enterprise Linux 7 10,949+56

epel/x86_64 Extra Packages for Enterprise Linux 7 - x86_64 13,324+92

extras/7/x86_64 CentOS-7 - Extras 301+3

updates/7/x86_64 CentOS-7 - Updates 332

repolist: 34,973

[root@basecm11 ~]# yum --disablerepo=* --enablerepo=cm* update

/etc/yum.repos.d
/etc/yum.repos.d/

502 Post-installation Software Management

In Ubuntu, repositories can be added or removed by editing the repository sources under /etc/

apt/sources.list.d/. There is also the apt edit-sources command, which, unsurprisingly, also ed-
its the repository sources. The add-apt-repository command (man add-apt-repository.1) edits the
repository sources by line. Running add-apt-repository -h shows options and examples.

9.3.3 Updating A Kernel In A Software Image
A kernel is typically updated in the software image by carrying out a package installation using the
chroot environment (section 9.4), or specifying a relative root directory setting.

Package dependencies can sometimes prevent the package manager from carrying out the update,
for example in the case of OFED packages (Chapter 10 of the Installation Manual). In such cases, the
administrator can specify how the dependency should be resolved.

Parent distributions are by default configured, by the distribution itself, so that only up to 3 kernel
images are kept when installing a new kernel with the package manager. However, in a BCM cluster,
this default distribution value is overridden by a default BCM value, so that kernel images are never
removed during YUM updates, or apt upgrade, by default.

For a software image, if the kernel is updated by the package manager, then the kernel is not used
on reboot until it is explicitly enabled with either Base View or cmsh.

• To enable it using Base View, the Kernel version entry for the software image should be set. This
can be accessed via the navigation path Provisioning > Software images > Edit > Settings >
Kernel version (figure 9.1).

Figure 9.1: Updating A Software Image Kernel With Base View

• To enable the updated kernel from cmsh, the softwareimage mode is used. The kernelversion

property of a specified software image is then set and committed:

/etc/apt/sources.list.d/
/etc/apt/sources.list.d/

9.3 Kernel Management On A Head Node Or Image 503

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage

[basecm11]->softwareimage% use default-image

[basecm11->softwareimage[default-image]]% set kernelversion 3.10.0-327.3.1.el7.x86_64

[basecm11->softwareimage*[default-image*]]% commit -w

Tab-completion suggestions for the set kernelversion command will display the available values
for the kernel version.

9.3.4 Setting Kernel Options For Software Images
A standard kernel can be booted with special options that alter its functionality. For example, a ker-
nel can boot with apm=off, to disable Advanced Power Management, which is sometimes useful as a
workaround for nodes with a buggy BIOS that may crash occasionally when it remains enabled.

In Base View, to enable booting with this kernel option setting, the navigation path Provisioning >
Software images > Edit > Settings > Kernel parameters (figure 9.1) is used to set the kernel param-
eter to apm=off for that particular image.

In cmsh, the equivalent method is to modify the value of “kernel parameters” in softwareimage

mode for the selected image:

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage

[basecm11]->softwareimage% use default-image

[basecm11->softwareimage[default-image]]% append kernelparameters " apm=off"

[basecm11->softwareimage*[default-image*]]% commit

Often kernel options load up modules and their parameters. Making module loading persist after
reboot and setting module loading order is covered in section 5.3.2

Some kernel options may require changes to be made in the BIOS settings in order to function.

9.3.5 Kernel Driver Modules
BCM provides some packages which install new kernel drivers or update kernel drivers. In RPM-
based distributions, such packages generally require the kernel-devel package. In this section, the
kernel-devel-check utility is first described, followed by the various drivers that BCM provides.

Kernel Driver Modules: kernel-devel-check Compilation Check
For RPM, the distribution’s kernel-devel package is required to compile kernel drivers for its kernel.
It must be the same version and release as the kernel running on the node. For APT, the linux-header

package corresponding to the kernel image is used.
In RPM-based distributions, to check the head node and software images for the installation status

of the kernel-devel package, the BCM utility kernel-devel-check is run from the head node:

Example

[root@mycluster ~]# kernel-devel-check

Head node: mycluster

No kernel development directories found, probably no kernel development package installed.

package kernel-devel-3.10.0-957.1.3.el7.x86_64 is not installed

Kernel development package kernel-devel-3.10.0-957.1.3.el7.x86_64 not found

If needed, try to install the kernel development package with:

yum install kernel-devel-3.10.0-957.1.3.el7.x86_64

504 Post-installation Software Management

Software image: default-image

No kernel development directories found, probably no kernel development package installed.

package kernel-devel-3.10.0-957.1.3.el7.x86_64 is not installed

Kernel development package kernel-devel-3.10.0-957.1.3.el7.x86_64 not found

If needed, try to install the kernel development package with:

chroot /cm/images/default-image yum install kernel-devel-3.10.0-957.1.3.el7.x86_64

As suggested by the output of kernel-devel-check, running a command on the head node such as:

[root@mycluster ~]# chroot /cm/images/default-image1 yum install \

kernel-devel-3.10.0-957.1.3.el7.x86_64

installs a kernel-devel package, to the software image called default-image1 in this case. The package
version suggested corresponds to the kernel version set for the image, rather than necessarily the latest
one that the distribution provides.

Kernel Driver Modules: Improved Intel Wired Ethernet Drivers
Improved Intel wired Ethernet drivers—what they are: The standard RHEL and SLES distributions
provide Intel wired Ethernet driver modules as part of the kernel they provide. BCM provides an im-
proved version of the drivers with its own intel-wired-ethernet-drivers package. The package con-
tains more recent versions of the Intel wired Ethernet kernel drivers: e1000, e1000e, igb, igbvf, ixgbe
and ixgbevf. They often work better than standard distribution modules when it comes to performance,
features, or stability.

Improved Intel wired Ethernet drivers—replacement mechanism: The improved drivers can be in-
stalled on all nodes.

For head nodes, the standard Intel wired Ethernet driver modules on the hard drive are overwritten
by the improved versions during package installation. Backing up the standard driver modules before
installation is recommended, because it may be that some particular hardware configurations are unable
to cope with the changes, in which case reverting to the standard drivers may be needed.

For regular nodes, the standard distribution wired Ethernet drivers are not overwritten into the
provisioner’s software image during installation of the improved drivers package. Instead, the standard
driver modules are removed from the kernel and the improved modules are loaded to the kernel during
the init stage of boot.

For regular nodes in this “unwritten” state, removing the improved drivers package from the soft-
ware image restores the state of the regular node, so that subsequent boots end up with a kernel running
the standard distribution drivers from on the image once again. This is useful because it allows a very
close-to-standard distribution to be maintained on the nodes, thus allowing better distribution support
to be provided for the nodes.

If the software running on a fully-booted regular node is copied over to the software image, for ex-
ample using the “Grab to image” button (section 9.5.2), this will write the improved driver module into
the software image. Restoring to the standard version is then no longer possible with simply removing
the improved drivers packages. This makes the image less close-to-standard, and distribution support
is then less easily obtained for the node.

Thus, after the installation of the package is done on a head or regular node, for every boot from the
next boot onward, the standard distribution Intel wired Ethernet drivers are replaced by the improved
versions for fully-booted kernels. This replacement occurs before the network and network services
start. The head node simply boots from its drive with the new drivers, while a regular node initially
starts with the kernel using the driver on the software image, but then if the driver differs from the
improved one, the driver is unloaded and the improved one is compiled and loaded.

9.4 Managing A Package In A Software Image And Running It On Nodes 505

Improved Intel wired Ethernet drivers—installation: The drivers are compiled on the fly on the reg-
ular nodes, so a check should first be done that the kernel-devel package is installed on the regular
nodes (section 9.3.5).

If the regular nodes have the kernel-devel package installed, then the following yum commands are
issued on the head node, to install the package on the head node and in the default-image:

Example

[root@mycluster ~]# yum install intel-wired-ethernet-drivers

[root@mycluster ~]# chroot /cm/images/default-image

[root@mycluster /]# yum install intel-wired-ethernet-drivers

For SUSE, the equivalent zypper commands are used (“zypper in” instead of “yum install”).

Kernel Driver Modules: CUDA Driver Installation
CUDA drivers are drivers the kernel uses to manage GPUs. These are compiled on the fly for nodes
with GPUs in BCM. The details of how this is done is covered in the CUDA software section (section 9
of the Installation Manual).

Kernel Driver Modules: OFED Stack Installation
By default, the distribution provides the OFED stack used by the kernel to manage the InfiniBand or
RDMA interconnect. Installing a BCM repository OFED stack to replace the distribution version is
covered in section 10 of the Installation Manual. Some guidance on placement into initrd for the purpose
of optional InfiniBand-based node provisioning is given in section 5.3.3.

9.4 Managing A Package In A Software Image And Running It On Nodes
A package can be managed in a software image and the image deployed to nodes. A careful adminis-
trator typically clones a copy of a working image that is known to work, before modifying the image.

9.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which The
Packages Are Deployed

Managing packages (including the kernel) inside a software image is most easily done while on the head
node, using a “change root” (chroot) mechanism. The easiest way to carry out the chroot mechanism
in BCM is to use a wrapper provided by BCM, cm-chroot-sw-img, which works with all distributions.

The same can be carried out more laboriously using the distribution package managers, such as rpm,
yum, zypper, or apt, by using the associated chroot package manager option, or invoking chroot as a
standalone command.

Change Root As An Option In The Package Manager Command
Using the rpm command: The rpm command supports the --root flag. To install an RPM package
inside the default software image while in the head node environment, using the repositories of the
head node, the command can be used as follows:

Example

rpm --root /cm/images/default-image -ivh /tmp/libxml2-2.6.16-6.x86_64.rpm

Using the yum command: The yum command allows more general updates with a change root option.
For example, all packages in the default image can be updated using yum for RHEL and derivatives with:

Example

yum --installroot=/cm/images/default-image update #for RHEL variants

A useful option to restrict the version to which an image is updated, is to use the option
--releasever. For example, to allow only updates up to RHEL9.1, the command in the preceding
example would have --releasever=9.1 appended to it.

506 Post-installation Software Management

Using the zypper command: For SLES, zypper can be used as follows to update the image:

Example

zypper --root /cm/images/default-image up #for SLES

Change Root With chroot, Then Running The Package Manager Commands
If the repositories used by the software image are the same as the repositories used by the head node,
then the chroot command can be used instead of the --installroot/--root options to get the same
result as the package manager options. That is, the same result is accomplished by first chrooting
into an image, and subsequently executing the rpm, yum, or zypper commands without --root or
--installroot arguments. Thus:

For RHEL and derivatives: For YUM-based update, running yum update is recommended to update
the image, after using the chroot command to reach the root of the image:

Example

[root@basecm11 ~]# chroot /cm/images/default-image

[root@basecm11 /]# yum update #for RHEL variants

...updates happen...
[root@basecm11 /]# exit #get out of chroot

For SLES: For SLES, running zypper up is recommended to update the image, after using the chroot

command to reach the root of the image:

Example

basecm11:~# chroot /cm/images/default-image

basecm11.cm.cluster:/ # zypper up #for SLES

...updates happen...
basecm11.cm.cluster:/ # exit #get out of chroot

For Ubuntu: For Ubuntu and APT, for package installation into the software image, there is often a
need for the /proc, /sys, /dev, and perhaps other directories to be available within the chroot jail.
Additionally, the /proc namespace used should not be that of the head node due to namespace issues
that affect decision-making in some of the pre- and post-installation script bundled with the package.

Pre-configuring all this with bind mounting before going into the chrooted filesystem is a little te-
dious. Therefore the BCM utility, cm-chroot-sw-img, is strongly recommended to take care of this.

Thus, for Ubuntu, if the cluster administrator would like to run apt update; apt upgrade to up-
date the image, then the recommended way to do it is to start the process with the cm-chroot-sw-img

command:

Example

root@basecm11:~# cm-chroot-sw-img /cm/images/default-image

...messages indicate that the special directories have been mounted automatically, and a chroot jail has been entered...
root@basecm11:/# apt update; apt upgrade #for Ubuntu

...An upgrade session runs in the image root. Some administrator inputs may be needed...
root@basecm11:/# exit #get out of chroot

...messages indicate that the special directories have been unmounted automatically...

The cm-chroot-sw-img wrapper is less needed in other distributions, with yum and zypper instead of
apt. This is because the namespace issues are not so serious in with those other distributions. However
even in those other distributions, it is cleaner to use the wrapper.

9.4 Managing A Package In A Software Image And Running It On Nodes 507

Excluding Packages And Repositories From The Image
Sometimes it may be desirable to exclude a package or a repository from an image.

• If using yum --installroot, then to prevent an automatic update of a package, the package is
listed after using the --exclude flag. For example, to exclude the kernel from the list of packages
that should be updated, the following command can be used:

yum --installroot=/cm/images/default-image --exclude kernel update

To exclude a package such as kernel permanently from all YUM updates, without having to spec-
ify it on the command line each time, the package can instead be excluded inside the repository
configuration file of the image. YUM repository configuration files are located in the /cm/images/
default-image/etc/yum.repos.d directory, and the packages to be excluded are specified with a
space-separated format like this:

exclude = <package 1> <package 2> ...

• The zypper command can also carry out the task of excluding a package from getting updated
when during update. To do this, the package is first locked (prevented from change) using the
addlock command, then the update command is run, and finally the package is unlocked again
using the removelock command. For example, for the kernel package:

zypper --root /cm/images/default-image addlock kernel

zypper --root /cm/images/default-image update

zypper --root /cm/images/default-image removelock kernel

• For Ubuntu, the apt-mark hold command can be used to exclude a package. This is described in
the particular case of excluding the kernel package earlier on, in section 9.3.2.

• Sometimes it is useful to exclude an entire repository from an update to the image. For example,
the administrator may wish to exclude updates to the base distribution (the distribution packages
used on the node, without the BCM packages), and only want BCM updates to be pulled into the
image. In that case, a construction like the following may be used to specify that, for example, from
the repositories listed in /cm/images/default-image/etc/yum.repos.d/, only the repositories
matching the pattern cm* are used:

[root@basecm11 ~]# cd /cm/images/default-image/etc/yum.repos.d/

[root@basecm11 yum.repos.d]# yum --installroot=/cm/images/defaul\
t-image --disablerepo=* --enablerepo=cm* update

• For Ubuntu, excluding a repository can be carried out by removing the repository under /etc/

apt/sources.list.d/. Slightly handier may be to use the add-apt-repository command, or the
apt edit-sources command.

9.4.2 Installing From Head Into The Image: Updating The Node
If the images are in place, then the nodes that use those images cannot run those images until they have
the changes placed on the nodes. Rebooting the nodes that use the software images is a straightforward
way to have those nodes start up with the new images. Alternatively, the nodes can usually simply be
updated without a reboot, using imageupdate (section 5.6), if no reboot is required by the underlying
Linux distribution.

/cm/images/default-image/etc/yum.repos.d
/cm/images/default-image/etc/yum.repos.d
/cm/images/default-image/etc/yum.repos.d/
/etc/apt/sources.list.d/
/etc/apt/sources.list.d/

508 Post-installation Software Management

9.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root, yum
--installroot Or chroot

• The update process on an image, when using YUM, zypper, or APT, will fail to start if the image is
being provisioned by a provisioner at the time. The administrator can either wait for provisioning
requests to finish, or can ensure no provisioning happens by locking the image (section 5.4.7),
before running the update process. The image can then be updated. The administrator normally
unlocks the image after the update, to allow image maintenance by the provisioners again.

Example

[root@basecm11 ~]# cmsh -c "softwareimage lock default-image"

[root@basecm11 ~]# yum --installroot /cm/images/default-image update

[root@basecm11 ~]# cmsh -c "softwareimage unlock default-image"

• The rpm --root or yum --installroot command can fail if the versions between the head node
and the version in the software image differ significantly. For example, installation from a RHEL8
head node to a RHEL9 software image is not possible with those commands, and can only be
carried out with chroot.

• While installing software into a software image with an rpm --root, yum --installroot or with
a chroot method is convenient, there can be issues if daemons start up in the image, or if the
distribution installation scripts exit with errors due to being in an image environment rather than
a real instance.

For example, installation scripts that stop and re-start a system service during a package instal-
lation may successfully start that service within the image’s chroot jail and thereby cause related,
unexpected changes in the image. Pre- and post- (un)install scriptlets that are part of RPM or APT
packages may cause similar problems.

BCM’s RPM and .deb packages are designed to install under chroot without issues. However
packages from other repositories may cause the issues described. To deal with that, the cluster
manager runs the chrootprocess health check, which alerts the administrator if there is a daemon
process running in the image. The chrootprocess also checks and kills the process if it is a crond

process.

• For some package updates, the distribution package management system attempts to modify the
ramdisk image. This is true for kernel updates, many kernel module updates, and some other
packages. Such a modification is designed to work on a normal machine. For a regular node on a
cluster, which uses an extended ramdisk, the attempt does nothing.

In such cases, a new ramdisk image must nonetheless be generated for the regular nodes, or the
nodes will fail during the ramdisk loading stage during start-up (section 5.8.4).

The ramdisk image for the regular nodes can be regenerated manually, using the createramdisk

command (section 5.3.2).

• Trying to work out what is in the image from under chroot must be done with some care.

For example, under chroot, running “uname -a” returns the kernel that is currently running—
that is the kernel outside the chroot. This is typically not the same as the kernel that will load
on the node from the filesystem under chroot. It is the kernel in the filesystem under chroot that
an unwary administrator may wrongly expect to detect on running the uname command under
chroot.

To find the kernel version that is to load from the image, the software image kernel version prop-
erty (section 9.3.3) can be inspected using the cluster manager with:

Example

cmsh -c "softwareimage; use default-image; get kernelversion"

9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 509

9.4.4 Managing A Package In The Node-Installer Image
A special software image is the node-installer image. The node-installer image was introduced in
NVIDIA Base Command Manager version 9.0, to make multiarch (section 9.7) possible.

The node-installer image is an image that, unsurprisingly, contains the node-installer (section 5.4).
The default /cm/node-installer tree is a standalone image for that architecture. It requires updating
just like the regular software image. So, for example, in YUM, the entire tree can be updated with:

chroot /cm/node-installer yum update

or

yum --installroot=/cm/node-installer update

while a particular package inside the image, such as util-linux, could be installed with:

yum --installroot=/cm/node-installer install util-linux

Updating the node-installer is recommended whenever there are updates available, in order to fix
possible bugs that might affect the node-installer operations.

9.5 Managing Non-RPM Software In A Software Image And Running It On
Nodes

Sometimes, packaged software is not available for a software image, but non-packaged software is. This
section describes the installation of non-packaged software onto a software image in these two cases:

1. copying only the software over to the software image (section 9.5.1)

2. placing the software onto the node directly, configuring it until it is working as required, and
syncing that back to the software image using BCM’s special utilities (section 9.5.2)

In both cases, before making changes, a careful administrator typically clones a copy of a working
image that is known to work, before modifying the image.

As a somewhat related aside, completely overhauling the software image, including changing the
base files that distinguish the distribution and version of the image is also possible. How to manage that
kind of extreme change is covered separately in section 9.6.

However, this current section (9.5) is about modifying the software image with non-RPM software
while staying within the framework of an existing distribution and version.

In all cases of installing software to a software image, it is recommended that software components be
placed under appropriate directories under /cm/shared (which is actually outside the software image).

So, just as in the case for installing software to the head node in section 9.2.2, appropriate software
components go under:

/cm/shared/

|-- apps

|-- docs

|-- examples

|-- licenses

`-- modulefiles

9.5.1 Managing The Software Directly On An Image
The administrator may choose to manage the non-packaged software directly in the correct location on
the image.

For example, the administrator may wish to install a particular software to all nodes. If the software
has already been prepared elsewhere and is known to work on the nodes without problems, such as for

510 Post-installation Software Management

example library dependency or path problems, then the required files can simply be copied directly into
the right places on the software image.

The chroot command may also be used to install non-packaged software into a software image. This
is analogous to the chroot technique for installing packages in section 9.4:

Example

cd /cm/images/default-image/usr/src

tar -xvzf /tmp/app-4.5.6.tar.gz

chroot /cm/images/default-image

cd /usr/src/app-4.5.6

./configure --prefix=/usr

make install

Whatever method is used to install the software, after it is placed in the software image, the change
can be implemented on all running nodes by running the updateprovisioners (section 5.2.4) and
imageupdate (section 5.6.2) commands.

9.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image
Why Sync Node-To-Image?
Sometimes, typically if the software to be managed is more complex and needs more care and testing
than might be the case in section 9.5.1, the administrator manages it directly on a node itself, and then
makes an updated image from the node after it is configured, to the provisioner.

For example, the administrator may wish to install and test an application from a node first before
placing it in the image. Many files may be altered during installation in order to make the node work
with the application. Eventually, when the node is in a satisfactory state, and possibly after removing
any temporary installation-related files on the node, a new image can be created, or an existing image
updated.

Administrators should be aware that until the new image is saved, the node loses its alterations and
reverts back to the old image on reboot.

The node-to-image sync can be seen as the converse of the image-to-node sync that is done using
imageupdate (section 5.6.2).

The node-to-image sync discussed in this section is done using the Grab to image menu option
from Base View, or using the “grabimage” command with appropriate options in cmsh. The sync auto-
matically excludes network mounts and parallel filesystems such as Lustre and GPFS, but includes any
regular disk mounted on the node itself.

Some words of advice and a warning are in order here

• The cleanest, and recommended way, to change an image is to change it directly in the node image,
typically via changes within a chroot environment (section 9.5.1).

• Changing the deployed image running on the node can lead to unwanted changes that are not
obvious. While many unwanted changes are excluded because of the excludelistgrab* lists
during a node-to-image sync, there is a chance that some unwanted changes do get captured.
These changes can lead to unwanted or even buggy behavior. The changes from the original
deployed image should therefore be scrutinized with care before using the new image.

• For scrutiny, the bash command:

vimdiff <(cd image1; find . | sort) <(cd image2; find . | sort)

run from /cm/images/ shows the changed files for image directories image1 and image2, with
uninteresting parts folded away. The <(commands) construction is called process substitution, for
administrators unfamiliar with this somewhat obscure technique.

https://www.gnu.org/software/bash/manual/html_node/Process-Substitution.html

9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes 511

Node-To-Image Sync Using Base View
In Base View, the software on the running node can be saved to an image. To do this for a particular
node, for example, node001, the Grab to image screen options can be navigated to via: Devices >
Nodes[node001] > Actions > Software image > Grab to image > options (figures 9.2 and 9.3):

Figure 9.2: Synchronizing node-to-image: accessing Grab to image

Figure 9.3: Synchronizing node-to-image: screen options for Grab to image

In the Grab to image screen (figure 9.3):

1. Current image can be selected. This is the image that the running node was provisioned from.
Setting it synchronizes from the node back to the software image, using evaluation based on file
change detection between the node and the image. It is thus a synchronization to the already
existing software image that is currently in use by the node.

The items that it excludes from the synchronization are specified in the Exclude list image

grab block, navigated to via Grouping > Node categories[default-image] > Edit > Settings >
Exclude list grab. This exclude list is known as excludelistgrab (page 513) in cmsh.

2. Other image can be selected. The image selected must already exist, and may be other than the
image that the running node was provisioned from. Selection grabs what is to go to the image

512 Post-installation Software Management

from the node. It wipes out whatever (if anything) is in the selected image, except for a list of
excluded items.

The excluded items are specified in the Exclude list grab new block, navigated to via Grouping

> Node categories[default-image] > Settings > Exclude list grab new. This exclude list is
known as excludelistgrabnew (page 513) in cmsh.

The synchronization carried out when using the current image is a bit more “gentle” in carrying out
the node-to-image sync, compared to the what is done when using the other image. That is, it carries
out a “gentler sync” to avoid wiping out existing files, versus a “violent grab” to another image that can
wipe out existing files. This means that there is a difference between using Current image and using
Other image when both destination software images are the same.

The exclude lists are there to ensure, among other things, that the configuration differences between
nodes are left alone for different nodes with the same image. The exclude lists are simple by default,
but they conform in structure and patterns syntax in the same way that the exclude lists detailed in
section 5.4.7 do, and can therefore be quite powerful.

If existing images are known to work well with nodes, then overwriting them with a new image on
a production system may be reckless. A wise administrator who has prepared a node that is to write
an image would therefore follow a process similar to the following instead of simply overwriting an
existing image:

1. A new image can be cloned from the old image via the navigation path Provisioning > Software

images > Clone, and setting a name for the new image, for example: newimage. The node state with
the software installed on it would then be saved using the Grab to image option, and choosing
the image name newimage as the image to save it to.

2. A new category is then cloned from the old category via the navigation path Grouping >
Categories > Clone, and setting a name for the new category, for example newcategory. The old
image in newcategory is changed to the new image newimage via the navigation path Grouping >
Categories > Edit > Settings > Software image > newimage.

3. A newly-cloned category has no nodes initially. Some nodes are set to the new category so that
their behavior with the new image can be tested. The chosen nodes can be made members of
the new category from within the Settings option of each node, and saving the change. The
navigation path for this is Devices > Nodes > Edit > Settings > Category > newcategory

4. The nodes that have been placed in the new category are now made to pick up and run their new
images. This can be done with a reboot of those nodes.

5. After sufficient testing, all the remaining nodes can be moved to using the new image. The old
image is removed if no longer needed, or perhaps kept around just in case for reference.

Node-To-Image Sync Using cmsh

The preceding Base View method can alternatively be carried out using cmsh commands. The cmsh

equivalent to the Grab to image with the Current image option is the grabimage command, available
from device mode. The cmsh equivalent to the Grab to image with the Other image option is the
grabimage -i command, where the -i option specifies the image it will write to. As before, that image
must be created or cloned beforehand.

The following cmsh session shows how a image is cloned, how a category is set for nodes that are to
use the image, and how the running node with the new software on it is synchronized to the provision-
ing node that has the new image:

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage

[basecm11->softwareimage]% clone default-image default-image1

9.6 Creating A Custom Software Image 513

[basecm11->softwareimage*[default-image1]]% commit

[basecm11->softwareimage[default-image1]]% category

[basecm11->category]% clone default default1

[basecm11->category*[default1*]]% commit

[basecm11->category[default1]]% set softwareimage default-image1

[basecm11->category*[default1*]]% commit

[basecm11->category[default1]]% device

[basecm11->device]% grabimage -w -i default-image1 node001

[basecm11->device]%

Mon Jul 18 16:13:00 2011 [notice] basecm11: Provisioning started on node node001

[basecm11->device]%

Mon Jul 18 16:13:04 2011 [notice] basecm11: Provisioning completed on node node001

The grabimage command without the -w option simply does a dry-run so that the user can see in the
provisioning logs what should be grabbed, without having the changes actually carried out. Running
grabimage -w instructs CMDaemon to really write the image.

When writing out the image, two exclude lists may be used:

• excludelistgrabnew: This is used with grabimage command run with the -i option. The list can
be accessed and edited via

cmsh>category[image]>set excludelistgrabnew

It corresponds to the Exclude list grab new exclusion list associated with Grab to image when
using the Other image option (figure 9.3) in Base View.

• excludelistgrab: This is used with the grabimage command, run without the -i option. The list
can be accessed and edited via

cmsh>category[image]>set excludelistgrab

It corresponds to the Exclude list image grab exclusion list associated with Grab to image

with the Current image option (figure 9.3) in Base View.

9.6 Creating A Custom Software Image
By default, the software image used to boot non-head nodes is based on the same version and release
of the Linux distribution as used by the head node. However, sometimes an image based on a different
distribution or a different release from that on the head node may be needed.

A custom software image is created typically by building an entire filesystem image from a regular
node. The node, which is never a head node, is then called the base host, with the term “base” used
to indicate that it has no additional cluster manager packages installed. The distribution on the base
host, is called the base distribution and is a selection of packages derived from the parent distribution (Red
Hat, Scientific Linux etc.). A base distribution package is a package or rpm that is directly provided by the
vendor of the parent distribution which the base distribution is based on, and is not provided by BCM.

Creating a custom software image consists of two steps. The first step (section 9.6.1) is to create a
base (distribution) archive from an installed base host. The second step (section 9.6.2) is to create the image
from the base archive using a special utility, cm-create-image.

An alternative to these steps is to use the cm-image tool (section 9.7.1), which is a wrapper to
cm-create-image.

9.6.1 Creating A Base Distribution Archive From A Base Host
Structure Of The Base Distribution Archive
The step of creating the base distribution archive is done by creating an archive structure containing the
files that are needed by the non-head node.

The filesystem that is archived in this way can differ from the special way that a Linux distribution
unpacks and installs its filesystem on to a machine. This is because the distribution installer often carries

514 Post-installation Software Management

out extra changes, for example in GRUB boot configuration. The creation of the base distribution archive
is therefore a convenience to avoid working with the special logic of a distribution installer, which will
vary across distributions and versions. Instead, the filesystem and contents of a node on which this
parent distribution is installed—i.e. the end product of that logic—is what is dealt with.

The archive can be a convenient and standard tar.gz file archive (sometimes called the “base tar”),
or, taking the step a little further towards the end result, the archive can be a fully expanded archive file
tree. For convenience, a base tar is provided in the cluster installation ISO. For Ubuntu 24.04, the path
on the ISO is /data/UBUNTU2404.tar.gz:

Example

joe@sandbox:~$ isoinfo -R -l -i bcm-11.0-ubuntu2404.iso | grep -A6 'Directory listing of /data/$'

Directory listing of /data/

drwxr-xr-x 1 0 0 2048 May 7 2025 [22 02] .

drwxr-xr-x 1 0 0 2048 May 7 2025 [19 02] ..

-rw-r--r-- 1 0 0 370628239 May 7 2025 [198034 00] bcminstallerfiles.tgz

-r--r--r-- 1 0 0 147845120 May 7 2025 [379005 00] filesystem.squashfs

drwxr-xr-x 1 0 0 2048 May 7 2025 [23 02] packages

-rw-r--r-- 1 0 0 1182483439 May 7 2025 [5278054 00] UBUNTU2404.tar.gz

joe@sandbox:~$

Repository Access Considerations When Intending To Build A Base Distribution Archive
For convenience, the archive should be up-to-date. So, the base host used to generate the base distri-
bution archive should ideally have updated files. If, as is usual, the base host is a regular node, then it
should ideally be up to date with the repositories that it uses. Therefore running yum update or zypper
up on the base host image, and then provisioning the image to the base host, is recommended in order
to allow the creation of an up-to-date base distribution archive.

However sometimes updates are not possible or desirable for the base host. This means that the
base host archive that is put together from the base host filesystem is an un-updated archive. The
custom image that is to be created from the archive must then be also be created without accessing the
repositories, in order to avoid dependency problems with the package versions. Exclusion of access to
the repositories is possible by specifying options to the cm-create-image command, and is described in
section 9.6.2.

Examples Of How To Build A Base Distribution Archive
In the following example, a base distribution tar.gz archive /tmp/BASEDIST.tar.gz is created from
the base host basehost64. The archive that is created should normally have access control lists and
extended attributes preserved too:

Example

ssh root@basehost64 \

"tar -cz \

--exclude /etc/HOSTNAME --exclude /etc/localtime \

--exclude /proc --exclude /lost+found --exclude /sys \

--exclude /root/.ssh --exclude /var/lib/dhcpcd/* \

--exclude /media/floppy --exclude /etc/motd \

--exclude /root/.bash_history --exclude /root/CHANGES \

--exclude /etc/udev/rules.d/*persistent*.rules \

--exclude /var/spool/mail/* --exclude /rhn \

--exclude /etc/sysconfig/rhn/systemid --exclude /tmp/* \

--exclude /var/spool/up2date/* --exclude /var/log/* \

--exclude /etc/sysconfig/rhn/systemid.save \

--exclude /root/mbox --exclude /var/cache/yum/* \

--exclude /etc/cron.daily/rhn-updates /" > /tmp/BASEDIST.tar.gz

/data/UBUNTU2404.tar.gz

9.6 Creating A Custom Software Image 515

Or alternatively, a fully expanded archive file tree can be created from basehost64 by rsyncing to an
existing directory (here it is /cm/images/new-image):

Example

rsync -av --hard-links --numeric-ids \

--exclude=/etc/HOSTNAME --exclude=/etc/localtime --exclude=/proc \

--exclude=/lost+found --exclude=/sys --exclude=/root/.ssh \

--exclude=/var/lib/dhcpcd/* --exclude=/media/floppy \

--exclude=/etc/motd --exclude=/root/.bash_history \

--exclude=/root/CHANGES --exclude=/var/spool/mail/* \

--exclude=/etc/udev/rules.d/*persistent*.rules \

--exclude=/rhn --exclude=/etc/sysconfig/rhn/systemid \

--exclude=/etc/sysconfig/rhn/systemid.save --exclude=/tmp/* \

--exclude=/var/spool/up2date/* --exclude=/var/log/* \

--exclude=/root/mbox --exclude=/var/cache/yum/* \

--exclude=/etc/cron.daily/rhn-updates \

root@basehost64:/ /cm/images/new-image/

SELinux and file attributes: To use SELinux on compute nodes, extended attributes must not be used.
The defaults can be modified, if needed, by adjusting attributes for partitions via cmsh, in fspart

mode:

Example

[basecm11->fspart]% foreach * (set rsyncxattr no)

[basecm11->fspart*]% list -f path:0,rsyncxattr

path (key) rsyncxattr

----------------------------- --------------------

/cm/images/default-image no

/cm/images/default-image/boot no

/cm/node-installer no

/cm/shared no

/tftpboot no

/var/spool/cmd/monitoring no

Having built the archive by following the examples suggested, the first step in creating the software
image is now complete.

9.6.2 Creating The Software Image With cm-create-image

The second step, that of creating the image from the base archive, now needs to be done. This uses the
cm-create-image utility, which is part of the cluster-tools package.

The cm-create-image utility uses the base archive as the base for creating the image. By default, it
expects that the base distribution repositories be accessible just in case files need to be fetched from a
repository package.

Thus, when the cm-create-image utility is run with no options, the image created mostly picks up
the software only from the base archive. However, the image picks up software from the repository
packages:

• if it is required as part of a dependency, or

• if it is specified as part of the package selection file (page 517).

If a repository package file is used, then it should be noted that the repository package files may be
more recent compared with the files in the base archive. This can result in an image with files that are
perhaps unexpectedly more recent in version than what might be expected from the base archive, which

516 Post-installation Software Management

may cause compatibility issues. To prevent this situation, the --exclude option (section 9.2) can be used
to exclude updates for the packages that are not to be updated.

Repository access can be directly to the online repositories provided by the distribution, or it can be
to a local copy. For RHEL, online repository access can be activated by registering with the Red Hat
Network (section 5.1 of the Installation Manual). Similarly, for SUSE, online repository access can be
activated by registering with Novell (section 5.2 of the Installation Manual). An offline repository can be
constructed as described in section 9.6.3 of this manual.

Usage Of The cm-create-image Command
The usage information for cm-create-image is:

[root@head ~]# cm-create-image -h

usage: cm-create-image [-a FROMARCHIVE | -d FROMDIR | -h FROMHOST | --frombfb FROMBFB | -k]

[--cmdvd CMDVD] [--add-only] [--arch IMAGE_ARCH] [--os IMAGE_OS]

[-c CMREPO] [-b BASEDISTREPO] [-e] [-f] [-g ENABLEEXTRAREPO] [--help]

[-i IMAGEDIR] [-j EXCLUDEDIST] [--holdpackages HOLDPACKAGES]

[--no-holdpackages] [-l RESOLVCONF] [-m] [-n IMAGENAME] [-o EXCLUDE_FROM]

[-q EXCLUDEHWVENDOR] [-r] [-s] [-t {node-installer,cmshared}] [-u] [-v]

[-w HWVENDOR] [-x EXCLUDECM] [-y] [-z CUSTOM_PRE_INSTALL_SCRIPT]

[--no-progress] [-L LOGFILE] [--sles-allow-vendor-change]

[--skip-connectivity-check] [--tar-options ...] [--no-cm-repo-extra]

[--cmshared-reinstall]

Examples In Usage Of cm-create-image
Explanations of the usage text follow:

1. In the following, a base distribution archive file, /tmp/ROCKY9.tar.gz, is written out to a software
image named rocky9-image:

cm-create-image --fromarchive /tmp/ROCKY9.tar.gz --imagename rocky9-image

The image with the name rocky9-image is created in the CMDaemon database, making it avail-
able for use by cmsh and Base View. If an image with the above name already exists, then
/cm/create-image will exit and advise the administrator to provide an alternate name.

By default, the image name specified sets the directory into which the software image is installed.
Thus here the directory is /cm/images/rocky9-image/.

2. Instead of the image getting written into the default directory as in the previous item, an alter-
native directory can be specified with the --imagedir option. Thus, in the following, the base
distribution archive file, /tmp/ROCKY9.tar.gz is written out to the /cm/images/test-image direc-
tory. The software image is given the name rocky9-image:

cm-create-image --fromarchive /tmp/ROCKY9.tar.gz --imagename rocky9-image --imagedir \

/cm/images/test-image

3. If the contents of the base distribution file tree have been transferred to a directory, then no ex-
traction is needed. The --fromdir option can then be used with that directory. Thus, in the
following, the archive has already been transferred to the directory /cm/images/SLES15-image,
and it is that directory which is then used to place the image under a directory named
/cm/images/sles15-image/. Also, the software image is given the name sles15-image:

cm-create-image --fromdir /cm/images/SLES15-image --imagename sles15-image

9.6 Creating A Custom Software Image 517

• skipping: Sometimes the installation of additional base distribution packages may need to be
skipped. For example, if the target image already has the required base distribution packages,
as in DGX OS., then the --skipdist option must be used to skip package installation:

cm-create-image --fromdir /cm/images/dgx-image --imagename dgx-image --skipdist

• updating: If the software image already exists in CMDaemon, and if the target directory
contents need to be updated, then the --updateimage option can be used:

cm-create-image --fromdir /cm/images/dgx-image --imagename dgx-image --updateimage

• skipping and updating: Applying both options means skipping the installation of additional
base distribution packages, and then updating the software image, which can be an efficient
way to set up an up-to-date DGX image:

cm-create-image --fromdir /cm/images/login-image-a100-test --imagename \
login-image-a100-test --updateimage --skipdist

4. A software image can be created from a running node using the --fromhost option. This option
makes cm-create-image behave in a similar manner to grabimage (section 9.5.2) in cmsh. It re-
quires passwordless access to the node in order to work. Generic nodes, that is nodes that are not
managed by BCM, can also be used. An image named node001-image can then be created from a
running node named node001 as follows:

cm-create-image --fromhost node001 --imagename node001-image

By default the image goes under the /cm/images/node001-image/ directory.

5. The --basedistrepo flag is used together with a .repo file. The file defines the base distribution
repository for the image. The file is copied over into the repository directory of the image, (/etc/
yum.repos.d/ for Red Hat and similar, or /etc/zypp/repos.d/ for SLES).

6. The --cmrepo flag is used together with a .repo file. The file defines the cluster manager repository
for the image. The file is copied over into the repository directory of the image, (/etc/yum.repos.
d/ for Red Hat and similar, or /etc/zypp/repos.d/ for SLES).

7. A default node software image can be created with:

cm-create-image --imagename default-image --fromarchive <path to base archive> ...

8. A default node-installer image can be created with:

cm-create-image --imagename node-installer --image-type node-installer --fromarchive\
<path to base archive> ...

9. A default DGX platform image can be created from a vanilla Ubuntu 24.04 basetar with:

cm-create-image --fromarchive=/mnt/install/UBUNTU2404.tar.gz --imagedir=/cm/images/dgxos-image \
--imagename=ubuntu2404 --dgx

Package Selection Files In cm-create-image

In the preceding explanations text, the selection of packages on the head node is done using a package
selection file.

Package selection files are available in /cm/local/apps/cluster-tools/config/. For example, if
the base distribution of the software image being created is Rocky Linux 8, then the configuration file
used is:

/etc/yum.repos.d/
/etc/yum.repos.d/
/etc/zypp/repos.d/
/etc/yum.repos.d/
/etc/yum.repos.d/
/etc/zypp/repos.d/
/cm/local/apps/cluster-tools/config/

518 Post-installation Software Management

/cm/local/apps/cluster-tools/config/ROCKY8-config-dist.xml

The package selection file is made up of a list of XML elements, specifying the image type of the
package, its name, and architecture. For example:

...

<package image="master" name="adwaita-cursor-theme" arch="noarch" platforms="x86_64 aarch64" />

<package image="master" name="adwaita-gtk2-theme" arch="platform" platforms="x86_64" />

<package image="master" name="adwaita-icon-theme" arch="noarch" platforms="x86_64 aarch64" />

<package image="master" name="alsa-lib" arch="platform" platforms="x86_64 aarch64" />

...

The minimal set of packages in the list defines the minimal distribution that works with BCM, and
is the base-distribution set of packages, which may not work with some features of the distribution or
BCM. To this minimal set the following packages may be added to create the custom image:

• Packages from the standard repository of the parent distribution. These can be added to enhance
the custom image or to resolve a dependency of BCM. For example, in the (parent) Red Hat distri-
bution, packages can be added from the (standard) main Red Hat channel to the base-distribution.

• Packages from outside the standard repository, but still from inside the parent distribution. These
can be added to enhance the custom image or to resolve a dependency of BCM. For example,
outside the main Red Hat channel, but still within the parent distribution of RHEL7, there is an
extra, supplementary, and an optional packages channel. Packages from these channels can be
added to the base-distribution to enhance the capabilities of the image or resolve dependencies
of BCM. Section 9.1 of the Installation Manual considers an example of such a dependency for the
CUDA package.

Unless the required distribution packages and dependencies are installed and configured, particular
features of BCM, such as CUDA, cannot work correctly or cannot work at all.

The package selection file also contains entries for the packages that can be installed on the head
(image="master") node. Therefore non-head node packages must have the image="slave" attribute.

Kernel Module Selection By cm-create-image

For an image created by cm-create-image, with a distribution <dist>, the default list of ker-
nel modules to be loaded during boot are read from the file /cm/local/apps/cluster-tools/

config/<dist>-slavekernelmodules.
<dist> can take the value RHEL8U7, RHEL8U8, RHEL8U9, RHEL9U1, RHEL9U2, RHEL9U3, ROCKY8U7,

ROCKY8U8, ROCKY8U9, ROCKY9U1, ROCKY9U2, ROCKY9U3, SLES15, SLES15SP4, SLES15SP5, SLES15SP6,
UBUNTU1804, UBUNTU2004, UBUNTU2204, UBUNTU2404.

If custom kernel modules are to be added to the image, they can be added to this file.

Output And Logging During A cm-create-image Run
The cm-create-image run goes through several stages: validation, sanity checks, finalizing the base dis-
tribution, copying the BCM repository files, installing distribution packages, finalizing image services,
and installing the BCM packages. An indication is given if any of these stages fail.

Further detail is available in the logs of the cm-create-image run, which are kept in logs of the form
/var/log/cm-create-image-<image name>.log, where <image name> is the name of the built image.

Default Image Location
The default-image is at /cm/images/default-image, so the image directory can simply be kept as
/cm/images/.

During a cm-create-image run, the --imagedir option allows an image directory for the image to
be specified. This must exist before the option is used.

More generally, the full path for each image can be set:

/cm/local/apps/cluster-tools/config/
/cm/local/apps/cluster-tools/config/

9.6 Creating A Custom Software Image 519

• Using Base View via the navigation path Provisioning > Software Images > Settings > Path

• In cmsh within softwareimage mode, for example:

[basecm11->softwareimage]% set new-image path /cm/higgs/new-images

• At the system level, the images or image directory can be symlinked to other locations for organi-
zational convenience

9.6.3 Configuring Local Repositories For Linux Distributions, And For The BCM Package
Repository, For A Software Image

Using local instead of remote repositories can be useful in the following cases:

• for clusters that have restricted or no internet access.

• for the RHEL and SUSE Linux distributions, which are based on a subscription and support model,
and therefore do not have free access to their repositories.

• for creating a custom image with the cm-create-image command introduced in section 9.6.2, us-
ing local base distribution repositories.

The administrator can choose to access an online repository provided by the distribution itself via a
subscription as described in Chapter 5 of the Installation Manual. Another way to set up a repository is
to set it up as a local repository, which may be offline, or perhaps set up as a locally-controlled proxy
with occasional, restricted, updates from the distribution repository.

In the three procedures that follow, the first two procedures explain how to create and configure a lo-
cal offline SLES zypper or RHEL YUM repository for the subscription-based base distribution packages.
These first two procedures assume that the corresponding ISO/DVD has been purchased/downloaded
from the appropriate vendors. The third procedure then explains how to create a local offline YUM
repository from the BCM ISO for CentOS so that a cluster that is completely offline still has a complete
and consistent repository access.

Thus, a summary list of what these procedures are about is:

• Setting up a local repository for SLES (page 519)

• Setting up a local repository for RHEL (page 520)

• Setting up a local repository for CentOS and BCM from the BCM ISO for CentOS (page 520)

Configuring Local Repositories For SLES For A Software Image
For SLES11 SP0, SLES11 SP1, and SLES11 SP2, the required packages are spread
across two DVDs, and hence two repositories must be created. Assuming the im-
age directory is /cm/images/sles11sp1-image, while the names of the DVDs are
SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso and SLES-11-SP1-DVD-x86_64-GM-DVD1.iso, then
the contents of the DVDs can be copied as follows:

mkdir /mnt1 /mnt2

mkdir /cm/images/sles11sp1-image/root/repo1

mkdir /cm/images/sles11sp1-image/root/repo2

mount -o loop,ro SLES-11-SP1-SDK-DVD-x86_64-GM-DVD1.iso /mnt1

cp -ar /mnt1/* /cm/images/sles11sp1-image/root/repo1/

mount -o loop,ro SLES-11-SP1-DVD-x86_64-GM-DVD1.iso /mnt2

cp -ar /mnt2/* /cm/images/sles11sp1-image/root/repo2/

The two repositories can be added for use by zypper in the image, as follows:

chroot /cm/images/sles11sp1-image

zypper addrepo /root/repo1 "SLES11SP1-SDK"

zypper addrepo /root/repo2 "SLES11SP1"

exit (chroot)

520 Post-installation Software Management

Configuring Local Repositories For RHEL For A Software Image
For RHEL distributions, the procedure is almost the same. The required packages are contained in one
DVD.

mkdir /mnt1

mkdir /cm/images/rhel-image/root/repo1

mount -o loop,ro RHEL-DVD1.iso /mnt1

cp -ar /mnt1/* /cm/images/rhel-image/root/repo1/

The repository is added to YUM in the image, by creating the repository file /cm/images/

rhel-image/etc/yum.repos.d/rhel-base.repo with the following contents:

[base]

name=Red Hat Enterprise Linux $releasever - $basearch - Base

baseurl=file:///root/repo1/Server

gpgcheck=0

enabled=1

Configuring Local Repositories For CentOS And BCM For A Software Image
Mounting the ISOs The variable $imagedir is assigned as a shortcut for the software image that is to
be configured to use a local repository:

imagedir=/cm/images/default-image

If the ISO is called basecom-centos.iso, then its filesystem can be mounted by the root user on a
new mount, /mnt1, as follows:

mkdir /mnt1

mount -o loop basecom-centos.iso /mnt1

The head node can then access the ISO filesystem.
The same mounted filesystem can also be mounted with the bind option into the software image.

This can be done (from outside the chroot jail) inside the software image by the root user, in the same
relative position as for the head node, as follows:

mkdir $imagedir/mnt1

mount -o bind /mnt1 $imagedir/mnt1

This allows an operation run under the $imagedir in a chroot environment to access the ISO filesys-
tem too.

Creating YUM repository configuration files: YUM repository configuration files can be created:

• for the head node: A repository configuration file

/etc/yum.repos.d/cmHEAD-dvd.repo

can be created, for example, for a release tagged with a <subminor> number tag, with the content:

[BCM-repo]

name=NVIDIA Base Command Manager DVD Repo

baseurl=file:///mnt1/data/packages/HEAD-<subminor>

enabled=1

gpgcheck=1

exclude = slurm* pbspro* cm-hwloc

• for the regular node image: A repository configuration file

$imagedir/etc/yum.repos.d/cmHEAD-dvd.repo

can be created. This file is in the image directory, but it has the same content as the previous head
node yum repository configuration file.

/cm/images/rhel-image/etc/yum.repos.d/rhel-base.repo
/cm/images/rhel-image/etc/yum.repos.d/rhel-base.repo

9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 521

Verifying that the repository files are set up right: To verify the repositories are usable on the head
node, the YUM cache can be cleaned, and the available repositories listed:

[root@basecm11 ~]# yum clean all

[root@basecm11 ~]# yum repolist -v

BCM-repo NVIDIA Base Command Manager DVD Repo

...

To carry out the same verification on the image, these commands can be run with
yum --installroot=$imagedir substituted in place of just yum.

The ISO repository should show up, along with any others that are accessible. Connection attempts
that fail to reach a network-based or local repositories display errors. If those repositories are not needed,
they can be disabled from within their configuration files.

9.6.4 Creating A Custom Image From The Local Repository
After having created the local repositories for SLES, RHEL or CentOS/Rocky (section 9.6.3), a custom
software image based on one of these can be created. For example, for CentOS, in a directory given the
arbitrary name offlineimage:

cm-create-image -d $imagedir -n offlineimage -e -s

The -e option prevents copying the default cluster manager repository files on top of the image being
created, since they may have been changed by the administrator from their default status. The -s option
prevents installing additional base distribution packages that might not be required.

9.7 Creating Images For Other Distributions And Architectures (Multidistro
And Multiarch)

NVIDIA Base Command Manager version 9.0 onward makes it easier to mix distributions in the cluster.
This ability is called multidistro. However, it is often also loosely called multiOS.

NVIDIA Base Command Manager version 9.0 also introduced the ability to run on certain mixed
architecture combinations. The ability to run on multiple architectures is called multiarch. For BCM,
multiarch means that the node hardware can be based on either the x86-64 CPU architecture, or the
ARMv8 CPU architecture, or on a mixture of both.

The Linux distributions and the hardware architectures supported by NVIDIA Base Command Man-
ager 11.0 are shown in the following table 9.1:

Head

RHEL8 RHEL9 Ubuntu 22.04, 24.04 SLES15

(x86-64, aarch64) (x86-64, aarch64) (x86-64, aarch64) (x86-64)

Im
ag

e

RHEL8 x86-64, aarch64 x86-64, aarch64 x86-64, aarch64 x86-64

RHEL9 x86-64, aarch64 x86-64, aarch64 x86-64, aarch64 x86-64

Ubuntu 22.04 x86-64, aarch64 x86-64, aarch64 x86-64, aarch64 x86-64

Ubuntu 24.04 x86-64, aarch64 x86-64, aarch64 x86-64, aarch64 x86-64

SLES15 x86-64 x86-64 x86-64 x86-64
Table 9.1: Images generated by cm-image that work with head nodes, per architecture and distribution

For example, a head node running Ubuntu 22.04, on x86-64 or ARMv8 hardware, can support an
Ubuntu 22.04, Ubuntu 24.04, RHEL8, RHEL9 distribution running on x86-64 and on ARMv8 hardware

522 Post-installation Software Management

for the compute nodes. In addition, that same head node supports running SLES15 on the compute
nodes, but only for x86-64 hardware.

The nodearchosinfo Command
The nodearchosinfo command helps the cluster administrator see what architectures and distributions
are configured and reported on the nodes:

[root@basecm11 ~]# cmsh

[basecm11->device]% device nodearchosinfo

Hostname Reported arch Reported OS Reported timestamp Configured arch Configured OS

---------- ---------------- ---------------- --------------------- ---------------- ----------------

basecm11 x86_64 ubuntu2204 Wed Nov 13 07:12:37 x86_64 ubuntu2204

node001 x86_64 ubuntu2204 Wed Nov 13 07:18:07 x86_64 ubuntu2204

node002 x86_64 ubuntu2204 Wed Nov 13 07:17:01 x86_64 ubuntu2204

node003 x86_64 ubuntu2204 Wed Nov 13 07:17:01 x86_64 ubuntu2204

...

For the reported fields, attention should be paid to the timestamps. A reported state is only updated
when CMDaemon on the node reports the OS and architecture. Until that event, the reported state
reports the last known value. This means that if the node fails to run after a reboot attempt is made,
then the reported states are not updated, and the timestamps do not change.

To configure multiarch and multidistro, the cm-image tool is used.

9.7.1 The cm-image Tool
The cm-image tool is essentially a wrapper for the cm-create-image (section 9.6) tool. The cm-image

tool however has some extra features, including allowing the cluster administrator

• to create a separate node-installer image as well as a separate software image

• to create a directory under /cm/shared for each image

• to select the architecture

• to manage packages in an image more easily

When used to enable a distribution for the first time, multiple changes are made to critical files and
paths that may put the regular nodes into an unstable state. This means that all regular nodes should be
rebooted after its first use.

The command options of cm-image are illustrated by the following modes and options tree:

cm-image

|---------- shell

| -h|--help

| -i|--image <image>
|

|---------- create

| |----- all

| | -h|--help

| | -f|--force

| | -z|--custom-pre-install-script <custom pre-install script>
| | --source <archive|directory|host>
| | --bootstrap

| | --add-only

| | --add-archos

| | -b|--baserepo <base repository>

/cm/shared

9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 523

| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <BCM packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --sles-baseurl <SLES base distribution repository URL>
| | --sles-extraurl <SLES extra repository URL>
| | --air-gapped

| | -a|--arch <architecture>
| | -d|--distro <distribution>
| | --dgx

| |

| |----- node-installer

| | -h|--help

| | -f|--force

| | -z|--custom-pre-install-script <custom pre-install script>
| | --source <archive|directory|host>
| | --bootstrap

| | --add-only

| | --add-archos

| | -b|--baserepo <base repository>
| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <BCM packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --sles-baseurl <SLES base distribution repository URL>
| | --sles-extraurl <SLES extra repository URL>
| | --air-gapped

| | -a|--arch <architecture>
| | -d|--distro <distribution>
| | --dgx

| | --default

| |

| |----- swimage

| | -h|--help

| | -f|--force

| | -z|--custom-pre-install-script <custom pre-install script>
| | --source <archive|directory|host>
| | --bootstrap

| | --add-only

| | --add-archos

| | -b|--baserepo <base repository>
| | -c|--cmrepo <cluster manager repository>
| | -x|--excludecm <BCM packages to exclude from installation>
| | -j|--excludedist <distribution packages to exclude from installation>
| | --sles-baseurl <SLES base distribution repository URL>
| | --sles-extraurl <SLES extra repository URL>
| | --air-gapped

| | -a|--arch <architecture>
| | -d|--distro <distribution>
| | --dgx

| |

| |----- fromfile <JSON input file>
| | -h|--help

| |

| '----- cmshared

| -h|--help

| -f|--force

524 Post-installation Software Management

| -i|--image <image>
| -b|--baserepo <base repository>
| -c|--cmrepo <cluster manager repository>
| -x|--excludecm <BCM packages to exclude from installation>
| -j|--excludedist <distribution packages to exclude from installation>
| --sles-baseurl <SLES base distribution repository URL>
| --sles-extraurl <SLES extra repository URL>
| --air-gapped

| -a|--arch <architecture>
| -d|--distro <distribution>
| --default

| --add-only

| --source <ISO or DVD package source>
|

|---------- remove

| -h|--help

| -f|--force

| -a|--arch <architecture>
| -d|--distro <distribution>
| --erase

|

'---------- package

-h|--help

-i|--image <image>
--install <package(s) to install>
--remove <package(s) to remove>
--list

--update <package to update>
--update-all

--update-cm

Values that can be set are:

• <architecture>: aarch64, x86_64

• <distribution>: this can be one of the distributions indicated in the following list:

– rhel8u0, rhel8u1, rhel8u2, rhel8u3, rhel8u4, rhel8u5, rhel8u6, rhel8u7, rhel8u8, rhel8u9,
rhel8u10

– rhel9u0, rhel9u1, rhel9u2, rhel9u3, rhel9u4, rhel9u5

– sles15sp1, sles15sp2, sles15sp3, sles15sp4, sles15sp5, sles15sp6

– ubuntu2004, ubuntu2204, ubuntu2404

For rhel in the preceding list:

– centos is automatically substituted in the case of CentOS distributions

– rocky is automatically substituted in the case of Rocky Linux distributions

• <archive>: path to a base tar file (section 9.6.1), eg:/root/basetar/data/UBUNTU2004.tar.gz

• <directory>: path to a filesystem, eg: /root/basetar/data/untarred/

• <host>: URL to a host, eg: http://10.141.255.254/x86-iso/data/packages/dist

• <base repository>: repository file for base tar, eg: /root/bright9.2-rocky8u5-iso.repo

/root/basetar/data/UBUNTU2004.tar.gz
/root/basetar/data/untarred/
http://10.141.255.254/x86-iso/data/packages/dist
/root/bright9.2-rocky8u5-iso.repo

9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 525

• <base distribution repository url>: URL for base distribution repository, eg:
http://dl.rockylinux.org/$contentdir/$releasever/BaseOS/$basearch/os/

• <cluster manager repository>: repository file for cluster manager, eg: /root/cm-bright9.

2-rocky8u5-iso.repo

• <image>: image to operate on when managing packages, eg: /cm/images/

default-image-rhel8-aarch64 or /cm/node-installer-centos7-x86

• <package to install>: eg: cluster-tools

• <package to remove>: eg: cluster-tools

• <package to update>: eg: cluster-tools

9.7.2 Multidistro Examples: Provisioning From Rocky 8 Head Node To Ubuntu 24.04
Regular Nodes

Using ISO For Cluster Without Network Access
A base tar (section 9.6.1) can be used

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image --verbose create all -a x86_64 -d ubuntu2404 --source \
/root/basetar/data/UBUNTU2404.tar.gz

Creating software image default-image-ubuntu2404-x86_64

...

Do you want to continue?(y/n): y

...

Creating software image default-image-ubuntu2404-x86_64...........[OK]

...

Creating node installer image.....................................[OK]

...

Creating cm-shared image at /cm/shared-ubuntu2404-x86_64...

Unmounting /cm/images/default-image-ubuntu2404-x86_64/cm/shared

...

Adding cm-shared image entities...................................[OK]

...

Updating cmd entities

Changing fspart /cm/shared to /cm/shared-rocky8-x86_64

Changing fspart /cm/node-installer to /cm/node-installer-rocky8-x86_64

...

Creating ramdisk..[OK]

Added new category: default-ubuntu2404-x86_64

Use this category for adding nodes

Completed

As suggested by the output, a new category, default-ubuntu2404-x86_64, appears.
A node can be placed in the new category and restarted:

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set category <TAB><TAB>
default-rocky8-x86_64 default-ubuntu2404-x86_64

[basecm11->device*[node001*]]% commit

[basecm11->device[node001]]%

...15:30:57 2024 [notice] basecm11: node001 [UP], restart required (category)

[basecm11->device[node001]]%

/root/cm-bright9.2-rocky8u5-iso.repo
/root/cm-bright9.2-rocky8u5-iso.repo
/cm/images/default-image-rhel8-aarch64
/cm/images/default-image-rhel8-aarch64
/cm/node-installer-centos7-x86

526 Post-installation Software Management

...15:31:06 2024 [notice] basecm11: Service dhcpd was restarted

[basecm11->device[node001]]% reboot

node001: Reboot in progress ...

Adding Several Update Versions Alongside Each Other
In the following session, a Rocky9u3 x86 archived base tar is being added with cm-image. A Rocky9u2
software image is then being added with cm-create-image, using the same node-installer and /cm/shared/

images directory:

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image --verbose create all -a x86_64 -d rocky9u3 --source \
/root/basetar/data/ROCKY9u3.tar.gz

[root@basecm11 ~]# cm-create-image -a /run/ROCKY9u2.tar.gz -f -n \
default-image-rocky9u2-x86_64 -i /cm/images/default-image-rocky9u2-x86_64 -g public

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% set category default-rocky9u3-x86_64

[basecm11->device[node001]]% set softwareimage default-rocky9u2-x86_64

Configuring CMDaemon With The Software Image, Node-installer, Or Shared Filesystem
The cm-image tool can be used to add a CMDaemon configuration for a software image, node-installer,
or shared filesystem to a CMDaemon database.

If a cm-image-generated image directory, for example default-image-ubuntu2404-x86_64, has been
copied over from another cluster:

[root@basecm11 images]# pwd; ls -l

/cm/images

total 0

dr-xr-xr-x 21 root root 295 Mar 20 23:47 default-image

drwxr-xr-x 23 root root 247 Mar 25 12:56 default-image-ubuntu2404-x86_64

then the local CMDaemon can be configured for it with the --add-only option:

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image create swimage -a x86_64 -d ubuntu2404 --add-only

9.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8
Architecture Regular Nodes

This section explains how to configure a software image for a regular node that runs on ARMv8 hard-
ware, assuming BCM is installed on a head node (Chapter 3 of the Installation Manual).

Assuming an ARMv8 ISO bright91-rhel8u2.aarch64.iso has been picked up, it can be mounted
for web access with:

[root@basecm11 ~]# mkdir /var/www/html/aarch64-iso

[root@basecm11 ~]# mount -o loop /root/bright91-rhel8u2.aarch64.iso /var/www/html/aarch64-iso

A repository file can be created with the following content:

[root@basecm11 ~]# cat /root/rhel8-aarch64-cm-iso.repo

[dist-packages-rhel8-aarch64]

name=Dist packages rhel8 aarch64

baseurl=http://10.141.255.254/aarch64-iso/data/packages/dist

enabled=1

gpgcheck=0

9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 527

[cm-packages-rhel8-aarch64]

name=CM packages rhel8 aarch64

baseurl=http://10.141.255.254/aarch64-iso/data/packages/9.1

enabled=1

gpgcheck=0

[cm-packages-rhel8-aarch64-hpc]

name=CM packages rhel8 aarch64 HPC

baseurl=http://10.141.255.254/aarch64-iso/data/packages/packagegroups/hpc

enabled=1

gpgcheck=0

This assumes that the head node has the IP address 10.141.255.254. It should be changed if needed.
It also assumes the HEAD packages are in the HEAD packages directory of the ISO. If it is not, then

the corresponding baseurl string should be changed if needed. Thus, if, for example, after inspecting
the loop-mounted paths under /var/www/html/, the relative path data/packages/9.1 has changed to
data/packages/9.1-6, then the baseurl should be changed to end in 9.1-6 instead of 9.1 too.

The images can then be created with:

[root@basecm11 ~]# module load cm-image

[root@basecm11 ~]# cm-image --verbose create all -a aarch64 -d rhel8 --source \
/var/www/html/aarch64-iso/data/RHEL8u2.tar.gz -b /root/rhel8-aarch64-cm-iso.repo -c \
/root/rhel8-aarch64-cm-iso.repo

This takes a while to complete. At the end of the process the following ARMv8 images and entities
are created by default:

• The node-installer image: /cm/node-installer-rhel8-aarch64

• The /cm/shared-... directory: /cm/shared-rhel8-aarch64

• The node image: /cm/images/default-image-rhel8-aarch64

• The node category: default-rhel8-aarch64

The preceding can be verified via cmsh:

[root@basecm11 ~]# cmsh

[basecm11]% category list

Name (key) Software image Nodes

------------------------ -------------------------------------- --------

default-centos8-x86_64 default-image 1

default-rhel8-aarch64 default-image-rhel8-aarch64 1

[basecm11]% softwareimage list

Name (key) Path ...

--------------------------- -------------------------------------- ...

default-image /cm/images/default-image ...

default-image-rhel8-aarch64 /cm/images/default-image-rhel8-aarch64 ...

[basecm11]% partition archos base; list

Arch OS Primary image Shared Installer

------- ----- --------------------------- ------------------------- ---------------------------------

x86_64 rhel8 default-image /cm/shared-centos8-x86_64 /cm/node-installer-centos8-x86_64

aarch64 rhel8 default-image-rhel8-aarch64 /cm/shared-rhel8-aarch64 /cm/node-installer-rhel8-aarch64

The node settings should be updated. The new category can be assigned to any ARMv8 nodes:

[root@basecm11 ~]# cmsh

[basecm11]% device use arm-node001

[basecm11->device[node001]]% set category default-rhel8-aarch64

[basecm11->device*[node001*]]% commit

/cm/node-installer-rhel8-aarch64
/cm/shared-rhel8-aarch64
/cm/images/default-image-rhel8-aarch64

528 Post-installation Software Management

Carrying out changes to primaryimage requires an associated category: The value defined for the
property primaryimage decides the software image used to boot new nodes. The image also tracks
what packages are used under its associated shared directory, via the RPM or APT database. The image
for primaryimage and the associated shared directory can be set with cmsh from within the archos

submode, under the top-level partition mode.

Example

[basecm11->partition[base]->archos]% list

Arch OS Primary image Shared Installer

------- ------------ --------------------------------- ------------------------------ ---------

aarch64 ubuntu1804 default-image-ubuntu1804-aarch64 /cm/shared-ubuntu1804-aarch64 /cm/n....

x86_64 rhel8 default-image /cm/shared-centos8-x86_64 /cm/n....

[basecm11->partition[base]->archos]% use aarch64/ubuntu1804

[basecm11->partition[base]->archos[aarch64/ubuntu1804]]% set primaryimage

default-image default-image-ubuntu1804-aarch64 new-image-ubuntu1804-aarch64

[basecm11->...->archos[aarch64/ubuntu1804]]% set primaryimage new-image-ubuntu1804-aarch64

[basecm11->partition*[base*]->archos*[aarch64/ubuntu1804*]]% commit

If cm-image is used to generate a new architecture and operating system, then the primary image is
automatically set. Otherwise, by default, the value of primaryimage is not set.

If the value of primaryimage is set, then it is strongly recommended that a category that has that
image must exist.

If such a category does not exist, then CMDaemon uses the RPM or APT database of the new image
to decide what the packages are on the shared directory.

If the value of primaryimage is set and multiple categories use the image, then the first category that
is found is used.

Setting the bootloaderprotocol for ARMv8 hardware: The bootloaderprotocol should be set to
tftp to work with ARMv8 hardware:

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default-rhel8-aarch64

[basecm11->category[default-rhel8-aarch64]]% set bootloaderprotocol tftp

[basecm11->category*[default-rhel8-aarch64*]]% commit

Setting the kernelconsoleoutput for ARMv8 hardware: The kernelconsoleoutput should be changed
to ttyAMA0 to work with the image running on the ARMv8 hardware:

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage use default-rhel8-aarch64

[basecm11->softwareimage[default-rhel8-aarch64]]% set kerneloutputconsole ttyAMA0

[basecm11->softwareimage*[default-rhel8-aarch64*]]% commit

The settings configured so far are for generic ARMv8 hardware.

Fujitsu ARMv8 Hardware Configuration
Nodes using Fujitsu ARMv8 hardware can have their configuration options modified further.

The BMC settings of the nodes should be updated with extra arguments:

Example

9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch) 529

[root@basecm11 ~]# cmsh

[basecm11]% device use arm-node001

[basecm11->device[node001]]% bmcsettings; set extraarguments "-L USER -t 0x30"

[basecm11->device*[node001*]]% commit

The configuration for fetching environmental metrics should also be updated. The ipmitool moni-
toring resource available for Fujitsu ARMv8 hardware is run via the a64fx resource.

The existence of the a64fx monitoring resource can be checked for on the ARMv8 node:

[root@basecm11 ~]# cmsh

[basecm11]% device monitoringresources arm-node001 | grep a64fx

a64fx

The monitoring settings for IPMI via the a64fx object can be enabled as follows:

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup; use ipmi

[basecm11->monitoring->setup[ipmi]]% set script /cm/local/apps/cmd/scripts/metrics/sample_ipmitool.py

[basecm11->monitoring->setup*[ipmi*]]% executionmultiplexers

[basecm11->monitoring->setup*[ipmi*]->executionmultiplexers]% remove ipmi

[basecm11->monitoring->setup*[ipmi*]->executionmultiplexers*]% add resource a64fx

[basecm11->monitoring->setup*[ipmi*]->executionmultiplexers*[a64fx*]]% set resources a64fx

[basecm11->monitoring->setup*[ipmi*]->executionmultiplexers*[a64fx*]]% commit

10
Monitoring: Monitoring Cluster

Devices
BCM monitoring allows a cluster administrator to monitor anything that can be monitored in the cluster.
Much of the monitoring consists of pre-defined sampling configurations. If there is anything that is not
configured, but the data on which it is based can be sampled, then monitoring can be configured for it
too, by the administrator.

The monitoring data can be viewed historically, as well as on demand. The historical monitoring
data can be stored raw, and optionally also as consolidated data—a way of summarizing data.

The data can be handled raw and processed externally, or it can be visualized within Base View in the
form of customizable charts. Visualization helps the administrator spot trends and abnormal behavior,
and is helpful in providing summary reports for managers.

Monitoring can be configured to set off alerts based on triggers, and pre-defined or custom actions
can be carried out automatically, depending on triggers. The triggers can be customized according to
user-defined conditional expressions.

Carrying out such actions automatically after having set up triggers for them means that the moni-
toring system can free the administrator from having to carry out these chores.

In this chapter, the monitoring system is explained with the following approach:

1. A basic example is first presented in which processes are run on a node. These processes are
monitored, and trigger an action when a threshold is exceeded.

2. With this easy-to-understand example as a basic model, the various features and associated func-
tionality of the BCM monitoring system are then described and discussed in further depth. These
include visualization of data, concepts, configuration, monitoring customization and cmsh use.

10.1 A Basic Monitoring Example And Action
10.1.1 Synopsis Of Basic Monitoring Example
In section 10.1, after an overview (section 10.1.1), a minimal basic example of monitoring a process is
set up (section 10.1.2) and used (section 10.1.3). The example is contrived, with the aim being to present
a basic example that covers a part of what the monitoring system is capable of handling. The basic
example gives the reader a structure to keep in mind, around which further details are fitted and filled
in during the coverage in the rest of this chapter.

In the basic example, a user runs a large number of pointless CPU-intensive processes on a head
node which is normally very lightly loaded. An administrator who is monitoring user mode CPU load
usage throughout the cluster, notices this usage spike. After getting the user to stop wasting CPU cycles,
the administrator may decide that putting a stop to such processes automatically is a good idea. The
administrator can set that up with an action that is triggered when a high load is detected. The action
that is taken after triggering, is to stop the processes (figure 10.1).

532 Monitoring: Monitoring Cluster Devices

� High load detected
and processes stopped

6

CPU-intensive
processes started

CPU load

Time

Figure 10.1: Monitoring Basic Example: CPU-intensive Processes Started, Detected And Stopped

The basic example thus illustrates how BCM monitoring can be used to detect something on the
cluster and how an action can be set up and triggered based on that detection.

10.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces
Running A Large Number Of Pointless CPU-Intensive Processes
One way to simulate a user running pointless CPU-intensive processes is to run several instances of the
standard unix utility, yes. The yes command sends out an endless number of lines of “y” texts. It is
typically used in scripts to answer dialog prompts for confirmation.

The administrator can run 8 subshell processes in the background from the command line on the
head node, with yes output sent to /dev/null, as follows:

for i in {1..8}; do (yes > /dev/null &); done

Running “mpstat 2” shows usage statistics for each processor, updating every 2 seconds. It shows that
%usr, which is user mode CPU usage percentage, is close to 90% on an 8-core or less head node when
the 8 subshell processes are running.

Setting Up The Kill Action
To stop the pointless CPU-intensive yes processes, the command killall yes can be used. The admin-
istrator can make it a part of a script killallyes:

#!/bin/bash

killall yes

and make the script executable with a chmod 700 killallyes. For convenience, it may be placed in the
/cm/local/apps/cmd/scripts/actions directory where some other action scripts also reside.

10.1 A Basic Monitoring Example And Action 533

10.1.3 Using The Basic Monitoring Example
Now that the pieces are in place, the administrator can use Base View to add the killallyesaction

action to its action list, and then set up a trigger for the action:

Adding The Action To The Actions List
In Base View:

• The navigation path

Monitoring > Actions > Monitoring Actions > killprocess > Clone x 1

is used to clone the structure of an existing action. The killprocess action is convenient because
it is expected to function in a similar way, so its options should not have to be modified much.
However, any action could be cloned and the clone modified in appropriate places.

• The name of the cloned action is changed. That is, the administrator sets Name to
killallyesaction. This is just a sensible label—the name can be arbitrary.

• Script is set to the path /cm/local/apps/cmd/scripts/actions/killallyes, which is where the
script was placed earlier (page 532).

After saving, the killallyesaction action becomes part of the list of monitoring actions (figure 10.2).

Figure 10.2: Base View Monitoring Configuration: Adding An Action

Setting Up A Trigger Using CPUUser On The Head Node(s)
The navigation path

Monitoring > Triggers > Failing health checks > Clone x 1

can be used to configure a monitoring trigger, by cloning an existing trigger. A trigger is a condition
that is set on the state of sample, which runs an action when that condition is met. In this case, the

/cm/local/apps/cmd/scripts/actions/killallyes

534 Monitoring: Monitoring Cluster Devices

sample state condition may be that the metric (section 10.2.3) CPUUser must not exceed 50. If it does,
then an action (killallyesaction) is run, which should kill the yes processes.

• CPUUser is a measure of the time spent in user mode CPU usage per second, and is measured in
jiffy intervals per second.

• A jiffy interval is a somewhat arbitrary time interval that is predefined for kernel developers per
platform. It is the minimum amount of time that a process has access to the CPU before the kernel
can switch to another task.

The jiffy interval per second of CPUUser is a quantity rather than a percentage. It should not be
confused with the closely related measurable CPUUsage, which is a percentage. CPUUsage is used
for %user monitoring, where %user is the user time as defined and measured for the top command.

To configure triggering for CPUUser, the trigger attributes can be modified as follows (figure 10.3):

Figure 10.3: Base View Monitoring Configuration: Setting A Trigger

• A name is set for the trigger. The name can be arbitrary, and killallyestrigger is used in this
example.

• The trigger is enabled.

• The Enter actions field is filled with the killallyesaction, which is the action defined earlier.

• The trigger is saved by clicking on the SAVE button.

• the trigger can be set to run an action script if the sample state crosses over into a state that meets
the trigger condition. That is, Enter actions is configured for a particular condition.

10.1 A Basic Monitoring Example And Action 535

The condition under which the Enter actions action script is run in the example, can simply be
when CPUUser on the head node is above 50. Such a condition can be set by setting an expression in
a subwindow. The subwindow to do this is the JUMP TO>Expression button. The button is found
in the screen of figure 10.3 by scrolling to the top. Clicking the button brings up the Monitoring

Expression subwindow (figure 10.4):

Figure 10.4: Base View Monitoring Configuration: Setting An Expression

Within the expression subwindow:

– A name is set for the expression. The name can be arbitrary, and killallyesexp is used for
Name in this example.

– An entity is set. In this case, the entity being monitored is the head node. If the head node
is called basecm11 in this example, then basecm11 is the value set for Entities. An entity is
often simply a device, but it can be any object that CMDaemon stores.

– A measurable is set. In this case, Measurables is set to CPUUser.

– An operator and threshold value are set. In this case >, which is the greater than operator,
and 50 which is a significant amount of CPUUser time in jiffies/s, are set for Operator and
Value.

After saving the configuration, the killallyesexp expression evaluates the data being sam-
pled for the killallyestrigger trigger. If the expression is TRUE, then the trigger launches the
killallyesaction action.

536 Monitoring: Monitoring Cluster Devices

The Result
In the preceding section, an action was added, and a trigger was set up with a monitoring expression.

With a default installation on a newly installed cluster, the measurement of CPUUser is done every
120s (the period can be modified in the Data Producer window of Base View, as seen in figure 10.10).
The basic example configured with the defaults thus monitors if CPUUser on the head node has crossed
the bound of 50 jiffies/s every 120s.

If CPUUser is found to have entered—that is: crossed over from below the value and gone into the
zone beyond 50 jiffies/s—then the killallyesexp expression notices that. Then, the trigger it is con-
figured for, killallyestrigger trigger, runs the killallyesaction action, which runs the killallyes

script. The killallyes script kills all the running yes processes. Assuming the system is trivially loaded
apart from these yes processes, the CPUUser metric value then drops to below 50 jiffies/s.

To clarify what “found to have entered” means in the previous paragraph:
After an Enter trigger condition has been met for a sample, the first sample immediately after that

does not ever meet the Enter trigger condition, because an Enter threshold crossing condition requires
the previous sample to be below the threshold.

The second sample can only launch an action if the Enter trigger condition is met and if the preceding
sample is below the threshold.

Other non-yes CPU-intensive processes running on the head node can also trigger the killallyes

script. Since the script only kills yes processes, leaving any non-yes processes alone, it would in such
a case run unnecessarily. This is a deficiency due to the contrived and simple nature of the basic ex-
ample which is being illustrated here. In a production case the action script is expected to have a more
sophisticated design.

At this point, having gone through section 10.1, the reader is expected to have a rough idea of how
monitoring, triggers, trigger conditional expressions, and actions work. The following sections in this
chapter cover the concepts and features for BCM monitoring in greater detail.

10.2 Monitoring Concepts And Definitions
A discussion of the concepts of monitoring, along with definitions of terms used, is appropriate at this
point. The features of the monitoring system in BCM covered later on in this chapter will then be
understood more clearly.

10.2.1 Measurables
Measurables are measurements (sample values) that are obtained via data producers (section 10.2.10) in
CMDaemon’s monitoring system. The measurements can be made for nodes, head nodes, other devices,
or other entities.

Types Of Measurables
Measurables can be:

• enummetrics: measurements with a small number of states. The states can be pre-defined, or user-
defined. Further details on enummetrics are given in section 10.2.2.

• metrics: measurements with number values, and no data, as possible values. For example, values
such as: -13113143234.5, 24, 9234131299. Further details on metrics are given in section 10.2.3.

• health checks: measurements with the states PASS, FAIL, and UNKNOWN as possible states, and no

data as another possible state, when none of the other states are set. Further details on health
checks are given in section 10.2.4.

no data And Measurables
If no measurements are carried out, but a sample value needs to be saved, then the sample value is set
to no data for a measurable. This is a defined value, not a null data value. metrics and enummetrics

can therefore also take the no data value.

10.2 Monitoring Concepts And Definitions 537

Entities And Measurables
An entity is a concept introduced in BCM version 8.0.

Normally, a device, or a category or some similar grouping is a convenient idea to keep in mind as
an entity, for concreteness.

The default entities in a new installation of BCM are the following:
device category partition[base] softwareimages

However, more generally, an entity can be an object from the following modes of cmsh:
category cloud configurationoverlay device edgesite etcd fspart group jobqueue jobs

kubernetes network nodegroup partition profile rack softwareimage user

For example, a software image object that is to be provisioned to a node is an entity, with some of
the possible attributes of the entity being the name, kernelversion, creationtime, or locked attributes
of the image:

[root@basecm11 ~]# cmsh -c "softwareimage use default-image; show"

Parameter Value

-------------------------------- ---

Creation time Thu, 08 Jun 2017 18:15:13 CEST

Enable SOL no

Kernel modules <44 in submode>

Kernel parameters

Kernel version 3.10.0-327.3.1.el7.x86_64

Locked no

Name default-image

...

Because measurements can be carried out on such a variety of entities, it means that the monitoring
and conditional actions that can be carried out on a BCM cluster can be very diverse. This makes entities
a powerful and versatile concept in BCM’s monitoring system for managing clusters.

Listing Measurables Used By An Entity
In cmsh, for an entity, such as a device within device mode, a list of the measurables used by that device
can be viewed with the measurables command.

Example

[basecm11->device]% measurables node001

Type Name Parameter Class Producer

------------ ------------------- ---------- --------- ---------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck defaultgateway Network defaultgateway

HealthCheck diskspace Disk diskspace

HealthCheck dmesg OS dmesg

...

...

The subsets of these measurables—enummetrics, metrics, and health checks—can be listed with the
enummetrics (section 10.2.2), metrics (section 10.2.3), or healthchecks (section 10.2.4) command.

In Base View, all the entities that are using health checks can be viewed via the navigation path:

Monitoring > All Health Checks (figure 10.22 section 10.4.7)

538 Monitoring: Monitoring Cluster Devices

Listing Entities That Use A Measurable
The entities using a specific measurable can be listed with the usage command:

Example

[basecm11->monitoring->measurable]% usage nfs_v3_server_total

Measurable Count Entities

-------------------- ------ --------------

nfs_v3_server_total 1 basecm11

If the number of measurables is too large to view on the screen:

Example

[basecm11->monitoring->measurable]% usage devicestatus

Measurable Count Entities

------------- ------ --

DeviceStatus 21 node001,node002,node003,node004,node005,node006,node007,node008,node009,node010+

then the -v option can be used to list the entities over multiple lines:

Example

basecm11->monitoring->measurable]% usage -v devicestatus

Measurable Count Entities

------------- ------ --

DeviceStatus 21 node001,node002,node003,node004,node005,node006,node007,node008,node009,node010,

node011,node012,node013,node014,node015,node016,node017,node018,node019,node020,

basecm11

Listing Measurables From monitoring Mode
Similarly, under monitoring mode, within the measurable submode, the list of measurable objects that
can be used can be viewed with a list command:

Example

[basecm11->monitoring]% measurable list

Type Name (key) Parameter Class Producer

------------ ------------------- ---------- ---------------------------- ------------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem

HealthCheck chrootprocess OS chrootprocess

HealthCheck cmsh Internal cmsh

...

...

The subsets of these measurables—enummetrics, metrics, and health checks—can be listed with:
list enum (section 10.2.2), list metric (section 10.2.3), or list healthcheck (section 10.2.4).

In Base View, the equivalent to listing the measurables can be carried out via the navigation path:

Monitoring > Measurables (figure 10.11, section 10.4.2)

10.2 Monitoring Concepts And Definitions 539

Viewing Parameters For A Particular Measurable From monitoring Mode
Within the measurable submode, parameters for a particular measurable can be viewed with the show

command for that particular measurable:

Example

[basecm11->monitoring->measurable]% use devicestatus

[basecm11->monitoring->measurable[DeviceStatus]]% show

Parameter Value

-------------------------------- ----------------------

Class Internal

Consolidator none

Description The device status

Disabled no (DeviceState)

Maximal age 0s (DeviceState)

Maximal samples 4,096 (DeviceState)

Name DeviceStatus

Parameter

Producer DeviceState

Revision

Type Enum

10.2.2 Enummetrics
An enummetric is a measurable for an entity that can only take a limited set of values. At the time
of writing of this section (August 2024), DeviceStatus and wlm_slurm_state are the only enummetrics.
This may change in future versions of BCM.

The full list of possible values for the enummetric DeviceStatus is:
up, down, closed, installing, installer_failed, installer_rebooting, installer_callinginit,

installer_unreachable, installer_burning, burning, unknown, opening, going_down, pending, and
no data.

The full list of possible values for the enummetric wlm_slurm_state is:
allocated, completing, down, drain, draining, fail, failing, idle, maint, and mixed.
The enummetrics available for use can be listed from within the measurable submode of the

monitoring mode:

Example

[basecm11->monitoring->measurable]% list enum

Type Name (key) Parameter Class Producer

------ ------------------------ ------------------- --------- --------------------

Enum DeviceStatus Internal DeviceState

Enum wlm_slurm_state Workload slurm-state-count

[basecm11->monitoring->measurable]%

The list of enummetrics that is configured to be used by an entity, such as a device, can be viewed
with the enummetrics command for that entity:

Example

[basecm11->device]% enummetrics node001

Type Name Parameter Class Producer

------ ------------------------ ------------------- --------- -------------------

Enum DeviceStatus Internal DeviceState

[basecm11->device]%

540 Monitoring: Monitoring Cluster Devices

The states that the entity has been through can be viewed with a dumpmonitoringdata command
(section 10.6.4):

Example

[basecm11->device]% dumpmonitoringdata -99d now devicestatus node001

Timestamp Value Info

-------------------------- ----------- ----------

2017/07/03 16:07:00.001 down

2017/07/03 16:09:00.001 installing

2017/07/03 16:09:29.655 no data

2017/07/03 16:11:00 up

2017/07/12 16:05:00 up

The parameters of an enummetric such as devicestatus can be viewed and set from monitoring

mode, from within the measurable submode (page 539).

10.2.3 Metrics
A metric for an entity is typically a numeric value for an entity. The value can have units associated with
it.

In the basic example of section 10.1, the metric value considered was CPUUser, measured at the
default regular time intervals of 120s.

The value can also be defined as no data. no data is substituted for a null value when there is no
response for a sample. no data is not a null value once it has been set. This means that there are no null
values stored for monitored data.

Other examples for metrics are:

• LoadOne (value is a number, for example: 1.23)

• WriteTime (value in ms/s, for example: 5 ms/s)

• MemoryFree (value in readable units, for example: 930 MiB, or 10.0 GiB)

A metric can be a built-in, which means it comes with BCM as integrated code within CMDaemon. This
is based on c++ and is therefore much faster than the alternative. The alternative is that a metric can be
a standalone script, which means that it typically can be modified more easily by an administrator with
scripting skills.

The word metric is often used to mean the script or object associated with a metric as well as a metric
value. The context makes it clear which is meant.

A list of metrics in use can be viewed in cmsh using the list command from monitoring mode:

Example

[basecm11->monitoring]% measurable list metric

Type Name (key) Parameter Class Producer

------- ------------------------ -------------- ------------------ -------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

...

In Base View, the metrics can be viewed with the navigation path:

Monitoring > Measurables (figure 10.11, section 10.4.2)

A list of metrics in use by an entity can be viewed in cmsh using the metrics command for that entity.
For example, for the entity node001 in mode devices:

10.2 Monitoring Concepts And Definitions 541

Example

[basecm11->devices]% metrics node001

Type Name Parameter Class Producer

------- ------------------------ -------------- --------- --------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

...

The parameters of a metric such as AlertLevel:count can be viewed and set from monitoring mode,
from within the measurable submode, just as for the other measurables:

Example

[basecm11->monitoring->measurable]% use alertlevel:count

[basecm11->monitoring->measurable[AlertLevel:count]]% show

Parameter Value

-------------------------------- ----------------------

Class Internal

Consolidator default

Cumulative no

Description Number of active triggers

Disabled no

Maximal age 0s

Maximal samples 0

Maximum 0

Minimum 0

Name AlertLevel

Parameter count

Producer AlertLevel

Revision

Type Metric

The equivalent Base View navigation path to edit the parameters is:

Monitoring > Measurables>Edit

10.2.4 Health Check
A health check value is a response to a check carried out on an entity. The response indicates the health
of the entity for the check that is being carried out.

For example, the ssh2node health check, which runs on the head node to check if the SSH port 22
passwordless access to regular nodes is reachable.

A health check is run at a regular time interval, and can have the following possible values:

• PASS: The health check succeeded. For example, if ssh2node is successful, which suggests that an
ssh connection to the node is fine.

• FAIL: The health check failed. For example, if ssh2node was rejected. This suggests that the ssh

connection to the node is failing.

• UNKNOWN: The health check did not succeed, did not fail, but had an unknown response. For ex-
ample, if ssh2node has a timeout, for example due to routing or other issues. It means that it is
unknown whether the connection is fine or failing, because the response that came in is unknown.
Typically the administrator should investigate this further.

542 Monitoring: Monitoring Cluster Devices

• no data: The health check did not run, so no data was obtained. For example, if ssh2node is
disabled for some time, then no data values were obtained during this time. Since the health check
is disabled, it means that no data cannot be recorded during this time by ssh2node. However,
because having a no data value in the monitoring data for this situation is a good idea—explicitly
knowing about having no data is helpful for various reasons—then no data values can be set, by
CMDaemon, for samples that have no data.

Other examples of health checks are:

• diskspace: check if the hard drive still has enough space left on it

• mounts: check mounts are accessible

• mysql: check status and configuration of MySQL is correct

• hpraid: check RAID and health status for certain HP RAID hardware

These and others can be seen in the directory: /cm/local/apps/cmd/scripts/healthchecks.

Health Checks
In Base View, the health checks that can be configured for all entities can be seen with the navigation
path:

Monitoring > Measurables (figure 10.11, section 10.4.2)

Options can be set for each health check by clicking through via the Edit button.

All Configured Health Checks
In Base View, health checks that have been configured for all entities can be seen with the navigation
path:

Monitoring > All Health Checks (section 10.4.7)

The view can be filtered per column.

Configured Health Checks For An Entity
An overview can be seen for a particular entity <entity> via the navigation path:

Monitoring > Health status><entity>>Show

Severity Levels For Health Checks, And Overriding Them
A health check has a settable severity (section 10.2.7) associated with its response defined in the trigger
options.

For standalone healthchecks, the severity level defined by the script overrides the value in the trig-
ger. For example, FAIL 40 or UNKNOWN 10, as is set in the hpraid health check (/cm/local/apps/cmd/
scripts/healthchecks/hpraid).

Severity values are processed for the AlertLevel metric (section 10.2.8) when the health check runs.

Default Templates For Health Checks And Triggers
A health check can also launch an action based on any of the response values.

Monitoring triggers have the following default templates:

• Failing health checks: With a default severity of 15

• Passing health checks: With a default severity of 0

/cm/local/apps/cmd/scripts/healthchecks
/cm/local/apps/cmd/scripts/healthchecks/hpraid
/cm/local/apps/cmd/scripts/healthchecks/hpraid

10.2 Monitoring Concepts And Definitions 543

• Unknown health checks: With a default severity of 10

The severity level is one of the default parameters for the corresponding health checks. These defaults
can also be modified to allow an action to be launched when the trigger runs, for example, sending an
e-mail notification whenever any health check fails.

With the default templates, the actions are by default set for all health checks. However, specific
actions that are launched for a particular measurable instead of for all health checks can be configured.
To do this , one of the templates can be cloned, the trigger can be renamed, and an action can be set to
launch from a trigger. The reader should be able to recognize that in the basic example of section 10.1 this
is how, when the metric measurable CPUUser crosses 50 jiffies/s, the killallyestrigger is activated,
and the killallyes action script is run.

10.2.5 Trigger
A trigger is a threshold condition set for a sampled measurable. When a sample crosses the threshold
condition, it enters or leaves a zone that is demarcated by the threshold.

A trigger zone also has a settable severity (section 10.2.7) associated with it. This value is processed
for the AlertLevel metric (section 10.2.8) when an action is triggered by a threshold event.

Triggers are discussed further in section 10.4.5.

10.2.6 Action
In the basic example of section 10.1, the action script is the script added to the monitoring system to kill
all yes processes. The script runs when the condition is met that CPUUser crosses 50 jiffies/s.

An action is a standalone script or a built-in command that is executed when a condition is met, and
has exit code 0 on success. The condition that is met can be:

• A FAIL, PASS, UNKNOWN, or no data from a health check

• A trigger condition. This can be a FAIL or PASS for conditional expressions.

• State flapping (section 10.2.9).

The actions that can be run are listed from within the action submode of the monitoring mode.

Example

[basecm11->monitoring->action]% list

Type Name (key) Run on Action

----------- ---------------- --

Drain Drain Active Drain node from all WLM

Email Send e-mail Active Send e-mail

Event Event Active Send an event to users with connected client

ImageUpdate ImageUpdate Active Update the image on the node

PowerOff PowerOff Active Power off a device

PowerOn PowerOn Active Power on a device

PowerReset PowerReset Active Power reset a device

Reboot Reboot Node Reboot a node

Script killallyesaction Node /cm/local/apps/cmd/scripts/actions/killallyes

Script killprocess Node /cm/local/apps/cmd/scripts/actions/killprocess.pl

Script remount Node /cm/local/apps/cmd/scripts/actions/remount

Script testaction Node /cm/local/apps/cmd/scripts/actions/testaction

Shutdown Shutdown Node Shutdown a node

Undrain Undrain Active Undrain node from all WLM

The Base View equivalent is accessible via the navigation path:

544 Monitoring: Monitoring Cluster Devices

Monitoring > Actions (figure 10.17, section 10.4.4)

Configuration of monitoring actions is discussed further in section 10.4.4.

10.2.7 Severity
Severity is a positive integer value that the administrator assigns for a trigger. It takes one of these 6
suggested values:

Value Name Icon Description

0 debug debug message

0 info informational message

10 notice normal, but significant, condition

20 warning warning conditions

30 error error conditions

40 alert action must be taken immediately

Severity levels are used in the AlertLevel metric (section 10.2.8). They can also be set by the admin-
istrator in the return values of health check scripts (section 10.2.4).

By default the severity value is 15 for a health check FAIL response, 10 for a health check UNKNOWN

response, and 0 for a health check PASS response (section 10.2.4).

10.2.8 AlertLevel
AlertLevel is a special metric. It is sampled and re-calculated when an event with an associated Severity

(section 10.2.7) occurs. There are three types of AlertLevel metrics:

1. AlertLevel (count): the number of events that are at notice level and higher . The aim of this
metric is to alert the administrator to the number of issues.

2. AlertLevel (max): simply the maximum severity of the latest value of all the events. The aim of
this metric is to alert the administrator to the severity of the most important issue.

3. AlertLevel (sum): the sum of the latest severity values of all the events. The aim of this metric is
to alert the administrator to the overall severity of issues.

10.2.9 Flapping
Flapping, or State Flapping, is when a measurable trigger is detecting changes (section 10.4.5) that are too
frequent. That is, the measurable goes in and out of the zone too many times over a number of samples.
In the basic example of section 10.1, if the CPUUser metric crossed the threshold zone 5 times within
5 minutes (the default values for flap detection), then it would by default be detected as flapping. A
flapping alert would then be recorded in the event viewer, and a flapping action could also be launched
if configured to do so.

10.2.10 Data Producer
A data producer produces measurables. Sometimes it can be a group of measurables, as in the measur-
ables provided by a data producer that is being used:

Example

[basecm11->monitoring->measurable]% list -f name:25,producer:15 | grep ProcStat

BlockedProcesses ProcStat

CPUGuest ProcStat

CPUIdle ProcStat

10.2 Monitoring Concepts And Definitions 545

CPUIrq ProcStat

CPUNice ProcStat

CPUSoftIrq ProcStat

CPUSteal ProcStat

CPUSystem ProcStat

CPUUser ProcStat

CPUWait ProcStat

CtxtSwitches ProcStat

Forks ProcStat

Interrupts ProcStat

RunningProcesses ProcStat

Sometimes it may just be one measurable, as provided by a used data producer:

Example

[basecm11->monitoring->measurable]% list -f name:25,producer:15 | grep ssh2node

ssh2node ssh2node

It can even have no measurables, and just be an empty container for measurables that are not in use
yet.

In cmsh all possible data producers (used and unused) can be listed as follows:

Example

[basecm11->monitoring->setup]% list

The equivalent in Base View is via the navigation path:

Monitoring > Data Producers

The data producers configured for an entity, such as a head node basecm11, can be listed with the
monitoringproducers command:

Example

[basecm11->device[basecm11]]% monitoringproducers

Type Name Arguments Measurables Node execution filters

------------------ ----------------- ------------ ------------ ----------------------

AlertLevel AlertLevel 3 / 231 <0 in submode>

CMDaemonState CMDaemonState 1 / 231 <0 in submode>

ClusterTotal ClusterTotal 18 / 231 <1 in submode>

Collection NFS 32 / 231 <0 in submode>

Collection sdt 0 / 231 <0 in submode>

DeviceState DeviceState 1 / 231 <1 in submode>

HealthCheckScript chrootprocess 1 / 231 <1 in submode>

HealthCheckScript cmsh 1 / 231 <1 in submode>

HealthCheckScript defaultgateway 1 / 231 <0 in submode>

HealthCheckScript diskspace 1 / 231 <0 in submode>

HealthCheckScript dmesg 1 / 231 <0 in submode>

HealthCheckScript exports 1 / 231 <0 in submode>

HealthCheckScript failedprejob 1 / 231 <1 in submode>

HealthCheckScript hardware-profile 0 / 231 <1 in submode>

HealthCheckScript ib 1 / 231 <0 in submode>

HealthCheckScript interfaces 1 / 231 <0 in submode>

HealthCheckScript ldap 1 / 231 <0 in submode>

546 Monitoring: Monitoring Cluster Devices

HealthCheckScript lustre 1 / 231 <0 in submode>

HealthCheckScript mounts 1 / 231 <0 in submode>

HealthCheckScript mysql 1 / 231 <1 in submode>

HealthCheckScript ntp 1 / 231 <0 in submode>

HealthCheckScript oomkiller 1 / 231 <0 in submode>

HealthCheckScript opalinkhealth 1 / 231 <0 in submode>

HealthCheckScript rogueprocess 1 / 231 <1 in submode>

HealthCheckScript schedulers 1 / 231 <0 in submode>

HealthCheckScript smart 1 / 231 <0 in submode>

HealthCheckScript ssh2node 1 / 231 <1 in submode>

Job JobSampler 0 / 231 <1 in submode>

JobQueue JobQueueSampler 7 / 231 <1 in submode>

MonitoringSystem MonitoringSystem 36 / 231 <1 in submode>

ProcMemInfo ProcMemInfo 10 / 231 <0 in submode>

ProcMount ProcMounts 2 / 231 <0 in submode>

ProcNetDev ProcNetDev 18 / 231 <0 in submode>

ProcNetSnmp ProcNetSnmp 21 / 231 <0 in submode>

ProcPidStat ProcPidStat 5 / 231 <0 in submode>

ProcStat ProcStat 14 / 231 <0 in submode>

ProcVMStat ProcVMStat 6 / 231 <0 in submode>

Smart SmartDisk 0 / 231 <0 in submode>

SysBlockStat SysBlockStat 20 / 231 <0 in submode>

SysInfo SysInfo 5 / 231 <0 in submode>

UserCount UserCount 3 / 231 <1 in submode>

The displayed data producers are the ones configured for the entity, even if there are no measurables
used by the entity.

Data producer configuration in Base View is discussed further in section 10.4.1.

Access Control For Monitoring Data
Access control to data producers: An access control setting for a data producer determines who can
plot (via the measurables monitoring interface used by Base View and the User Portal), or view data
(using the text-based interface of cmsh or pythoncm) from the measurables generated by a data producer.
Thus, for example, the charts in the user portal (section 10.8) can be restricted according to the data
producer that generates them.

There are three possible settings for access control for data producers. If the data producer is set to:

1. Public: then it means any user can, by default, plot/view data derived from that data producer.
This is because by default a user has the token PLOT_TOKEN in their profile.

2. Private: then it means that a non-root user cannot, by default, plot/view data derived
from that data producer. This is because, by default, non-root users do not have the token
PRIVATE_MONITORING_TOKEN in their profile. If that token is in the profile, then the user has an el-
evated privilege, and can plot/view data, just like root.

3. Individual: then it means that a non-root user, by default, can plot/view the data only if the job
associated with that data was run by that same non-root user. More verbosely, with the default
user settings: the user who ran a job for which job measurables are produced by a data producer,
must be the same as the user that who wants to plot/view the data, or else the data cannot be plot-
ted/viewed. 1 The exception to this is, as already suggested, if the user that wants to plot/view

1Even more verbosely: Individual access control is meant for job-based measurables, and works like this:
All monitoring data is stored per (entity, measurable) pair.
If the measurable has an access control value of individual, then a user check is performed. If the login name is the same as

the user that owns the entity, then data can be plotted/viewed. If the user check does not match, then no data is returned.
Jobs—which are entities—are owned by the user that ran the job. Similarly Prometheus (entities) can have a ’user="Alice"’ label

set, to define ownership. No other entity managed by BCM is owned by a user.
For all unowned entities, individual access is equivalent to private access.

10.2 Monitoring Concepts And Definitions 547

the data is root, or has a user profile with the token PRIVATE_MONITORING_TOKEN. In that case the data
can be plotted/viewed.

On a regular BCM cluster, only a few low level data producers are set to private. An administrator
can decide to set a data producer access control value to one of the three possible values, by using the
setup submode of monitoring mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% use mounts

[basecm11->...[mounts]]% set access private

[basecm11->...*[mounts*]]% commit

If a data producer is newly added, then by default its access control value is set to public. Changing
this to private at a later time means that access to past and future data values from that data producer
are affected by the private setting. If access is changed once more back to public, then it means that
access to past and future data values are once again viewable and plottable by all users.

The current settings for access control for the data producers can be seen with:

Example

[root@basecm11 ~]# cmsh -c "monitoring setup; list -f name:40,access"

name (key) access

-- --------------------

AggregateNode Public

AlertLevel Public

BigDataTools Public

CMDaemonState Public

Cassandra Public

ClusterTotal Public

...

Access control to measurables: Measurables can also have access controls.
Access control for measurables is by default inherited from the data producer that generates it. It

can be overwritten:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring measurable

[basecm11->monitoring->measurable]% use loadone

[basecm11->...[LoadOne]]% get access

Public (SysInfo)

[basecm11->...[LoadOne]]% set access private

[basecm11->...*[LoadOne*]]% commit

A measurable can thus take an access control value of Public, Private, or Individual. It can also
explicitly be set to a value of inherit, which sets it to the value of its data producer. The inheritance
is indicated in cmsh by enclosing the parent data producer in parentheses, as shown in the preceding
example.

The current settings for access control for the measurables can be seen with:

Example

548 Monitoring: Monitoring Cluster Devices

[root@basecm11 ~]# cmsh -c "monitoring measurable; list -f name:40,access"

name (key) access

-- --------------------

AlertLevel Public

AlertLevel Public

AlertLevel Public

AvgJobDuration Public

BlockedProcesses Public

...

10.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Base View
Base View, besides having the default settings mode, has some other display modes and logging view
modes that can be selected via the 11 icons in the top right corner of the Base View standard display
(figure 10.5):

Toggle
dark theme

6

Search box

6

Settings
(section 10.4)

6

Monitoring
(section 10.3)

6

Accounting
(Chapter 12)

6

Chargeback
(Chapter 13)

6

Events

6

Action
results

6

Background tasks

6

Unsaved
entities

6

Account

6

Figure 10.5: Base View: Top Right Corner Icons

The 11 icons are described from left to right next:

1. Toggle dark theme option allows the display of Base View to be toggled to a darker theme.

2. Search box allows resource to be searched for, with predictive text suggestions.

3. Settings mode is active when Base View first starts up.

The Settings mode has a navigation panel to the left of it, showing the resources of the cluster
as expandable items. One of the resources is Monitoring. This resource should not be confused
with the Base View Monitoring mode, which is launched by the next icon in figure 10.5. The
Monitoring resource is about configuring how items are monitored and how their data values are
collected, and is discussed further in section 10.4.

4. The Monitoring mode allows visualization of the data values collected according to the specifi-
cations of the Base View Monitoring resource. The visualization allows graphs to be configured,
and is discussed further in section 10.3.

5. The Accounting mode typically allows visualization of job resources used by users, although it
can be used to visualize job resources used by other entities that are used as a classifier. This is
helpful tracking resources consumed by users. Job accounting is discussed further in Chapter 12.

6. The Chargeback mode allows the monitoring of resources requested over a period for jobs run by
selected groups (Chapter 13).

7. The Events icon allows logs of events (section 10.10) to be viewed.

8. The Action results icon allows the logs of the results of actions to be viewed.

9. The Background tasks icon allows background tasks to be viewed.

10.3 Monitoring Visualization With Base View 549

10. The Unsaved entities icon allows entities that have not yet been saved to be viewed.

11. The Account handling icon allows account settings to be managed for the Base View user.

The monitoring aspects of the first two icons are discussed in greater detail in the sections indicated.

10.3 Monitoring Visualization With Base View
The Monitoring icon in the menu bar of Base View (item 4 in figure 10.5) launches an intuitive visualiza-
tion tool that is the main GUI tool for getting a feel of the system’s behavior over periods of time. With
this tool the measurements and states of the system can be viewed as resizable and overlayable graphs.
The graphs can be zoomed in and out on over a particular time period, the graphs can be laid out on top
of each other or the graphs can be laid out as a giant grid. The graph scale settings can also be adjusted,
stored and recalled for use the next time a session is started.

An alternative to Base View’s visualization tool is the command-line cmsh. This has the same func-
tionality in the sense that data values can be selected and studied according to configurable parameters
with it (section 10.6). The data values can even be plotted and displayed on graphs with cmsh with the
help of unix pipes and graphing utilities. However, the strengths of monitoring with cmsh lie elsewhere:
cmsh is more useful for scripting or for examining pre-decided metrics and health checks rather than a
quick visual check over the system. This is because cmsh needs more familiarity with options, and is de-
signed for text output instead of interactive graphs. Monitoring with cmsh is discussed in sections 10.5
and 10.6.

Visualization of monitoring graphs with Base View is now described.

10.3.1 The Monitoring Window
If the Monitoring icon is clicked on from the menu bar of Base View (figure 10.5), then a monitoring
window for visualizing data opens up. By default, this displays a dashboard called Critical Services

which has two plots panels. The plot panels are graph axes with a time scale going back some time on
the x-axis, and with a y-axis that allows measurable data values plotted against time (figure 10.6).

By default, the data values that are plotted are for the ManagedServicesOK health check. The first
panel displays the plots for the head node, the second panel displays the plots for all the regular nodes
in the default category..

Figure 10.6: Base View Monitoring Window: Default Plot Panels

550 Monitoring: Monitoring Cluster Devices

Finding And Selecting The Measurable To Be Plotted
To plot measurables, the entity which it belongs to should be selected from the navigation menu on
the left-hand side. Once that has been selected, a class for that measurable can be chosen, and then
the measurable itself can be selected. For example, to plot the measurable CPUUser for a head node
basecm11, it can be selected from the navigation navigation path:

Menu bar > Monitoring icon > Device > basecm11 > CPU > CPUUser

Sometimes, finding a measurable is easier if the Expand all widget is used, together with the Search
box. Typing in CPUUser in the search box then shows all the measurables with that text (figure 10.7). The
search is case-insensitive.

Figure 10.7: Base View Monitoring Window: Search Box In Navigation

The search box can handle some simple regexes too, with .* and | taking their usual meaning:

Example

• node001.*cpuuser: select a measurable with a data path that starts with node001 and ends with
cpuuser, with 0 or more characters of any kind in between.

• (node001|node002).*cpuuser: as for preceding example, but including node002 as an alternative
to node001.

The / (forward slash) allows filtering according to the data path. It corresponds to the navigation
depth in the tree hierarchy:

Example

• node001/cpu/cpuuser: search for a measurable with a data path that matches node001/cpu/

cpuuser

Plotting The Measurable
Once the measurable is selected, it can be drag-and-dropped into a plot panel. This causes the data
values to be plotted.

node001/cpu/cpuuser
node001/cpu/cpuuser
node001/cpu/cpuuser

10.4 Monitoring Configuration With Base View 551

When a measurable is plotted into a panel, two graph plots are displayed. The smaller, bottom
plot, represents the polled value as a bar chart. The larger, upper plot, represents an interpolated line
graph. Different kinds of interpolations can be set. To get a quick idea of the effect of different kinds
of interpolations, https://bl.ocks.org/mbostock/4342190 is an interactive overview that shows how
they work on a small set of values.

The time axes can be expanded or shrunk using the mouse wheel in the graphing area of the plot
panel. The resizing is carried out centered around the position of the mouse pointer.

10.4 Monitoring Configuration With Base View
This section is about the configuration of monitoring for measurables, and about setting up trigger
actions.

If Base View is running in the standard Settings mode, which is the gear icon in figure 10.5,
page 548, then selecting Monitoring from the navigation menu resources makes the following menu
items available for managing or viewing:

• Data Producers (section 10.4.1)

• Measurables (section 10.4.2)

• Consolidators (section 10.4.3)

• Actions (section 10.4.4)

• Triggers (section 10.4.5)

• Health status (section 10.4.6)

• All Health checks (section 10.4.7)

• Standalone Monitored Entities (section 10.4.8)

• PromQL Queries (section 10.4.9)

• Resources (section 10.4.10)

• Types (section 10.4.11)

https://bl.ocks.org/mbostock/4342190

552 Monitoring: Monitoring Cluster Devices

Figure 10.8: Base View Monitoring Configuration Settings

These settings (figure 10.8) are now discussed in detail.

10.4.1 Monitoring Configuration: Data Producers
The navigation path:
Monitoring > Dataproducers

opens up the Monitoring Data Producer list screen, which lists all the data producers (figure 10.9).

Figure 10.9: Base View Monitoring Configuration Data Producers

10.4 Monitoring Configuration With Base View 553

Data producers are introduced in section 10.2.10.
Each data producer can have its settings edited within a subwindow. For example, the ProcStat

data producer, which produces data for several measurables, including CPUUser, has the settings shown
in figure 10.10:

Figure 10.10: Base View Monitoring Configuration Data Producer: ProcStat

When the data producer takes samples to produce data, run length encoding (RLE) is used to com-
press the number of samples that are stored as data. Consolidation is carried out on the RLE samples.
Consolidation in BCM means gathering several data values, and making one value from them over
time periods. Consolidation is done as data values are gathered. The point at which data values are
discarded, if ever, is thus not dependent on consolidation.

The data producer settings that are seen in the subwindow of figure 10.10 include the following:

• Maximal samples: the maximum number of RLE samples that are kept. If set to 0, then the number
of samples is not considered.

• Maximal Age: the maximum age of RLE samples that are kept. If Maximal Age is set to 0 then the
sample age is not considered.

With Maximal samples and Maximal Age, the first of the rules that is reached is the one that causes
the exceeding RLE samples to be dropped.

Samples are kept forever if Maximal samples and Maximal Age are both set to 0. This is discour-
aged due to the risk of exceeding the available data storage space.

• Interval: the interval between sampling, in seconds.

• Offset: A time offset from start of sampling. Some sampling depends on other sampling to be
carried out first. This is used, for example, by data producers that rely on sampling from other
data producers. For example, the AggregateNode data producer, which has measurables such as
TotalCPUIdle and TotalMemoryFree. The samples for AggregateNode depend upon the ProcStat

554 Monitoring: Monitoring Cluster Devices

data producer, which produces the CPUIdle measurable; and the ProcMemInfo data producer,
which produces the MemoryFree measurable.

• Fuzzy offset: a multiplier in the range from 0 to 1. It is multiplied against the sampling time
interval to fix a maximum value for the time offset for when the sampling takes place. The actual
offset used per node is spread out reasonably evenly within the range up to that maximum time
offset.

For example, for a sampling time interval of 120s:

If the offset is 0, then there is no offset, and the sampling is attempted for all nodes at time instant
when the interval restarts. This can lead to an overload at the time of sampling.

If, on the other hand, the offset is 0.25, then the sampling is done within a range offset from the
time of sampling by a maximum of 0.25× 120s = 30s. So, each node is sampled at a time that is
offset by up to 30s from when the 120s interval restarts. From the time the change in value of the
fuzzy offset starts working, the offset is set for each node. The instant at which sampling is carried
out on a node then differs from the other nodes, even though each node still has an interval of 120s
between sampling. An algorithm is used that tends to even out the spread of the instants at which
sampling is carried out within the 30s range. The spreading of sampling has the effect of reducing
the chance of overload at the time of sampling.

• Consolidator: By default, set to the default group. The default group consolidates (summa-
rizes) the RLE samples over periods of an hour, a day, and a week. Consolidators are explained
further in section 10.4.3.

• Node execution filters: A way to filter execution (restrict execution) of the data producer. It
tells BCM where the data producer runs. If not set, then the data producer runs on all nodes
managed by CMDaemon. Filters can be for nodes, types, overlays, resources, and categories.

• Execution multiplexer: A way to multiplex execution (have execution work elsewhere) for a
data producer. It tells BCM about the entities that the data producer is sampling for. A data pro-
ducer gathers data at the nodes defined by the node execution filter, and with multiplex execution
the data producer gathers samples from other entities. These entities can be nodes, types, over-
lays, and resources. The entities from which it can sample are defined into groups called execution
multiplexers. Execution multiplexers can thus be node multiplexers, type multiplexers, overlay
multiplexers, or resource multiplexers.

• When: This has 4 possible values:

1. Timed: Data producer is run at a periodic Interval. This is the default.

2. On demand: Data producer is only run on demand, and not at a periodic Interval.

3. Out of band: Data producer is only run on out of band connections.

4. On start: Data producer is only run on start and not at a periodic Interval.

• Only when idle: By default a data producer runs regardless of how busy the nodes are. However,
if the Only when idle setting is enabled, then the data producer runs only when the node is idle.
Idle is a condition that is defined by the metric condition LoadOne>1 (page 926).

10.4.2 Monitoring Configuration: Measurables
The Measurables window lists the available measurables (figure 10.11):

10.4 Monitoring Configuration With Base View 555

Figure 10.11: Base View Monitoring Configuration Measurables

There are many measurables, so using the search box in the menu bar (item 2 in list describing
figure 10.5) can be handy.

From the measurables window, a subwindow can be opened with the Edit button for a measurable.
This accesses the options for a particular measurable (figure 10.12):

556 Monitoring: Monitoring Cluster Devices

Figure 10.12: Base View Monitoring Configuration Measurables Options Subwindow

The options shown include the sampling options: Maximal age, Maximal samples, and
Consolidator. The sampling options work as described for data producers (section 10.4.1).

Other options for a metric are setting the Maximum and Minimum values, the Unit used, and whether
the metric is Cumulative.

If a metric is cumulative, then it is monotonic. Monotonic means that the metric only increments (is
cumulative), as time passes. In other words, if the metric is plotted as a graph against time, with time on
the x-axis, then the metric never descends. Normally the increments are from the time of boot onward,
and the metric resets at boot. For example, the number of bytes received at an interface is cumulative,
and resets at boot time.

Usually the cluster administrator is only interested in the differential value of the metric per sample
interval. That is, the change in the value of the current sample, from its value in the preceding sample.
For example, bytes/second, rather than total number of bytes up to that time from boot.

10.4.3 Monitoring Configuration: Consolidators
Introduction To Consolidators
The concept of consolidators is explained using simple ascii graphics in Appendix K, while the cmsh

interface to the consolidators submode is discussed in section 10.5.2.
In this current section, the Base View interface to consolidators is discussed.
In Base View, the Monitoring Consolidator list window lists all consolidator groups (fig-

10.4 Monitoring Configuration With Base View 557

ure 10.13). There are two pre-existing consolidator groups: default and none.

Figure 10.13: Base View Monitoring Consolidator list

Subwindows allow the consolidator components (consolidator items) to be created or modified (fig-
ure 10.14).

Figure 10.14: Base View Monitoring Configuration Consolidator Items

The none Consolidator Group
The none consolidator group has no consolidators. Using a consolidator group of none for a measurable
or data producer means that samples are not consolidated. This can be dangerous if the cluster is more
likely to run out of space due to unrestrained sampling. Unrestrained sampling can occur, for example,
if Maximal Age and Maximal samples (section 10.4.1) for data producers are both set to 0.

The default Consolidator Group
The default consolidator group consists of the consolidators hour, day, and week. These are, unsurpris-
ingly, defined to consolidate the samples in intervals of an hour, day, or week.

A consolidated value is generated on-the-fly. So, for example, during the hour that samples of a
measurable come in, the hour consolidator uses the samples to readjust the consolidated value for that
hour. When the hour is over, the consolidated value is stored for that hour as the data value for that
hour, and a new consolidation for the next hour begins.

Consolidator values are kept, as for sample values, until the Maximal Age and Maximal sample set-
tings prevent data values being kept.

558 Monitoring: Monitoring Cluster Devices

Other Consolidator Group Possibilities
Other sets of custom intervals can also be defined. For example, instead of the default consol-
idator group, consisting of consolidators of an hour, a day, and a week; a similar group called the
decimalminutes consolidator group, consisting of consolidators of 1min, 10min, 100min, 1000min,
10000min, could be created with the appropriate intervals (figure 10.15):

Figure 10.15: Base View Monitoring Configuration Consolidators: decimalminutes Consolidator Group

Consolidator Item Settings
Consolidator items (consolidator components) are the component members of the consolidator groups.
The items have settings as properties, which can be managed (figure 10.16).

10.4 Monitoring Configuration With Base View 559

Figure 10.16: Base View Monitoring Configuration Consolidators: Consolidator Item Settings

The consolidator item hour, which is within the default consolidators group, can have its properties
edited using the navigation path:

Monitoring > Consolidators[default] > Edit > Consolidator[hour] > Edit

The properties that can be set for a consolidator item are:

• Name: The name of the consolidator item. By default, for the consolidator group default, the
consolidator items with names of Day, Hour, and Month are already set up, with appropriate values
for their corresponding fields.

• Maximal samples: The maximum number of samples that are stored for that consolidator item.
This should not be confused with the Maximal samples of the measurable being consolidated.

• Interval: The time period (in seconds) covered by the consolidator sample. For example, the
consolidator with the name Hour has a value of 3600. The property should not be confused with
the time period between samples of the measurable being consolidated.

• Offset: The time offset from the default consolidation time, explained in more detail shortly.

• Kind: The kind of consolidation that is done on the raw data samples. The value of kind is set
to average by default. The output result for a processed set of raw data—the consolidated data
point—is an average, a maximum or a minimum of the input raw data values. Kind can thus have
the value Average, Maximum, or Minimum. The value of kind is set to average by default.

560 Monitoring: Monitoring Cluster Devices

For a given consolidator, when one Kind is changed to another, the historically processed data
values become inconsistent with the newer data values being consolidated. Previous consolidated
data values for that consolidator are therefore discarded during such a change.

To understand what Offset means, the Maximal samples of the measurable being consolidated can
be considered. This is the maximum number of raw data points that the measurable stores. When this
maximum is reached, the oldest data point is removed from the measurable data when a new data point
is added. Each removed data point is gathered and used for data consolidation purposes.

For a measurable that adds a new data point every Interval seconds, the time traw gone, which is
how many seconds into the past the raw data point is removed, is given by:

traw gone = (Maximal samples)measurable × (Interval)measurable
This value is also the default consolidation time, because the consolidated data values are normally

presented from traw gone seconds ago, to further into the past. The default consolidation time occurs
when the Offset has its default, zero value.

If however the Offset period is non-zero, then the consolidation time is offset, because the time into
the past from which consolidation is presented to the user, tconsolidation, is then given by:

tconsolidation = traw gone + Offset

The monitoring visualization graphs then show consolidated data from tconsolidation seconds into
the past, to further into the past2.

10.4.4 Monitoring Configuration: Actions
Actions are introduced in section 10.2.6. The Actions window (figure 10.17) displays actions that BCM
provides by default, and also displays any custom actions that have been created:

2For completeness: the time tconsolidation gone, which is how many seconds into the past the consolidated data goes and is
viewable, is given by an analogous equation to that of the equation defining traw gone:
tconsolidation gone = (Maximalsamples)consolidation × (Interval)consolidation

10.4 Monitoring Configuration With Base View 561

Figure 10.17: Base View Monitoring Configuration: Actions

The killallyes script from the basic example of section 10.1 would show up here if it has been
implemented.

Actions are triggered, by triggers (section 10.4.5).
By default, the following actions exist:

• PowerOn: Powers on the node

• PowerOff: Powers off the node

• PowerReset: Hard resets the node

• Drain: Drains the node (does not allow new jobs on that node)

• Undrain: Undrains the node (allows new jobs on that node)

• Reboot: Reboots node via the operating system

• Shutdown: Shuts the node down via the operating system

• ImageUpdate: Updates the node from the software image

• Event: Sends an event to users connected with cmsh or Base View

• killprocess: A script to kill a process

• remount: A script to remount all devices

• testaction: A test script

562 Monitoring: Monitoring Cluster Devices

• Send e-mail to administrators: Sends an e-mail out

The preceding actions show their options when the associated Edit button is clicked. A subwindow
with options opens up. The following options are among those then displayed:

• Run on: What nodes the action should run on. Choices are:

– Active head node: the action runs on the active node only

– Node: the action runs on the triggering node

– Monitoring node: the action runs on the monitoring node

• Allowed time: The time interval in the 24 hour clock cycle that the action is allowed to start
running. The interval can be restricted further to run within certain days of the week, months of
the year, or dates of the month. Days and months must be specified in lower case.

The Base View interface for setting the time can be used to set the allowed times.

The allowed times have a format that is also used in cmsh. Rather than defining a formal syntax,
some cmsh examples are given of possible formats, with explanations:

– november-march: November to March. The months April to October are forbidden.

– november-march{monday-saturday}: As in the preceding, but all Sundays are also forbidden.

– november-march{monday-saturday{13:00-17:00}}: Restricted to the period defined in the
preceding example, and with the additional restriction that the action can start running only
during the time 13:00-17:00.

– 09:00-17:00: All year long, but during 09:00-17:00 only.

– monday-friday{9:00-17:00}: All year long, but during 9:00-17:00 only, and not on Saturdays
or Sundays.

– november-march{monday-saturday{13:00-17:00}}: Not in April to October. In the other
months, only on Mondays to Saturdays, from 13:00-17:00.

– may-september{monday-friday{09:00-18:00};saturday-sunday{13:00-17:00}}: May to
September, with: Monday to Friday 09:00-18:00, and Saturday to Sunday 13:00-17:00.

– may{1-31}: All of May.

– may,september{1-15}: All of May, and only September 1-15.

– may,september{1-15{monday-friday}}: All of May. And only September 1-15 Monday to
Friday.

A BNF grammar for allowed times is given in section 3.2.1 of the Developer Manual.

The following action scripts have some additional options:

• Send e-mail to administrators: Additional options here are:

– Info: body of text inserted into the default e-mail message text, before the line beginning
“Please take action”. The default text can be managed in the file /cm/local/apps/cmd/

scripts/actions/sendemail.py

– Recipients: a list of recipients

– All administrators: uses the list of users in the Administrator e-mail setting in partition[base]

mode

• killprocess, and testaction: Additional options for these are:

– Arguments: text that can be used by the script.

– Script: The location of the script on the file system.

/cm/local/apps/cmd/scripts/actions/sendemail.py
/cm/local/apps/cmd/scripts/actions/sendemail.py

10.4 Monitoring Configuration With Base View 563

10.4.5 Monitoring Configuration: Triggers
Triggers are introduced in section 10.2.5. The Triggers window (figure 10.18) allows actions (sec-
tion 10.2.6) to be triggered based on conditions defined by the cluster administrator.

Figure 10.18: Base View Monitoring Configuration: Triggers

Change Detection For Triggers
Triggers launch actions by detecting changes in the data of configured measurables. The detection of
these changes can happen:

• When a threshold is crossed. That is: the latest sample value means that either the value has
entered a zone when it was not in the zone in the preceding sample, or the latest sample means
that the value has left a zone when it was in the zone in the preceding sample

• When the zone remains crossed. That is: the latest sample as well as the preceding sample are both
within the zone of a crossed threshold.

• When state flapping is detected. This is when the threshold is crossed repeatedly (5 times by
default) within a certain time period (5 minutes by default).

The monitoring configuration dialog triggers have four possible action launch configuration options
to cover these cases:

1. Enter actions: if the sample has entered into the zone and the previous sample was not in the
zone. This is a threshold-crossing change.

2. Leave actions: if the sample has left the zone and the previous sample was in the zone. This is
also a threshold-crossing change.

3. During actions: if the sample is in the zone, and the previous sample was also in the zone.

4. State flapping actions: if the sample is entering and leaving the zone within a particular
period (State flapping period, 5 minutes by default) a set number of times (State flapping

count, 5 by default).

Pre-defined Triggers: Passing, Failing, And Unknown Health Checks
By default, the only triggers that are pre-defined are the following three health check triggers, which use
the Enter actions launch configuration option, and which have the following default behavior:

• Failing health checks: If a health check fails, then on entering the state of the health check
failing, an event is triggered as the action, and a severity of 15 is set for that health check.

• Passing health checks: If a health check passes, then on entering the state of the health check
passing, an event is triggered as the action, and a severity of 0 is set for that health check.

564 Monitoring: Monitoring Cluster Devices

• Unknown health checks: If a health check has an unknown response, then on entering the state of
the health check returning an unknown response, an event is triggered as the action, and a severity
of 10 is set for that health check.

Example: carry out a triggered action: cmsh or Base View can be used for the configuration of carrying
out an e-mail alert action (that is: sending out an e-mail) that is triggered by failing health checks.

• A cmsh way to configure it is:

The e-mail action (send\ e-mail\ to\ administrators) is first configured so that the right recipients
get a useful e-mail.

[root@basecm11 ~]# cmsh

[basecm11]% monitoring action

[basecm11->monitoring->action]% use send\ e-mail\ to\ administrators

[basecm11->...[send e-mail to administrators]]% append recipients user1@example.com

[basecm11->...*[send e-mail to administrators*]]% commit

Here, email alerts would go to user1@example.com, as well as to anyone already configured in
administratore-mail. Additional text can be set in the body of the e-mail by setting a value for
info.

The trigger can be configured to run the action when the health check enters a state where its value
is true:

[basecm11->monitoring->action[use send e-mail to administrators]]% monitoring trigger

[basecm11->monitoring->trigger]% use failing\ health\ checks

[basecm11->monitoring->trigger[Failing health checks]]% append enteractions send\ e-mail\ to\ administrators

[basecm11->monitoring->trigger*[Failing health checks*]]% commit

The settings can be viewed with the show command. TAB-completion prompting can be used to
suggest possible values for the settings.

• A Base View way to carry out the configuration is using the navigation path:

Monitoring > Actions > Send e-mail to administrators > Edit

This can be used to set the recipients and other items, and the configuration can then be saved.

The email action can then be configured in Base View via the navigation path:

Monitoring > Triggers > Failing Health Checks > Edit > Enter Actions > Send E-mail to

Administrators

The checkbox for the "Send E-mail to Administrators" action should be ticked and the config-
uration saved.

Carrying Out Post-Drain Actions
A special, and hidden, setting for a triggered drain is post-drain-actions. This allows one or more
actions to be triggered after a node has reached a fully-drained state after a drain action.

Example

[basecm11->monitoring]% trigger

[basecm11->monitoring->trigger]% add mydrain

[basecm11->...->trigger*[mydrain*]]% set enteractions drain

[basecm11->...->trigger*[mydrain*]]% set -e -v post-drain-actions send\ e-mail\ to\ administrators poweroff

[basecm11->...->trigger*[mydrain*]]% commit

In the preceding example, nodes that enter a drained state, after they are fully-drained, send an
e-mail to the administrator and are powered off (page 562 and section G.4.1).

The syntax of the post-drain action is:
set -e -v post-drain-actions <action name> [<action name> ...]

10.4 Monitoring Configuration With Base View 565

Adding Custom Triggers: Any Measurable, Any Action
More triggers can be added. The killallyestrigger example from the basic example of section 10.1,
seen in figures 10.3 and 10.4, is one such example.

The idea is that actions are launched from triggers, and the action for the trigger can be set to a
predefined action, or to a custom action.

The Expression Subwindow For A Trigger
One of the options presented when editing a trigger listed in figure 10.18 is the Expression button.
Clicking on it opens up the expression subwindow. The expression for the trigger can then be configured
by setting the entity, measurable, parameters, (comparison) operator, and measurable value, as shown
in figure 10.19:

Figure 10.19: Base View Monitoring Configuration: Triggers Expression

The trigger launch is carried out when, during sampling, CMDaemon evaluates the expression as
being true.

An example cmsh session to set up an expression for a custom trigger might be as follows, where the

566 Monitoring: Monitoring Cluster Devices

administrator is setting up the configuration so that an e-mail is sent by the monitoring system when a
node is detected as having gone down:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring trigger add nodedown

[basecm11->monitoring->trigger*[nodedown*]]% expression

[basecm11->monitoring->trigger*[nodedown*]->expression[compare]]% show

Parameter Value

-------------------------------- --

Name compare

Revision

Type MonitoringCompareExpression

Entities

Measurables

Parameters

Operator ==

Value FAIL

Use raw no

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% set value down

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% set operator eq

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% set measurables devicestate

To add a touch of realism, a deliberate mistake is set here—the use of devicestate (the data pro-
ducer) instead of devicestatus (the measurable). The validate command (page 58) gives a helpful
warning here, so that the cluster administrator can fix the setting:

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% validate

Field Message

---------------- --

actions Warning: No actions were set

measurables/ Warning: No known measurable matches the specified regexes ('devicestate', '')

parameters

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% set measurables devicestatus

[basecm11->monitoring->trigger*[nodedown*]->expression*[compare*]]% ..;..

[basecm11->monitoring->trigger*[nodedown*]]% set enteractions send e-mail to administrators

[basecm11->monitoring->trigger*[nodedown*]]% commit

10.4.6 Monitoring Configuration: Health status
The Health status window (figure 10.20) displays all the nodes, and summarizes the results of all the
health checks that have been run against them over time, by presenting a table of the associated severity
levels (section 10.2.7):

Figure 10.20: Base View Monitoring Configuration: Health Status

In the example shown in figure 10.20 the last entity shows a severity issue, while the other devices
are fine. Details of the individual health checks per entity can be viewed in a subwindow using the

10.4 Monitoring Configuration With Base View 567

Show button for that entity. Clicking on the show button for the last entity in this example opens up a
subwindow (figure 10.21). For this example the issue turns out to be due to a FAIL status in the ssh2node
measurable.

Figure 10.21: Base View Monitoring Configuration: Health Status For An Entity

10.4.7 Monitoring Configuration: All Health Checks

Figure 10.22: Base View Monitoring Configuration: All Health Checks For All Entities

The All Health checks window shows all the running health checks for all entities. The Group by

Entity option at the top of the ENTITY column can be used to show the results for per entity only. The
results for one entityare then similar to what the Show button for the entity produces in section 10.4.6,
figure 10.21.

568 Monitoring: Monitoring Cluster Devices

10.4.8 Monitoring Configuration: Standalone Monitored Entities
The Standalone Monitored Entities window allows the cluster administrator to define a standalone
entity. A standalone entity is one that is not managed by BCM—which means that no CMDaemon is
running on it to gather data and for managing it—but the entity can still be monitored. For example, a
workstation that is running the Base View browser could be the standalone entity. This could have its
connectivity monitored by pinging it from the head node with a custom script.

10.4.9 Monitoring Configuration: PromQL Queries
The Prometheus Query list window displays the list of PromQL job-related queries, and allows query
properties to be edited. Drilldowns can also be viewed.

Figure 10.23: Base View Monitoring Configuration: PrompQL Queries

PromQL job queries are discussed further in section 12.3.

10.4.10 Monitoring Configuration: Resources
The Monitoring Resource list window displays a view-only list of resources.

10.4 Monitoring Configuration With Base View 569

Figure 10.24: Base View Monitoring Configuration: Resources

10.4.11 Monitoring Configuration: Types
The Monitoring Types list window displays a view-only list of types.

570 Monitoring: Monitoring Cluster Devices

Figure 10.25: Base View Monitoring Configuration: Types

10.5 The monitoring Mode Of cmsh
This section covers how to use cmsh to configure monitoring. The monitoring mode in cmsh corresponds
generally to the Monitoring resource of Base View in section 10.4. Similarly to how monitoring subwin-
dows are accessed in Base View, the monitoring mode of cmsh is itself is not used directly, except as a
way to access the monitoring configuration submodes of cmsh.

For this section some familiarity is assumed with handling of objects as described in the introduction
to working with objects (section 2.5.3). When using cmsh’s monitoring mode, the properties of objects in
the submodes are how monitoring settings are carried out.

The monitoring mode of cmsh gives access to 9 modes under it:

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring help | tail -11

============================== Monitoring ===============================

action Enter action mode

consolidator Enter consolidator mode

labeledentity Enter labeled entity mode

measurable Enter measurable mode

query.......................... Enter monitoring query mode

report......................... Enter report mode

setup Enter monitoring configuration setup mode

standalone Enter standalone entity mode

trigger Enter trigger mode

For convenience, a tree of modes for monitoring submodes is shown in figure 10.26.

10.5 The monitoring Mode Of cmsh 571

monitoring

trigger expression

standalone

setup

dpusettings

nodeexecutionfilters

jobmetricsettings

executionmultiplexers

report

query
drilldown

measurable

labeledentity

consolidator consolidators

action (section 10.5.1)

(section 10.5.2)

(page 573)

(section 12.2)

(section 10.5.3)

(section 12.3)

(page 584)

(section
10.5.4)

(page 581)

(page 585)

(section 10.5.5)

(section 10.5.6) (page 586)

Figure 10.26: Submodes Under monitoring Mode

Sections 10.5.1–10.5.6 give examples of how objects are handled under these monitoring modes. To
avoid repeating similar descriptions, section 10.5.1 is relatively detailed, and is often referred to by the
other sections.

10.5.1 The action Submode
The action submode under the monitoring mode of cmsh allows monitoring actions to be configured.
This mode in cmsh corresponds to the Base View navigation path:

Monitoring > Actions

described earlier in section 10.4.4:

The action mode handles action objects in the way described in the introduction to working with
objects (section 2.5.3). A typical reason to handle action objects—the properties associated with an action
script or action built-in—might be to view the actions available, or to add a custom action for use by, for
example, a metric or health check.

Some examples of how the action mode is used are now give.

The action Submode: list, show, And get

The list command by default lists the names and properties of actions available from action mode in
a table:

Example

[myheadnode]% monitoring action

[myheadnode->monitoring->action]% list

Type Name (key) Run on Action

----------- ---------------- -------- ---

572 Monitoring: Monitoring Cluster Devices

Drain Drain Active Drain node from all WLM

Email Send e-mail to Active Send e-mail

administrators

Event Event Active Send an event to users with connected client

ImageUpdate ImageUpdate Active Update the image on the node

PowerOff PowerOff Active Power off a device

PowerOn PowerOn Active Power on a device

PowerReset PowerReset Active Power reset a device

Reboot Reboot Node Reboot a node

Script killprocess Node /cm/local/apps/cmd/scripts/actions/killprocess.pl

Script remount Node /cm/local/apps/cmd/scripts/actions/remount

Script testaction Node /cm/local/apps/cmd/scripts/actions/testaction

Shutdown Shutdown Node Shutdown a node

Undrain Undrain Active Undrain node from all WLM (node accepts new WLM jobs)

The preceding shows the actions available on a newly installed system.
The show command of cmsh displays the individual parameters and values of a specified action:

Example

[myheadnode->monitoring->action]% show poweroff

Parameter Value

-------------------------------- ----------------------------

Action Power off a device

Allowed time

Disable no

Name PowerOff

Revision

Run on Active

Type PowerOff

Instead of using list, a convenient way to view the possible actions is to use the show command
with tab-completion suggestions:

Example

[myheadnode->monitoring->action]% show<TAB><TAB>
drain killprocess powerreset send\ e-mail\ to\ administrators undrain

event poweroff reboot shutdown

imageupdate poweron remount testaction

The get command returns the value of an individual parameter of the action object:

Example

[myheadnode->monitoring->action]% get poweroff runon

active

The action Submode: add, use, remove, commit, refresh, modified, set, clear, And validate

In the basic example of section 10.1, in section 10.1.2, the killallyes action was cloned from a similar
script using a clone option in Base View.

The equivalent can be done with a clone command in cmsh. However, using the add command
instead, while it requires more steps, makes it clearer what is going on. This section therefore covers
adding the killallyes script of section 10.1.2 using the add command.

When add is used: an object is added, the object is made the current object, and the name of the object
is set, all at the same time. After that, set can be used to set values for the parameters within the object,
such as a path for the value of the parameter command.

10.5 The monitoring Mode Of cmsh 573

Adding an action requires that the type of action be defined. Just as tab-completion with show comes
up with action suggestions, in the same way, using tab-completion with add comes up with type sug-
gestions.

Running the command help add in the action mode also lists the possible types. These types are
drain, e-mail, event, imageupdate, poweroff, poweron, powerreset, reboot, script, servicerestart,
servicestart, servicestop, shutdown, undrain.

The syntax for the add command takes the form:

add <type> <action>

If there is no killallyes action already, then the name is added in the action mode with the
add command, and the script type, as follows:

Example

[myheadnode->monitoring->action]% add script killallyes

[myheadnode->monitoring->action*[killallyes*]]%

Using the add command drops the administrator into the killallyes object level, where its proper-
ties can be set. A successful commit means that the action is stored in CMDaemon.

The converse to the add command is the remove command, which removes an action that has had
the commit command successfully run on it.

The refresh command can be run from outside the object level, and it removes the action if it has
not yet been committed.

The use command is the usual way of "using" an object, where "using" means that the object being
used is referred to by default by any command run. So if the killallyes object already exists, then use

killallyes drops into the context of an already existing object (i.e. it “uses” the object).
The set command sets the value of each individual parameter displayed by a show command for

that action. The individual parameter script can thus be set to the path of the killallyes script:

Example

[...oring->action*[killallyes*]]% set script /cm/local/apps/cmd/scripts/actions/killallyes

The clear command can be used to clear the value that has been set for script.
The validate command checks if the object has all required values set to sensible values. So, for

example, commit only succeeds if the killallyes object passes validation.
Validation does not check if the script itself exists. It only does a sanity check on the values of the

parameters of the object, which is another matter. If the killallyes script does not yet exist in the
location given by the parameter, it can be created as suggested in the basic example of section 10.1, in
section 10.1.2. In the basic example used in this chapter, the script is run only on the head node. If it
were to run on regular nodes, then the script should be copied into the disk image.

The modified command lists changes that have not yet been committed.

10.5.2 The consolidator Submode
Consolidators are introduced in section 10.4.3. Consolidators can be managed in cmsh via the
consolidator mode, which is the equivalent of the consolidators window (section 10.4.3) in Base View.

The consolidator mode deals with groups of consolidators. One such pre-defined group is
default, while the other is none, as discussed earlier in section 10.4.3:

[basecm11->monitoring->consolidator]% list

Name (key) Consolidators

------------------------ ------------------------

default hour, day, week

none <0 in submode>

574 Monitoring: Monitoring Cluster Devices

Each consolidators entry can have its parameters accessed and adjusted.
For example, the parameters can be viewed with:

Example

[basecm11->monitoring->consolidator]% use default

[basecm11->monitoring->consolidator[default]]% show

Parameter Value

-------------------------------- --

Consolidators hour, day, week

Name default

Revision

[basecm11->monitoring->consolidator[default]]% consolidators

[basecm11->monitoring->consolidator[default]->consolidators]% list

Name (key) Interval

------------------------ ------------------------

day 1d

hour 1h

week 1w

[basecm11->monitoring->consolidator[default]->consolidators]% use day

[basecm11->monitoring->consolidator[default]->consolidators[day]]% show

Parameter Value

-------------------------------- --

Interval 1d

Kind AVERAGE

Maximal age 0s

Maximal samples 4096

Name day

Offset 0s

Revision

[basecm11->monitoring->consolidator[default]->consolidators[day]]%

For the day consolidator shown in the preceding example, the number of samples saved per day can be
doubled with:

Example

[basecm11->monitoring->consolidator[default]->consolidators[day]]% set maximalsamples 8192

[basecm11->monitoring->consolidator*[default*]->consolidators*[day*]]% commit

Previously consolidated data is discarded with this type of change, if the number of samples is re-
duced. Changing parameters should therefore be done with some care.

A new consolidators group can be created if needed.
A Base View way, where a decimalminutes group is created, is discussed in the example in sec-

tion 10.4.3, page 558.
A cmsh way, where a max-per-day group is created, is discussed in the following section:

Creation Of A Consolidator In cmsh

A new consolidator group, max-per-day, can be added to the default consolidator groups of default
and none, with:

Example

[basecm11]% monitoring consolidator

[basecm11->monitoring->consolidator]% add max-per-day

[...[max-per-day*]]%

10.5 The monitoring Mode Of cmsh 575

Within this new group, a new consolidator item, max-per-day can also be defined. The item can be
defined so that it only calculates the maximum value per day, using the kind setting. Another setting is
interval, which defines the interval with which the old data is compressed:

Example

[...[max-per-day*]]% consolidators

[...[max-per-day*]->consolidators]% add max-per-day

[...[max-per-day*]]% set interval 1d

[...[max-per-day*]]% set kind maximum

[...[max-per-day*]]% show

Parameter Value

------------------- -----------

Interval 1d

Kind maximum

Maximal age 0s

Maximal samples 4096

Name max-per-day

Offset 0s

Revision

[...[max-per-day*]]% commit

10.5.3 The measurable Submode
The measurable submode under the monitoring mode of cmsh handles measurable objects, that is:
metrics, health checks, and enummetrics. This mode corresponds to the Base View navigation path:

Monitoring > Measurables

covered earlier in section 10.4.2.
Measurable objects represent the configuration of scripts or built-ins. The properties of the objects

are handled in cmsh in the way described in the introduction to working with objects (section 2.5.3).
A typical reason to handle measurable objects might be to view the measurables already available,

or to remove a measurable that is in use by an entity.
Measurables cannot be added from this mode. To add a measurable, its associated data producer

must be added from monitoring setup mode (section 10.5.4).
This section goes through a cmsh session giving some examples of how this mode is used.

The measurable Submode: list, show, And get

In measurable mode, the list command by default lists the names of all measurable objects along with
parameters, their class, and data producer.

Example

[basecm11->monitoring->measurable]% list

type name (key) parameter class producer

------------- -------------------- ---------- ----------------------------- -----------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem

Metric nfs_v3_server_total Disk NFS

Metric nfs_v3_server_write Disk NFS

...

The above example illustrates a list with some of the measurables that can be set for sampling on a
newly installed system. A full list typically contains over two hundred items.

The list command in measurable submode can be run as:

576 Monitoring: Monitoring Cluster Devices

• list metric: to display only metrics

• list healthcheck: to display only health checks

• list enum: to display only enummetrics

The show command of the measurable submode of monitoring mode displays the parameters and
values of a specified measurable, such as, for example CPUUser, devicestatus, or diskspace:

Example

Example

[myheadnode->monitoring->measurable]% show cpuuser

Parameter Value

-------------------- ----------------------------

Class CPU

Consolidator default (ProcStat)

Cumulative yes

Description CPU time spent in user mode

Disabled no (ProcStat)

Gap 0 (ProcStat)

Maximal age 0s (ProcStat)

Maximal samples 4,096 (ProcStat)

Maximum 0

Minimum 0

Name CPUUser

Parameter

Producer ProcStat

Revision

Type Metric

Unit Jiffies/s

[myheadnode->monitoring->measurable]% show devicestatus

Parameter Value

-------------------- ----------------------------

Class Internal

Consolidator none

Description The device status

Disabled no (DeviceState)

Gap 0 (DeviceState)

Maximal age 0s (DeviceState)

Maximal samples 4,096 (DeviceState)

Name DeviceStatus

Parameter

Producer DeviceState

Revision

Type Enum

[myheadnode->monitoring->measurable]% show diskspace

Parameter Value

-------------------- ----------------------------

Class Disk

Consolidator - (diskspace)

Description checks free disk space

Disabled no (diskspace)

Gap 0 (diskspace)

Maximal age 0s (diskspace)

Maximal samples 4,096 (diskspace)

10.5 The monitoring Mode Of cmsh 577

Name diskspace

Parameter

Producer diskspace

Revision

Type HealthCheck

The Gap setting here is a number. It sets how many samples are allowed to be missed before a value
of NaN is set for the value of the metric.

As detailed in section 10.5.1, tab-completion suggestions for the show command suggest the names
of objects that can be used, with the use command in this mode. For show in measurable mode, tab-
completion suggestions suggests over 200 possible objects:

Example

[basecm11->monitoring->measurable]% show

Display all 221 possibilities? (y or n)

alertlevel:count iotime:vda mon::storage::engine::elements oomkiller

alertlevel:maximum iotime:vdb mon::storage::engine::size opalinkhealth

alertlevel:sum ipforwdatagrams mon::storage::engine::usage packetsrecv:eth0

blockedprocesses ipfragcreates mon::storage::message::elements packetsrecv:eth1

buffermemory ipfragfails mon::storage::message::size packetssent:eth0

bytesrecv:eth0 ipfragoks mon::storage::message::usage packetssent:eth1

...

The single colon (“:”) indicates an extra parameter for that measurable.
Because there are a large number of metrics, it means that grepping a metrics list is sometimes handy.
When listing and grepping, it is usually a good idea to allow for case, and be aware of the existence of

the parameter column. For example, the AlertLevel metric shown in the first lines of the tab-completion
suggestions of the show command of the previous example, shows up as alertlevel. However the list
command displays it as AlertLevel. There are also several parameters associated with the AlertLevel
command. So using the case-insensitive -i option of grep, and using the head command to display the
headers is handy:

Example

[basecm11->monitoring->measurable]% list | head -2 ; list metric | grep -i alertlevel

type name (key) parameter class producer

------------- -------------------- ---------- ------------------- ---------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

Metric AlertLevel sum Internal AlertLevel

The get command returns the value of an individual parameter of a particular health check object:

Example

[myheadnode->monitoring->measurable]% get oomkiller description

Checks whether oomkiller has come into action (then this check returns FAIL)

[myheadnode->monitoring->measurable]%

The measurable Submode: The has Command
The has command is used with a measurable to list the entities that use the measurable. Typically these
are nodes, but it can also be other entities, such as the base partition.

Example

578 Monitoring: Monitoring Cluster Devices

[basecm11->monitoring->measurable]% has alertlevel:sum

basecm11

node001

node002

[basecm11->monitoring->measurable]% use devicesup

[basecm11->monitoring->measurable[DevicesUp]]% has

base

The remaining commands in measurable mode, such as use, remove, commit, refresh, modified,
set, clear, and validate; all work as outlined in the introduction to working with objects (section 2.5.3).
More detailed usage examples of these commands within a monitoring mode are given in the earlier
section covering the action submode (section 10.5.1).

The measurable Submode: An Example Session On Viewing And Configuring A Measurable
A typical reason to look at metrics and health check objects—the properties associated with the script or
built-in—might be, for example, to view the operating sampling configuration for an entity.

This section goes through a cmsh example session under monitoring mode, where the setup sub-
mode (page 579) is used to set up a health check. The healthcheck can then be viewed from the
measurable submode.

In the basic example of section 10.1, a trigger was set up from Base View to check if the CPUUser
metric was above 50 jiffies/s, and if so, to launch an action.

A functionally equivalent task can be set up by creating and configuring a health check, because
metrics and health checks are so similar in concept. This is done here to illustrate how cmsh can be used
to do something similar to what was done with Base View in the basic example. A start is made on
the task by creating a health check data producer, and configuring its measurable properties. using the
setup mode under the monitoring mode of cmsh. The task is completed in the section on the setup

mode in section 10.5.4.
To start the task, cmsh’s add command is used, and the type is specified, to create the new object:

Example

[root@myheadnode ~]# cmsh

[myheadnode]% monitoring setup

[myheadnode->monitoring->setup]% add healthcheck cpucheck

[myheadnode->monitoring->setup*[cpucheck*]]%

The show command shows the parameters.
The values for description, runinbash, script, and class should be set:

Example

[...->setup*[cpucheck*]]% set script /cm/local/apps/cmd/scripts/healthchecks/cpucheck

[...->setup*[cpucheck*]]% set description "CPUuser under 50%?"

[...->setup*[cpucheck*]]% set runinbash yes

[...->setup*[cpucheck*]]% set class OS

[...->setup*[cpucheck*]]% commit

[myheadnode->monitoring->setup[cpucheck]]%

On running commit, the data producer cpucheck is created:

Example

[myheadnode->monitoring->setup[cpucheck]]% exit; exit

[myheadnode->monitoring]% setup list | grep -i cpucheck

HealthCheckScript cpucheck 1 / 222 <0 in submode>

10.5 The monitoring Mode Of cmsh 579

The measurable submode shows that a measurable cpucheck is also created:

Example

[myheadnode->monitoring]% measurable list | grep -i cpucheck

HealthCheck cpucheck OS cpucheck

Since the cpucheck script does not yet exist in the location given by the parameter script, it needs
to be created. One ugly bash script that can do a health check is:

#!/bin/bash

echo PASS if CPUUser < 50

cpu is a %, ie: between 0 and 100

cpu=`mpstat 1 1 | tail -1 | awk '{print $3}'`

comparisonstring="$cpu"" < 50"

if (($(bc <<< "$comparisonstring"))); then

echo PASS

else

echo FAIL

fi

The script should be placed in the location suggested by the object, /cm/local/apps/cmd/scripts/
healthchecks/cpucheck, and made executable with a chmod 700.

The cpucheck object is handled further within the cmsh monitoring setup mode in section 10.5.4 to
produce a fully configured health check.

10.5.4 The setup Submode
The setup Submode: Introduction
The setup submode under the monitoring mode of cmsh allows access to all the data producers. This
mode in cmsh corresponds to the Base View navigation path:

Monitoring > Data Producers

covered earlier in section 10.4.1.

The setup Submode: Data Producers And Their Associated Measurables
The list of data producers in setup mode should not be confused with the list of measurables in
measurable mode. Data producers are not the same as measurables. Data producers produce mea-
surables, although it is true that the measurables are often named the same as, or similar to, their data
producer.

In cmsh, data producers are in the Name (key) column when the list command is run from the
setup submode:

Example

[basecm11->monitoring->setup]% list

Type Name (key) Arguments Measurables Node execution filters

-------------- --------------- ----------- ------------ -----------------------

AggregateNode AggregateNode 8 / 222 <1 in submode>

AlertLevel AlertLevel 3 / 222 <1 in submode>

CMDaemonState CMDaemonState 1 / 222 <0 in submode>

ClusterTotal ClusterTotal 18 / 222 <1 in submode>

Collection BigDataTools 0 / 222 <2 in submode>

/cm/local/apps/cmd/scripts/healthchecks/cpucheck
/cm/local/apps/cmd/scripts/healthchecks/cpucheck

580 Monitoring: Monitoring Cluster Devices

Collection Cassandra 0 / 222 <1 in submode>

...

In the preceding example, the AlertLevel data producer has 3 / 222 as the value for measurables.
This means that this AlertLevel data producer provides 3 measurables out of the 222 configured mea-
surables. They may be enabled or disabled, depending on whether the data producer is enabled or
disabled, but they are provided in any case.

To clarify this point: if the list command is run from setup mode to list producers, then the pro-
ducers that have configured measurables are the ones that have 1 or more as the numerator value in the
Measurables column. Conversely, the data producers with 0 in the numerator of the Measurables col-
umn have no configured measurables, whether enabled or disabled, and are effectively just placeholders
until the software for the data producers is installed.

So, comparing the list of producers in setup mode with the measurables in measurable mode:

Example

In measurable mode, the three AlertLevel measurables (the 3 out of 222) produced by the AlertLevel

producer can be seen with:

[basecm11->monitoring->measurable]% list | head -2; list | grep AlertLevel

Type Name (key) Parameter Class Producer

-------- ------------ --------- --------- -------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

Metric AlertLevel sum Internal AlertLevel

On the other hand, in measurable mode, there are no measurables seen for BigDataTools (the 0 out
of 222) produced by the BigDataTools producer, when running, for example: list | head -2; list

| grep BigDataTools.

The setup Submode: Listing Nodes That Use A Data Producer
The nodes command can be used to list the nodes on which a data producer <data producer> runs. It is
run in the setup submode level of the monitoring mode as:

nodes <data producer>

Example

[basecm11->monitoring->setup]% list | head -2; list | grep mount

Type Name (key) Arguments Measurables Node execution filters

---------------------- -------------- ------------ ------------ ----------------------

HealthCheckScript mounts 1 / 229 <0 in submode>

[basecm11->monitoring->setup]% nodes mounts

node001..node003,basecm11

The setup Submode: Data Producers Properties
Any data producer from the full list in setup mode can, if suitable, be used to provide a measurable for
any entity.

An example is the data producer AlertLevel. Its properties can be seen using the show command:

Example

[basecm11->monitoring->setup]% show alertlevel

Parameter Value

-------------------------------- --

Automatic reinitialize yes

10.5 The monitoring Mode Of cmsh 581

Consolidator default

Description Alert level as function of all trigger severities

Disabled no

Execution multiplexer <1 in submode>

Fuzzy offset 0

Gap 0

Interval 2m

Maximal age 0s

Maximal samples 4096

Measurables 3 / 222

Name AlertLevel

Node execution filters <1 in submode>

Notes <0 bytes>

Offset 1m

Only when idle no

Revision

Type AlertLevel

When Timed

These properties are described in section 10.4.1. Most of these properties are inherited by the
meaurables associated with the data producer, which in the AlertLevel data producer case are
alertlevel:count, alertlevel:maximum, and alertlevel:sum.

The setup Submode: Deeper Submodes
One level under the setup submode of monitoring mode are 3 further submodes (modes deeper than
submodes are normally also just called submodes for convenience, rather than sub-submodes):

• nodeexecutionfilters

• executionmultiplexers

• jobmetricsettings

Node execution filters: A way to filter execution (restrict execution) of the data producer.
If no node execution filter is set for that data producer, then the data producer runs on all nodes of

the cluster. Filters are of type node, category, overlay, resource, and lua. The type is set when the
filter is created.

• The nodes command for listing the execution nodes

Running the nodes command for a data producer lists which nodes the execution of the data
producer is run on.

Example

[myhost->monitoring->setup]% nodes procmeminfo

mon001..mon003,myhost,osd001,osd002,node001,node002

[myhost->monitoring->setup]% nodes ssh2node

myhost

[myhost->monitoring->setup]% nodes devicestate

myhost

[myhost->monitoring->setup]% foreach * (get name; nodes) | paste - - | sort

AggregateCDU myhost

AggregateNode myhost

AggregatePDU myhost

...[so far the data producers run only on the head node, but eventually see other nodes]...

582 Monitoring: Monitoring Cluster Devices

CMDaemonState node001..node006,myhost

cmha-status Not used

cmsh myhost

CPUSampler node001..node006,myhost

cuda-dcgm node001..node006,myhost

...

Most of the default data producers that are used by the cluster run on an active head node, and
often on the regular nodes.

• nodexecutionfilters to restrict data producer execution

The rogueprocess (page 971) data producer is one of the few that by default runs on a regular
node. Restricting a data producer to run on a particular list of nodes can be carried out as follows
on a cluster that is originally in its default state:

Example

[basecm11->monitoring->setup[rogueprocess]]% nodeexecutionfilters

[basecm11->monitoring->setup[rogueprocess]->nodeexecutionfilters]% add<TAB><TAB>
category lua node overlay resource type

[...tup[rogueprocess]->nodeexecutionfilters]% add node justthese

[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name justhese

Nodes

Revision

Type Node

[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% set nodes node001,node002

[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name justhese

Nodes node001,node002

Revision

Type Node

[...tup*[rogueprocess*]->nodeexecutionfilters*[justthese*]]% commit

This way, the rogueprocess health check runs on just those nodes (node001, node002), and none
of the others.

• Restricting a data producer execution to the head node—monitoring a process on the head node

Another example of data producer restriction is as follows: an administrator may wish to monitor
the slapd process on the head nodes. In cmsh, a session to achieve this could be:

Example

[basecm11->monitoring->setup]% add procpidstat slapd

[basecm11->monitoring->setup*[slapd*]]% set process slapd

[basecm11->monitoring->setup*[slapd*]]% set consolidator none

[basecm11->monitoring->setup*[slapd*]]% nodeexecutionfilters

10.5 The monitoring Mode Of cmsh 583

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters]% add type headnodes

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters*[headnodes*]]% set headnode yes

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters*[headnodes*]]% commit

An equivalent to the preceding, starting from the nodeexecutionfilters mode, but using a dif-
ferent name for the type, is:

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters]% add type headnode

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters*[headnode*]]% commit

The value for headnode attribute within the headnode object is automatically matched to its name,
and so its value is automatically set to yes just as in the earlier session.

The preceding sessions set the filter to work on all head nodes. To have it work on only the active
head node, the active command can be used instead, at nodeexecutionfilter mode level:

[basecm11->monitoring->setup*[slapd*]]% nodeexecutionfilters

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters]% active

[basecm11->monitoring->setup*[slapd*]->nodeexecutionfilters*]% commit

The newly-defined slapd metric can now have its output displayed or plotted just like any other
metric:

[basecm11->device[basecm11]]% latestmetricdata | grep slapd

MemoryUsed slapd Process 739 MiB 28.6s

SystemTime slapd Process 2m 35s 28.6s

ThreadsUsed slapd Process 50 28.6s

UserTime slapd Process 1h 36m 28.6s

VirtualMemoryUsed slapd Process 4.77 GiB 28.6s

• Filtering a data producer by resource

A data producer can also be set up so that it is run on a particular list of nodes filtered
by resource. The resources that are available to a node can be viewed using the command
monitoringresources for that device:

Example

[basecm11->device[basecm11]]% monitoringresources

Active

Docker::Host

Ethernet

Kubernetes::ApiServer

Kubernetes::ApiServerProxy

Kubernetes::Controller

kubelet

kubernetes-control-plane

overlay:kube-default-etcd

overlay:kube-default-master

RDO

boot

...

An example of where running a node execution filter by resource is useful, is for data producers
that are intended to run on the active head node. Most data producers that are used by the cluster
run on an active head node (besides often running on the regular nodes too).

Thus, for example, the cpucheck health check from page 578 can be set to run on the active head
node, by creating an arbitrary resource called myactive:

584 Monitoring: Monitoring Cluster Devices

Example

[basecm11->monitoring->setup[cpucheck]]% nodeexecutionfilters

[...tup[cpucheck]->nodeexecutionfilters]% add resource "myactive"

[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% show

Parameter Value

-------------------------------- --

Filter Include

Name myactive

Operator OR

Resources

Revision

Type Resource

and then setting the Resources parameter to Active:

[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% set resources Active

[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% show

Parameter Value

-------------------------------- --

Filter Include

Name myactive

Operator OR

Resources Active

Revision

Type Resource

[...tup*[cpucheck*]->nodeexecutionfilters*[myactive*]]% commit

The cpucheck health check then runs on the active head node, whichever head node it is.

When node execution filtering is carried out, the filtered data is not dropped by default. Filtered
data can be dropped for a measurable or an entity with the monitoringdrop command (section 10.6.7).

Execution multiplexer: A way to multiplex execution (have execution work elsewhere) for a data pro-
ducer. It tells BCM about the entities that the data producer is sampling for. A data producer runs and
gathers data at the entity (node, category, lua, overlay, resource type) defined by the node execution
filter, and with multiplex execution the data producer gathers samples from other entities. These en-
tities can be nodes, categories, lua scripts, overlays, resources, and types. The entities from which it
can sample are defined into groups called execution multiplexers. Execution multiplexers can thus be
node multiplexers, category multiplexers, lua multiplexers, type multiplexers, overlay multiplexers,
or resource multiplexers.

The executionmultiplexers mode can be entered for a data producer dmesg with:

Example

root@basecm11 ~]# cmsh

[basecm11]% monitoring setup executionmultiplexers dmesg

Running the commands: help add, or help set, can be used to show the valid syntax in this submode.
Most data producers run on a head node, but sample from the regular nodes. So, for example, the

dmesg health check from Appendix G.2.1 can be set to sample from the regular nodes by setting it to
carry out execution multiplexing to specified node entities using a node multiplexer with the arbitrary
name of nodes as follows:

Example

10.5 The monitoring Mode Of cmsh 585

[basecm11->monitoring->setup[dmesg]->executionmultiplexers]% add<TAB><TAB>
category lua node overlay resource type

[basecm11->monitoring->setup[dmesg]->executionmultiplexers]% add node nodes

[basecm11->...*[dmesg*]->executionmultiplexers*[nodes*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name nodes

Nodes

Revision

Type Node

[basecm11->...*[dmesg*]->executionmultiplexers*[nodes*]]% set nodes node001,node002

[basecm11->...*[dmesg*]->executionmultiplexers*[nodes*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name nodes

Nodes node001,node002

Revision

Type Node

The concepts and expected behavior of node execution filters and execution multiplexers is covered
in more explicit detail in Appendix L.

Job Metrics Settings: Job metrics settings are a submode for setting job metric collection options for
the JobSampler data producer (section 11.4).

10.5.5 The standalone Submode
The standalone submode under the monitoring mode of cmsh allows entities that are not managed by
BCM to be configured for monitoring. This mode in cmsh corresponds to the Base View navigation path:

Monitoring > Standalone Monitored Entities

covered earlier in section 10.4.8.
The monitoring for such entities has to avoid relying on a CMDaemon that is running on the entity.

An example might be a chassis that is monitored via a ping script running on the BCM head node.

10.5.6 The trigger Submode
The trigger submode under the monitoring mode of cmsh allows actions to be configured according
to the result of a measurable.

This mode in cmsh corresponds to the Base View navigation path:

Monitoring > Triggers

covered earlier in section 10.4.5.
By default, there are 3 triggers:

Example

[basecm11->monitoring->trigger]% list

Name (key) Expression Enter actions During actions Leave actions

------------------------ ------------------------ ------------- -------------- -------------

Failing health checks (*, *, *) == FAIL Event

586 Monitoring: Monitoring Cluster Devices

Passing health checks (*, *, *) == PASS Event

Unknown health checks (*, *, *) == UNKNOWN Event

Thus, for a passing, failing, or unknown health check, an event action takes place if entering a state
change. The default severity level of a passing health check does not affect the AlertLevel value. How-
ever, if the failing or unknown health checks are triggered on entering a state change, then these will
affect the AlertLevel value.

The trigger Submode: Setting An Expression
In the basic example of section 10.1, a trigger to run the killallyes script was configured using Base
View.

The expression that was set for the killallyes script in the basic example using Base View can also
be set in cmsh. For example:

Example

[basecm11->monitoring->trigger]% add killallyestrigger

[basecm11->monitoring->trigger*[killallyestrigger*]]% show

Parameter Value

-------------------------------- --

Disabled no

During actions

Enter actions

Leave actions

Mark entity as failed yes

Mark entity as unknown no

Name killallyestrigger

Revision

Severity 10

State flapping actions

State flapping count 5

State flapping period 5m

expression (*, *, *) == FAIL

[basecm11->monitoring->trigger*[killallyestrigger*]]% expression

[basecm11->monitoring->trigger*[killallyestrigger*]->expression[]]% show

Parameter Value

-------------------------------- --

Entities

Measurables

Name

Operator EQ

Parameters

Revision

Type MonitoringCompareExpression

Use raw no

Value FAIL

[basecm11->monitoring->trigger*[killallyestrigger*]->expression[]]% set entities basecm11

[basecm11->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set measurables CPUUser

[basecm11->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set operator GT

[basecm11->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set value 50

[basecm11->monitoring->trigger*[killallyestrigger*]->expression*[*]]% commit

[basecm11->monitoring->trigger*[killallyestrigger*]->expression*[*]]% set name killallyesexp

Field Message

------------------------ ---

actions Warning: No actions were set

============================== killallyestrigger ===============================

10.5 The monitoring Mode Of cmsh 587

[basecm11->monitoring->trigger[killallyestrigger]->expression[killallyesexp]]% exit

[basecm11->monitoring->trigger[killallyestrigger]->expression]% exit

[basecm11->monitoring->trigger[killallyestrigger]]% set enteractions killallyesname

[basecm11->monitoring->trigger*[killallyestrigger*]]% commit

[basecm11->monitoring->trigger[killallyestrigger]]%

The expression format is shown in cmsh as:

(<entity>, <measurable>, <parameter>) <comparison operator> <value>

Here:

• an entity, as described in section 10.2.1, can be, for example, a node, category, device, or software
image. To include more than one entity for the comparison, the alternation (pipe, |) symbol can
be used, with double quotes to enclose the expression.

Example

...[killallyestrigger*]->expression[]]% set entities "basecm11|node001|compute|gpuimage"

In the preceding example, the entity compute could be a category, and the entity gpuimage could
be a software image.

• a measurable (section 10.2.1) can be a health check, a metric, or an enummetric. For example:
CPUUsage. Alternation works for <measurable> in a similar way to that for <entity>.

• a parameter is a further option to a measurable. For example, the FreeSpace metric can take a
mount point as a parameter. Alternation works for <parameter> in a similar way to that for <entity>.

• the comparison operator can be:

EQ: equivalent to, displayed as ==

NE: not equivalent to, displayed as !=

GT: greater than, displayed as >

LT: less than, displayed as <

If the user uses an arithmetic symbol such as > in cmsh as an unescaped entry, then the entry may
unintentionally be interpreted by the shell. That is why the two-letter entries are recommended
instead for entry, even though when displayed they display like the arithmetic symbols for easier
recognition.

• the value can be a string, or a number.

The regex evaluates to TRUE or FALSE. The trigger runs its associated action in the case of TRUE.
The wildcard * implies any entity, measurable, or parameter when used with the appropriate posi-

tion according to the syntax of the expression format.
Using .* is also possible to match zero or more of any characters.
Some further expression matching examples:

Example

True for any failing health check:

(*, *, *) == FAIL

Example

588 Monitoring: Monitoring Cluster Devices

True for any nearly full local disk (less than 10MB left):

(*, FreeSpace, sd[a-z]) < 10MB

Example

True for any cloud node that is too expensive (price more than more than 10$):

(.*cnode.*, Price, *) > 10$

Example

Excluding node agw001:

(^(?!.*agw001).*$, *, *) == FAIL

Example

True for any node in the data, gpu, or hpc categories, that has a nearly full local disk (less than 10MB
left):

(!resource=category:data|category:gpu|category:hpc, FreeSpace, sd[a-z]) < 10MB

The unusual syntax in the preceding example is liable to change in future versions.

At the end of section 10.5.3 a script called cpucheck was built. This script was part of a task to use
health checks instead of metrics to set up the functional equivalent of the behavior of the basic example
of section 10.1. In this section the task is continued and completed as follows:

[basecm11->monitoring->trigger]% expression killallyestrigger

[...trigger[killallyestrigger]->expression[killallyesexp]]% get measurables

CPUUser

[...trigger[killallyestrigger]->expression[killallyesexp]]% set measurables cpucheck

[...trigger*[killallyestrigger*]->expression*[killallyesexp*]]% commit

10.6 Obtaining Monitoring Data Values
The monitoring data values that are logged by devices can be used to generate graphs using the methods
in section 10.3. However, sometimes an administrator would like to have the data values that generate
the graphs instead, perhaps to import them into a spreadsheet for further direct manipulation, or to pipe
them into a utility such as gnuplot.

10.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics,
healthchecks And enummetrics Commands

The measurables for a specified entity can be seen with the measurables command, and the measurable
subtypes can be seen with the corresponding measurable subset commands: metrics, healthchecks
and enummetrics. The results look quite similar to the results of the measurable submode of the
monitoring mode (section 10.5.3). However, for entities, the measurables are a sublist of the full number
of measurables listed in the measurable submode, which in turn are only the list of measurables for the
data producers that have been enabled.

For example, within device mode where the entities are typically the head node and regular nodes,
running metrics with a specified entity shows only the metrics that are configured for that entity. Thus
if the entity is a head node, then only head node metrics are shown; and if the entity is a regular node,
only regular node metrics are shown:

Example

10.6 Obtaining Monitoring Data Values 589

[basecm11->device]% enummetrics node001

Type Name Parameter Class Producer

------------ ------------------ ---------- ---------------------------- ----------------

Enum DeviceStatus Internal DeviceState

[basecm11->device]% use basecm11

[basecm11->device[basecm11]]% measurables

Type Name Parameter Class Producer

------------ ------------------ ---------- ---------------------------- ----------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem

...

[basecm11->device[basecm11]]% exit

[basecm11->device]% metrics node001

Type Name Parameter Class Producer

------------ ------------------ ---------- ---------------------------- ----------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

Metric AlertLevel sum Internal AlertLevel

Metric BlockedProcesses OS ProcStat

...

Typically the number of metrics listed on the head node will differ from those listed on a regular
node. Whatever each number is, it cannot be more than the number of metrics seen in the number of
metrics listed in the measurable submode of section 10.5.3.

The preceding example shows the measurables listing commands being carried out on head nodes
and regular nodes. These commands can be used on other entities too. For example, the base partition
in partition mode, where the measurables can be listed with:

Example

[basecm11->device]% partition use base

[basecm11->partition[base]]% measurables

Type Name Parameter Class Producer

------------ ------------------ ---------- ---------------------------- ----------------

Metric CoresTotal Total ClusterTotal

Metric CoresUp Total ClusterTotal

Metric DevicesClosed Total ClusterTotal

Metric DevicesDown Total ClusterTotal

...

The values for metric samples and health checks can be obtained from within device mode in various
ways, and are explained next.

10.6.2 On-Demand Metric Sampling And Health Checks
The samplenow Command For On-Demand Measurable Samples
An administrator can do live sampling, or sampling on-demand, for specified entities by using the
samplenow command. The command has the following syntax:

samplenow [OPTIONS] [<entity>] [<measurable> ...]

The command can be run without options when an entity object, such as a node is used (output
truncated):

Example

590 Monitoring: Monitoring Cluster Devices

[basecm11->device]% use basecm11

[basecm11->device[basecm11]]% samplenow

Measurable Parameter Type Value Age Info

------------------ --------- --------- ------------ ------- -----

AlertLevel count Internal 0 2.01s

AlertLevel maximum Internal 0 2.01s

AlertLevel sum Internal 0 2.01s

BlockedProcesses OS 0 processes 2.01s

BufferMemory Memory 847 KiB 2.01s

...

The entity used can also be in other modes that have measurables, such as the base partition (output
truncated):

Example

[basecm11->device]% partition use base

[basecm11->partition[base]]% samplenow

Measurable Parameter Type Value Age Info

---------------- ------------ ------------ ---------- ---------- ----------

CoresTotal Total 24 0.001s

CoresUp Total 24 0.001s

DevicesClosed Total 0 0.001s

DevicesDown Total 0 0.001s

DevicesTotal Total 0 0.001s

DevicesUp Total 0 0.001s

...

The -n|--nodes Option
The -n option is used to sample specified nodes or node ranges:

Example

[basecm11->partition[base]]% device

[basecm11->device]% samplenow -n node001..node002 loadone

Entity Measurable Parameter Type Value Age Info

------------ ------------------ --------- --------- ------- ------- -----

node001 LoadOne OS 0.04 0.08s

node002 LoadOne OS 0 0.077s

The --metrics And --checks Option
For a particular entity:

• All metrics can be sampled on demand with the --metrics option

• All health checks can be sampled on demand with the --checks option

Example

[basecm11->device]% samplenow --metrics loadone loadfifteen --n node001,node002

Entity Measurable Parameter Type Value Age Info

------------ ------------------ --------- --------- ------- ------- -----

node001 LoadOne OS 0.04 0.08s

node002 LoadOne OS 0 0.077s

[basecm11->device]% samplenow --checks -n node001..node002

Entity Measurable Parameter Type Value Age Info

------------ ------------------ --------- --------- ------- ------- -----

node001 ManagedServicesOk Internal PASS 0.177s

10.6 Obtaining Monitoring Data Values 591

node001 defaultgateway Network PASS 0.145s

node001 diskspace Disk PASS 0.16s

node001 dmesg OS PASS 0.177s

[basecm11->device]% samplenow --checks diskspace -n node001..node002

Entity Measurable Parameter Type Value Age Info

------------ ------------------ --------- --------- ------- ------- -----

node001 diskspace Disk PASS 0.095s

node002 diskspace Disk PASS 0.097s

[basecm11->device]%

The --debug Option
The --debug option passes CMD_DEBUG=1 to the script environment. This can be used to provide extra
information on what is happening during sampling.

Example

[basecm11->device[node001]]% samplenow ntp

Measurable Type Value Age Info

------------ ------------ ---------- ---------- ----------

ntp Internal PASS 0.51s

[basecm11->device[node001]]% samplenow --debug ntp

Measurable Type Value Age Info

------------ ------------ ---------- ---------- ------------------

ntp Internal PASS 0.524s command: "ps -e"+

[basecm11->device[node001]]% samplenow --debug -v ntp

Measurable Type Value Age Info

------------ ------------ ---------- ---------- ---

ntp Internal PASS 0.543s command: "ps -e"

ntpd process found, pid: 11226

command: "/sbin/ntpq -pn"

found time syspeer: 10.141.255.254

send time request to 10.141.255.254

received a reply from 10.141.255.254

time from 10.141.255.254 : 1586171027.783

time on node : 1586171027.771

time difference : 0.012

execution time 0.06

[basecm11->device[node001]]% !systemctl stop ntpd

[basecm11->device[node001]] samplenow --debug -v ntp

measurable Type Value Age Info

------------ ------------ ---------- ---------- ---------------------

ntp Internal UNKNOWN 10s timed out after: 10s

Many scripts under /cm/local/apps/cmd/scripts/ can have their debug output inspected with
samplenow --debug.

A recursive grep on the head node, similar to the following, should show which scripts have a
settable debug environment:

grep -r CMD_DEBUG /cm/local/apps/cmd/scripts/

The -s|--status Option
Nodes in device mode which have a status of UP, as seen by the status command, can be sampled with
the -s|--status option:

Example

/cm/local/apps/cmd/scripts/

592 Monitoring: Monitoring Cluster Devices

[basecm11->device]% samplenow -s UP

Entity Measurable Parameter Type Value Age Info

------------ ------------------ --------- --------- ----------- ------ -----

basecm11 AlertLevel count Internal 0 4.67s

basecm11 AlertLevel maximum Internal 0 4.67s

basecm11 AlertLevel sum Internal 0 4.67s

basecm11 BlockedProcesses OS 0 processes 4.67s

basecm11 BufferMemory Memory 847 KiB 4.67s

basecm11 BytesRecv eth0 Network 357 MiB 4.67s

basecm11 BytesRecv eth1 Network 78.7 MiB 4.67s

...

The preceding example is truncated because it is quite lengthy. However, on the screen, for the
device mode, it shows all the sample values for the measurables for all the entities—head node and
regular nodes—that are up.

To restrict the results to node001 only, it can be run as:

Example

[basecm11->device]% samplenow -s UP -n node001

Measurable Parameter Type Value Age Info

------------------ --------- --------- ----------- ------ -----

AlertLevel count Internal 0 0.081s

AlertLevel maximum Internal 0 0.081s

AlertLevel sum Internal 0 0.081s

...

Sampling according to a device status value other than UP is also possible.
The help text for the samplenow command gives further details on its possible options.
The latestmetricdata and latesthealthdata commands (section 10.6.3) display the results from

the latest metric and health samples that have been gathered by the cluster, rather than sampling on
demand.

The dumpmonitoringdata command (section 10.6.4) displays monitoring data gathered over a period
of time in a variety of formats.

10.6.3 The Latest Data And Counter Values—The latest*data And latestmetriccounters

Commands
Within device mode, the values obtained by the latest measurable sampling run can be displayed for
a specified entity with the latestmonitoringdata, latestmetricdata and latesthealthdata com-
mands:

• latestmetricdata: The latestmetricdata command for a specified entity displays the most re-
cent metric value that has been obtained by the monitoring system for each metric used by the
entity. For displaying metrics on-demand in cmsh, the samplenow --metrics command (page 590)
can be used for a specified entity.

• latesthealthdata: The latesthealthdata command for a specified entity displays the most re-
cent value that has been obtained by the monitoring system for each health check used by the
entity. For displaying health check responses on demand in cmsh, the samplenow --checks com-
mand (page 590) can be used for a specified entity.

• latestmonitoringdata: The latestmonitoringdata command for a specified entity combines
the output of the latesthealthdata and latestmetricdata commands, i.e. it displays the latest
samples of the measurables for that entity. For displaying measurables on-demand in cmsh, the
samplenow command (page 589) can be run without options, for a specified entity.

10.6 Obtaining Monitoring Data Values 593

The latestmetriccounters command, on the other hand, displays the latest cumulative counter
values of the cumulative metrics in use by the entity.

Using The latest*data Commands
When using the latest*data commands, the entity must be specified (some output elided):

Example

[basecm11->device]% use node001

[basecm11->device[node001]]% latestmetricdata

Measurable Parameter Type Value Age Info

----------------- ---------- ------------ ------------------------ ---------------

AlertLevel count Internal 0 1m 12s FAIL schedulers

AlertLevel maximum Internal 0 1m 12s FAIL schedulers

AlertLevel sum Internal 0 1m 12s

BlockedProcesses OS 0 processes 1m 12s

BufferMemory Memory 847 KiB 1m 12s

BytesRecv eth0 Network 311.611 B/s 1m 12s

BytesRecv eth1 Network 0 B/s 1m 12s

BytesSent eth0 Network 349.953 B/s 1m 12s

BytesSent eth1 Network 0 B/s 1m 12s

CPUGuest CPU 0 Jiffies/s 1m 12s

...

Valid entity grouping options and other options can be seen in the help text for the
latestmetricdata and latesthealthdata commands.

Example

[basecm11->device]% help latestmetricdata

Name: Latestmetricdata - Display the latest metric data

Usage: latestmetricdata [OPTIONS] [<entity>]

Options:

-v, --verbose

Be more verbose

-n, --nodes <node>

List of nodes, e.g. node001..node015,node020..node028,node030

or ^/some/file/containing/hostnames

-g, --group <group>

Include all nodes that belong to the node group, e.g. testnodes

or test01,test03

...

The commands are mode-sensitive. That means, for example for a nodegroup consisting of, for
example, node001 and node002, that there is a difference in the entities that are displayed from device

mode:

Example

[basecm11->device]% latestmetricdata -g mynodegroup

Entity Measurable Parameter Type Value Age State Info

---------- ------------------- ---------- ----------- -------------- ------- ------ ------

node001 AlertLevel count Internal 0 15.4s

594 Monitoring: Monitoring Cluster Devices

node001 AlertLevel maximum Internal 0 15.4s

node001 AlertLevel sum Internal 0 15.4s

node001 BlockedProcesses OS 0 processes 1m 41s

node001 BufferMemory Memory 27.3 KiB 41s

node001 BytesRecv ens3 Network 622.722 B/s 56s

node001 BytesSent ens3 Network 580.088 B/s 56s

...

node002 AlertLevel count Internal 0 15.4s

node002 AlertLevel maximum Internal 0 15.4s

node002 AlertLevel sum Internal 0 15.4s

node002 BlockedProcesses OS 0 processes 1m 20s

node002 BufferMemory Memory 39 KiB 2m 20s

node002 BytesRecv ens3 Network 696.364 B/s 35.6s

node002 BytesSent ens3 Network 574.08 B/s 35.6s

...

and the entities that are displayed, for example, in nodegroup mode:

Example

[basecm11->nodegroup]% latestmetricdata mynodegroup

Measurable Parameter Type Value Age State Info

------------ ------------ ------------ ---------- ---------- ------- -----

CoresTotal Total 4 31.8s

CoresUp Total 4 31.8s

FPGAsTotal Total 0 31.8s

FPGAsUp Total 0 31.8s

GPUsTotal Total 0 31.8s

GPUsUp Total 0 31.8s

NodesClosed Total 0 31.8s

NodesDown Total 0 31.8s

NodesTotal Total 2 31.8s

NodesUp Total 2 31.8s

The metrics displayed in device mode are individual device metrics, while the metrics displayed in
nodegroup mode are totalling metrics.

By default the data values are shown with human-friendly units. The --raw option displays the data
values as raw units.

Using The latestmetriccounter Command
The latestmetriccounter is quite similar to the latestmetricdata command, except that it
displays only cumulative metrics, and displays their accumulated counts since boot. The
latestmonitoringcounter command is an alias for this command.

Example

[basecm11->device]% latestmonitoringcounters node001

Measurable Parameter Type Value Age Info

---------------- ------------ ------------ ----------------------- ---------- -----

BytesRecv eth0 Network 286 MiB 11.7s

BytesRecv eth1 Network 0 B 11.7s

BytesSent eth0 Network 217 MiB 11.7s

BytesSent eth1 Network 0 B 11.7s

CPUGuest CPU 0 Jiffies/s 11.7s

CPUIdle CPU 60.1 Jiffies/s 11.7s

CPUIrq CPU 0 Jiffies/s 11.7s

CPUNice CPU 66 Jiffies/s 11.7s

...

10.6 Obtaining Monitoring Data Values 595

The reader can compare the preceding example output against the example output of the
latestmetricdata command (page 593) to become familiar with the meaning of cumulative output.

10.6.4 Data Values Over A Period—The dumpmonitoringdata Command
The dumpmonitoringdata command displays monitoring data values over a specified period. This is for
an entity, such as:

• a node in device mode

• the base partition in partition mode

• an image in softwareimage mode

• a job in the jobs submode. The jobs submode is under the path cmsh>wlm[<workload man-
ager>]>jobs, and using dumpmonitoringdata with it is covered on page 637.

Using The dumpmonitoringdata Command
A concise overview of the dumpmonitoringdata command can be displayed by typing in “help
dumpmonitoringdata” in a cmsh mode that has entities.

The usage of the dumpmonitoringdata command consists of the following options and mandatory
arguments:
dumpmonitoringdata [OPTIONS] <start-time> <end-time> <measurable> [entity]

The mandatory arguments: The mandatory arguments for the times, the measurables being dumped,
and the entities being sampled, have values that are specified as follows:

• The measurable <measurable> for which the data values are being gathered must always be given.
Measurables currently in use can conveniently be listed by running the measurables command
(section 10.6.1).

• If [entity] is not specified when running the dumpmonitoringdata command, then it must be set
by specifying the entity object from its parent mode of cmsh (for example, with use node001 in
device mode). If the mode is device mode, then the entity can also be specified via the options as
a list, a group, an overlay, or a category of nodes.

• The time pair <start-time> or <end-time> can be specified as follows:

– Fixed time format: The format for the times that make up the time pair can be:

* [YY/MM/DD] HH:MM[:SS]
(If YY/MM/DD is used, then each time must be enclosed in double quotes)

* The unix epoch time (seconds since 00:00:00 1 January 1970)

– now: For the <end-time>, a value of now can be set. The time at which the dumpmonitoringdata
command is run is then used.

– Relative time format: One item in the time pair can be set to a fixed time format. The other item
in the time pair can then have its time set relative to the fixed time item. The format for the
non-fixed time item (the relative time item) can then be specified as follows:

* For the <start-time>, a number prefixed with “-” is used. It indicates a time that much
earlier than the fixed end time.

* For the <end-time>, a number prefixed with “+” is used. It indicates a time that much later
than the fixed start time.

* The number values also have suffix values indicating the units of time, as seconds (s),
minutes (m), hours (h), or days (d).

596 Monitoring: Monitoring Cluster Devices

The relative time format is summarized in the following table:

Unit <start-time> <end-time>

seconds: -<number>s +<number>s

minutes: -<number>m +<number>m

hours: -<number>h +<number>h

days: -<number>d +<number>d

– Both <start-time> and <end-time> can have their values prefixed with a “-”. In this case, the
range over which the monitored values are seen is in the past, relative to the current time.
If the end time for the range is specified as further in the past than the starting time, then
the time values are swapped over so that the end time becomes more recent than the starting
time.

The options: The options applied to the samples are specified as follows:

10.6 Obtaining Monitoring Data Values 597

Option Argument(s) Description

-v, --verbose show the rest of the line on a new line instead of cutting it off

-d, --delimiter "<string>" set the delimiter to a character

-i, --intervals <number> number of samples to show

-i|--intervals <number> is mandatory if using one of the following four options:

--sum sum over specified entities

--max maximum over specified entities

--min minimum over specified entities

--avg average over specified entities

-u, --unix-epoch use a unix timestamp instead of using the default date format

--raw show the raw value, without units

--human show the human-friendly value, with appropriate units (de-
fault)

--consolidationinterval retrieve data from the consolidator with specified interval

--consolidationoffset retrieve data from the consolidator with specified (interval,
offset)

--timeaverage calculate the average for the entire interval for specified de-
vices

--timesum calculate the sum for the entire interval for specified devices

--timecount calculate the number of data points for the entire interval for
specified devices

--timemaximum calculate the maximum for the entire interval for specified de-
vices

--timeminimum calculate the minimum for the entire interval for specified de-
vices

--timegroup group data points for the entire interval for specified devices,
intended for health checks and enummetrics

--delta display change relative to previous value

--clip clip data samples to the requested interval

--uncompress uncompress data samples to the current sampling interval
(shows intermediate values that are the same as the preced-
ing value (“un-RLE” operation))

The following options are valid only for device mode:

-n, --nodes <list> for list of nodes

-g, --groups <list> for list of groups

-c, --categories <list> for list of categories

-r, --racks <list> for list of racks

-h, --chassis <list> for list of chassis

-e, --overlay <list> Include all nodes in list of overlays

--union calculate the union of specified devices

...continues

598 Monitoring: Monitoring Cluster Devices

...continued

Option Argument(s) Description

--intersection calculate the intersection of the specified devices

-l, --role <role> Filter all nodes in role

-s, --status <state> for nodes in state UP, OPENING, DOWN, and so on

Notes And Examples Of dumpmonitoringdata Command Use
Notes and examples of how the dumpmonitoringdata command can be used now follow:

Fixed time formats: Time pairs can be specified for fixed times:

Example

[basecm11->device[node001]]% dumpmonitoringdata 18:00:00 18:02:00 loadone

Timestamp Value Info

-------------------------- ---------- ----------

2017/08/30 17:58:00 0.02

2017/08/30 18:00:00 0.01

2017/08/30 18:02:00 0.02

Double quotes are needed for times with a YY/MM/DD specification:

Example

[basecm11->device[node001]]% dumpmonitoringdata "17/08/30 18:00" "17/08/30 18:02" loadone

Timestamp Value Info

-------------------------- ---------- ----------

2017/08/30 17:58:00 0.02

2017/08/30 18:00:00 0.01

2017/08/30 18:02:00 0.02

Unix epoch time can also be set:

Example

[basecm11->device[node001]]% !date -d "Aug 30 18:00:00 2017" +%s

1504108800

[basecm11->device[node001]]% dumpmonitoringdata 1504108800 1504108920 loadone

Timestamp Value Info

-------------------------- ---------- ----------

2017/08/30 17:58:00 0.02

2017/08/30 18:00:00 0.01

2017/08/30 18:02:00 0.02

Intervals and interpolation: The -i|--intervals option interpolates the data values that are to be
displayed. The option needs <number> samples to be specified. This then becomes the number of in-
terpolated samples across the given time range. Using “-i 0” outputs only the non-interpolated stored
samples—the raw data—and is the default.

Example

10.6 Obtaining Monitoring Data Values 599

[basecm11->device]% dumpmonitoringdata -i 0 -10m now loadone node001

Timestamp Value Info

-------------------------- ---------- ----------

2017/07/21 14:56:00 0.01

2017/07/21 14:58:00 0.14

2017/07/21 15:00:00 0.04

2017/07/21 15:02:00 0.04

2017/07/21 15:04:00 0.08

2017/07/21 15:06:00 0.08

If the number of intervals is set to a non-zero value, then the last value is always no data, since it
cannot be interpolated.

Example

[basecm11->device]% dumpmonitoringdata -i 3 -10m now loadone node001

Timestamp Value Info

-------------------------- ---------- ----------

2017/07/21 21:49:36 0

2017/07/21 21:54:36 0.0419998

2017/07/21 21:59:36 no data

A set of nodes can be specified for the dump:

[basecm11->device]% dumpmonitoringdata -n node001..node002 -5m now cpuidle

Entity Timestamp Value Info

------------ -------------------------- ----------------- ----------

node001 2017/07/20 20:14:00 99.8258 Jiffies/s

node001 2017/07/20 20:16:00 99.8233 Jiffies/s

node001 2017/07/20 20:18:00 99.8192 Jiffies/s

node001 2017/07/20 20:20:00 99.8475 Jiffies/s

node002 2017/07/20 20:14:00 99.7917 Jiffies/s

node002 2017/07/20 20:16:00 99.8083 Jiffies/s

node002 2017/07/20 20:18:00 99.7992 Jiffies/s

node002 2017/07/20 20:20:00 99.815 Jiffies/s

[basecm11->device]%

Summing values: The --sum option sums a specified metric for specified devices, for a set of specified
times. For 2 nodes, over a period from 2 hours ago until now, with values interpolated over 3 time
intervals, the option can be used as follows:

Example

[basecm11->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --sum

Timestamp Value Info

-------------------------- ---------- ----------

2017/07/20 18:30:27 0.0292462

2017/07/20 19:30:27 0

2017/07/20 20:30:27 no data

Each entry in the values column in the preceding table is the sum of loadone displayed by node001, and
by node002, at that time, as can be seen from the following corresponding table:

Example

600 Monitoring: Monitoring Cluster Devices

[basecm11->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2]

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

node001 2017/07/20 18:30:27 0

node001 2017/07/20 19:30:27 0

node001 2017/07/20 20:30:27 no data

node002 2017/07/20 18:30:27 0.0292462

node002 2017/07/20 19:30:27 0

node002 2017/07/20 20:30:27 no data

Each loadone value shown by a node at a time shown in the preceding table, is in turn an average
interpolated value, based on actual data values sampled for that node around that time.

Maximum and minimum values: The --max option takes the maximum of a specified metric for spec-
ified devices, for a set of specified times. For 2 nodes, over a period from 2 hours ago until now, with
values interpolated over 3 time intervals, the option can be run as follows:

Example

[basecm11->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --max

Start - Tue Nov 3 09:56:05 2020 (1604393765)

End - Tue Nov 3 11:56:05 2020 (1604400965)

LoadOne - Load average on 1 minute

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

2020/11/03 09:56:05 0.010954

2020/11/03 10:56:05 0.000000

2020/11/03 11:56:05 nan

Each entry in the values column in the preceding table is the maximum of loadone displayed by
node001, and by node002, at that time, as can be seen from the following corresponding table:

Example

[basecm11->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2]

Start - Tue Nov 3 09:56:05 2020 (1604393765)

End - Tue Nov 3 11:56:05 2020 (1604400965)

LoadOne - Load average on 1 minute

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

node001 2020/11/03 09:56:05 0.0109537

node001 2020/11/03 10:56:05 0

node001 2020/11/03 11:56:05 no data

node002 2020/11/03 09:56:05 0

node002 2020/11/03 10:56:05 0

node002 2020/11/03 11:56:05 no data

Similarly, for the preceding table, if the --min option is used instead, then the result would be:

Example

[basecm11->device]% dumpmonitoringdata -2h now -i 3 loadone -n node00[1-2] --min

Start - Tue Nov 3 09:56:05 2020 (1604393765)

End - Tue Nov 3 11:56:05 2020 (1604400965)

LoadOne - Load average on 1 minute

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

2020/11/03 09:56:05 0.000000

2020/11/03 10:56:05 0.000000

2020/11/03 11:56:05 nan

10.6 Obtaining Monitoring Data Values 601

Displaying values during a specified time period, with --clip: The --clip option is used with a
specified time period. If there are raw values within the period, these are displayed.

A value is displayed for the start of the period, either by selection of a raw value if it exists at the
exact starting time, or via interpolation if there is no raw value at the exact starting time. Similarly, at
the end of the period a raw value is shown if it exists, or an interpolated value is shown if it does not.

Example

[basecm11->device[node001]]% dumpmonitoringdata -5m now bytessent:eth0 --clip

Start : 1552400295 / Tue Mar 12 14:18:15 2019

End : 1552400595 / Tue Mar 12 14:23:15 2019

Timestamp Value Info

-------------------------- ------------ ----------

2019/03/12 14:18:15 201.942 B/s

2019/03/12 14:20:15 217.883 B/s

2019/03/12 14:22:15 233.058 B/s

2019/03/12 14:23:15 235.831 B/s

In the preceding example, the first 3 samples are raw samples, the last sample is an interpolated
value, over a time period evaluated as being from 14:18:15 to 14:23:15. The epoch times for this
period, and corresponding human-readable values are shown in the heading to the output table.

Displaying according to status: The -s|--status option selects only for nodes with the specified
state. A state is one of the values output by the cmsh command ds or device status. It is also one of
the values returned by the enummetric DeviceStatus (section 10.2.2).

Example

[basecm11->device]% dumpmonitoringdata -2m now loadone -s up

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

basecm11 2017/07/21 15:00:00 0.35

basecm11 2017/07/21 15:02:00 0.53

node001 2017/07/21 14:12:00 0.04

node001 2017/07/21 15:02:00 0.04

node002 2017/07/21 15:00:00 0.22

node002 2017/07/21 15:02:00 0.21

[basecm11->device]%

The argument to -s|--status can be specified with simple regexes, which are case insensi-
tive. For example, inst.* covers the states installing, installer_failed, installer_rebooting
installer_callinginit, installer_unreachable, installer_burning.

Displaying deltas: The --delta option lists the difference between successive monitoring data values.
It subtracts the previous data value from the current data value, and divides the result by the time
interval between the two values.

Example

[basecm11->device[node001]]% dumpmonitoringdata --delta -6m now pageout

Timestamp Value Delta Info

-------------------------- ------------ ---------------- ----------

2018/09/10 17:49:28 1015.46 B/s nan

2018/09/10 17:51:28 1.35 KiB/s 2.7 B/s/s

2018/09/10 17:53:28 1.34 KiB/s -0.083 B/s/s

602 Monitoring: Monitoring Cluster Devices

Deltas are useful for seeing patterns in rates of change. For example, to check an experimental
version of CMDaemon for a memory leak, an administrator may run:

Example

[basecm11->device[basecm11]]% dumpmonitoringdata -2h now memoryused:cmd -n node001 --delta

Timestamp Value Delta Info

-------------------------- ---------- -------------- ----------

2018/08/15 10:00:00.812 68.4 MiB nan

2018/08/15 10:02:00.812 68.4 MiB 0.0341333 B/s

2018/08/15 12:10:00.812 68.4 MiB 0 B/s

The roughly 0B/s increase over 2 hours in the preceding output is a good sign.

Displaying union and intersection sets: The --union option displays the union of a set of specified
devices. The devices can be specified by the device grouping options (the options that are used to group
<lists>, such as -c, -r and so on).

For example:
if the overlay galeranodes has the node mon001

and
the overlay openstackhypervisors has the nodes node001, and node002

then an example of a union of the set of these two overlays is:

Example

[basecm11->device]% dumpmonitoringdata --union -3m now pageout -e galeranodes,openstackhypervisors

Entity Timestamp Value Info

------------ -------------------------- ----------- ----------

mon001 2018/09/11 11:31:56.198 192 KiB/s

mon001 2018/09/11 11:33:56.198 17.8 KiB/s

node001 2018/09/11 11:31:28.996 1.37 KiB/s

node001 2018/09/11 11:33:28.996 1.22 KiB/s

node002 2018/09/11 11:32:04.509 1.54 KiB/s

node002 2018/09/11 11:34:04.509 1.30 KiB/s

[basecm11->device]%

A union of sets in the same grouping option can be carried out using comma-separation for the list
of sets. In the preceding example, the same grouping option is -e|--overlay.

For a union of different grouping options however, the syntax is different. For example, for a union
of the galeranodes overlay, and a node001 node, a similar example is:

Example

[basecm11->device]% dumpmonitoringdata --union -3m now pageout -u -e galeranodes -n node001

Entity Timestamp Value Info

------------ -------------------------- ------------ ----------

mon001 1536659036.198 17.3 KiB/s

mon001 1536659156.198 116 KiB/s

node001 1536659008.997 1023.99 B/s

node001 1536659128.996 1.26 KiB/s

[basecm11->device]%

For an intersection of sets, the only syntax allowed is one that uses different grouping options:

Example

[basecm11->device]% dumpmonitoringdata --intersection -3m now pageout -e galeranodes -n node001

No remaining entities

For intersection, comma-separation within one grouping option is pointless, and is not supported.

10.6 Obtaining Monitoring Data Values 603

Displaying percentages of a particular value across a time interval (the --timegroup option): The
--timegroup option for a measurable displays the percentage of appearances of each sampled value of
the measurable during the interval. The percentage is displayed in the row alongside the start time of
the interval. The end time of the interval is displayed in the row that follows:

An example with devicestatus showing the percentages of times in the various provisioning states
(section 5.5.3:

Example

[basecm11->device[node001]]% dumpmonitoringdata -8h now devicestatus --timegroup

Start - Mon May 13 07:43:13 2024 (1715578993)

End - Mon May 13 15:43:13 2024 (1715607793)

DeviceStatus - The device status

Timestamp Value Info

-------------------------- ----------------------- ----------

2024/05/13 07:43:13 up 72.8%

2024/05/13 15:43:13 up

2024/05/13 07:43:13 down 24.1%

2024/05/13 15:43:13 down

2024/05/13 07:43:13 installing 1.46%

2024/05/13 15:43:13 installing

2024/05/13 07:43:13 installer_calling_init 0.31%

2024/05/13 15:43:13 installer_calling_init

2024/05/13 07:43:13 going_down 0.57%

2024/05/13 15:43:13 going_down

2024/05/13 07:43:13 booting 0.73%

2024/05/13 15:43:13 booting

Another example is with wlm_slurm_state, an enum that shows the state of nodes that can be allocated
to the Slurm workload manager:

[basecm11->device[node001]]% dumpmonitoringdata -8h now wlm_slurm_state --timegroup

Start - Mon May 13 07:42:34 2024 (1715578954)

End - Mon May 13 15:42:34 2024 (1715607754)

wlm_slurm_state - The state of the nodes

Timestamp Value Info

-------------------------- ---------- ----------

2024/05/13 07:42:34 allocated 4.27%

2024/05/13 15:42:34 allocated

2024/05/13 07:42:34 drain 0.50%

2024/05/13 15:42:34 drain

2024/05/13 07:42:34 idle 90.9%

2024/05/13 15:42:34 idle

2024/05/13 07:42:34 maint 1.76%

2024/05/13 15:42:34 maint

2024/05/13 07:42:34 mixed 2.55%

2024/05/13 15:42:34 mixed

The percentage total is 100% in the output. The --timegroup option tends to be useful and mean-
ingful for health checks and enummetrics, rather than for metrics.

Some non-interpolating RLE quirks: When a sample measurement is carried out, if the sample has
the same value as the two preceding it in the records, then the “middle” sample is discarded from
storage.

Thus, when viewing the sequence of output of non-interpolated samples, identical values do not
exceed two entries one after the other. This is a common compression technique known as Run Length
Encoding (RLE). It can have some implications in the output of the dumpmonitoringdata command.

604 Monitoring: Monitoring Cluster Devices

Example

[basecm11->device[node001]]% dumpmonitoringdata -10m now threadsused:cmd

Timestamp Value Info

-------------------------- ---------- ----------

2017/07/21 11:16:00 42

2017/07/21 11:20:00 42

2017/07/21 11:22:00 41

2017/07/21 11:24:00 42

2017/07/21 11:26:00 42

In the preceding example, data values for the number of threads used by CMDaemon are dumped
for the last 10 minutes.

Because of RLE, the value entry around 11:18:00 in the preceding example is skipped. It also means
that at most only 2 of the same values are seen sequentially in the Value column. This means that 42 is
not the answer to everything.

For a non-interpolated value, the nearest value in the past, relative to the time of sampling, is used
as the sample value for the time of sampling. This means that for non-interpolated values, some care
may need to be taken due to another aspect of the RLE behavior: The time over which the samples
are presented may not be what a naive administrator may expect when specifying the time range. For
example, if the administrator specifies a 10 minute time range as follows:

Example

[basecm11->softwareimage]% dumpmonitoringdata -10m now nodesup default-image

Timestamp Value Info

-------------------------- ---------- ----------

2017/07/13 16:43:00 2

2017/07/20 17:37:00 2

[basecm11->softwareimage]%

then here, because the dump is for non-interpolated values, it means that the nearest value in the
past, relative to the time of sampling, is used as the sample value. For values that are unlikely to change
much, it means that rather than 10 minutes as the time period within which the samples are taken, the
time period can be much longer. Here it turns out to be about 7 days because the nodes happened to be
booted then.

10.6.5 Monitoring Data Health Overview–The healthoverview Command
In figure 10.20, section 10.4.6, the Base View navigation path

Monitoring > Health Status

showed an overview of the health status of all nodes.
The cmsh equivalent is the healthoverview command, which is run from within device mode. If

run without using a device, then it provides a summary of the alert levels for all nodes.
The help text in cmsh explains the options for the healthoverview command. The command can be

run with options to restrict the display to specified nodes, and also to display according to the sort order
of the alert level values.

Example

[basecm11->device]% healthoverview -n node00[1-3]

Device Sum Maximum Count Age Info

------------ ------------ ------------ ------------ ------------ -------------

node001 30 15 2 50.7s hot, fan high

node002 30 15 2 50.7s hot, fan high

node003 15 15 1 50.7s hot

10.6 Obtaining Monitoring Data Values 605

10.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command
The monitoringinfo command provides information for specified head nodes or regular nodes about
the monitoring subsystem. The help text shows the options for the command. Besides options to specify
the nodes, there are options to specify what monitoring information aspect is shown, such as storage,
cache, or services.

Example

[basecm11->device]% monitoringinfo -n node001

Service Queued Handled Cache miss Stopped Suspended Last operation

--------------------------- ------ -------- ---------- ------- --------- -------------------

Mon::CacheGather 0 0 0 yes no -

Mon::DataProcessor 0 0 0 yes no -

Mon::DataTranslator 0 932,257 0 no no Mon Jul 24 11:34:00

Mon::EntityMeasurableCache 0 0 0 no no Thu Jul 13 16:39:52

Mon::MeasurableBroker 0 0 0 no no -

Mon::Replicate::Collector 0 0 0 yes yes -

Mon::Replicate::Combiner 0 0 0 yes yes -

Mon::RepositoryAllocator 0 0 0 yes no -

Mon::RepositoryTrim 0 0 0 yes no -

Mon::TaskInitializer 0 30 0 no no Thu Jul 13 16:39:52

Mon::TaskSampler 30 233,039 0 no no Mon Jul 24 11:34:00

Mon::Trigger::Actuator 0 0 0 yes no -

Mon::Trigger::Dispatcher 0 0 0 yes no -

Cache Size Updates Requests

----------------------- ------------ ------------ ------------

ConsolidatorCache 0 17 0

EntityCache 10 17 935,280

GlobalLastRawDataCache 87 17 0

LastRawDataCache 142 17 427,301

MeasurableCache 231 17 935,230

Cache Up Down Closed

----------------- ------------ ------------ ------------

DeviceStateCache 3 0 0

Replicator First Last Requests Samples Sources

------------------------ ------------ ------------ ------------ ------------ ------------

ReplicateRequestHandler - - 0 0

Cache Queued Delivered Handled Pickup

------------ ------------ ------------ ------------ ------------

Cache 0 120 932,257 7,766

Plotter First Last Count Samples Sources Requests

------------------ ---------- ---------- -------- -------- -------- --------

RequestDispatcher - - 0 0 0 -

RequestHandler - - 0 0 0 -

Storage Elements Disk size Usage Free disk

--------------------------- ---------- ------------ -------- ------------

Mon::Storage::Engine 0 0 B 0.0% -

Mon::Storage::Message 0 0 B 0.0% -

Mon::Storage::RepositoryId 0 0 B 0.0% -

606 Monitoring: Monitoring Cluster Devices

10.6.7 Dropping Monitoring Data With The monitoringdrop Command
Monitoring data gathering can be restricted to certain nodes using node execution filtering and execu-
tion multiplexers. Entire data producers can also be disabled with the disable option in monitoring

mode. However, restricting or disabling leaves historical samples in storage—the existing monitoring
data values do not automatically get removed. So, in cmsh and Base View the latest known monitoring
data values then still show up, with a forever-increasing age.

If a data producer is removed, then the associated data values for its measurable or measurables are
removed.

Alternatively, if adding execution filters to a monitoring data producer is intended to be a permanent
change, then all previously collected data can be dropped for filtered nodes.

For example, if the ssh connectivity to only cloud nodes is to be checked:

Example

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup use ssh2node

[...->monitoring->setup[ssh2node]]% executionmultiplexers

[...->executionmultiplexers]% show

Type None

[...->executionmultiplexers]% use all nodes

[...->executionmultiplexers[All nodes]]% get types

Node

[...->executionmultiplexers[All nodes]]% set types CloudNode

[...->executionmultiplexers*[All nodes*]]% commit

After this is set, the monitoring data values for a non-cloud node can be checked. The ssh2node

health check data values are then seen to be getting older, without any more updates being added.
These health check data values can then be dropped using the monitoringdrop command from within
the device mode of cmsh command.

It is wise to run a dry-run operation first, in order to make sure that no data values are unintentionally
removed:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[...->device[node001]]% latestmonitoringdata | grep ssh2node

ssh2node Network PASS 43m 38s filtered

[...->device[node001]]% monitoringdrop --dry-run --filtered

Entity Measurable

------------ ------------

node001 ssh2node

[...->device[node001]]% monitoringdrop --filtered

Removed 1 entity, measurable pairs

[...->device[node001]]% latestmonitoringdata | grep ssh2node

[...->device[node001]]%

The --force option can be used to remove non-filtered old data, such as data from a disabled mea-
surable. This is also useful when correcting a bad metric script. After fixing the script, the old (incorrect)
data can be dropped.

Example

[root@basecm11 ~]# cmsh

[basecm11]% device

[...->device]% monitoringdrop --category default my-metric --force

Removed 32 entity, measurable pairs

10.6 Obtaining Monitoring Data Values 607

A reboot or CMDaemon restart is required for the node to start collecting data again on a non-filtered
metric which has been dropped with the --force option.

10.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And
monitoringresume Commands

The monitoringsuspend command suspends monitoring. The monitoringresume command resumes
monitoring.

When suspension is applied to a head node, the regular nodes simply continue sampling data up to
a maximum of 1 million samples per node. The available backlog is fetched upon resumption.

Suspension can be used during benchmarking to measure the results of benchmarking runs without
having monitoring get in the way.

Suspension can also be used as a quick sanity check during regular cluster operation, as a way for
an administrator to see if it is monitoring that is consuming excessive resources, in comparison with the
other processes on the system. For example, running it on a head node (some output omitted or elided):

Example

[root@head1 ~]# sar -b 1

Linux 3.10.0-957.1.3.el7.x86_64 (head1) 10/14/2019 _x86_64_ (28 CPU)

04:41:00 PM tps rtps wtps bread/s bwrtn/s

04:41:02 PM 1481.82 0.00 1481.82 0.00 24355.56

04:41:03 PM 849.49 0.00 849.49 0.00 10367.68

04:41:04 PM 509.00 0.00 509.00 0.00 4440.00

04:41:05 PM 709.90 0.00 709.90 0.00 5853.47

04:41:06 PM 1209.00 0.00 1209.00 0.00 18168.00

^C

[root@head1 ~]# cmsh

[head1]% device use master

[head1->device[head1]]% monitoringsuspend

suspend 14 on head1

[head1->device[head1]]% monitoringinfo

Service Queued Handled Cache miss Stopped Suspended

--------------------------- ---------- ---------- ---------- ---------- ----------

Mon::CacheGather 425 39,857 0 no yes

Mon::DataConverter 0 0 0 no yes

Mon::DataProcessor 0 6,609,369 0 no yes

Mon::DataTranslator 0 311,658 0 no yes

Mon::EntityMeasurableCache 0 0 0 no yes

Mon::MeasurableBroker 0 0 0 no yes

Mon::PerpetualTaskManager 0 0 0 no yes

Mon::Replicate::Collector 0 0 0 yes yes

Mon::Replicate::Combiner 0 0 0 yes yes

...

[head1->device[head1]]% quit

[root@head1 ~]# sar -b 1

Linux 3.10.0-957.1.3.el7.x86_64 (head1) 10/14/2019 _x86_64_ (28 CPU)

04:41:58 PM tps rtps wtps bread/s bwrtn/s

04:41:59 PM 4.04 0.00 4.04 0.00 96.97

04:42:00 PM 3.00 0.00 3.00 0.00 96.00

04:42:01 PM 4.04 0.00 4.04 0.00 96.97

04:42:02 PM 0.00 0.00 0.00 0.00 0.00

04:42:03 PM 0.00 0.00 0.00 0.00 0.00

04:42:04 PM 43.00 0.00 43.00 0.00 528.00

608 Monitoring: Monitoring Cluster Devices

04:42:05 PM 0.00 0.00 0.00 0.00 0.00

04:42:06 PM 3.06 0.00 3.06 0.00 130.61

04:42:07 PM 0.00 0.00 0.00 0.00 0.00

In the preceding example monitoring is seen to be consuming significant resources.
After running monitoringsuspend, resuming monitoring should not be forgotten, and it should be

done soon enough after suspension. If that is not done, then backlogged samples that exceed the limit
of 1 million samples per node on the regular nodes would be lost. Resumption is carried out with:

Example

[root@head1 ~]# cmsh

[head1]% device use master

[head1->device[head1]]% monitoringresume

resume 14 on head1

CMDaemon Directive Settings To Reduce Monitoring Resource Consumption
The following CMDaemon directive changes may reduce the resource consumption due to monitoring:

Increasing the job account collection interval: by increasing the value of the
JobsSamplingMetricsInterval directive (page 863).

Disabling job information collection completely: by setting the value of the
JobInformationDisabled directive to 0 (page 866).

For the Slurm workload manager only, disabling job accounting: by setting the value of the
SlurmDisableAccountingParsing directive to 0 (page 862).

Reducing the duration for which job data is stored: by reducing the value of the
JobInformationKeepDuration (page 867).

10.6.9 Monitoring Pickup Intervals
All nodes cache their monitoring data. This cached data gets picked up by the active head node at a
regular pickup interval.

It is possible to alter the pickup interval using the monitoringpickup command covered in this
section. The command is run from device mode.

The current pickup intervals can be listed with:

Example

[basecm11]% device

[basecm11->device]% monitoringpickup

Hostname Interval Times Priority

------------- ---------- -------- ----------

basecm11 2m - 0

node001 2m - 0

node002 2m - 0

An interval can be set for one or more nodes. For example, a 1-minute pickup interval can be set as
follows:

Example

10.6 Obtaining Monitoring Data Values 609

[basecm11]% device use node001

[basecm11->device[node001]]% monitoringpickup --interval 1m

Changed 1 pickup intervals

[basecm11->device[node001]]% monitoringpickup

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 1m 1 100

The pickup interval is carried out only once by default, unless otherwise specified.
The --times option allows the number of times to be specified:

Example

[basecm11]% device use node001

[basecm11->device[node001]]% monitoringpickup --interval 1m --times 10

Changed 1 pickup intervals

[basecm11->device[node001]]% monitoringpickup

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 1m 10 100

The --forever option lets the pickup be carried out “forever”3.

Example

[basecm11->device[node001]]% monitoringpickup --interval 30s --forever

Changed 1 pickup intervals

[basecm11->device[node001]]% monitoringpickup

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 30s - 100

The --priority option applies the priority to equal or lower priority settings:

Example

[basecm11]% device

[basecm11->device]% monitoringpickup -n node00[1-2]

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 1m 12 80

node002 1m 17 20

[basecm11->device]% monitoringpickup -n node00[1-2] --interval 5s --priority 50

Changed 1 pickup intervals

[basecm11->device]% monitoringpickup -n node00[1-2]

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 1m 12 80

node002 5s 1 50

In the preceding example, parameters for node002 only were changed, as the priority setting for
node001 was higher than the applied priority option that was requested. Thus, the Interval value
became 5s, as specified, the Times value defaulted to 1, and the specified Priority value of 50 was
applied to node002 only.

The further behavior of the pickup from node002 is as follows:
After picking up data once from node002, five seconds from the change, the interval becomes the

default of 2 minutes once again:
3Strictly speaking, “forever” means (264 − 1) times on the 64-bit architecture that BCM runs on. For comparison, (264 − 1)

seconds is about 585 billion years.

610 Monitoring: Monitoring Cluster Devices

[basecm11->device]% monitoringpickup -n node00[1-2]

Hostname Interval Times Priority

------------- ----------- -------- ---------

node001 1m 12 80

node002 2m 0 0

The yet further behavior of the pickup, during the next pickup event, is then as follows:
The Times value of 0 becomes unset. The unset value is represented by -, and is equivalent to

--forever.
In other words, if a monitoring interval is changed, and the change is not specified as “forever”, then

after the Times value has decremented to zero, the monitoring interval reverts to the default value of
2 minutes. The Times value then becomes a value of -, which implies forever, when the next pickup
occurs.

The job metric sampler can also automatically modify the pickup interval for nodes. Every time a
new job is started, all the nodes that are used by the job are assigned a modified pickup interval. The
new values for the pickup can be managed in the jobmetricsettings mode of cmsh.

[basecm11->...->jobmetricsettings]% show

Parameter Value

-------------------- ------

...

Pickup interval 5s

Pickup priority 50

Pickup times 12

10.7 Offloaded Monitoring
Offloaded monitoring is a feature introduced in NVIDIA Base Command Manager version 9.1.

Traditional BCM monitoring uses a single (active) head node to manage monitoring. That is, to carry
out sampling and to store results for measurables. Traditional monitoring can be used for clusters of
thousands of nodes, assuming the default number measurables are running.

Offloaded monitoring in BCM is designed to share the more resource-intensive parts of monitoring
across nodes so that the head node is not overloaded by monitoring. In practice, offloaded monitoring
needs only to be considered for a clusters that are greater than about 1000 nodes in size, assuming the
clusters have the default number of measurables running.

There are some mandatory requirements, and some recommended settings, which are discussed
later on in section 10.7.3.

10.7.1 Why Offloaded Monitoring?
Traditional monitoring is highly optimized, and with some care is typically able to deal with clusters
of around 10,000 nodes with the default metrics. While it has the virtue of simplicity, it also has the
following possible issues:

• there is a single point of failure, since monitoring runs on the active head node

• the head node performance as the number of nodes increases may not be sufficient. To get around
this, monitoring may rely on increasingly expensive hardware, or on reducing the sampling that
is carried out. With the default monitoring in place, with typical server hardware available at the
time of writing of this section (2020), a limit is reached at around 20000 nodes.

These issues may not be acceptable, in which case it makes sense to consider offloaded monitoring.
The advantages of offloaded monitoring are:

• no single point of failure

• the ability to scale with the size of the cluster

10.7 Offloaded Monitoring 611

A disadvantage is that offloaded monitoring is more complicated than single head monitoring. How-
ever, BCM simply implements it as a role that is assigned to nodes. The BCM backend then manages
the details of offloaded monitoring.

10.7.2 Implementing Offloaded Monitoring
In cmsh offloaded monitoring is implemented via role assignment. The assignment can be carried out at
the level of device, category, or configuration overlay:

Example

[basecm11->device]% use node001

[basecm11->device[node001]]% roles

[basecm11->device[node001]->roles]% assign monitoring

[basecm11->device*[node001*]->roles*[monitoring*]]% show

Parameter Value

-------------------------------- --

Name monitoring

Revision

Type MonitoringRole

Add services yes

Provisioning associations <0 internally used>

Number of backups 2

Backup ring automatic

[basecm11->device*[node001*]->roles*[monitoring*]]%

If offloaded monitoring is to run in a highly available way, so that a failure of one monitoring node
does not halt the monitoring system, then offloaded monitoring must be assigned to two or more nodes.

10.7.3 Background Details
A description of how offloaded monitoring works in the backend follows, because it should help the
cluster administrator in understanding how and when to implement it.

Offloaded monitoring uses nodes that are assigned a monitoring role.
If there are N regular (non-head) nodes in a cluster that are being monitored, and if there are M

monitoring nodes, then the idea of offloading is that each monitoring node covers N/M of the total
monitoring storage, and N/M of the sampling scripts.

In other words, the cluster manager aims to evenly spread the total storage and sampling needed for
all the regular nodes, over the nodes with a monitoring role.

BCM in the default state with no high availability does not run offloaded monitoring.

High Availability And Offloaded Monitoring With Just The Head Nodes Running As Monitoring Nodes
The simplest offloaded monitoring configuration is when high availability is configured. That is, when
BCM is configured with two head nodes as described in Chapter 15. By default, a monitoring role is
then assigned to both the head nodes.

This has the effect of doubling the monitoring capacity of the head node pair in NVIDIA Base Com-
mand Manager 9.1, in comparison with a head node pair in NVIDIA Base Command Manager version
9.0 and earlier.

The head nodes then carry out storage and sampling for the regular nodes as well as for themselves.

Offloaded Monitoring With Regular Compute Nodes Running As Monitoring Nodes
It is possible to run a compute node with a monitoring role assigned to them. This means that the
compute node carries out storage and sampling as part of its monitoring role.

During a SYNC install—the default node provisioning for a healthy node—monitoring data persists.
Monitoring data would be wiped out during a FULL install (section 5.4.4). To provide a check on

this, the node can be set up with the datanode setting (page 257), which requires a confirmation from

612 Monitoring: Monitoring Cluster Devices

the cluster administrator before carrying out a FULL install. However, if the monitoring data values are
that important, then the cluster administrator should consider backup solutions for it anyway.

Offloaded Monitoring With Dedicated Nodes Running As Monitoring Nodes
For large clusters of around 10,000 or more nodes, a recommended practice is to have dedicated moni-
toring nodes. These are then regular nodes that are typically set up with the datanode setting, and are
not used for other purposes such as HPC use. The dedicated monitoring nodes then carry out monitor-
ing sampling and monitoring data storage for the regular nodes. Each of the M dedicated monitoring
nodes takes on N/M of the regular nodes for itself, and records monitoring data from those N/M nodes.

This is illustrated by the following schematic, with arrows indicating the monitoring sampling flow
for the head nodes (H1, H2), dedicated monitoring nodes (M1 to M3), and regular nodes (N1 to N6):

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

Figure 10.27: Monitoring Sampling Flow For Offloaded Monitoring With Dedicated Monitoring Nodes

A monitoring node in this configuration also copies backups of its monitoring data to other monitor-
ing nodes. Number of backups for the monitoring role (section 10.7.2) is used to configure the number
of backups. In the following schematic, two neighboring monitoring nodes are used as backup:

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

Figure 10.28: A Simple Backup Flow For Offloaded Monitoring With Dedicated Monitoring Nodes

The backups need not be on the same local network. For example, edge directors can be backed up
to the head node.

If a monitoring node fails, then its monitoring data can be extracted from its backup nodes, and a
new distribution of nodes to be monitored is allocated to the remaining monitoring nodes.

A backup is carried out using what the BCM developers call a provisioning grab. This is similar to
grabimage (section 5.6), but this time designed for grabbing monitoring data. Like grabimage, provi-
sioning grab also works on the basis of an rsync. This means that the first copy can take a while, but that
subsequent copies are much faster.

Provisioning grabs are staggered to reduce bandwidth consumption and to reduce the likely amount

10.7 Offloaded Monitoring 613

of monitoring data that goes out of date during an outage.
Dedicated monitoring nodes can cope with short outages of monitoring nodes, such as are caused by

a CMDaemon restart on that monitoring node, or by a reboot of that monitoring node. These outages are
not expected to take longer than a few minutes, and the monitoring nodes just continue on as normal,
with some missing data samples. However, if an outage is greater than about 15 minutes, such as may
happen if a monitoring node crashes, then a fully automated rebalancing of the loads on the monitoring
nodes can only take place with the aid of backups.

The head nodes in this configuration are configured as HA, and without the monitoring role, and
thus do not carry out monitoring data storage for the regular nodes. They do however still sample and
store data for themselves, and carry out backups to each other.

Backup nodes: In addition, for larger clusters, another recommended practice is to have backup nodes
(B1, B2 in the following schematic) for the dedicated monitoring nodes:

H1 H2 M1 M2 M3

N1 N2 N3 N4 N5 N6

B1 B2

Figure 10.29: A More Sophisticated Backup Flow For Offloaded Monitoring With Dedicated Monitoring
Nodes And Dedicated Backup Nodes

Backup nodes for the monitoring nodes take away the monitoring data backup task from the moni-
toring nodes. This frees up the monitoring nodes so that they can take on even more monitoring.

Provisioning role on monitoring nodes: If there is enough capacity on the dedicated monitoring
nodes, and the cluster spends most of its time in a relatively steady state where its nodes do not reboot
frequently, then adding a provisioning role to the monitoring nodes can be an efficient use of resources.
In this case the monitoring nodes are obviously not so dedicated, but the advantage is that rebooting the
entire cluster is then faster, at the cost of perhaps some extra load on the monitoring nodes during such
a reboot.

Offloaded Monitoring Sampling And Backup Flows For Edge Computing
For a cluster with edge configured, the edge director flows in the edge network are analogous to head
node flows in the local network. Thus, monitoring is carried out by the directors on the edge nodes, and
the directors also sample themselves.

Thus, edge directors, not in a high-availablity configuration, have the monitoring sampling data flow
shown by the following schematic (figure 10.30):

614 Monitoring: Monitoring Cluster Devices

N2 N3N1 E2 E3E1

H
D1

E5 E6E4

D2

Figure 10.30: Sampling Flow For Offloaded Monitoring With Non-HA Edge Director Nodes

For edge directors that have been set up in an HA configuration (section 2.1.1 of the Edge Manual) the
monitoring sampling data flow in the edge network is split up between directors, so that each director
takes half of the edge nodes. This is analogous to how head nodes in an HA configuration take half of
the regular nodes each (figure 10.31):

N2 N3N1 E2 E3E1

H
D1

E5 E6E4

D2

Figure 10.31: Sampling Flow For Offloaded Monitoring With HA Edge Director Nodes

The backup data flow for a non-HA configuration would then be as follows for an edge director
(figure 10.32):

N2 N3N1

H D1 D2

E2 E3E1 E5 E6E4

Figure 10.32: Backup Flow For Offloaded Monitoring With Non-HA Edge Director Nodes

Backing up to the head node is possible for an edge director. But it is usually unwise because one of
the usual reasons to have a segregation of local and edge networks is to reduce data flow between the
local and edge network.

10.8 The User Portal 615

With edge directors in an HA configuration, a big advantage is that backing up to the other edge
director is possible and configured by default, rather than backing up to the head node (figure 10.33):

N2 N3N1

H1 D1 D2

E2 E3E1 E5 E6E4

Figure 10.33: Backup Flow For Offloaded Monitoring With HA Edge Director Nodes

Default Backups Configurations
The default backup configurations for monitoring data are:

• Head node HA : head nodes back up each other

• Edge node HA : directors back up each other

• edge directors: directors back up to (both) head nodes

• cloud directors: directors back up to (both) head nodes

10.7.4 Examining Offloaded Monitoring With monitoringoffloadinformation

The monitoringoffloadinformation displays the monitoring relations between nodes. In a small HA
cluster with a default configuration, with only two HA head nodes basecm11-ha-a and basecm11-ha-b

in a monitoring role, the output of the command for node001 is:

[basecm11-ha-a->device[node001]]% monitoringoffloadinformation

Node Selected Monitoring node Viable Monitoring nodes

-------- -------------------------- ----------------------------

node001 basecm11-ha-b basecm11-ha-a,basecm11-ha-b

Here, node001 is seen as having its monitoring data going to one selected head node.
Viable in this context means a node that is capable of being used for monitoring, even if it may not

be available now, for example due to a temporary outage such as a reboot. Both head nodes are thus
capable of doing monitoring.

For one of the head nodes in the cluster, the output is:

[basecm11-ha-a->device[basecm11-ha-a]]% monitoringoffloadinformation

Node Selected Monitoring node Viable Monitoring nodes

------------- -------------------------- --------------------------

basecm11-ha-a basecm11-ha-a basecm11-ha-a

10.8 The User Portal
The user portal is a restricted version of Base View that allows non-root users to view some cluster
manager data.

With a browser:

• If the head node landing page (figure 2.1) shows a greytoned user portal block with a ⊕ within it,
then it means that the user portal is not installed.

616 Monitoring: Monitoring Cluster Devices

• If the head node landing page shows a colored user portal block with a chain link icon within it,
then the user portal can be accessed via the icon.

The user portal can be added or removed from the cluster manager by adding or removing the
cm-webportal package.

Example

[root@basecm11 ~]# yum install cm-webportal

...

Is this ok [y/N]: y

Downloading Packages:

...

Complete!

10.8.1 Accessing The User Portal
The user portal is compatible with most browsers using reasonable settings, and is supported for the
same browsers that Base View supports (section 2.4).

The user portal is located by default on the head node, and can then be accessed in two ways:

• From the aforementioned link icon within the colored user portal block of the head node landing
page.

• More directly using a URL of the form:

https://<host name or IP address>:8081/userportal

Both of these access routes lead to a user login page. The state of the cluster can then be viewed by
the users via an interactive interface.

The first time a browser is used to log in to the portal, a prominent warning about the site certificate
being untrusted appears.

The certificate is a self-signed certificate (the X509v3 certificate of Chapter 4 of the Installation Man-
ual), generated and signed by Bright Computing, and the attributes of the cluster owner are part of the
certificate. However, Bright Computing is not a recognized Certificate Authority (CA) like the CAs that
are recognized by a browser, which is why the warning appears.

For a portal that is not accessible from the outside world, such as the internet, the warning about
Bright Computing not being a recognized Certificate Authority is not an issue, and the user can sim-
ply accept the “untrusted” certificate, and the browser used then no longer displays such a prominent
warning about the issue.

For a portal that is accessible via the internet, some administrators may regard it as more secure to
ask users to trust the self-signed certificate rather than external certificate authorities. Alternatively the
administrator can replace the self-signed certificate with one obtained by a trusted recognized CA, for
example the one at https://letsencrypt.org, if that is preferred.

The user portal certificate discussed here is a webserver certificate, similar to that of the landing
page, but served by CMDaemon rather than Apache.

10.8.2 Setting A Common Username/Password For The User Portal
By default, each user has their own username/password login to the portal. Removing the login is not
possible, because the portal is provided by CMDaemon, and users must connect to CMDaemon.

A shared (common) username/password for all users can be set in the configuration file,
common-credentials.json. The default username/password settings are blank, which means that com-
mon access is not enabled:

Example

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

10.8 The User Portal 617

[root@basecm11 ~]# cat /cm/local/apps/cmd/etc/htdocs/userportal/assets/config/common-credentials.json

{

"username": "",

"password": ""

}

To enable common access:

• the common username and password must be added via cmsh or Base View

Example

[root@basecm11 ~]# cmsh

[basecm11]% user

[basecm11->user]% add forrestgump

[basecm11->user[forrestgump]]% set password

enter new password:

retype new password:

[basecm11->user*[forrestgump*]]% commit

[basecm11->user[forrestgump]]% quit

• the common username and password should be set in the appropriate place in the configuration
file, common-credentials.json:

Example

[root@basecm11 ~]# cat /cm/local/apps/cmd/etc/htdocs/userportal/assets/config/common-credentials.json

{

"username": "forrestgump",

"password": "1forrest1"

}

A minor stumbling block for the unwary administrator is:
If using Base View, then if the password for the username has already been saved in the browser’s

password manager before changing it in the configuration file, then the password saved in the browser’s
password manager may need to be changed to the new one explicitly.

10.8.3 User Portal Access
By default, the user profile (section 6.4) is set to readonly, which allows viewing of the information
presented in the user portal, without allowing it to be altered.

10.8.4 User Portal Home Page
User Portal Overview Page
The default user portal home page is the Overview page. This allows a quick glance to convey the most
important cluster-related information for users (figure 10.34):

/cm/local/apps/cmd/etc/htdocs/userportal/index.html

618 Monitoring: Monitoring Cluster Devices

Figure 10.34: User Portal: Overview Page

The following items are displayed on the overview page:

• a Message Of The Day. This can be edited in /cm/local/apps/cmd/etc/htdocs/userportal/

assets/config/message-of-the-day.html

• links to the documentation for the cluster

• an overview of the cluster state, displaying some cluster parameters. By default, it is refreshed
every 10s.

The user portal is designed to serve files only, and will not run executables such as PHP or similar
CGI scripts.

User Portal Job Accounting Page
Job accounting charts can be viewed on clicking upon the associated icon, , at the top right corner
of the user portal page. The user portal’s Accounting and reporting page for Base View is then dis-
played.

The accounting and reporting page allows job accounting to be viewed in an accounting panel in a
very similar manner to how it is done in section 12.5.

10.9 Cloud Job Tagging
Cloud job tagging is about the ability for cloud job instances to have their associated cloud resources
tagged. This is only possible for AWS at the time of writing (February 2020). Enabling cloud job tagging
via NVIDIA Base Command Manager was introduced in version 9.0.

Tags are key=value pairs for AWS resources, and can be applied to resources. Typically, tags that are
applied are set by the user via the Tag Editor of the Amazon Management Console, and up to 50 tags
can be applied per resource.

/cm/local/apps/cmd/etc/htdocs/userportal/assets/config/message-of-the-day.html
/cm/local/apps/cmd/etc/htdocs/userportal/assets/config/message-of-the-day.html

10.10 Event Viewer 619

Cloud job tagging should not be confused with the tagging of job metrics for job accounting (sec-
tion 12.2). AWS cloud resource tagging is only active and handled within AWS.

Cloud job tags allow the time span between tag creation and removal to be associated with a partic-
ular workload on the node.

In cmsh, for a cloud node, cloud job tagging can be enabled within cloud mode by setting the
cloudjobtagging parameter for the EC2Provider entity to yes

Example

cmsh -c 'cloud; use amazon; set cloudjobtagging yes; commit'

If it is set to yes, then every job running on a cloud node using that specific provider is tagged
according to the applied tags.

A subset of the tags for cloud jobs are cost allocation tags. Cloud job cost allocation tags allow AWS
costs to be tracked for jobs. A cost allocation tag can be:

• an AWS generated tag: defined, created, and applied by AWS

• a user-defined tag: defined, created, and applied by the user

By default, BCM provides the following tag names when the cloud job tagging feature is enabled:

• BCM_JOB_ID

• BCM_JOB_ACCOUNT

• BCM_JOB_USER

• BCM_JOB_NAME

When CMDaemon sees that a job has started, the resources of that job are then tagged with the job ID,
the job account, the job user, and the job name. When CMDaemon detects that the job has stopped, it
removes the tags.

The AWS Cost Explorer can be used to view the AWS costs for a billing period according to tags.
Further information on tagging can be found at:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html.
Further information on using the Cost Explorer with cost allocation tags can be found at:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

10.10 Event Viewer
Monitoring in BCM is normally taken by developers to mean how sampling with data producers is
handled. However, cluster administrators using this manual typically consider watching and handling
events in BCM to also be a part of a more general concept of monitoring. This manual is aimed at cluster
administrators, and therefore this section on event viewing and handling is also placed in the current
monitoring chapter.

BCM events can be handled and viewed in several ways. Event logging is enabled by default by the
EventLogger directive (page 849).

10.10.1 Viewing Events In Base View
In Base View, events can be viewed by clicking on the Events icon of figure 10.5. This opens up a
window with a sortable set of columns listing the events in the events log, and with by default with the
most recent events showing up first.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

620 Monitoring: Monitoring Cluster Devices

10.10.2 Viewing Events In cmsh

The events command is a global cmsh command. It allows events to be viewed at several severity levels
(section 10.2.7), and allows old events to be displayed. The usage and synopsis of the events command
is:

Usage: events

events on [broadcast|private]

events off [broadcast|private]

events level <level>

events clear

events details <id> [<id>]

events <number> [level]

events follow

Arguments:

level info,notice,warning,error,alert

Running the command without any option shows event settings, and displays any event messages
that have not been displayed yet in the session:

Example

[basecm11->device]% events

Private events: off

Broadcast events: on

Level: notice

custom[RESET] node001

Running the command with options allows the viewing and setting of events as follows:

• on [broadcast|private]: event messages are displayed as they happen in a session, with cmsh

prompts showing in between messages:

– If only on is set, then all event messages are displayed as they happen:

* either to all open cmsh sessions, and also in Base View event viewer panes, if the event or
its trigger has the “broadcast” property.

* or only in the cmsh session that is running the command, if the event or its trigger has the
“private” property.

– If the further option broadcast is set, then the event message is displayed as it happens in all
open cmsh sessions, and also in all Base View event viewer panes, if the event or its trigger
has the “broadcast” property.

– If the further option private is set, then the event message is displayed as it happens only in
the cmsh session that ran the command, if the event or its trigger has the “private” property.

• off [broadcast|private]: disallows viewing of event messages as they happen in a session.
Event messages that have not been displayed due to being forbidden with these options, are dis-
played when the events command is run without any options in the same session.

– If only off is set, then no event message is displayed as it happens in the session. This is
regardless of the “broadcast” or “private” property of the event or its trigger.

– If the further option broadcast is set, then the event message is not displayed as it happens,
if the event or its trigger has the “broadcast” property.

– If the further option private is set, then the event message is not displayed as it happens, if
the event or its trigger has the “private” property.

10.10 Event Viewer 621

• level <info|notice|warning|error|alert>: sets a level. Messages are then displayed for this
and higher levels.

• clear: clears the local cmsh event message cache. The cache indexes some of the events.

• details <id>: shows details for a specific event with the index value of <id>, which is a number
that refers to an event.

• <number> [info|notice|warning|error|alert]: shows a specified <number> of past lines of
events. If an optional level (info, notice,...) is also specified, then only that level and higher
(more urgent) levels are displayed.

• follow: follows event messages in a cmsh session, similar to tail -f /var/log/messages. This
is useful, for example, in tracking a series of events in a session without having the cmsh prompt
showing. The output can also be filtered with the standard unix text utilities, for example: events
follow | grep node001

A common example of events that send private messages as they happen are events triggered by the
updateprovisioners command, which has the “private” property. The following example illustrates
how setting the event viewing option to private controls what is sent to the cmsh session. Some of the
output has been elided or truncated for clarity:

Example

[basecm11->softwareimage]% events on private

Private events: on

[basecm11->softwareimage]% updateprovisioners

Provisioning nodes will be updated in the background.

[basecm11->softwareimage]%

Tue Apr 29 01:19:12 2014 [notice] basecm11: Provisioning started: sendi...

[basecm11->softwareimage]%

Tue Apr 29 01:19:52 2014 [notice] basecm11: Provisioning completed: sen...

updateprovisioners [COMPLETED]

[basecm11->softwareimage]% !#events were indeed seen in cmsh session

[basecm11->softwareimage]% !#now block the events and rerun update:

[basecm11->softwareimage]% events off private

Private events: off

[basecm11->softwareimage]% updateprovisioners

Provisioning nodes will be updated in the background.

[basecm11->softwareimage]% !#let this 2nd update run for a while

[basecm11->softwareimage]% !#(time passes)

[basecm11->softwareimage]% !#nothing seen in cmsh session.

[basecm11->softwareimage]% !#show a 2nd update did happen:

[basecm11->softwareimage]% events 4 | grep -i provisioning

Tue Apr 29 01:19:12 2014 [notice] basecm11: Provisioning started: sendi...

Tue Apr 29 01:19:52 2014 [notice] basecm11: Provisioning completed: sen...

Tue Apr 29 01:25:37 2014 [notice] basecm11: Provisioning started: sendi...

Tue Apr 29 01:26:01 2014 [notice] basecm11: Provisioning completed: sen...

10.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States
Event Bucket Default Behavior
The BCM event bucket accepts input piped to it, somewhat like the traditional unix “bit bucket”,
/dev/null. However, while the bit bucket simply accepts any input and discards it, the event bucket
accepts a line of text and makes an event of it. Since the event bucket is essentially an event processing
tool, the volumes that are processed by it are obviously less than that which /dev/null can handle.

By default, the location of the event bucket is at /var/spool/cmd/eventbucket, and a message can
be written to the event pane like this:

622 Monitoring: Monitoring Cluster Devices

Example

[root@basecm11 ~]# echo "Some text" > /var/spool/cmd/eventbucket

This adds an event with, by default, the info severity level, to the event pane, with the InfoMessage
“Some text”.

10.10.4 InfoMessages
InfoMessages are optional messages that inform the administrator of the reason for the status change of
a measurable, or an event in the cluster.

Measurable scripts can use file descriptor 3 within their scripts to write an InfoMessage:

Example

echo "Drive speed unknown: Reverse polarity" >&3

Event Bucket Severity Levels
To write events at specific severity levels (section 10.2.7), and not just at the info level, the appropriate
text can be prepended from the following to the text that is to be displayed:

EVENT_SEVERITY_DEBUG:

EVENT_SEVERITY_INFO:

EVENT_SEVERITY_NOTICE:

EVENT_SEVERITY_WARNING:

EVENT_SEVERITY_ERROR:

EVENT_SEVERITY_ALERT:

Example

echo "EVENT_SEVERITY_ERROR:An error line" > /var/spool/cmd/eventbucket

The preceding example displays an output notification in the Base View event viewer as shown in fig-
ure 10.35:

Figure 10.35: Base View Monitoring: Event Bucket Message Example

Event Bucket Filter
Regex expressions can be used to conveniently filter out the user-defined messages that are about to go
into the event bucket from the shell. The filters used are placed in the event bucket filter, located by
default at /cm/local/apps/cmd/etc/eventbucket.filter.

Event Bucket CMDaemon Directives
The name and location of the event bucket file and the event bucket filter file can be set using the
EventBucket and EventBucketFilter directives from the CMDaemon configuration file directives (Ap-
pendix C).

10.10 Event Viewer 623

Adding A User-Defined Message To A Device State With The Event Bucket
While the event bucket is normally used to send a message to the event viewer, it can instead be used to
add a message to the state of a device. The line passed to the echo command then has the message and
device specified in the following format:

STATE.USERMESSAGE[.device]:[message].
The device can be anything with a status property, such as, for example, a node, a switch, or a chassis.

Example

echo "STATE.USERMESSAGE.node001:just right" > /var/spool/cmd/eventbucket

The state then shows as:

cmsh -c "device ; status node001"

node001 (just right) [UP]

If the device is not specified, then the current host of the shell that is executing the echo command is
used. For example, running these commands from the head node, basecm11, as follows:

Example

echo "STATE.USERMESSAGE:too hot" > /var/spool/cmd/eventbucket

ssh node001 'echo "STATE.USERMESSAGE:too cold" > /var/spool/cmd/eventbucket'

yields these states:

cmsh -c "device ; status basecm11"

basecm11 (too hot) [UP]

cmsh -c "device ; status node001"

node001 (too cold) [UP]

The added text can be cleared with echoing a blank message to that device. For example, for node001
that could be:

echo "STATE.USERMESSAGE.node001:" > /var/spool/cmd/eventbucket

Reloading CMDaemon Logging Configuration With Event Bucket
CMDemon logging configuration is reloaded when CMDaemon is restarted (systemctl restart cmd).
The logging configuration can also be reloaded without restarting CMDaemon by triggering the event
bucket:

Example

[root@basecm11 etc]# echo LOGGING.RELOAD.CONFIG > /var/spool/cmd/eventbucket

Using An Event Bucket During The Node-installer Stage
The node-installer runs before systemd is up on the node that is being provisioned. This means that CM-
Daemon is also not yet running on that node, so that the regular event bucket features are not available
during that time. However, a simplified event bucket—the node-installer event bucket—is available
during this stage.

The node-installer event bucket can be particularly useful if debugging larger initialize and finalize
scripts (Appendix E).

To use it, text is echoed to /tmp/eventbucket within the node or category scripts. The text will show
up (if permitted) within the sessions of cmsh, and within the events viewer of Base View.

There are two different modes for the node-installer event bucket:

1. Device status info-message updater mode:

624 Monitoring: Monitoring Cluster Devices

Example

echo "info-message: this text will be shown in the device status" > /tmp/eventbucket

2. Warning event mode:

Example

echo "Some text that will become an event" > /tmp/eventbucket

An Alternative To InfoMessages With The REST API
A cleaner alternative to InfoMessages for status messages is the Status REST API call (section 4.2.1 of
the Developer Manual).

10.11 Monitoring Location With GNSS
GNSS (Global Navigation Satellite System) is the term given to GPS and similar systems. GNSS can be
used to allow devices with the appropriate GNSS hardware to work out their location. The hardware is
commonly implemented as a PCI-X card. A use case for this is to allow an engoineer to walk to a node
with a mobile phone, or to determine a sensible provisioning host.

The hardware requires the ability to receive satellite signals via an antenna. From the signals, the
time of receipt and location can be worked out. BCM makes the results available in the locations

submode of the base partition of cmsh:

Example

[basecm11->partition[base]]% locations

Type Entity Age Latitude Longitude Height Message

---------------- ----------------------- -------- ----------- ----------- -------- ----------------

EdgeSite Amsterdam West 2d 17h 52.1904 4.939 0 Amsterdam-South

EdgeSite Fort-Collins 6d 7h 40.5538 -105.0849 0 Fort-Collins

HeadNode rima 57m 3s 52.3927 4.8361 0 Amsterdam

PhysicalNode bright-office-director 2d 16h 52.1903 4.9163 0 Amsterdam-South

PhysicalNode bright-office-node001 2d 17h 52.1904 4.9617 0 Amsterdam-South

PhysicalNode fort-collins-director 6d 7h 40.5538 -105.0849 0 Fort-Collins

[basecm11->partition[base]]%

In practice, due to environmental interference, a minimum resolution of 5m is common for longitude
and lattitude. The height determination is typically 1.5x more inaccurate. Vendor specifications should
be referred to for details on obtaining greater accuracy, since there are technology enhancements that
can improve the accuracy.

The location is determined at start up and on demand.

10.12 Monitoring Report Queries
10.12.1 Monitoring Report Queries In cmsh

There are usually several hundred sources of data in BCM, and they are often of different types. An ad-
ministrator would sometimes like to see the output of the data sources grouped by particular nodes. The
variety of types means that examining the data output according to grouping choices would normally
be awkward.

The data output can be viewed in BCM with the help of a simple query language from within the
monitoring report submode. The query language can be used to filter by grouping choices and data
values.

10.12 Monitoring Report Queries 625

Data Sources For Monitoring Reports
The sources of data can be listed in report mode with the fields command:

Example

[basecm11->monitoring->report]% fields | head -30

Name Type Values

--------------------------------- ------------ ---------------

AlertLevel METRIC

BIOS Date SYSINFO 04/01/2014

BIOS Vendor SYSINFO SeaBIOS

BIOS Version SYSINFO SeaBIOS

BlockedProcesses METRIC

BufferMemory METRIC

BytesRecv COUNTER

BytesSent COUNTER

...

Filtering And Grouping For Monitoring Reports
A filter can be executed using the execute command on a specified field, and applying a filter grouping
to it using an operator.

For example, in report mode, the already-existing "Dual cpu" object by default has the query prop-
erty:

Example

[basecm11->monitoring->report]% get dual cpu query

filter processors == 2 group_by cores "processor vendor"

With this, the operator == checks for dual CPU cores using a filter grouping on the field cores. An
existing query can be executed with the execute -q option:

Example

[basecm11->monitoring->report]% execute -q dualcpu

cores processor vendor Hostnames

-------- ---------------- --

2 GenuineIntel nas,basecm11-a,basecm11-b

Similarly, the field ssh2node can have the filter grouping category applied to it using the operator
== for all nodes that are up. This could then be executed.

If the ssh2node field output is a PASS for nodes that are in a category gpu, and ssh2node is also a PASS
for node001 and node002, but is a FAIL for node003 and node004, then the report from the query for this,
showing the non-empty groupings of hostnames, would be as indicated by the following session:

Example

[basecm11->monitoring->report]% execute filter status == up group_by ssh2node category

ssh2node category Hostnames

-------- -------- -----------------------

PASS default node001,node002

FAIL default node003,node004

PASS gpu gpu01..gpu20

[basecm11->monitoring->report]%

Alternatively, the query can be saved and run as follows:

626 Monitoring: Monitoring Cluster Devices

Example

[basecm11->monitoring->report]% add ssh2node-category

[basecm11->monitoring->report*[ssh2node-category*]% set query

the editor opens up and the line
execute filter status == up group_by ssh2node category

is entered

[basecm11->monitoring->report*[ssh2node-category*]% commit

[basecm11->monitoring->report*[ssh2node-category]% execute

ssh2node category Hostnames

-------- -------- -----------------------

PASS default node001,node002

FAIL default node003,node004

PASS gpu gpu01..gpu20

[basecm11->monitoring->report*[ssh2node-category]%

Saving the list of nodes that the filter is applied to: The --save option takes a file base name as its
argument, and saves the list of nodes that the filter applies to. Suffixes appended to the file base name
are taken from the filter that is used and from the grouping values.

Example

[basecm11->monitoring->report]% execute filter status == up group_by ssh2node category --save /tmp/test

[basecm11->monitoring->report]% !cat /tmp/test-default-up.lst

node001

node002

The file name thus takes the form: <basename>-<grouping value>-<filter value>.lst
The file can be read within cmsh by using the operator ˆ

Example

[basecm11->monitoring->report]% device power status -n ^/tmp/PASS-default.lst

custom [ON] node001

custom [ON] node002

10.13 Monitoring With nvsm

The nvsm command in the device mode of cmsh is a BCM wrapper for the NVIDIA System Management
(NVSM) software stack.

• The NVSM stack provides a CLI and API for the end user to monitor NVIDIA DGX hardware.
These are documented in detail at https://docs.nvidia.com/datacenter/nvsm/latest/pdf/

nvsm-user-guide.pdf.

• The nvsm wrapper command of cmsh is a front-end to some parts of the NVSM stack.

The nvsm CLI can be run directly on a node with an NVSM software stack. That CLI should not be
confused with the nvsm wrapper command that is run from within the device mode of cmsh, and which
is what is described in the rest of this section (section 10.13).

Running nvsm without any arguments displays the nvsm help text:

https://docs.nvidia.com/datacenter/nvsm/latest/pdf/nvsm-user-guide.pdf
https://docs.nvidia.com/datacenter/nvsm/latest/pdf/nvsm-user-guide.pdf

10.13 Monitoring With nvsm 627

[basecm11->device]% nvsm

Name:

nvsm - NVSM management

Usage:

nvsm [OPTIONS] versions

nvsm [OPTIONS] list

Options:

-n, --nodes <node>

List of nodes, e.g. node001..node015,node020..node028,node030 or ^/some/file/containing/hostnames

... many options skipped...

Examples:

nvsm versions Show versions reported by NVSM for this or all nodes

nvsm versions -c dgx-h100 Show versions reported by NVSM for the specified category of nodes

nvsm info List the most recent health dumps information

nvsm alerts List the alerts for this or all nodes

nvsm health -n dgx-[001-002] Run the NVSM dump on the specified nodes

nvsm status -n dgx-[001-002] Get the NVSM dump status on the specified nodes

nvsm stop -n dgx-001 Stop the NVSM dump status on the specified nodes

Tab-completion prompts to nvsm suggest nvsm-specific options:

Example

[basecm11->device[node001]]% nvsm<TAB><TAB>
alerts health info status stop versions

The nvsm-specific parts for this command are indicated by the following cmsh tree:

nvsm

alerts

--start <start>

--limit <limit>

health

--quick

--tags <tags>

info

--history

status

stop

versions

--details

The preceding tree is discussed further next:

• alerts: Presents a list of the alerts that NVSM detects.

Example

[basecm11->device[node001]]% nvsm alerts

Node component_id description event_time message message_details ...

-------- ------------ ---------------------- ----------- ---------------------- ---------------------...

node001 0 NVLink-C2C is reporti+ 1737722655 System entered degrad+ Unexpected Link Count...

node001 1 NVLink-C2C is reporti+ 1737722655 System entered degrad+ Unexpected Link Count...

628 Monitoring: Monitoring Cluster Devices

node001 GPU0 GPU is reporting an e+ 1737722589 GPU0 is reporting NV GPU 0's NvLink link 0...

node001 GPU1 GPU is reporting an e+ 1737722589 GPU1 is reporting NV GPU 1's NvLink link 0...

node001 NVME0 PCI sub-system is rep+ 1737722589 System entered degrad Device is missing on ...

node001 StorageSub+ Storage Drive configu+ 1737722595 Unsupported drive con+ Drive(s) missing or D...

It has the options:

– --start <start>: Sets the first index of the alert to list.

Example

[basecm11->device[node001]]% nvsm alerts --start 5

This skips the first 4 alerts received, and displays the rest. The alerts are not necessarily
received in same order as displayed by the nvsm alerts command.

– --limit <limit>: Sets a limit of <limit> alerts to be displayed.

• health: carries out a dump to a .tar.xz file for the specified node. The dump for a node named
node001 is stored in /cm/shared/nvsm/node001 by default. It can take about 15 minutes to com-
plete.

– --quick: does a quick dump. This completes faster, but uses more memory and CPU.

– --tags <tags>: a comma-separated list of tags for the dump.

• info: Lists the most recent health dump information.

Example

[basecm11->device[node001]]% nvsm info

Node Filename Size

-------- --- --------

node001 /cm/shared/nvsm/node001_2025-01-24-04-51-31.tar.xz 417MiB

The file name for a node named node001 takes a timestamped format of:

node001_YYYY-MM-DD-HH-MM-SS.tar.xz

– --history: Lists historical dumps.

Example

[basecm11->device]% nvsm info --history

Node Filename Size

-------- --- --------

node001 /cm/shared/nvsm/node001_2025-01-24-04-51-31.tar.xz 417MiB

node001 /cm/shared/nvsm/node001_2025-02-14-00-25-24.tar.xz 5.9MiB

• status: Shows the dump status of the node.

Example

[basecm11->device[node001]]% nvsm status

Node duration log status success Result Error

------- --------- --- -------- --------- ------- ------

node001 748 Jan 25 02:53:16 node001 systemd[1]: Stopping cm-nv+ active yes good

• stop: Aborts the dump creation for the specified nodes. With stop, the dump that has been created
until then remains available as a directory rather than a .tar.xz file

10.13 Monitoring With nvsm 629

• versions: Lists the versions of various components used by NVSM.

– --details: May provide some more details on the component.

Example

[basecm11->device[node001]]% nvsm versions

Component Version Nodes

------------------------------------- -------------------------------- -----------

FW_BMC_0 Version Unavailable node001

FW_CPLD_0 Version Unavailable node001

...many entries skipped...

cuda-driver 12.8 node001

datacenter-gpu-manager 1:4.0.0~10338 node001

datacenter-gpu-manager-fabricmanager 570.59-1 node001

dgx-release 7.0.0 node001

kernel 6.8.0-31-generic-64k node001

nvidia-driver 570.59 node001

nvsm 24.09.05 node001

os-release Ubuntu 24.04 LTS (Noble Numbat) node001

platform PG548 node001

sbios 02.03.13 node001

vBIOS 0 97.00.6c.00.03 node001

vBIOS 1 97.00.6c.00.03 node001

vBIOS 2 97.00.6c.00.03 node001

vBIOS 3 97.00.6c.00.03 node001

The nvsm alert command can inform the cluster administrator about hardware issues more conve-
niently than diving into the NVSM CLI. Viewing the output of the alert may be enough to get on with
solving the issue.

If that is not enough, then examining the dump file produced by nvsm health allows for further
troubleshooting by experienced administrators and developers.

The dump file can be extracted with:

Example

root@basecm11:/cm/shared/nvsm # tar xvJf node001_2025-01-24-04-51-31.tar.xz

The extracted directories and files have the following layout if viewed at a two-level depth with tree

-L2:

boot

System.map-6.8.0-31-generic-64k

System.map-6.8.0-51-generic-64k

etc

apt

cm-release

debian_version

dgx-release

environment

issue

lsb-release

network

nvsm

630 Monitoring: Monitoring Cluster Devices

os-release

nvsmhealth_commands

bash_-c_ulimit_-a_

bash_--version

cat_sys_devices_virtual_dmi_id_bios_version

cat_sys_devices_virtual_dmi_id_product_name

... hundreds of health commands skipped ...

top_-b_-n_5

uname_-a

uptime_-p

_usr_bin_nv-disk-encrypt_info

virsh_list_--all

xl_info

xrandr_--verbose

xset_-q

nvsm_resources.json

nvsm_show_health.json

proc

cmdline

cpuinfo

driver

fs

interrupts

iomem

loadavg

mdstat

meminfo

modules

version

result.json

usr

share

var

crash

log

11
Monitoring: Job Monitoring

11.1 Job Metrics Introduction
Most HPC administrators set up device-centric monitoring to keep track of cluster node resource use.
This means that metrics are selected for devices, and the results can then be seen over a period of time.
The results can be viewed as a graph or data table, according to the viewing option chosen. This is
covered in Chapter 10.

The administrator can also select a job that is currently running, or that has recently run, and get
metrics for nodes, memory, CPU, storage, and other resource use for the job. This is known as job
monitoring, which is, as the term suggests, about job-centric rather than device-centric monitoring. Job
monitoring is covered in this chapter, and uses job metrics.

For perspective, monitoring as discussed until now has been based on using devices or jobs as the
buckets for which resource use values are gathered. Administrators can also gather, for resources con-
sumed by jobs, the resources used by users (or any other classifier entity) as the buckets for the values,
with the help of promQL-based queries. This is typically useful for watching over the resources used
by a user (or other classifier entity) when jobs are run on the cluster. User-centric monitoring—or more
generally, PromQL-based classifier-centric monitoring—for jobs is termed job accounting and is covered
in Chapter 12.

11.2 Job Metrics With Cgroups
Job metrics collection uses control groups (cgroups), (section 7.10). Each job is associated with a spe-
cific cgroup that is created in each of the three base cgroups that are associated with particular cgroup
controllers. The cgroup controllers are kernel components that allow metrics to be collected for pro-
cesses. The PIDs of these processes are in the cgroups tasks file.

NVIDIA Base Command Manager 11 uses the following cgroup controllers:

• blkio: provides block device metrics,

• cpuacct: provides CPU usage metrics,

• memory: provides memory usage metrics.

In NVIDIA Base Command Manager before version 9.1, each job had to be put by a workload man-
ager into a unique cgroup. However, from NVIDIA Base Command Manager 9.1 onward, this no longer
necessary. By default, BCM still configures all supported workload managers to run jobs in cgroups, but
it is now CMDaemon that manages the cgroup life cycle. Thus, CMDaemon ensures that:

• the necessary cgroups are created per job

• ensures that the cgroups are removed after the job is finished

• and that the last values of the metrics are collected.

t

632 Monitoring: Job Monitoring

Even if the administrator completely disables cgroups management in the workload manager, CMDae-
mon can still create and remove the three cgroups associated with the job, with each of those cgroups
associated with one of the three previously-mentioned cgroup controllers.

If the workload manager creates some (or all three) cgroups for a job, then CMDaemon does not try
to recreate the cgroup, but does take charge of the removal of cgroups.

In NVIDIA Base Command Manager before version 9.1, cm-wlm-setup configured systemd to use a
joined cgroup with the following parameter settings:

Example

[root@node001 ~]# grep JoinControllers /etc/systemd/system.conf

JoinControllers=blkio,cpuacct,memory,freezer

[root@node001 ~]#

Currently this is not needed. However, if this setting remains, then CMDaemon can still collect job
metrics. In order to reset the cgroup layout to the default one, the administrator can run:

cm-wlm-setup --reset-cgroups

This command removes the JoinControllers parameter and regenerates initrd. A reboot of the
nodes is required after this.

When a job is started CMDaemon detects all the job processes. CMDaemon then ensures that the
required cgroups are created, and allocates the detected processes to those cgroups. CMDaemon does
not configure the cgroups in any way—this is the responsibility of the workload manager.

The tables in Appendix G.1.8 list the job metrics that BCM can monitor and visualize.
If job metrics are set up (section 11.4), then:

1. on virtual machines, block device metrics may be unavailable because of virtualization.

2. for now, the metrics are retrieved from cgroups created by the workload manager for each job.
When the job is finished the cgroup is removed from the filesystem along with all the collected
data. Retrieving the jobs metric data therefore means that CMDaemon must sample the cgroup
metrics before the job is finished. If CMDaemon is not running during a time period for any reason,
then the metrics for that time period cannot be collected, even if CMDaemon starts later.

3. block device metrics are collected for each block device by default. Thus, if there are N block
devices, then there are N collected block device metrics. The monitored block devices can be
excluded by configuration as indicated in section 11.4.

11.3 Job Information Retention
Each job adds a set of metric values to the monitoring data. The longer a job runs, the more data is
added to the data. By default, old values are cleaned up from the database in order to limit its size. In
NVIDIA Base Command Manager 11 there are several advanced configuration directives to control the
job data retention, with names and default values as follows:

Advanced Configuration Directive Default value Unit

JobInformationDisabled 0

JobInformationKeepDuration 2419200 s

JobInformationKeepCount 8192

JobInformationMinimalJobDuration 0 s

JobInformationFlushInterval 600 s

These directives are described in detail in Appendix C, page 866.

11.4 Job Metrics Sampling Configuration 633

11.4 Job Metrics Sampling Configuration
Job metrics sampling can be configured to varying degrees. For clusters where hundreds of thousands
of jobs are run in a day it often makes little sense to monitor jobs, and it is often helpful to disable the
JobSampler and JobMetadataSampler data producers:

Example

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% set jobsampler disabled yes

[basecm11->monitoring->setup]% set jobmetadatasampler disabled yes

[basecm11->monitoring->setup]% commit

An alternative is to use the equivalent CMDaemon directive JobInformationDisabled, as explained
on page 608.

If however CMDaemon is to keep the monitoring data, then the collection of job metrics is carried
out from the cgroups in which a job runs. The administrator can tune some low level metric collection
options for the JobSampler data producer in the jobmetricsettings submode:

Example

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% use jobsampler

[basecm11->monitoring->setup[JobSampler]% jobmetricsettings

[basecm11->monitoring->setup[JobSampler]->jobmetricsettings]% show

Parameter Value

-------------------------------- --

Revision

Exclude devices loop,sr

Include devices

Enable advanced metrics no

Exclude metrics

Include metrics

Sampling Type Both

Map jobs to GPUs yes

CGroup base directory /sys/fs/cgroup

Keep alive sleep 8w

Pickup interval 5s

Pickup times 12

Pickup priority 50

The configuration parameters are:

Parameter Name Description

Exclude devices Block devices for which job metrics will not collect metrics

Include devices If the list is not empty then only block device metrics for
these devices will be collected, while for other devices the
metrics will be skipped

...continues

634 Monitoring: Job Monitoring

...continued

Parameter Name Description

Enable advanced metrics Indicates whether advanced job metrics should be enabled
(default: no)

Exclude metrics List of metric names that should not be collected

Include metrics List of metric names that should be added to metric
collection

Sampling Type Type of metric sampling (default: both). The value can be
bright, prometheus, or both. Setting it to bright disables
Prometheus sampling, while setting it to prometheus dis-
ables sampling by BCM metrics

Map jobs to GPUs Associate the job with GPUs where the job processes run,
where possible (default: yes)

CGroup base directory Cgroup base directory (default: /sys/fs/cgroup)

Keep alive sleep Time the cgroup keepalive process sleeps (default: 8
weeks)

Pickup interval Initially higher pickup interval (default: 5s). By default
this settles down to the normal pickup interval (with a
default of 120s) after the value of Pickup times has been
exceeded.

Pickup times Number of times to apply the initially higher pickup inter-
val (default: 12)

Pickup priority Priority of the pickup interval change (default: 50)

The amount of monitoring data gathered can also be reduced by reducing the Maximal age and
Maximal samples for data producers (section 10.4.1) to smaller, but still non-zero values. A way to do
this is described in section 14.8.4.

11.4.1 The Job Metrics Collection Processing Mechanism
The cm-cgroup-job-keepalive Process
From NVIDIA Base Command Manager 9.0 onward, when a WLM job starts, CMDaemon tracks the
moment it starts and finishes, and is able to collect metrics for it. As part of this enhanced jobs metrics
collection, a keepalive process, cm-cgroup-job-keepalive, is run for each job. Each keepalive process
is a temporary process, and is added by CMDaemon to the same cgroup that the original job was placed
in by the WLM.

The process cm-cgroup-job-keepalive itself does no work. It sleeps, and by existing it prevents its
cgroup being deleted.

After a job is finished, the workload manager would normally remove the related cgroup. However

11.5 Job Monitoring In cmsh 635

the existence of the cm-cgroup-job-keepalive process prevents the deletion. This allows CMDaemon
to collect the very last metrics data for the job from the cgroup when the job finishes. The CMDaemon
then stops the cm-cgroup-job-keepalive process, and the cgroup is then removed because it is no
longer needed.

When CMDaemon starts the cm-cgroup-job-keepalive process for a job, it passes the appropri-
ate job ID, and how long it can run, in its command line options. Those values are not used by the
cm-cgroup-job-keepalive process itself, but they are convenient for seeing what job the process is run-
ning for, and how long the job has run since it was started. For example, for a Slurm job with id 2 the
running cgroup keeper process could look like:

Example

[root@node001 ~]# ps auxf | tail -n 10 | cut -b18-45 --complement

root 1954 0 Sl 18:12 0:03 _ /cm/local/apps/cmd/sbin/cmd -s -n -P /var/run/cmd.pid

root 2632 0 Ss 18:15 0:00 _ /cm/local/apps/cmd/sbin/cm-cgroup-job-keepalive --job 2 8w

root 2241 0 S 18:13 0:00 /cm/shared/apps/slurm/18.08.4/sbin/slurmd

root 2627 0 Sl 18:15 0:00 slurmstepd: [2.batch]

cmsuppo+ 2631 0 S 18:15 0:00 _ /bin/bash /cm/local/apps/slurm/var/spool/job00002/slurm_script

cmsuppo+ 2642 0 S 18:15 0:00 _ /cm/shared/apps/stresscpu/current/stresscpu2

cmsuppo+ 2643 0 S 18:15 0:00 _ /cm/shared/apps/stresscpu/current/stresscpu2

cmsuppo+ 2644 98 R 18:15 4:46 _ /cm/shared/apps/stresscpu/current/stresscpu2

[root@node001 ~]#

(The cut command is just used in the example to cut out the middle bits of the output so that it fits
the page format well).

The Keep Alive Sleep Time
By default the cgroup keeper process stops after 8 weeks. This value should be increased if the jobs
that are expected to run will take longer than 8 weeks. The value can be set in the Keep Alive Sleep

parameter of the job metrics settings. If a job runs for longer than the value of Keep Alive Sleep,
then CMDaemon cannot collect the very last metrics (from around the time that the job has finished).
However all other metrics will be collected for the job as expected, even if the job running time exceeds
the Keep Alive Sleep time.

The OOB intervals Parameter
When metric collection for a new job has just started, CMDaemon samples more frequently than later
on. This more frequent sampling behaviour is defined by the parameter OOB intervals (out of band
sampling interval) in the data producer configuration. In the case of job metrics collection this more
frequent sampling behaviour is in JobSampler.

By default, the sampling interval retuns to the standard Interval value (with a default value of
120s), as defined in the data producer settings, after the value of Pickup times (with a default value of
12) has been exceeded.

The parameter Exclude Metrics can be used to exclude metrics that are currently enabled. For
example, if advanced metrics collection is enabled then Exclude Metrics allows either default or ad-
vanced metrics to be excluded by name.

11.5 Job Monitoring In cmsh

The following commands are associated with monitoring job measurables within jobs submode (cmsh
> wlm<[workload manager]> > jobs, section 7.7):

The measurables Command
A list of job-associated measurables can be seen in the jobs submode (cmsh > [<workload manager]> >

jobs) using the measurables command with a job ID. For example (much output elided):

636 Monitoring: Job Monitoring

Example

[basecm11->wlm[slurm]->jobs]% measurables 26

blkio.io_service_bytes_total

...

memory.usage

[basecm11->wlm[slurm]->jobs]%

A list of node-associated measurables can also be seen if the -n option is used (much output elided):

Example

[basecm11->wlm[slurm]->jobs]% measurables -n 26

...

gpu_power_usage:gpu0

...

memory.usage

The filter Command
The filter command uses options to provide filtered historic job-related information. It does not pro-
vide measurables data. The command and its options can be used to:

• retrieve running, pending, failed or finished jobs information

• select job data using regular expressions to filter by job ID

• list jobs by user name, user group, or workload manager

Running filter without options simply lists an unfiltered list.
Filtering on a job name can be done with the -n|--name option, and the --limit option can be used

to limit the number of results displayed:

Example

[basecm11->wlm[slurm]->jobs]% filter -n mgbench --ended --limit 2

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ -------- ----- ----- --------------- --------------- --------------- ------- ---------

26 mgbench alice defq May 14 11:21:41 May 14 11:36:36 May 14 11:50:24 node001 0

27 sleep bob defq May 14 11:23:00 May 14 11:50:24 May 14 12:00:25 node001 0

[basecm11->wlm[slurm]->jobs]%

The data shown is retrieved from the running workload manager, as well as from the accounting file
or database maintained by the workload manager.

Further details on the options to filter can be seen by running help filter.

The info Command
A handy command to obtain job information is info, followed by the job number:

Example

[basecm11->wlm[slurm]->jobs]% info 25

Parameter Value

-------------------------------- ---

Job ID 25

Revision stdin:/dev/null+

Job name data-transfer

User frank

Group frank

11.5 Job Monitoring In cmsh 637

Account

Parent ID

WlmCluster slurm

Queue defq

Nodes node002

Submit time 09/02/2023 12:06:56

Start time 09/02/2023 12:16:57

End time 09/02/2023 12:16:57

Persistent no

Exit code 0

Status COMPLETED

Requested CPUs 1

Requested CPU cores 0

Requested GPU 0

Requested memory 976KiB

Requested slots 0

Monitoring yes

Comment

[basecm11->wlm[slurm]->jobs]%

The dumpmonitoringdata Command
The dumpmonitoringdata command displays data for measurables in the jobs submode (cmsh >

[<workload manager]> > jobs). It is a very similar to the dumpmonitoringdata command for measur-
ables in device mode (section 10.6.4). The main difference in the behavior of dumpmonitoringdata for
these modes is that:

• In the jobs submode it shows monitoring data over a period of time for a specified job ID

• In device mode (cmsh > device) it shows monitoring data over a period of time for a specified
device.

A less obvious difference is that:

• In the jobs submode the start and end time for the monitoring data for the job does not need to be
specified. By default the start and end time of the job is assumed.

• In device mode the start and end time for the monitoring data for the device must be specified

The usage of the dumpmonitoringdata command for job measurables is:

dumpmonitoringdata [OPTIONS] [<start-time> <end-time>] <measurable> <job ID>

Options allow measurables to be retrieved and presented in various ways, including by maximum
value, raw or interpolated data, and human-friendly forms. The user can also specify custom periods
for the options.

For example, a historical job with job ID 4 that uses nodes node001 and node002 might display output
for the job-associated measurable memory.usage as follows:

Example

[basecm11->wlm[slurm]->jobs]% dumpmonitoringdata memory.usage 4

Start: Wed Feb 8 20:07:54 2023

End: Wed Feb 8 20:07:55 2023

Nodes: node001,node002

Entity Timestamp Value Info

------------ -------------------------- ---------- ----------

638 Monitoring: Job Monitoring

node001 2023/02/08 20:07:54.586 0 B

node001 2023/02/08 20:07:55 621 KiB

node002 2023/02/08 20:07:54.888 160 KiB

node002 2023/02/08 20:07:55 632 KiB

[basecm11->wlm[slurm]->jobs]%

The start and end times are optional, so specifying them is typically unnecessary. If they are not speci-
fied, then the data values that were found over the entire period of the job run are displayed.

That job with ID 26, for the example used in this section 11.5, happens to be mgbench, a GPU
benchmarking program that runs on nodes. So displaying output for the node-associated measurable,
gpu_power_usage, during the job run can also be useful:

Example

[basecm11->wlm[slurm]->jobs]% dumpmonitoringdata gpu_power_usage:gpu0 26

Start: Thu May 14 11:36:36 2020

End: Thu May 14 11:50:24 2020

Nodes: node001

Timestamp Value Info

-------------------------- ---------- ----------

2020/05/14 11:36:36 no data

2020/05/14 11:37:03.883 195.58 W

...

2020/05/14 11:50:23.887 22.224 W

2020/05/14 11:50:24 22.2241 W

[basecm11->wlm[slurm]->jobs]%

The data is shown per node if the job uses several nodes.
Further details of the options to dumpmonitoringdata for job metrics can be seen by running help

dumpmonitoringdata within jobs mode.

The statistics Command
The statistics command shows basic statistics for historical job information. It allows statistics to be
filtered per user or user group, and workload manager. The statistics can be grouped by hour, day, week
or a custom interval.

Example

[basecm11->wlm[slurm]->jobs]% statistics

Queued Running Finished Error Nodes

---------- ---------- ---------- ---------- ----------

24 1 25 4 34

[basecm11->wlm[slurm]->jobs]%

Further details of the options to statistics can be seen by running help statistics.

12
Monitoring: Job Accounting

12.1 Introduction
In addition to the concept of metrics for devices (Chapter 10), or the concept of metrics for jobs (Chap-
ter 11), there is also the concept of metrics gathered for a classifier entity, for resources used during jobs.
This last one is typically metrics gathered per user, for resources used during jobs.

Classifier-based metrics gathering for jobs can use classification done with PromQL queries on la-
beled entities (sections 12.2- 12.8), or it can be done with CMDaemon database queries (section 12.9).

Classifier-based metrics gathering for jobs is more conveniently called job accounting, partly because
it ressembles the idea of an accountant watching over users to track their resource use while they carry
out their jobs.

The concept, implementation, analysis, and visualization of job accounting are described in this
Chapter.

For example, in BCM jobs resource usage can be presented per user. Thus, if there are jobs in a queue
that are being processed, then the jobs can be listed:

Example

[basecm11->wlm[slurm]->jobs]% list | head

Type Job ID User Queue Running time Status Nodes

------------ ------------ ------ ------- ------------ ---------- -------------------

Slurm 1325 tim defq 1m 2s COMPLETED node001..node003

Slurm 1326 tim defq 1m 1s COMPLETED node001..node003

Slurm 1327 tim defq 1m 2s COMPLETED node001..node003

Slurm 1328 tim defq 32s RUNNING node001..node003

Slurm 1329 tim defq 0s PENDING

The resource usage statistics gathered per user, for example for a user tim, can then be analyzed and
visualized using the job accounting interface of Base View (section 12.5).

12.2 Labeled Entities
In job accounting, job metrics during a run are tagged with extra labels, such as the job ID, host name,
and the user running the job. The modified job metrics object that is tagged in this way then becomes a
job accounting-related object, called a labeled entity.

Administrators interested in using job accounting can simply skip ahead and start reading about the
Base View job accounting interface in 12.5, and just explore it directly. Those who would prefer some
background on how job accounting is integrated with BCM and PromQL, can continue reading this
section (12.2) and the next one (12.3).

640 Monitoring: Job Accounting

12.2.1 Dataproducers For Labeled Entities
To view labeled entities in cmsh, the path to the labeledentity submode is:

cmsh > monitoring > labeledentity

The labeledentity submode allows job accounting-related objects, called labeled entities, to be
viewed. The labels are in the form <key>="<value>", for example: hostname="node001", or user="alice".

The default, existing labeled entities are created from the built-in JobSampler and
JobMetadataSampler dataproducers when a job is run. Custom samplers, of type prometheus,
can be used to create further custom labeled entities. A custom sampler dataproducer, for example
customsamplerextras, can be created from the monitoring setup mode of cmsh as follows:

Example

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% add prometheus customsamplerextras

[basecm11->monitoring->setup*[customsamplerextras*]]%

The customsamplerextras dataproducer can now have its properties configured and committed as
described in section 10.5.4.

12.2.2 PromQL And Labeled Entities
Labeled entities can be used by administrators to help create and debug job-related queries in the
Prometheus query language, PromQL. PromQL is a part of the Prometheus monitoring and alerting
toolkit (https://prometheus.io). Basic PromQL documentation is available at https://prometheus.
io/docs/prometheus/latest/querying/basics/.

12.2.3 Job IDs And Labeled Entities
Each job ID has a number of labeled entities associated with it. Since the number of labeled entities
scales with the number of nodes and jobs, the number of labeled entities can be very large. Therefore,
if examining these entities using the CMDaemon front ends such as cmsh or Base View, then filtering
or sorting the output is useful. For example, labeled entities associated with node001, and with the
JobSampler data producer, and with job 1329 from the preceding output, could be viewed by filtering
the full list of labeled entities as follows (output truncated and ellipsized):

Example

[basecm11->monitoring->labeledentity]% list|head -2; list|grep 'job_id="1329"' |grep node001 |grep JobSampler

Index Name (key) ...

------ --...

45446 hostname="node001",job="JobSampler",job_id="1329",wlm="slurm" ...

45447 device="vda",hostname="node001",job="JobSampler",job_id="1329",wlm="slurm" ...

45448 device="vda",hostname="node001",job="JobSampler",job_id="1329",mode="read",wlm="slurm"...

...

12.2.4 Measurables And Labeled Entities
The measurables (metrics) for an entity can be listed with the measurables (or metrics) command. For
a particular entity with a JobSampler property and index value of 45447, the command can be run as
follows:

[basecm11->monitoring->labeledentity]% measurables 45447

Type Name Parameter Class Producer

------- ---------------------------------- -------------- ----------- --------------

Metric job_blkio_sectors Prometheus JobSampler

Metric job_blkio_time_seconds Prometheus JobSampler

[basecm11->monitoring->labeledentity]%

https://prometheus.io
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

12.3 PromQL Queries 641

In the labeledentity mode of cmsh, the measurables listing command, which lists the measurables
for labeled entities, should not be confused with the measurable navigation command, which brings
the administrator to the measurable submode under the main monitoring mode.

12.3 PromQL Queries
12.3.1 The Default PromQL Queries...
By default there are several predefined PromQL queries already available. The queries can be listed
from the query submode:

Example

[basecm11->monitoring->query]% list

Name (key) Start time End time Interval Class

--- ---------- -------- -------- ------------------

account_job_effective_cpu_seconds now 0s accounting

account_job_io_bytes now 0s accounting

account_job_memory_usage_bytes now 0s accounting

account_job_running_count now 0s accounting

account_job_waiting_seconds now 0s accounting

account_job_wall_clock_seconds now 0s accounting

account_job_wasted_cpu_seconds now 0s accounting

accounts_usage_gpu now 0s accounting

accounts_used_gpu now 0s accounting

accounts_wasted_memory now 0s accounting

cluster_cpu_usage_percent now-1d now 15m cluster

container_memory_usage_bytes now-1d now 1h container

container_network_received_bytes now-1d now 1h container

container_total_cpu_usage_secs now-1d now 1h container

container_total_fs_usage_bytes now-1d now 1h container

cpu_usage_by_cluster now-1d now 1h kubernetes

cpu_usage_by_deployment now-1d now 1h kubernetes

cpu_usage_by_namespace now-1d now 1h kubernetes

fs_usage_by_cluster now-1d now 1h kubernetes

fs_usage_by_deployment now-1d now 1h kubernetes

fs_usage_by_namespace now-1d now 1h kubernetes

groups_job_allocated_nodes now-1d now 15m jobs

groups_job_cpu_usage now-1d now 15m jobs

groups_job_io_bytes_per_second now-1d now 15m jobs

groups_job_memory_bytes now-1d now 15m jobs

groups_job_waiting now-1d now 15m jobs

groups_usage_gpu now 0s accounting

groups_used_gpu now 0s accounting

job_effective_cpu_seconds_job_name_for_user now 0s accounting/level/1

job_information_by_account now 0s drilldown/level/0

job_information_by_job_id_for_account_and_user_and_job_name now 0s drilldown/level/3

job_information_by_job_id_for_user now 0s drilldown/level/1

job_information_by_job_id_for_user_and_job_name now 0s drilldown/level/2

job_information_by_job_name_for_account now 0s drilldown/level/1

job_information_by_job_name_for_account_and_user now 0s drilldown/level/2

job_information_by_job_name_for_user now 0s drilldown/level/1

job_information_by_user now 0s drilldown/level/0

job_information_by_user_for_account now 0s drilldown/level/1

job_information_by_user_for_account_and_job_name now 0s drilldown/level/2

job_io_bytes_per_job_name_for_user now 0s accounting/level/1

job_memory_usage_bytes_per_job_name_for_user now 0s accounting/level/1

642 Monitoring: Job Accounting

job_names_job_allocated_nodes now-1d now 15m jobs

job_names_job_cpu_usage now-1d now 15m jobs

job_names_job_io_bytes_per_second now-1d now 15m jobs

job_names_job_memory_bytes now-1d now 15m jobs

job_names_job_waiting now-1d now 15m jobs

job_names_usage_gpu now 0s accounting

job_names_used_gpu now 0s accounting

job_running_count_job_name_for_user now 0s accounting/level/1

job_waiting_seconds_job_name_for_user now 0s accounting/level/1

job_wall_clock_seconds_job_name_for_user now 0s accounting/level/1

job_wasted_cpu_seconds_job_name_for_user now 0s accounting/level/1

jobs_wasted_allocated_gpus now 0s accounting

memory_usage_by_cluster now-1d now 1h kubernetes

memory_usage_by_deployment now-1d now 1h kubernetes

memory_usage_by_namespace now-1d now 1h kubernetes

net_usage_by_cluster now-1d now 1h kubernetes

net_usage_by_deployment now-1d now 1h kubernetes

net_usage_by_namespace now-1d now 1h kubernetes

unused_gpu_job_name_for_user now 0s accounting/level/1

used_gpu_job_name_for_user now 0s accounting/level/1

users_job_allocated_nodes now-1d now 15m jobs

users_job_cpu_usage now-1d now 15m jobs

users_job_effective_cpu_seconds now 0s accounting

users_job_io_bytes now 0s accounting

users_job_io_bytes_per_second now-1d now 15m jobs

users_job_memory_bytes now-1d now 15m jobs

users_job_memory_usage_bytes now 0s accounting

users_job_running_count now 0s accounting

users_job_waiting now-1d now 15m jobs

users_job_waiting_seconds now 0s accounting

users_job_wall_clock_seconds now 0s accounting

users_job_wasted_cpu_seconds now 0s accounting

users_unused_gpu now 0s accounting

users_usage_gpu now 0s accounting

users_used_gpu now 0s accounting

users_wasted_allocated_gpus now 0s accounting

users_wasted_memory now 0s accounting

wasted_allocated_gpus_for_user now 0s accounting/level/1

wasted_memory_job_name_for_account now 0s accounting/level/1

wasted_memory_job_name_for_user now 0s accounting/level/1

The queries can be conceptually divided into their classes, which at the time of writing (May 2023)
are: accounting, cluster, container, jobs, kubernetes, along with various drilldown levels which
classifies the queries according to various groups. The grouping for drilldown levels can be confusing,
and the drilldownoverview command (section 12.8.1) can be helfpul in clarifying the query intention
for these.

By default, queries of all classes are sampled over a period, except for the accounting and drilldown

metrics.
A metric in the accounting class query is evaluated (interpolated) from existing values. These exist-

ing values are raw samples gathered over the period, up to the time when the query is evaluated.

12.3.2 ...And A Short Description Of Them
The description of each query can be listed with a little cmsh and unix text utility juggling:

Example

12.3 PromQL Queries 643

[basecm11->monitoring->query]% foreach * (get name; get description) | paste - - | expand -t 60

This yields the following table:
Table 12.3: PromQL Query Descriptions

Name Description

account_job_effective_cpu_seconds CPU seconds effectively used by account for the last pe-
riod

account_job_io_bytes Total I/O by account during the last period in Bytes

account_job_memory_usage_bytes Total memory usage by account during the last period in
Byte seconds

account_job_running_count Number of jobs running by account during the last period

account_job_waiting_seconds Total waiting time for account jobs in seconds during the
last period

account_job_wall_clock_seconds Wall clock time used by account for the last period

account_job_wasted_cpu_seconds CPU seconds allocated but not used by account for the last
period

accounts_usage_gpu Total used GPU time grouped by account for the specified
period

accounts_used_gpu Used GPUs, for values of use greater than or equal to 0.1%,
averaged and grouped by account using them in the spec-
ified period

accounts_wasted_memory The sum of the minimal wasted memory over all nodes
per account for the last period

cluster_cpu_usage_percent CPU usage percentage over all nodes up

container_memory_usage_bytes Containers’ memory usage in bytes

container_network_received_bytes Containers’ total Received bytes

container_total_cpu_usage_secs Containers’ total CPU Usage in seconds

container_total_fs_usage_bytes Containers’ total filesystem usage in bytes

cpu_usage_by_cluster CPU usage by cluster in nr. of cores

cpu_usage_by_deployment CPU usage by deployment in nr. of cores

cpu_usage_by_namespace CPU usage by namespace in nr. of cores

fs_usage_by_cluster Current FS I/O by cluster in Bytes

fs_usage_by_deployment Current FS I/O by deployment in Bytes

fs_usage_by_namespace Current FS I/O by namespace in Bytes

...continues

644 Monitoring: Job Accounting

Table 12.3: PromQL Query Descriptions...continued

Name Description

groups_job_allocated_nodes Number of nodes allocated by groups

groups_job_cpu_usage Effective CPU usage by groups

groups_job_io_bytes_per_second Current I/O for group jobs in B/s

groups_job_memory_bytes Current memory consumption for group jobs in Bytes

groups_job_waiting Number of jobs currently waiting for every group

groups_usage_gpu Total used GPU time grouped by group for the specified
period

groups_used_gpu Used GPUs, for values of use greater than or equal to 0.1%,
averaged and grouped by groups using them in the speci-
fied perio

job_effective_cpu_seconds_job_name_for_user CPU seconds effectively used by by job_name for a user for
the last period

job_information_by_account Generic job information drill down query grouped by ac-
count

job_information_by_job_id_for_account_and_user Generic job information drill down query grouped by wlm

_and_job_name and job_id for a specific account, user and job_name

job_information_by_job_id_for_user Generic job information drill down query grouped by wlm
and job_id for a specific user

job_information_by_job_id_for_user_and_job_name Generic job information drill down query grouped by wlm
and job_id for a specific user and job_name

job_information_by_job_name_for_account Generic job information drill down query grouped by
job_name for a specific account

job_information_by_job_name_for_account_and_user Generic job information drill down query grouped by
job_name for a specific account and user

job_information_by_job_name_for_user Generic job information drill down query grouped by
job_name for a specific user

job_information_by_user Generic job information drill down query grouped by user

job_information_by_user_for_account Generic job information drill down query grouped by user
for a specific account

job_information_by_user_for_account_and_job_name Generic job information drill down query grouped by user
for a specific account and job_name

job_io_bytes_per_job_name_for_user Total I/O by job_name for a user during the last period in
Bytes

job_memory_usage_bytes_per_job_name_for_user Total memory usage by job_name for a user during the last
period in Byte seconds

...continues

12.3 PromQL Queries 645

Table 12.3: PromQL Query Descriptions...continued

Name Description

job_names_job_allocated_nodes Number of nodes allocated by job name

job_names_job_cpu_usage Effective CPU usage by job name

job_names_job_io_bytes_per_second Current I/O for jobs in B/s

job_names_job_memory_bytes Current memory consumption for jobs in Bytes

job_names_job_waiting Number of jobs currently waiting for every job_name

job_names_usage_gpu Total used GPU time grouped by job name for the specified
period

job_names_used_gpu Used GPUs, for values of use greater than or equal to 0.1%,
averaged and grouped by job name using them in the spec-
ified period

job_running_count_job_name_for_user Number of jobs running by job_name for a user during the
last period

job_waiting_seconds_job_name_for_user Total waiting time for jobs by job_name for a user in sec-
onds during the last period

job_wall_clock_seconds_job_name_for_user Wall clock time used by job_name for a user for the last pe-
riod

job_wasted_cpu_seconds_job_name_for_user CPU seconds allocated but not used by job_name for a user
for the last period

jobs_wasted_allocated_gpus Average % of allocated GPUs wasted for jobs that ran in
the specified period, averaged and grouped by job_id

memory_usage_by_cluster Total memory usage by cluster during the last week in
Bytes per second

memory_usage_by_deployment Total memory usage by deployment during the last week
in Bytes per second

memory_usage_by_namespace Total memory usage by namespace during the last week in
Bytes per second

net_usage_by_cluster Network usage by cluster in Bytes per second

net_usage_by_deployment Network usage by deployment in Bytes per second

net_usage_by_namespace Network usage by namespace in Bytes per second

unused_gpu_job_name_for_user Unused GPUs, for values of use less than 0.1%, averaged
and grouped by job names using them in the specified pe-
riod, for a particular user

used_gpu_job_name_for_user Used GPUs, for values of use greater than or equal to 0.1%,
averaged and grouped by job names that ran on them in
the specified period, for a particular user

...continues

646 Monitoring: Job Accounting

Table 12.3: PromQL Query Descriptions...continued

Name Description

users_job_allocated_nodes Number of nodes allocated by users

users_job_cpu_usage Effective CPU usage by users

users_job_effective_cpu_seconds CPU seconds effectively used by users for the last period

users_job_io_bytes Total I/O by users during the last period in Bytes

users_job_io_bytes_per_second Current I/O for user jobs in B/s

users_job_memory_bytes Current memory consumption for user jobs in Bytes

users_job_memory_usage_bytes Total memory usage by users during the last period in Byte
seconds

users_job_running_count Number of jobs running by users during the last period

users_job_waiting Number of jobs currently waiting for every user

users_job_waiting_seconds Total waiting time for users jobs in seconds during the last
period

users_job_wall_clock_seconds Wall clock time used by users for the last period

users_job_wasted_cpu_seconds CPU seconds allocated but not used by users for the last
period

users_unused_gpu Unused GPUs, for values of use less than 0.1%, averaged
and grouped by users using them in the specified period

users_usage_gpu Total used GPU time grouped by user for the specified pe-
riod

users_used_gpu Used GPUs, for values of use greater than or equal to 0.1%,
averaged and grouped by users using them in the speci-
fied period

users_wasted_allocated_gpus Average % of allocated GPUs wasted for jobs that ran in
the specified period, averaged and grouped by user

users_wasted_memory The sum of the minimal wasted memory over all nodes
per user for the last period

wasted_allocated_gpus_for_user Average % of allocated GPUs wasted for jobs that ran in
the specified period, averaged and grouped by job_id, for
a particular user

wasted_memory_job_name_for_account The sum of the minimal wasted memory over all nodes by
job_name for a account for the last period

wasted_memory_job_name_for_user The sum of the minimal wasted memory over all nodes by
job_name for a user for the last period

The listings give an idea of what the query does.
For example, for the users_job_cpu_usage utility, the idea is that it shows the CPU usage for jobs

for each user.

12.3.3 Modifying The Default PromQL Query Properties
The properties of a particular query can be shown and modified:

Example

[basecm11->monitoring->query]% use users_job_cpu_usage

[basecm11->monitoring->query[users_job_cpu_usage]]% show

Parameter Value

12.3 PromQL Queries 647

-------------------------------- --

Name users_job_cpu_usage

Revision

Class jobs

Alias

Start time now-1d

End time now

Interval 15m

Description Effective CPU usage by users

PromQL Query <136B>

Access Public

Unit CPU

Price 0.000000

Currency $

Preference 0

Drill down <0 in submode>

Notes <0B>

The PromQL query code itself is typically a few lines long, and can also be viewed and modified
using get, and set.

12.3.4 An Example PromQL Query, Properties, And Disassembly
The users_job_cpu_usage query is a standard predefined query, and is used as an example here. The
query shows the CPU usage by a user around the time the sample was taken. It is sometimes called an
“instantaneous” value. However it is not that instantaneous, because its value is calculated by taking
samples of the CPU usage over the last 10 minutes of the job run rather than at the query time. The code
for the query can be viewed with:

Example

[basecm11->monitoring->query]% get users_job_cpu_usage promqlquery

sum by(user) (

irate(job_cpuacct_usage_seconds[10m])

* on(wlm, job_id, hostname) group_right()

(job_metadata_is_running)

)

For those unfamiliar with PromQL, some disassembly of the users_job_cpu_usage query is helpful.
Terminology used by PromQL and BCM, for the pieces used to build the query, is listed in the fol-

lowing table:

PromQL Terminology Example BCM Terminology

Query users_job_cpu_usage PromQL query

Instant query job_cpuacct_usage_seconds Metric (from JobSampler datapro-
ducer, belonging to the Prometheus
class)

Range vector job_cpuacct_usage_seconds[10m] Metric samples over a time span

As was mentioned before: job account metrics, unlike traditional metrics, are not directly associated
with the device-related objects. For such metrics, the monitoring data command dumpmonitoringdata

is therefore not accessed in cmsh from device mode or category mode.
Instead, the Prometheus metric job_cpuacct_usage_seconds, for example, is accessed via the

labeledentities mode.
The properties and interpolated values at a particular instant of time for the metric can be accessed

via an instantquery such as (some output excised for clarity):

648 Monitoring: Job Accounting

Example

[basecm11->monitoring->labeledentity]% instantquery job_cpuacct_usage_seconds

Name hostname job job_id user wlm Timestamp Value

-------------------------- -------- ----------- ------- ----- ----- --------- -----

job_cpuacct_usage_seconds node001 JobSampler 623 tony slurm 15:52:15 129

job_cpuacct_usage_seconds node002 JobSampler 624 tony slurm 15:52:15 71

...

The properties and interpolated values of the metric over a range of time can be accessed via a
rangequery such as (some output excised for clarity):

Example

[basecm11->monitoring->labeledentity]% rangequery --start now-2h --end now job_cpuacct_usage_seconds

Name hostname job job_id user wlm Timestamp Value

-------------------------- -------- ----------- ------- ----- ----- --------- -----

job_cpuacct_usage_seconds node001 JobSampler 623 tony slurm 13:52:15 82

job_cpuacct_usage_seconds node001 JobSampler 623 tony slurm 14:52:15 97

job_cpuacct_usage_seconds node001 JobSampler 623 tony slurm 15:52:15 129

job_cpuacct_usage_seconds node002 JobSampler 624 tony slurm 13:52:15 46

job_cpuacct_usage_seconds node002 JobSampler 624 tony slurm 14:52:15 23

...

The association of the instantquery and rangequery output with job accounts is because its dat-
aproducer is JobSampler.

Further options for the instantquery and rangequery commands can be found in their help texts
within cmsh.

12.3.5 Aside: Getting Raw Values For A Prometheus Class Metric
The PromQL language is aimed at providing an overall view of jobs and resource usage. The actual
individual raw values that Prometheus metrics are built on—the entries in the Time Series Database
(TSDB)—are not regarded as being important for the end user. The emphasis in PromQL is on seeing
the values as seen by statistical reworking.

This section, which is about the raw TSDB values, is thus provided as background information for
administrators who would anyway like to see what the raw values look like.

Raw values of the metric for a job ID can be accessed by using the index of the labeled identity that is
associated with that job ID. For example, job ID 624 can have its index found with some grepping (some
output elided or excised for clarity):

Example

[basecm11->monitoring->labeledentity]% list|head -2; list|grep ' hostname='| grep 'job_id="624"'

Index Name (key) Introduction Last used

------ --- ------------ ---------

4060 hostname="node001",job="JobSampler",job_id="624", ... 13:30:03 16:00:03

[basecm11->monitoring->labeledentity]%

The index for the job ID 624 is 4060. The job ID can be used by the dumpmonitoringdata command
to show the series raw values along with their time stamps:

Example

[basecm11->monitoring->labeledentity]% dumpmonitoringdata -24h now job_cpuacct_usage_seconds 4060

Timestamp Value Info

-------------------------- ---------- ----------

12.3 PromQL Queries 649

2019/08/01 16:08:03.255 10s

2019/08/01 16:10:03.255 2m 10s

2019/08/01 16:12:03.255 4m 9s

2019/08/01 16:14:03.255 6m 9s

2019/08/01 16:16:03.255 8m 8s

2019/08/01 16:18:03.255 10m 8s

2019/08/01 16:20:03.255 12m 7s

2019/08/01 16:22:03.255 14m 6s

2019/08/01 16:24:03.255 16m 6s

2019/08/01 16:26:03.255 18m 5s

2019/08/01 16:28:03.255 20m 5s

2019/08/01 16:30:03.255 no data

[basecm11->monitoring->labeledentity]%

These raw values are the values that are used for interpolation during PromQL queries.
The label names for job samples can be seen using the index:

[basecm11->monitoring->labeledentity]% show 4060

Parameter Value

----------------- --

Index 4060

Introduction Thu, 01 Aug 2019 16:08:03 CEST

Last used Thu, 01 Aug 2019 16:30:03 CEST

Name hostname="node001",job="JobSampler",job_id="624",uid="1002",user="tony",wlm="slurm"

Permanent no

Revision

12.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued)
Getting back from the aside about raw values, and continuing on with the example PromQL query from
the start of this section (page 647), the query code for the query users_job_cpu_usage was:

sum by(user) (

irate(job_cpuacct_usage_seconds[10m])

* on(wlm, job_id, hostname) group_right()

(job_metadata_is_running)

)

With the necessary background explanations having been carried out, the disassembly of this query
can now be done:

The core of the query is built around the job sampler metric job_cpuacct_usage_seconds.
The irate measurement in this case calculates the rate of change based on the last two most recent

values in the Prometheus range vector.
The Prometheus range vector is formed from the Prometheus instant query by using the square

brackets with a time value enclosed (job_cpuacct_usage_seconds[10m]). The Prometheus instant
query is, as the terminology table earlier pointed out, the Prometheus version of the job sampler metric.

Getting back to the range vector, a range vector in general is a series of values formed from the
corresponding Prometheus instant query. With the instant query being job_cpuacct_usage_seconds

here, the range vector is formed over a span of 10 minutes.
After the irate function has taken the average, the resultant is what in PromQL is called an in-

stant vector value. This consists of data in the form {CPU seconds consumed during period, timestamp
associated with time period sample}. The instant vector value is then joined against each vector ele-
ment of the pair job_id, hostname to generate the labeled identifier for the job running on the node. The
group_right of the result uses the wlm, job_id and hostname as the leading labels in the label identifiers.

650 Monitoring: Job Accounting

The job_metadata_is_running function means that values are generated only while job_metadata is
running. The sum by(user) function means that the metric is aggregated over all raw data and grouped
by user.

Visualisation based on the result is most easily carried out by plotting job CPU usage for each user
against time in the period specified, which can be done in a more user-friendly way with Base View.

The users_job_wall_clock_seconds query, is similar, and can be used to plot wall clock seconds
consumed by a user over the last period:

Example

[basecm11->monitoring->query]% get users_job_wall_clock_seconds promqlquery

sum by(user) (

max_over_time(job_metadata_running_seconds[$period])

* on(wlm, job_id) group_right()

max_over_time(job_metadata_num_cpus[$period])

)

[basecm11->monitoring->query]%

Predefined queries can be executed in the labeledentity mode with the -q option:

[basecm11->monitoring->labeledentity]% instantquery -q users_job_wall_clock_seconds

using default parameter: period=1w

Name user Timestamp Value Unit

----------------------------- -------- ------------------------- ------------------- --------

users_job_wall_clock_seconds alice Fri Feb 10 16:05:01 2023 17896.886001110077 s

users_job_wall_clock_seconds bob Fri Feb 10 16:05:01 2023 20670.46400117874 s

users_job_wall_clock_seconds charlie Fri Feb 10 16:05:01 2023 10947.136002540588 s

If no period is specified with the -p|--parameter option, then the default period is 1w as the output
indicates.

If Base View is used instead of cmsh, then Prometheus queries can be selected via the navigation
path:

Menu bar > Accounting and reporting icon > Monitoring > PromQL Queries > Show/Hide query selection

For example the users_job_wall_clock_seconds query can be selected, its query parameter can be
set to 1 week, the change saved, and the query run.

12.4 Parameterized PromQL Queries
It is also possible to create parameterized queries using the <key>="<value>" labels in the labeled entities
mode.

This is handy for running the same query with different parameters or other drilldown options.
For example, an existing unparameterized query
users_job_wall_clock_seconds

can be used as a starting point:

[basecm11->monitoring->query]% get users_job_wall_clock_seconds promqlquery

sum by(user) (

max_over_time(job_metadata_running_seconds[$period])

* on(wlm, job_id) group_right()

max_over_time(job_metadata_num_cpus[$period])

)

For convenience, the original query can be cloned over to a new, soon-to-be-parameterized, query
called

users_job_wall_clock_per_account_seconds

using

12.4 Parameterized PromQL Queries 651

[basecm11->monitoring->query]% clone users_job_wall_clock_seconds users_job_wall_clock_per_account_seconds

The idea is that Slurm accounts become a parameter in the new query.
Parameter fields can now be added to the query. All fields in

users_job_wall_clock_per_account_seconds can be replaced verbatim. So any part of the query
can be made into a parameter.

[basecm11->monitoring->query]% get users_job_wall_clock_per_account_seconds promqlquery

sum by(user) (

max_over_time(job_metadata_running_seconds{account="${account}"}[$period])

* on(wlm, job_id) group_right()

max_over_time(job_metadata_num_cpus{account="${account}"}[$period])

)

Some further adjustments are:

[basecm11->monitoring->query]% use users_job_wall_clock_per_account_seconds

[basecm11->monitoring->query[use users_job_wall_clock_per_account_seconds]% set class account/level/1

[basecm11->..._seconds*]% set description "Wall clock time used by users per account for the last period"

[basecm11->monitoring->query*[use users_job_wall_clock_per_account_seconds*]% commit

The new query can then be run by the administrator on demand.
The original query sums over all accounts:

[basecm11->monitoring->labeledentity]% instantquery -q users_job_wall_clock_seconds

user Timestamp Value

--------- ------------------------- -------------------

alice Mon Jun 24 10:25:20 2019 28.787

bob Mon Jun 24 10:25:20 2019 26.787

charline Mon Jun 24 10:25:20 2019 102.83

eve Mon Jun 24 10:25:20 2019 58.574

frank Mon Jun 24 10:25:20 2019 85.362

The parameterized query lets the administrator run the same query for specific accounts.
If Slurm accounts for physics phys and mathematics math have been created with

[root@basecm11 ~]# sacctmgr add account phys,math

then account=phys and account=math, are the <key>="<value>" format options. The query can then
be run with the -p|--parameter option as follows:

[basecm11->monitoring->labeledentity]% instantquery -q users_job_wall_clock_per_account_second\
s -p account=phys -p period=1w

user Timestamp Value

--------- ------------------------- --------

alice Mon Jun 24 10:25:22 2019 28.787

charline Mon Jun 24 10:25:22 2019 29.787

frank Mon Jun 24 10:25:22 2019 30.788

[basecm11->monitoring->labeledentity]% instantquery -q users_job_wall_clock_per_account_second\
s -p account=math -p period=1w

user Timestamp Value

--------- ------------------------- --------

bob Mon Jun 24 10:25:37 2019 26.787

charline Mon Jun 24 10:25:37 2019 73.049

eve Mon Jun 24 10:25:37 2019 30.787

652 Monitoring: Job Accounting

12.4.1 Two Job GPU Metrics Used In PromQL Queries
There are two important job GPU metrics (section G.1.8) that are used in several PromQL queries. These
two are:

1. The job_gpu_utilization GPU metric:

This is based on the gpu_utilization metric collected on GPU nodes via the DCGM library. The
values it takes are in the interval [0, 1]. In DCGM the name of the metric is DCGM_FI_DEV_GPU_UTIL,
and it represents the total GPU utilization.

The gpu_utilization metric values collected on the GPU are mapped to the job that uses the GPU
at the time of the collection.

job_gpu_utilization is a labeled entity, tagged with a label representing a job. This allows the
person carrying out PromQL queries to use such parameters as job id, job user, and so on. It
is assumed that one GPU is used only by processes of a single job, but there can be several GPUs,
each used by different jobs simultaneously. Each of the GPUs on the node has independent values
of job_gpu_utilization.

One example of a PromQL query that uses the job_gpu_utilization GPU metric is
job_names_usage_gpu, which has the query expansion:

sum by(job_name) (

sum_over_time(job_gpu_utilization[${period}])

)

2. The job_gpu_wasted GPU metric:

The job_gpu_wasted metric is a labeled entity (tagged metric) and is based on the
job_gpu_utilization metric. The job_gpu_wasted metric shows what fraction, out of 1, of the GPUs
on the node were unused by a job despite being allocated by the workload manager for that job. It
can take values in the interval [0, 1].

It is calculated as follows:

1− all_gpus_utilization
requested_gpus

where

• all_gpus_utilization is the average utilization for all gpu_utilization metric values collected
in the interval [-1; +1] from the time of the metric calculation for all GPUs requested by the
job on the node

• requested_gpus is the number of GPUs allocated for the job in the workload manager

For example:

If a job requests two GPUs on a node, and the job does not use any of those GPUs at all, then
job_gpu_wasted takes the value 1.

If the same job uses half of the first GPU and does not use the second one, then the metric value is
calculated as:

1− (0.5+0)
2 = 0.75

One example of a PromQL query that uses job_gpu_wasted is jobs_wasted_allocated_gpus, which
has the query expansion:

avg by(job_id) (

round(100 * avg_over_time(job_gpu_wasted[${period}]))

)

https://en.wikipedia.org/wiki/Unit_interval

12.5 Job Accounting In Base View 653

12.5 Job Accounting In Base View
Job accounting in Base View is designed to present accounts of jobs without having to construct com-
mand lines with syntaxes that can be tricky to deal with. One useful output format is as basic Excel-
format spreadsheets.

Job accounting can be viewed within Base View’s accounting mode by clicking on the calculator icon
() at the top right hand corner of the Base View standard display (figure 10.5).

By default, job accounting opens up with a dashboard report called K8S Container Metrics, which
provides some Kubernetes container metrics panels (figure 12.1).

If Kubernetes containers have been running jobs that have been sampled, then pre-selected container-
related queries can be run from these panels, and the data samples can be displayed as tables or plots. If
Kubernetes containers have not been running jobs, then the pre-selected container-related queries have
no data samples to display (figure 12.1):

��	

Add a new dashboard

Figure 12.1: Job accounting: K8S container metrics panels

If the ⊕ icon next to the K8S Container Metrics tab is clicked, then a new dashboard report can be
created. With the default options it displays a dashboard report with n accounting panel that has some
pre-selected queries related to user jobs over the last period (figure 12.2):

654 Monitoring: Job Accounting

6

Show/hide
query list

6

Toggle
advanced

6

Show/hide
chart

6

Show/hide
table

6

Toggle
price

6

Drilldown
query list

6

Download
results

6

Run
query

6

Gear icon to change
panel layout

@@R

Add a new panel

Figure 12.2: Job Accounting: Panel

12.5.1 Management And Use Of The Accounting Panel
The following description is illustrated by figure 12.2:

A Base View job accounting dashboard is made up of collections of Base View job accounting panels.

• To add a new dashboard, the ©+ button can be clicked in the dashboard menu bar. An existing
dashboard can be removed by clicking on the trash icon in the menu bar associated with that
existing dashboard.

• To add a new panel, the©+ button can be clicked in the panel menu bar. An existing panel can be
removed by clicking on the trash icon in the menu bar associated with that existing panel.

Job accounting is intended to present accounts of jobs. So, when a new dashboard is created, a dialog
asks for inputs such as the time period over which the report is to be carried out, and the report name.

When the new dashboard is created, several predefined PromQL queries are selected by default.
These can be modified using selection checkboxes within the query list. The query list can be shown or
hidden by clicking on the Show/hide query list icon ().

By default, when the new dashboard is saved, the selected queries are run and a table can be seen of
the results.

How to run and view PromQL queries in the Base View accounting panel is described in this section
(12.5). The PromQL query specification itself in Base View is described in more detail in section 12.6.

PromQL Queries Input In The Accounting Panel
The PromQL queries (page 641) that are to be used can be managed in the query list associated with the
Show/hide query list icon ().

Checkboxes can be ticked to select multiple queries, as long as the query classes allow it. The class
restrictions are dynamically enforced by Base View by graying out the queries that cannot be checkboxed
as query checkboxes are ticked.

To tick a new class of query in the same panel, all the queries that do not match the new class must
first be unticked.

12.5 Job Accounting In Base View 655

PromQL queries can by run in two modes: basic or advanced, by toggling the advanced icon () of
figure 12.2. In basic mode, several instant queries can be run. In advanced mode, only one instant query
or a single range query can be run per panel.

Display Of The Results Of PromQL Query Runs In The Accounting Panel: Rows, Pie Charts, And Plots
The display of a run result can be managed by clicking on the Show/Hide table icon (), or clicking on
the Show/Hide chart icon. ().

• The table option toggles the display of the result as rows of data per classifier (user) (figure 12.3):

Figure 12.3: Job accounting: PromQL query instant mode table display

The classifier can be a user, a cluster, an account, or any other key in the labeled entity.

• The chart option toggle toggles the display of the result as a chart.

– For a PromQL instant mode query, the chart can be a pie or doughnut chart (figure 12.4), or
an x-y plot if the x-axis values are time.

Figure 12.4: Job accounting: PromQL query instant mode pie chart display

The pie chart shows how much of the resource is used at that instant per user, per cluster, per
account, or per other classifier.
How much of the resource is used can be displayed upon the pie chart in figures, either as
the amount itself, or as a percentage of the total classifier amount.
The pie chart can display classifiers using a maximum of 10 slices, by default. If needed, the
right amount of the smallest extra slices are grouped together as one slice, others, so that the
maximum number is not exceeded

656 Monitoring: Job Accounting

– For a PromQL range mode query, the chart is an x-y plot, with the x-axis being time (fig-
ure 12.5):

Figure 12.5: Job accounting: PromQL query instant mode x-y plot display

To have it display, the plot requires that

* the advanced mode () be active

* the chart mode () be active

* the range query mode () be active

* the query state be saved (), and then run ()

The plot shows resource use versus time. The plot can be per user, cluster, account, or other
classifier.
A particular user or other classifier can be highlighted on the plot by placing the mouse
pointer over the appropriate legend color icon.

How Base View is used to take PromQL query run inputs, and present PromQL query run results,
has been covered in this section without going into much detail on PromQL specification itself for the
run. PromQL specification is covered in more detail in the next section.

12.6 PromQL Query Modes And Specification In Base View
The advanced mode of Base View’s PromQL query mode specification is essentially a superset of the
basic mode specification. The options that are described next for advanced mode therefore essentially
include descriptions for the options for basic mode.

Advanced mode has the following options:

• the PromQL Query: Advanced mode allows the PromQL query itself to be edited in an editing box.

• the Query Mode: This can be either Instant query mode (), which deals with instant query
types, or it can be Range query mode (), which deals with range query types. Only advanced
mode handles both query modes—basic mode only deals with instant query mode.

12.6 PromQL Query Modes And Specification In Base View 657

– An Instant Query Type is executed at a particular instant. The instant at which it is executed
is now by default, but it can be set to a time earlier on. It outputs a single number for each
entity (for example, a user). The number for the entity is the interpolated data value for the
PromQL query at that time. The data values obtained by the PromQL query are typically a
list of the data values for each entity (for example, a list of memory consumed for each user)
over a preceding time period, where the preceding time period is defined in the PromQL
query.
The single number obtained by the query for each entity is typically used to summarize a
value at that instant for that entity.
An example of the Instant query type is users_job_waiting_seconds. This provides the
total waiting time, in seconds, for each user, for the jobs the users ran during the past period.
The past period is a time period, such as a week, defined for the query. Thus, the waiting
time is caculated at the instant of time (Time) specified for the query, over the past period.
If the Time parameter for the query is kept as the default value of now, then the query provides
the latest value for each user.
If the Time parameter is set to a time earlier on, then the query picks up the value at that
earlier time in the past, or provides an interpolated value at that earlier time, for each user,
and bases the calculation on a past period going further back from that earlier time.
The display can be presented in rows of {user, value} pairs using the Show/Hide table icon
(). The display can also be presented as a pie chart using the Show/Hide chart option ().
In the chart each slice is proportional to the value for the particular user, compared with the
total value for all the users. Instead of a pie chart, the visualization can instead be a ring (or
doughnut) chart, which is really just a pie chart with a hole in the centre.
Basic mode does have an advantage over advanced mode in that it allows multiple instant
queries to be run in an account pannel. Correspondingly, multiple results are displayed in
the form of multiple sets of table entries and multiple pie charts. An advanced mode instant
query run, in contrast, only allows one instant query to be run, with a corresponding result
of one set of table entries, and one pie chart.
PromQL allows a variety of time specifications. The interface validates whatever the interface
user types in, and there is a calendar widget that allows an absolute time to be specified. Some
useful time specifications are:

Example

Time specification What time is meant
now at the time it is run

now-30m 30 minutes ago

now-1h one hour ago

now-1h/h an hour ago, starting at the start of that hour

now-2d 48 hours ago

now-0d/d today’s midnight (the most recently-passed midnight)∗

now-1d/d yesterday’s midnight∗∗

now-2d/d day before yesterday’s midnight

Thursday, July 11, 2019 17:00:00 an absolute time (as set by the calendar widget)
∗The meaning can be understood by looking at how /d operates. It rounds off the day by truncation,
which in the case of now-0d/d means the midnight prior to now.
∗∗Similarly, yesterday’s midnight is the midnight immediately prior to 24 hours ago.

The time units for PromQL are (https://prometheus.io/docs/prometheus/latest/querying/
basics/#range-vector-selectors):

https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors
https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors

658 Monitoring: Job Accounting

* s - seconds

* m - minutes

* h - hour

* d - day

* w - week

* M - month (31 days). M is not a PromQL unit, so it cannot be used inside a query. But it is
a handy alias in BCM for an invariant time of 31 days.

* y - year

The - operator in Prometheus is an offset operator, used only after now in the time specifica-
tion field. The /<time unit> syntax implies a start at that unit of time.
Thus if, for example, now-1d/d is set as the end time, then when the query runs, it picks up
the values at “yesterday’s midnight.” For each user, the value is the number of seconds the
job of the user was in a wait state for the week prior to yesterday’s midnight. It rounds off
the day by truncation, which in the case of now-1d/d means the midnight prior to 24 hours
ago. Varying the user means that the number of seconds varies accordingly.
The results of a run can be

* displayed in rows as values in Base View itself (figure 12.3)

* downloaded as a CSV file

* downloaded as an Excel spreadsheet.

The last two options are convenient for plotting graphs that are more sophisticated than what
Base View offers.

– A Range Query Type
The Range query mode can only be accessed from advanced mode, and allows the range
query type to be executed.
This range query type is executed over a time period. It fetches a value for each interval
within that time range, and then plots these values.
An example of the Range query type is users_job_memory_usage_bytes. This fetches the to-
tal memory usage for jobs over intervals, grouped per user during that interval (figure 12.6).
The query submitter can set Start time and End time parameters. However, very long
ranges can be computationally expensive.

12.7 Access Control For Workload Accounting And Reporting 659

Figure 12.6: Job Accounting: User Values Over A Range

• the Interval: The interval is the plot interval along the time axis. When editing a range query
type, the interval for a range query run is set when the Save button is clicked. Lower numbers
lead to smaller intervals, hence higher resolution and higher query execution times. A value of
0 means that a reasonable default interval is attempted. Choosing an interval that is less than
the sampling time of the metric is a bit pointless, and tends to lead to data values that display
non-smooth behaviour.

12.7 Access Control For Workload Accounting And Reporting
The ability to view jobs is controlled by four tokens defined in a user’s profile:

1. GET_JOB_TOKEN: Allows all running jobs to be seen.

2. GET_OWN_JOB_TOKEN: Allows owned running jobs to be seen.

3. GET_JOBINFO_TOKEN: Allows all cached historic and running jobs to be seen.

4. GET_OWN_JOBINFO_TOKEN: Allows owned cached historic and running jobs to be seen.

To retrieve monitoring data for the job, the token PLOT_TOKEN must also be defined for the profile.
A job is always owned by the user that runs it. Ownership of a job can also be shared with other

users by defining project managers. This establishes a 2-level hierarchy, with project managers above
the subordinates, who are users that are assigned to the project manager. One or more accounts, can be
assigned to project managers.

12.7.1 Defining Project Managers Using Internal User Management
Any user can be turned into a project manager. If the BCM LDAP server is being used, then the project
manager can be configured via cmsh.

Example

660 Monitoring: Job Accounting

alice can be made the project manager of bob and charlie. This allows her access to the job data of her
subordinates:

[basecm11->user]% projectmanager alice

[basecm11->user*[alice*]->projectmanager*]% set users bob charlie

[basecm11->user*[alice*]->projectmanager*]% commit

Example

albert can be made the manager of the physics account. This gives him access to all jobs running under
that account:

[basecm11->user]% projectmanager albert

[basecm11->user[albert*]->projectmanager*]% set accounts physics

[basecm11->user[albert*]->projectmanager*]% commit

Both mechanisms, users and accounts, can be combined to provide access control.

Example

To limit access to jobs that are running under the physics account to a specific set of users:

[basecm11->user]% projectmanager albert

[basecm11->user*[albert*]->projectmanager*]% set accounts physics

[basecm11->user*[albert*]->projectmanager*]% set users niels richard

[basecm11->user*[albert*]->projectmanager*]% set operator and

[basecm11->user*[albert*]->projectmanager*]% commit

12.7.2 Defining Project Managers Using External User Management
If an external user management server is used instead of the BCM LDAP server, then project managers
cannot be defined in cmsh. Instead, a script has to be written that provides the definitions for project
managers in the form of a JSON object.

The full path of the script, for example /path/to/the/script, has to be set as a value to the
ProjectManagerScript parameter in cmd.conf. This is done by adding it to the AdvancedConfig di-
rective (page 858):

Example

AdvancedConfig = { "ProjectManagerScript=/path/to/the/script" }

The directive becomes active after restarting CMDaemon.
An example of a project manager script can be found at /cm/local/apps/cmd/scripts/

cm-project-managers.py. It gives users access to each other’s jobs if they share at least one group.
The easiest way to use the script is use a mapping to inform CMDaemon which of the other user’s

jobs each user has access to.

Example

So if frank can access data belonging to bob and dennis, while bob can access data belonging to dennis,
while dennis can only access his own data, then the project manager configurations can be set up as:

{

"frank": ["bob", "dennis"],

"bob": ["dennis"],

"dennis": []

}

/cm/local/apps/cmd/scripts/cm-project-managers.py
/cm/local/apps/cmd/scripts/cm-project-managers.py

12.8 Drilldown Queries For Workload Accounting And Reporting 661

Account access control can also be included in the output of the script, by setting values for the
users, accounts, and the boolean operator (and, or) options:

Example

{

"alice": {

"users": ["charline", "eve"],

"accounts": ["math, "chem"],

"and": True

},

"eve": {

"accounts": ["chem"]

}

}

After restarting CMDaemon, it automatically runs this script when committing a change for a device
or data producer. It is also possible to manually trigger the script to be run on the active head, by
executing:

[root@basecm11 ~]# echo "PROJECT.MANAGERS.UPDATE" > /var/spool/cmd/eventbucket

The script must not take more than a few seconds to process.

Workaround For Project Manager Script That Takes Too Long
If the script takes longer to run, then it must be run outside of CMDaemon, and its output should be
saved as a file. If the output file is located at /path/to/the/file, then its path can be set as an input
to the ProjectManagerFile parameter in cmd.conf. This is done by adding it to the AdvancedConfig

directive (page 858):

Example

AdvancedConfig = { "ProjectManagerFile=/path/to/the/file" }

The project manager definitions become active after CMDaemon is restarted.

12.8 Drilldown Queries For Workload Accounting And Reporting
Metrics can be classified in various ways. Common ways are by:

• device: A typical hardware device is a node. Each node can then have its metrics, which are CPU
usage, memory, storage, and other resource use, displayed over time. Device metrics are largely
covered in this chapter in the sections up to and including section 10.8.

• job: With this classifier, each job that is run by a workload manager can have its metrics, which are
CPU usage, memory, storage and other resource use, displayed over time. Job metrics are covered
in Chapter 11.

Other ways of classifying metrics are part of workload accounting. With workload accounting, a
workload manager runs jobs, and a job metric can be classified by:

• user

• job (job ID)

• account

• job name

662 Monitoring: Job Accounting

The classification can be carried out singly. However, it can also be carried out at the same time, like
filters. For example:

• each user could be classified for a particular job metric
or

• a particular user could be classified for a particular job metric
or

• a particular user could be classifed for a particular job metric for a particular job ID only
or

• a particular user could be classified for a particular job metric for that particular job ID only for a
particular account only

A cluster administrator that uses several filters to get to the “bottom” of how resources are being
used, functions in a manner reminiscent of someone drilling to the bottom to find something. This type
of filtering is therefore called drilldown. Each filter corresponds to a level of drilldown.

Drilldown is a bit like how in cmsh the use of the filter command within jobs mode can narrow
down what is displayed:

Example

[basecm11->wlm[slurm]->jobs]% filter -n iozone -u edgar -a projecty

Job ID Job name User Queue Submit time Start time End time Nodes Exit code

------ -------- ------ ----- ----------- ---------- -------- ----- ---------

15 iozone edgar defq 14:22:05 14:50:22 15:00:24 node001 0

19 iozone edgar defq 14:26:07 15:10:25 15:20:19 node001 0

25 iozone edgar defq 14:34:57 15:30:20 15:40:39 node001 0

36 iozone edgar defq 14:43:54 16:10:15 16:19:57 node001 0

41 iozone edgar defq 14:47:24 16:19:57 16:29:42 node001 0

except that in cmsh the value of the job metric is not specified or shown by the filter command.
Drilldown is also rather similar in concept to how pivot tables are used in Excel spreadsheets. Pivot

tables are particular selections (like the filtered choices in drilldown). The selections are applied to a
great deal of raw data. A function (like the metric in drilldown) is applied to the selection, to present
the information more clearly to the end viewer.

In contrast with the filter output of cmsh, in Base View the job metric value is made visible in a table
or in graphs over the period.

12.8.1 The drilldownoverview Command
The list of predefined drilldown queries of section 12.3.1 can be listed with the drilldownoverview

command. This can be run from the query submode of the monitoring mode. The output, with some
columns cut out for convenience, looks like:

Example

[basecm11->monitoring->query]% drilldownoverview |cut -b1-54,80-143

Query Drill down query

--- ---

accounts_wasted_memory wasted_memory_job_name_for_account (1)

job_information_by_account (0) job_information_by_job_name_for_account (1)

job_information_by_account (0) job_information_by_user_for_account (1)

job_information_by_job_name_for_account (1) job_information_by_user_for_account_and_job_name (2)

job_information_by_job_name_for_account_and_user (2) job_information_by_job_id_for_account_and_user_and_job\

12.8 Drilldown Queries For Workload Accounting And Reporting 663

_name (3)

job_information_by_job_name_for_user (1) job_information_by_job_id_for_user_and_job_name (2)

job_information_by_user (0) job_information_by_job_id_for_user (1)

job_information_by_user (0) job_information_by_job_name_for_user (1)

job_information_by_user_for_account (1) job_information_by_job_name_for_account_and_user (2)

job_information_by_user_for_account_and_job_name (2) job_information_by_job_id_for_account_and_user_and_job\

_name (3)

users_job_effective_cpu_seconds job_effective_cpu_seconds_job_name_for_user (1)

users_job_io_bytes job_io_bytes_per_job_name_for_user (1)

users_job_memory_usage_bytes job_memory_usage_bytes_per_job_name_for_user (1)

users_job_running_count job_running_count_job_name_for_user (1)

users_job_waiting_seconds job_waiting_seconds_job_name_for_user (1)

users_job_wall_clock_seconds job_wall_clock_seconds_job_name_for_user (1)

users_unused_gpu unused_gpu_job_name_for_user (1)

users_used_gpu used_gpu_job_name_for_user (1)

users_wasted_allocated_gpus wasted_allocated_gpus_for_user (1)

users_wasted_memory wasted_memory_job_name_for_user (1)

[basecm11->monitoring->query]%

The queries have drilldown options. For example, the job_information_by_account:

[basecm11->monitoring->query]% use job_information_by_account

[basecm11->monitoring->query[job_information_by_account]]% show

Parameter Value

-------------------------------- --

Name job_information_by_account

Revision

Class drilldown/level/0

Alias

Start time now

End time

Interval 0s

Description Generic job information drill down query grouped by account

PromQL Query <61B>

Access Public

Unit

Price 0.000000

Currency $

Preference 0

Drill down <2 in submode>

Notes <0B>

[basecm11->monitoring->query[job_information_by_account]]%

[basecm11->monitoring->query[job_information_by_account]]% drilldown

[basecm11->monitoring->query[job_information_by_account]->drilldown]% list

Name (key) Parameters Query

------------ ------------ --

job_name account job_information_by_job_name_for_account

user account job_information_by_user_for_account

[basecm11->monitoring->query[job_information_by_account]->drilldown]% use job_name

[basecm11->monitoring->query[job_information_by_account]->drilldown[job_name]]% show

Parameter Value

-------------------------------- --

Name job_name

Revision

Parameters account

Query job_information_by_job_name_for_account

664 Monitoring: Job Accounting

12.9 The grid Command For Job Accounting
A way to carry out job accounting without relying on PromQL queries is the grid command of cmsh.
The grid command can be accessed from within wlm mode for a workload manager. The command
displays the nodes in a grid.

An example of grid output can be seen in the session of page 665.
As seen in that output, the nodes are displayed in a sequence of rows. For each row, the following

row of nodes has the same sequence of nodes, but after an interval of time. Each node in the grid is
displayed as a colored block called a timeblock. The timeblock displays a value for the classifier entity
that the grid command associates with that node. The value for the timeblock is indicated by either its
color, or by text superimposed on that timeblock, or both.

12.9.1 The grid Command Help Text
The command options to grid can be looked up in the help text:

Example

[basecm11->wlm[slurm]]% help grid

Name:

grid - Show a grid of historic job information

Usage:

grid [options]

Options:

-n, --nodes node(list)

List of nodes, e.g. node001..node015,node020..node028,node030 or ^/some/file/containing/hostnames

...

The classifier entity shown by grid can be called its mode, and it can be set with the --mode option.
By default the mode is set to used, which means the classifier entity value displayed for the node is
either that it is being used to run a job, or not being used to run a job.

A help text to describe modes available for a timeblock can be seen with:

Example

[basecm11->wlm[slurm]]% grid --mode x

Mode x is not implemented

Valid modes:

used: the node was used in this timeblock

count: the number of jobs using the node in this timeblock

average: the averaged time jobs used the node in this timeblock

user: the user that used the node the most in this timeblock

group: the group that used the node the most in this timeblock

account: the account that used the node the most in this timeblock

job-name: the job-name that used the node the most in this timeblock

job-id: the job-name that used the node the most in this timeblock

count-cpu: the number of requested CPUs on the node in this timeblock

average-cpu: the time averaged of requested CPUs on the node in this timeblock

count-gpu: the number of requested GPUs on the node in this timeblock

average-gpu: the time averaged of requested GPUs on the node in this timeblock

12.9.2 Some grid Command Examples
With the grid command, the timeblock value is given a color, and can also be indicated by an associated
text value.

12.9 The grid Command For Job Accounting 665

Displaying Nodes Used
For example: over intervals of 10 minutes (600 seconds), from 28 hours ago to 27 hours ago, for nodes
node001, node002, node003, the used mode for nodes can be displayed with the command:

Example

[basecm11->wlm[slurm]]% grid --after -28h --before -27h --interval 600 -n node001..node003 --text --legend

node001 node002 node003

Thu Nov 23 16:04:05 2023

1.000000 0.000000 0.000000

0.000000 0.000000 1.000000

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

0.000000 0.000000 0.000000

Thu Nov 23 17:04:05 2023

Not running a job Running a job

The --legend option provides a color legend after the display, and the --text option for this mode
overwrites the timeblock with an associated value of 1.00000 or 0.000000.

The time specification is explained in detail in section 12.9.3.

Displaying Users Usage Of Nodes
Another example, which displays users that used the node the most, and their usage as a percentage,
per timeblock of 600s, over a time from 5370 minutes in the past to 5350 minutes in the past:

[basecm11->wlm[slurm]]% grid --mode user --after -5370m --before -5350m -n node001..node003 --interval 600 \
--text --legend

node001 node002 node003

Thu Nov 23 16:23:59 2023

bob (10%) joe (9%) carol (9%)

bob (7%) joe (9%) eve (20%)

dennis (11%) dennis (5%) hugh (9%)

Thu Nov 23 16:43:59 2023

joe eve bob carol hugh dennis

[basecm11->wlm[slurm]]%

The display percentage can be disabled with the -�no-percent option.

Displaying Larger Numbers Of Nodes
For larger clusters, the administrator can view the grid output over a larger monitor, or over several
monitors, and perhaps using higher resolutions to get a colour map. Figure 12.7 shows an output for
128 nodes:

666 Monitoring: Job Accounting

Figure 12.7: Job Accounting: Grid account output for 128 nodes

The watch command of cmsh can be used to display updates as the cluster is used during the day,
without requiring input from the cluster administrator. Patterns of use may be viewed in this manner.

For example, the black parts of node rows in figure 12.7 are a visual indication of times when those
nodes were not used.

12.9.3 The grid Command Time Specification
The grid command time specification is identical to that of the dumpmonitoringdata command (sec-
tion 10.6.4), except that dumpmonitoringdata has implicit mandatory arguments. The time specifications
for grid are, on the other hand, done explicitly, and use the time options and arguments:

• --before <end-time>

and

• --after <start-time>

The syntax for the time specifications of grid is also used by the statistics and filter commands.
The time options --after (mnemonic: aFTter=From Time) and --before (mnemonic: befOre=tO)

can have their arguments specified as follows:

• Fixed time format: The format for the times that make up the time pair can be:

– [YY/MM/DD] HH:MM[:SS]
(If YY/MM/DD is used, then each time must be enclosed in double quotes)

– The unix epoch time (seconds since 00:00:00 1 January 1970)

• now: For the --before option, a value of now can be set. The time at which the grid command is
run is then used.

• Relative time format: One item in the time pair can be set to a fixed time format. The other item in
the time pair can then have its time set relative to the fixed time item. The format for the non-fixed
time item (the relative time item) can then be specified as follows:

– For the <start-time>, a number prefixed with “-” is used. It indicates a time that much earlier
than the fixed end time.

– For the <end-time>, a number prefixed with “+” is used. It indicates a time that much later
than the fixed start time.

– The number values also have suffix values indicating the units of time, as seconds (s), minutes
(m), hours (h), or days (d).

https://www.youtube.com/watch?v=7-GTcHZkfCs

12.9 The grid Command For Job Accounting 667

The relative time format is summarized in the following table:

Unit <start-time> <end-time>

seconds: -<number>s +<number>s

minutes: -<number>m +<number>m

hours: -<number>h +<number>h

days: -<number>d +<number>d

• Both <start-time> and <end-time> can have their values prefixed with a “-”. In this case, the range
over which the monitored values are seen is in the past, relative to the current time. If the end
time for the range is specified as further in the past than the starting time, then the time values are
swapped over so that the end time becomes more recent than the starting time.

13
Monitoring: Job Chargeback

13.1 Introduction
13.1.1 The Word “Chargeback”
In a non-IT context, the term chargeback is commonly used with credit cards, in a situation where a
cardholder disputes a payment that was made to a merchant. When the credit card company pays back
the disputed payment to the card holder, that is called a chargeback.

In an IT context, the term chargeback still has to do with money, and the idea of getting money back.
However, in practice the intention ideally is not about disputing costs, but rather about measuring what
the costs are of the IT resources that have been requested. Measurement of requested resources means
that there is a potential to charge back the users or groups of users who requested these resources.

So, for example, an IT department for an organization may be allocated a budget to run a cluster,
meant for the benefit of the organization. The IT department may make the cluster available to many
other departments. These other departments request cluster resources. The IT department measures the
requested resources and charges back the associated costs.

If a cluster is used by several different departments in the organization, then a simple way to pay
for resource requests is to spread the entire cost as a general overhead expense over all departments
equally. That may make matters easy for the cluster administrator, but can be harmful to the organi-
zation, because without a fair resource request management, there is a tendency for resource request
abuse.

If however the resource requests per department are measured, it means that department managers
can be kept aware of how resource requests are being divided up. Being able to measure requested re-
sources per department, and thus being able to charge back the department for the requested resources,
means that the organization using the cluster can plan and manage resource request budgets efficiently
and fairly.

13.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring
Measurements

Monitoring measurements in BCM in general can be considered to be:

• Monitoring of devices (Chapter 10), which is about monitoring devices in a cluster.

• Job monitoring (Chapter 11), which is about using monitoring to measure the resources used by
jobs that actually run.

• Job accounting (Chapter 12), which is about using monitoring to measure the resources used by a
user, a group, or other classifier entity.

• Job chargeback (this chapter), which is about using monitoring to measure the resources requested
for a job, whether the resources are used or not. This allows the requester to be charged the costs
of requesting those resources.

670 Monitoring: Job Chargeback

The difference between actual resource use and requested resource use can be illustrated by a thought
experiment:

First, a job is run that runs the CPU at 100% for 10 minutes. After that job is completed, a second job
is run that runs a sleep command that lasts 10 minutes.

If these two jobs are considered from the point of view of CPU resource usage, then according to the
workload manager:

The first job actually uses the CPU for 10 minutes, and the administrator can work out from the job
monitoring system what user that ran that job, and charge the user for CPU usage.

For the second job, the administrator cannot use the job monitoring system to charge the user for the
CPU usage because there was no significant usage measured. However, resources were used up during
this time, because the request for the job blocked the availability of that CPU during this period for
other users. The administrator would like to charge the user for preventing others from accessing the
resources during that period. To do that requires measuring the resources requested during that period,
rather than resources that were really used.

Thus, the aim of job chargeback monitoring is to provide a way to track resource requests, which
typically differs a little from resource usage.

13.2 Job Chargeback Measurement
13.2.1 Predefined Job Chargebacks
Some predefined chargebacks can be listed and configured under the chargeback submode of the wlm

mode.
The predefined list is short:

[basecm11->wlm[slurm]]% chargeback

[basecm11->wlm[slurm]->chargeback]% list

Name (key) Group by user Group by account Price per CPU second

-- ------------- ---------------- --------------------

Jobs completed last month grouped by user yes no 8.64$/d

Jobs completed this month grouped by user yes no 8.64$/d

Jobs completed this year grouped by user yes no 8.64$/d

Setting A Price For Resource Requests
The pricing can be set per resource requests over a specified time period. In the preceding list, the period
is a month or a year. The resource and associated resource request consumption can be the following
pairs:

Resource And Resource Request Consumption Pairs

Resource Resource Request Consumption

CPU CPU second

GPU GPU second

CPU core CPU core second

slot slot second

memory bytes byte-second

Different workload managers use different resources for resource measurement, which is why there
is a variety in the resources that can be used for pricing.

13.2 Job Chargeback Measurement 671

13.2.2 Setting A Custom Job Chargeback
In addition to the predefined job chargebacks, more chargebacks can be added. For example, the number
of jobs completed so far today can be set up as follows:

Example

[basecm11->wlm[slurm]->chargeback]% add "Jobs completed this day grouped by user"

[basecm11->...ck*[Jobs completed this day grouped by user*]]% show

Parameter Value

-------------------------------- --

Name Jobs completed this day grouped by user

Revision

Notes <0B>

Group by user no

Group by group no

Group by account no

Group by job name no

Group by job ID no

Group by parent ID no

Users

Groups

Accounts

Job names

Job IDs

Parent IDs

Price per CPU second 0.00$/s

Price per CPU core second 0.00$/s

Price per GPU second 0.00$/s

Price per memory byte-second 0$/B*s

Price per slot second 0$/slot*s

Currency $

Start time

End time

UTC no

Include running no

Calculate prediction no

[basecm11->...ck*[Jobs completed this day grouped by user*]]% set pricepercpusecond 0.0001$/s

[basecm11->...ck*[Jobs completed this day grouped by user*]]% set groupbyuser yes

[basecm11->...ck*[Jobs completed this day grouped by user*]]% set starttime now/d

[basecm11->...ck*[Jobs completed this day grouped by user*]]% set endtime now/d

[basecm11->...ck*[Jobs completed this day grouped by user*]]% commit

Chargeback Groupings
The grouping for the new chargeback Jobs completed this day grouped by user is set to be Group

by user. Grouping by user is a common grouping, because finding resource use by an individual user
is typically the most useful case. Grouping is possible by:

• user

• group

• account

• job name

• job ID

672 Monitoring: Job Chargeback

• parent ID

After setting up chargebacks to suit the needs of the cluster administrator, queries can be made and
reports can be generated using chargebacks. The report and request commands (section 13.2.3) are
used for this.

13.2.3 The report And request Commands
Continuing on with the chargeback jobs completed this day grouped by user created in sec-
tion 13.2.2, the report and request commands can be used after CPU request data values have been
gathered on the jobs being run.

The report Command And Its Options
The report command displays a table of the number of jobs that were run per grouping for a chargeback,
alongside the resource use and cost for each grouping.

Thus, some time after running jobs in Slurm, the report output for the chargeback created earlier,
jobs completed this day grouped by user, might look as follows (some columns elided for clarity):

Example

[basecm11->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% report

Start - Tue Sep 8 00:00:00 2020 CEST (1599516000)

End - Tue Sep 8 23:59:59 2020 CEST (1599602399)

User Jobs Runtime (s) CPU (s) CPU ($) ... Price ($)

------------ ------------ ------------ ------------ ---------- ... ----------

alice 17 7,806 7,806 0.78 ... 0.78

bob 20 8,775 8,775 0.88 ... 0.88

charlie 19 7,007 7,007 0.7 ... 0.7

david 10 5,122 5,122 0.51 ... 0.51

edgar 25 10,502 10,502 1.05 ... 1.05

frank 21 8,289 8,289 0.83 ... 0.83

The help text for report command lists formatting options:

[basecm11->wlm[slurm]->chargeback]% help report

Name:

report - Create charge back report

Usage:

report [options] <name>

Options:

-d, --delimiter

Set default row separator

-v, --verbose

Be more verbose: multiline table

--start

Pagination start offset

--limit

Pagination result limit

The request Command And Its Options
The request command lists the chargeback resources requested for a workload manager.

The request command can be run without options. In that case the output shows the resource
request consumption for the chargeback, for the jobs over the period associated with that chargeback:

13.2 Job Chargeback Measurement 673

Example

[basecm11->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request

Start - Sun Sep 13 00:00:00 2020 CEST (1599948000)

End - Sun Sep 13 23:59:59 2020 CEST (1600034399)

Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)

------------ ------------ ------------ ------------ ------------ ------------ ------------

5 1,765 1,765 0 0 0 0

The help text for request lists formatting, grouping, pricing, and filtering options:

[basecm11->wlm[slurm]->chargeback]% help request

Name:

request - Chargeback report for workload

Usage:

request [options]

Options:

-u, --group-by-user

group by username

--filter-user <user>[,<user>,...]

filter on specified users

-g, --group-by-group

group by group name

--filter-group <group>[,<group>,...]

filter on specified groups

-a, --group-by-account

group by account

--filter-account <account>[,<account>,...]

filter on specified accounts

-j, --group-by-job-name

group by job name

--filter-job-name <job-name>[,<job-name>,...]

filter on specified job names

-i, --group-by-job-id

group by job id

--filter-job-id <job-id>[,<job-id>,...]

filter on specified job ids

-p, --group-by-parentid

group by parent id

--filter-parent-id <parent-id>[,<parent-id>,...]

filter on specified parent-ids

--price-per-cpu-second

674 Monitoring: Job Chargeback

Price per CPU second

--price-per-cpu-core-second

Price per CPU core second

--price-per-gpu-second

Price per GPU second

--price-per-gpu-second

Price per GPU second

--price-per-memory-byte-second

Price per memory byte * second

--price-per-slot-second

Price per slot second

--currency

Change the currency in which the price is displayed (default $)

--include-running

include running jobs in charge back report (prices will not be final)

--calculate-prediction

calculate a prediction for an incomplete time frame

-d, --delimiter

Set default row separator

--sort <field1>[,<field2>,...]

Override default sort order

--start-time, -s <time>

Start time in Prometheus format

--end-time, -e <time>

End time in Prometheus format, falls back to start-time if not specified

--utc

Use UTC instead of local time

--start

Pagination start offset

--limit

Pagination result limit

-v, --verbose

Be more verbose

Examples:

request Chargeback report for workload for the current WLM

request default Chargeback report for workload for default

For example, using epoch times to specify the start and end times, and grouping by user:

13.2 Job Chargeback Measurement 675

Example

[basecm11->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request -s \
1599948000 -e 1600034399 -u

Start - Sun Sep 13 00:00:00 2020 CEST (1599948000)

End - Sun Sep 13 23:59:59 2020 CEST (1600034399)

User Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)

--------- ----- ------------ ------------ --------- ---------- ------------ ------------

alice 1 398 398 0 0 0 0

david 2 1,041 1,041 0 0 0 0

edgar 1 325 325 0 0 0 0

frank 1 1 1 0 0 0 0

Another way of duplicating the output of request without options, is to explicitly specify the de-
fault values. For the chargeback jobs completed this day grouped by user, which was set up in
section 13.2.2. it corresponds to a start time of now/d and an end time of now/d:

Example

[basecm11->...eback[jobs completed this day grouped by user]]% request

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)

------------ ------------ ------------ ------------ ------------ ------------ ------------

56 72,374 72,374 0 0 0 0

[basecm11->...eback[jobs completed this day grouped by user]]% request -s now/d -e now/d

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

Jobs Runtime (s) CPU (s) Core (s) GPU (s) Slots (s) Memory (B*s)

------------ ------------ ------------ ------------ ------------ ------------ ------------

56 72,374 72,374 0 0 0 0

Users can be added to the table with the -u option (some output is truncated here for clarity in the
examples that follow):

Example

[basecm11->...eback[jobs completed this day grouped by user]]% request -u

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

User Jobs Runtime (s) CPU (s) Core (s) GPU (s)

------------ ------------ ------------ ------------ ------------ ------------

alice 16 19,538 19,538 0 0

bob 7 15,158 15,158 0 0

charlie 6 6,056 6,056 0 0

david 3 1,636 1,636 0 0

edgar 15 16,475 16,475 0 0

frank 9 13,511 13,511 0 0

A jobs drilldown can be carried out with -j.

Example

[basecm11->wlm[slurm]->chargeback[jobs completed this day grouped by user]]% request -j

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)

676 Monitoring: Job Chargeback

-------------- ------------ ------------ ------------ ------------ ------------

data-transfer 15 49,248 49,248 0 0

iozone 19 9,918 9,918 0 0

sleep 22 13,208 13,208 0 0

The jobs drilldown can be carried out for a particular user, alice, using the filter option:

Example

[basecm11->...grouped by user]]% request -j --filter-user alice

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)

-------------- ------------ ------------ ------------ ------------ ------------

data-transfer 5 13,404 13,404 0 0

iozone 6 3,132 3,132 0 0

sleep 5 3,002 3,002 0 0

This can have the user fields added for the case when several users are specified, as follows:

Example

[basecm11->...grouped by user]]% request -s now/d -e now/d -u -j --filter-user alice,bob,charlie

Start - Tue Sep 15 00:00:00 2020 CEST (1600120800)

End - Tue Sep 15 23:59:59 2020 CEST (1600207199)

User Job name Jobs Runtime (s) CPU (s) Core (s) GPU (s)

------------ -------------- ------------ ------------ ------------ ------------ ------------

alice data-transfer 5 13,404 13,404 0 0

alice iozone 6 3,132 3,132 0 0

alice sleep 5 3,002 3,002 0 0

bob data-transfer 3 12,842 12,842 0 0

bob iozone 1 516 516 0 0

bob sleep 3 1,800 1,800 0 0

charlie data-transfer 1 3,212 3,212 0 0

charlie iozone 2 1,044 1,044 0 0

charlie sleep 3 1,800 1,800 0 0

[basecm11->wlm[slurm]->chargeback[jobs completed this day grouped by user]]%

As the help text for request suggests, there are many more combinations possible.

13.3 Job Chargeback Background Information
Because users can run large numbers of jobs per day, the storage requirement for chargeback records
can be very large indeed. For this reason, a cache is kept in memory, and flushed to storage in a MySQL
database.

CMDaemon AdvancedConfig directives for configuring the MySQL storage for chargebacks are:

• JobInformationChargeBackKeepDuration (page 867)

• JobInformationChargeBackKeepCount (page 867)

• JobInformationChargeBackRemoveInterval (page 868)

14
Day-to-day Administration

Just as for regular Linux system administration, it is a best practice for cluster administration procedures
to be documented as they are carried out.

Updating software packages for bug fixes or for security fixes is a substantial and important part of
the tasks carried out in daily cluster administration. It has its own chapter (Chapter 9).

This chapter discusses other tasks that may come up in day-to-day cluster administration with
NVIDIA Base Command Manager.

Section 14.1 discusses running shell commands in parallel over the cluster.
Section 14.2 discusses how a cluster administrator can ask the help of the BCM support team for

guidance with an issue in an optimum manner.
Section 14.3 discusses how backups can be implemented for BCM.
Section 14.4 discusses revision control for images.
Section 14.5 discusses BIOS configuration with BCM.
Section 14.6 discusses checking hardware matching across the nodes of the cluster.
Section 14.7 discusses Serial Over LAN console access.
Section 14.8 discusses administrative aspects of handling the large amounts of raw monitoring data.
Section 14.9 discusses node replacement.
Section 14.10 discusses using Ansible to configure the cluster via Ansible collections and playbooks.

14.1 Parallel Shells: pdsh And pexec

What pdsh And pexec Do
The cluster management tools include two parallel shell execution commands:

• pdsh (parallel distributed shell, section 14.1.1), runs from within the OS shell. That is, pdsh exe-
cutes its commands from within bash by default.

• pexec (parallel execute, section 14.1.2, runs from within CMDaemon. That is, pexec executes its
commands from within the cmsh front end.

A one-time execution of pdsh or pexec can run one or more shell commands on a group of nodes in
parallel.

A Warning About Power Surge Risks With pdsh And pexec

Some care is needed when running pdsh or pexec with commands that affect power consumption. For
example, running commands that power-cycle devices in parallel over a large number of nodes can be
risky because it can put unacceptable surge demands on the power supplies.

Within cmsh, executing a power reset command from device mode to power cycle a large group of
nodes is much safer than running a parallel command to do a reset using pdsh or pexec. This is because
the CMDaemon power reset powers up nodes after a deliberate delay between nodes (section 4.2).

678 Day-to-day Administration

Which Command To Use Out Of pdsh And pexec

The choice of using pdsh or pexec commands is mostly up to the administrator. The only time that run-
ning pdsh from bash is currently required instead of running pexec from within cmsh, is when stopping
and restarting CMDaemon on a large number of regular nodes (section 2.6.1). This is because a com-
mand to stop CMDaemon on a regular node, that itself relies on being run from a running CMDaemon
on a regular node, can obviously give unexpected results.

14.1.1 pdsh In The OS Shell
Packages Required For pdsh
By default, the following packages must be installed from the BCM repositories to the head node for
pdsh to function fully:

• pdsh

• genders

• pdsh-mod-cmupdown

• pdsh-mod-genders

• pdsh-rcmd-exec

• pdsh-ssh

The pdsh utility is modular, that is, it gets extra functionality through the addition of modules.
The genders package is used to generate a default /etc/genders configuration file. The file is used to

decide what and how nodes are to be used or excluded by default, when used with pdsh. Configuration
details can be found in man pdsh(1). The configuration can probably best be understood by viewing
the file itself and noting that BCM in the default configuration associates the following genders with a
list of nodes:

• all: all the nodes in the cluster, head and regular nodes.

• category=default: the nodes that are in the default category

• computenode: regular nodes

• headnode: node or nodes that are head nodes.

In a newly-installed cluster using default settings, the genders category=default and computenode

have the same list of nodes to begin with.
The default /etc/genders file has a section that is generated and maintained by CMDaemon, but

the file can be altered by the administrator outside the CMDaemon-maintained section. However, it is
not recommended to change the file manually frequently. For example, tracking node states with this
file is not recommended. Instead, the package pdsh-mod-cmupdown provides the -v option for node state
tracking functionality, and how to use this and other pdsh options is described in the next section.

pdsh Options
In the OS shell, running pdsh -h displays the following help text:

Usage: pdsh [-options] command ...

-S return largest of remote command return values

-h output usage menu and quit

-V output version information and quit

-q list the option settings and quit

-b disable ^C status feature (batch mode)

-d enable extra debug information from ^C status

14.1 Parallel Shells: pdsh And pexec 679

-l user execute remote commands as user

-t seconds set connect timeout (default is 10 sec)

-u seconds set command timeout (no default)

-f n use fanout of n nodes

-w host,host,... set target node list on command line

-x host,host,... set node exclusion list on command line

-R name set rcmd module to name

-M name,... select one or more misc modules to initialize first

-N disable hostname: labels on output lines

-L list info on all loaded modules and exit

-v exclude targets if they are down

-g query,... target nodes using genders query

-X query,... exclude nodes using genders query

-F file use alternate genders file `file'

-i request alternate or canonical hostnames if applicable

-a target all nodes except those with "pdsh_all_skip" attribute

-A target all nodes listed in genders database

available rcmd modules: ssh,exec (default: ssh)

Further options and details are given in man pdsh(1).

Examples Of pdsh Use
For the examples in this section, a cluster can be considered that is set up with two nodes, with the state
of node001 being UP and that of node002 being DOWN:

[root@basecm11 ~]# cmsh -c "device status"

node001 [UP]

node002 [DOWN]

basecm11 [UP]

In the examples, the outputs for pdsh could be as follows for the pdsh options considered:

-A: With this pdsh option an attempt is made to run the command on all nodes, regardless of the node
state:

Example

[root@basecm11 ~]# pdsh -A hostname

node001: node001

node002: ssh: connect to host node002 port 22: No route to host

pdsh@basecm11: node002: ssh exited with exit code 255

basecm11: basecm11

-v: With this option an attempt is made to run the command only on nodes nodes that are in the state
UP:

Example

[root@basecm11 ~]# pdsh -A -v hostname

node001: node001

basecm11: basecm11

-g: With this option, and using, for example, computenode as the genders query, only nodes within
computenode in the /etc/genders file are considered for the command. The -v option then further
ensures that the command runs only on a node in computenode that is up. In a newly-installed cluster,
regular nodes are assigned to computenode by default, so the command runs on all regular nodes that
are up in a newly-installed cluster:

680 Day-to-day Administration

Example

[root@basecm11 ~]# pdsh -v -g computenode hostname

node001: node001

-w: This option allows a node list (man pdsh(1)) to be specified on the command line itself:

Example

[root@basecm11 ~]# pdsh -w node00[1-2] hostname

node001: node001

node002: ssh: connect to host node002 port 22: No route to host

pdsh@basecm11: node002: ssh exited with exit code 255

-x: This option is the converse of -w, and excludes a node list that is specified on the command line
itself:

Example

[root@basecm11 ~]# pdsh -x node002 -w node00[1-2] hostname

node001: node001

The dshbak Command
The dshbak (distributed shell backend formatting filter) command is a filter that reformats pdsh output.
It comes with the pdsh package.

Running dshbak with the -h option displays:

[root@basecm11 ~]# dshbak -h

Usage: dshbak [OPTION]...

-h Display this help message

-c Coalesce identical output from hosts

-d DIR Send output to files in DIR, one file per host

-f With -d, force creation of DIR

Further details can be found in man dshbak(1).
For the examples in this section, it is assumed that all the nodes in the cluster are now up. That is,

node002 used in the examples of the preceding section is now also up. Some examples to illustrate how
dshbak works are then the following:

Without dshbak:

Example

[root@basecm11 ~]# pdsh -A ls /etc/services /etc/yp.conf

basecm11: /etc/services

basecm11: /etc/yp.conf

node001: /etc/services

node001: ls: cannot access /etc/yp.conf: No such file or directory

pdsh@basecm11: node001: ssh exited with exit code 2

node002: /etc/services

node002: /etc/yp.conf

14.1 Parallel Shells: pdsh And pexec 681

With dshbak, with no dshbak options:

Example

[root@basecm11 ~]# pdsh -A ls /etc/services /etc/yp.conf | dshbak

node001: ls: cannot access /etc/yp.conf: No such file or directory

pdsh@basecm11: node001: ssh exited with exit code 2

basecm11

/etc/services

/etc/yp.conf

node001

/etc/services

node002

/etc/services

/etc/yp.conf

[root@basecm11 ~]#

With dshbak, with the -c (coalesce) option:

Example

[root@basecm11 ~]# pdsh -A ls /etc/services /etc/yp.conf | dshbak -c

node001: ls: cannot access /etc/yp.conf: No such file or directory

pdsh@basecm11: node001: ssh exited with exit code 2

node002,basecm11

/etc/services

/etc/yp.conf

node001

/etc/services

[root@basecm11 ~]#

The dshbak utility is useful for creating human-friendly output in clusters with larger numbers of
nodes.

14.1.2 pexec In cmsh

In cmsh, the pexec command is run from device mode:

Example

[basecm11->device]% pexec -n node001,node002 "cd ; ls"

[node001] :

anaconda-ks.cfg

install.log

install.log.syslog

682 Day-to-day Administration

[node002] :

anaconda-ks.cfg

install.log

install.log.syslog

14.1.3 pexec In Base View
In Base View, pexec is hidden, but executed in a GUI wrapper, using the navigation path Cluster > Run

command.
For large numbers of nodes, rendering the output into the node subpanes (little boxes) can take a

long time. To improve the Base View experience, selecting the Single text view icon instead of the
Grouped view icon speeds up the rendering significantly, but at the cost of removing the borders of the
subpanes.

Ticking the Join output checkbox places output that is the same for particular nodes, into the same
subpane.

Running parallel shell commands from cmsh instead of in Base View is faster in most cases, due to
less graphics rendering overhead.

14.1.4 Using The -j|--join Option Of pexec In cmsh

The output of the pexec command by default can come out in a sequence depending on node response
time. To make it more useful for an administrator, order can be imposed on the output. Checking
consistency across nodes is then easier.

For example, in a cluster with 2 nodes, the /etc/resolv.conf files for each node could be displayed
as:

Example

[basecm11->device]% pexec -c default "cat /etc/resolv.conf"

[node001] :

This file was generated by the Node Installer.

search cm.cluster eth.cluster brightcomputing.com

nameserver 10.141.255.254

[node002] :

This file was generated by the Node Installer.

search cm.cluster eth.cluster brightcomputing.com

nameserver 10.141.255.254

More order can be imposed on the preceding output by using the -j|--join option. This joins
identical fields together in a way similar to the standard unix text utility, join, which makes the result
easier to view:

Example

[basecm11->device]% pexec -j -c default "cat /etc/resolv.conf"

[node001,node002]

This file was generated by the Node Installer.

search cm.cluster eth.cluster brightcomputing.com

nameserver 10.141.255.254

In the following example, a cluster with 10 nodes is inspected. In the cluster, node002 is down, and
the idea is to see if the remaining nodes have the same mounts:

Example

14.2 Getting Support With BCM Issues, And Notifications For Release Updates 683

[basecm11->device]% pexec -j -c default "mount|sort"

Nodes down: node002

[node002]

Node down

[node001,node003..node010]

/dev/hda1 on / type ext3 (rw,noatime,nodiratime)

/dev/hda2 on /var type ext3 (rw,noatime,nodiratime)

/dev/hda3 on /tmp type ext3 (rw,nosuid,nodev,noatime,nodiratime)

/dev/hda6 on /local type ext3 (rw,noatime,nodiratime)

master:/cm/shared on /cm/shared type nfs

(rw,rsize=32768,wsize=32768,hard,intr,addr=10.141.255.254)

master:/home on /home type nfs

(rw,rsize=32768,wsize=32768,hard,intr,addr=10.141.255.254)

none on /dev/pts type devpts (rw,gid=5,mode=620)

none on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

none on /proc type proc (rw,nosuid)

none on /sys type sysfs (rw)

Here, even more order is imposed by sorting the output of each mount command within bash before
the -j option operates from cmsh. The -c option executes the command on the default category of
nodes.

14.1.5 Other Parallel Commands
Besides pexec, CMDaemon has several other parallel commands:

pkill: parallel kill
Synopsis:
pkill [OPTIONS] <tracker> [<tracker> . . .]

plist: List the parallel commands that are currently running, with their tracker ID
Synopsis:
plist

pping: ping nodes in parallel
Synopsis:
pping [OPTIONS]

pwait: wait for parallel commands that are running to complete
Synopsis:
pwait [OPTIONS] <tracker> [<tracker> . . .]

Details on these parallel commands, including examples, can be seen by executing the help com-
mand within the device mode of cmsh for a parallel command, <pcommand>, as follows:

[basecm11->device]%help <pcommand>

14.2 Getting Support With BCM Issues, And Notifications For Release
Updates

The scope of BCM technical support is described in Appendix D of the Installation Manual.

684 Day-to-day Administration

14.2.1 The Support Portal For BCM
Support requests can be sent in via the support portal at

https://enterprise-support.nvidia.com/s/create-case

Figure 14.1: Customer support portal: submitting a support request

When creating a BCM support case at that URL:

• the Product Type that must be selected is Software.

• the Product Category that must be selected is:

– Bright Cluster Manager for issues related to versions of BCM prior to BCM version 10.

– Base Command Manager for issues related to BCM version 10 and beyond.

• Registered users are advised to log in to the support portal. It makes the user experience better
because cluster-related data values are already filled in for a logged-in user.

• Unregistered users can also create a case via the same URL, to deal with registration issues.

https://enterprise-support.nvidia.com/s/create-case

14.2 Getting Support With BCM Issues, And Notifications For Release Updates 685

The Enterprise Support Portal User Guide at

https://enterprise-support.nvidia.com/s/article/NVIDIA-Enterprise-Support-Guide-for-New-Users

has further details on how users can submit support requests.

BCM support as implemented via the support portal is carried out primarily via e-mail. As a sup-
plement to that, the cm-diagnose (section 14.2.2) and the request-remote-assistance (section 14.2.3)
utilities are provided to help resolve issues. These are discussed next.

14.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose

The diagnostic utility cm-diagnose is run from the head node. It gathers data on the cluster that may
help diagnose issues. Running it as

cm-diagnose --help

displays its options, capabilities, and defaults.
For particular issues it may be helpful to change some of the default values to gather data in a more

targeted way. For example, for larger clusters, the log file limit and the timeout values can both be
increased to avoid logs being cropped and commands being killed during the gathering of diagnostic
data:

Example

[root@basecm11 ~]# cm-diagnose --limit 100 --timeout 240

The preceding command increases the log limit from its default of 50MB to 100MB, and the timeout
value from its default of 60s to 240s.

When carrying out a run to pick up diagnostic data, cm-diagnose runs interactively by default.
The administrator can send the resultant diagnostics file to BCM support directly. The output of a
cm-diagnose session looks something like the following (the output has been made less verbose for
easy viewing):

Example

[root@basecm11 ~]# cm-diagnose

To be able to contact you about the issue, please provide

your e-mail address (or support ticket number, if applicable):

franknfurter@example.com

Please enter the related Support Request (SR) or NVIDIA Enterprise Support number and any other

related additional information: [SR-XXXXX] or [XXXXXXXX]

End input with ctrl-d

This has to do with SR-999999 that I submitted just now. In short:

I tried X, Y, and Z on the S2464 motherboard. When that didn't work, I

tried A, B, and C, but the florbish is grommicking.

Thank you.

Support Request number: SR-999999

Thank you.

If issues are suspected in the cmdaemon process, a gdb trace of that process

is useful. In general such trace is only needed if Bright Support asks for this.

Do you want to create a gdb trace of the running CMDaemon? [y/N]

Proceed to collect information? [Y/n]

Processing master

https://enterprise-support.nvidia.com/s/article/NVIDIA-Enterprise-Support-Guide-for-New-Users

686 Day-to-day Administration

Processing commands

/bin/uname -a

/usr/bin/top -b -n 1

/sbin/ifconfig -a

...

Processing file contents

...

Processing large files and log files

...

Collecting process information for CMDaemon

gdb -p 1334

Executing CMSH commands

...

Finished executing CMSH commands

Processing default-image

Processing commands

...

Processing file contents

...

Creating log file: /root/SR-999999-basecm11__1234.tar.gz

Cleaning up

Automatically submit diagnostics file to http://support.brightcomputing.com/cm-diagnose/ ? [Y/n]

Uploaded file: SR-999999-basecm11__1234.tar.gz

Remove log file (/root/SR-999999-basecm11__1234.tar.gz)? [y/N] y

[root@basecm11 ~]#

14.2.3 Requesting Remote Support With request-remote-assistance

The life-cycle of solving a ticket begins with opening a ticket via the support portal (section 14.2.1), and
then establishing that both the cluster administrator and the support engineer have a basic grasp of the
issue at hand. This is best done via an e-mail exchange.

From this stage onward there are many possible paths. The support engineer may offer a solution,
or ask for more details, or may ask for some tests to be run. Most of the time, e-mail remains the most
efficient way to troubleshoot an issue.

However at times it may be more appropriate for the cluster administrator to allow remote support
from the BCM support engineer in order to resolve the issue. The support engineer may in that case
suggest that the request-remote-assistance utility be run.

The request-remote-assistance utility allows a BCM engineer to securely tunnel into the cluster,
often without a change in firewall or ssh settings of the cluster.

With request-remote-assistance:

• It must be allowed to access the www and ssh ports of the internet servers used by BCM support.

• For some problems, the engineer may wish to power cycle a node. In that case, indicating what
node the engineer can power cycle should be added to the option for entering additional informa-
tion.

• Administrators familiar with screen may wish to run it within a screen session and detach it so
that they can resume the session from another machine. A very short reminder of the basics of
how to run a screen session is:

– run the screen command to open the screen session

14.2 Getting Support With BCM Issues, And Notifications For Release Updates 687

– run the request-remote-assistance command within the screen session

– ctrl-a d to detach the session (session remains open)

– screen -r to resume the session

– exit to exit (closes the session)

The request-remote-assistance command itself is run as follows:

Example

[root@basecm11 ~]# request-remote-assistance

This tool helps securely set up a temporary ssh tunnel to

sandbox.brightcomputing.com.

Allow an NVIDIA engineer ssh access to the cluster? [Y/n]

This tool uses ICMP ping. Skip ping if your firewall does not allow it? [y/N]

Please enter the related Support Request (SR) or NVIDIA Enterprise Support number and any other related

additional information: [SR-XXXXX] or [XXXXXXXX]

End input with ctrl-d

SR-1234567 - the florbish is grommicking

Thank you.

Added temporary NVIDIA public key.

After the administrator has responded to the ...additional information... entry, and has typed
in the ctrl-d, the utility tries to establish the connection. The screen clears, and the secure tunnel opens
up, displaying the following notice:

REMOTE ASSISTANCE REQUEST

##

A connection has been opened to Bright Computing Support.

Closing this window will terminate the remote assistance

session.

--

Hostname: basecm11.NOFQDN

Connected on port: 7000

ctrl-c to terminate this session

BCM support automatically receives an e-mail alert that an engineer can now securely tunnel into the
cluster. The session activity is not explicitly visible to the administrator. Whether an engineer is logged
in can be viewed with the w command, which shows a user running the ssh tunnel, and—if the engi-
neer is logged in—another user session, along with whatever other sessions the administrator may be
running:

Example

[root@basecm11 ~]# w

13:35:00 up 97 days, 17 min, 2 users, load average: 0.28, 0.50, 0.52

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root pts/0 10.2.37.101 12:24 1:10m 0.14s 0.05s ssh -q -R :7013:127.0.0.1:22\
remote@sandbox.brightcomputing.com basecm11

root pts/1 localhost.locald 12:54 4.00s 0.03s 0.03s -bash

688 Day-to-day Administration

When the engineer has ended the session, the administrator may remove the secure tunnel with a
ctrl-c, and the display then shows:

Tunnel to sandbox.brightcomputing.com terminated.

Removed temporary NVIDIA public key.

[root@basecm11 ~]#

The BCM engineer is then no longer able to access the cluster.
The preceding tunnel termination output may also show up automatically, without a ctrl-c from

the administrator, within seconds after the connection session starts. In that case, it typically means that
a firewall is blocking access to SSH and WWW to BCM’s internet servers.

14.2.4 Getting Notified About Updates
Updates for the various NVIDIA Base Command Manager releases continue for some time after the
initial release is made public. The updates typically have bugfixes and improvements, and an adminis-
trator may wish to install an update when it becomes publicly available.

The release notes for BCM can be found online at:
https://docs.nvidia.com/base-command-manager/#release-notes

14.3 Backups
14.3.1 Cluster Installation Backup
BCM does not include facilities to create backups of a cluster installation. The cluster administrator is
responsible for deciding on the best way to back up the cluster, out of the many possible choices.

A backup method is strongly recommended, and checking that restoration from backup actually
works is also strongly recommended.

One option that may be appropriate for some cases is simply cloning the head node. A clone can be
created by PXE booting the new head node, and following the procedure in section 15.4.8.

When setting up a backup mechanism, it is recommended that the full filesystem of the head node
(i.e. including all software images) is backed up. Unless the regular node hard drives are used to store
important data, it is not necessary to back them up.

If no backup infrastructure is already in place at the cluster site, the following open source (GPL)
software packages may be used to maintain regular backups:

• Bacula: Bacula is a mature network based backup program that can be used to backup to a remote
storage location. If desired, it is also possible to use Bacula on nodes to back up relevant data that
is stored on the local hard drives. More information is available at http://www.bacula.org

Bacula requires ports 9101-9103 to be accessible on the head node. Including the following lines
in the Shorewall rules file for the head node allows access via those ports from an IP address of
93.184.216.34 on the external network:

Example

ACCEPT net:93.184.216.34 fw tcp 9101

ACCEPT net:93.184.216.34 fw tcp 9102

ACCEPT net:93.184.216.34 fw tcp 9103

The Shorewall service should then be restarted to enforce the added rules.

• rsnapshot: rsnapshot allows periodic incremental filesystem snapshots to be written to a local
or remote filesystem. Despite its simplicity, it can be a very effective tool to maintain frequent
backups of a system. More information is available at http://www.rsnapshot.org.

Rsnapshot requires access to port 22 on the head node.

https://docs.nvidia.com/base-command-manager/#release-notes
http://www.bacula.org
http://www.rsnapshot.org

14.3 Backups 689

14.3.2 Local Database And Data Backups And Restoration
The CMDaemon database is stored in the MySQL cmdaemon database, and contains most of the stored
settings of the cluster.

Monitoring data values are stored as binaries in the filesystem, under /var/spool/cmd/monitoring.
The administrator is expected to run a regular backup mechanism for the cluster to allow restores of

all files from a recent snapshot. As an additional, separate, convenience:

• For the CMDaemon database:

– the entire database is, by default, also backed up nightly on the cluster filesystem itself (“local
rotating backup”) for the last 7 days:

Example

[root@basecm11 ~]# ls -1t /var/spool/cmd/backup/

backup-Wed.sql.gz

backup-Tue.sql.gz

backup-Mon.sql.gz

backup-Sun.sql.gz

backup-Sat.sql.gz

backup-Fri.sql.gz

backup-Thu.sql.gz

– the CMDaemon database can also be manually backed up with the cmdaemon-backup com-
mand. This can be useful if the administrator would like to carry out an extensive change
on the cluster and would like the reassuring possibility of getting back the old configuration.
If no argument is supplied to cmdaemon-backup, then any existing default backup of the day
is overwritten. If a string is supplied, then the default backup- prefix is replaced. The re-
placement becomes the supplied string concatenated with a timestamp. This is most easily
illustrated with an example:

Example

[root@basecm11 ~]# cmdaemon-backup manual

[root@basecm11 ~]# ls /var/spool/cmd/backup/manual*

manual-24-08-28_13-19-59_Wed.sql.gz

The time stamp in the preceding example is of the form:
-<two-digit year>-<month>-<date>_<hour>-<minute>-<seconds>_

• For the monitoring data, the raw data records are not backed up locally, since these can get very
large. However, the configuration of the monitoring data, which is stored in the CMDaemon
database, is backed up for the last 7 days too.

Database Corruption Messages
A corrupted MySQL database is commonly caused by an improper shutdown of the node. To deal with
this, when starting up, MySQL checks itself for corrupted tables, and tries to repair itself.

• If MySQL cannot start, then CMDaemon on the head node cannot start.

• If MySQL can start, but corruption is detected in the database later on, then it keeps running
in read-only mode. The mysql health check on the head node fails, and an info message (sec-
tion 10.10.4) with an indication of the issue is seen. More details can be found in /var/log/

cmdaemon and using service status mysql.service or journalctl -xeu mysql.service.

The journalctl output might show something similar to the following output extract, if corrup-
tion is detected in the data (some output ellipsized):

/var/spool/cmd/monitoring
/var/log/cmdaemon
/var/log/cmdaemon

690 Day-to-day Administration

Example

[root@basecm11 ~]# journalctl -xeu mysql.service

...

mysqld[179281]:..546 [ERROR] [MY-012224] [InnoDB] Checksum mismatch in datafile: ./cmdaemon/....

mysqld[179281]:..546 [ERROR] [MY-012592] [InnoDB] Operating system error number 22 in a file....

mysqld[179281]:..546 [ERROR] [MY-012596] [InnoDB] Error number 22 means 'Invalid argument' ...

mysqld[179281]:..546 [ERROR] [MY-012131] [InnoDB] Could not find a valid tablespace file for....

mysqld[179281]:..546 [Warning] [MY-012049] [InnoDB] Cannot calculate statistics for table `c....

mysqld[179281]:..1192 [Warning] [MY-012049] [InnoDB] Cannot calculate statistics for table `....

mysqld[179281]:..1838 [ERROR] [MY-012224] [InnoDB] Checksum mismatch in datafile: ./cmdaemon....

mysqld[179281]:..1838 [ERROR] [MY-012592] [InnoDB] Operating system error number 22 in a fil....

mysqld[179281]:..1838 [ERROR] [MY-012596] [InnoDB] Error number 22 means 'Invalid argument' ...

mysqld[179281]:..1838 [ERROR] [MY-012131] [InnoDB] Could not find a valid tablespace file fo....

mysqld[179281]:..1838 [Warning] [MY-012049] [InnoDB] Cannot calculate statistics for table `....

mysqld[179281]:..2485 [Warning] [MY-012049] [InnoDB] Cannot calculate statistics for table `....

mysqld[179281]:..3131 [Warning] [MY-012049] [InnoDB] Cannot calculate statistics for table `....

mysqld[179281]:..3778 [ERROR] [MY-012224] [InnoDB] Checksum mismatch in datafile: ./cmdaemon....

mysqld[179281]:..3778 [ERROR] [MY-012592] [InnoDB] Operating system error number 22 in a fil....

A corrupt database can continue to run for a while, as write attempts pile up in cache. However,
eventually the database crashes and then BCM and other systems that rely on the database cannot carry
on. Preventing a database crash is therefore important, which is why automatic checks and repairs are
carried out when a database starts up.

To fix a corrupted database, a restoration from backup can be carried out, as explained in the next
section.

Restoring From The Local Backup
If the MySQL InnoDB repair tools do not automatically fix the problem, then the issue can normally be
resolved with some manual intervention for a failover or non-failover configuration.

If the head node is a part of a failover configuration, the dbreclone option (section 15.4.2) should
normally provide a CMDaemon and Slurm database that is current. The dbreclone option does not
clone the monitoring data.

Cloning extra databases: The file /cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.

template can be used as a template to create a file extradbclone.xml in the same directory. The
extradbclone.xml file can then be used to define additional databases to be cloned. Running the
/cm/local/apps/cmd/scripts/cm-update-mycnf script then updates /etc/my.cnf. The database can
then be cloned with this new MySQL configuration by running

cmha dbreclone <passive>
where <passive> is the hostname of the passive head node.

If the head node is not part of a failover configuration, then a restoration from local backup can be
done. The local backup directory is /var/spool/cmd/backup, with contents that look like (some text
elided):

Example

[root@solaris ~]# cd /var/spool/cmd/backup/

[root@solaris backup]# ls -l

total 280

...

-rw------- 1 root root 33804 Oct 10 04:02 backup-Mon.sql.gz

-rw------- 1 root root 33805 Oct 9 04:02 backup-Sun.sql.gz

/cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.template
/cm/local/apps/cluster-tools/ha/conf/extradbclone.xml.template
/cm/local/apps/cmd/scripts/cm-update-mycnf
/etc/my.cnf

14.4 Revision Control For Images 691

-rw------- 1 root root 33805 Oct 11 04:02 backup-Tue.sql.gz

...

The CMDaemon database snapshots are stored as backup-<day of week>.sql.gz In the example,
the latest backup available in the listing for CMDaemon turns out to be backup-Tue.sql.gz

The latest backup can then be ungzipped and piped into the MySQL database for the user cmdaemon.
The password, <password>, can be retrieved from /cm/local/apps/cmd/etc/cmd.conf, where it is con-
figured in the DBPass directive (Appendix C).

Example

gunzip backup-Tue.sql.gz

systemctl stop cmd #(just to make sure)

mysql -ucmdaemon -p<password> cmdaemon < backup-Tue.sql

Running “systemctl start cmd” should have CMDaemon running again, this time with a restored
database from the time the snapshot was taken. That means, that any changes that were done to BCM
after the time the snapshot was taken are no longer implemented.

Monitoring data values are not kept in a database, but in files (section 14.8).

14.4 Revision Control For Images
BCM version 7 introduced support for the implementations of Btrfs provided by the distributions. Btrfs
makes it possible to carry out revision control for images efficiently.

14.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images
Btrfs, often pronounced “butter FS”, is a Linux implementation of a copy-on-write (COW) filesystem.

A COW design for a filesystem follows the principle that, when blocks of old data are to be mod-
ified, then the new data blocks are written in a new location (the COW action), leaving the old, now
superseded, copy of the data blocks still in place. Metadata is written to keep track of the event so that,
for example, the new data blocks can be used seamlessly with the contiguous old data blocks that have
not been superseded.

This is in contrast to the simple overwriting of old data that a non-COW filesystem such as Ext3fs
carries out.

A result of the COW design means that the old data can still be accessed with the right tools, and
that rollback and modification become a natural possible feature.

“Cheap” revision control is thus possible.
Revision control for the filesystem is the idea that changes in the file system are tracked and can

be rolled back as needed. “Cheap” here means that COW makes tracking changes convenient, take up
very little space, and quick. For an administrator of BCM, cheap revision control is interesting for the
purpose of managing software images.

This is because for a non-COW filesystem such as Ext3fs, image variations take a large amount of
space, even if the variation in the filesystem inside the image is very little. On the other hand, image
variations in a COW filesystem such as Btrfs take up near-minimum space.

Thus, for example, the technique of using initialize and finalize scripts to generate such image vari-
ations on the fly (section 3.19.4) in order to save space, can be avoided by using a Btrfs partition to save
the full image variations instead.

“Expensive” revision control on non-COW filesystems is also possible. It is merely not recom-
mended, since each disk image takes up completely new blocks, and hence uses up more space. The
administrator will then have to consider that the filesystem may become full much earlier. The degree
of restraint on revision control caused by this, as well as the extra consumption of resources, means

/cm/local/apps/cmd/etc/cmd.conf

692 Day-to-day Administration

that revision control on non-COW filesystems is best implemented on test clusters only, rather than on
production clusters.

14.4.2 Btrfs Availability And Distribution Support
Btrfs has been part of the Linux kernel since kernel 2.6.29-rc1. Depending on which Linux distribution
is being used on a cluster, it may or may not be a good idea to use Btrfs in a production environment, as
in the worst case it could lead to data loss.

Btrfs has been officially removed from RHEL distributions since RHEL8.
Btrfs features are supported in SLES15, as described at https://www.suse.com/releasenotes/x86_

64/SUSE-SLES/15-SP1/index.html#TechInfo.Filesystems.
While no problems have been noticed with storing software images on Btrfs using BCM, it is highly

advisable to keep backups of important software images on a non-Btrfs filesystem when Btrfs is used.
An issue with using cm-clone-install with Btrfs is described on page 762.

14.4.3 Installing Btrfs To Work With Revision Control Of Images In BCM
Installation Of btrfs-progs
To install a Btrfs filesystem, the btrfs-progs packages must be installed from the distribution repository
first (some lines elided):

Example

[root@basecm11 ~]# yum install btrfs-progs

...

Resolving Dependencies

--> Running transaction check

---> Package btrfs-progs.x86_64 0:4.9.1-1.el7 will be installed

...

Total download size: 678 k

Installed size: 4.0 M

...

Complete!

Creating A Btrfs Filesystem
The original images directory can be moved aside first, and a new images directory created to serve as
a future mount point for Btrfs:

Example

[root@basecm11 ~]# cd /cm/

[root@basecm11 cm]# mv images images2

[root@basecm11 cm]# mkdir images

A block device can be formatted as a Btrfs filesystem in the usual way by using the mkfs.btrfs

command on a partition, and then mounted to the new images directory:

Example

[root@basecm11 cm]# mkfs.btrfs /dev/sdc1

[root@basecm11 cm]# mount /dev/sdc1 /cm/images

If there is no spare block device, then, alternatively, a file with zeroed data can be created, formatted
as a Btrfs filesystem, and mounted as a loop device like this:

Example

https://www.suse.com/releasenotes/x86_64/SUSE-SLES/15-SP1/index.html#TechInfo.Filesystems
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/15-SP1/index.html#TechInfo.Filesystems

14.4 Revision Control For Images 693

[root@basecm11 cm]# dd if=/dev/zero of=butter.img bs=1G count=20

20+0 records in

20+0 records out

21474836480 bytes (21 GB) copied, 916.415 s, 23.4 MB/s

[root@basecm11 cm]# mkfs.btrfs butter.img

WARNING! - Btrfs Btrfs v0.20-rc1 IS EXPERIMENTAL

WARNING! - see http://btrfs.wiki.kernel.org before using

fs created label (null) on butter.img

nodesize 4096 leafsize 4096 sectorsize 4096 size 20.00GB

Btrfs Btrfs v0.20-rc1

[root@basecm11 cm]# mount -t btrfs butter.img images -o loop

[root@basecm11 cm]# mount

...

/cm/butter.img on /cm/images type btrfs (rw,loop=/dev/loop0)

Migrating Images With cm-migrate-images

The entries inside the /cm/images/ directory are the software images (file trees) used to provision nodes.
Revision tracking of images in a Btrfs filesystem can be done by making the directory of a specific

image a subvolume. Subvolumes in Btrfs are an extension of standard unix directories with versioning.
The files in a subvolume are tracked with special internal Btrfs markers.

To have this kind of version tracking of images work, image migration cannot simply be done with a
cp -a or a mv command. That is, moving images from theimages2 directory in the traditional filesystem,
over to images in the images directory in the Btrfs filesystem command with the standard cp or mv

command is not appropriate. This is because the images are to be tracked once they are in the Btrfs
system, and are therefore not standard files any more, but instead extended, and made into subvolumes.

The migration for BCM software images can be carried out with the utility cm-migrate-image, which
has the usage:

cm-migrate-image <path to old image> <path to new image>

where the old image is a traditional directory, and the new image is a subvolume.

Example

[root@basecm11 cm]# cm-migrate-image /cm/images2/default-image /cm/images/default-image

The default-image directory, or more exactly, subvolume, must not exist in the Btrfs filesystem
before the migration. The subvolume is created only for the image basename that is migrated, which is
default-image in the preceding example.

In the OS, the btrfs utility is used to manage Btrfs. Details on what it can do can be seen in the
btrfs(8) man page. The state of the loop filesystem can be seen, for example, with:

Example

[root@basecm11 cm]# btrfs filesystem show /dev/loop0

Label: none uuid: 6f94de75-2e8d-45d2-886b-f87326b73474

Total devices 1 FS bytes used 3.42GB

devid 1 size 20.00GB used 6.04GB path /dev/loop0

Btrfs Btrfs v0.20-rc1

[root@basecm11 cm]# btrfs subvolume list /cm/images

ID 257 gen 482 top level 5 path default-image

The filesystem can be modified as well as merely viewed with btrfs. However, instead of using the
utility to modify image revisions directly, it is recommended that the administrator use BCM to manage
image version tracking, since the necessary functionality has been integrated into cmsh and Base View.

694 Day-to-day Administration

14.4.4 Using cmsh For Revision Control Of Images
Revision Control Of Images Within softwareimage Mode
The following commands and extensions can be used for revision control in the softwareimage mode
of cmsh:

• newrevision <parent software image name> "textual description"
Creates a new revision of a specified software image. For that new revision, a revision number is
automatically generated and saved along with time and date. The new revision receives a name
of the form:

<parent software image name>@<revision number>

A new Btrfs subvolume:

/cm/images/<parent software image name>-<revision number>

is created automatically for the revision. From now on, this revision is a self-contained software
image and can be used as such.

• revisions [-a|--all] <parent software image name>
Lists all revisions of specified parent software image in the order they ware created, and associates
the revision with the revision number under the header ID. The option -a|--all also lists revisions
that have been removed.

• list [-r|--revisions]

The option -r|--revisions has been added to the list command. It lists all revisions with their
name, path, and kernel version. A parent image is the one at the head of the list of revisions, and
does not have @<revision number> in its name.

• setparent [parent software image name] <revision name>
Sets a revision as a new parent. The action first saves the image directory of the current, possibly
altered, parent directory or subvolume, and then attempts to copy or snapshot the directory or
subvolume of the revision into the directory or subvolume of the parent. If the attempt fails, then
it tries to revert all the changes in order to get the directory or subvolume of the parent back to the
state it was in before the attempt.

• remove [-a|--all] [-d|--data] <parent software image name>
Runnning remove without options removes the parent software image. The option -a|--all re-
moves the parent and all its revisions. The option -d|--data removes the actual data. To run the
remove command, any images being removed should not be in use.

Revision Control Of Images Within category Mode
The category mode of cmsh also supports revision control.

Revision control can function in 3 kinds of ways when set for the softwareimage property at category
level.

To explain the settings, an example can be prepared as follows: It assumes a newly-installed cluster
with Btrfs configured and /cm/images migrated as explained in section 14.4.3. The cluster has a default
software image default-image, and two revisions of the parent image are made from it. These are
automatically given the paths default-image@1 and default-image@2. A category called storage is
then created:

Example

[basecm11->softwareimage]% newrevision default-image "some changes"

[basecm11->softwareimage]% newrevision default-image "more changes"

[basecm11->softwareimage]% revisions default-image

14.4 Revision Control For Images 695

ID Date Description

----- ------------------------------ ------------------------------

1 Fri, 04 Oct 2019 11:19:33 CEST some changes

2 Fri, 04 Oct 2019 11:19:52 CEST more changes

[basecm11->softwareimage]% list -r

Name (key) Path Kernel version

---------------- -------------------------- --------------------------

default-image /cm/images/default-image 3.10.0-957.1.3.el7.x86_64

default-image@1 /cm/images/default-image-1 3.10.0-957.1.3.el7.x86_64

default-image@2 /cm/images/default-image-2 3.10.0-957.1.3.el7.x86_64

[basecm11->softwareimage]% category add storage; commit

With the cluster set up like that, the 3 kinds of revision control functionalities in category mode can
be explained as follows:

1. Category revision control functionality is defined as unset
If the administrator sets the softwareimage property for the category to an image without any
revision tags:

Example

[basecm11->category]% set storage softwareimage default-image

then nodes in the storage category take no notice of the revision setting for the image set at
category level.

2. Category revision control sets a specified revision as default

If the administrator sets the softwareimage property for the category to a specific image, with a
revision tag, such as default-image@1:

Example

[basecm11->category]% set storage softwareimage default-image@1

then nodes in the storage category use the image default-image@1 as their image if nothing is
set at node level.

3. Category revision control sets the latest available revision by default
If the administrator sets the softwareimage property for the category to a parent image, but tagged
with the reserved keyword tag latest:

Example

[basecm11->category]% set storage softwareimage default-image@latest

then nodes in the storage category use the image default-image@2 if nothing is set at node level.
If a new revision of default-image is created later on, with a later tag (@3, @4, @5...) then the
property takes the new value for the revision, so that nodes in the category will use the new
revision as their image.

696 Day-to-day Administration

Revision Control For Images—An Example Session
This section uses a session to illustrate how image revision control is commonly used, with commentary
along the way. It assumes a newly installed cluster with Btrfs configured and /cm/images migrated as
explained in section 14.4.3.

First, a revision of the image is made to save its initial state:

[basecm11->softwareimage]% newrevision default-image "Initial state"

A new image default-image@1 is automatically created with a path /cm/images/default-image-1.
The path is also a subvolume, since it is on a Btrfs partition.

The administrator then makes some modifications to the parent image /cm/images/default-image,
which can be regarded as a “trunk” revision, for those familiar with SVN or similar revision control
systems. For example, the administrator could install some new packages, edit some configuration files,
and so on. When finished, a new revision is created by the administrator:

[basecm11->softwareimage]% newrevision default-image "Some modifications"

This image is then automatically called default-image@2 and has the path
/cm/images/default-image-2. If the administrator then wants to test the latest revision on nodes in
the default category, then this new image can be set at category level, without having to specify it for
every node in that category individually:

[basecm11->category]% set default softwareimage default-image@2

At this point, the content of default-image is identical to default-image@2. But changes done in
default-image will not affect what is stored in revision default-image@2.

After continuing on with the parent image based on the revision default-image@2, the administrator
might conclude that the modifications tried are incorrect or not wanted. In that case, the administrator
can roll back the state of the parent image default-image back to the state that was previously saved as
the revision default-image@1:

[basecm11->softwareimage]% setparent default-image default-image@1

The administrator can thus continue experimenting, making new revisions, and trying them
out by setting the softwareimage property of a category accordingly. Previously created revisions
default-image@1 and default-image@2 will not be affected by these changes. If the administrator
would like to completely purge a specific unused revision, such as default-image@2 for example, then
it can be done with the -d|--data option:

[basecm11->softwareimage]% remove -d default-image@2

The -d does a forced recursive removal of the default-image-2 directory, while a plain remove

without the -d option would simply remove the object from CMDaemon, but leave default-image-2

alone. This CMDaemon behavior is not unique for Btrfs—it is true for traditional filesystems too. It is
however usually very wasteful of storage to do this with non-COW systems.

14.5 BIOS And Firmware Management
14.5.1 Introduction
The main PC BIOS firmware is nowadays a subset of the more general firmware of a system. In older ver-
sions of BCM, BIOS and firmware management relied on proprietary vendor implementations. While
such legacy implementations are still in use at the time of writing of this section (December 2023), the
modern way of managing BIOS and firmware is with the Redfish standard.

The Redfish standard is an industry API standard intended for RESTful management of large num-
bers of nodes. It is supported by Dell, HPE, Intel, and others.

14.5 BIOS And Firmware Management 697

Redfish uses a pluggable framework architecture with JSON. This makes adding new properties
easier, and also makes isolating, debugging, and fixing issues easier.

The CMDeamon front ends of cmsh and Base View provide a front end for BIOS and firmware man-
agement via Redfish.

14.5.2 BIOS Management With BCM JSON Configuration Templates In Redfish
For BIOS management via Redfish, the JSON configuration is specified per vendor. In BCM the files are
kept under:

/cm/local/apps/cm-bios-tools/templates/

By default, BCM ships with the following configuration file templates:

• dell_14g.json

• dell_15g-amd.json

• dell_15g-intel.json

• dell_r730.json

• hpe_dl110.json

• hpe_dl380g10.json

Example

[root@basecm11 ~]# ls -al /cm/local/apps/cm-bios-tools/templates/

total 280

drwxr-xr-x 2 root root 148 Nov 15 08:24 .

drwxr-xr-x 6 root root 64 Nov 15 08:24 ..

-rw-r--r-- 1 root root 5008 Oct 25 19:24 dell_14g.json

-rw-r--r-- 1 root root 6411 Oct 25 19:24 dell_15g-amd.json

-rw-r--r-- 1 root root 20493 Oct 25 19:24 dell_15g-intel.json

-rw-r--r-- 1 root root 7052 Oct 25 19:24 dell_r730.json

-rw-r--r-- 1 root root 211366 Oct 25 19:24 hpe_dl110.json

-rw-r--r-- 1 root root 24448 Oct 25 19:24 hpe_dl380g10.json

[root@basecm11 templates]# cat dell_r730.json

{

"displayName": "Dell Inc. - PowerEdge R730",

"description": "Dell Inc. - PowerEdge R730 - BIOS settings template - v1.0.0",

"properties": [

{

"name": "BootMode",

"displayName": "Boot Mode",

"description": "This field determines the boot mode of the system.\n\nSelecting 'UEFI' enables\

booting to Unified Extensible Firmware Interface (UEFI) capable operating systems.\n\nSelecting\

'BIOS' (the default) ensures compatibility with operating systems that do not support UEFI.",

"type": "Enumeration",

"options": [

{

"displayName": "BIOS",

"value": "Bios"

},

{

"displayName": "UEFI",

/cm/local/apps/cm-bios-tools/templates/

698 Day-to-day Administration

"value": "Uefi"

}

],

"pos": {

"g": 0,

"r": 0,

"o": 0,

"w": 6

}

},

{

"name": "NodeInterleave",

"displayName": "Node Interleaving",

"description": "When set to Enabled, memory interleaving is supported if a symmetric memory\

configuration is installed. When set to Disabled, the system supports Non-Uniform Memory Access\

(NUMA) (asymmetric) memory configurations.\n\nOperating Systems that are NUMA-aware understand the\

distribution of memory in a particular system and can intelligently allocate memory in an optimal\

manner. Operating Systems that are not NUMA aware could allocate memory to a processor that is not\

local resulting in a loss of performance. Node Interleaving should only be enabled for Operating\

Systems that are not NUMA aware.\n\nDefault: Disabled",

"type": "Enumeration",

"options": [

{

"displayName": "Enabled",

"value": "Enabled"

},

{

"displayName": "Disabled",

"value": "Disabled"

}

],

"pos": {

"g": 0,

"r": 0,

"o": 1,

"w": 6

}

},

{

"name": "SnoopMode",

"displayName": "Snoop Mode",

"description": "Allows tuning of memory performances under different memory bandwidths. The optimal\

Snoop Mode setting is highly dependent on workload type.\n\nEarly Snoop is best used for latency sensitive\

workloads. This setting offers the best balance between workload effects.\n\nHome Snoop is best used for\

NUMA workloads that need maximum local and remote memory bandwidth.\n\nCluster on Die is best used for\

highly NUMA optimized workloads. This setting offers the best case local memory latency, but worst case\

remote latency.\n\nCluster On Die is only available when Node Interleaving is Disabled.\n\nOpportunistic\

Snoop Broadcast, available on select processor models, works well for workloads of mixed NUMA optimization.\

It offers a good balance of latency and bandwidth.\n\nDefault: Early Snoop",

"type": "Enumeration",

"options": [

{

"displayName": "Early Snoop",

"value": "EarlySnoop"

},

14.5 BIOS And Firmware Management 699

...

BCM BIOS Configuration States And Operations Overview
In BCM, a BIOS configuration of a node or category can be thought of as being in one of 4 possible
states, with 3 possible operations that apply the changes to the states. This is shown by the following
schematic:

cmsh or commit bios apply reboot
BCM --------------> CMDaemon database -----------> BIOS (pending) -----------> BIOS (live)

View

For example, the cluster administrator might adjust the BIOS configuration for the node or category
in cmsh. The state set within cmsh then becomes a state stored within the CMDaemon database after the
commit operation of cmsh is carried out.

The cluster administrator can then apply the BIOS configuration that is stored in the CMDaemon
database by running the bios apply operation from within cmsh. The BIOS configuration is then taken
up as the “BIOS (pending)”state stored in the BIOS firmware of the node (or category).

Finally, the cluster administrator can implement the BIOS, so that it runs on the live node (or cat-
egory). This happens when carrying out a reboot operation for that node (or category). The BIOS
configuration that was a pending BIOS setting then becomes a live BIOS setting.

The details of how these changes can be carried out are explained in the following sections.

Example BIOS Configuration Session In cmsh

In cmsh, the BIOS settings can be viewed, compared, and applied at the device mode level or category
mode level.

The BIOS settings for the various states can alternatively be managed using the cm-bios-manage

utility (page 702). However the cmsh or Base View front ends to cm-bios-manage are easier to use.

Model: The model must be set for the BIOS settings before other BIOS settings can be managed. If it
is not set, then the status command in biossettings displays an error, as indicated by the following
cmsh session:

Example

[basecm11->device[node002]->biossettings]% status

Parameter Configured Pending Live

-------------------------------- ---------- ------- ----

Pending errors:

No model defined

It can be set with the help of tab-completion:

Example

[basecm11->device[node002]->biossettings]% set model<tab><tab>
dell_r730 hpe_dl380

[basecm11->device[node002]->biossettings]% set model hpe_dl380

[basecm11->device*[node002*]->biossettings*]% commit

700 Day-to-day Administration

Viewing BIOS Parameters: Each BIOS parameter can now have its value listed and compared by state.
The status command shows a list of the parameters, and their values are displayed for each state.

So, the state columns show:

1. the BIOS parameter as stored in the CMDaemon database (the Configured column),

2. the BIOS parameter as stored on the node itself (the Pending column),

3. the BIOS parameter as implemented on the node itself (the Live column)

Example

[basecm11->device[node002]]% biossettings

[basecm11->device[node002]->biossettings]% status

Parameter Configured Pending Live

--- -------------- ------- -----------------------------

High Precision Event Timer (HPET) ACPI Support < default > - Enabled

Adjacent Sector Prefetch < default > - Enabled

Boot Mode < default > - UEFI Mode

Boot Order Policy < default > - Retry Boot Order Indefinitely

Channel Interleaving < default > - Enabled

Collaborative Power Control < default > - Enabled

Consistent Device Naming < default > - CDN Support for LOMs and Slots

Custom POST Message < default > -

LLC Prefetch < default > - Disabled

Local/Remote Threshold < default > - Auto

Maximum Memory Bus Frequency < default > - Auto

Maximum PCI Express Speed < default > - Per Port Control

Memory Mirroring Mode < default > - Full Mirror

Memory Patrol Scrubbing < default > - Enabled

Memory Refresh Rate < default > - 1x Refresh

Minimum Processor Idle Power Package C-State < default > - Package C6 (retention) State

Minimum Processor Idle Power Core C-State < default > - C6 State

Mixed Power Supply Reporting < default > - Enabled

Network Boot Retry Support < default > - Enabled

Node Interleaving < default > - Disabled

NUMA Group Size Optimization < default > - Flat

Embedded NVM Express Option ROM < default > - Enabled

NVMe PCIe Resource Padding < default > - Normal

Persistent Memory Address Range Scrub < default > - Enabled

POST Verbose Boot Progress < default > - Disabled

Power-On Delay < default > - No Delay

Server Asset Tag < default > -

Network Boot Retry Count < default > - 20

In the preceding example, each parameter of the configured column has a setting of < default >.
This means that the value for the configured setting is a null value, as achieved by running the clear

command for that setting. A BIOS setting configured with < default > as a value does nothing based
on that configuration setting when doing BIOS management operations. Thus, for example, the setting
for Boot Mode in the Configured column can only be made to cause a change in the Pending or Live
columns if it takes a value that is not default.

Changing And Checking Changes For BIOS Parameters: Thus, if the states for a node are as follows
for the Boot Mode parameter:

Example

14.5 BIOS And Firmware Management 701

[basecm11->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"

Parameter Configured Pending Live

--- ---------------- --------------- ----------------

Boot Mode < default > - UEFI Mode

then have the Live state value change from UEFI Mode to Legacy BIOS Mode:

1. the first step is to change the Configured state:

Example

[basecm11->device[node002]->biossettings]% set boot mode<tab><tab>
legacy bios mode uefi mode

[basecm11->device[node002]->biossettings]% set boot mode legacy bios mode

[basecm11->device*[node002]->biossettings*]% commit

[basecm11->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"

Parameter Configured Pending Live

--- ---------------- --------------- ----------------

Boot Mode Legacy BIOS Mode - UEFI Mode

• Beside using the status command within the biossettings submode, the existing BIOS
states that are configured (in CMDaemon) and detected (on the live node) can also be checked
with the bios check command at node or category level:

Example

[basecm11->device[node002]->biossettings]% ..

[basecm11->device[node002]]% bios check

Result Parameter Configured Detected

---------- -------------------------------- -------------------------------- ----------

different BootMode LegacyBios Uefi

The bios check command shows a result if there is a difference between the configured (CM-
Daemon) and detected (live) configuration.

2. The next step is to apply the configuration change to the Pending BIOS state:

Example

[basecm11->device[node002]]% bios apply

Node Result Output Error

---------------- -------- -------------------------------- --------------------------------

node002 good

[basecm11->device[node002]]% biossettings

[basecm11->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"

Parameter Configured Pending Live

--- ---------------- ---------------- ---------------

Boot Mode Legacy BIOS Mode Legacy BIOS Mode UEFI Mode

3. Finally, a reboot causes the Pending value to be made live:

Example

[basecm11->device[node002]->biossettings]% ..

[basecm11->device[node002]]% reboot

[cluster administrator waits for the node to finish rebooting]

702 Day-to-day Administration

The BIOS change to the Live state is then complete. The Pending and Configured state values are
cleared automatically too, so that the states for the Boot Mode parameter now show:

Example

[basecm11->device[node002]->biossettings]% status |head -2 ; status |grep "Boot Mode"

Parameter Configured Pending Live

--- ---------------- --------------- ----------------

Boot Mode < default > - Legacy BIOS Mode

BIOS Configuration Via cm-bios-manage

This section can usually be skipped because the administrator is not expected to use the cm-bios-manage
utility directly.

This is because it is relatively low-level, and because the easiest way for a cluster administrator to
manage the BIOS of a cluster via Redfish is usually via the cmsh (page 699) or Base View front ends.

The cm-bios-manage help text is:

[root@basecm11 ~]# /cm/local/apps/cm-bios-tools/bin/cm-bios-manage -h

usage: cm-bios-manage [-h]

[-a | -c | -f VENDOR_MODEL | -p VENDOR_MODEL | -P VENDOR_MODEL PROFILE | -t |

-T VENDOR_MODEL] [-l] [-d]

Script used by cmd to manage BIOS settings.

optional arguments:

-h, --help show this help message and exit

-a, --apply apply settings.

-c, --check check defined settings.

-f VENDOR_MODEL, --fetch VENDOR_MODEL

fetch settings based on JSON template of specified model.

-p VENDOR_MODEL, --profiles VENDOR_MODEL

list all profiles for the specified model.

-P VENDOR_MODEL PROFILE, --profile VENDOR_MODEL PROFILE

display profile for the specified model and specified profile.

-t, -m, --vendor-types, --models

list all supported HW models.

-T VENDOR_MODEL, --template VENDOR_MODEL

display JSON template of specified HW model.

-l, --live fetch live settings, instead of pending settings.

used with --fetch and --check options.

-d, --debug enable debug messages.

A session with options might run as follows:

Example

[root@basecm11 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -t

[

"dell_r730",

"hpe_dl380"

]

[root@basecm11 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -p hpe_dl380

[

"test"

]

[root@basecm11 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -P hpe_dl380 test

14.5 BIOS And Firmware Management 703

{

"test": "xyz"

}

[root@basecm11 ~]# /cm/local/apps/cm-bios-tools/python/cm-bios-manage -T hpe_dl380

[

{

"displayName": "High Precision Event Timer (HPET) ACPI Support",

"name": "AcpiHpet",

"pos": {

"w": 12,

"r": 0,

"o": 0,

"g": 0

},

...

14.5.3 Updating BIOS And Firmware Versions
There are two ways that the firmware can be updated. A legacy way based on DOS tools (page 703),
and a more recent way, based on CMDaemon and Redfish (page 704).

Updating A BIOS Via DOS Tools
The legacy way of upgrading a BIOS to a new version involves using the DOS tools that were supplied
with the BIOS to flash a new BIOS. The flash tool and the BIOS image must be copied to a DOS image.
The file autoexec.bat should be altered to invoke the flash utility with the correct parameters. In case
of doubt, it can be useful to boot the DOS image and invoke the BIOS flash tool manually. Once the
correct parameters have been determined, they can be added to the autoexec.bat.

After a BIOS upgrade, the contents of the NVRAM may no longer represent a valid BIOS config-
uration because different BIOS versions may store a configuration in different formats. It is therefore
recommended to also write updated NVRAM settings immediately after flashing a BIOS image.

The next section describes how to boot the DOS image.

Booting the DOS image: To boot the DOS image over the network, it first needs to be copied to soft-
ware image’s /boot directory, and must be world-readable.

Example

cp flash.img /cm/images/default-image/boot/bios/flash.img

chmod 644 /cm/images/default-image/boot/bios/flash.img

An entry is added to the PXE boot menu to allow the DOS image to be selected. This can easily
be achieved by modifying the contents of /cm/images/default-image/boot/bios/menu.conf, which
is by default included automatically in the PXE menu. By default, one entry Example is included in the
PXE menu, which is however invisible as a result of the MENU HIDE option. Removing the MENU HIDE

line will make the BIOS flash option selectable. Optionally the LABEL and MENU LABEL may be set to an
appropriate description.

The option MENU DEFAULT may be added to make the BIOS flash image the default boot option. This
is convenient when flashing the BIOS of many nodes.

Example

LABEL FLASHBIOS

KERNEL memdisk

APPEND initrd=bios/flash.img

MENU LABEL ^Flash BIOS

MENU HIDE

MENU DEFAULT

/cm/images/default-image/boot/bios/menu.conf

704 Day-to-day Administration

The bios/menu.conf file may contain multiple entries corresponding to several DOS images to allow
for flashing of multiple BIOS versions or configurations.

Firmware Configuration And Updates Via CMDaemon
For systems that support the Redfish protocol, such as HPE iLO5 and DGX H100, firmware management
requires setting firmwaremanagemode, within a bmcsettings submode.

In addition, for DGX hardware, after the firmware has been flashed over to it, an activation based
on an AC power cycle is required. Details on this are given (page 710) as part of the DGX installation
example later on (page 706).

Setting firmwaremanagemode: The value of firmwaremanagemode is selected appropriately by the ad-
ministrator according to the node hardware:

Example

[basecm11->device*[node001*]->bmcsettings*]% set firmwaremanagemode <TAB><TAB>
auto b200 gb200 gb200sw h100 ilo none

The bmcsettings submode can be accessed and set within an instance of the device, category, or
partition modes.

Running firmware operations and options: After firmwaremanagemode has been set, the firmware

command can be run under the device mode of cmsh to carry out Redfish protocol updates. Firmware
updated via Redfish need not be just the PC main system BIOS, but can also be the flashable software of
subsystems, for example: NICs.

The help firmware command provides a help page covering the operations and options for the
firmware command. Some of them are described next:

• The firmware command includes the following operations:

– info: provides information on the firmwares available on the head node, available for up-
loading to nodes. By default these are files that the cluster administrator has picked up from
the vendor and has placed under /cm/local/apps/cmd/etc/htdocs/bios/firmware/.

– list: (only for iLO) provides a list of firmware states on specified nodes.

– upload: (only for iLO) takes a specified firmware from the files listed by the info option, and
copies it over to the specified nodes. For an HPE iLO system, the upload is carried out to a
special flash storage, only visible to the BIOS and Redfish queries. After it is in that special
flash location, it can be flashed to where the firmware is actually run.

– remove: (only for iLO) removes a specified firmware from the special flash storage of specified
nodes

– flash : carries out the flashing of the firmware from the flash storage to the location where
the firmware runs, for the specified nodes

– status: shows the status of the flash operation. A table is displayed with rows listing the
component, version, and state, among other items. The State column of the output can show
the following values:

* pending: the flash operation is pending

* exception: the flash operation failed during execution

* flashing: the flash operation is being executed

* completed: the flash operation succeeded

* current: the firmware of the listed component with the listed version is activated

/cm/local/apps/cmd/etc/htdocs/bios/firmware/

14.5 BIOS And Firmware Management 705

• The firmware command also includes the following options:

– --targets: (only for DGX hosts) specifies names for particular component firmware targets.
Without this option, the default is that updates are carried out automatically only for newer
firmware components from the firmware package files. Overriding the default should not be
needed, and is typically not recommended. Specifying --targets list -v lists the possible
components.

– --force: (only for DGX hosts) needed to carry out a downgrade, and also needed
for some other DGX firmware cases as described in https://docs.nvidia.com/dgx/

dgxh100-fw-update-guide/sequence.html#update-steps

– --dry-run: (only for DGX hosts) pretends to carry out an installation, so that the administra-
tor can get an idea of what components are affected from the output of the mock installation
run

An HP iLO5 firmware upgrade example: The following session shows node001 getting uploaded and
flashed with a firmware, and then having the firmware removed.

Example

[basecm11->device]% firmware info

Device Filename Component Version State Progress Result Size Date

-------- ------------ ---------------- -------- ---------- -------- -------- -------- ---------------------

basecm11 iLO5-2.42 iLO5 2.42 undefined N/A 8.6MiB 02/28/2022, 11:22:55

basecm11 iLO5-2.43 iLO5 2.43 undefined N/A 8.7MiB 02/28/2022, 11:22:55

basecm11 iLO5-2.44 iLO5 2.44 undefined N/A 8.8MiB 02/28/2022, 11:22:55

basecm11 iLO5-2.45 iLO5 2.45 undefined N/A 8.9MiB 02/28/2022, 11:22:55

[basecm11->device]% firmware list -n node001

[basecm11->device]% firmware upload iLO5-2.42 -n node001

Device Result Output Error

-------- -------- ---------------------- --------------------------------

node001 good uploading: iLO5-2.42

[basecm11->device]% firmware list -n node001

Device Filename Component Version State Progress Result Size Date

-------- ------------ ---------------- -------- ---------- -------- -------- -------- ---------------------

node001 iLO5-2.42 iLO5 2.42 completed N/A 8.6MiB 02/28/2022, 11:23:31

[basecm11->device]% firmware flash iLO5-2.42 -n node001

Device Result Output Error

-------- -------- ---------------------- --------------------------------

node001 good flashing: iLO5-2.42

[basecm11->device]% firmware status -n node001

Device Filename Component Version State Progress Result Size Date

-------- ------------ ---------------- -------- --------- -------- -------- -------- ---------------------

node001 iLO5 2.42 flashing 35.6% N/A 02/28/2022, 11:27:27

[basecm11->device]% firmware status -n node001

Device Filename Component Version State Progress Result Size Date

-------- ------------ ---------------- -------- ---------- -------- -------- -------- ---------------------

node001 iLO5 2.42 completed N/A N/A 02/28/2022, 11:27:27

[basecm11->device]% firmware remove iLO5-2.42 -n node001

https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/sequence.html#update-steps
https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/sequence.html#update-steps

706 Day-to-day Administration

Device Result Output Error

-------- -------- ---------------------- --------------------------------

node001 good removed: iLO5-2.42

[basecm11->device]% firmware list -n node001

A GPU tray upgrade example on the DGX H100:

Obtaining and placing the firmware packages on the cluster: Firmware for the DGX H100 is avail-
able for the motherboard tray (chassis) components, and for the GPU tray components.

Firmware packages for the DGX H100 can be obtained via the DGX support portal, which can be
reached from:

https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html#firmware-update-prerequisites.
The packages are available as .fwpkg packages. They should be placed in the head node directory at
/cm/local/apps/cmd/etc/htdocs/bios/firmware/

under the appropriate existing subdirectory for the platform type:

Example

[basecm11 ~]# ls -l /cm/local/apps/cmd/etc/htdocs/bios/firmware/h100

-rw-r--r-- 1 root root 135723563 Dec 12 14:27 nvfw_DGX-H100_0003_230817.1.1_custom_prod-signed.fwpkg

-rw-r--r-- 1 root root 135723563 Dec 12 14:27 nvfw_DGX-H100_0003_230905.1.0_custom_prod-signed.fwpkg

-rw-r--r-- 1 root root 135723563 Dec 12 14:27 nvfw_DGX-H100_0003_230920.1.0_custom_prod-signed.fwpkg

-rw-r--r-- 1 root root 106091440 Dec 12 14:27 nvfw_DGX-HGX-H100x8_0002_230705.1.1_prod-signed.fwpkg

Configuring BMC settings in BCM: The BMC interface and settings should be configured for the
DGX H100. Typically this requires:

• adding a BMC network (section 3.2.2)

• configuring its BMC settings (section 3.7.2) to be able to carry out the Redfish protocol. This means
setting the:

– username

– userid

– password

– firmware mode for Redfish

• adding an interface to the network for the node (section 3.7.1).

Example

[basecm11 ~]# cmsh

[basecm11]% network

[basecm11->network]% add bmcnet

[basecm11->network*[bmcnet*]]% set baseaddress 10.148.0.0

[basecm11->network*[bmcnet*]]% set domainname bmc.cluster

[basecm11->network*[bmcnet*]]% commit

[basecm11->network[bmcnet]]% partition

[basecm11->partition[base]]% bmcsettings

[basecm11->partition[base]->bmcsettings]% set username admin

[basecm11->partition*[base*]->bmcsettings*]% set userid 0

[basecm11->partition*[base*]->bmcsettings*]% set password < password>

https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html#firmware-update-prerequisites
/cm/local/apps/cmd/etc/htdocs/bios/firmware/

14.5 BIOS And Firmware Management 707

[basecm11->partition*[base*]->bmcsettings*]% set firmwaremanagemode <TAB><TAB>
auto b200 gb200 gb200sw h100 ilo none

[basecm11->partition*[base*]->bmcsettings*]% set firmwaremanagemode h100

[basecm11->partition*[base*]->bmcsettings*]% commit

[basecm11->partition[base]->bmcsettings]% device

[basecm11->device]% interfaces node001

[basecm11->device[node001]->interfaces]% add bmc

[basecm11->device[node001]->interfaces]% add bmc ipmi0

[basecm11->device*[node001*]->interfaces*[ipmi0*]]% set network bmcnet

[basecm11->device*[node001*]->interfaces*[ipmi0*]]% set ip 10.148.0.1

Managing, installing and updating the firmware package in BCM: BCM can then display infor-
mation about the files in that head node firmware directory with the firmware info command:

Example

[basecm11->device]% firmware info

Device Filename Component Version State Progress ...

-------- ---------------------------- ----------------- ------------------- ---------- --------

basecm11 nvfw_DGX-H100_...fwpkg DGX-H100-Chassis DGX-H100_0003_2... available N/A

basecm11 nvfw_DGX-H100_...fwpkg DGX-H100-Chassis DGX-H100_0003_2... available N/A

basecm11 nvfw_DGX-HGX-H100x8_...fwpkg DGX-H100-GPU DGX-HGX-H100x8_... available N/A

The firmware status command displays information on the state of the firmware components run-
ning on the node:

Example

[basecm11->device]% firmware status -n node001

Device Filename Component Version State Progress Result Size Date

------- -------- ------------------------- -------------------- ------- --------- ------ ---- ----

node001 CPLDMB_0 0.2.1.0 current N/A N/A

node001 CPLDMID_0 0.2.1.0 current N/A N/A

node001 EROT_BIOS_0 00.04.0020.0000_n00 current N/A N/A

node001 EROT_BMC_0 00.04.0020.0000_n00 current N/A N/A

node001 HGX_FW_BMC_0 HGX-22.10-1-rc1 current N/A N/A

node001 HGX_FW_ERoT_BMC_0 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_FPGA_0 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_NVSwitch_0 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_NVSwitch_1 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_NVSwitch_2 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_NVSwitch_3 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_ERoT_PCIeSwitch_0 00.02.0100.0000_n00 current N/A N/A

node001 HGX_FW_FPGA_0 2.0A current N/A N/A

node001 HGX_FW_GPU_SXM_1 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_2 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_3 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_4 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_5 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_6 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_7 96.00.70.00.01 current N/A N/A

node001 HGX_FW_GPU_SXM_8 96.00.70.00.01 current N/A N/A

node001 HGX_FW_NVSwitch_0 96.00.3F.00.01 current N/A N/A

node001 HGX_FW_NVSwitch_1 96.00.3F.00.01 current N/A N/A

node001 HGX_FW_NVSwitch_2 96.00.3F.00.01 current N/A N/A

node001 HGX_FW_NVSwitch_3 96.00.3F.00.01 current N/A N/A

708 Day-to-day Administration

node001 HGX_FW_PCIeRetimer_0 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_1 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_2 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_3 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_4 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_5 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_6 2.7.0 current N/A N/A

node001 HGX_FW_PCIeRetimer_7 2.7.0 current N/A N/A

node001 HGX_FW_PCIeSwitch_0 1.7.5A current N/A N/A

node001 HostBIOS_0 01.00.00 current N/A N/A

node001 HostBMC_0 23.00.00 current N/A N/A

node001 PCIeRetimer_0 1.30.0 current N/A N/A

node001 PCIeRetimer_1 1.30.0 current N/A N/A

node001 PCIeSwitch_0 0.0.1 current N/A N/A

node001 PCIeSwitch_1 1.0.1 current N/A N/A

node001 PSU_0 0202.0200.0200 current N/A N/A

node001 PSU_1 0202.0200.0200 current N/A N/A

node001 PSU_2 0202.0200.0200 current N/A N/A

node001 PSU_3 0202.0201.0202 current N/A N/A

node001 PSU_4 0202.0201.0203 current N/A N/A

node001 PSU_5 0202.0200.0200 current N/A N/A

Components can be updated by installing associated firmware packages with the firmware flash

command. For example, the GPU tray firmware can be installed with one of the nvfw_dgx-hgx-h100x8*

packages:

Example

[basecm11->device[node001]]% firmware flash <TAB><TAB>
nvfw_dgx-h100_0003_230817.1.1.fwpkg

nvfw_dgx-h100_0003_230920.1.0.fwpkg

nvfw_dgx-hgx-h100x8_0002_230705.1.1.fwpkg

[basecm11->device[node001]]% firmware flash nvfw_dgx-hgx-h100x8_0002_230705.1.1.fwpkg

Device flashing Result Error

---------------- -- -------- ----------

node001 nvfw_DGX-HGX-H100x8_0002_230705.1.1.fwpkg good

The firmware status command then shows the installation progress for the GPU tray components
during flashing:

Example

[basecm11->device]% firmware -n node001 status

Device Filename Component Version State Progress...

------- -------------------- ------------------------- -------------------- --------- --------

node001 CPLDMB_0 0.2.1.0 current N/A

node001 CPLDMID_0 0.2.1.0 current N/A

node001 EROT_BIOS_0 00.04.0020.0000_n00 current N/A

node001 EROT_BMC_0 00.04.0020.0000_n00 current N/A

node001 HostBIOS_0 01.00.00 current N/A

node001 HostBMC_0 23.00.00 current N/A

node001 PCIeRetimer_0 1.30.0 current N/A

node001 PCIeRetimer_1 1.30.0 current N/A

node001 PCIeSwitch_0 0.0.1 current N/A

node001 PCIeSwitch_1 1.0.1 current N/A

node001 PSU_0 0202.0200.0200 current N/A

14.5 BIOS And Firmware Management 709

node001 PSU_1 0202.0200.0200 current N/A

node001 PSU_2 0202.0200.0200 current N/A

node001 PSU_3 0202.0201.0202 current N/A

node001 PSU_4 0202.0201.0203 current N/A

node001 PSU_5 0202.0200.0200 current N/A

node001 nvfw_DGX-HG...fwpkg HGX_FW_BMC_0 HGX-22.10-1-rc1 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_BMC_0 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_FPGA_0 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_NVSwitch_0 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_NVSwitch_1 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_NVSwitch_2 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_NVSwitch_3 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_ERoT_PCIeSwitch_0 00.02.0100.0000_n00 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_FPGA_0 2.0A flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_1 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_2 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_3 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_4 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_5 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_6 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_7 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_GPU_SXM_8 96.00.70.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_NVSwitch_0 96.00.3F.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_NVSwitch_1 96.00.3F.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_NVSwitch_2 96.00.3F.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_NVSwitch_3 96.00.3F.00.01 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_0 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_1 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_2 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_3 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_4 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_5 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_6 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeRetimer_7 2.7.0 flashing 39.1%

node001 nvfw_DGX-HG...fwpkg HGX_FW_PCIeSwitch_0 1.7.5A flashing 39.1%

The non-GPU-related firmware components are not updated.
If the firmware flash command stage has completed its run, then when the firmware status com-

mand is run, the Component and Version columns show output indicating that the firmware version
is transitioning. The rows that have to do with the GPU firmware status are the rows with the string
nvfw_DGX-HG in the Filename column. Those GPU firmware rows have Component and Version column
entries such as:

Example

[basecm11->device[node001]]% firmware status| head -2| cut -b66-133; firmware status| grep nvfw| cut -b66-133

Component Version

------------------------- --

HGX_FW_BMC_0 HGX-22.10-1-rc1 -> HGX-22.10-1-rc44

HGX_FW_ERoT_BMC_0 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_FPGA_0 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_NVSwitch_0 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_NVSwitch_1 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_NVSwitch_2 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_NVSwitch_3 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

HGX_FW_ERoT_PCIeSwitch_0 00.02.0100.0000_n00 -> 00.02.0134.0000_n00

710 Day-to-day Administration

HGX_FW_FPGA_0 2.0A -> 2.2C

HGX_FW_GPU_SXM_1 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_2 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_3 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_4 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_5 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_6 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_7 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_GPU_SXM_8 96.00.70.00.01 -> 96.00.74.00.01

HGX_FW_NVSwitch_0 96.00.3F.00.01 -> 96.10.3F.00.01

HGX_FW_NVSwitch_1 96.00.3F.00.01 -> 96.10.3F.00.01

HGX_FW_NVSwitch_2 96.00.3F.00.01 -> 96.10.3F.00.01

HGX_FW_NVSwitch_3 96.00.3F.00.01 -> 96.10.3F.00.01

HGX_FW_PCIeRetimer_0 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_1 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_2 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_3 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_4 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_5 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_6 2.7.0 -> 2.7.9

HGX_FW_PCIeRetimer_7 2.7.0 -> 2.7.9

HGX_FW_PCIeSwitch_0 1.7.5A -> 1.7.5F

In the preceding, the grep command is to select just the GPU-related rows, and the cut commands
are used to remove some columns, to make the output clearer to the reader.

The firmware status GPU firmware rows also have the following output columns:

• the State column, which shows Pending if there are activation steps still required to complete the
firmware update

• the Result column, which suggests the recommended action to take to activate the firmware

Example

[basecm11->device[node001]]% firmware status #other rows and columns omitted for readability

State Progress Result Size Date

-------- -------- ------------------------------------ -------- --------

pending N/A success: AC power cycle to activate 1.22KiB

pending N/A success: AC power cycle to activate 1.22KiB

pending N/A success: AC power cycle to activate 1.22KiB

...

AC and DC power cycling: As suggested in the Result column in the preceding example, an AC

power cycle must then be carried out on the node to activate the GPU firmware with the new versions.
The AC power cycle tag is a part of Redfish terminology, and it implies that all the AC power inputs
need to be cut off. This can be carried out via a PDU powering off the entire system, or it can be done
physically, by hand, by pulling out all the mains (AC) power leads to the system.

A regular power reset command run from the device mode of cmsh, which is a board level (DC)
power cycle by default, is not enough to initialize some of the components for the DGX H100.

Details on firmware activation for the DGX H100 can be found at https://docs.nvidia.com/dgx/
dgxh100-fw-update-guide/about.html#firmware-update-activation.

Successful activation and completed state confirmations: After the power cycle, the output from
firmware status indicates that the firmware now active on the node matches that of the .fwpkg file
version.

https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html#firmware-update-activation
https://docs.nvidia.com/dgx/dgxh100-fw-update-guide/about.html#firmware-update-activation

14.5 BIOS And Firmware Management 711

It does this by displaying a value of
success: activated

in the Result column.
The output also now shows the new version value for the firmware component in the Version col-

umn, and indicates the firmware transition is now over with a value of completed in the State column:

[basecm11->device]% firmware -n node001 status

Device Filename Component Version State Progress Result

-------- -------------- ------------------------- -------------------------------- -------- -------------------

node001 CPLDMB_0 0.2.1.0 current N/A

node001 CPLDMID_0 0.2.1.0 current N/A

node001 EROT_BIOS_0 00.04.0020.0000_n00 current N/A

node001 EROT_BMC_0 00.04.0020.0000_n00 current N/A

node001 HostBIOS_0 01.00.00 current N/A

node001 HostBMC_0 23.00.00 current N/A

node001 PCIeRetimer_0 1.30.0 current N/A

node001 PCIeRetimer_1 1.30.0 current N/A

node001 PCIeSwitch_0 0.0.1 current N/A

node001 PCIeSwitch_1 1.0.1 current N/A

node001 PSU_0 0202.0200.0200 current N/A

node001 PSU_1 0202.0200.0200 current N/A

node001 PSU_2 0202.0200.0200 current N/A

node001 PSU_3 0202.0201.0202 current N/A

node001 PSU_4 0202.0201.0203 current N/A

node001 PSU_5 0202.0200.0200 current N/A

node001 nvfw_...fwpkg HGX_FW_BMC_0 HGX-22.10-1-rc44 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_BMC_0 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_FPGA_0 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_NVSwitch_0 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_NVSwitch_1 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_NVSwitch_2 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_NVSwitch_3 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_ERoT_PCIeSwitch_0 00.02.0134.0000_n00 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_FPGA_0 2.2C completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_1 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_2 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_3 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_4 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_5 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_6 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_7 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_GPU_SXM_8 96.00.74.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_NVSwitch_0 96.10.3F.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_NVSwitch_1 96.10.3F.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_NVSwitch_2 96.10.3F.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_NVSwitch_3 96.10.3F.00.01 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_0 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_1 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_2 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_3 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_4 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_5 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_6 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeRetimer_7 2.7.9 completed N/A success: activated

node001 nvfw_...fwpkg HGX_FW_PCIeSwitch_0 1.7.5F completed N/A success: activated

712 Day-to-day Administration

14.6 Hardware Match Check With The hardware-profile Data Producer
Often a large number of identical nodes may be added to a cluster. In such a case it is a good practice to
check that the hardware matches what is expected. This can be done easily as follows:

1. The new nodes, say node129 to node255, are committed to a newly-created category newbunch as
follows (output truncated):

[root@basecm11 ~]# cmsh -c "category add newbunch; commit"

[root@basecm11 ~]# for i in {129..255}

> do

> cmsh -c "device; set node00$i category newbunch; commit"

> done

Successfully committed 1 Devices

Successfully committed 1 Devices

The preceding loop is easy to construct, and works, but it is quite slow for larger clusters, due to
the time wasted in opening up cmsh and carrying out a commit command during each iteration of
the for loop.

For larger clusters the offending for loop can be replaced with a more elegant, but slightly trickier:

(echo device;

for i in {129..255}; do

echo "set node00$i category newbunch"

done

echo "commit") | cmsh

2. The hardware profile of one of the new nodes, say node129, is saved into the category newbunch.
This is done using the node-hardware-profile health check script:

Example

[root@basecm11 ~]# /cm/local/apps/cmd/scripts/healthchecks/node-hardware-profile -n node129 -s newbunch

The profile is intended to be the reference hardware against which all the other nodes should
match, and is saved under the directory /cm/shared/apps/cmd/hardware-profiles/, and further
under the directory name specified by the -s option, which in this case is newbunch.

3. The hardware-profile data producer (section 10.2.10) can then be enabled, and the sampling
frequency set as follows:

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup use hardware-profile

[basecm11->monitoring->setup[hardware-profile]]% set interval 600; set disabled no; commit

The hardware-profile data producer should also be set to the category newbunch created in the
earlier step. This can be done by creating a category group within the nodeexecutionfilters

submode. Within that group, categories can be set for where the hardware check is to run. For the
example, it is just run on one category, newbunch:

[basecm11->monitoring->setup[hardware-profile]]% nodeexecutionfilters

[basecm11->...-profile]->nodeexecutionfilters]% add category filterhwp

[basecm11->...-profile]->nodeexecutionfilters*[filterhwp*]]% set categories newbunch

[basecm11->...-profile]->nodeexecutionfilters*[filterhwp*]]% commit

4. CMDaemon then automatically alerts the administrator if one of the nodes does not match the
hardware of that category during the first automated check. In the unlikely case that the reference
node is itself faulty, then that will also be obvious because all—or almost all, if more nodes are
faulty—of the other nodes in that category will then be reported “faulty” during the first check.

/cm/shared/apps/cmd/hardware-profiles/

14.7 Serial Over LAN Console Access 713

14.7 Serial Over LAN Console Access
Direct console access to nodes is not always possible. Other possibilities to access the node are:

1. SSH access via an ssh client. This requires that an ssh server runs on the node and that it is
accessible via the network. Access can be via one of the following options:

• a regular SSH client, run from a bash shell

• via an ssh command run from the device mode of cmsh

• via an ssh terminal launched from Base View via the navigation path:
Devices > Nodes > node > Connect > ssh.

2. Remote shell via CMDaemon. This is possible if CMDaemon is running on the node and accessi-
ble via Base View or cmsh.

• In Base View, An interactive root shell session can be started up on a node via the navigation
path:
Devices > Nodes > node > Connect > Root shell.
This session is connected to the node via CMDaemon, and runs bash by default.

• For cmsh, in device mode, running the command rshell node001 launches an interactive
bash session connected to node001 via CMDaemon.

3. Connecting via a serial over LAN console. If a serial console is configured, then a serial over LAN
(SOL) console can be accessed from cmsh (rconsole).

Item 3 in the preceding list, SOL access, is a useful low-level access method that is covered next more
thoroughly with:

• some background notes on serial over LAN console access (section 14.7.1)

• the configuration of SOL with Base View (section 14.7.2)

• the configuration of SOL with cmsh (section 14.7.3)

• the conman SOL logger and viewer (section 14.7.4)

14.7.1 Background Notes On Serial Console And SOL
Serial ports are data ports that can usually be enabled or disabled for nodes in the BIOS.

If the serial port of a node is enabled, it can be configured in the node kernel to redirect a console
to the port. The serial port can thus provide what is called serial console access. That is, the console
can be viewed using a terminal software such as minicom (in Linux) or Hyperterminal (in Windows)
on another machine to communicate with the node via the serial port, using a null-modem serial cable.
This has traditionally been used by system administrators when remote access is otherwise disabled, for
example if ssh access is not possible, or if the TCP/IP network parameters are not set up right.

While traditional serial port console access as just described can be useful, it is inconvenient, because
of having to set arcane serial connection parameters, use the relatively slow serial port and use a special
serial cable. Serial Over LAN (SOL) is a more recent development of serial port console access, which
uses well-known TCP/IP networking over a faster Ethernet port, and uses a standard Ethernet cable.
SOL is thus generally more convenient than traditional serial port console access. The serial port DB-9 or
DB-25 connector and its associated 16550 UART chip rarely exist on modern servers that support SOL,
but they are nonetheless usually implied to exist in the BIOS, and can be “enabled” or “disabled” there,
thus enabling or disabling SOL.

SOL is a feature of the BMC (Baseboard Management Controller) for IPMI 2.0 and iLO. For DRAC,
CIMC, and Redfish, SOL via IPMI is used. SOL is enabled by configuring the BMC BIOS. When enabled,

714 Day-to-day Administration

data that is going to the BMC serial port is sent to the BMC LAN port. SOL clients can then process the
LAN data to display the console. As far as the node kernel is concerned, the serial port is still just
behaving like a serial port, so no change needs to be made in kernel configuration in doing whatever
is traditionally done to configure serial connectivity. However, the console is now accessible to the
administrator using the SOL client on the LAN.

SOL thus allows SOL clients on the LAN to access the Linux serial console if

1. SOL is enabled and configured in the BMC BIOS

2. the serial console is enabled and configured in the node kernel

3. the serial port is enabled and configured in the node BIOS

The BMC BIOS, node kernel, and node BIOS therefore all need to be configured to implement SOL
console access.

Background Notes: BMC BIOS Configuration
The BMC BIOS SOL values are usually enabled and configured as a submenu or pop-up menu of the
node BIOS. These settings must be manually made to match the values in BCM, or vice versa.

During a factory reset of the node, it is likely that a SOL configuration in BCM will no longer match
the configuration on the node BIOS after the node boots. This is because BCM cannot configure these.
This is in contrast to the IP address and user authentication settings of the BMC (section 3.7), which
BCM is able to configure on reboot.

Background Notes: Node Kernel Configuration
Sections 14.7.2 and 14.7.3 explain how SOL access configuration is set up for the node kernel using
Base View or cmsh. SOL access configuration on the node kernel is serial access configuration on the
node kernel as far as the system administrator is concerned; the only difference is that the word “serial”
is replaced by “SOL” in BCM’s Base View and cmsh front ends to give a cluster perspective on the
configuration.

Background Notes: Node BIOS Configuration
Since BIOS implementations vary, and serial port access is linked with SOL access in various ways by
the BIOS designers, it is not possible to give short and precise details on how to enable and configure
them. The following rules-of-thumb, if followed carefully, should allow most BMCs to be configured for
SOL access with BCM:

• Serial access, or remote access via serial ports, should be enabled in the BIOS, if such a setting
exists.

• The node BIOS serial port settings should match the node configuration SOL settings (sec-
tion 14.7.3). That means, items such as “SOL speed”, “SOL Flow Control”, and “SOL port” in
the node configuration must match the equivalent in the node BIOS. Reasonable values are:

– SOL speed: 115200bps. Higher speeds are sometimes possible, but are more likely to have
problems.

– SOL flow control: On. It is however unlikely to cause problems if flow control is off in both.

– SOL port: COM1 (in the BIOS serial port configuration), corresponding to ttyS0 (in the node
kernel serial port configuration). Alternatively, COM2, corresponding to ttyS1. Sometimes,
the BIOS configuration display indicates SOL options with options such as: “COM1 as SOL”,
in which case such an option should be selected for SOL connectivity.

– Terminal type: VT100 or ANSI.

• If there is an option for BIOS console redirection after BIOS POST, it should be disabled.

14.7 Serial Over LAN Console Access 715

• If there is an option for BIOS console redirection before or during BIOS POST, it should be enabled.

• The administrator should be aware that the BMC LAN traffic, which includes SOL traffic, can
typically run over a dedicated NIC or over a shared NIC. The choice of dedicated or shared is
toggled, either in the BIOS, or via a physical toggle, or both. If BMC LAN traffic is configured to
run on the shared NIC, then just connecting a SOL client with an Ethernet cable to the dedicated
BMC NIC port shows no console.

• The node BIOS values should manually be made to match the values in BCM, or vice versa.

14.7.2 SOL Console Configuration With Base View
In Base View, SOL configuration settings can be carried out per image via the navigation path
Provisioning > Software Images > image > Edit > Settings

If the Enable SOL option is set to Yes then the kernel option to make the Linux serial console acces-
sible is used after the node is rebooted.

This means that if the serial port and SOL are enabled for the node hardware, then after the node
reboots the Linux serial console is accessible over the LAN via an SOL client.

If SOL is correctly configured in the BIOS and in the image, then access to the Linux serial console
is possible via the minicom serial client running on the computer (from a bash shell for example), or via
the rconsole serial client running in cmsh.

14.7.3 SOL Console Configuration And Access With cmsh

In cmsh, the serial console kernel option for a software image can be enabled within the softwareimage

mode of cmsh. For the default image of default-image, this can be done as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% softwareimage use default-image

[basecm11->softwareimage[default-image]]% set enablesol yes

[basecm11->softwareimage*[default-image*]]% commit

The SOL settings for a particular image can be seen with the show command:

[basecm11->softwareimage[default-image]]% show | grep SOL

Parameter Value

------------------------------ --------------

Enable SOL yes

SOL Flow Control yes

SOL Port ttyS1

SOL Speed 115200

Values can be adjusted if needed with the set command.
On rebooting the node, the new values are used.
To access a node via an SOL client, the node can be specified from within the device mode of cmsh,

and the rconsole command run on cmsh on the head node:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node001

[basecm11->device[node001]]% rconsole

screen cleared and the following conman output is displayed:

===

conman

716 Day-to-day Administration

To exit IPMI SOL, type <ENTER> "&" "."

===

<ConMan> Connection to console [node001] opened.

If at this point, there is no further response in conman on the console after pressing the <ENTER> key,
then there is a communication failure, probably due to a misconfigured communication parameter. This
could happen, for example, if the serial port ttyS1 has been set, but the node is connected on ttyS0.
Setting the value of SOL Port to ttyS0 and rebooting the node to pick up the new value, would solve
that issue, so that pressing the <ENTER> key, would display the node console:

Example

Ubuntu 18.04.2 LTS node001 ttyS0

node001 login:

14.7.4 The conman Serial Console Logger And Viewer
In BCM, the console viewer and logger service conman is used to connect to an SOL console and log the
console output.

If the “Enable SOL” option in Base View, or if the enablesol parameter in cmsh is enabled for the
software image, then the conman configuration is written out and the conman service is started.

Logging The Serial Console
The data seen at the serial console is then logged via SOL to the head node after reboot. For each node
that has logging enabled, a log file is kept on the head node. For example, for node001 the log file would
be at /var/log/conman/node001.log. To view the logged console output without destroying terminal
settings, using less with the -R option is recommended, as in: less -R /var/log/conman/node001.log.

Using The Serial Console Interactively
Viewing quirk during boot: In contrast to the logs, the console viewer shows the initial booting stages
of the node as it happens. There is however a quirk the system administrator should be aware of:

Normally the display on the physical console is a copy of the remote console. However, during boot,
after the remote console has started up and been displaying the physical console for a while, the physical
console display freezes. For the Linux 2.6 kernel series, the freeze occurs just before the ramdisk is run,
and means that the display of the output of the launching init.d services is not seen on the physical
console (figure 14.2).

/var/log/conman/node001.log

14.7 Serial Over LAN Console Access 717

Figure 14.2: Physical Console Freeze During SOL Access

The freeze is only a freeze of the display, and should not be mistaken for a system freeze. It occurs
because the kernel is configured during that stage to send to only one console, and that console is the
remote console. The remote console continues to display its progress (figure 14.3) during the freeze of
the physical console display.

718 Day-to-day Administration

Figure 14.3: Remote Console Continues During SOL Access During Physical Console Freeze

Finally, just before login is displayed, the physical console once more (figure 14.4) starts to display
what is on the remote console (figure 14.5).

14.7 Serial Over LAN Console Access 719

Figure 14.4: Physical Console Resumes After Freeze During SOL Access

Figure 14.5: Remote Console End Display After Boot

The physical console thus misses displaying several parts of the boot progress.

720 Day-to-day Administration

Exit sequence: The conman console viewer session can be exited with the sequence &. (the last entry
in the sequence being a period). Strictly speaking, the &. sequence must actually be preceded by an
<ENTER>.

The console buffer issue when accessing the remote console: A feature of SOL console clients is that
the administrator is not presented with any text prompt from the node that is being accessed. This is
useful in some cases, and can be a problem in others.

An example of the issue is the case where the administrator has already logged into the console and
typed in a command in the console shell, but has no intention of pressing the <ENTER> key until some
other tasks are first carried out. If the connection breaks at this point, then the command typed in is
held in the console shell command buffer, but is not displayed when a remote serial connection is re-
established to the console—the previously entered text is invisible to the client making the connection.
A subsequent <ENTER> would then attempt to execute the command. This is why an <ENTER> is not
sent as the last key sequence during automated SOL access, and it is left to the administrator to enter
the appropriate key strokes.

To avoid commands in the console shell buffer inadvertently being run when taking over the console
remotely, the administrator can start the session with a <CTRL>-u to clear out text in the shell before
pressing <ENTER>.

14.8 Managing Raw Monitoring Data
From NVIDIA Base Command Manager version 8.0 onward, the raw monitoring data values are stored
as binary data under /var/spool/cmd/monitoring instead of as binary data within MySQL or MariaDB.
The reason behind this change was to significantly increase performance. The monitoring subsystem in
BCM was thoroughly rewritten for this change.

14.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option
The disk usage by the monitoring subsystem can be viewed using the monitoringinfo command with
the --storage option:

Example

[basecm11->device]% monitoringinfo master --storage

Storage Elements Disk size Usage Free disk

--------------------------- ---------- ------------ -------- ------------

Mon::Storage::Engine 1,523 1.00 GiB 1.28% 14.1 GiB

Mon::Storage::Message 1 16.0 MiB 0.000% -

Mon::Storage::RepositoryId 1,528 47.7 KiB 100.0% -

The Engine component stores the raw monitoring data. It grows in 1GB increments each time its
usage reaches 100%.

14.8.2 Estimating The Required Size Of The Storage Device
The final size of the monitoring directory can be estimated with the script cm-monitoring-disk-usage.
py.

The size estimate assumes that there are no changes in configuration, such as enabling advanced
metrics for jobs, or increasing the maximum number of labeled entities, or large numbers of running
jobs.

The size estimate value is the maximum value it will take if the cluster runs forever. It is therefore an
over-estimate in practice.

Example

/var/spool/cmd/monitoring
cm-monitoring-disk-usage.py
cm-monitoring-disk-usage.py

14.8 Managing Raw Monitoring Data 721

[root@basecm11 ~]# /cm/local/apps/cmd/scripts/monitoring/cm-monitoring-disk-usage.py

Number of used entities: 10

Number of used measurables: 286

Number of measurables: 286

Number of data producers: 98

Number of consolidators: 2

Current monitoring directory: /var/spool/cmd/monitoring

Monitoring directory size: 1.024 GB

Maximal directory size: 1.409 GB

14.8.3 Moving Monitoring Data Elsewhere
A procedure to move monitoring data from the default /var/spool/cmd/monitoring/ directory to a
new directory is as follows:

1. A new directory in which monitoring should be saved is picked.

The block storage device for the directory should not be a shared DAS (Direct Attached Storage,
such as a locally attached drive) or a NAS (Network Attached Storage, such as NFS or Lustre
which work over a network connection). That is because if there is an outage, then:

• If such a DAS storage becomes unavailable at some time, then CMDaemon assumes that no
monitoring data values exist, and creates an empty data file on the local storage. If the DAS
storage comes back and is mounted again, then it hides the underlying files, which would
lead to discontinuous values and related issues.

• If such a NAS storage is used, then an outage of the NAS can make CMDaemon unresponsive
as it waits for input and output. In addition, when CMDaemon starts with a NAS storage,
and if the NAS is unavailable for some reason, then an inappropriate mount may happen as
in the DAS storage case, leading to discontinuous values and related issues.

2. The MonitoringPath directive (page 860) is given the new directory as its value.

3. CMDaemon is stopped (systemctl stop cmd).

4. The /var/spool/cmd/monitoring/ directory is moved to the new directory.

5. CMDaemon is restarted (systemctl start cmd).

14.8.4 Reducing Monitoring Data By Reducing Samples
Options to reduce the amount of monitoring data gathered include reducing the Maximal age and
Maximal samples for data producers (section 10.4.1) to smaller, but still non-zero values. After re-
initializing the monitoring data collection, so that existing data is removed, the values reported by the
cm-monitoring-disk-usage.py script (section 14.8.2) then show the new storage estimates for the mon-
itoring data.

14.8.5 Deleting All Monitoring Data
A procedure to delete all monitoring data from the default /var/spool/cmd/monitoring/ directory is
as follows:

1. The CMDaemon service on all nodes can be stopped by running the following on the active head
node:
pdsh -g all systemctl stop cmd

2. On both head nodes, the monitoring data is removed with:

/var/spool/cmd/monitoring/
/var/spool/cmd/monitoring/
/var/spool/cmd/monitoring/

722 Day-to-day Administration

rm -f /var/spool/cmd/monitoring/*

rm -f /var/spool/cmd/backup/*/var/spool/cmd/monitoring/*

3. On both head nodes, the associated database tables for the CMDaemon user are cleared with a
mySQL session run on each head node.

The CMDaemon database user is cmdaemon by default, but the value can be checked with a grep
on the cmd.conf file:

[root@basecm11 ~]# grep ^DBUser /cm/local/apps/cmd/etc/cmd.conf

DBUser = "cmdaemon"

Similarly, the password for the cmdaemon user can be found with a grep as follows:

[root@basecm11 ~]# grep ^DBPass /cm/local/apps/cmd/etc/cmd.conf

DBPass = "slarti8813bartfahrt"

The monitoring measurables can then be deleted by running a session on each head node as fol-
lows:

Example

[root@basecm11 ~]# mysql -ucmdaemon -p

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 2909

Server version: 5.5.56-MariaDB MariaDB Server

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use cmdaemon;

Database changed

MariaDB [cmdaemon]> truncate MonitoringMeasurables;

MariaDB [cmdaemon]> truncate MonitoringMeasurableMetrics;

MariaDB [cmdaemon]> truncate MonitoringMeasurableHealthChecks;

MariaDB [cmdaemon]> truncate MonitoringMeasurableEnums;

MariaDB [cmdaemon]> truncate EntityMeasurables;

MariaDB [cmdaemon]> truncate EnumMetricValues;

MariaDB [cmdaemon]> truncate LabeledEntities;

MariaDB [cmdaemon]> truncate JobInformation;

MariaDB [cmdaemon]> exit

repeat on other head node

4. On both head nodes, CMDaemon can then be restarted with:
systemctl start cmd

5. On the active head node, after the command:
cmha status

shows all is OK, the CMDaemon service can be started on all regular nodes again. The OK state
should be achieved in about 15 seconds.

The CMDaemon service is started with, for example:
pdsh -g computenode systemctl start cmd

14.9 Node Replacement 723

14.9 Node Replacement
To replace an existing node with a new node, the node information can be updated via cmsh.

If the new MAC address is known, then it can set that for the node. If the MAC address is not known,
then the existing entry can be cleared.

If the MAC address is not known ahead of time, then the node name for the machine should be
selected when it is provisioning for the first time. The steps for a new node node031 would be as follows:

Example

[root@basecm11 ~]# cmsh

[basecm11]% device use node0031

if new mac address is known, then:
[basecm11->device[node031]]% set mac <new mac address>
else if new mac address is not known:
[basecm11->device[node031]]% clear mac

the changed setting in either case must be committed:
[basecm11->device[node031]]% commit

If the disk is the same size as the one that is being replaced, and everything else matches up, then
this should be all that needs to be done

There is more information on the node installing system in section 5.4. How to add a large number
of nodes at a time efficiently is described in that section. The methods used can include the newnodes

command of cmsh (page 247) and the Nodes Identification resource of Base View (page 251).

14.10 Ansible And NVIDIA Base Command Manager
This section describes using Ansible with BCM. Using Ansible to install NVIDIA Base Command Man-
ager is described in section 3.4 of the Installation Manual.

14.10.1 An Overview Of Ansible
Ansible is a popular automated configuration management software.

The BCM administrator is expected to have some experience already with Ansible. The basic con-
cepts are covered in the official Ansible documentation at https://docs.ansible.com/ansible/latest/
user_guide/basic_concepts.html, and further details are accessible from that site too.

As a reminder:

• Ansible is designed to administer groups of machines from an inventory of machines.

• An Ansible module is code, usually in Python, that is executed by Ansible to carry out Ansible
tasks, usually on a remote node. The module returns values.

• An Ansible playbook is a YAML file. The file declares a configuration that is to be executed (“the
playbook is followed”) on selected machines. The execution is usually carried out over SSH, by
placing modules on the remote machine.

• Traditionally, official Ansible content was obtained as a part of milestone releases of Ansible En-
gine, (the Red Hat version of Ansible for the enterprise).

• Since Ansible version 2.10, the official way to distribute content is via Ansible content collections.
Collections are composed of Ansible playbooks, modules, module utilities and plugins. The col-
lection is a formatted set of tools used to achieve automation with Ansible.

• The official Ansible list of collections is at https://docs.ansible.com/ansible/latest/

collections/index.html#list-of-collections. At the time of writing of this section (March
2022) there were 100 collections.

• Community-supported collections are also available, at galaxy.ansible.com.

https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#inventory
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#modules
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#tasks
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#tasks
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
galaxy.ansible.com

724 Day-to-day Administration

Picking Up The BCM Ansible Collections
In particular, the web interface at https://galaxy.ansible.com/brightcomputing shows the updated
list of BCM Ansible collections.

From version 9.1 onward of BCM, the BCM Ansible collection naming scheme has been changed
so that the name now indicates the BCM version number. This now makes it simpler for the cluster
administrator to choose the right Ansible collection.

For example, to install the latest version of the BCM Ansible collection for a NVIDIA Base Command
Manager 11 cluster, the following command can now be run:

[root@basecm11 ~]# ansible-galaxy collection install brightcomputing.bcm110

14.10.2 A Simple Playbook Example
In this section, a playbook from the BCM collection is run.

Preparations
To start with, Python is loaded, and Ansible installed:

[root@basecm11 ~]# module load python3

[root@basecm11 ~]# pip install ansible

Running A Simple Playbook
The directory /cm/local/examples/cmd/ansible has several BCM Ansible playbook examples.

The Ansible playbook to add a user can be run. The playbook is simply:

[root@basecm11 ~]# cat /cm/local/examples/cmd/ansible/add-user.yaml

- hosts: all

gather_facts: false

tasks:

collections:

- brightcomputing.bcm110

tasks:

- name: create test-user

user:

name: test-user

password: test-user-password

profile: readonly

The latest NVIDIA Base Command Manager 11-compatible version of the BCM Ansible collection is
at https://galaxy.ansible.com/brightcomputing/bcm110. It can be installed with the ansible-galaxy
tool from the galaxy.ansible.com repository directly with:

[root@basecm11 ~]# ansible-galaxy collection install brightcomputing.bcm110

Documentation For The BCM Collection
The brightcomputing.bcm110 documentation for modules can be explored using ansible-doc in the
usual way, using the namespace. For example, for the user module in the brightcomputing.bcm110

namespace, this would be (output truncated):

[root@basecm11 ~]# ansible-doc brightcomputing.bcm110.user

> BRIGHTCOMPUTING.BCM110.USER

> (/root/.ansible/collections/ansible_collections/brightcomputing/bcm110/plugins/modules/user.py)

User

ADDED IN: version 9.2.0 of brightcomputing.bcm110

https://galaxy.ansible.com/brightcomputing
/cm/local/examples/cmd/ansible
https://galaxy.ansible.com/brightcomputing/bcm110
https://galaxy.ansible.com/brightcomputing/bcm110
https://galaxy.ansible.com/brightcomputing/bcm110

14.10 Ansible And NVIDIA Base Command Manager 725

* note: This module has a corresponding action plugin.

OPTIONS (= is mandatory):

- ID

User ID number

[Default: (null)]

type: str

- cloneFrom

The id or name of the entity that the new entity will be cloned from.

(take effect only at entity creation)

[Default:]

type: str

- email

...

The list of modules in the brightcomputing.bcm110 collection can be viewed with ansible-doc -l

brightcomputing.bcm110.
Almost all the modules are available as a pair. For such a pair, one module out of the pair is to query

the attributes of the entity being dealt with by the pair, while the other module is to set the attributes.

Running The Ansible Playbook
The add-user playbook can now be run with:

Example

[root@basecm11 ~]# ansible-playbook -ilocalhost, /cm/local/examples/cmd/ansible/add-user.yaml

PLAY [all]

TASK [create test-user]

changed: [localhost]

PLAY RECAP

localhost : ok=1 changed=1 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

The YAML code shows a user should be created after execution of the playbook. If unsure, the
playbook can be run again. This should do no harm since well-formed playbooks are idempotent.

The new list of users can be verified with:

[root@basecm11 ~]# cmsh -c "user list"

Name (key) ID (key) Primary group Secondary groups

---------------- ---------------- ---------------- ----------------

cmsupport 1000 cmsupport

test-user 1001 test-user

726 Day-to-day Administration

14.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration
Purposes

The simple playbook in the preceding section has the advantage of being a quick way for the adminis-
trator to be reasonably sure that Ansible is running as it should be.

An administrator who is intending to use Ansible is typically going to need to be more familiar with
how Ansible playbooks can be used to define BCM infrastructure.

This section (14.10.3) and the next (14.10.4) aim to provide this familiarity. They should be a guide
for users when they go about defining their own BCM infrastructure with Ansible, as well as a model
for how to carry out Ansible tasks for BCM.

The example session in this section (section 14.10.3) is about a cluster administrator who wishes to
prepare a playbook so that the default image is updated, and then have the cluster set up some new
objects with default values. This is useful for testing out changes in the new objects. The idea being
that the administrator has up-to-date nodes with default settings in the new objects, and which work
to begin with. That makes the new objects suitable for demonstrations and for making changes to see
how it affects the standard settings. It also provides the convenience of being able to refer back to the
working defaults in the original objects if things go wrong with the demonstration objects.

The tasks to bring the cluster to the “demo” state are described next.

Cloning The Image
The administrator now clones the default image. The idea being that further changes can be made
on the cloned image later on, with the default image instance remaining unchanged, and available for
comparison.

The YAML example clone-software-image.yaml provided with BCM can be displayed and used
to carry out the cloning as shown in the following session:

[root@basecm11 ~]# cat /cm/local/examples/cmd/ansible/clone-software-image.yaml

- hosts: all

gather_facts: false

tasks:

- name: clone a software image

brightcomputing.bcm110.software_image:

name: cloned-image

cloneFrom: default-image

path: /cm/images/cloned-image

[root@basecm11 ~] ansible-playbook -i localhost, /cm/local/examples/cmd/ansible/clone-software-image.yaml

Cloning The Category
A clone of the default category, democategory, can be built with the brightcomputing.bcm110.category
module:

[root@basecm11 ~]# cat clonedefaultcat.yaml

- hosts: all

gather_facts: false

tasks:

- name: clone category

brightcomputing.bcm110.category:

name: democategory

cloneFrom: default

[root@basecm11 ~] ansible-playbook -i localhost, clonedefaultcat.yaml

14.10 Ansible And NVIDIA Base Command Manager 727

Setting The Software Image In The Cloned Category To Be The Cloned Image
The software image in the cloned category can then be set to the cloned-image from earlier with:

[root@basecm11 ~]# cat setimageincat.yaml

- hosts: all

gather_facts: false

tasks:

- name: set image in category

brightcomputing.bcm110.category:

name: democategory

softwareImageProxy:

parentSoftwareImage: cloned-image

[root@basecm11 ~] ansible-playbook -i localhost, setimageincat.yaml

Setting The Regular Nodes To Be In The Cloned Category
The regular nodes node001 and node002 can be placed in the cloned category with:

[root@basecm11 ~]# cat setcatofnodes.yaml

- hosts: all

gather_facts: false

tasks:

- name: list all nodes

brightcomputing.bcm110.node_info:

format: dict

include_id: false

for_update: true

register: result

- name: set head_node

set_fact:

all_nodes: "{{ result.nodes }}"

- name: assign compute nodes to cloned category

brightcomputing.bcm110.physical_node:

hostname: "{{ item }}"

mac: "{{ all_nodes[item].mac }}"

category: democategory

loop:

- node001

- node002

[root@basecm11 ~] ansible-playbook -i localhost, setcatofnodes.yaml

Without using Ansible, and using cmsh directly instead, the preceding placement could be carried
out with:

[root@basecm11 ~] for i in {001..002}

do cmsh -c "device use node$i; set category democategory; commit"

done

14.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related
Properties

This section provides a more complicated BCM Ansible collection-based playbook, and elaborates upon
how it is used.

The collection is first shown as a whole in the following section. Then less obvious portions from it
are explained, with the help of number labels, in the sections after that, starting on page 730.

728 Day-to-day Administration

The Collection
The full collection is as follows:

- hosts: all

gather_facts: false

vars:

site:

name: test-site

secret: SECRET

director:

hostname: test-site-director

mac: 00:11:22:33:44:55

eth0_ip: 10.152.0.254

eth1_ip: 10.161.0.254

nodes:

- hostname: edge-node-01

mac: 00:11:22:33:44:01

eth0_ip: 10.161.0.1

- hostname: edge-node-02

mac: 00:11:22:33:44:02

eth0_ip: 10.161.0.2

- hostname: edge-node-03

mac: 00:11:22:33:44:03

eth0_ip: 10.161.0.3

pre_tasks:

- name: set compute nodes for site

set_fact:

site_compute_nodes: "{{nodes | map(attribute='hostname') | list}}"

- name: set nodes for site

set_fact:

site_nodes: "{{[director.hostname] + site_compute_nodes}}"

tasks:

Network creation

- name: create an external network

brightcomputing.bcm110.network:

state: present

name: test-site-external_network

type: EDGE_EXTERNAL

baseAddress: 10.152.0.0

broadcastAddress: 10.152.255.255

netmaskBits: 16

domainName: test-site-external_network

management: true

- name: create an internal network

brightcomputing.bcm110.network:

state: present

14.10 Ansible And NVIDIA Base Command Manager 729

type: EDGE_INTERNAL

name: test-site-internal_network

baseAddress: 10.161.0.0

broadcastAddress: 10.161.255.255

dynamicRangeStart: 10.161.16.0

dynamicRangeEnd: 10.161.19.255

netmaskBits: 16

domainName: test-site-internal_network

management: true

bootable: true

- name: create edge site software image

brightcomputing.bcm110.software_image:

name: my-software-image

path: /cm/images/my-software-image

cloneFrom: default-image

- name: create edge director category

brightcomputing.bcm110.category:

name: edge_director_category

softwareImageProxy:

parentSoftwareImage: my-software-image

fsmounts:

- device: $localnfsserver:/cm/shared

mountpoint: /cm/shared

filesystem: nfs

- device: $localnfsserver:/home

mountpoint: /home

filesystem: nfs

state: present

Edge Director

- name: create director physical node

brightcomputing.bcm110.physical_node:

state: present

hostname: "{{director.hostname}}"

partition: base

interfaces_NetworkPhysicalInterface:

- name: eth0

ip: "{{ director.eth0_ip }}"

network: test-site-external_network

- name: eth1

ip: "{{ director.eth1_ip }}"

network: test-site-internal_network

category: edge_director_category

mac: "{{director.mac}}"

managementNetwork: test-site-external_network

provisioningInterface: eth0

installBootRecord: true

roles_EdgeDirectorRole:

- name: edge_director_role

openTCPPortsOnHeadNode: [636]

externallyVisibleIp: 0.0.0.0

externallyVisibleHeadNodeIp: 0.0.0.0

730 Day-to-day Administration

roles_BootRole:

- name: boot_role

allowRamdiskCreation: true

roles_StorageRole:

- name: storage_role

roles_ProvisioningRole:

- name: provisioning_role

allImages: LOCALDISK

Edge Nodes

- name: create edge nodes

brightcomputing.bcm110.physical_node:

hostname: "{{item.hostname}}"

softwareImageProxy:

parentSoftwareImage: default-image

interfaces_NetworkPhysicalInterface:

- name: eth0

ip: "{{item.eth0_ip}}"

network: test-site-internal_network

category: default

mac: "{{item.mac}}"

managementNetwork: test-site-internal_network

installBootRecord: false

provisioningInterface: eth0

partition: base

loop: "{{ nodes }}"

- name: add test edge site

brightcomputing.bcm110.edge_site:

name: "{{site.name}}"

secret: "{{site.secret}}"

address: Springfield

adminEmail: admin-west@email.com

city: San Francisco

contact: Admin

country: USA

notes: Note about the site

state: present

nodes: "{{site_nodes}}"

Topmost Part
- hosts: all #(1)

gather_facts: false #(2)

1. This is a standard Ansible playbook configuration item. It defines the group or host that the
playbook is run on.

2. Fact gathering is skipped here, because there is no need to use any facts that Ansible usually
gathers pre-playbook-run. As a bonus, skipping it makes execution faster.

Pre_tasks Part
The pre_tasks section could have been made a part of the tasks section. However, making it a separate
section has the benefit of separating real action from simple fact definition:

- name: set compute nodes for site

set_fact:

14.10 Ansible And NVIDIA Base Command Manager 731

site_compute_nodes: "{{nodes | map(attribute='hostname') | list}}" #(1)

- name: set nodes for site

set_fact:

site_nodes: "{{[director.hostname] + site_compute_nodes}}" #(2)

1. In the preceding code, the Ansible templating capability is used to get the list of compute_nodes for
the site that is to be created. The hostname attribute is extracted from every element of the nodes

variable and then transformed into a list, and assigned to the site_compute_nodes variable.

2. The list that is created has all the nodes that are part of the site, which means the compute nodes
as well as the director.

The Tasks Part
External and internal networks configuration: The tasks section starts with networking definitions
(tagged here with (1) and (2)). These are the external and internal networks that are needed for the edge
site that is to be created.

- name: create an external network #(1)

brightcomputing.bcm110.network:

state: present

name: test-site-external_network

type: EDGE_EXTERNAL

baseAddress: 10.152.0.0

broadcastAddress: 10.152.255.255

netmaskBits: 16

domainName: test-site-external_network

management: true

- name: create an internal network #(2)

brightcomputing.bcm110.network:

state: present

type: EDGE_INTERNAL

name: test-site-internal_network

baseAddress: 10.161.0.0

broadcastAddress: 10.161.255.255

dynamicRangeStart: 10.161.16.0

dynamicRangeEnd: 10.161.19.255

netmaskBits: 16

domainName: test-site-internal_network

management: true

bootable: true

The possible values for each entity attribute can be seen by running the ansible-doc command:

Example

$ ansible-doc brightcomputing.bcm110.network

Director creation: A category must exist for the edge director, or must be created before the director
can be created. The following snippet takes care of that:

- name: create edge site software image

brightcomputing.bcm110.software_image:

name: my-software-image

path: /cm/images/my-software-image

732 Day-to-day Administration

cloneFrom: default-image #(1)

- name: create edge director category

brightcomputing.bcm110.category:

name: edge_director_category

softwareImageProxy:

parentSoftwareImage: my-software-image #(2)

fsmounts: #(3)

- device: $localnfsserver:/cm/shared

mountpoint: /cm/shared

filesystem: nfs

- device: $localnfsserver:/home

mountpoint: /home

filesystem: nfs

state: present #(4)

1. The cloneFrom attribute is used to create the new software image from the existing one, to avoid
copying over all the values that are part of the original image. The default-image is used here,
since it is guaranteed to be defined in a new cluster.

The cloneFrom attribute only takes effect when the resource is not defined. This means that if the
software image is already present, then using cloneFrom has no effect. Removing the image allows
it to be re-created again using the cloneFrom attribute.

2. The declared software image (here it is my-software-image) is then used to define the director
category.

3. The edge directory category attributes in the snippet are standard values that are normally as-
signed to a director category that is to be used by director nodes.

4. The default value for state is present, so the task has the same behavior if the state field is left
out.

Values for the director node: The edge director node values can now be set

- name: create director physical node

brightcomputing.bcm110.physical_node:

state: present

hostname: "{{director.hostname}}"

partition: base

interfaces_NetworkPhysicalInterface:

- name: eth0

ip: "{{ director.eth0_ip }}"

network: test-site-external_network

- name: eth1

ip: "{{ director.eth1_ip }}"

network: test-site-internal_network

category: edge_director_category

mac: "{{director.mac}}"

managementNetwork: test-site-external_network

provisioningInterface: eth0

installBootRecord: true

roles_EdgeDirectorRole: # (1)

- name: edge_director_role

openTCPPortsOnHeadNode: [636]

14.10 Ansible And NVIDIA Base Command Manager 733

externallyVisibleIp: 0.0.0.0

externallyVisibleHeadNodeIp: 0.0.0.0

roles_BootRole:

- name: boot_role

allowRamdiskCreation: true

roles_StorageRole:

- name: storage_role

roles_ProvisioningRole:

- name: provisioning_role

allImages: LOCALDISK

In the preceding snippet, values are set for the physical node so that it functions correctly as a director
on an edge site.

1. The director, just like the edge nodes, is just a physical node, with the role EdgeDirectorRole

assigned to it, along with other relevant roles.

The edge (compute) nodes definition:

1. In the following snippet, the looping mechanism defines a physical node that corresponds to each
declared compute node.

Each edge node belongs to the correct network.

- name: create edge nodes

brightcomputing.bcm110.physical_node:

hostname: "{{item.hostname}}"

softwareImageProxy:

parentSoftwareImage: default-image

interfaces_NetworkPhysicalInterface:

- name: eth0

ip: "{{item.eth0_ip}}"

network: test-site-internal_network

category: default

mac: "{{item.mac}}"

managementNetwork: test-site-internal_network

installBootRecord: false

provisioningInterface: eth0

partition: base

loop: "{{ nodes }}" #(1)

Edge site object creation: The last part of the playbook creates the edge site object.

- name: add test edge site

brightcomputing.bcm110.edge_site:

name: "{{site.name}}"

secret: "{{site.secret}}"

address: Springfield

adminEmail: admin-west@email.com

city: San Francisco

contact: Admin

country: USA

notes: Note about the site

state: present

nodes: "{{site_nodes}}" #(1)

734 Day-to-day Administration

The site_nodes variable, defined by the set_fact task, is assigned to the nodes attribute of an edge_site

action.
Running this playbook on a fresh cluster should be enough to create a new edge site with the declared

properties, even if the nodes are not physically present.
The state of the edge site can be checked with cmsh queries. It should be noted that the image creation

step may take a few minutes, depending on how big default-image is.

15
High Availability

15.0 Introduction
15.0.1 Why Have High Availability?
In a cluster with a single head node, the head node is a single point of failure for the entire cluster. It is
often unacceptable that the failure of a single machine can disrupt the daily operations of a cluster.

High availablity configuration for a head node is about configuring an extra head node to provide
the head node services in a redundant manner. If one head node fails, then the other head node can take
over, thus providing the same services with a minimum of downtime.

High availability can be set up for other types of nodes too.

15.0.2 High Availability—For What Nodes?
By default, in this and other chapters, HA is about a head node failover configuration. When it is
otherwise, then it is made explicitly clear in the manuals that it is regular node HA, or edge director
HA, or COD head node HA that is being discussed.

High Availability For Head Nodes
By default, the head node usually runs the most services. The high availability (HA) feature of BCM
therefore allows clusters to be set up with two head nodes configured as a failover pair, with one member
of the pair being the active head. The purpose of this design is to increase availability to beyond that
provided by a single head node.

High Availability For Regular Nodes
Especially with smaller clusters, it is often convenient to run all services on the head node. However, an
administrator may want or need to run a service on a regular node instead. For example, a workload
manager, or NFS could be run on a regular node. If a service disruption is unacceptable here, too, then
HA can be configured for regular nodes too (section 15.5). HA for regular nodes is a more recent feature
in BCM, and is done differently compared with head nodes.

High Availability For Edge Directors
Edge directors manage edge nodes and manage them in a similar way to how head nodes manage reg-
ular nodes. Also similar to head nodes is that edge directors can also be configured for HA (section 2.1.1
of the Edge Manual). However, their HA design is based on that of HA for regular nodes.

High Availability For COD Head Nodes
Cluster On Demand (COD) head nodes are head nodes that run on a cloud service provider. COD HA
head nodes are very similar to standard cluster HA (on-premises) head nodes. COD HA is discussed
separately in section 2.14 of the Cloudbursting Manual.

736 High Availability

15.0.3 High Availability Usually Uses Shared Storage
HA is typically configured using shared storage (section 15.1.5), such as from an NFS service, which
typically provides the /home directory on the active (section 15.1.1) head, and on the regular nodes.

15.0.4 Organization Of This Chapter
The remaining sections of this chapter are organized as follows:

• HA On Head Nodes

– Section 15.1 describes the concepts behind HA, keeping the BCM configuration in mind.

– Section 15.2 describes the normal user-interactive way in which the BCM implementation of
a failover setup is configured.

– Section 15.3 describes the implementation of the BCM failover setup in a less user-interactive
way, which avoids using the ncurses dialogs of section 15.2

– Section 15.4 describes how HA is managed with BCM after it has been set up.

• HA On Regular Nodes

– Section 15.5 describes the concepts behind HA for regular nodes, and how to configure HA
for them.

• HA And Workload Manager Jobs

– Section 15.6 describes the support for workload manager job continuation during HA failover.

15.1 HA Concepts
15.1.1 Primary, Secondary, Active, Passive
Naming: In a cluster with an HA setup, one of the head nodes is named the primary head node and
the other head node is named the secondary head node.

Mode: Under normal operation, one of the two head nodes is in active mode, whereas the other is in
passive mode.

The difference between naming versus mode is illustrated by realizing that while a head node which
is primary always remains primary, the mode that the node is in may change. Thus, the primary head
node can be in passive mode when the secondary is in active mode. Similarly the primary head node
may be in active mode while the secondary head node is in passive mode. As an aside: the definition
for primary in HA for NVIDIA Base Command Manager should not be confused with the definition
for primary that is used by workload managers such as Slurm and PBS Professional when a failover
mechanism is configured by the workload manager (section 7.2.4).

The difference between active and passive is that the active head takes the lead in cluster-related
activity, while the passive follows it. Thus, for example, with MySQL transactions, CMDaemon car-
ries them out with MySQL running on the active, while the passive trails the changes. This naturally
means that the active corresponds to the master, and the passive to the slave, in the MySQL master-slave
replication mode that MySQL is run as.

15.1.2 Monitoring The Active Head Node, Initiating Failover
In HA the passive head node continuously monitors the active head node. If the passive finds that the
active is no longer operational, it will initiate a failover sequence. A failover sequence involves taking over
resources, services and network addresses from the active head node. The goal is to continue providing
services to compute nodes, so that jobs running on these nodes keep running.

15.1 HA Concepts 737

15.1.3 Services In BCM HA Setups
There are several services being offered by a head node to the cluster and its users.

Services Running On Both Head Nodes
One of the design features of the HA implementation in BCM is that whenever possible, services are
offered on both the active as well as the passive head node. This allows the capacity of both machines
to be used for certain tasks (e.g. provisioning), but it also means that there are fewer services to move in
the event of a failover sequence.

On a default HA setup, the following key services for cluster operations are always running on both
head nodes:

• CMDaemon: providing certain functionality on both head nodes (e.g. provisioning)

• DHCP: load balanced setup

• TFTP: requests answered on demand, under xinetd

• LDAP: running in replication mode (the active head node LDAP database is pulled by the passive)

• MySQL: running in master-slave replication mode (the active head node MySQL database is
pulled by the passive)

• NTP

• DNS

• Workload Management: For each of the Slurm, PBS, LSF services, one server is active on one head
node, while the other server is a passive standby on the other head node

When an HA setup is created from a single head node setup, the above services are automatically
reconfigured to run in the HA environment over two head nodes.

Provisioning role runs on both head nodes In addition, both head nodes also take up the provisioning
role, which means that nodes can be provisioned from both head nodes. As the passive head node is then
also provisioned from the active, and the active can switch between primary and secondary, it means
both heads are also given a value for provisioninginterface (section 5.4.7).

For a head node in a single-headed setup, there is no value set by default. For head nodes in an HA
setup, the value of provisioninginterface for each head node is automatically set up by default to the
interface device name over which the image can be received when the head node is passive.

The implications of running a cluster with multiple provisioning nodes are described in detail in
section 5.2. One important aspect described in that section is how to make provisioning nodes aware of
image changes.

From the administrator’s point of view, achieving awareness of image changes for provisioning
nodes in HA clusters is dealt with in the same way as for single-headed clusters. Thus, if using cmsh,
the updateprovisioners command from within softwareimage mode is used, whereas if Base View
is used, then the navigation path Provisioning > Provisioning requests > Update provisioning

nodes can be followed (section 5.2.4).

Services That Migrate To The Active Node
Although it is possible to configure any service to migrate from one head node to another in the event
of a failover, in a typical HA setup only the following services migrate:

• NFS

• The User Portal

• Workload management: The SGE/GE server (sgemaster)

738 High Availability

15.1.4 Failover Network Topology
A two-head failover network layout is illustrated in figure 15.1.

head1 head2

External
network

Internal
network

Virtual shared eth1:0
external IP address

Virtual shared eth0:0
internal IP address

Dedicated failover
network link

eth0 eth0
eth0

eth
0

eth1
eth1

eth1
eth1

10.141.255.254

10.50.0.1
eth2

10.141.255.252

eth2
10.50.0.2

10.1
41.2

55.2
53

10.141.255.254

192.168.32.10

192.168.32.11 192.168.32.12
192.168.32.10______________

Figure 15.1: High Availability: Two-Head Failover Network Topology

In the illustration, the primary head1 is originally a head node before the failover design is imple-
mented. It is originally set up as part of a Type 1 network (section 3.3.9 of the Installation Manual), with
an internal interface eth0, and an external interface eth1.

When the secondary head is connected up to help form the failover system, several changes are
made.

HA: Network Interfaces
Each head node in an HA setup typically has at least an external and an internal network interface, each
configured with an IP address.

In addition, an HA setup uses two virtual IP interfaces, each of which has an associated virtual IP
address: the external shared IP address and the internal shared IP address. These are shared between
the head nodes, but only one head node can host the address and its interface at any time.

In a normal HA setup, a shared IP address has its interface hosted on the head node that is operating

15.1 HA Concepts 739

in active mode. On failover, the interface migrates and is hosted on the head node that then becomes
active.

When head nodes are also being used as login nodes, users outside of the cluster are encouraged
to use the shared external IP address for connecting to the cluster. This ensures that they always reach
whichever head node is active. Similarly, inside the cluster, nodes use the shared internal IP address
wherever possible for referring to the head node. For example, nodes mount NFS filesystems on the
shared internal IP interface so that the imported filesystems continue to be accessible in the event of a
failover.

Shared interfaces are implemented as alias interfaces on the physical interfaces (e.g. eth0:0). They
are activated when a head node becomes active, and deactivated when a head node becomes passive.

HA: Dedicated Failover Network
In addition to the normal internal and external network interfaces on both head nodes, the two head
nodes are usually also connected using a direct dedicated network connection, eth2 in figure 15.1. This
connection is used between the two head nodes to monitor their counterpart’s availability. It is called a
heartbeat connection because the monitoring is usually done with a regular heartbeat-like signal between
the nodes such as a ping, and if the signal is not detected, it suggests a head node is dead.

To set up a failover network, it is highly recommended to simply run a UTP cable directly from the
NIC of one head node to the NIC of the other, because not using a switch means there is no disruption
of the connection in the event of a switch reset.

15.1.5 Shared Storage
Almost any HA setup also involves some form of shared storage between two head nodes to preserve
state after a failover sequence. For example, user home directories must always be available to the
cluster in the event of a failover.

In the most common HA setup, the following two directories are shared:

• /home, the user home directories

• /cm/shared, the shared tree containing applications and libraries that are made available to the
nodes

The shared filesystems are only available on the active head node. For this reason, it is generally
recommended that users log in via the shared IP address, rather than ever using the direct primary
or secondary IP address. End-users logging into the passive head node by direct login may run into
confusing behavior due to unmounted filesystems.

BCM versions 11.0 and beyond use NAS (Network Attached Storage) for shared storage. Versions
prior to 11.0 also allowed DAS (Direct Attached Storage) for shared storage. However, DAS by its
very nature has drawbacks that make it significantly more fragile for shared storage purposes. DAS is
therefore no longer suggested as a possible shared storage option for BCM.

NAS
In a Network Attached Storage (NAS) setup, both head nodes mount a shared volume from an external
network attached storage device. In the most common situation this would be an NFS server either
inside or outside of the cluster. Lustre or GPFS storage are other popular choices.

Because imported mounts can typically not be re-exported (which is true at least for NFS), nodes
typically mount filesystems directly from the NAS device.

Custom Shared Storage With Mount And Unmount Scripts
The cluster management daemon on the two head nodes deals with shared storage through a mount
script and an unmount script. When a head node is moving to active mode, it must acquire the shared
filesystems. To accomplish this, the other head node first needs to relinquish any shared filesystems that
may still be mounted. After this has been done, the head node that is moving to active mode invokes

740 High Availability

the mount script which has been configured during the HA setup procedure. When an active head node
is requested to become passive (e.g. because the administrator wants to take it down for maintenance
without disrupting jobs), the unmount script is invoked to release all shared filesystems.

By customizing the mount and unmount scripts, an administrator has full control over the form of
shared storage that is used. Also an administrator can control which filesystems are shared.

Mount scripts paths can be set via cmsh or Base View (section 15.4.6).

15.1.6 Guaranteeing One Active Head At All Times
Because of the risks involved in accessing a shared filesystem simultaneously from two head nodes, it is
vital that only one head node is in active mode at any time. To guarantee that a head node that is about
to switch to active mode will be the only head node in active mode, it must either receive confirmation
from the other head node that it is in passive mode, or it must make sure that the other head node is
powered off.

What Is A Split Brain?
When the passive head node determines that the active head node is no longer reachable, it must also
take into consideration that there could be a communication disruption between the two head nodes.
Because the “brains” of the cluster are communicatively “split” from each other, this is called a split brain
situation.

Since the normal communication channel between the passive and active may not be working cor-
rectly, it is not possible to use only that channel to determine either an inactive head or a split brain with
certainty. It can only be suspected.

Thus, on the one hand, it is possible that the head node has, for example, completely crashed, be-
coming totally inactive and thereby causing the lack of response. On the other hand, it is also possible
that, for example, a switch between both head nodes is malfunctioning, and that the active head node is
still up and running, looking after the cluster as usual, and that the head node in turn observes that the
passive head node seems to have split away from the network.

Further supporting evidence from the dedicated failover network channel is therefore helpful. Some
administrators find this supporting evidence an acceptable level of certainty, and configure the cluster
to decide to automatically proceed with the failover sequence, while others may instead wish to exam-
ine the situation first before manually proceeding with the failover sequence. The implementation of
automatic vs manual failover is described in section 15.1.7. In either implementation, fencing, described
next, takes place until the formerly active node is powered off.

Going Into Fencing Mode
To deal with a suspected inactive head or split brain, a passive head node that notices that its active
counterpart is no longer responding, first goes into fencing mode from that time onward. While a node
is fencing, it will try to obtain proof via another method that its counterpart is indeed inactive.

Fencing, incidentally, does not refer to a thrust-and-parry imagery derived from fencing swordplay.
Instead, it refers to the way all subsequent actions are tagged and effectively fenced-off as a backlog of
actions to be carried out later. If the head nodes are able to communicate with each other before the
passive decides that its counterpart is now inactive, then the fenced-off backlog is compared and synced
until the head nodes are once again consistent.

Ensuring That The Unresponsive Active Is Indeed Inactive
There are two ways in which “proof” can be obtained that an unresponsive active is inactive:

1. By asking the administrator to manually confirm that the active head node is indeed powered off

2. By performing a power-off operation on the active head node, and then checking that the power
is indeed off to the server. This is also referred to as a STONITH (Shoot The Other Node In The
Head) procedure

15.1 HA Concepts 741

It should be noted that just pulling out the power cable is not the same as a power-off operation
(section 15.2.4).

Once a guarantee has been obtained that the active head node is powered off, the fencing head node
(i.e. the previously passive head node) moves to active mode.

Improving The Decision To Initiate A Failover With A Quorum Process
While the preceding approach guarantees one active head, a problem remains.

In situations where the passive head node loses its connectivity to the active head node, but the
active head node is communicating without a problem to the entire cluster, there is no reason to initiate
a failover. It can even result in undesirable situations where the cluster is rendered unusable if, for
example, a passive head node decides to power down an active head node just because the passive
head node is unable to communicate with any of the outside world (except for the PDU feeding the
active head node).

One technique used by BCM to reduce the chances of a passive head node powering off an active
head node unnecessarily is to have the passive head node carry out a quorum procedure. All nodes
in the cluster are asked by the passive node to confirm that they also cannot communicate with the
active head node. If more than half of the total number of nodes confirm that they are also unable to
communicate with the active head node, then the passive head node initiates the STONITH procedure
and moves to active mode.

15.1.7 Automatic Vs Manual Failover
Administrators have a choice between creating an HA setup with automatic or manual failover.

• In the case of an automatic failover, an active head node is powered off when it is no longer
responding at all, and a failover sequence is initiated automatically.

• In the case of a manual failover, the administrator is responsible for initiating the failover when the
active head node is no longer responding. No automatic power off is done, so the administrator is
asked to confirm that the previously active node is powered off.

For automatic failover to be possible, power control must be defined for both head nodes. If power
control is defined for the head nodes, then automatic failover is attempted by default.

The administrator may disable automatic failover. In cmsh this is done by setting the
disableautomaticfailover property, which is a part of the HA-related parameters (section 15.4.6):

[root@basecm11 ~]# cmsh

[basecm11]% partition failover base

[basecm11->partition[base]->failover]% set disableautomaticfailover yes

[basecm11->partition*[base*]->failover*]% commit

With Base View it is carried out via the navigation path Cluster > Partition[base] > Settings

> Failover > Disable automatic failover

If no power control has been defined, or if automatic failover has been disabled, or if the power
control mechanism is not working (for example due to inappropriate, broken or missing electronics or
hardware), then a failover sequence must always be initiated manually by the administrator.

Sometimes, if automatic failover is enabled, but the active head is still slightly responsive (the so-
called mostly dead state, described in section 15.4.2), then the failover sequence must also be initiated
manually by the administrator.

15.1.8 HA And Cloud Nodes
As far as the administrator is concerned, HA setup remains the same whether a Cluster Extension (Chap-
ter 3 of the Cloudbursting Manual) is configured or not, and whether a Cluster On Demand (Chapter 2 of
the Cloudbursting Manual) is configured or not. Behind the scenes, on failover, any networks associated
with the cloud requirements are taken care of by BCM.

742 High Availability

15.1.9 HA Using Virtual Head Nodes
Two physical servers are typically used for HA configurations. However, each head node can also be a
virtual machine (VM). The use case for this might be to gain experience with an HA configuration.

Failover Network Considerations With HA VMs
With physical head nodes in an HA configuration, the failover network, used for HA heartbeats, is
typically provided by running a network cable directly between the ethernet port on each machine. Not
having even a switch in between is a best practice. Since the head nodes are typically in the same, or
adjacent racks, setting this up is usually straightforward.

With VMs as head nodes in an HA configuration, however, setting up the failover network can be
more complex:

• The cluster administrator may need to consider if HA is truly improved by, for example, connect-
ing the failover network of the physical node to a switch.

• Often a virtual switch would be used between the virtual head nodes, just because it is often easier.

• Not using a failover network is also an option, just as in the physical case.

• If one head node is on one hypervisor, and another is on a second hypervisor, then a standard
BCM setup cannot have one head node carry out an automated failover STONITH because it
cannot contact the other hypervisor. So powering off the VM in the other hypervisor would have
to be done manually. An alternative to this, if automated failover is required, is to create custom
power scripts.

There are no specific guidelines for the network configuration of HA with VMs in BCM. The process of
configuration is however essentially the same as for a physical node.

Size Considerations With HA VMs
A virtual head node in practice may be configured with fewer CPUs and memory than a physical head
node, just because such configurations are more common options in a VM setup than for a physical
setup, and cheaper to run. However, the storage requirement is the same as for a physical node. The
important requirement is that the head nodes should have sufficient resources for the cluster.

15.2 HA Setup Procedure Using cmha-setup

After installation (Chapter 3 of the Installation Manual) and license activation (Chapter 4 of the Installation
Manual) an administrator may wish to add a new head node, and convert BCM from managing an
existing single-headed cluster to managing an HA cluster.

Is An HA-Enabled License Required?
To convert a single-headed cluster to an HA cluster, the existing cluster license should first be checked
to see if it allows HA. The verify-license command run with the info option can reveal this in the
MAC address field:

Example

verify-license info | grep ^MAC

HA-enabled clusters display two MAC addresses in the output. Single-headed clusters show only one.
If an HA license is not present, it should be obtained from a BCM reseller, and then be activated and

installed (Chapter 4 of the Installation Manual).

15.2 HA Setup Procedure Using cmha-setup 743

Existing User Certificates Become Invalid
Installing the new license means that any existing user certificates will lose their validity (page 63 of the
Installation Manual) on Base View session logout. This means:

• If LDAP is managed by BCM, then on logout, new user certificates are generated, and a new Base
View login session picks up the new certificates automatically.

• For LDAPs other than that of BCM, the user certificates need to be regenerated.

It is therefore generally good practice to have an HA-enabled license in place before creating user cer-
tificates and profiles if there is an intention of moving from a single-headed to an HA-enabled cluster
later on.

The cmha-setup Utility For Configuring HA
The cmha-setup utility is a special tool that guides the administrator in building an HA setup from a
single head cluster. It is not part of the cluster manager itself, but is a cluster manager tool that interacts
with the cluster management environment by using cmsh to create an HA setup. Although it is in theory
also possible to create an HA setup manually, using either Base View or cmsh along with additional steps,
this is not supported, and should not be attempted as it is error-prone.

A basic HA setup is created in three stages:

1. Preparation (section 15.2.1): the configuration parameters are set for the shared interface and for
the secondary head node that is about to be installed.

2. Cloning (section 15.2.2): the secondary head node is installed by cloning it from the primary head
node.

3. Shared Storage Setup (section 15.2.3): the method for shared storage is chosen and set up.

An optional extra stage is:

4. Automated Failover Setup (section 15.2.4): Power control to allow automated failover is set up.

15.2.1 Preparation
The following steps prepare the primary head node for the cloning of the secondary. The preparation is
done only on the primary, so that the presence of the secondary is not actually needed during this stage.

0. It is recommended that all nodes except for the primary head node are powered off, in order to
simplify matters. The nodes should in any case be power cycled or powered back on after the
basic HA setup stages (sections 15.2.1-15.2.3, and possibly section 15.2.4) are complete.

1. If bonding (section 3.5) is to be used on the head node used in an HA setup, then it is recommended
to configure and test out bonding properly before carrying out the HA setup.

2. To start the HA setup, the cmha-setup command is run from a root shell on the primary head
node.

3. Setup is selected from the main menu (figure 15.2).

4. Configure is selected from the Setup menu.

5. A license check is done. Only if successful does the setup proceed further. If the cluster has
no HA-enabled license, a new HA-enabled license must first be obtained from the NVIDIA Base
Command Manager reseller, and activated (section 4.3 of the Installation Manual).

6. The virtual shared internal alias interface name and virtual shared internal IP alias address are set.

744 High Availability

Figure 15.2: cmha-setup Main menu

7. The virtual shared external alias interface name and virtual shared external IP alias address are
set. For the external shared virtual IP address as well as for the external regular IP addresses,
each head node external interface address must be a static IP addresses for the HA configuration.
Attempting to use DHCP for external addresses in HA is not going to work.

8. The host name of the passive is set.

9. Failover network parameters are set. The failover network physical interface should exist, but the
interface need not be up. The network name, its base address, its netmask, and domain name are
set. This is the network used for optional heartbeat monitoring.

10. Failover network interfaces have their name and IP address set for the active and passive nodes.

11. The primary head node may have other network interfaces (e.g. InfiniBand interfaces, a BMC
interface, alias interface on the BMC network). These interfaces are also created on the secondary
head node, but the IP address of the interfaces still need to be configured. For each such interface,
when prompted, a unique IP address for the secondary head node is configured.

12. The network interfaces of the secondary head node are reviewed and can be adjusted as required.
DHCP assignments on external interfaces can be set by setting the value DHCP. If the primary head
node has a DHCP-assigned IP address, then the input field for the secondary head node is set by
default to the value DHCP.

13. A summary screen displays the planned failover configuration. If alterations need to be made,
they can be done via the next step.

14. The administrator is prompted to set the planned failover configuration. If it is not set, the main
menu of cmha-setup is re-displayed.

15. If the option to set the planned failover configuration is chosen, then a password for the MySQL
root user is requested. The procedure continues further after the password is entered.

16. Setup progress for the planned configuration is displayed (figure 15.3).

17. Instructions on what to run on the secondary to clone it from the primary are displayed (fig-
ure 15.4).

15.2 HA Setup Procedure Using cmha-setup 745

Figure 15.3: cmha-setup Setup Progress For Planned Configuration

Figure 15.4: cmha-setup Instructions To Run On Secondary For Cloning

15.2.2 Failover Cloning (Replacing A Passive Head)
In the IT industry, if an image is made of a computer, then it means making a copy of the drive. In BCM
the word “image” is normally used for the software that can be placed on regular nodes. So, BCM uses
the word “cloning” to describe making a very similar, or even identical, copy of a head node, using the
/cm/cm-clone-install command.

There are actually two kinds of cloning possible with the /cm/cm-clone-install command:

• Failover cloning: With this, a passive head node can be created from the active head node. This
uses the --failover option to create a copy that is very similar to the active head node, but with
changes to make it a passive head, ready for failover purposes, and replacing a head that has just
failed.

• Re-cloning: An active head node can be created from the active head node. This uses the --clone

option to create an exact copy (re-clone) of the head node. This might be useful if for some reason
the administrator would like to take a snapshot of the head node at that moment. Using this

746 High Availability

snapshot to have a plug-in replacement head node—that is, a head node kept aside, and ready to
replace a failed production head node later on—is not recommended, due to how impractical it is
to update the snapshot.

The process described in this section PXE boots the passive from the active, thereby loading a special
rescue image from the active that allows cloning from the active to the passive to take place. This section
is therefore about failover cloning. How to carry out re-cloning is described in section 15.4.8.

After the preparation has been done by configuring parameters as outlined in section 15.2.1, the
failover cloning of the head nodes is carried out. In the cloning instructions that follow, the active node
refers to the primary node and the passive node refers to the secondary node. However this correlation
is only true for when an HA setup is created for the first time, and it is not necessarily true if head nodes
are replaced later on by cloning.

These cloning instructions may also be repeated later on if a passive head node ever needs to be
replaced, for example, if the hardware is defective (section 15.4.8). In that case the active head node can
be either the primary or secondary.

1. The passive head node is PXE booted off the internal cluster network, from the active head node.
It is highly recommended that the active and passive head nodes have identical hardware configu-
rations. The BIOS clock of the head nodes should match and be set to the local time. Typically, the
BIOS of both head nodes is also configured so that a hard disk boot is attempted first, and a PXE
boot is attempted after a hard disk boot failure, leading to the Cluster Manager PXE Environment

menu of options. This menu has a 5s time-out.

2. In the Cluster Manager PXE Environment menu of the node that is to become a clone, before
the 5s time-out, “Start Rescue Environment” is selected to boot the node into a Linux ramdisk
environment.

3. Once the rescue environment has finished booting, a login as root is done. No password is required
(figure 15.5).

Figure 15.5: Login Screen After Booting Passive Into Rescue Mode From Active

15.2 HA Setup Procedure Using cmha-setup 747

4. The following command is executed (figure 15.6) on the node that is to become a failover clone:
/cm/cm�clone�install --failover

When doing a re-clone as in section 15.4.8, instead of a failover clone, then it is the --clone option
that is used instead of the --failover option.

Figure 15.6: Cloning The Passive From The Active Via A Rescue Mode Session

5. When prompted to enter a network interface to use, the interface that was used to boot from
the internal cluster network (e.g. eth0, eth1, ...) is entered. There is often uncertainty about
what interface name corresponds to what physical port. This can be resolved by switching to
another console and using “ethtool -p <interface>”, which makes the NIC corresponding to
the interface blink.

6. If the provided network interface is correct, a root@master's password prompt appears. The
administrator should enter the root password.

7. An opportunity to view or edit the master disk layout is offered.

8. A confirmation that the contents of the specified disk are to be erased is asked for.

9. The cloning takes place. The “syncing” stage usually takes the most time. Cloning progress can
also be viewed on the active by selecting the “Install Progress” option from the Setup menu.
When viewing progress using this option, the display is automatically updated as changes occur.

10. After the cloning process has finished, a prompt at the console of the passive asks if a reboot is to
be carried out. A “y” is typed in response to this. The passive node should be set to reboot off its
hard drive. This may require an interrupt during reboot, to enter a change in the BIOS setting, if
for example, the passive node is set to network boot first.

11. Continuing on now on the active head node, Finalize is selected from the Setup menu of
cmha-setup.

12. The MySQL root password is requested. After entering the MySQL password, the progress of the
Finalize procedure is displayed, and the cloning procedure continues.

13. The cloning procedure of cmha-setup pauses to offer the option to reboot the passive. The ad-
ministrator should accept the reboot option. After reboot, the cloning procedure is complete. The

748 High Availability

administrator can then go to the main menu and quit from there or go on to configure “Shared
Storage” (section 15.2.3) from there.

A check can already be done at this stage on the failover status of the head nodes with the cmha

command, run from either head node:

Example

[root@basecm11 ~]# cmha status

Node Status: running in active master mode

Failover status:

basecm11* -> master2

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

master2 -> basecm11*

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

Here, the asterisk indicates the active node, and the arrow direction indicates which node was car-
rying out the status check on the other. The [OK] states for mysql, ping and status indicate that HA
setup completed successfully. The failoverping state uses the dedicated failover network route for its
checks, and starts working as soon as the passive head node has been rebooted.

15.2.3 Shared Storage Setup
After cloning the head node (section 15.2.2), the last basic stage of creating an HA setup is setting up
shared storage.

NAS
1. In the cmha-setup main menu, the “Shared Storage” option is selected.

2. NAS is selected.

3. The parts of the head node filesystem that are to be copied to the NAS filesystems are selected. By
default, these are /home and /cm/shared as suggested in section 15.1.5. The point in the filesys-
tem where the copying is done is the future mount path to where the NAS will share the shared
filesystem.

An already-configured export that is not shared is disabled in /etc/exports by cmha-setup. This
is done to prevent the creation of stale NFS file handles during a failover. Sharing already-existing
exports is therefore recommended. Storage can however be dealt with in a customized manner
with mount and unmount scripts (page 739).

4. The NFS host name is configured. Also, for each head node filesystem that is to be copied to the
NAS filesystem, there is an associated path on the NAS filesystem where the share is to be served
from. These NFS volume paths are now configured.

5. If the configured NFS filesystems can be correctly mounted from the NAS server, the process of
copying the local filesystems onto the NAS server begins.

/etc/exports

15.2 HA Setup Procedure Using cmha-setup 749

15.2.4 Automated Failover And Relevant Testing
A power-off operation on the active head node server does not mean the same as just pulling out the
power cable to the active head node. These actions typically have different effects, and should therefore
not be confused with each other. During the power-off operation, the BMC remains up. However, in
the case of pulling out the power cable, the BMC is typically turned off too. If the BMC is not reachable,
then it means that verifying that the active head has been terminated is uncertain. This is because the
data that CMDaemon can access implies a logical possibility that there is a network failure rather than
a head node failure. CMDaemon therefore does not carry out an automatic failover if the power cable is
pulled out.

For automatic failover to work, the two head nodes must be able to power off their counterpart. This
is done by setting up power control (Chapter 4).

Testing If Power Control Is Working
The “device power status” command in cmsh can be used to verify that power control is functional:

Example

[master1]% device power status -n mycluster1,mycluster2

apc03:21 [ON] mycluster1

apc04:18 [ON] mycluster2

Testing The BMC Interface Is Working
If a BMC (Baseboard Management Controller, section 3.7) such as IPMI or iLO is used for power control,
it is possible that a head node is not able to reach its own BMC interface over the network. This is
especially true when no dedicated BMC network port is used. In this case, cmsh -c "device power

status" reports a failure for the active head node. This does not necessarily mean that the head nodes
cannot reach the BMC interface of their counterpart. Pinging a BMC interface can be used to verify that
the BMC interface of a head node is reachable from its counterpart.

Example

Verifying that the BMC interface of mycluster2 is reachable from mycluster1:

[root@mycluster1 ~]# ping -c 1 mycluster2.bmc.cluster

PING mycluster2.bmc.cluster (10.148.255.253) 56(84) bytes of data.

64 bytes from mycluster2.bmc.cluster (10.148.255.253): icmp_seq=1

ttl=64 time=0.033 ms

Verifying that the BMC interface of mycluster1 is reachable from mycluster2:

[root@mycluster2 ~]# ping -c 1 mycluster1.bmc.cluster

PING mycluster1.bmc.cluster (10.148.255.254) 56(84) bytes of data.

64 bytes from mycluster1.bmc.cluster (10.148.255.254): icmp_seq=1

ttl=64 time=0.028 ms

Testing Automated Failover Against A Simulated Crash
A normal (graceful) shutdown of an active head node, does not cause the passive to become active,
because HA assumes a graceful failover means there is no intention to trigger a failover. To carry out
testing of an HA setup with automated failover, it is therefore useful to simulate a kernel crash on one
of the head nodes. The following command crashes a head node instantly:

echo c > /proc/sysrq-trigger

After the active head node freezes as a result of the crash, the passive head node powers off the ma-
chine that has frozen and switches to active mode. A hard crash like this can cause a database replication
inconsistency when the crashed head node is brought back up and running again, this time passively,

750 High Availability

alongside the node that took over. This is normally indicated by a FAILED status for the output of cmha
status for MySQL (section 15.4). Database administration with the dbreclone command (section 15.4)
may therefore be needed to synchronize the databases on both head nodes to a consistent state. Because
dbreclone is a resource-intensive utility, it is best used during a period when there are few or no users.
It is generally only used by administrators when they are instructed to do so by BCM support.

A passive node can also be made active without a crash of the active-until-then node, by using the
“cmha makeactive” command on the passive (section 15.4.2). Manually running this is not needed in
the case of a head node crash in a cluster where power management has been set up for the head nodes,
and the automatic failover setting is not disabled.

15.3 Running cmha-setup Without ncurses, Using An XML Specification
15.3.1 Why Run It Without ncurses?
The ncurses-based TUI for cmha-setup is normally how administrators should set up a failover config-
uration.

The express mode of cmha-setup is the command-line interface (CLI) that allows an administrator
to skip the TUI. This is useful, for example, for scripting purposes and speeding deployment. A fur-
ther convenience is that this mode uses a human-editable XML file to specify the network and storage
definitions for failover.

Running cmha-setup without the TUI still requires some user intervention, such as entering the
root password for MySQL. The intervention required is scriptable with, for example, Expect, and is
minimized if relevant options are specified for cmha-setup from the -x options.

15.3.2 The Syntax Of cmha-setup Without ncurses
The express mode (-x) options are displayed when “cmha-setup -h” is run. The syntax of the -x op-
tions is indicated by:

cmha-setup [-x -c <configfile> [-s <type>] <-i|-f[-r]> [-p <mysqlrootpassword>]]

The -x options are:

• -c|--config <configfile>: specifies the location of <configfile>, which is the failover configuration
XML file for cmha-setup. The file stores the values to be used for setting up a failover head node.
The recommended location is at /cm/local/apps/cluster-tools/ha/conf/failoverconf.xml.

• -i|--initialize: prepares a failover setup by setting values in the CMDaemon database to the
values specified in the configuration file. This corresponds to section 15.2.1. The administrator is
prompted for the MySQL root password unless the -p option is used. The -i option of the script
then updates the interfaces in the database, and clones the head node in the CMDaemon database.
After this option in the script is done, the administrator normally carries clones the passive node
from the active, as described in steps 1 to 10 of section 15.2.2.

• -f|--finalize: After the passive node is cloned as described in steps 1 to 10 of section 15.2.2, the
finalize option is run on the active node to run the non-TUI finalize procedure. This is the non-TUI
version of steps 11 to 13 of section 15.2.2.

◦ -r|--finalizereboot: makes the passive reboot after the finalize step completes.

• -p|--pass <mysqlrootpassword>: specifies the MySQL root password. Leaving this out means the
administrator is prompted to type in the password during a run of the cmha-setup script when
using the -x options.

There is little attempt at validation with the express mode, and invalid entries can cause the com-
mand to hang.

/cm/local/apps/cluster-tools/ha/conf/failoverconf.xml

15.4 Managing HA 751

15.3.3 Example cmha-setup Run Without ncurses
Preparation And Initialization:
After shutting down all nodes except for the active head node, a configuration is prepared by the ad-
ministrator in /cm/local/apps/cluster-tools/ha/conf/failoverconf.xml. The administrator then
runs cmha-setup with the initialization option on the active:

[root@basecm11 ~]# cd /cm/local/apps/cluster-tools/ha/conf

[root@basecm11 conf]# cmha-setup -x -c failoverconf.xml -i

Please enter the mysql root password:

Initializing failover setup on master [OK]

Updating shared internal interface [OK]

Updating shared external interface [OK]

Updating extra shared internal interfaces [OK]

Updating failover network [OK]

Updating primary master interfaces [OK]

Cloning master node [OK]

Updating secondary master interfaces [OK]

Updating failover network interfaces [OK]

Updating Failover Object [OK]

The preceding corresponds to the steps in section 15.2.1.

PXE Booting And Cloning The Passive:
The passive head node is then booted up via PXE and cloned as described in steps 1 to 10 of sec-
tion 15.2.2.

Finalizing On The Active And Rebooting The Passive:
Then, back on the active head node the administrator continues the session there, by running the final-
ization option with a reboot option:

[root@basecm11 conf]# cmha-setup -x -c failoverconf.xml -f -r

Please enter the mysql root password:

Updating secondary master mac address [OK]

Initializing failover setup on master2 [OK]

Cloning database [OK]

Update DB permissions [OK]

Checking for dedicated failover network [OK]

A reboot has been issued on master2

The preceding corresponds to steps 11 to 13 of section 15.2.2.

Adding Storage:
Continuing with the session on the active, setting up a shared storage could be done with:

[root@basecm11 conf]# cmha-setup -x -c failoverconf.xml -s nas

The preceding corresponds to carrying out the NAS procedure of section 15.2.3.

15.4 Managing HA
Once an HA setup has been created, the tools in this section can be used to manage the HA aspects of
the cluster.

15.4.1 Changing An Existing Failover Configuration
Changing an existing failover configuration is usually done most simply by running through the HA
setup procedure of section 15.2 again, with one exception. The exception is that the existing failover
configuration must be removed by using the “Undo Failover” menu option between steps 3 and 4 of
the procedure described in section 15.2.1.

/cm/local/apps/cluster-tools/ha/conf/failoverconf.xml

752 High Availability

15.4.2 cmha Utility
A major command-line utility for interacting with the HA subsystem, for regular nodes as well as for
head nodes, is cmha. It is part of the BCM cluster-tools package. Its usage information is:

[root@mycluster1 ~]# cmha

Usage: cmha < status | makeactive [node] | dbreclone <host> |

nodestatus [name] >

status Retrieve and print high availability status

of head nodes.

nodestatus [groups] Retrieve and print high availability status

of failover [groups] (comma separated list of group

names. If no argument is given, then the status of

all available failover groups is printed.

makeactive [node] Make the current head node the active head node. If

[node] is specified, then make [node] the active

node in the failover group that [node] is part of.

dbreclone <host> Clone MySQL database from this head node to

<host> (hostname of failover head node).

Some of the information and functions of cmha can also be carried out via CMDaemon:

• For cmsh, the following commands can be run from within the base object in partition mode:

– For the head node, the status and makeactive commands are run from within the failover

submode.

– For regular nodes the nodestatus and makeactive [node] commands are run from within
the failovergroups submode.

The dbreclone option cannot be carried out in Base View or cmsh because it requires stopping CM-
Daemon.

The cmha options status, makeactive, and dbreclone are looked at in greater detail next:

cmha status: Querying HA Status
Information on the failover status is displayed thus:

Example

[root@mycluster1 ~]# cmha status

Node Status: running in active master mode

Failover status:

mycluster1* -> mycluster2

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

mycluster2 -> mycluster1*

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

15.4 Managing HA 753

The * in the output indicates the head node which is currently active. The status output shows 4
aspects of the HA subsystem from the perspective of each head node:

HA Status Description

failoverping the other head node is reachable via the dedicated failover network. This failover
ping uses the failover route instead of the internal net route. It uses ICMP ping

mysql MySQL replication status

ping the other head node is reachable over the primary management network. It uses
ICMP ping.

status CMDaemon running on the other head node responds to REST calls

By default, BCM prepares to carry out the failover sequence (the sequence that includes a STONITH)
when all three of ping, failoverping and status are not OK on a head node. If these three are not OK,
then the active node is all dead according to cmha. One way of initiating failover is thus by causing a
system crash (section 15.2.4).

It can typically take about 30s for the cmha status command to output its findings in the case of a
recently crashed head node.

cmha makeactive: Initiate Failover
If automatic failover is enabled (section 15.1.7), then the failover sequence attempts to complete auto-
matically if power management is working properly, and the cmha status shows ping, failoverping
and status as failed.

If automatic failover is disabled, then a manual failover operation must be executed to have a failover
operation take place. A manual failover operation can be carried out with the “cmha makeactive” com-
mand:

Example

To initiate a failover manually:

[root@mycluster2 ~]# cmha makeactive

Proceeding will initiate a failover sequence which will make this node

(mycluster2) the active master.

Are you sure ? [Y/N]

y

Your session ended because: CMDaemon failover, no longer master

mycluster2 became active master, reconnecting your cmsh ...

On successful execution of the command, the former active head node simply continues to run as a
passive head node.

The cmha makeactive command assumes both head nodes have no problems preventing the execu-
tion of the command.

One possible problem that can halt manual failover is if nodes are being provisioned by the pro-
visioning subsystem at that time (section 5.2.4). In that case, provisioning should be cancelled by the
cluster administrator before the cmha makeactive command can continue, for example, with cmsh -c

"softwareimage cancelprovisioningrequest -a" (page 264).
For automatic failover no such intervention takes place—provisioning requests are killed when the

active head node is powered off.
Another slightly similar problem that can occur for automatic failover, as well as manual failover,

is the “mostly dead” edge case. This case requires careful consideration before the Are you sure ?

prompt is answered by the cluster administrator.

754 High Availability

cmha makeactive edge case—the mostly dead active:

• For a manual failover operation, if the execution of the cmha makeactive command has problems,
then it can mean that there is a problem with the initially active head node being in a sluggish
state. That is, neither fully functioning, nor all dead. The active head node is thus in a state that is
still powered on, but what can be called mostly dead. Mostly dead means slightly alive (not all of
ping, failoverping, and status are FAILED), while all dead means there is only one thing that
can sensibly be done to make sure the cluster keeps running—that is, to make the old passive the
new active.

Making an old passive the new active is only safe if the old active is guaranteed to not come back
as an active head node. This guarantee is set by a STONITH (page 740) for the old active head
node, and results in a former active that is now all dead. STONITH thus guarantees that head
nodes are not in conflict about their active and passive states. STONITH can however still fail in
achieving a clean shutdown when acting on a mostly dead active head node, which can result in
unclean filesystem or database states.

Thus, the mostly dead active head node may still be in the middle of a transaction, so that shut-
ting it down may cause filesystem or database corruption. Making the passive node also active
then in this case carries risks such as mounting filesystems accidentally on both head nodes, or
carrying out database transactions on both nodes. This can also result in filesystem and database
corruption.

It is therefore left to the administrator to examine the situation for corruption risk. The decision is
either to power off a mostly dead head node, i.e. STONITH to make sure it is all dead, or whether
to wait for a recovery to take place. When carrying out a STONITH on the mostly dead active head
node, the administrator must power it off before the passive becomes active for a manual failover
to take place with minimal errors. The cmha dbreclone option may still be needed to restore a
corrupted database after such a power off, after bringing the system back up.

• For an automated failover configuration, powering off the mostly dead active head node is not
carried out automatically due to the risk of filesystem and database corruption. A mostly dead
active node with automatic failover configuration therefore stays mostly dead either until it recov-
ers, or until the administrator decides to do a STONITH manually to ensure it is all dead. Here,
too, the cmha dbreclone option may still be needed to restore a corrupted database after such a
power off, after bringing the system back up.

cmha dbreclone: Cloning The CMDaemon Database
The dbreclone option of cmha clones the CMDaemon state database from the head node on which cmha

runs to the head node specified after the option. It is normally run in order to clone the database from the
active head node to the passive—running it from the passive to the active can cause a loss of database
entries. Running the dbreclone option can be used to retrieve the MySQL CMDaemon state database
tables, if they are, for example, unsalvageably corrupted on the destination node, and the source node
has a known good database state. Because it is resource intensive, it is best run when there are few or
no users. It is typically only used by administrators after being instructed to do so by BCM support.

Example

[root@basecm11 ~]# cmha status

Node Status: running in active master mode

Failover status:

basecm11* -> head2

failoverping [OK]

mysql [OK]

ping [OK]

15.4 Managing HA 755

status [OK]

head2 -> basecm11*

failoverping [OK]

mysql [FAILED] (11)

ping [OK]

status [OK]

[root@basecm11 ~]# cmha dbreclone head2

Proceeding will cause the contents of the cmdaemon state database on he\
ad2 to be resynchronized from this node (i.e. basecm11 -> head2)

Are you sure ? [Y/N]

Y

Waiting for CMDaemon (3113) to terminate...

[OK]

Waiting for CMDaemon (7967) to terminate...

[OK]

cmdaemon.dump.8853.sql 100% 253KB 252.9KB/s 00:00

slurmacctdb.dump.8853.sql 100% 11KB 10.7KB/s 00:00

Waiting for CMDaemon to start... [OK]

Waiting for CMDaemon to start...[OK]

[root@basecm11 ~]# cmha status

Node Status: running in active master mode

Failover status:

basecm11* -> head2

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

head2 -> basecm11*

failoverping [OK]

mysql [OK]

ping [OK]

status [OK]

15.4.3 States
The state a head node is in can be determined in three different ways:

1 By looking at the message being displayed at login time.

Example

Node Status: running in active master mode

2 By executing cmha status.

Example

[root@mycluster ~]# cmha status

Node Status: running in active master mode

...

756 High Availability

3 By examining /var/spool/cmd/state.

There are a number of possible states that a head node can be in:

State Description

INIT Head node is initializing

FENCING Head node is trying to determine whether it should try to become
active

ACTIVE Head node is in active mode

PASSIVE Head node is in passive mode

BECOMEACTIVE Head node is in the process of becoming active

BECOMEPASSIVE Head node is in the process of becoming passive

UNABLETOBECOMEACTIVE Head node tried to become active but failed

ERROR Head node is in error state due to unknown problem

Especially when developing custom mount and unmount scripts, it is quite possible for a head node to
go into the UNABLETOBECOMEACTIVE state. This generally means that the mount and/or unmount script
are not working properly or are returning incorrect exit codes. To debug these situations, it is helpful
to examine the output in /var/log/cmdaemon. The “cmha makeactive” shell command can be used to
instruct a head node to become active again.

15.4.4 Failover Action Decisions
A table summarizing the scenarios that decide when a passive head should take over is helpful:

Event on active
Reaction

Reason
on passive

Reboot Nothing Event is usually an administrator action action.
To make the passive turn active, an administra-
tor would run “cmha makeactive” on it.

Shutdown Nothing As above.

Unusably sluggish or
freezing system by state
pingable with ICMP
packets

Nothing 1. Active may still unfreeze. 2. Shared filesys-
tems may still be in use by the active. Concurrent
use by the passive taking over therefore risks
corruption. 3. Mostly dead head can be pow-
ered off by administrator after examining situa-
tion (section 15.4.2).

...continues

15.4 Managing HA 757

...continued

Event on active Reaction on passive Reason

Become passive in
response to “cmha
makeactive” run on
passive

Become active when
former active becomes
passive

As ordered by administrator

Active dies Quorum called, may
lead to passive becom-
ing new active

Confirms if active head is dead according to
other nodes too. If so, then a “power off” com-
mand is sent to it. If the command is succesful,
the passive head becomes the new active head.

15.4.5 Keeping Head Nodes In Sync
What Should Be Kept In Sync?

• It is a best practice to carry out a manual updateprovisioners command on the active head node,
immediately after a regular node software image change has been made.

A successful run of the updateprovisioners command means that in the event of a failover, the
formerly passive head node already has up-to-date regular node software images, which makes
further administration simpler.

The background behind why it is done can be skipped, but it is as follows:

An image on the passive head node, which is a node with a provisioning role, is treated as an
image on any other provisioning node. This means that it eventually synchronizes to a changed
image on the active head node. By default the synchronization happens at midnight, which means
images may remain out-of-date for up to 24 hours. The images being in an out-of-date state should
be viewed as normal, because the timeout period associated with being in an updated state is only
5 minutes by default.

Since the passive head is a provisioning node, it also means that an attempt to provision regular
nodes from it with the changed image will not succeed if it happens too soon after the image
change event on the active head. “Too soon” means within the autoupdate period defined by the
parameter dirtyautoupdatetimeout (page 230).

If on the other hand the autoupdate timeout is exceeded, then by itself this does not lead to the
image on the passive head node becoming synchronized with an image from the active head node.
Such synchronization only takes place as part of regular housekeeping (at midnight by default).
Or it takes place if a regular node sends a provisioning request to the passive head node, which
can take place during the reboot of the regular node.

This means that the provisioningstatus command commonly shows that the passive head node
image is “out of date”. This may sound alarming to a cluster administrator. However, before the
image gets to be used, it is synced, so in practice the “out of date” warning is not something to be
concerned about.

The synchronization logic just described is followed to reduce the load on the head node. The only
pitfall in this is the case when an administrator changes an image on the active head node, and then
soon after that the passive head node becomes active as part of a failover, without the images hav-
ing had enough time to synchronize. In that case the formerly passive node ends up with out-of-
date software images. That is why it is a best practice to carry out a manual updateprovisioners
command on the active head immediately after a regular node software image change has been
made.

758 High Availability

• Changes controlled by CMDaemon are synchronized automatically between the CMDaemon
databases to the required extent during failover to the active node.

If the output of cmha status is not OK, then it typically means that the CMDaemon databases
of the active head node and the passive head node are not synchronized. This situation may be
resolved by waiting, typically for several minutes. If the status does not resolve on its own, then
this indicates a more serious problem which should be investigated further.

• By default, software images are not stored on shared storage, and are synchronized between the
head nodes by CMDaemon.

However, if images are kept on shared storage, then, within the provisioning role (section 5.2.1),
the image-related parameters such as allimages, localimages, and sharedimages, must be ad-
justed according to the configuration used.

• If filesystem changes are made on an active head node without using CMDaemon (cmsh or Base
View), and if the changes are outside the shared filesystem, then these changes should normally
also be made by the administrator on the passive head node. For example:

– RPM installations/updates (section 9.2)

– Applications installed locally

– Files (such as drivers or values) placed in the /cm/node-installer/ directory and referred
to by initialize (section 5.4.5) and finalize scripts (section 5.4.11)

– Any other configuration file changes outside of the shared filesystems

The reason behind not syncing everything automatically is to guarantee that a change that breaks a
head node is not accidentally propagated to the passive. This way there is always a running head node.
Otherwise, if automated syncing is used, there is a risk of ending up with two broken head nodes at the
same time.

If the cluster is being built on bare metal, then a sensible way to minimize the amount of work to
be done is to install a single head cluster first. All packages and applications should then be placed,
updated and configured on that single head node until it is in a satisfactory state. Only then should
HA be set up as described in section 15.2, where the cloning of data from the initial head node to the
secondary is described. The result is then that the secondary node gets a well-prepared system with the
effort to prepare it having only been carried out once.

Avoiding Encounters With The Old Filesystems
It should be noted that when the shared storage setup is made, the contents of the shared directories (at
that time) are copied over from the local filesystem to the newly created shared filesystems. The shared
filesystems are then mounted on the mountpoints on the active head node, effectively hiding the local
contents.

Since the shared filesystems are only mounted on the active machine, the old filesystem contents
remain visible when a head node is operating in passive mode. Logging into the passive head node
may thus confuse users and is therefore best avoided.

Updating Services On The Head Nodes And Associated Syncing
The services running on the head nodes described in section 15.1.3 should also have their packages
updated on both head nodes.

For the services that run simultaneously on the head nodes, such as CMDaemon, DHCP, LDAP,
MySQL, NTP and DNS, their packages should be updated on both head nodes at about the same time.
A suggested procedure is to stop the service on both nodes around the same time, update the service
and ensure that it is restarted.

15.4 Managing HA 759

The provisioning node service is part of the CMDaemon package. The service updates images from
the active head node to all provisioning nodes, including the passive head node, if the administrator
runs the command to update provisioners. How to update provisioners is described in section 15.1.3.

For services that migrate across head nodes during failover, such as NFS, or the sgemaster it is
recommended (but not mandated) to carry out this procedure: the package on the passive node (called
the secondary for the sake of this example) is updated to check for any broken package behavior. The
secondary is then made active with cmha makeactive (section 15.4.2), which automatically migrates
users cleanly off from being serviced by the active to the secondary. The package is then updated on
the primary. If desired, the primary can then be made active again. The reason for recommending this
procedure for services that migrate is that, in case the update has issues, the situation can be inspected
somewhat better with this procedure.

15.4.6 High Availability Parameters
There are several HA-related parameters that can be tuned. Accessing these via Base View is described
in section 15.4.6. In cmsh the settings can be accessed in the failover submode of the base partition.

Example

[mycluster1]% partition failover base

[mycluster1->partition[base]->failover]% show

Parameter Value

------------------------------ ----------------------------

Dead time 10

Disable automatic failover no

Failover network failovernet

Init dead 30

Keep alive 1

Mount script

Postfailover script

Prefailover script

Quorum time 60

Revision

Secondary headnode

Unmount script

Warn time 5

Dead time

When a passive head node determines that the active head node is not responding to any of the periodic
checks for a period longer than the Dead time seconds, the active head node is considered dead and
a quorum procedure starts. Depending on the outcome of the quorum, a failover sequence may be
initiated.

Disable automatic failover

Setting this to yes disables automated failover. Section 15.1.7 covers this further.

Failover network

The Failover network setting determines which network is used as a dedicated network for the
failoverping heartbeat check. The heartbeat connection is normally a direct cable from a NIC on one
head node to a NIC on the other head node. The network can be selected via tab-completion sugges-
tions. By default, without a dedicated failover network, the possibilities are nothing, externalnet and
internalnet.

Init dead

When head nodes are booted simultaneously, the standard Dead time might be too strict if one head
node requires a bit more time for booting than the other. For this reason, when a head node boots (or

760 High Availability

more exactly, when the cluster management daemon is starting), a time of Init dead seconds is used
rather than the Dead time to determine whether the other node is alive.

Keep alive

The Keep alive value is the time interval, in seconds, over which the passive head node carries out a
check that the active head node is still up. If a dedicated failover network is used, 3 separate heartbeat
checks are carried out to determine if a head node is reachable.

Mount script

The script pointed to by the Mount script setting is responsible for bringing up and mounting the
shared filesystems.

Postfailover script

The script pointed to by the Postfailover script setting is run by cmdaemon on both head nodes. The
script first runs on the head that is now passive, then on the head that is now active. It runs as soon as
the former passive has become active. It is typically used by scripts mounting an NFS shared storage so
that no more than one head node exports a filesystem to NFS clients at a time.

Prefailover script

The script pointed to by the Prefailover script setting is run by cmdaemon on both head nodes. The
script first runs on the (still) active head, then on the (still) passive head. It runs as soon as the decision
for the passive to become active has been made, but before the changes are implemented. It is typically
used by scripts unmounting an NFS shared storage so that no more than one head node exports a
filesystem to NFS clients at a time. When unmounting shared storage, it is very important to ensure
that a non-zero exit code is returned if unmounting has problems, or the storage may become mounted
twice during the Postfailover script stage, resulting in data corruption.

Quorum time

When a node is asked what head nodes it is able to reach over the network, the node has Quorum time

seconds to respond. If a node does not respond to a call for quorum within that time, it is no longer
considered for the results of the quorum check.

Secondary headnode

The Secondary headnode setting is used to define the secondary head node to the cluster.

Unmount script

The script pointed to by the Unmount script setting is responsible for bringing down and unmounting
the shared filesystems.

Warn time

When a passive head node determines that the active head node is not responding to any of the periodic
checks for a period longer than Warn time seconds, a warning is logged that the active head node might
become unreachable soon.

15.4.7 Viewing Failover Via Base View
Accessing cmsh HA Parameters (partition failover base) Via Base View
The Base View equivalents of the cmsh HA parameters in section 15.4.6 are accessed from the navigation
path Cluster > Partition[base] > Settings

> Failover

15.4.8 Re-cloning A Head Node
Some time after an HA setup has gone into production, it may become necessary to re-install one of the
head nodes, for example if one of the head nodes were replaced due to hardware failure.

15.4 Managing HA 761

To re-clone a head node from an existing active head node, the head node hardware that is going to
become the clone can be PXE-booted into the rescue environment, as described in section 15.2.2. Instead
of running the cm-clone-install --failover command as in that section, the following command can
be run:

[root@basecm11 ~]# /cm/cm-clone-install --clone --hostname=<new host name>

The new host name can be the same as the original, because the clone is not run at the same time
as the original anyway. The clone should not be run after cloning on the same network segment as the
original, in order to prevent IP address conflicts.

If the clone is merely intended as a backup, then the clone hardware does not have to match the head
node. For a backup, typically the most important requirement is then that a clone drive should not run
out of space—that is, its drive should be as large as, or larger than the matching drive of the head node.

If the clone is to be put to work as a head node, then, if the MAC address of one of the head nodes
has changed, it is typically necessary to request that the product key is unlocked, so that a new license
can be obtained (section 4.3 of the Installation Manual).

Also, for a clone that is to be put to work as a head node, the CMDaemon database should first be
synchronized from the active head node to the clone. This can be done by running cmha dbreclone on
the active head node (page 754) before carrying out tasks with cmsh or Base View.

Exclude Lists And Cloning
Some files are normally excluded from being copied across from the head node to the clone, because
syncing them is not appropriate.

The following exclude files are read from inside the directory /cm/ on the clone node when the
cm-clone-install command is run (step 4 in section 15.2.2).

• excludelistnormal: used to exclude files to help generate a clone of the other head node. It is
read when running the cm-clone-install command without the --failover option.

• excludelistfailover: used to exclude files to help generate a passive head node from an active
head node. It is read when running the cm-clone-install --failover command.

In a default cluster, there is no need to alter these exclude files. However some custom head node
configurations may require appending a path to the list.

The cloning that is carried out is logged in /var/log/clone-install-log.

Exclude Lists In Perspective
The exclude lists excludelistfailover and excludelistnormal described in the preceding paragraphs
should not be confused with the exclude lists of section 5.6.1. The exclude lists of section 5.6.1:

• excludelistupdate

• excludelistfullinstall

• excludelistsyncinstall

• excludelistgrabnew

• excludelistgrab

• excludelistmanipulatescript

are Base View or cmsh options, and are maintained by CMDaemon. On the other hand, the exclude lists
introduced in this section (15.4.8):

• excludelistfailover

• excludelistnormal

are not Base View or cmsh options, are not modified with excludelistmanipulatescript, are not main-
tained by CMDaemon, but are made use of when running the cm-clone-install command.

/cm/
excludelistnormal
excludelistfailover
/var/log/clone-install-log

762 High Availability

Btrfs And cm-clone-install

If a partition with Btrfs (section 14.4.1) is being cloned using cm-clone-install, then by default only
mounted snapshots are cloned.

If all the snapshots are to be cloned, then the --btrfs-full-clone flag should be passed to the
cm-clone-install command. This flag clones all the snapshots, but it is carried out with duplication
(bypassing the COW method), which means the filesystem size can increase greatly.

15.5 HA For Regular Nodes And Edge Director Nodes
HA for regular nodes is available from NVIDIA Base Command Manager version 7.0 onward. HA for
edge director nodes follows a similar design to HA for regular nodes, and is available from NVIDIA
Base Command Manager version 9.2 onward.

15.5.1 Why Have HA On Non-Head Nodes?
Why Have HA On Regular Nodes?
HA for regular nodes can be used to add services to the cluster and make them HA. Migrating the
default existing HA services that run on the head node is not recommended, since these are optimized
and integrated to work well as is. Instead, good candidates for this feature are other, extra, services that
can run, or are already running, on regular nodes, but which benefit from the extra advantage of HA.

Why Have HA On Edge Director Nodes?
Edge director nodes manage edge nodes in a similar way to how head nodes manager regular nodes.
Edge directors therefore benefit from HA for the same main that head nodes benefit from HA: avoiding
a single point of failure (section 15.0.1).

15.5.2 Comparing HA For Head Nodes, Regular Nodes And Edge Director Nodes
Many of the features of HA for regular nodes and edge director nodes are as HA for head nodes. These
include:

HA For Head Nodes, Regular Nodes, And Edge Director Nodes: Some Features In Common

Power control is needed for all HA nodes, in order to carry out automatic failover (section 15.1.7).

Warn time and dead time parameters can be set (section 15.4.6).

Mount and unmount scripts (page 739).

Pre- and post- failover scripts (section 15.4.6).

Disabling or enabling automatic failover (section 15.1.7).

A virtual shared IP address that is presented as the virtual node that is always up (section 15.1.4).

Some differences between head node HA and the other types of HA are:

15.5 HA For Regular Nodes And Edge Director Nodes 763

HA For Head Nodes, Regular Nodes, And Edge Director Nodes: Some Features That Differ

Head Node HA Regular Node HA Edge Director Node HA

Installed with cmha-setup

(section 15.2).
Installed by administrator using a
procedure similar to section 15.5.3.

Installed by administrator using
cm-edge-setup (section 2.1.1 of the
Edge Manual)

Configurable within failover

submode of partition mode
(section 15.4.6).

Configurable within
failovergroups submode of
partition mode (section 15.5.3).

Configurable within
failovergroups submode of
partition mode (section 15.5.3).
However, manual configuration
should not be carried out. Instead,
the settings should be config-
ured during installation with the
cm-edge-setup utility.

Only one passive node. Multiple passive nodes defined by
failover groups.

Multiple passive nodes defined by
failover groups.

Can use the optional failover
network and failoverping

heartbeat.

No failover network. Heartbeat
checks done via regular node net-
work.

No failover network. Heartbeat
checks done via regular node net-
work.

A quorum procedure (sec-
tion 15.1.6). If more than half
the nodes can only connect to
the passive, then the passive
powers off the active and
becomes the new active.

Active head node does checks. If
active regular node is apparently
dead, it is powered off (STONITH).
Another regular node is then made
active.

Active head node does checks. If
active edge director node is ap-
parently dead, it is powered off
(STONITH). Another edge director
node is then made active.

Failover Groups
Regular nodes use failover groups to identify nodes that are grouped for HA. Two or more nodes are
needed for a failover group to function. During normal operation, one member of the failover group is
active, while the rest are passive. A group typically provides a particular service.

Edge directors also use failover groups for HA. However configuration of edge directors is generally
best done during installation with cm-edge-setup (section 2.1.1 of the Edge Manual).

15.5.3 Setting Up A Regular Node HA Service
In cmsh a regular node HA service, CUPS in this example, can be set up as follows:

Making The Failover Group
A failover group must first be made, if it does not already exist:

Example

[basecm11->partition[base]->failovergroups]% status

No active failover groups

[basecm11->partition[base]->failovergroups]% add cupsgroup

[basecm11->partition*[base*]->failovergroups*[cupsgroup*]]% list

Name (key) Nodes

------------------------ ------------------------

cupsgroup

By default, CUPS is provided in the standard image, in a stopped state. In Base View a failover group
can be added via the navigation path Cluster > Partition[base] > Settings > Failover groups

> Add

764 High Availability

Adding Nodes To The Failover Group
Regular nodes can then be added to a failover group. On adding, BCM ensures that one of the nodes in
the failover group becomes designated as the active one in the group (some text elided):

Example

[basecm11->...[cupsgroup*]]% set nodes node001..node002

[basecm11->...[cupsgroup*]]% commit

[basecm11->...[cupsgroup]]%

...Failover group cupsgroup, make node001 become active

...Failover group cupsgroup, failover complete. node001 became active

[basecm11->partition[base]->failovergroups[cupsgroup]]%

Setting Up A Server For The Failover Group
The CUPS server needs to be configured to run as a service on all the failover group nodes. The usual
way to configure the service is to set it to run only if the node is active, and to be in a stopped state if the
node is passive:

Example

[basecm11->partition[base]->failovergroups[cupsgroup]]% device

[basecm11->device]% foreach -n node001..node002 (services; add cups; \
set runif active; set autostart yes; set monitored yes)

[basecm11->device]% commit

Successfully committed 2 Devices

[basecm11->device]%

Mon Apr 7 08:45:54 2014 [notice] node001: Service cups was started

The runif options are described in section 3.14.1.

Setting And Viewing Parameters And Status In The Failover Group
Knowing which node is active: The status command shows a summary of the various failover groups
in the failovergroups submode, including which node in each group is currently the active one:

Example

[basecm11->partition[base]->failovergroups]% status

Name State Active Nodes

------------ ------------ ------------ --------------------------

cupsgroup ok node001 node001,node002 [UP]

Making a node active: To set a particular node to be active, the makeactive command can be used
from within the failover group:

Example

[basecm11->partition[base]->failovergroups]% use cupsgroup

[basecm11->...]->failovergroups[cupsgroup]]% makeactive node002

node002 becoming active ...

[basecm11->partition[base]->failovergroups[cupsgroup]]%

... Failover group cupsgroup, make node002 become active

...node001: Service cups was stopped

...node002: Service cups was started

...Failover group cupsgroup, failover complete. node002 became active

An alternative is to simply use the cmha utility (section 15.4.2):

Example

[root@basecm11 ~]# cmha makeactive node002

15.5 HA For Regular Nodes And Edge Director Nodes 765

Parameters for failover groups: Some useful regular node HA parameters for the failover group ob-
ject, cupsgroup in this case, can be seen with the show command:

Example

[basecm11->partition[base]->failovergroups]% show cupsgroup

Parameter Value

-- ---------------------

Automatic failover after graceful shutdown no

Dead time 10

Disable automatic failover no

Mount script

Name cupsgroup

Nodes node001,node002

Postfailover script

Prefailover script

Revision

Unmount script

Warn time 5

Setting Up The Virtual Interface To Make The Server An HA Service
The administrator then assigns each node in the failover group the same alias interface name and IP
address dotted quad on its physical interface. The alias interface for each node should be assigned to
start up if the node becomes active.

Example

[basecm11->device]% foreach -n node001..node002 (interfaces; add alias \
bootif:0 ; set ip 10.141.240.1; set startif active; set network internalnet)

[basecm11->device*]% commit

Successfully committed 2 Devices

[basecm11->device]% foreach -n node001..node002 (interfaces; list)

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

alias BOOTIF:0 10.141.240.1 internalnet

physical BOOTIF [prov] 10.141.0.1 internalnet

Type Network device name IP Network

------------ -------------------- ---------------- ----------------

alias BOOTIF:0 10.141.240.1 internalnet

physical BOOTIF [prov] 10.141.0.2 internalnet

Optionally, each alias node interface can conveniently be assigned a common arbitrary additional
host name, perhaps associated with the server, which is CUPS. This does not result in duplicate names
here because only one alias interface is active at a time. Setting different additional hostnames for the
alias interface to be associated with a unique virtual IP address is not recommended.

Example

[basecm11->...interfaces*[BOOTIF:0*]]% set additionalhostnames cups

[basecm11->...interfaces*[BOOTIF:0*]]% commit

The preceding can also simply be included as part of the set commands in the foreach statement
earlier when the interface was created.

The nodes in the failover group should then be rebooted.
Only the virtual IP address should be used to access the service when using it as a service. Other

IP addresses may be used to access the nodes that are in the failover group for other purposes, such as
monitoring or direct access.

766 High Availability

Service Configuration Adjustments
A service typically needs to have some modifications in its configuration done to serve the needs of the
cluster.

CUPS uses port 631 for its service and by default it is only accessible to the local host. Its default
configuration is modified by changing some directives within the cupsd.conf file. For example, some
of the lines in the default file may be:

Only listen for connections from the local machine.

Listen localhost:631

...

Show shared printers on the local network.

...

BrowseLocalProtocols

...

<Location />

Restrict access to the server...

Order allow,deny

</Location>

...

Corresponding lines in a modified cupsd.conf file that accepts printing from hosts on the internal
network could be modified and end up looking like:

Allow remote access

Port 631

...

Enable printer sharing and shared printers.

...

BrowseAddress @LOCAL

BrowseLocalProtocols CUPS dnssd

...

<Location />

Allow shared printing...

Order allow,deny

Allow from 10.141.0.0/16

</Location>

...

The operating system that ends up on the failover group nodes should have the relevant service
modifications running on those nodes after these nodes are up. In general, the required service modifi-
cations could be done:

• with an initialize or finalize script, as suggested for minor modifications in section 3.19.4

• by saving and using a new image with the modifications, as suggested for greater modifications
in section 3.19.2, page 198.

Testing Regular Node HA
To test that the regular node HA works, the active node can have a simulated crash carried out on it like
in section 15.2.4.

Example

15.6 HA And Workload Manager Jobs 767

ssh node001

echo c > /proc/sysrq-trigger

~.

A passive node then takes over.

15.5.4 The Sequence Of Events When Making Another HA Regular Node Active
The active head node tries to initiate the actions in the following sequence, after the makeactive com-
mand is run (page 764):

Sequence Of Events In Making Another HA Regular Node Active

All Run pre-failover script

Active Stop service

Run umount script (stop and show exit>0 on error)

Stop active IP address

Start passive IP address

Start services on passive.

Active is now passive

Passive Stop service

Run mount script

Stop passive IP address.

Start active IP address.

Start service.

Passive is now active.

All Post-failover script

The actions are logged by CMDaemon.
The following conditions hold for the sequence of actions:

• The remaining actions are skipped if the active umount script fails.

• The sequence of events on the initial active node is aborted if a STONITH instruction powers it off.

• The actions for All nodes is done for that particular failover group, for all nodes in that group.

15.6 HA And Workload Manager Jobs
Workload manager jobs continue to run through a failover handover if conditions allow it.

The 3 conditions that must be satisfied are:

1. The workload manager setup must have been carried out

(a) during initial installation
or

(b) during a run of cm-wlm-setup

2. The HA storage setup must support the possibility of job continuity for that workload manager.
This support is possible for NAS for Slurm, PBS Professional, and LSF.

768 High Availability

3. Jobs must also not fail due to the shared filesystem being inaccessible during the short period that
it is unavailable during failover. This usually depends on the code in the job itself, rather than
the workload manager, since workload manager clients by default have timeouts longer than the
dead time during failover.

Already-submitted jobs that are not yet running continue as they are, and run when the resources
become available after the failover handover is complete, unless they fail as part of the BCM prejob
health check configuration.

16
The Jupyter Notebook

Environment Integration
16.1 Introduction
This chapter covers the installation and usage of the Jupyter environment in BCM.

An updated list of the supported Linux distributions and Jupyter functionalities can be found in
the feature matrix at https://support.brightcomputing.com/feature-matrix/, under the Feature

column, in the section for Jupyter features.
An overview of the concepts and terminology follows.

What Is Jupyter Notebook?
Jupyter Notebook (https://jupyter-notebook.readthedocs.io/), or Jupyter, is a client-server open-
source application that provides a convenient way for a cluster user to write and execute notebook docu-
ments in an interactive environment.

In Jupyter, a notebook document, or notebook, is content that can be managed by the application.
Notebooks are organized in units called cells and can contain both executable code, as well as items that
are not meant for execution.

Items not meant for execution can be, for example: explanatory text, figures, formulas, or tables.
Notebooks can also store the inputs and outputs of an interactive session.

Notebooks can thus serve as a complete record of a user session, interleaving code with rich repre-
sentations of resulting objects.

These documents are encoded as JSON files and saved with the .ipynb extension. Since JSON is a
plain text format, notebooks can be version-controlled, shared with other users and exported to other
formats, such as HTML, LATEX, PDF, and slide shows.

What Is A Notebook Kernel?
A notebook kernel (often shortened to kernel) is a computational engine that handles the various types of
requests in a notebook (e.g. code execution, code completions, inspection) and provides replies to the
user (https://jupyter.readthedocs.io/en/latest/projects/kernels.html). Usually kernels only
allow execution of a single language. There are kernels available for many languages, of varying quality
and features.

What Is JupyterHub?
Jupyter on its own provides a single user service. JupyterHub (https://jupyterhub.readthedocs.io/)
allows Jupyter to provide a multi-user service, and is therefore commonly installed with it. JupyterHub
is an open-source project that supports a number of authentication protocols, and can be configured in
order to provide access to a subset of users.

https://support.brightcomputing.com/feature-matrix/
https://jupyter-notebook.readthedocs.io/
https://jupyter.readthedocs.io/en/latest/projects/kernels.html
https://jupyterhub.readthedocs.io/

770 The Jupyter Notebook Environment Integration

What Is JupyterLab?
JupyterLab (https://jupyterlab.readthedocs.io/) is a modern and powerful interface for Jupyter. It
enables users to work with notebooks and other applications, such as terminals or file browsers. It is
open-source, flexible, integrated, and extensible.

JupyterLab works out of the box with JupyterHub. It can be used to arrange the user interface to
support a wide range of workflows in data science, scientific computing, and machine learning.

JupyterLab is extensible with plugins that can customize or enhance any part of the interface. Plugins
exist for themes, file editors, keyboard shortcuts, as well as for other components.

What Is A Jupyter Extension?
Several components of the Jupyter environment can be customized in different ways with extensions.
Some types of extensions are:

• IPython extensions (https://ipython.readthedocs.io/en/stable/config/extensions/
#ipython-extensions)

• Jupyter Notebook server extensions (https://jupyter-notebook.readthedocs.io/en/stable/
extending/index.html)

• JupyterLab extensions (https://jupyterlab.readthedocs.io/en/stable/user/extensions.
html)

Extensions are usually developed, bundled, released, installed, and enabled in different ways.
Each extension provides a new functionality for a specific component. For example, JupyterLab

extensions can customize or enhance any part of the JupyterLab user interface. Extensions can provide
new themes, file viewers, editors and renderers for rich output in notebooks. They can also add settings,
add keyboard shortcuts, or add items to the menu or command palette.

What Is Jupyter Kernel Provisionning?
By default, Jupyter runs kernels locally, which can exhaust server resources. A resource manager, such
as a workload manager (Slurm, PBS, LSF) or Kubernetes, can be used to deal with this issue.

Jupyter Kernel Provisioning (https://jupyter-client.readthedocs.io/en/latest/provisioning.
html#kernel-provisioning) provides a pluggable interface to distribute kernels across the compute
cluster, and uses local underlying resource managers.

The Jupyter Kernel Provisioning framework provides scalability, an improved multi-user support,
and a more granular security for Jupyter, in comparison with Jupyter Enterprise Gateway.

In BCM, all the technologies mentioned in these sections are combined to provide a powerful, cus-
tomizable and user-friendly JupyterLab web interface running on a lightweight, multi-tenant, multi-
language, scalable and secure environment, ready for a wide range of enterprise scenarios.

For convenience, in the following sections, Jupyter is generally used to collectively refer to Jupyter
Notebook, JupyterHub and JupyterLab

16.2 Jupyter Environment Installation
BCM distributes Jupyter via two packages: cm-jupyter and cm-jupyter-local. They are typ-
ically installed via the cm-jupyter-setup script (section 16.2.1). Additional packages installed
by cm-jupyter-setup are cm-jupyter-eg-kernel-wlm-py312 (used with WLMs), and the optional
cm-jupyter-vnc-local metapackage (installs distribution-specific VNC packages).

cm-jupyter is installed in the /cm/shared directory, which is by default exported over NFS. As a
result, Jupyter kernels can run on all the compute nodes, without a separate installation to those nodes.
cm-jupyter provides JupyterHub, JupyterLab, and some extensions.

cm-jupyter-local provides the JupyterHub system service (cm-jupyterhub.service), and is there-
fore designed to be installed only on the node exposing users to the web login page for Jupyter. For

https://jupyterlab.readthedocs.io/
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://jupyter-notebook.readthedocs.io/en/stable/extending/index.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/index.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyter-client.readthedocs.io/en/latest/provisioning.html#kernel-provisioning
https://jupyter-client.readthedocs.io/en/latest/provisioning.html#kernel-provisioning
/cm/shared

16.2 Jupyter Environment Installation 771

convenience, this node is called the login node. A login node is typically the head node, but any cluster
node can be used.

Since compute nodes are not reachable via a web interface by default, it is the responsibility of the
cluster administrator to configure access to these nodes if they are configured to be login nodes while
Jupyter runs. That is, login nodes that are compute nodes must have their access configured by assigning
IP addresses, configuring the firewall, opening Jupyter ports, and so on. However, if the Jupyter login
node is the head node, then BCM takes care of configuring the firewall to open the required ports and
of ensuring that the resulting environment is working out of the box.

BCM Jupyter Extensions
For a default deployment of Jupyter, BCM installs and enables the following extensions to the Jupyter
environment:

• Jupyter Addons: A Jupyter Notebook server extension that performs API calls to CMDaemon and
manages other server extensions;

• Jupyter Kernel Provisioning modules: A set of modules created to handle Jupyter kernels’ life-
cycles in different possible BCM configurations. The modules available are: Slurm, PBS, LSF,
Kubernetes.

• Jupyter Kernel Creator (section 16.5): A Jupyter Notebook server extension that provides a new
interactive and user-friendly way to create kernels;

• Jupyter VNC (section 16.7): A Jupyter Notebook server extension that enables remote desktops
with VNC from notebooks;

• JupyterLab Tools: A JupyterLab extension that exposes BCM server extensions functionalities to
the users and shows the Cluster View section;

• Jupyter WLM Magic (section 16.8): An IPython extension that simplifies scheduling of workload
manager jobs from the notebook;

• Jupyter Kubernetes Operators Manager (section 16.9): An extension that integrates with Kuber-
netes clusters, and for which it provides basic overview and management features.

16.2.1 Jupyter Setup
The cm-jupyter-setup script can be run on the head node of the cluster to deploy a working Jupyter en-
vironment with minimal effort. The script comes with BCM’s cm-setup package. It has no prerequisites,
and can be run before or after configuring any resource manager, such as Kubernetes or Slurm.

By default, the Jupyter environment initially contains only Jupyter’s default Python 3 kernel, which
runs on the login node.

During setup, an administrator can deploy the Jupyter login interface on multiple nodes to evenly
distribute the load across them. In this case the administrator must configure a load balancer to route
users’ requests across those nodes.

These login nodes become members of the same configurationoverlay, and therefore share the
same Jupyter configuration, such as port numbers, authenticator, and so on.

By default, the Jupyter configuration file points to local SSL certificates. This means that if there are
multiple Jupyter login interfaces, then each node uses its own SSL certificate.

16.2.2 Jupyter Architecture
The default Jupyter architecture deployed by cm-jupyter-setup is shown in figure 16.1.

772 The Jupyter Notebook Environment Integration

BCM

Figure 16.1: Jupyter architecture

In this architecture, the cm-jupyterhub.service provided by cm-jupyter-local starts JupyterHub
on the port specified by c.JupyterHub.hub_port (default: 8901) on a login node (typically the head
node).

JupyterHub then automatically spawns a dynamic proxy to route HTTP requests via BCM’s
cm-npm-configurable-http-proxy package.

The proxy is the only process that listens for clients’ requests on Jupyter’s public interface, as speci-
fied by c.JupyterHub.port (default: 8000).

JupyterHub instructs the proxy on how requests should be dispatched by using its REST API. This
is exposed at the port specified by c.ConfigurableHTTPProxy.port (default: 8902), typically defined
within c.ConfigurableHTTPProxy.api_url.

At this stage, users accessing Jupyter with their browsers are either redirected to the shared Hub (e.g.
for authentication), or to their dedicated single-user servers to run notebooks.

By default, single-user servers are accessed at /user/<username>, while JupyterHub is accessed at
/hub (https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html).

The cm-jupyter-setup script automatically installs JupyterLab and sets /lab as the default URL
(c.Spawner.default_url) to redirect users to the new interface.

Finally, JupyterHub is integrated to spawn the JupyterLab interface on a login node
by configuring jupyterhub.spawner.LocalProcessSpawner as the default spawning mechanism
(c.JupyterHub.spawner_class), and jupyterhub-singleuser-gw as the default spawning command
(c.Spawner.cmd).

When a new notebook is started, a Jupyter kernel provisioner scans for an available port, and spawns
a kernel chosen by the user on an appropriate cluster node. This process is then connected to JupyterLab.

JupyterHub and its HTTP proxy are run as two root processes, while JupyterLab and the in-built
kernel provisioning run as user processes.

https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html

16.2 Jupyter Environment Installation 773

The privileges of the kernels spawned by Jupyter Kernel Provisioning can be configured by cluster
administrators, and depend on the underlying computational engine (for example, Kubernetes). By
default, all the kernels configurable by BCM are run as user processes, and no privilege escalation is
possible.

Communication between users’ browsers, JupyterHub, its HTTP proxy, and JupyterLab, is secured
by default by JupyterHub. On the other hand, communication between JupyterLab and the kernels on
the nodes, is secured by BCM.

Administrators can customize their Jupyter integration by setting some of the aforementioned op-
tions when the cm-jupyter-setup script runs. New values are automatically handled by BCM and
written to Jupyter configuration files.

Other configuration options can be found in /cm/local/apps/jupyter/current/conf/jupyterhub_

config.py.

16.2.3 Verifying Jupyter Installation
The cm-jupyter-setup script automatically starts the cm-jupyterhub service.

Any user (not necessarily root) can then verify the installation is working as expected. Here an
ordinary user, jupyterhubuser runs the checks.

It can take some time until the service is fully up and running, even if a status check with systemctl

shows that the service is active:

Example

[jupyterhubuser@basecm11 ~]$ systemctl status cm-jupyterhub -l

cm-jupyterhub.service - JupyterHub

Loaded: loaded (/lib/systemd/system/cm-jupyterhub.service; static)

Active: active (running) since Mon 2025-01-06 14:47:28 CET; 4h 25min ago

Main PID: 4367 (run.sh)

Tasks: 11 (limit: 19051)

Memory: 190.2M

CPU: 1min 46.193s

CGroup: /system.slice/cm-jupyterhub.service

|-4367 /bin/bash /cm/shared/apps/jupyter/16.0.0/bin/run.sh

|-4428 /cm/local/apps/python312/bin/python3 /cm/shared/apps/jupyter/16.0.0/bin/jupyterhub ...

|-4429 tee -a /var/log/jupyterhub.log

'-5431 node /cm/shared/apps/jupyter/16.0.0/bin/configurable-http-proxy --ip "" --port 8000 ...

A check can then be done to see that the Jupyter extensions provided by BCM are installed and
enabled:

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

Loading jupyter/16.0.0

Loading requirement: python312

[jupyterhubuser@basecm11 ~]$ jupyter labextension list

JupyterLab v4.3.3

/cm/shared/apps/jupyter/current/share/jupyter/labextensions

jupyterlab_pygments v0.3.0 enabled OK (python, jupyterlab_pygments)

@brightcomputing/jupyterlab-tools v0.2.7 enabled OK (python, brightcomputing_jupyterlab_tools)

@jupyter-widgets/jupyterlab-manager v5.0.13 enabled OK (python, jupyterlab_widgets)

@jupyterhub/jupyter-server-proxy v4.4.0 enabled OK

16.2.4 Login Configuration
User Access To JupyterHub With The Default Configuration
Once JupyterHub is functioning, its web login interface is accessible with a browser using the HTTPS
protocol on the specified port (figure 16.2):

/cm/local/apps/jupyter/current/conf/jupyterhub_config.py
/cm/local/apps/jupyter/current/conf/jupyterhub_config.py

774 The Jupyter Notebook Environment Integration

Figure 16.2: JupyterHub login screen

Running as root under JupyterHub is not recommended, so logging in to JupyterHub as root is not
allowed by default.

Any other PAM user can log in to JupyterHub.
If needed, a test user jupyterhubuser with password jupyterhubuser can be created with, for ex-

ample:

Example

[root@basecm11 ~]# cmsh -c "user; add jupyterhubuser; set password jupyterhubuser; commit"

Restricting User Access To JupyterHub
JupyterHub logins can be limited to members of particular groups.

For example, alice could be made a member of the group jupyterusers:

Example

[root@basecm11 ~]# cmsh

[basecm11]% group

[basecm11->group]% add jupyterusers

[basecm11->group]*[jupyterusers*]% append members alice

[basecm11->group]*[jupyterusers*]% commit

The group jupyterusers could then be set to be allowed to authenticate to JupyterHub with an
authentication policy:

Example

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]]% roles

[basecm11->configurationoverlay[jupyterhub]->roles]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]->roles[jupyterhub]]% configs

[basecm11->...roles[jupyterhub]->configs]% add c.BrightAuthenticator.groups_allow

[basecm11->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.groups_allow*]]% set value [\"jupyterusers\"]

[basecm11->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.groups_allow*]]% commit

16.2 Jupyter Environment Installation 775

Similarly, restricting authentication to JupyterHub to a specific group of users can be done by con-
figuring c.BrightAuthenticator.groups_deny.

Another way to restrict user access is based on the CMDaemon profile set for the user. In that
case the JupyterHub configuration settings are c.BrightAuthenticator.cmd_profiles_allow and
c.BrightAuthenticator.cmd_profiles_deny.

In the following example, users with a readonly profile are not allowed to authenticate for Jupyter-
Hub.

Example

[basecm11->...roles[jupyterhub]->configs[c.BrightAuthenticator.groups_allow]]% ..

[basecm11->...roles[jupyterhub]->configs]% add c.BrightAuthenticator.cmd_profiles_deny]]%

[basecm11->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.cmd_profiles_deny*]]% set value [\"readonly\"]

[basecm11->...roles*[jupyterhub*]->configs*[c.BrightAuthenticator.cmd_profiles_deny*]]% commit

A table summarizing the authentication policies is:

Key Value

c.BrightAuthenticator.groups_allow users in the specified groups can authenticate

c.BrightAuthenticator.groups_deny users in the specified groups cannot authenticate

c.BrightAuthenticator.cmd_profiles_allow users with the specified profiles can authenticate

c.BrightAuthenticator.cmd_profiles_deny users with the specified profiles cannot authenticate

16.2.5 JupyterHub Screen After Login
After the first login, a new single-user server is spawned (figure 16.3):

Figure 16.3: JupyterHub starting single-user server

Users are redirected to the JupyterLab interface and have access to Jupyter’s default Python 3 kernel
(figure 16.4):

776 The Jupyter Notebook Environment Integration

Figure 16.4: JupyterLab Launcher

If using Kubernetes under Jupyter, then a user registered under the Linux-PAM system must be
added separately via Kubernetes with cm-kubernetes-setup. (section 4.11 of the Containerization Man-
ual).

16.3 Jupyter Notebook Examples
The cm-jupyter package (section 16.2.1) provides a number of machine learning notebook examples
that can be executed with Jupyter.

The notebooks include some applications developed with TensorFlow, PyTorch, MXNet, and other
frameworks. The applications can be found in the /cm/shared/examples/jupyter/notebooks/ direc-
tory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/examples/jupyter/notebooks/

Keras+TensorFlow2-addition.ipynb R-iris.ipynb TensorFlow-minigo.ipynb

MXNet-superresolution.ipynb Spark-pipeline.ipynb

Pytorch-cartpole.ipynb Spark+XGBoost-mortgage.ipynb

The datasets needed to execute these notebooks can be found in the /cm/shared/examples/jupyter/
datasets/ directory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/examples/jupyter/datasets/

880f8b8a6fd-mortgage-small.tar.gz kaggle-iris.csv

Users can copy these examples to their home directories, create or choose appropriate kernels to
execute them, and interactively run them from Jupyter. In order to edit notebooks, the write permissions
must be kept during the copy.

/cm/shared/examples/jupyter/notebooks/
/cm/shared/examples/jupyter/datasets/
/cm/shared/examples/jupyter/datasets/

16.4 Jupyter Kernels 777

The distributed examples typically only require the packages provided by BCM with the Data Sci-
ence Add-on, such as TensorFlow, PyTorch, and MXNet.

It is the responsibility of users to make sure that the required modules are loaded by their Jupyter
kernels. The list of frameworks and libraries required to run an example is usually available at the
beginning of each notebook.

16.4 Jupyter Kernels
In Jupyter, kernels are defined as JSON files.

Any user that the cluster administrator has registered in the Linux-PAM system can list the available
Jupyter kernels via the command line. The following example is run in the initial Jupyter environment:

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter kernelspec list

Available kernels:

python3 /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3

Each kernel directory contains a kernel.json file describing how Jupyter spawns that kernel:

Example

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/apps/jupyter/current/share/jupyter/kernels/*/kernel.json

/cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

In addition to specifications for shared kernels, each user can define new personal ones in the home
directory. By default, the Jupyter data directory for a user is located at $HOME/.local/share/jupyter.

This path can be verified with Jupyter by using the --paths option:

Example

[jupyterhubuser@basecm11 ~]$ jupyter --paths

config:

/home/jupyterhubuser/.jupyter

/home/jupyterhubuser/.local/etc/jupyter

/cm/local/apps/jupyter/conf

/cm/shared/apps/jupyter/current/etc/jupyter

data:

/home/jupyterhubuser/.local/share/jupyter

/cm/shared/apps/jupyter/current/share/jupyter

runtime:

/home/jupyterhubuser/.local/share/jupyter/runtime

The simplest definition for a Python3 kernel designed to run on the login node is:

{

"argv": ["python",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "Python 3",

"language": "python"

}

778 The Jupyter Notebook Environment Integration

In the preceding kernel definition:

• argv: is the command to be executed to locally spawn the kernel

• "display_name": is the name to be displayed in the JupyterLab interface

• "language": is the supported programming language ("language")

• "{connection_file}" (https://jupyter-client.readthedocs.io/en/stable/kernels.html#
connection-files) is a placeholder, and is replaced by Jupyter with the actual path to the con-
nection file before starting the kernel.

The following kernel is Jupyter’s default Python 3 kernel distributed by BCM in the initial environ-
ment:

Example

[jupyterhubuser@basecm11 ~]$ cat /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

{

"argv": [

"/cm/local/apps/python312/bin/python3.12",

"-m",

"ipykernel_launcher",

"--InteractiveShellApp.extra_extensions=cm_jupyter_wlm_magic",

"--TerminalIPythonApp.extra_extensions=cm_jupyter_wlm_magic",

"-f",

"{connection_file}"

],

"display_name": "Python 3",

"language": "python",

"env": {

"PYTHONPATH": "/cm/shared/apps/jupyter/current/lib64/python3.12/site-packages:/cm/shared/apps/jupyter/

current/lib/python3.12/site-packages"

}

}

The two kernels are not very different. They differ from each other in the Python 3 binary path, the
IPython extension (Jupyter WLM Magic), and the exported PYTHONPATH environment variable ("env").

16.4.1 Jupyter Kernel Provisioning Kernels
Jupyter is designed to run both the kernel processes, as well as the user interface (JupyterLab or
Jupyter Notebook) on the same host. The kernel {connection_file} is therefore stored in the
~/.local/share/jupyter/runtime directory, or in the /run directory.

JupyterLab can delegate the task of spawning kernels to another component, Jupyter Kernel Provi-
sioning, as defined in the kernel’s JSON file for kernel_provisioner. Jupyter Kernel Provisioning allows
the complete life-cycle of several Jupyter kernels to be managed at the same time—their start, status
monitoring, and termination, but the particular Jupyter kernels that run are otherwise independent of
Jupyter Kernel Provisioning, and can be managed by third parties.

Jupyter Kernel Provisioning requires an extended kernel.json definition to describe a particular
process-proxy module to handle the kernel.

A simple definition for a Python3 kernel designed to be scheduled via JEG is:

https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files
https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files

16.4 Jupyter Kernels 779

{

"display_name": "Python 3.12 via SLURM 250102185019",

"language": "python",

"metadata": {

"kernel_provisioner": {

"provisioner_name": "slurm-provisioner",

"config": {

"timeout": 60,

"response_manager": {

"version": 2

},

"submit_cmd": {

"path": "templates/submit_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"query_cmd": {

"path": "templates/query_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"info_cmd": {

"path": "templates/info_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"cancel_cmd": {

"path": "templates/cancel_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"submit_script": {

"path": "templates/submit_script.sh.j2",

"vars": {

"job_prefix": "jupyter-kernel-slurm-py312",

"partition": "",

"ntasks": "1",

"gres": "",

"work_dir": "/home/alice",

"modules": "shared slurm jupyter-eg-kernel-wlm-py312",

"oversubscribe": false,

"pythonuserbase_loc": "temp"

}

}

}

}

},

"argv": []

}

In this example, the "metadata" entry has been added. It includes "kernel_provisioner" and
"provisioner_name", which define the exact provisioner being used to manage the life-cycle of the

780 The Jupyter Notebook Environment Integration

kernel. The provisioner is defined via Python’s entry points specification.
It also contains paths to several script templates used to spawn the job within the context

that the kernel process runs, and sets the corresponding environment variables and other vari-
ables for the templates. The "argv": [] is empty because it is replaced by a script defined in
templates/submit_script.sh.j2

BCM is equipped with several types of provisioners to interact with a wide range of resource man-
agers, such as Kubernetes or Slurm. This allows kernels to be scheduled across compute nodes.

BCM recommends that kernels using the Jupyter Kernel Provisioning mechanism are created and
used with the Jupyter Kernel Creator (section 16.5) extension.

16.4.2 Tunables For Kernel Provisioners
BCM provides defaults for all the templates. The aim is to have the kernels that are created just work
on a typical cluster. However a better fit to the running environment may be possible with some further
fine-tuning.

Configuration parameters for modifying the kernel templates can be added with cmsh. These pa-
rameters are put into the Jupyter configuration file at /cm/local/apps/jupyter/conf/jupyterhub_

config.py, and become accessible when JupyterLab starts. Templates or already-created kernels can
be edited—which might be a preferred approach to test a parameter before simply adding it via cmsh.
Parameters that are set in the kernel specification (the kernel.json file) have precedence over the ones
set in jupyterhub_config.py

The following example shows a session that adds the c.KernelResponseManager.public_ip configura-
tion parameters within cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]]% roles

[basecm11->configurationoverlay[jupyterhub]->roles]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]->roles[jupyterhub]]% configs

[basecm11->...]->roles[jupyterhub]->configs]% add c.KernelResponseManager.public_ip

[basecm11->...]->roles*[jupyterhub*]->configs*[c.KernelResponseManager.public_ip*]]% set value "'10.10.1.1'"

[basecm11->...]->roles*[jupyterhub*]->configs*[c.KernelResponseManager.public_ip*]]% commit

On commit, the cm-jupyter service is restarted, which means that all user sessions are dropped. To
avoid this, editing the templates directly in the /cm/shared/apps/jupyter/current/share/jupyter/

kerneltemplates directory can be considered.

Table 16.4.2: Jupyter Kernel Tunables

Configuration parameter
Path in kernel.json

Default Description(metadata.kernel_

provisioner.config)

c.CMKernelProvisionerBase. .timeout 5 Timeout starting kernel
timeout

...continues

/cm/local/apps/jupyter/conf/jupyterhub_config.py
/cm/local/apps/jupyter/conf/jupyterhub_config.py
 /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates
 /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates

16.4 Jupyter Kernels 781

...continued

Configuration parameter
Path in kernel.json

Default Description(metadata.kernel_

provisioner.config)

c.CMKernelProvisionerBase. .include_regex_env ^(.+_API_(KEY|TOKEN| Regex for environment
include_regex_env HOST|TYPE|ORG_ID| variable names to be

ENDPOINT)|HF_.+)$ inherited from JupyterLab
process running on login
node

c.CMKernelProvisionerBase. .exclude_regex_env ^(JPY_API_TOKEN| Regex for environment
exclude_regex_env JUPYTERHUB_.+|PYTHON.+| variable names not to be

JUPYTERLAB_.+|PATH| passed to running
LD_LIBRARY_PATH.*)$ kernels

c.CMJKProvisioner. .poll_interval 5 Polling interval and
poll_interval interval between retries for

k8s operations

c.CMJKProvisioner. .operation_timeout 5 Timeout for running
operation_timeout commands interacting with

k8s

c.KernelResponseManager. .response_manager. Detected The IP address on the login
public_ip public_ip automatically node that jupyter-kernel-

starter will use for call-
backs when the kernel is
started on the compute node

c.KernelResponseManager. .response_manager. Detected The network on the login
public_network public_network automatically node that jupyter-kernel-

starter will use for call-
backs when the kernel is
started on the compute node

c.KernelResponseManager. .response_manager. Detected External hostname of the
public_hostname public_hostname automatically login node can be specified,

and the public IP address
will be detected by resolving

c.KernelResponseManager .response_manager. Detected The IP address used by the
bind_ip bind_ip automatically the response manager to

bind the socket that lis-
tens for callbacks from
jupyter-kernel-starter

c.KernelResponseManager. .response_manager. Detected The IP address used by
bind_network bind_network automatically the response manager to

bind the socket that lis-
tens for callbacks from
jupyter-kernel-starter

...continues

782 The Jupyter Notebook Environment Integration

...continued

Configuration parameter
Path in kernel.json

Default Description(metadata.kernel_

provisioner.config)

c.KernelResponseManager. .response_manager. 1025 The start of the port range
bind_port_range_start bind_port_range_start within which the response

manager tries to obtain a
port, for listening to call-
backs from the kernel

c.KernelResponseManager. .response_manager. 65535 The end of the port range
bind_port_range_end bind_port_range_end within which the response

manager tries to obtain a
port, for listening to call-
backs from the kernel

c.KernelResponseManager. .response_manager. 16 How many times the
bind_port_retries bind_port_retries response manager tries to

find a free port

c.KernelResponseManager. .response_manager. 5 How many incoming
max_in_requests max_in_requests messages to the kernel

starter can be buffered

c.KernelResponseManager. .response_manager. 5 How many outgoing
max_out_requests max_out_requests 5 messages to the kernel

starter can be buffered

The response manager in the preceding table is a part of WLM kernel provisioners. It is dedicated to
getting callbacks and managing signal communications with the running kernel. It acts as a proxy for
system signals and informs the kernel provisioner about the kernel being started and which ports it is
listening to. The response manager works in tandem with jupyter-kernel-starter.

16.5 Jupyter Kernel Creator Extension
Creating or editing kernels can be cumbersome and error-prone for users, depending on the features of
the execution context desired for their notebooks.

To provide a more user-friendly experience, BCM includes the Jupyter Kernel Creator extension in
JupyterLab. This extension is accessed from the navigation pane in the JupyterLab interface, by clicking
on the BCM icon.

Jupyter Kernel Creator allows users to create kernels using the JupyterLab interface, without the
need to directly edit JSON files. With this interface users can create kernels by customizing an available
template according to their needs.

A template can be considered to be the skeleton of a kernel, with several preconfigured options, and
others options that are yet to be specified. Common customizations for templates include environment
modules to be loaded, workload manager queues to be used, number and type of GPUs to acquire, and
so on.

Templates are usually defined by administrators according to cluster capabilities, programming lan-

16.5 Jupyter Kernel Creator Extension 783

guages and user requirements. Each template can provide different options for customizations.
Administrators often create different templates to take advantage of different workload managers,

programming languages and hardware resources. For example, an administrator may define a template
for scheduling Python kernels via Kubernetes, another one for R kernels via Slurm, and yet another one
for Bash kernels via Platform LSF.

16.5.1 BCM Predefined Kernel Templates
To simplify Jupyter configuration for administrators, BCM distributes a number of pre-defined tem-
plates with Jupyter Kernel Creator. These templates can be used for default configurations of BCM
workload managers, and can be customized and extended for more advanced use. Kernel templates de-
fined by BCM can be found in the Jupyter installation directory, under the kerneltemplates directory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates/

filter.yaml k8s-cmjkop-julia k8s-cmjkop-py-spark openpbs-bash pbspro-py312 slurm-py-conda

ge-bash k8s-cmjkop-ngc-py lsf-bash openpbs-py312 slurm-bash slurm-pyxis-py

ge-py312 k8s-cmjkop-py lsf-py312 pbspro-bash slurm-py312 slurm-pyxis-r

BCM Predefined Kernel Templates Seen By Users
Users can view the available predefined kernel templates in the Jupyter web browser interface, within
the KERNEL TEMPLATES section of the dedicated BCM extensions panel (figure 16.5):

Figure 16.5: JupyterLab BCM extensions section with kernel templates

However, the templates provided by BCM are listed in the panel only if they can be used on the
cluster. This means that the templates are listed only after the associated workload manager instance,
or associated Kubernetes configuration (such as a Kubernetes operator), have been deployed by cluster
manager utilities. For example:

784 The Jupyter Notebook Environment Integration

• After running the cm-wlm-setup cluster manager utility to deploy an OpenPBS workload manager,
the openpbs-bash and openpbs-py312 templates become available. The templates are listed as:

– Bash via OpenPBS

– Python 3.12 via OpenPBS

and accessed via the navigation path: menu > dedicated BCM extension panel > kernel templates section.

• After running the cm-kubernetes-setup cluster manager utility to deploy a Kubernetes cluster,
the Kubernetes cluster instance is displayed (navigation path: menu > dedicated BCM extension
panel > Kubernetes clusters section)

Then, after running the cm-jupyter-kernel-operator cluster manager utility to deploy a Jupyter
kernel operator package, and configuring a user (section 6.3 of the Containerization Manual), the
templates k8s-cmjkop-julia, k8s-cmjkop-py, and k8s-cmjkop-py-spark become available.

The templates are listed as:

– Julia on Kubernetes Operator

– Python on Kubernete Operator

– Python+Spark on Kubernetes Operator

and accessed via the navigation path: menu > dedicated BCM extension panel > kernel templates section.

Users can instantiate a kernel template to create an actual kernel from the dedicated BCM extensions
section using the + button of the template. A dialog is dynamically generated for the template being
instantiated, and users are asked to fill a number of customization options defined by administrators
(figure 16.6):

16.5 Jupyter Kernel Creator Extension 785

Figure 16.6: Jupyter kernel template customization screen

Once the template is completely customized, the kernel can be created. It automatically appears
in the JupyterLab Launcher screen (figure 16.7) and can be used to run notebooks or a console session
(figure 16.7):

786 The Jupyter Notebook Environment Integration

Figure 16.7: JupyterLab Launcher screen with new custom kernel

A user who lists available Jupyter kernels via the command line now sees the newly-created kernel:

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter kernelspec list

Available kernels:

k8s-cmjkop-py-1gii7nm01 /home/alice/.local/share/jupyter/kernels/k8s-cmjkop-py-1gii7nm01

python3 /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3

The new kernel directory will contain the JSON definition generated by the Jupyter Kernel Creator:

[jupyterhubuser@basecm11 ~]$ cat .local/share/jupyter/kernels/k8s-cmjkop-py-1gii7nm01/kernel.json

{

"language": "python",

"display_name": "Datascience Notebook Kernel",

"metadata": {

"kernel_provisioner": {

"provisioner_name": "cmjk-provisioner",

"config": {

"timeout": 280,

"template": {

"path": "templates/cmjk.yaml.j2",

"env_module": "kubernetes",

"vars": {

"image": "quay.io/jupyter/datascience-notebook",

"namespace": "alice-restricted",

"image_pull_policy": "IfNotPresent",

"gpu_limit": 0,

16.5 Jupyter Kernel Creator Extension 787

"pythonuserbase_loc": "temp"

}

}

}

}

},

"argv": []

}

Jupyter kernel names need not be unique. Users should therefore choose meaningful and distin-
guishable display names for their kernels. Doing so makes the JupyterLab Launcher screen easier to
use.

For convenience, a summary of the available kernel templates and their requirements is shown in
table 16.1:

Table 16.1: Available Jupyter kernel templates for BCM and their requirements

Template name Requirement Description

k8s-cmjkop-julia Kubernetes Jupyter official image via Jupyter Ker-
nel Operator (using Julia)

k8s-cmjkop-ngc-py Kubernetes NGC images via Jupyter Kernel Oper-
ator

k8s-cmjkop-py Kubernetes Jupyter official image via Jupyter Ker-
nel Operator (Python)

k8s-cmjkop-py-spark Kubernetes1 Python + Spark via Jupyter Kernel Op-
erator (using Python and Spark

lsf-bash Platform LSF Bash via Platform LSF

lsf-py312 Platform LSF Python 3.12 via Platform LSF

openpbs-bash Open PBS Bash via Open PBS

openpbs-py312 Open PBS Python 3.12 via Open PBS

pbspro-bash PBS Professional Bash via PBS Professional

pbspro-py312 PBS Professional Python 3.12 via PBS Professional

slurm-bash Slurm Bash via Slurm

slurm-py312 Slurm Python 3.12 via Slurm

slurm-py-conda Slurm + Conda2 Python 3.12 and Conda via Slurm

slurm-pyxis-py Slurm + Enroot Python running inside imported
Pyxis+Enroot image in Slurm

...continues

788 The Jupyter Notebook Environment Integration

Table 16.1: Available Jupyter kernel templates...continued

Template name Requirement Description

slurm-pyxis-r Slurm + Enroot R running inside imported
Pyxis+Enroot image in Slurm

1 Docker image: docker.io/brightcomputing/jupyter-kernel-sample:k8s-spark-3.5.3-py38-cuda12.6-rapids24.08-2
2 Conda needs to be installed for the user, and the Conda environment needs to be configured in the user’s Bash
shell as described in section 11.4.2 of the User Manual.
DockerHub kernels page: https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags

16.5.2 Jupyter Kernel Starter
Jupyter Kernel Starter, implemented as the software jupyter-kernel-starter, runs alongside the
Jupyter kernel. It acts as a starter and sidecar to manage the life-cycle of the kernel on the node within
the WLM job context. It informs the kernel provisioner, via the response manager, about the kernel sta-
tus, and which ports are being used by Jupyter Kernel Manager (the kernel provisioner layer manager).
It also performs basic heartbeat and watchdog operations to make sure that the running kernel does not
drain cluster resources if the connection to the kernel provisioner is lost.

[jupyterhubuser@basecm11 ~]$ module load jupyter-eg-kernel-wlm-py312

[jupyterhubuser@basecm11 ~]$ jupyter-kernel-starter --help

usage: jupyter-kernel-starter [-h] [--log-level <log_level>] [--kernel-id <kernel_id>]

[--response-address <ip>:<port>] [--bind-ip <x.x.x.x>]

[--bind-network <x.x.x.x/y>] [--port-range <begin>..<end>]

[--port-bind-attempts <n>] [--wait-ports-timeout <sec>]

[--shutdown-timeout <sec>] [--response-server-socket-timeout <sec>]

[--watchdog-interval <sec>] [--kernel-script <cmd>]

[--kernel-script-base64 <cmd_base64>] [--connection-file-dir <path>]

[--encryption-key <pem_key>]

options:

-h, --help show this help message and exit

--log-level <log_level>

Set the logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL). Can be specified as the

JKS_LOG_LEVEL environment variable.

--kernel-id <kernel_id>

ID of the Jupyter kernel

--response-address <ip>:<port>

Address of the server to return kernel connection info. Can be specified as the

JKS_RESPONSE_ADDRESS environment variable.

--bind-ip <x.x.x.x> IP address to bind. Can be specified as the JKS_BIND_IP environment variable.

--bind-network <x.x.x.x/y>

Alternatively IP network to bind. Can be specified as the JKS_BIND_NETWORK environment

variable.

--port-range <begin>..<end>

Range of the ports to use for kernel. Can be specified as the JKS_PORT_RANGE environment

variable.

--port-bind-attempts <n>

How many times to try to find unoccupied ports to use. Can be specified as the

JKS_PORT_BIND_ATTEMPTS environment variable.

--wait-ports-timeout <sec>

How many seconds the kernel waits for ports to open before sending connection information

to the server. Can be specified as the JKS_WAIT_PORTS_TIMEOUT environment variable.

--shutdown-timeout <sec>

Timeout to shutdown kernel if connection to server is lost. Can be specified as the

https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags

16.5 Jupyter Kernel Creator Extension 789

JKS_SHUTDOWN_TIMEOUT environment variable.

--response-server-socket-timeout <sec>

Socket timeout value for connecting to response server. Can be specified as the

JKS_RESPONSE_SERVER_SOCKET_TIMEOUT environment variable.

--watchdog-interval <sec>

How often watchdog with check liveness of kernel and connection to server. Can be

specified as the JKS_WATCHDOG_INTERVAL environment variable.

--kernel-script <cmd>

Script to run; '__connection_file__' placeholder will be substituted. Can be

specified as the JKS_KERNEL_SCRIPT environment variable.

--kernel-script-base64 <cmd_base64>

Alternatively cmd can be in base64 format to avoid issues with templating. Can be

specified as the JKS_KERNEL_SCRIPT_BASE64 environment variable.

--connection-file-dir <path>

Directory to store connection file json

--encryption-key <pem_key>

Public key to encrypt data; must be in string in PEM format or path to .pem file.

Can be specified as the JKS_ENCRYPTION_KEY environment variable

To establish communication with the response manager, the cryptographic key stored in
JKS_ENCRYPTION_KEY is required. This is a public key generated by response manager, used to secure
communication between the response manager and jupyter-kernel-starter.

A typical starting command is:

jupyter-kernel-starter \
--kernel-id 2a8bf66d-1577-4876-b908-a219fd4f8944 \
--response-address 10.141.255.254:23949 \
--shutdown-timeout 15 \
--kernel-script 'python -m ipykernel_launcher -f __connection_file__'

In the preceding command __connection_file__ is a placeholder for jupyter-kernel-starter.
It becomes a real path to the file for ipykernel_launcher to start. Data from the connection file is
created by jupyter-kernel-starter, and is then transferred to the response manager, so that Jupyter Kernel
Manager knows how to connect to the running kernel. This way --kernel-script can start the kernel
for any language supported by Jupyter.

Useful arguments that are often needed for more sophisticated cluster configuration are:

• --bind-network: used to make sure that jupyter-kernel-starter selects the right interface on
the compute node that is connected to the login node

• --port-range: limits the ports that are probed to establish a connection to the response manager—
this can be useful for strict network and firewall rules.

Various timeouts (jupyter-kernel-starter �help | grep timeout) can also be tuned.
The command options can be set in kernel templates (templates/submit_script.sh.j2) or directly

in the created kernel.

16.5.3 Running Jupyter Kernels With Two Factor Authentication
If PAM and CMDaemon are configured with two-factor authentication (2FA), then JupyterHub needs to
be instructed to support it. This can be done using cmsh as follows:

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use jupyterhub

790 The Jupyter Notebook Environment Integration

[basecm11->configurationoverlay[jupyterhub]]% roles

[basecm11->configurationoverlay[jupyterhub]->roles]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]->roles[jupyterhub]]% configs

[basecm11->...]->roles[jupyterhub]->configs]% add c.BrightAuthenticator.twofa

[basecm11->...]->roles*[jupyterhub*]->configs*[c.BrightAuthenticator.twofa*]]% set value True

[basecm11->...]->roles*[jupyterhub*]->configs*[c.BrightAuthenticator.twofa*]]% commit

16.5.4 Running Jupyter Kernels With Kubernetes
The Jupyter Kernel Operator (section 6.3 of the Containerization Manual) is the recommended way to run
kernels in Kubernetes in BCM. It allows users to run unmodified images; it takes care of communication
with Jupyter Kernel Provisioning as it manages the Jupyter kernel life-cycle, including cleaning up dead
or orphaned kernels.

After installation and configuration by cm-kubernetes-setup, Jupyter Kernel Operator kernels
(k8s-cmjkop-*) appear in the JuputerLab interface in the template section.

The following BCM templates allow users to create and run Jupyter kernels on compute nodes via
Kubernetes:

Table 16.2: BCM templates for creating and running Jupyter kernel provisioner kernels on cluster nodes via Kubernetes

Template Description

k8s-cmjkop-ngc-py NGC images via Jupyter Kernel Operator

k8s-cmjkop-py Jupyter official image via Jupyter Kernel Operator
(Python)

k8s-cmjkop-julia Jupyter official image via Jupyter Kernel Operator
(Julia)

k8s-cmjkop-py-spark Python + Spark via Jupyter Kernel Operator

The administrator has to make sure that Kubernetes is correctly configured on the cluster Kyverno is
enabled and Kubernetes Permissions Manager is installed (section 4.10.2 of the Containerization Manual).

Details on Kubernetes installation are provided in Chapter 4 of the Containerization Manual.
The default configuration proposed by cm-kubernetes-setup is usually sufficient to run Kubernetes

kernels created from BCM’s templates. However, it is the responsibility of the administrator to add
users registered in the Linux-PAM system to Kubernetes.

For example, a test user jupyterhubuser can be added to Kubernetes with:

Example

[root@basecm11 ~]# cm-kubernetes-setup --add-user jupyterhubuser --operators cm-jupyter-kernel-operator

For every new user added, cm-kubernetes-setup automatically generates a dedicated namespace
with a name in the form <user>-restricted. For instance, the command in the example above, creates the
namespace: jupyterhubuser-restricted.

Cluster administrators are strongly recommended to review the security policies for Kyverno, RBAC,
and the dedicated namespaces.

In order to speed up kernel creation for the first user logging into JupyterLab when using BCM, it is
recommended that all the relevant Kubernetes images are pre-loaded on the compute nodes that Jupyter
Kernel Provisioning can contact.

16.5.5 Running Jupyter Kernels Based On NGC Containers
Jupyter NGC templates are available in the list of templates if:

• Kubernetes is set up

16.5 Jupyter Kernel Creator Extension 791

• NVIDIA GPUs are available on the Kubernetes cluster

• Jupyter Kernel Operator (section 6.3 of the Containerization Manual) is installed

Figure 16.8: Jupyter Kernel Operator selection with cm-kubernetes-setup

It is also strongly advised to enable Kyverno on the Kubernetes cluster.

Figure 16.9: Kyverno policy engine selection in cm-kubernetes-setup

The user needs to be given permission to access to the Jupyter Kernel Operator. This can be done via
the cm-kubernetes-setup TUI:

Figure 16.10: User permissions in cm-kubernetes-setup

The permissions can also be configured using the CLI:

cm-kubernetes-setup --add-user=alice --operators=cm-jupyter-kernel-operator

792 The Jupyter Notebook Environment Integration

Once Jupyter kernel Operator is available, then kernel templates appear in the list:

Figure 16.11: Jupyter Kernel Operator templates

A kernel can be created from the template:

16.5 Jupyter Kernel Creator Extension 793

Figure 16.12: Creating kernel from template

If authentication is required to access container images from the private registry, then the template
can be modified as described in section 6.3.8 of the Containerization Manual.

16.5.6 Running Jupyter Kernels With Workload Managers
BCM’s Jupyter Kernel Provisioning kernels can be created and run by users on compute nodes via
workload managers (WLMs). For convenience, Slurm is used as an example in this section. However,
the same instructions are valid for the other WLMs listed in table 16.1.

The templates used to create Slurm kernels are BCM’s

794 The Jupyter Notebook Environment Integration

• slurm-bash and

• slurm-py312,

which offer a Bash and a Python 3.12 environment respectively.
The administrator has to make sure that Slurm is correctly configured on the cluster. Slurm installa-

tion is described in section 7.3.
The default configuration that cm-wlm-setup suggests in Express mode is usually sufficient to run

Slurm kernels created from BCM’s templates. If Slurm is configured to automatically detect GPUs, they
will be listed as available resources while instantiating Slurm templates.

The Jupyter login node must be authorized to submit Slurm jobs. This is typically the case, since
the JupyterHub login node is by default the head node, and cm-wlm-setup by default assigns the
slurmsubmit role to the head node.

Finally, the administrator must make sure that relevant dependency packages are installed on the
software image used by Slurm clients. The image used is typically for the compute nodes. Missing
packages may cause kernels to fail at startup or at run time.

In particular, administrators need to install cm-python312 to use kernels based on the slurm-py312

template.

16.6 Jupyter Kernel Creator Extension Customization
The Jupyter kernel templates described in section 16.5 are stored under the directory
/cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates/.

The template of a particular Jupyter kernel in BCM’s Jupyter Kernel Creator extension is a directory
containing at least two files: meta.yaml and kernel.json.j2. The kernel template can also contain
other files placed in the same directory, such as icons. These files are copied to the target user kernels
directory upon kernel creation, after the template is instantiated.

The meta.yaml file includes all the parameters that can be substituted into kernel.json.j2 and is
defined with the YAML format (https://yaml.org/).

The kernel.json.j2 file is a skeleton of the kernel.json file to be generated. It can contain some
placeholders, and is defined with the Jinja2 format (https://jinja.palletsprojects.com/).

16.6.1 Kernel Template Parameters Definition
The kernel template meta.yaml file defines all the parameters that can be used in kernel.json.j2.

It should contain three entries:

• display_name: the name that will be displayed for the kernel in the JupyterLab Launcher;

• features: a list of features that must be available on the cluster to show this kernel template to
JupyterLab users in the BCM extensions panel;

• parameters: the variables for kernel.json.j2.

The display_name entry is an arbitrary string:

[...]

display_name: "A simple kernel"

[...]

The features entry is a string that defines the condition under which the template becomes available
in the user interface. The features definitions are found within filter.yaml, which is in the same
directory as the kernel templates (section 16.5.1)

For example, a kernel template that only requires Kubernetes to work contains this line in its meta.yaml
file:

https://yaml.org/
https://jinja.palletsprojects.com/

16.6 Jupyter Kernel Creator Extension Customization 795

[...]

features: features: "k8s-jupyter-operator-enabled and k8s-nvidia-gpu-available"

[...]

and filter.yaml must have definitions of both conditions:

features:

[...]

k8s-jupyter-operator-enabled:

getter: shell

timeout: 5

exec:

- "source /etc/profile.d/modules.sh"

- "module load kubernetes"

- "kubectl get cmjupyterkernels"

[...]

k8s-nvidia-gpu-available:

getter: shell

timeout: 5

exec:

- "source /etc/profile.d/modules.sh"

- "module load kubernetes"

- "kubectl get nodes -o \\"

- "jsonpath=\"{.items[*].status.capacity['nvidia\\.com/gpu']}\" \\"

- "| egrep -q '.'"

[...]

The preceding means that a user can list cmjupyterkernels objects in Kubernetes, and that nodes
must have nvidia.com/gpu records available in their manifest

The scripts (the exec entries) in the preceding filters use typical values. For example, default values
for the Kubernetes environment module. These lines can be edited to be consistent with the actual
situation on the cluster.

The same principle and customizations should be considered for the other workload managers.
Finally, the parameters entry contains a dictionary of kernel parameters. The keys of the dictionary

are parameter names that are used in kernel.json.j2. The values of the dictionary are options that
help users choose a correct value for the parameter. Parameter options are also dictionaries.

A kernel template meta.yaml is thus structured as:

[...]

parameters:

<parameter_name1>:

<option_key>: <option_value>

...

<option_key>: <option_value>

<parameter_name2>:

<option_key>: <option_value>

...

<option_key>: <option_value>

...

<parameter_nameN>:

<option_key>: <option_value>

...

<option_key>: <option_value>

[...]

Parameter names are arbitrary strings.
Option keys are strings. The only possible values for these strings are:

796 The Jupyter Notebook Environment Integration

• type

• definition

• limits

The option keys type and definition are mandatory. The option key limits is optional.
For example, a kernel template with two parameters foo and bar looks as follows:

Example

[...]

parameters:

foo:

type: <option_value>

definition: <option_value>

limits: <option_value>

bar:

type: <option_value>

definition: <option_value>

limits: <option_value>

[...]

The type Option
The type option key defines the type of the kernel parameter.

The type option key only accepts one of the following string values:

• num: for numeric values (both float and integer are supported);

• str: for arbitrary strings;

• bool: for boolean values (a checkbox is presented in the user interface);

• oneof: for picker to choose one value out out of several provided;

• list: for lists of pre-defined or dynamically-generated settings;

• uri: for interactive RESTful endpoints (only /kernelcreator/envmodules is currently supported).

The definition Option
The definition option key defines how the parameter value is retrieved and displayed.

The definition option key accepts dictionary-like values. Allowed string keys for the dictionary
are:

• display_name: the name that is displayed for the parameter in the kernel customization dialog. It
accepts an arbitrary string as a value;

• getter: how parameter values are retrieved. It only accepts as value one of the following strings:

– static: the values for the parameter are pre-defined;
– shell: the values for the parameter are the output of the shell script;
– python: the values for the parameter are the output of a Python script;

• values: possible values for the parameter that are displayed in the kernel customization dialog. It
accepts a list of arbitrary values;

• default: default value for the parameter. It accepts a value from values;

• exec: the script to be executed to fill values when getter is shell or python. It accepts a
shell/Python script.

If type option value is list, then every line of getter with a setting of shell or python is treated as
an element of the list.

16.6 Jupyter Kernel Creator Extension Customization 797

The limits Option
The limits option key offers a way to apply bounds on values provided by users. This usually reduces
the chances of making mistakes and helps users defining correct kernels before actually running them.

The limits option key accepts dictionary-like values according to the value chosen for the type

option key.
If num is the type, then limits can contain:

• min: the minimum numeric value;

• max: the maximum numeric value.

If str or list is the type, then limits can contain:

• min_len: the minimum length of the string or the list;

• max_len: the maximum length of the string or the list.

For example, if every node in the cluster has no more than 4 GPUs, then the upper limit on the
requested GPU number can be set to 4:

[...]

parameters:

gpus:

type: num

definition: <option_value>

limits:

min: 1

max: 4

[...]

These limits are not a security measure. They should be considered as convenient sanity checks
for values entered while instantiating a kernel template. This is because users are always able to later
directly edit the generated kernel.json, thereby ignoring such limits.

16.6.2 Kernel Template Parameters Usage
During the creation of the kernel definition from the template, the kernel.json file is created from
kernel.json.j2, so all the Jinja2 variables are substituted based on the meta.yaml file and choices
provided by the user. When a kernel startup is initiated, Jupyter Kernel Provisioning uses kernel.json
and some internal variables to create WLM jobs or Kubernetes manifests from templates defined in the
kernel.json file.

Variables are available from a vars dictionary on kernel startup. These variables are defined within
a subsection of metadata.kernel_provisionersection. The subsection is config.<subsection>.vars,
where <subsection> depends on the chosen kernel provisioner.

Other dictionaries are internal and env.
The internal dictionary contains several variables defined at runtime:

• uuid: Unique ID for every running kernel process. Does not persist across kernel restarts.

• kernel_id: ID of the kernel. Persists across restarts.

• kernel_spec_resource_dir: Full path to the kernel spec definition, normally: ~/.local/share/
jupyter/kernel-name.

• username: PAM username of the user starting the kernel.

• uid: PAM user’s UID.

• gid: PAM user’s GID.

~/.local/share/jupyter/kernel-name
~/.local/share/jupyter/kernel-name

798 The Jupyter Notebook Environment Integration

• homedir: User’s home directory from the PAM database.

• shell: User’s shell from the PAM database.

• kernel_cmd: Command to run. For most kernels it is set to an empty string, as the actual command
is defined separately in WLM job or Kubernetes manifest templates.

The env variables pass some environment variables matching a regex in order to pass some variables
to be used in accessing API endpoints. Users thus do not need to hardcode API keys for notebooks.

16.6.3 Filtering Out Irrelevant Templates From The Interface For Users
The list of kernel templates that are available for users of the Jupyter Kernel Creator can be modified as
follows:

In the parent directory of the templates, the file filter.yaml describes items called features. These
can be statically defined or they can represent scripts to be executed. The result of an executed script
can be true or false. If the script code exits with zero, then the result is true.

Every kernel template can have the feature field, which is a boolean expression that is calculated
when the JupyterLab extension is started.

Example

cat filter.yaml

...

slurm:

getter: shell

timeout: 5

exec:

- "source /etc/profile.d/modules.sh"

- "module load slurm"

- "sinfo"

...

cat slurm-py312/meta.yaml

...

features: "slurm"

...

In the preceding example, the slurm-py312 template is shown in the JupyterLab interface if the script
in the exec: section is able to finish successfully.

It is also possible to define more complicated rules:

Example

cat filter.yaml

features:

kubernetes:

getter: shell

timeout: 5

exec:

- "source /etc/profile.d/modules.sh"

- "module load kubernetes"

- "kubectl get pods"

k8s-jupyter-operator-installed:

getter: shell

timeout: 5

exec:

16.7 Jupyter VNC Extension 799

- "source /etc/profile.d/modules.sh"

- "module load kubernetes"

- "(kubectl get cmjupyterkernels 2>&1 || true) \\"

- "| egrep -q '^Error from server \\(Forbidden\\)'"

k8s-jupyter-operator-enabled:

getter: shell

timeout: 5

exec:

- "source /etc/profile.d/modules.sh"

- "module load kubernetes"

- "kubectl get cmjupyterkernels"

...

cat jupyter-eg-kernel-k8s-py/meta.yaml

display_name: "Python on Kubernetes"

features: "kubernetes and not k8s-jupyter-operator-installed and not k8s-jupyter-operator-enabled"

...

In the preceding example, jupyter-eg-kernel-k8s-py is shown when Kubernetes is installed, and
is hidden if Jupyter Kubernetes Operator is available for the user.

The filter.yaml file also supports statically defined features:

Example

features:

always-enabled:

getter: static

default: True

always-disabled:

getter: static

default: False

...

and supports Python code:

Example

python3-available:

getter: python

timeout: 5

exec:

- "import sys"

- "sys.exit(0) if sys.version_info.major == 3 else sys.exit(1)"

...

The Kubernetes Jupyter Kernel Operator is discussed in section 6.3 of the Containerization Manual.

16.7 Jupyter VNC Extension
16.7.1 What Is Jupyter VNC Extension About?
VNC (Virtual Network Computing) is a screen sharing service that can work in a browser.

If VNC is allowed by the cluster administrator, then the Jupyter environment configured by BCM
can be used to start and control remote desktops via VNC with the Jupyter VNC extension.

Several kernels created from BCM’s templates are capable of running VNC sessions so that users
can run GUI applications. In order to do so, the cluster nodes where kernels are executed must support
VNC.

800 The Jupyter Notebook Environment Integration

During the cm-jupyter-setup run, the TUI prompts for installation of VNC servers on the nodes.
The cluster administrator can select the nodes on which it installs. On these nodes Jupyter kernels can
work with several types of VNC clients.

16.7.2 Enabling User Lingering
User lingering is a systemd setting that sets a user manager for a user at boot and keeps it around after
logout. This allows that user to run long-running sessions despite not being logged in. Enabling user
lingering may be required for Jupyter VNC extension to run for a relatively complicated desktop such
as KDE or GNOME.

For each user on each machine where these environments are installed, the following command must
be run:

loginctl enable-linger <username>

The command may also be carried out using prolog/epilog scripts in the chosen WLM.

16.7.3 Starting A VNC Session With The Jupyter VNC Extension
Users can start a VNC session with the button added by Jupyter VNC (figure 16.13). Additional VNC
parameters can be optionally specified.

Figure 16.13: Starting Jupyter VNC session from kernel

If VNC is available and correctly configured on the node where the kernel is running, then a new
tab is automatically created by Jupyter VNC containing the new session (figure 16.14). A user can now
freely interact in JupyterLab both with the notebook and with the desktop environment.

16.7 Jupyter VNC Extension 801

Figure 16.14: Running Jupyter VNC session from kernel

To provide a user-friendly experience, Jupyter VNC also allows the graphical viewport to be resized,
so that the desktop application can run full-screen (figure 16.15).

802 The Jupyter Notebook Environment Integration

Figure 16.15: Running Jupyter VNC session from kernel (full-screen)

16.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC
Extension

Once the VNC session is correctly started and the new JupyterLab tab has been created, Jupyter VNC
automatically exports the DISPLAY environment variable to the running notebook (figure 16.16). Doing
so means that any application or library running in the notebook can make use of the freshly created
desktop environment. An example of such a library is OpenAI Gym, a toolkit for developing and com-
paring reinforcement learning algorithms, that is distributed by BCM.

Among the examples distributed by BCM (section 16.3), a notebook running PyTorch in the OpenAI
Gym CartPole environment can be found. If executed after a VNC session has been started, a user can
then observe the model being trained in real time in the graphical environment.

Figure 16.16: Automatic configuration of DISPLAY environment variable

16.8 Jupyter WLM Magic Extension 803

16.8 Jupyter WLM Magic Extension
In the Jupyter environment configured by BCM, the Jupyter WLM Magic extension can be used to sched-
ule workload manager jobs from notebooks.

The Jupyter WLM Magic extension is an IPython extension. It is designed to improve the capabilities
of Jupyter’s default Python 3 kernel, which runs on the login node.

The Jupyter WLM Magic extension should therefore not be used from kernels running on compute
nodes, such as those typically created with BCM’s Jupyter Kernel Creator extension (section 16.5), and
submitted via Jupyter Kernel Provisioning. Indeed, compute nodes running these kernels are often
incapable of starting workload manager jobs in many default WLM configurations.

Jupyter WLM Magic extension makes it possible for users to programmatically submit WLM jobs,
and then interact with their results. This can be done while using the Python programming language
and its libraries, which are available in the notebook.

Users submit jobs and check their progress from the login node. The actual computation is dis-
tributed by the underlying workload manager across compute nodes, which means that server resources
are spared.

Jupyter WLM Magic commands are available in the IPython kernel as magic functions (https://
ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions). A new line
magic (%) and a new cell magic (%%) are now added in the kernel, according to the workload manager:

• Platform LSF: %lsf_job and %%lsf_job

• PBS Professional: %pbspro_job and %%pbspro_job

• Slurm: %slurm_job and %%slurm_job

A user can list the magic functions in the kernel to see if they are available, with Jupyter’s
builtin command %lsmagic (https://ipython.readthedocs.io/en/stable/interactive/magics.
html#magic-lsmagic):

Example

In []: %lsmagic

Out []: root:

line:

automagic:"AutoMagics"

autocall:"AutoMagics"

[...]

slurm_job:"SLURMMagic"

pbspro_job:"PBSProMagic"

lsf_job:"LSFMagic"

cell:

js:"DisplayMagics"

javascript:"DisplayMagics"

[...]

slurm_job:"SLURMMagic"

pbspro_job:"PBSProMagic"

lsf_job:"LSFMagic"

The magic functions introduced by this BCM extension share a similar syntax. For convenience,
Slurm is used as an example in this section. However, the same instructions are valid for the other
WLMs.

Users can check which options are available for a WLM function with the line magic helper:

Example

https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic

804 The Jupyter Notebook Environment Integration

In []: %slurm_job --help

Out []: usage: %slurm_job [-h] [--module MODULE] [--module-load-cmd MODULE_LOAD_CMD]

[--shell SHELL] [--submit-command SUBMIT_COMMAND]

[--cancel-command CANCEL_COMMAND]

[--control-command CONTROL_COMMAND]

[--stdout-file STDOUT_FILE] [--stderr-file STDERR_FILE]

[--preamble PREAMBLE] [--timeout TIMEOUT]

[--check-condition-var CHECK_CONDITION_VAR]

[--job-id-var JOB_ID_VAR]

[--stdout-file-var STDOUT_FILE_VAR]

[--stderr-file-var STDERR_FILE_VAR] [--dont-wait]

[--write-updates WRITE_UPDATES]

[--check-status-every CHECK_STATUS_EVERY]

optional arguments:

-h, --help show this help message and exit

[...]

Line magic functions are typically used to set options with a global scope in the notebook. By doing
so, a user will not need to specify the same option every time a job will be submitted via cell magic. For
example, if two Slurm instances are deployed on the cluster and their associated environment modules
are slurm-primary and slurm-secondary, a user could run the following line magic once to configure
the Jupyter WLM Magic extension to always use the second deployment:

Example

In []: %slurm_job --module slurm-secondary

Out []:

Now, jobs will always be submitted to slurm-secondary. This is more convenient than repeatedly
defining the same module option for every cell magic upon scheduling a job:

Example

In []: %%slurm_job --module slurm-secondary

<WLM JOB DEFINITION>

Out []: <WLM JOB OUTPUT>

In []: %%slurm_job --module slurm-secondary

<WLM JOB DEFINITION>

Out []: <WLM JOB OUTPUT>

It should be noted that line magic functions cannot be used to submit WLM jobs. Cell magic func-
tions have to be used instead.

A well-defined cell contains the WLM cell magic function provided by the extension, followed by
the traditional job definition. For example, a simple MPI job running on two nodes can be submitted to
Slurm by defining and running this cell:

Example

In []: %%slurm_job

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: COMPLETED

STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-1.out

16.9 Jupyter Kubernetes Operators Manager 805

node001

node001

node002

node002

Users can take advantage of the Jupyter WLM Magic extension to store some information into Python
variables about the job being submitted. The information could be the ID or the output file name, for
example. Users can then later programmatically interact with them in Python. This feature is conve-
nient when a user wants to, for example, programmatically carry out new actions depending on the job
output:

Example

In []: %%slurm_job --job-id-var my_job_id --stdout-file-var my_job_out

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: COMPLETED

STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-2.out

node001

node001

node002

node002

In []: print(f"Job id {my_job_id} was written to {my_job_out}")

print(f"Output lines: {open(my_job_out).readlines()}")

Out []: Job id 2 was written to /home/demo/.jupyter/wlm_magic/slurm-2.out

Output lines: ['node001\n', 'node001\n', 'node002\n', 'node002\n']

Users can also exploit Python variables to define the behavior of the Jupyter WLM Magic extension.
For example, they can define a Python boolean variable to submit a WLM job only if a condition is true:

Example

In []: run_job = 1 == 2

Out []:

In []: %%slurm_job --check-condition-var run_job

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: Variable run_job is 'False'. Skipping submit.

16.9 Jupyter Kubernetes Operators Manager
The Jupyter Kubernetes Operators Manager tool is designed to make it easier to handle everyday tasks
involving Kubernetes.

Some of the items that the tool can manage are:

• Pods

• PostgreSQL databases

• Spark tasks (jobs that process a lot of data)

806 The Jupyter Notebook Environment Integration

• Persistent Volume Claims (requests for specific storage space). Particularly handy is the ability to
move data between user folders and Persistent Volumes (special types of storage space in Kuber-
netes).

Jupyter Kubernetes Operators Manager can be accessed as follows in the Jupyter Notebooks web
interface (figure 16.17):

Figure 16.17: Jupyter Kubernetes Operators Manager: Kubernetes cluster list and selection

1. The NVIDIA Base Command Manager logo (on the left side of the screen,) is clicked. A list of
Kubernetes clusters is then displayed.

2. The Cluster View button is used to select the cluster that is to be worked with.

Jupyter Kubernetes Operators Manager displays resources and objects via a tabbed view. This view
is for the restricted namespace to which the user has access. With Kubernetes as set up by BCM, this is
the namespace of the form <user>-restricted.

16.9.1 Overview Tab
The Overview tab (figure 16.18) provides a high-level overview of the current state of the selected Ku-
bernetes cluster.

16.9 Jupyter Kubernetes Operators Manager 807

Figure 16.18: Jupyter Kubernetes Operators Manager: overview

Among other useful details, it displays:

• the cluster name

• the Kubernetes version that is running

• the number of namespaces and pods

16.9.2 Jupyter Kernel Overview Tab
The Jupyter Kernel Overview tab (figure 16.19) lists active Jupyter kernel instances along with their
associated events.

Figure 16.19: Jupyter Kubernetes Operators Manager: Jupyter kernel overview tab

808 The Jupyter Notebook Environment Integration

After a kernel is stopped or removed, these events can be found under the Events tab. Events are
discussed later on.

16.9.3 Jobs Tab
The Jobs tab (figure 16.20) allows a data migration job to be run. A data migration job manages the
transfer of data between the user-accessible directories of the filesystem and the Persistent Volumes.
The transfer can be managed in either direction.

The data transfer is needed to enable access to the data for Spark instances, and for situations where
pods need to be run under a different user ID/group ID (UID/GID) from the original user.

Figure 16.20: Jupyter Kubernetes Operators Manager: Jupyter data migration jobs tab

To initiate a data migration job, several fields must be set. This can be done via a pop-up dialog, that
comes up on clicking either of these buttons:

• New job from Config: allows a YAML file configuration to be submitted

• New Job: allows direct configuration (figure 16.21)

16.9 Jupyter Kubernetes Operators Manager 809

Figure 16.21: Jupyter Kubernetes Operators Manager: data migration jobs creation

Fields that may be set include:

• Job name: specifies the name of the migration job.

• Direction: sets the direction of the data migration.

– to-k8s: copies data to the Persistent Volume Claim (PVC) from the file system

– from-k8s: copies data from the PVC back to the file system

• Path: provides the path on the filesystem to/from where the data is migrated

• PVC: sets the name of the Persistent Volume Claim that is involved in the data migration.

Optionally, the Force Delete checkbox can be ticked. If ticked, then the migration job deletes data
from the target location if the corresponding file or directory does not exist in the source location.

In particular, if the source location is completely empty, then setting Force Delete results in the
removal of all target data. Setting Force Delete should therefore be done with caution due to the
significant data loss that it can cause.

The execution status of a job can be monitored in the status and events area. This section displays
the number of worker pods and their respective statuses, which include:

• Running: the number of pods currently in operation.

• Completion: the desired number of pods that should successfully complete the job. Not applicable
for migration jobs, but it can be used if a custom manifest is specified, as described later.

• Succeeded: The number of pods that have successfully completed their tasks.

• Failed: The number of pods that have failed to complete their tasks.

Additionally, a custom job manifest can be uploaded from the user’s workstation if required.

16.9.4 Pods Tab
The Pods tab (figure 16.22) displays user pods, reads stdout, and shows associated events from pods.

810 The Jupyter Notebook Environment Integration

Figure 16.22: Jupyter Kubernetes Operators Manager: pods overview tab

The tab also allows pod creation from a custom definition manifest uploaded from the user’s work-
station, or by filling out a simplified form with commonly used fields:

1. Name: name of the Pod.

2. Command: program and its arguments that are to run inside the Pod.

3. Image: container image.

4. Host Path (Optional): path to mount from the filesystem. If used, the UID/GID of the running
process matches the UID/GID of the user.

5. Environment Variables (Optional): These variables are set for the process inside the running Pod.

6. PVCs (Optional): A list of Persistent Volume Claims and the path to mount them inside the Pod.

In figure 16.23 main.py has been downloaded earlier from the official PyTorch repository and placed
in the user’s home directory using wget:

wget https://raw.githubusercontent.com/pytorch/examples/main/mnist/main.py

16.9 Jupyter Kubernetes Operators Manager 811

Figure 16.23: Jupyter Kubernetes Operators Manager: pod creation

16.9.5 PVCs Tab
A Persistent Volume Claim (PVC) is a user’s request for a specific amount of storage space within a
Kubernetes cluster with defined characteristics.

The PVCs tab (figure 16.24) displays an overview of the PVCs.

Figure 16.24: Jupyter Kubernetes Operators Manager: PVCs overview tab

The tab allows users to manage existing PVCs or create new ones via a dialog.

812 The Jupyter Notebook Environment Integration

To create a new PVC, several fields must be set. This can be done via a pop-up dialog, that comes up
on clicking either of these buttons:

• the New PVC from Config button: This allows a YAML file configuration to be submitted to set
the fields.

• the New PVC button: This allows the configuration to be set directly (figure 16.25).

Figure 16.25: Jupyter Kubernetes Operators Manager: PVC creation

To create a new PVC directly, the following fields need to be set in the form:

1. Storage class: Storage classes need to be configured cluster-wide during installation, and can be
either

• local-path, or

• bright-ceph

2. Volume mode: can be either

• Filesystem, where the requested space is accessible as a formatted filesystem, or

• Block, where the space is accessible as a raw block device.

For the local-path storage class, only Filesystem is available.

3. Instance name: arbitrary name of the PVC.

4. Instance size (GB): requested size. It can be ignored for local-path, as quotas are not sup-
ported for shared filesystems. The resulting volumes for a cluster <cluster_name> are located under
/cm/shared/apps/kubernetes/<cluster_name>/var/volumes and are configurable during cluster
setup.

5. Select access mode:

• ReadWriteOnce: The volume can be mounted as read-write by a single node. Multiple pods
can still access the volume if they are running on the same node.

• ReadOnlyMany: The volume can be mounted as read-only by many nodes.

• ReadWriteMany: The volume can be mounted as read-write by many nodes.

16.9 Jupyter Kubernetes Operators Manager 813

16.9.6 PSQL Tab
The PSQL tab (figure 16.26) provides a simplified interface for interacting with the Zalando PostgreSQL
Operator. It offers an overview of instances running on the cluster, it displays associated events, and
provides credentials and access points for running PSQL databases. This information can be used later
in Jupyter Notebooks or other PSQL clients.

Figure 16.26: Jupyter Kubernetes Operators Manager: PSQL overview

The tab allows users to manage existing PostgreSQL databases or to create new ones via a dialog.
An example notebook is located at /cm/shared/examples/jupyter/notebooks/psql-example.ipynb

(figure 16.27).

814 The Jupyter Notebook Environment Integration

Figure 16.27: Jupyter Kubernetes Operators Manager: PSQL notebook

There are two buttons in figure 16.26:

• New PSQL instance from Config: allows a YAML file configuration that sets the fields to be sub-
mitted

• New instance: allows the fields to be set directly (figure 16.28)

Clicking either button displays a pop-up dialog for creating a new PostgreSQL instance. For example,
the New instance button displays the creation form in figure 16.28.

Figure 16.28: Jupyter Kubernetes Operators Manager: PSQL instance creation

The creation form accepts the following values:

1. Instance name: PSQL instance name. An auto-generated team name is prefixed to this name

2. Database name: arbitary database name

16.9 Jupyter Kubernetes Operators Manager 815

3. Admin user (Optional): if not set, the name of the admin user is set to the database name

4. Instance size (GB): data storage size requirement for the volumes

16.9.7 Spark Tab
The Spark Jobs tab (figure 16.29) simplifies dealing with Spark clusters managed by the Google Spark
Operator. The tab lets users list, remove, and create Spark instances using a simplified interface. If a
particular option is not available in the simplified form, then a custom manifest can be uploaded.

Figure 16.29: Jupyter Kubernetes Operators Manager: Spark overview

There are two buttons in figure 16.29:

• New Spark Job from Config: allows a YAML file configuration that sets the fields to be submitted

• New Spark Job: allows the fields to be set directly (figure 16.30)

Clicking either button displays a pop-up dialog for creating a new Spark instance. For example, the New

Spark Job button displays the creation form in figure 16.30. The creation form requires the following
values:

1. Name: Arbitrary name of the Spark instance.

2. Image: Container image for the driver and executor.

3. Spark Version: Version of Spark used by the application.

4. Command: Application’s command with arguments.

5. Executor Instances: Number of executors.

6. PVCs (Optional): List of Persistent Volume Claims with mountpoints where these volumes are
mounted. Used to store the application and datasets, as well as packed virtual environment
archives.

7. Virtual Environment (Optional): Configuration for the ’spark.archives’ configuration variable for
the Python virtual environment.

816 The Jupyter Notebook Environment Integration

• PVC: Name of the Persistent Volume Claim with empty Volume which are used to store the
unpacked archive.

• Archive: Full path to the archive.

• Python Path (Optional): Python path (default /bin/python).

8. Driver Resources (Optional):

• Memory: Amount of memory to request for the pod.

• GPU: List of key-value pairs such as nvidia.com/gpu, 3.

• Cores: Number of cores to use for the driver process.

• Environment: List of key-value pairs for environment variables.

9. Executor Resources (Optional): Same as Driver Resources.

10. Spark Config (Optional): Custom configuration parameters if necessary. They are key-value pairs,
documented in the Spark documentation at https://spark.apache.org/docs/latest/configuration.
html.

Example: Calculating Pi
The simplest way to run Spark involves specifying just three values: the name, the script to execute,
and the Spark version. For example, the container registry image gcr.io/spark-operator/spark-py:

v3.1.1 provided by Google can be used, and an application to calculate the value for π is located at
/opt/spark/examples/src/main/python/pi.py inside the image.

Figure 16.30: Jupyter Kubernetes Operators Manager: Spark creation

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
gcr.io/spark-operator/spark-py:v3.1.1
gcr.io/spark-operator/spark-py:v3.1.1
/opt/spark/examples/src/main/python/pi.py

16.9 Jupyter Kubernetes Operators Manager 817

The progress of execution can be monitored in the Pods tab (figure 16.31):

Figure 16.31: Jupyter Kubernetes Operators Manager: pods tab Spark example execution status

When the job is completed, the overview page is updated (figure 16.32):

Figure 16.32: Jupyter Kubernetes Operators Manager: pods tab Spark example completed status

Example: Running MNIST
The source files for the MNIST example are located in the /cm/shared/examples/jupyter/spark-operator-mnist
directory

/cm/shared/examples/jupyter/spark-operator-mnist

818 The Jupyter Notebook Environment Integration

Example

$ id

uid=1001(alice) gid=1001(alice) groups=1001(alice)

$ ls -l /home/alice/mnist/

total 12

-rwxr-xr-x 1 alice alice 241 Jun 28 16:02 create-venv.sh

drwxr-xr-x 2 alice alice 76 Jun 28 17:10 data

-rw-r--r-- 1 alice alice 2719 Jun 28 16:02 mnist.py

-rw-r--r-- 1 alice alice 46 Jun 28 16:02 requirements.txt

$ ls -l /home/alice/mnist/data

total 124952

-rw-rw-r-- 1 alice alice 18303650 Oct 1 2019 mnist_test.csv

-rw-rw-r-- 1 alice alice 109640201 Oct 1 2019 mnist_train.csv

-rw-r--r-- 1 alice alice 91 Jun 28 16:02 README.md

In the example the user is unable to train the model defined in mnist.py right away, as the image
gcr.io/spark-operator/spark-py:v3.1.1 does not have the required NumPy library. So, before run-
ning the Spark job, the virtual environment archive needs to be created.

The safest way to create the Python environment is to use the same context as where the archive is
to be used later on. That way there are no missing or conflicting libraries and paths, and the Python
version matches. The gcr.io/spark-operator/spark-py:v3.1.1 image itself can therefore be used to
create the archive. The script create-venv.sh creates the create archive from requirements.txt file
and packs it.

In this example, a newly persistent volume (PV) is used as an intermediate storage for all the data
and scripts, because using a file system where all the files are located would be a security concern. The
reason for this is that once the hostPath is used for the pod, the running process UID/GID is dropped,
and becomes the same as the original user (section 4.10.1 of the Containerization Manual). Spark images
are usually not designed with this assumption in mind, and use UID 185 to run the application (https:
//spark.apache.org/docs/3.1.1/running-on-kubernetes.html#user-identity).

With these criteria in mind, the steps to run the MNIST example are:

1. Create a PVC for storing scripts and datasets (figure 16.33). Since the resulting persistent volume
is expected to be mounted to all pods (driver and executors), its mode is set to ReadWriteMany.

Figure 16.33: Jupyter Kubernetes Operators Manager: PVC creation for Spark example

gcr.io/spark-operator/spark-py:v3.1.1
gcr.io/spark-operator/spark-py:v3.1.1
https://spark.apache.org/docs/3.1.1/running-on-kubernetes.html#user-identity
https://spark.apache.org/docs/3.1.1/running-on-kubernetes.html#user-identity

16.9 Jupyter Kubernetes Operators Manager 819

2. Migrate data from the home folder to the volume. To do this, a migration job is created (fig-
ure 16.34), and allowed to finish (figure 16.35).

Figure 16.34: Jupyter Kubernetes Operators Manager: Data migration job creation for Spark example

Figure 16.35: Jupyter Kubernetes Operators Manager: Data migration job for Spark example success-
fully finished

3. Create a pod to build a packed virtual environment (figure 16.36). For this, mnist-data-pvc
is mounted by the user as the /mnist directory inside the pod. The command
/mnist/create-venv.sh /mnist/requirements.txt /mnist/venv.tar.gz is then executed.
This places the venv.tar.gz archive next to the other files in the volume.

820 The Jupyter Notebook Environment Integration

Figure 16.36: Jupyter Kubernetes Operators Manager: pod creation for virtual environment

4. (Optional) If necessary, data can be downloaded from the volume back to the user’s home direc-
tory, to save the venv.tar.gz for future use (figure 16.37):

Figure 16.37: Jupyter Kubernetes Operators Manager: migrate venv to PVC

The venv.tar.gz file is placed in the /home/alice/mnist directory.

$ ls -l /home/alice/mnist/

total 261516

-rwxr-xr-x 1 alice alice 241 Jun 28 19:17 create-venv.sh

drwxr-xr-x 2 alice alice 99 Jun 28 19:17 data

-rw-r--r-- 1 alice alice 2719 Jun 28 19:17 mnist.py

-rw-r--r-- 1 alice alice 46 Jun 28 19:17 requirements.txt

16.9 Jupyter Kubernetes Operators Manager 821

-rw-r--r-- 1 alice alice 237896720 Jun 28 19:17 venv.tar.gz

5. Another volume is created to store the unpacked virtual environment files (figure 16.38). This is
mounted to all pods (driver and executor). The driver unpacks the archive, and the content is used
by the executors.

Figure 16.38: Jupyter Kubernetes Operators Manager: volume creation for unpacked virtual environ-
ment files

6. The Spark job can now be created (figure 16.39):

822 The Jupyter Notebook Environment Integration

Figure 16.39: Jupyter Kubernetes Operators Manager: create Spark job

The execution progress can be monitored in the Pods tab (figure 16.40):

16.9 Jupyter Kubernetes Operators Manager 823

Figure 16.40: Jupyter Kubernetes Operators Manager: monitoring the Spark instance in the Pods tab

16.9.8 Events Tab
The Events tab lists all events from the user’s namespace (figure 16.41):

Figure 16.41: Jupyter Kubernetes Operators Manager: events overview

824 The Jupyter Notebook Environment Integration

16.10 Jupyter Environment Removal
Before removing Jupyter, the administrator should ensure that all kernels have been halted, and that no
user is still logged onto the web interface. Stopping the cm-jupyterhub service with users that are still
logged in, or with running kernels, has undefined behavior.

To remove Jupyter, the script cm-jupyter-setup must be run, either in interactive mode, or with the
option --remove.

Removing Jupyter does not remove or affect Kubernetes or WLM deployments.
For a more complete cleanup, the following packages must be manually removed

from the nodes involved in the Jupyter deployment: cm-jupyter, cm-jupyter-local, and
cm-npm-configurable-http-proxy.

A
Generated Files

This appendix contains lists of system configuration files that are managed by CMDaemon, and system
configuration files that are managed by node-installer. These are files created or modified on the head
nodes (section A.1), and on the regular nodes (sections A.2.3 and A.2.3). These files should not be
confused with configuration files that are merely installed (section A.3).

Section 2.6.5 describes how system configuration files on all nodes are written out using the Cluster
Management Daemon (CMDaemon). CMDaemon is introduced in section 2.6.5 and its configuration
directives are listed in Appendix C.

All of these configuration files may be listed as Frozen Files in the CMDaemon configuration file
to prevent them from being modified further by CMDaemon. The files can be frozen for the head node
by setting the directive at /cm/local/apps/cmd/etc/cmd.conf. They can also be frozen on the regular
nodes by setting the directive in the software image, by default at /cm/images/default-image/cm/
local/apps/cmd/etc/cmd.conf.

A list of CMDeamon- and node-installer-managed files for nodes can be seen by running the com-
mand filewriteinfo in device mode. The command has options to run it for node groupings, as well
useful path and sort options.

A.1 System Configuration Files Created Or Modified By CMDeamon On Head
Nodes

If the filewriteinfo command is run for the head node, then it displays the files that have been written
by CMDaemon on the head node. Running the filewriteinfo command for the head node might
display the following on a fresh installation:

[basecm11->device]% filewriteinfo basecm11

Hostname Path Timestamp Actor Frozen

-------- -- ---------- ----- ------

basecm11 /cm/images/default-image/etc/mkinitrd_cm.conf Mon Oct... cmd no

basecm11 /cm/images/default-image/etc/modprobe.d/bright-cmdaemon.conf Mon Oct... cmd no

basecm11 /cm/images/default-image/etc/securetty Mon Oct... cmd no

basecm11 /etc/chrony.conf Mon Oct... cmd no

basecm11 /etc/dhcp/dhclient.conf Mon Oct... cmd no

basecm11 /etc/dhcpd.conf Mon Oct... cmd no

basecm11 /etc/exports Mon Oct... cmd no

basecm11 /etc/genders Mon Oct... cmd no

basecm11 /etc/named.conf Mon Oct... cmd no

basecm11 /etc/postfix/canonical Mon Oct... cmd no

basecm11 /etc/postfix/generic Mon Oct... cmd no

basecm11 /etc/postfix/main.cf Mon Oct... cmd no

basecm11 /etc/resolv.conf Mon Oct... cmd no

basecm11 /etc/security/pam_bright.d/cm-check-alloc.conf Mon Oct... cmd no

/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

826 Generated Files

basecm11 /etc/shorewall.staging/interfaces Mon Oct... cmd no

basecm11 /etc/shorewall.staging/netmap Mon Oct... cmd no

basecm11 /etc/shorewall.staging/policy Mon Oct... cmd no

basecm11 /etc/shorewall.staging/snat Mon Oct... cmd no

basecm11 /etc/shorewall.staging/zones Mon Oct... cmd no

basecm11 /etc/sysconfig/network-scripts/ifcfg-eth1 Mon Oct... cmd no

basecm11 /tftpboot/images/default-image//boot Mon Oct... cmd no

basecm11 /tftpboot/images/default-image/initrd Mon Oct... cmd no

basecm11 /tftpboot/images/default-image/vmlinuz Mon Oct... cmd no

basecm11 /tftpboot/mtu.conf Mon Oct... cmd no

basecm11 /tftpboot/pxelinux.cfg/category.default Mon Oct... cmd no

basecm11 /var/run/cmd.url Mon Oct... cmd no

basecm11 /var/spool/cmd/my.cmd.url Mon Oct... cmd no

basecm11 /var/spool/cmd/my.master.cmd.url Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-chrony.conf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-dhcp-dhclient.conf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-dhcpd.conf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-exports Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-named.conf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-postfix-canonical Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-postfix-generic Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-postfix-main.cf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-resolv.conf Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-shorewall.staging-interfaces Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-shorewall.staging-netmap Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-shorewall.staging-policy Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-shorewall.staging-snat Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-shorewall.staging-zones Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/etc-sysconfig-network-scripts-

ifcfg-eth1 Mon Oct... cmd no

basecm11 /var/spool/cmd/saved-config-files/tftpboot-mtu.conf Mon Oct... cmd no

The filewriteinfo command is covered in more detail in section A.2.
The more important head node files that are managed by CMDaemon are listed here for a plain

installation on the various distributions.

Some of the more important files managed automatically on the head node by CMDaemon In RHEL and
derivatives, Ubuntu 22.04, 24.04, SLES15

File Part Comment

/cm/local/apps/openldap/etc/

slapd.conf

Section CMDaemon modifies this when edge, cloud or
HA are activated

/cm/local/apps/<PBS>/var/cm/

cm-pbs.conf

Section <PBS> can be one of openpbs pbspro

. . . continues

/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/openldap/etc/slapd.conf
/cm/local/apps/<PBS>/var/cm/cm-pbs.conf
/cm/local/apps/<PBS>/var/cm/cm-pbs.conf

A.1 System Configuration Files Created Or Modified By CMDeamon On Head Nodes 827

...continued

File Part Comment

/cm/local/modulefiles/<module> Entire di-
rectory

<module> is a file or directory for a modules en-
vironment module (section 2.2.4). For example,
slurm, which is automatically created and made
available for use after the Slurm workload man-
ager is set up with cm-wlm-setup (section 7.3).

/cm/node-installer/etc/

sysconfig/clock

Section

/etc/aliases Section

/etc/bind/named.conf Entire file Ubuntu only. For zone additions use /etc/

bind/named.conf.include1. For options ad-
ditions, use /etc/bind/named.conf.global.

options.include.

/etc/chrony.conf Section RHEL8,9 and derivatives only

/etc/dhcpd.conf Entire file

/etc/dhcp/dhclient.conf Section Not for SLES

/etc/dhcpd.internalnet.conf Entire file For internal networks other than internalnet,
corresponding files are generated if node boot-
ing (table 3.1) is enabled

/etc/exports Section

/etc/fstab Section

/etc/genders Section

/etc/hosts Section

/etc/localtime Symlink

/etc/logrotate.d/slurm Entire file

/etc/logrotate.d/slurmdbd Entire file

/etc/named.conf Entire file Non-Ubuntu distributions only (Ubuntu uses
/etc/bind/named.conf). For zone additions
use /etc/named.conf.include1. For op-
tions additions, use /etc/named.conf.global.

options.include.

/etc/ntp.conf Section Ubuntu and SUSE only

/etc/postfix/canonical Section

/etc/postfix/generic Section

/etc/postfix/main.cf Section

. . . continues

/cm/local/modulefiles/<module>
/cm/node-installer/etc/sysconfig/clock
/cm/node-installer/etc/sysconfig/clock
/etc/aliases
/etc/bind/named.conf
/etc/bind/named.conf.include
/etc/bind/named.conf.include
/etc/bind/named.conf.global.options.include
/etc/bind/named.conf.global.options.include
/etc/chrony.conf
/etc/dhcpd.conf
/etc/dhcp/dhclient.conf
/etc/dhcpd.internalnet.conf
/etc/exports
/etc/fstab
/etc/genders
/etc/hosts
/etc/localtime
/etc/logrotate.d/slurm
/etc/logrotate.d/slurmdbd
/etc/named.conf
/etc/bind/named.conf
/etc/named.conf.include
/etc/named.conf.global.options.include
/etc/named.conf.global.options.include
/etc/ntp.conf
/etc/postfix/canonical
/etc/postfix/generic
/etc/postfix/main.cf

828 Generated Files

...continued

File Part Comment

/etc/resolv.conf Section The stub resolver can alternatively be
provided by systemd-resolved (man
systemd-resolved.8, page 84)

/etc/shorewall6.staging/

interfaces

Section

/etc/shorewall6.staging/policy Section

/etc/shorewall6.staging/rules Section

/etc/shorewall6.staging/snat Section

/etc/shorewall6.staging/zones Section

/etc/shorewall/interfaces Section

/etc/shorewall/netmap Section

/etc/shorewall/policy Section

/etc/shorewall/rules Section

/etc/shorewall/snat Section

/etc/shorewall/zones Section

/etc/snmp/snmptrapd.conf Section

/etc/sysconfig/bmccfg Entire file BMC configuration and BCM configuration

/etc/sysconfig/clock Section

/etc/sysconfig/dhcpd Entire file

/etc/sysconfig/network-scripts/

ifcfg-*

Section

/tftpboot/mtu.conf Entire file BCM configuration

/tftpboot/pxelinux.cfg/category.

default

Entire file BCM configuration

/var/lib/named/*.zone1,2 Entire file For SLES distributions only. For custom addi-
tions use /var/lib/named/*.zone.include

/var/named/*.zone1,2 Entire file For RHEL8, RHEL9 distributions only. For
custom additions use /var/named/*.zone.

include

1 User-added zone files ending in *.zone that are placed for a corresponding zone statement in the

include file /etc/[bind/]named.conf.include are wiped by CMDaemon activity. Another pattern,

eg: *.myzone, must therefore be used instead
2 For Ubuntu, the zone files are under /etc/bind/

A.2 System Configuration Files Created Or Modified Directly On The Node
Files that are created or modified by CMDaemon or the node-installer directly on the node by CMDea-
mon can be seen with the filewriteinfo command.

For example, for a particular node, in this case node002 (some output elided):

Example

[basecm11->device]% filewriteinfo node002

Hostname Path Timestamp Actor Frozen

----------- --------------------------------------- ------------------------- --------------- ------

/etc/resolv.conf
/etc/shorewall6.staging/interfaces
/etc/shorewall6.staging/interfaces
/etc/shorewall6.staging/policy
/etc/shorewall6.staging/rules
/etc/shorewall6.staging/snat
/etc/shorewall6.staging/zones
/etc/shorewall/interfaces
/etc/shorewall/netmap
/etc/shorewall/policy
/etc/shorewall/rules
/etc/shorewall/snat
/etc/shorewall/zones
/etc/snmp/snmptrapd.conf
/etc/sysconfig/bmccfg
/etc/sysconfig/clock
/etc/sysconfig/dhcpd
/etc/sysconfig/network-scripts/ifcfg-*
/etc/sysconfig/network-scripts/ifcfg-*
/tftpboot/mtu.conf
/tftpboot/pxelinux.cfg/category.default
/tftpboot/pxelinux.cfg/category.default
/var/lib/named/*.zone
/var/lib/named/*.zone.include
/var/named/*.zone
/var/named/*.zone.include
/var/named/*.zone.include
/etc/bind/

A.2 System Configuration Files Created Or Modified Directly On The Node 829

node002 /certificates/fa-16-3e-54-bb-a1/cert Thu Jul 14 12:16:00 2022 node-installer no

...

node002 /etc/chrony.conf Thu Jul 14 12:17:08 2022 node-installer no

...

node002 /etc/exports Thu Jul 14 12:17:58 2022 cmd no

...

In the preceding, /etc/exports is seen to have been changed by cmd, which is listed under the Actor
column.

A.2.1 Options To filewriteinfo

Options to filewriteinfo can be viewed with the help filewwriteinfo command.
Some of the options are:

• -n|--node: This can be used to specify a node list (page 67).

• --field: The --field option can be used with, for example, the mac field, as follows (some output
elided):

Example

[basecm11->device]% get node002 mac

FA:16:3E:54:BB:A1

[basecm11->device]% filewriteinfo --field mac=FA:16:3E:54:BB:A1

Hostname Path Timestamp Actor Frozen

----------- --------------------------------------- ------------------------- --------------- ------

node002 /certificates/fa-16-3e-54-bb-a1/cert Thu Jul 14 12:16:00 2022 node-installer no

...

node002 /etc/chrony.conf Thu Jul 14 12:17:08 2022 node-installer no

...

node002 /etc/exports Thu Jul 14 12:17:58 2022 cmd no

...

The preceding example has the same output as for the session with filewriteinfo node002 on
page 828.

– A pitfall to avoid is the following: The columns headers of the output of the filewriteinfo

command, such as Actor, are not keys for the --field option.

Example

[basecm11->device]% filewriteinfo node002 --field Actor=cmd #this is incorrect

Instead, as is the norm for a device mode command, it is the fields of the mode that are the
key=value pairs (for keys that are valid for the device concerned). The fields of the device

mode are displayed when the format command (page 55) is run.

• --sort: This sorts the filewriteinfo output according to column headers (Actor, Timestamp and
so on).

• --path: This can be used to specify a file.

Example

[basecm11->device]% filewriteinfo --path /etc/chrony.conf --sort actor

Hostname Path Timestamp Actor Frozen

---------------- ----------------- ------------------------- --------------- ------------

basecm11 /etc/chrony.conf Thu Jul 14 12:14:25 2022 cmd no

node001 /etc/chrony.conf Thu Jul 14 12:17:08 2022 node-installer no

node002 /etc/chrony.conf Thu Jul 14 12:17:08 2022 node-installer no

830 Generated Files

A.2.2 Files Created On Regular Nodes By CMDaemon
Files on a regular node that are modified by CMDaemon can be seen in the output of filewriteinfo.
The filewriteinfo command displays a list of the last files written by the cluster manager.

For a default installation, the list is as shown in the following table:

A.2 System Configuration Files Created Or Modified Directly On The Node 831

System configuration files created or modified on a default regular nodes image by CMDaemon

File Part Comment

/etc/aliases Section

/etc/fstab Section SLES only

/etc/hosts Section

/etc/nslcd.conf Section RHEL8 and derivatives, and
Ubuntu only

/etc/pam.d/sshd Section

/etc/postfix/main.cf Section

/etc/rsyslog.conf Section RHEL9 and derivatives, and
SLES only

/etc/security/pam_bright.d/cm-check-alloc.conf Entire file

/var/run/cmd.url Entire file

/var/spool/cmd/my.cmd.url Entire file

/var/spool/cmd/my.master.cmd.url Entire file

/var/spool/cmd/saved-config-files/etc-aliases Entire file
Section

/var/spool/cmd/saved-config-files/etc-fstab Entire file SLES Only

/var/spool/cmd/saved-config-files/etc-hosts Entire file

/var/spool/cmd/saved-config-files/etc-nslcd.conf Entire file RHEL8 and derivatives, and
Ubuntu only

/var/spool/cmd/saved-config-files/etc-pam.d-sshd Entire file

/var/spool/cmd/saved-config-files/etc-postfix-main.cf Entire file

/var/spool/cmd/saved-config-files/etc-rsyslog.conf Entire file RHEL9 and derivatives, and
SUSE only

A.2.3 Files Created On Regular Nodes By The Node-Installer
The list of files on a regular node that are modified by the node-installer during the last installation
session can be viewed in the logs at /var/log/modified-by-node-installer.log on the node, and in
the output of filewriteinfo. For a default installation, these are as shown in the following table:

/var/log/modified-by-node-installer.log

832 Generated Files

System configuration files created or modified on regular nodes by the node-installer in RHEL8, RHEL9 and
derivatives

File Part Comment

/etc/sysconfig/network-scripts/ifcfg-* Entire Interfaces for RHEL8, RHEL9 and derivatives only

/etc/network/interfaces.d/ifcfg-* Entire file Ubuntu only

/etc/sysconfig/network/ifcfg-* Entire file SUSE only,

/etc/sysconfig/network Section Only for RHEL8, RHEL9 and derivatives

/etc/sysconfig/network/config Section Only for SLES

/etc/sysconfig/network/routes Section Only for SLES

/etc/resolv.conf Entire file Only for RHEL8, RHEL9 and derivatives

/etc/hosts Section

/etc/fstab Section Not for SLES. In SLES it is managed by CMDaemon

/etc/postfix/main.cf Section

/etc/chrony.conf Entire file RHEL8,RHEL9 and derivatives only

/etc/ntp.conf Entire file SUSE and Ubuntu only

/etc/systemd/resolved.conf Entire file Ubuntu only

/etc/hostname Section

/cm/local/apps/cmd/etc/cert.key Section

/cm/local/apps/cmd/etc/cert.pem Section

/cm/local/apps/cmd/etc/cluster.pem Section

/cm/local/apps/openldap/etc/certs/ldap.key Section

/cm/local/apps/openldap/etc/certs/ldap.pem Section

/var/log/modified-by-node-installer.log Section

/var/log/node-installer Section

/var/log/rsyncd.log Section

/var/spool/cmd/disks.xml Section

A.3 Files Not Generated, But Installed In RHEL And Derivatives
This appendix (Appendix A) is mainly about generated configuration files. This section (A.3) of the
appendix discusses a class of files that is not generated, but may still be confused with generated files.
The discussion in this section clarifies the issue, and explains how to check if non-generated installed
files differ from the standard distribution installation.

A design goal of BCM is that of minimal interference. That is, to stay out of the way of the distribu-
tions that it works with as much as is reasonable. Still, there are inevitably cluster manager configuration
files that are not generated, but installed from a cluster manager package. A cluster manager configura-
tion file of this kind overwrites the distribution configuration file with its own special settings to get the
cluster running, and the file is then not maintained by the node-installer or CMDaemon. Such files are
therefore not listed on any of the tables in this chapter.

Sometimes the cluster file version may differ unexpectedly from the distribution version. To look
into this, the following steps may be followed:

Is the configuration file a BCM version or a distribution version? A convenient way to check if a
particular file is a cluster file version is to grep for it in the packages list for the cluster packages. For
example, for nsswitch.conf:

A.3 Files Not Generated, But Installed In RHEL And Derivatives 833

[root@basecm11 ~]# repoquery -l $(repoquery -a | grep -F _cmHEAD) | grep nsswitch.conf$

The inner repoquery displays a list of all the packages. By grepping for the cluster manager version
string, for example _cmHEAD for NVIDIA Base Command Manager 11, the list of cluster manager pack-
ages is found. The outer repoquery displays the list of files within each package in the list of cluster
manager packages. By grepping for nsswitch.conf$, any file paths ending in nsswitch.conf in the
cluster manager packages are displayed. The output is:

/cm/conf/etc/nsswitch.conf

Files under /cm/conf are placed by BCM packages when updating the head node. From there they
are copied over during the post-install section of the RPM to where the distribution version configura-
tion files are located by the cluster manager, but only during the initial installation of the cluster. The
distribution version file is overwritten in this way to prevent RPM dependency conflicts of the BCM
version with the distribution version. The configuration files are not copied over from /cm/conf dur-
ing subsequent reboots after the initial installation. The cm/conf files are however updated when BCM
packages are updated. During such a BCM update, a notification is displayed that new configuration
files are available.

Inverting the cluster manager version string match displays the files not provided by BCM. These
are normally the files provided by the distribution:

[root@basecm11 ~]# repoquery -l $(repoquery -a | grep -F -v _cmHEAD) | grep nsswitch.conf$

...

/usr/share/factory/etc/nsswitch.conf

/usr/share/factory/etc/nsswitch.conf

/etc/authselect/nsswitch.conf

/etc/authselect/user-nsswitch.conf

/usr/share/authselect/default/minimal/nsswitch.conf

/usr/share/authselect/default/sssd/nsswitch.conf

/usr/share/authselect/default/winbind/nsswitch.conf

/var/lib/authselect/nsswitch.conf

/etc/authselect/nsswitch.conf

/etc/authselect/user-nsswitch.conf

/usr/share/authselect/default/minimal/nsswitch.conf

/usr/share/authselect/default/sssd/nsswitch.conf

/usr/share/authselect/default/winbind/nsswitch.conf

/var/lib/authselect/nsswitch.conf

/etc/nsswitch.conf

/etc/nsswitch.conf

/usr/share/authselect/vendor/libnss-mysql/nsswitch.conf

/usr/share/rear/skel/default/etc/nsswitch.conf

Which package provides the file in BCM and in the distribution? The packages that provide these
files can be found by running the “yum whatprovides *” command on the paths given by the preceding
output, for example:

~# yum whatprovides */cm/conf/etc/nsswitch.conf

...

cm-config-ldap-client<various types and versions are seen>

This reveals that some BCM LDAP packages can provide an nsswitch.conf file. The file is a plain
file provided by the unpacking and placement that takes place when the package is installed. The file is
not generated or maintained periodically after placement, which is the reason why this file is not seen
in the tables of sections A.1 and A.2.3 of this appendix.

Similarly, looking through the output for the less specific case:

834 Generated Files

~# yum whatprovides */etc/nsswitch.conf

...

cm-config-ldap-client*

glibc*

rear*

systemd*

shows that glibc provides a distribution version of the nsswitch.conf file, that the rear package from
the distribution provides a version of it, and that there is also a systemd version of this file available
from the distribution packages. The glob * in the output in this manual represents a variety of types and
versions. The actual display that is seen on the screen is an expansion of the glob.

Similar Ubuntu queries: For Ubuntu, a query of the form dpkg -S <filename> shows the packages
that provide a file with the pattern <filename>.

Example

root@head:~# dpkg -S "nsswitch.conf"

cm-config-ldap-client-master: /cm/conf/etc/nsswitch.conf

manpages: /usr/share/man/man5/nsswitch.conf.5.gz

libc-bin: /usr/share/libc-bin/nsswitch.conf

To work out which Ubuntu package is a distribution package and which is a BCM package, queries
similar to the following can be run:

Example

root@head:~# dpkg-query -W -f='${binary:Package} ${Version}\n' $(dpkg -S "nsswitch.conf" | cut -f1 -d:) |\

grep cm10.0

cm-config-ldap-client-master 10.0-155-cm10.0

root@head:~# dpkg-query -W -f='${binary:Package} ${Version}\n' $(dpkg -S "nsswitch.conf" | cut -f1 -d:) |\

grep -v cm10.0

libc-bin 2.35-0ubuntu3.8

manpages 5.10-1ubuntu1

What are the differences between the BCM version and the distribution versions of the file? Some-
times it is helpful to compare a distribution version and cluster version of nsswitch.conf to show the
differences in configuration. The versions of the RPM packages containing the nsswitch.conf can be
downloaded, their contents extracted, and their differences compared as follows:

~# mkdir yumextracted ; cd yumextracted

~# yumdownloader glibc-2.34

~# rpm2cpio glibc-2.34-100.el9_4.4.x86_64.rpm | cpio -idmv

~# yumdownloader cm-config-ldap-client-master

~# rpm2cpio cm-config-ldap-client-master-HEAD-155_cmHEAD.noarch.rpm | cpio -idmv

~# diff etc/nsswitch.conf cm/conf/etc/nsswitch.conf

...

What are the configuration files in an RPM package? An RPM package allows files within it to be
marked as configuration files. Files marked as configuration files can be listed with rpm -qc <package>.
Optionally, piping the list through “sort -u” filters out duplicates.

Example

A.3 Files Not Generated, But Installed In RHEL And Derivatives 835

~# rpm -qc glibc | sort -u

/etc/gai.conf

/etc/ld.so.cache

/etc/ld.so.conf

/etc/nsswitch.conf

/etc/rpc

/usr/lib64/gconv/gconv-modules

/usr/lib/gconv/gconv-modules

/var/cache/ldconfig/aux-cache

How does an RPM installation deal with local configuration changes? Are there configuration files
or critical files that BCM misses? Whenever an RPM installation detects a file with local changes, it
can treat the local system file as if:

1. the local system file is frozen1. The installation does not interfere with the local file, but places the
updated file as an .rpmnew file in the same directory.

2. the local system file is not frozen. The installation changes the local file. It copies the local file to
an .rpmsave file in the same directory, and installs a new file from the RPM package.

When building BCM packages, the package builders can specify which of these two methods apply.
When dealing with the built package, the system administrator can use an rpm query method to deter-
mine which of the two methods applies for a particular file in the package. For example, for glibc, the
following query can be used and grepped:

rpm -q --queryformat '[%{FILENAMES}\t%{FILEFLAGS:fflags}\n]' glibc | egrep '[[:space:]].*(c|n).*$' | sort -u

/etc/gai.conf cmng

/etc/ld.so.cache cmng

/etc/ld.so.conf cn

/etc/nsswitch.conf cn

/etc/rpc cn

/usr/lib64/gconv/gconv-modules cn

/usr/lib/gconv/gconv-modules cn

/var/cache/ldconfig/aux-cache cmng

Here, the second column of the output displayed shows which of the files in the package have a
configuration (c) flag or a noreplace (n) flag. The c flag without the n flag indicates that an .rpmsave file
will be created, while a c flag together with an n flag indicates that an .rpmnew file will be created.

In any case, files that are not marked as configuration files are overwritten during installation.
So:

• If a file is not marked as a configuration file, and it has been customized by the system administra-
tor, and this file is provided by an RPM package, and the RPM package is updated on the system,
then the file is overwritten silently.

• If a file is marked as a configuration file, and it has been customized by the system administrator,
and this file is provided by an RPM package, and the RPM package is updated on the system, then
it is good practice to look for .rpmsave and .rpmnew versions of that file, and run a comparison
on detection.

BCM should however mark all critical files as configuration files in BCM packages.
Sometimes, RPM updates can overwrite a particular file that the administrator has changed locally

and then would like to keep frozen.
To confirm that this is the problem, the following should be checked:

1This freezing should not be confused with the FrozenFile directive (Appendix C), where the file or section of a file is being
maintained by CMDaemon, and where freezing the file prevents CMDaemon from maintaining it.

836 Generated Files

• The --queryformat option should be used to check that file can indeed be overwritten by updates.
If the file has an n flag (regardless of whether it is a configuration file or not) then overwriting due
to RPM updates does not happen, and the local file remains frozen. If the file has no n flag, then
replacement occurs during RPM updates.

For files with no n flag, but where the administrator would still like to freeze the file during updates, the
following can be considered:

• The file text content should be checked to see if it is a CMDaemon-maintained file (section 2.6.5),
or checked against the list of generated files (Appendix A). This is just to make sure to avoid
confusion about how changes are occurring in such a file.

– If it is a CMDaemon-maintained file, then configuration changes put in by the administra-
tor will also not persist in the maintained section of the file unless the FrozenFile directive
(section C) is used to freeze the change.

– If it is only a section that CMDaemon maintains, then configuration changes can be placed
outside of the maintained section.

Wherever the changes are placed in such a file, these changes are in any case by default overwritten
on RPM updates if the file has no n flag.

• Some regular node updates can effectively be maintained in a desired state with the help of a
finalize script (Appendix E).

• Updates can be excluded from YUM/zypper (section 9.3.2), thereby avoiding the overwriting of
that file by the excluded package.

A request to change the package build flag may be sent to the BCM support team if the preceding
suggested options are unworkable.

B
Bright Computing Public Key

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.4.0 (GNU/Linux)

mQGiBEqtYegRBADStdQjn1XxbYorXbFGncF2IcMFiNA7hamARt4w7hjtwZoKGHbC

zSLsQTmgZO+FZs+tXcZa50LjGwhpxT6qhCe8Y7zIh2vwKrKlaAVKj2PUU28vKj1p

2W/OIiG/HKLtahLiCk0L3ahP0evJHh8B7elClrZOTKTBB6qIUbC5vHtjiwCgydm3

THLJsKnwk4qZetluTupldOEEANCzJ1nZxZzN6ZAMkIBrct8GivWClT1nBG4UwjHd

EDcGlREJxpg/OhpEP8TY1e0YUKRWvMqSVChPzkLUTIsd/O4RGTw0PGCo6Q3TLXpM

RVoonYPR1tRymPNZyW8VJeTUEn0kdlCaqZykp1sRb3jFAiJIRCmBRc854i/jRXmo

foTPBACJQyoEH9Qfe3VcqR6+vR2tX9lPvkxS7A5AnJIRs3Sv6yM4oV+7k/HrfYKt

fyl6widtEbQ1870s4x3NYXmmne7lz1nGxBfAxzPG9rtjRSXyVxc+KGVd6gKeCV6d

o7kS/LJHRi0Lb5G4NZRFy5CGqg64liJwp/f2J4uyRbC8b+/LQbQ7QnJpZ2h0IENv

bXB1dGluZyBEZXZlbG9wbWVudCBUZWFtIDxkZXZAYnJpZ2h0Y29tcHV0aW5nLmNv

bT6IXgQTEQIAHgUCSq1h6AIbAwYLCQgHAwIDFQIDAxYCAQIeAQIXgAAKCRDvaS9m

+k3m0JO0AKC0GLTZiqoCQ6TRWW2ijjITEQ8CXACgg3o4oVbrG67VFzHUntcA0YTE

DXW5Ag0ESq1h6xAIAMJiaZI/0EqnrhSfiMsMT3sxz3mZkrQQL82Fob7s+S7nnMl8

A8btPzLlK8NzZytCglrIwPCYG6vfza/nkvyKEPh/f2it941bh7qiu4rBLqr+kGx3

zepSMRqIzW5FpIrUgDZOL9J+tWSSUtPW0YQ5jBBJrgJ8LQy9dK2RhAOLuHfbOSVB

JLIwNKxafkhMRwDoUNS4BiZKWyPFu47vd8fM67IPT1nMl0iCOR/QBn29MYuWnBcw

61344pd/IjOu3gM6YBqmRRU6yBeVi0TxxbYYnWcts6tEGAlTjHUOQ7gxVp4RDia2

jLVtbee8H464wxkkC3SSkng216RaBBAoaAykhzcAAwUH/iG4WsJHFw3+CRhUqy51

jnmb1FTFO8KQXI8JlPXM0h6vv0PtP5rw5D5V2cyVe2i4ez9Y8XMVfcbf60lptKyY

bRUjQq+9SNjt12ESU67YyLstSN68ach9Af03PoSZIKkiNwfA0+VBILv2Mhn7xd74

5L0M/eJ7lHSpeJA2Rzs6szc234Ob/VxGfGWjogaK3NElSYOzQo+/k0VMdMWsQm/8

Ras19IA9P5jlSbcZQlHlPjndS4x4XQ8P41ATczsIDyWhsJC51rTuw9/QO7fqvvPn

xsRz1pFmiiN7I4JLjw0nAlXexn4EaeVa7Eb+uTjvxJZNdShs7Td74OmlF7RKFccI

wLuISQQYEQIACQUCSq1h6wIbDAAKCRDvaS9m+k3m0C/oAJsHMmKrLPhjCdZyHbB1

e19+5JABUwCfU0PoawBN0HzDnfr3MLaTgCwjsEE=

=WJX7

-----END PGP PUBLIC KEY BLOCK-----

C
CMDaemon Configuration File

Directives
This appendix lists all configuration file directives that may be used in the cluster management daemon
configuration file. If a change is needed, then the directives are normally changed on the head node, or
on both head nodes in the high availability configuration, in:

/cm/local/apps/cmd/etc/cmd.conf

The directives can also be set in some cases for the regular nodes, via the software image in /cm/

images/default-image/cm/local/apps/cmd/etc/cmd.conf on the head node. Changing the defaults
already there is however not usually needed, and is not recommended.

Only one directive is valid per cmd.conf file.
To activate changes in a cmd.conf configuration file, the cmd service associated with it must be

restarted.

• For the head node this is normally done with the command:

systemctl restart cmd

• For regular nodes, cmd running on the nodes is restarted. Often, the image should be updated
before cmd is restarted. How to carry out these procedures for a directive is described with an
example where the FrozenFile directive is activated on a regular node on page 853.

Master directive
Syntax: Master = hostname
Default: Master = master

The cluster management daemon treats the host specified in the Master directive as the head node. A
cluster management daemon running on a node specified as the head node starts in head mode. On a
regular node, it starts in node mode.

Port directive
Syntax: Port = number
Default: Port = 8080

The number used in the syntax above is a number between 0 and 65535. The default value is 8080.
The Port directive sets the value of the port of the cluster management daemon to listen for non-

SSL HTTP calls. By default, this happens only during init. All other communication with the cluster

/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf
/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

840 CMDaemon Configuration File Directives

management daemon is carried out over the SSL port. Pre-init port adjustment can be carried out in
the node-installer.conf configuration. Shorewall may need to be modified to allow traffic through for a
changed port.

SSLPort directive
Syntax: SSLPort = number
Default: SSLPort = 8081

The number used in the syntax above is a number between 0 and 65535. The default value is 8081.
The SSLPort directive sets the value of the SSL port of the cluster management daemon to listen for

SSL HTTP calls. By default, it is used for all communication of CMDaemon with Base View and cmsh,
except for when CMDaemon is started up from init.

This directive does not change the firewall port settings to match the value of the SSL port for CM-
Daemon communication. The firewall port settings value does however change if using the cm-cmd-ports
utility (page 73 of the Installation Manual) instead.

SSLPortOnly directive
Syntax: SSLPortOnly = yes|no
Default: SSLPortOnly = no

The SSLPortOnly directive allows the non-SSL port to be disabled. By default, during normal running,
both SSL and non-SSL ports are listening, but only the SSL port is used. Also by default, the non-SSL
port is only used during CMDaemon start up.

If bootloaderprotocol (section 5.1.6) is set to HTTP, then SSLPortOnly must be set to no. The HTTPS
protocol is unsupported by most bootloaders.

CertificateFile directive
Syntax: CertificateFile = filename
Default: CertificateFile = "/cm/local/apps/cmd/etc/cert.pem"

The CertificateFile directive specifies the PEM-format certificate which is to be used for authentica-
tion purposes. On the head node, the certificate used also serves as a software license.

PrivateKeyFile directive
Syntax: PrivateKeyFile = filename
Default: PrivateKeyFile = "/cm/local/apps/cmd/etc/cert.key"

The PrivateKeyFile directive specifies the PEM-format private key which corresponds to the certificate
that is being used.

CACertificateFile directive
Syntax: CACertificateFile = filename
Default: CACertificateFile = "/cm/local/apps/cmd/etc/cacert.pem"

The CACertificateFile directive specifies the path to the BCM PEM-format root certificate. It is nor-
mally not necessary to change the root certificate.

http://kb.brightcomputing.com/faq/index.php?action=artikel&cat=2&id=155
http://kb.brightcomputing.com/faq/index.php?action=artikel&cat=2&id=155
http://kb.brightcomputing.com/faq/index.php?action=artikel&cat=2&id=155

841

ClusterCertificateFile directive
Syntax: ClusterCertificateFile = filename
Default: ClusterCertificateFile = "/cm/local/apps/cmd/etc/cluster.pem"

The ClusterCertificateFile directive specifies the path to the BCM PEM-format cluster certificate file
used as a software license, and to sign all client certificates

ClusterPrivateKeyFile directive
Syntax: ClusterPrivateKeyFile = filename
Default: ClusterPrivateKeyFile = "/cm/local/apps/cmd/etc/cluster.key"

The ClusterPrivateKeyFile directive specifies the path to the BCM PEM-format private key which
corresponds to the cluster certificate file.

RandomSeedFile directive
Syntax: RandomSeedFile = filename
Default: RandomSeedFile = "/dev/urandom"

The RandomSeedFile directive specifies the path to a source of randomness for a random seed.

RandomSeedFileSize directive
Syntax: RandomSeedFileSize = number
Default: RandomSeedFileSize = 8192

The RandomSeedFileSize directive specifies the size of the random seed.

DHParamFile directive
Syntax: DHParamFile = filename
Default: DHParamFile = "/cm/local/apps/cmd/etc/dh1024.pem"

The DHParamFile directive specifies the path to the Diffie-Hellman parameters.

SSLHandshakeTimeout directive
Syntax: SSLHandshakeTimeout = number
Default: SSLHandshakeTimeout = 10

The SSLHandShakeTimeout directive controls the time-out period (in seconds) for SSL handshakes.

SSLSessionCacheExpirationTime directive
Syntax: SSLSessionCacheExpirationTime = number
Default: SSLSessionCacheExpirationTime = 300

The SSLSessionCacheExpirationTime directive controls the period (in seconds) for which SSL sessions
are cached. Specifying the value 0 can be used to disable SSL session caching.

842 CMDaemon Configuration File Directives

DBHost directive
Syntax: DBHost = hostname
Default: DBHost = "localhost"

The DBHost directive specifies the hostname of the MySQL database server.

DBPort directive
Syntax: DBPort = number
Default: DBHost = 3306

The DBPort directive specifies the TCP port of the MySQL database server.

DBUser directive
Syntax: DBUser = username
Default: DBUser = cmdaemon

The DBUser directive specifies the username used to connect to the MySQL database server.

DBPass directive
Syntax: DBPass = password
Default: DBPass = "<random string set during installation>"

The DBPass directive specifies the password used to connect to the MySQL database server.

DBName directive
Syntax: DBName = database
Default: DBName = "cmdaemon"

The DBName directive specifies the database used on the MySQL database server to store CMDaemon
related configuration and status information.

DBUnixSocket directive
Syntax: DBUnixSocket = filename
Default: DBUnixSocket = "/var/lib/mysql/mysql.sock"

The DBUnixSocket directive specifies the named pipe used to connect to the MySQL database server if
it is running on the same machine.

DBUpdateFile directive
Syntax: DBUpdateFile = filename
Default: DBUpdateFile = "/cm/local/apps/cmd/etc/cmdaemon_upgrade.sql"

The DBUpdateFile directive specifies the path to the file that contains information on how to upgrade
the database from one revision to another.

"/cm/local/apps/cmd/etc/cmdaemon_upgrade.sql"

843

EventBucket directive
Syntax: EventBucket = filename
Default: EventBucket = "/var/spool/cmd/eventbucket"

The EventBucket directive (section 10.10.3) specifies the path to the named pipe that is created to listen
for incoming events from a user.

EventBucketFilter directive
Syntax: EventBucketFilter = filename
Default: EventBucketFilter = "/cm/local/apps/cmd/etc/eventbucket.filter"

The EventBucketFilter directive (section 10.10.3) specifies the path to the file that contains regular
expressions used to filter out incoming messages on the event-bucket.

LDAPHost directive
Syntax: LDAPHost = hostname
Default: LDAPHost = "localhost"

The LDAPHost directive specifies the hostname of the LDAP server to connect to for user management.

LDAPUser directive
Syntax: LDAPUser = username
Default: LDAPUser = "root"

The LDAPUser directive specifies the username used when connecting to the LDAP server.

LDAPPass directive
Syntax: LDAPPass = password
Default: LDAPPass = "<random string set during installation>"

The LDAPPass directive specifies the password used when connecting to the LDAP server. It can be
changed following the procedure described in Appendix I.

LDAPReadOnlyUser directive
Syntax: LDAPReadOnlyUser = username
Default: LDAPReadOnlyUser = "readonlyroot"

The LDAPReadOnlyUser directive specifies the username that will be used when connecting to the LDAP
server during LDAP replication. The user is a member of the "rogroup" group, whose members have a
read-only access to the whole LDAP directory.

LDAPReadOnlyPass directive
Syntax: LDAPReadOnlyPass = password
Default: LDAPReadOnlyPass = "<random string set during installation>"

The LDAPReadOnlyPass directive specifies the password that will be used when connecting to the LDAP
server during LDAP replication.

"/cm/local/apps/cmd/etc/eventbucket.filter"

844 CMDaemon Configuration File Directives

LDAPSearchDN directive
Syntax: LDAPSearchDN = dn
Default: LDAPSearchDN = "dc=cm,dc=cluster"

The LDAPSearchDN directive specifies the Distinguished Name (DN) used when querying the LDAP
server.

LDAPProtocol directive
Syntax: LDAPProtocol = ldap|ldaps

Default: LDAPProtocol = "ldaps"

The LDAPProtocol directive specifies the LDAP protocol to be used when querying the LDAP server.

LDAPPort directive
Syntax: LDAPPort = number
Default: LDAPPort = 636

The LDAPPort directive specifies the port to be used when querying the LDAP server.

LDAPCACertificate directive
Syntax: LDAPCACertificate = filename
Default: LDAPCACertificate = "/cm/local/apps/openldap/etc/certs/ca.pem"

The LDAPCACertificate directive specifies the CA certificate to be used when querying the LDAP
server.

LDAPCertificate directive
Syntax: LDAPCertificate = filename
Default: LDAPCertificate = "/cm/local/apps/openldap/etc/certs/ldap.pem"

The LDAPCertificate directive specifies the LDAP certificate to be used when querying the LDAP
server.

LDAPPrivateKey directive
Syntax: LDAPPrivateKey= filename
Default: LDAPPrivateKey= "/cm/local/apps/openldap/etc/certs/ldap.key"

The LDAPPrivateKey directive specifies the LDAP key to be used when querying the LDAP server.

HomeRoot directive
Syntax: HomeRoot = path
Default: HomeRoot = "/home"

The HomeRoot directive specifies the default user home directory used by CMDaemon. It is used for
automatic mounts, exports, and when creating new users.

845

DocumentRoot directive
Syntax: DocumentRoot = path
Default: DocumentRoot = "/cm/local/apps/cmd/etc/htdocs"

The DocumentRoot directive specifies the directory mapped to the web-root of the CMDaemon. The
CMDaemon acts as a HTTP-server, and can therefore in principle also be accessed by web-browsers.

SpoolDir directive
Syntax: SpoolDir = path
Default: SpoolDir = "/var/spool/cmd"

The SpoolDir directive specifies the directory which is used by the CMDaemon to store temporary and
semi-temporary files.

EnableShellService directive
Syntax: EnableShellService = true|false
Default: EnableShellService = true

The EnableShellService directive allows shells to be started from Base View.
The connection runs over CMDaemon, which is running over SSL, which means that between Base

View and the device, the connection is encrypted.
The directive does not affect cmsh’s rshell, rconsole telnet, and ssh commands.

DisableRemoteShell directive
Syntax: AdvancedConfig = {"DisableRemoteShell=0|1", ...}

Default: DisableRemoteShell=0
DisableRemoteShell is a parameter of the AdvancedConfig (page 858) directive.

By default CMDaemon provides access to devices via rshell, rconsole (SOL), telnet, and ssh.
Setting the directive to 1 disables all RPC shell access.

A more fine-grained disabling is possible with the following AdvancedConfig directives, which fol-
low the same syntax:

• DisableRemoteRShell directive: disables a remote shell to the head node.

• DisableRemoteRShellImage directive: disables a remote shell to the chrooted software image.

• DisableRemoteRShellNode directive: disables a remote shell to the regular nodes.

• DisableRemoteRShellTelnet directive: disables a telnet shell to a device.

• DisableRemoteRShellSSH directive: disables SSH to a device.

• DisableRemoteSOL directive: disables a console via SOL to a device.

EnableWebSocketService directive
Syntax: EnableWebSocketService = true|false
Default: EnableWebSocketService = true

The EnableWebSocketService directive allows the use of CMDaemon Lite (section 2.6.7).

846 CMDaemon Configuration File Directives

EnablePrometheusMetricService directive
Syntax: EnablePrometheusMetricService = true|false
Default: EnablePrometheusMetricService = true

If true, the EnablePrometheusMetricService directive creates an HTTP endpoint for Prometheus-style
exporters that do not have their own HTTP endpoint.

PrometheusMetricServicePath directive
Syntax: PrometheusMetricServicePath = path
Default: PrometheusMetricServicePath = SCRIPTS_DIR"metrics/prometheus"

The PrometheusMetricServicePath directive is the path from which CMDaemon can serve Prometheus
metrics. SCRIPTS_DIR is the stem path /cm/local/apps/cmd/scripts by default.

EnablePrometheusExporterService directive
Syntax: EnablePrometheusExporterService = true|false
Default: EnablePrometheusExporterService = false

If true, the EnablePrometheusExporterService directive allows a Prometheus server to pull data from
CMDaemon.

To collect all data, the external Prometheus YAML configuration (https://prometheus.io/docs/
prometheus/latest/configuration/configuration/) should have all nodes with a monitoring role
added to it:

Example

#

- job_name: cmdaemon-head01

metrics_path: /exporter

static_configs:

- targets: ['https://head01:8081']

#

Configuring CMDaemon to sample metrics from a Prometheus exporter instead is covered in sec-
tion 3.17.

PrometheusExporterRequireCertificate directive
Syntax: AdvancedConfig = {"PrometheusExporterRequireCertificate=0|1", ...}

Default: PrometheusExporterRequireCertificate = 1

PrometheusExporterRequireCertificate is a parameter of the AdvancedConfig (page 858) direc-
tive.

• If set to 0, then all users can use the Prometheus service to pull data using CMDaemon.

• If set to 1, then only users using certificate-based access can use the Prometheus service to pull
data using CMDaemon.

Certificate-based access can be configured as follows:
A custom profile with the name prometheus can be created for BCM users with profile mode (sec-

tion 6.4) as follows:

/cm/local/apps/cmd/scripts
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

847

[basecm11->profile]% add prometheus

[basecm11->profile*[prometheus*]]% append tokens PROMETHEUS_EXPORTER_TOKEN

[basecm11->profile*[prometheus*]]% set nonuser yes

[basecm11->profile*[prometheus*]]% commit

A 2048-bit SSL certificate called myprommcert can be created for a non-privileged user prometheus
with 3650 days validity using the createcertificate command (section 6.4.2) as follows:

[basecm11->profile[prometheus]]% cert

[basecm11->cert]% createcertificate 2048 mypromcert "" "" "" "" "" prometheus "" 3650 /tmp/prometheus.key \
/tmp/prometheus.pem

Certificate key written to file: /tmp/prometheus.key

Certificate pem written to file: /tmp/prometheus.pem

The PEM certificate is the public part of the key pair. The private key must be owned and be readable
by the Prometheus instance that is scraping from the node exporter.

To configure SSL authentication between Prometheus server and the Prometheus exporter node:

• On the Prometheus server:

– A directive value of:

* 0 means that the session key is a temporary key that is auto-generated for any user

* 1 means that the user (the Prometheus server) must provide a certificate

– CMDaemon in a default cluster manager installation uses a self-signed certificate. A copy of
certificate can be picked up on the head node with:

Example

[root@basecm11 ~]# ca_cert="/etc/prometheus/cmdaemon-$(hostname)-ca.pem"

[root@basecm11 ~]# cat /cm/local/apps/cmd/etc/{cacert,cluster}.pem > ${ca_cert}

[root@basecm11 ~]# chmod 600 ${ca_cert}

The Prometheus server should be configured to specify this CA certificate.
If the certificate used by CMDaemon is not a self-signed certificate—that is to say, it is signed
by a recognized CA—then the certificate issued by CMDaemon is legitimate, and the Prometheus
server does not need to have that CA certificate explicitly specified.

• The Prometheus exporter always uses TLS, which is automatically managed by CMDaemon.

EnablePrometheusPushService directive
Syntax: EnablePrometheusPushService = true|false
Default: EnablePrometheusPushService = false

If true, the EnablePrometheusPushService directive allows a Prometheus server to push data to CM-
Daemon:

Example

myhead # cat <<EOF > "$file"

myhead # test_prometheus_push{hello="world"} 42

myhead # EOF

myhead # curl -k -X POST --data-binary "@$file" https://localhost:8081/prometheuspush/job/test

848 CMDaemon Configuration File Directives

CMDaemonAudit directive
Syntax: CMDaemonAudit = yes|no
Default: CMDaemonAudit = no

When the CMDaemonAudit directive is set to yes, and a value is set for the CMDaemon auditor file with
the CMDaemonAuditorFile directive, then CMDaemon actions are time-stamped and logged in the CM-
Daemon auditor file.

CMDaemonAuditorFile directive
Syntax: CMDaemonAuditorFile = path to audit.log file
or
Syntax: CMDaemonAuditorFile = path to audit.json file
or
Syntax: CMDaemonAuditorFile = http(s) path to JSON server

Default: CMDaemonAuditorFile = "/var/spool/cmd/audit.log"

The CMDaemonAuditorFile directive sets where the audit logs for CMDaemon actions are logged. The
log format for a .log file in a standard directory path is:
(time stamp) profile [IP-address] action (unique key)

Example

(Mon Jan 31 12:41:37 2011) Administrator [127.0.0.1] added Profile: arbitprof(4294967301)

The directive can be set in the following kinds of formats:

• CMDaemonAuditorFile = "/var/spool/cmd/audit.log"

• CMDaemonAuditorFile = "/var/spool/cmd/audit.json"

• CMDaemonAuditorFile = "http://<IP address>:<port>/some/path"

• CMDaemonAuditorFile = "https://<IP address>:<port>/some/path"

A simple POST web service can be faked using netcat:

Example

nc -l 1234 -k

The JSON file always contains a valid array. An RPC call looks like this:

Example

...

"entity": "node001",

"rpc":

"address": "127.0.0.1",

"call": "updateDevice",

"service": "cmdevice",

"timestamp": 1579185696,

"user": "Administrator.root"

,

"task_id": 0,

"updated": true

,

...

849

DisableAuditorForProfiles directive
Syntax: DisableAuditorForProfiles = {profile [, profile] ...}

Default: DisableAuditorForProfiles = {NODE}

The DisableAuditorForProfiles directive sets the profile for which an audit log for CMDaemon ac-
tions is disabled. A profile (section 2.3.4) defines the services that CMDaemon provides for that profile
user. More than one profile can be set as a comma-separated list. Out of the profiles that are available on
a newly-installed system: node, admin, cmhealth, and readonly; only the profile node is enabled by de-
fault. New profiles can also be created via the profile mode of cmsh or via the navigation path Identity

Management > Profiles > of Base View, thus making it possible to disable auditing for arbitrary groups
of CMDaemon services.

EventLogger directive
Syntax: EventLogger = true|false
Default: EventLogger = true

The EventLogger directive sets whether to log events. If active, then by default it logs events to /var/

spool/cmd/events.log on the active head. If a failover takes place, then the event logs on both heads
should be checked and merged for a complete list of events.

The location of the event log on the filesystem can be changed using the EventLoggerFile directive
(page 849).

Whether events are logged in files or not, events are cached and accessible using cmsh or Base
View. The number of events cached by CMDaemon is determined by the parameter MaxEventHistory
(page 849).

EventLoggerFile directive
Syntax: EventLoggerFile = filename
Default: EventLogger = "/var/spool/cmd/events.log"

The EventLogger directive sets where the events seen in the event viewer (section 10.10) are logged.

MaxEventHistory directive
Syntax: AdvancedConfig = {"MaxEventHistory=number", ...}

Default: MaxEventHistory=8192
MaxEventHistory is a parameter of the AdvancedConfig (page 858) directive.

By default, when not explicitly set, the maximum number of events that is retained by CMDaemon
is 8192. Older events are discarded.

The parameter can take a value from 0 to 1000000. However, CMDaemon is less responsive with
larger values, so in that case, setting the EventLogger directive (page 849) to true, to activate logging to
a file, is advised instead.

TimingOverview directive
Syntax: TimingOverview = filename
Default: TimingOverview = true|false

If set to true, the TimingOverview directive records timing information for CMDaemon.

/var/spool/cmd/events.log
/var/spool/cmd/events.log

850 CMDaemon Configuration File Directives

TimingOverviewFile directive
Syntax: TimingOverviewFile = filename
Default: TimingOverviewFile = "/var/spool/cmd/timing.overview.log"

The TimingOverviewFile directive sets the file where the timing data values for CMDaemon go.

PublicDNS directive
Syntax: PublicDNS = true|false
Default: PublicDNS = false

By default, internal hosts are resolved only if requests are from the internal network. Setting PublicDNS

to true allows the head node name server to resolve internal network hosts for any network, including
networks that are on other interfaces on the head node. Separate from this directive, port 53/UDP must
also be opened up in Shorewall (section 7.2 of the Installation Manual) if DNS is to be provided for queries
from an external network.

MaximalSearchDomains directive
Syntax: GlobalConfig = {"MaximalSearchDomains = number", ...}

Default: none

The MaximalSearchDomains directive is a parameter of the GlobalConfig (page 859) directive.
By default, the number of names that can be set as search domains used by the cluster has a maxi-

mum limit of 6. This is a hardcoded limit imposed by the Linux operating system in older versions.
More recent versions of glibc (glibc > 2.17-222.el7 in RHEL7) no longer set a limit. How-

ever using more than 6 search domains currently requires the use of the GlobalConfig directive,
MaximalSearchDomains. For example, to set 30 domains, the directive setting would be: GlobalConfig
= { "MaximalSearchDomains=30" }

LockDownDhcpd directive
Syntax: LockDownDhcpd = true|false
Default: LockDownDhcpd = false

LockDownDhcpd is a deprecated legacy directive. If set to true, a global DHCP “deny unknown-clients”
option is set. This means no new DHCP leases are granted to unknown clients for all networks. Un-
known clients are nodes for which BCM has no MAC addresses associated with the node. The directive
LockDownDhcpd is deprecated because its globality affects clients on all networks managed by BCM,
which is contrary to the general principle of segregating the network activity of networks.

The recommended way now to deny letting new nodes boot up is to set the option for specific
networks by using cmsh or Base View (section 3.2.1: figure 3.5 and table 3.1). Setting the cmd.conf

LockDownDhcpd directive overrides lockdowndhcpd values set by cmsh or Base View.

MaxNumberOfProvisioningThreads directive
Syntax: MaxNumberOfProvisioningThreads = number
Default: MaxNumberOfProvisioningThreads = 10000

The MaxNumberOfProvisioningThreads directive specifies the cluster-wide total number of nodes that
can be provisioned simultaneously. Individual provisioning servers typically define a much lower
bound on the number of nodes that may be provisioned simultaneously.

851

SetupBMC directive
Syntax: SetupBMC = true|false
Default: SetupBMC = true

Automatically configure the username and password for the BMC interface of the head node. This may
also be valid for regular nodes. The SetupBMC directive should not be confused with the setupBmc field
of the node-installer configuration file, described in section 5.8.7.

The node-installer normally takes care of BMC interface configuration on regular nodes by acting on
the node-installer configuration file field setupBmc. The CMDaemon directive SetupBMC can only work
on regular nodes if the node-installer is not configuring the regular nodes. If the boolean parameters
installbootrecord and allownetworkingrestart for a regular node are set to yes, then the SetupBMC

directive is able to work for that regular node. Setting the boolean parameters at category level also
makes the directive work for the associated nodes.

BMCSessionTimeout directive
Syntax: BMCSessionTimeout = number
Default: BMCSessionTimeout = 2000

The BMCSessionTimeout specifies the time-out for BMC calls in milliseconds.

BMCIdentifyScript directive
Syntax: AdvancedConfig = {"BMCIdentify=filename", ...}

Default: unset
BMCIdentifyScript is a parameter of the AdvancedConfig (page 858) directive.

The parameter takes a full file path to a script that can be used for identification with a BMC (sec-
tion 3.7.4).

BMCIdentifyScriptTimeout directive
Syntax: AdvancedConfig = {"BMCIdentifyScriptTimeout=number from 1 to 360", ...}

Default: 60
BMCIdentifyScriptTimeout is a parameter of the AdvancedConfig (page 858) directive.

CMDaemon waits at the most BMCIdentifyScriptTimeout seconds for the script used by the
BMCIdentify directive to complete.

BMCIdentifyCache directive
Syntax: AdvancedConfig = {"BMCIdentifyCache=0|1", ...}

Default: 1
BMCIdentifyCache is a parameter of the AdvancedConfig (page 858) directive.

If set to 1, then CMDaemon remembers the last value of the output of the script used by the
BMCIdentify directive.

SnmpSessionTimeout directive
Syntax: SnmpSessionTimeout = number
Default: SnmpSessionTimeout = 500000

The SnmpSessionTimeout specifies the time-out for SNMP calls in microseconds.

852 CMDaemon Configuration File Directives

PowerOffPDUOutlet directive
Syntax: PowerOffPDUOutlet = true|false
Default: PowerOffPDUOutlet = false

Enabling the PowerOffPDUOutlet directive allows PDU ports to be powered off for clusters that have
both PDU and IPMI power control. Section 4.1.3 has more on this.

PowerThreadPoolSize directive
Syntax: AdvancedConfig = {"PowerThreadPoolSize=<integer>", ...}

Default: PowerThreadPoolSize=32

PowerThreadPoolSize is a parameter of the AdvancedConfig (page 858) directive.
The parameter can take positive integer values. Increasing its value increases the number of threads

that are used to power up the nodes in a cluster (section 4.2.3), so that the cluster is fully operational
quicker. The administrator should however take into account the power surge due to increasing the
number of threads (number of subprocesses) before increasing the value beyond its default.

DisableBootLogo directive
Syntax: DisableBootLogo = true|false
Default: DisableBootLogo = false

When DisableBootLogo is set to true, the BCM logo is not displayed on the first boot menu when nodes
PXE boot.

StoreBIOSTimeInUTC directive
Syntax: StoreBIOSTimeInUTC = true|false
Default: StoreBIOSTimeInUTC = false

When StoreBIOSTimeInUTC is set to true, the system relies on the time being stored in BIOS as being
UTC rather than local time.

FreezeChangesTo<wlm>Config directives:
FreezeChangesToPBSPro directive
FreezeChangesToSlurmConfig directive
FreezeChangesToLSFConfig directive
Syntax: FreezeChangesTo<wlm>Config= true|false
Default: FreezeChangesTo<wlm>Config = false

When FreezeChangesTo<wlm>Config is set to true, the CMDaemon running on that node does not
make any modifications to the workload manager configuration for that node. Workload managers for
which this value can be set are:

• PBSPro

• Slurm

• LSF

Monitoring of jobs, and workload accounting and reporting continues for frozen workload man-
agers.

853

Upgrades to newer workload manager versions may still require some manual adjustments of the
configuration file, typically if a newer version of the workload manager configuration changes the syn-
tax of one of the options in the file.

FrozenFile directive
Syntax: FrozenFile = { filename[, filename]... }

Example: FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }

The FrozenFile directive is used to prevent the CMDaemon-maintained sections of configuration files
from being automatically generated. This is useful when site-specific modifications to configuration files
have to be made.

To avoid problems, the file that is frozen should not be a symlink, but should be the ultimate destina-
tion file. The readlink -f <symlinkname> command returns the ultimate destination file of a symlink
called <symlinkname>. This is also the case for an ultimate destination file that is reached via several
chained symlinks.

FrozenFile directive for regular nodes
FrozenFile directive for regular nodes for CMDaemon
The FrozenFile directive can be used within the cmd.conf file of the regular node.

Example

To freeze the file /etc/named.conf on the regular nodes running with the image default-image, the file:

/cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

can have the following directive set in it:

FrozenFile = { "/etc/named.conf" }

The path of the file that is to be frozen on the regular node must be specified relative to the root of
the regular node.

The running node should then have its image updated. This can be done with the imageupdate

command in cmsh (section 5.6.2), or the Update node button in Base View (section 5.6.3). After the
update, CMDaemon should be restarted within that category of nodes:

Example

[root@basecm11 ~]# pdsh -v -g category=default systemctl restart cmd

node002: Waiting for CMDaemon (25129) to terminate...

node001: Waiting for CMDaemon (19645) to terminate...

node002: [OK]

node001: [OK]

node002: Waiting for CMDaemon to start...[OK]

node001: Waiting for CMDaemon to start...[OK]

FrozenFile regex specification
The FrozenFile directive allows regexes to be used for a path, if the path begins with the | character:

Example

[root@head current]# egrep -e '^FrozenFile' /cm/local/apps/cmd/etc/cmd.conf

FrozenFile = { "/etc/postfix/main.cf", "|/cm/images/.*?/etc/postfix/main.cf" }

In the preceding entry, all image directories under /cm/images/ are matched for the path
etc/postfix/main.cf.

854 CMDaemon Configuration File Directives

FrozenFile directive for regular nodes for the node-installer
CMDaemon directives only affect files on a regular node after CMDaemon starts up on the node during
the init stage. So files frozen by the CMDaemon directive stay unchanged by CMDaemon after this
stage, but they may still be changed before this stage.

Freezing files so that they also stay unchanged during the pre-init stage—that is during the node-
installer stage—is possible with node-installer directives.

Node-installer freezing is independent of CMDaemon freezing, which means that if a file freeze is
needed for the entire startup process as well as beyond, then both a node-installer as well as a CMDae-
mon freeze are sometimes needed.

Node-installer freezes can be done with the node-installer directives in /cm/node-installer/

scripts/node-installer.conf, introduced in section 5.4:

• frozenFilesPerNode

• frozenFilesPerCategory

For the node-installer.conf file in multidistro and multiarch (section 9.7) configurations, the directory
path /cm/node-installer takes the form:

/cm/node-installer-<distribution>-<architecture>
The values for <distribution> and <architecture> can take the values outlined on page 524.

Example

Per node:

frozenFilesPerNode = "*:/localdisk/etc/ntp.conf", "node003:/localdisk/etc/hosts"

Here, the * wildcard means that no restriction is set. Setting node003 means that only node003 is
frozen.

Example

Per category:

frozenFilesPerCategory = "mycategory:/localdisk/etc/sysconfig/network-scripts/ifcfg-eth1"

Here, the nodes in the category mycategory are prevented from being changed by the node-installer.

The Necessity Of A FrozenFile Directive
In a configuration file after a node is fully up, the effect of a statement earlier on can often be overridden
by a statement later in the file. So, the following useful behavior is independent of whether FrozenFile
is being used for a configuration file or not: A configuration file, for example /etc/postfix/main.cf,
with a configuration statement in an earlier CMDaemon-maintained part of the file, for example:

mydomain = eth.cluster

can often be overridden by a statement later on outside the CMDaemon-maintained part of the file:

mydomain = eth.gig.cluster

Using FrozenFile in CMDaemon or the node-installer can thus sometimes be avoided by the use of
such overriding statements later on.

Whether overriding later on is possible depends on the software being configured. It is true for Post-
fix configuration files, for example, but it may not be so for the configuration files of other applications.

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf

855

EaseNetworkValidation directive
Syntax: EaseNetworkValidation = 0|1|2
Default: EaseNetworkValidation = 0

CMDaemon enforces certain requirements on network interfaces and management/node-booting net-
works by default. In heavily customized setups, such as is common in Type 3 networks (section 3.3.9 of
the Installation Manual), the user may wish to disable these requirements.

• 0 enforces all requirements.

• 1 allows violation of the requirements, with validation warnings. This value should never be set
except under instructions from BCM support.

• 2 allows violation of the requirements, without validation warnings. This value should never be
set except under instructions from BCM support.

CustomUpdateConfigFileScript directive
Syntax: CustomUpdateConfigFileScript = filename
Default: commented out in the default cmd.conf file

Whenever one or more entities have changed, the custom script at filename, specified by a full path, is
called 30s later. Python bindings can be used to get information on the current setup.

ConfigDumpPath directive
Syntax: ConfigDumpPath = filename
Default: ConfigDumpPath = /var/spool/cmd/cmdaemon.config.dump

The ConfigDumpPath directive sets a dump file for dumping the configuration used by the power control
script /cm/local/apps/cmd/scripts/pctl/pctl. The pctl script is a fallback script to allow power
operations if CMDaemon is not running.

• If no directive is set (ConfigDumpPath = ""), then no dump is done.

• If a directive is set, then the administrator must match the variable cmdconfigfile in the
powercontrol configuration file /cm/local/apps/cmd/scripts/pctl/config.py to the value of
ConfigDumpPath. By default, the value of cmdconfigfile is set to /var/spool/cmd/cmdaemon.

config.dump.

SyslogHost directive
Syntax: SyslogHost = hostname
Default: SyslogHost = "localhost"

The SyslogHost directive specifies the hostname of the syslog host.

SyslogFacility directive
Syntax: SyslogFacility = facility
Default: SyslogFacility = "LOG_LOCAL6"

The default value of LOG_LOCAL6 is set in:

• /etc/rsyslog.conf in RHEL, Ubuntu.

/cm/local/apps/cmd/scripts/pctl/pctl
/cm/local/apps/cmd/scripts/pctl/config.py
/var/spool/cmd/cmdaemon.config.dump
/var/spool/cmd/cmdaemon.config.dump
/etc/rsyslog.conf

856 CMDaemon Configuration File Directives

• /etc/syslog-ng/syslog-ng.conf in SLES versions

These are the configuration files for the default syslog daemons syslog, rsyslog, and syslog-ng,
respectively, that come with the distribution. BCM redirects messages from CMDaemon to
/var/log/cmdaemon only for the default syslog daemon that the distribution provides. So, if another
syslog daemon other than the default is used, then the administrator has to configure the non-default
syslog daemon facilities manually.

The value of facility must be one of: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG_SYSLOG or LOG_LOCAL0..7

NameServerLocalhostLocation directive
Syntax: AdvancedConfig = {"NameServerLocalhostLocation=0|1", ...}

Default: NameServerLocalhostLocation=0

NameServerLocalhostLocation is a parameter of the AdvancedConfig (page 858) directive.
When set to 1, the location of the localhost as specified by the nameserver directive in

/etc/resolv.conf is moved to the bottom of the list of nameserver entries. The default value of 0
places it at the top of those entries.

ResolveToExternalName directive
Syntax: ResolveToExternalName = true|false
Default: ResolveToExternalName = false

The value of the ResolveToExternalName directive determines under which domain name the primary
and secondary head node hostnames are visible from within the head nodes, and to which IP addresses
their hostnames are resolved. Enabling this directive resolves the head nodes’ hostnames to the IP
addresses of their external interfaces.

Thus, on head nodes and regular nodes in both single-head and failover clusters

• with ResolveToExternalName disabled, the master hostname and the actual hostname of the head
node (e.g. head1, head2) by default always resolve to the internal IP address of the head node.

• with ResolveToExternalName enabled, the master hostname and the actual hostname of the head
node (e.g. head1, head2) by default always resolve to the external IP address of the head node.

The resolution behavior can be summarized by the following table:

ResolveToExternalName Directive Effects

on simple head, on failover head, on regular node, Using

resolving: resolving: resolving: the

master head master head1 head2 master head(s) DNS?

ResolveToExternalName = False

I I I I I I I No

I I I I I I I Yes

ResolveToExternalName = True

E E E E E E E No

E E E E E E E Yes

Key: I: resolves to internal IP address of head

E: resolves to external IP address of head

/etc/syslog-ng/syslog-ng.conf

857

The system configuration files on the head nodes that get affected by this directive include /etc/hosts
and, on SLES systems, also the /etc/HOSTNAME. Also, the DNS zone configuration files get affected.

Additionally, in both the single-head and failover clusters, using the “hostname -f” command on
a head node while ResolveToExternalName is enabled results in the host’s Fully Qualified Domain
Name (FQDN) being returned with the host’s external domain name. That is, the domain name of the
network that is specified as the "External network" in the base partition in cmsh (the output of “cmsh -c

"partition use base; get externalnetwork"”).
Modifying the value of the ResolveToExternalName directive and restarting the CMDaemon while

important system services (e.g. Slurm) are running should not be done. Doing so is likely to cause
problems with accessing such services due to them then running with a different domain name than the
one with which they originally started.

On a tangential note that is closely, but not directly related to the ResolveToExternalName directive:
the cluster can be configured so that the “hostname -f” command executed on a regular node returns
the FQDN of that node, and so that the FQDN in turn resolves to an external IP for that regular node.
The details on how to do this are in the BCM Knowledge Base at http://kb.brightcomputing.com/. A
search query for FQDN leads to the relevant entry.

ResolveMasterToExternalName directive
Syntax: AdvancedConfig = {"ResolveMasterToExternalName=0|1", ...}

Default: ResolveMasterToExternalName = 1

ResolveMasterToExternalName is a parameter of the AdvancedConfig (page 858) directive.
ResolveMasterToExternalName can only be used if ResolveToExternalName (page 856) is active.
If set to 1 (the default), then the master head node, as specified by the name master, resolves to the

IP address as set by ResolveToExternalName.
If set to 0 then the master head node resolves to the internal shared IP address.

ResolveMasterToExternalDomainName directive
Syntax: AdvancedConfig = {"ResolveMasterToExternalDomainName=0|1", ...}

Default: ResolveMasterToExternalDomainName = 1

ResolveMasterToExternalDomainName is a parameter of the AdvancedConfig (page 858) directive.
ResolveMasterToExternalDomainName can only be used if ResolveToExternalName (page 856) is

active.
The external domain name as defined for the external network, in the form master.<external do-

main>, can be used in /etc/hosts during name resolution.
If set to 1 (the default), then the external domain name is used in /etc/hosts.
If set to 0, then the external domain name is not used in /etc/hosts.
Resolution occurs as shown in the following table:

/etc/hosts
/etc/hosts
/etc/hosts

858 CMDaemon Configuration File Directives

ResolveMasterToExternalDomainName Directive Effects

on simple head, on failover head, on regular node, Using

resolving: resolving: resolving: the

master head master head1 head2 master head(s) DNS?

ResolveToExternalName = False

I I I I I I I No

I I I I I I I Yes

ResolveToExternalName = True

E E I E E I I No

E E I E E I E Yes

Key: I: resolves to internal IP address of head

E: resolves to external IP address of head

DisableLua directive
Syntax: DisableLua = true|false
Default: DisableLua = false

The value of the DisableLua directive determines if Lua code (section L.6) used in monitoring expres-
sions can be executed.

AdvancedConfig directive
Syntax: AdvancedConfig = { "<key1>=<value1>", "<key2>=<value2>", ... }
Default: Commented out in the default cmd.conf file
The AdvancedConfig directive is not part of the standard directives. It takes a set of key/value pairs

as parameters, with each key/value pair allowing a particular functionality, and is quite normal in
that respect. However, the functionality of a parameter to this directive is often applicable only under
restricted conditions, or for non-standard configurations. The AdvancedConfig parameters are therefore
generally not recommended for use by the administrator, nor are they generally documented.

Like for the other directives, only one AdvancedConfig directive line is used. This means that what-
ever functionality is to be enabled by this directive, its corresponding parameters must be added to that
one line. These key/value pairs are therefore added by appending them to any existing AdvancedConfig

key/value pairs, which means that the directive line can be a long list of key/value pairs to do with a
variety of configurations.

Managing Key/Value Pairs With The cm-manipulate-advanced-config.py Utility
The cm-manipulate-advanced-config.py utility can be used to make it easier to manage AdvancedConfig
key/value pairs.

For example, to add a key/value pair key8=value8:

[root@basecm11 ~]# cm-manipulate-advanced-config.py key8=value8

Updated: /cm/local/apps/cmd/etc/cmd.conf

To show the current state of the AdvancedConfig, the -s|--show option can be used:

[root@basecm11 ~]# cm-manipulate-advanced-config.py -s

=== /cm/local/apps/cmd/etc/cmd.conf ===

VirtualCluster=1

key8=value8

A key/value pair can be removed by specifying its key with the -r|--remove option:

859

[root@basecm11 ~]# cm-manipulate-advanced-config.py -r key8

Updated: /cm/local/apps/cmd/etc/cmd.conf

[root@basecm11 ~]# cm-manipulate-advanced-config.py -s

=== /cm/local/apps/cmd/etc/cmd.conf ===

VirtualCluster=1

The utility can be used on cmd.conf in node images too, using the -i|--image option.

[root@basecm11 ~]# cm-manipulate-advanced-config.py -i /cm/images/default-image

Updated: /cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

The -q option causes the utility to exit with code 1 if cmd.conf has changed.
Further options can be seen with the -h|--help option.

GlobalConfig directive
Syntax: GlobalConfig = { "<key1>=<value1>", "<key2>=<value2>", ... }
Default: not in the default cmd.conf file
The GlobalConfig directive is not part of the standard directives. It takes a set of key/value pairs as

parameters, with each key/value pair allowing a particular functionality, and is quite normal in that
respect. However, the parameter to this directive only needs to be specified on the head node. The
non-head node CMDaemons take this value upon connection, which means that the cmd.conf file on
the non-head nodes do not need to have this specified.

This allows nodes to set up, for example, their search domains using the MaximalSearchDomains

GlobalConfig directive (page 850).
Like for the other directives, only one GlobalConfig directive line is used. This means that whatever

functionality is to be enabled by this directive, its corresponding parameters must be added to that
one line. These key/value pairs are therefore added by appending them to any existing GlobalConfig

key/value pairs, which means that the directive line can be a long list of key/value pairs to do with a
variety of configurations.

ScriptEnvironment directive
Syntax: ScriptEnvironment = { "CMD_ENV1=<value1>", "CMD_ENV2=<value2>", ... }
Default: Commented out in the default cmd.conf file

The ScriptEnvironment directive sets extra environment variables for CMDaemon and child processes.
For example, if CMDaemon is running behind a web proxy, then the environment variable

http_proxy may need to be set for it. If, for example, the proxy is the host brawndo, and it is accessed
via port 8080 using a username/password pair of joe/electrolytes, then the directive becomes:

ScriptEnvironment = { "http_proxy=joe:electrolytes@brawndo:8080" }

BurnSpoolDir directive
Syntax: BurnSpoolDir = path
Default: BurnSpoolDir = "/var/spool/burn/"

The BurnSpoolDir directive specifies the directory under which node burn log files are placed (Chap-
ter 11 of the Installation Manual). The log files are logged under a directory named after the booting
MAC address of the NIC of the node. For example, for a MAC address of 00:0c:29:92:55:5e the directory
is /var/spool/burn/00-0c-29-92-55-5e.

/var/spool/burn/00-0c-29-92-55-5e

860 CMDaemon Configuration File Directives

IdleThreshold directive
Syntax: IdleThreshold = number
Default: IdleThreshold = 1.0

The IdleThreshold directive sets a threshold value for loadone. If loadone exceeds this value, then
data producers that have Only when idle (page 554) set to true (enabled), will not run. If the data
producer is sampled on a regular node rather than on the head node, then cmd.conf on the regular node
should be modified and its CMDaemon restarted.

MonitoringPath directive
Syntax: AdvancedConfig = {"MonitoringPath=path", ...}

Default: Implicit value: "MonitoringPath=/var/spool/cmd/monitoring/"

MonitoringPath is a parameter of the AdvancedConfig (page 858) directive.
Its value determines the path of the directory in which monitoring data is saved (section 14.8).

MaxServiceFailureCount directive
Syntax: AdvancedConfig = {"MaxServiceFailureCount=number", ...}

Default: Implicit value: "MaxServiceFailureCount=10"

MaxServiceFailureCount is a parameter of the AdvancedConfig (page 858) directive.
Its value determines the number of times a service failure event is logged (page 166). Restart attempts

on the service still continue when this number is exceeded.

InitdScriptTimeout directive
Syntax: AdvancedConfig = {"InitdScriptTimeout[.service]=timeout", ...}

Default: Implicit value: "InitdScriptTimeout=30"

InitdScriptTimeout is a parameter of the AdvancedConfig (page 858) directive. It can be set globally
or locally:

• Global (all services)
InitdScriptTimeout can be set as a global value for init scripts, by assigning timeout as a period
in seconds. If an init script fails to start up its service within this period, then CMDaemon kills the
service and attempts to restart it.

– If InitdScriptTimeout has a value for timeout set, then all init scripts have a default timeout
of timeout seconds.

– If InitdScriptTimeout has no timeout value set, then all init scripts have a default timeout of
30 seconds.

• Local (for a specific service)
If InitdScriptTimeout.service is assigned a timeout value, then the init script for that service times
out in timeout seconds. This timeout overrides, for that service only, any existing global default
timeout.

When a timeout happens for an init script attempting to start a service, the event is logged. If the
number of restart attempts exceeds the value determined by the MaxServiceFailureCount directive
(page 860), then the event is no longer logged, but the restart attempts continue.

Example

861

An fhgfs startup takes a bit longer than 30 seconds, and therefore times out with the default timeout
value of 30s. This results in the following logs in /var/log/cmdaemon:

cmd: [SERVICE] Debug: ProgramRunner: /etc/init.d/fhgfs-client restart

[DONE] 0 9

cmd: [SERVICE] Debug: /etc/init.d/fhgfs-client restart, exitcode = 0,

signal = 9

Here, service is fhgfs-client, so setting the parameter can be done with:

AdvancedConfig = { ..., "initdScriptTimeout.fhgfs-client=60", ...}

This allows a more generous timeout of 60 seconds instead.
Restarting CMDaemon then should allow the fhgs startup to complete

systemctl restart cmd

A more refined approach that avoids a complete CMDaemon restart would be to execute a reset

(page 166) on the fhgfs-client from within CMDaemon, as follows:

[basecm11->category[default]->services[fhgfs-client]]% reset fhgfs-client

Successfully reset service fhgfs-client on: node001,node002

[basecm11->category[default]->services[fhgfs-client]]%

CMDaemonListenOnInterfaces directive
Syntax: AdvancedConfig = {"CMDaemonListenOnInterfaces=<interfaces>", ...}

Default: all interfaces listening to port 8081

CMDaemonListenOnInterfaces is a parameter of the AdvancedConfig (page 858) directive.
When set explicitly, CMDaemon listens only to the interfaces listed in <interfaces>. The form of <in-

terfaces> is a comma-separated list of interface device names:

Example

CMDaemonListenOnInterfaces=eth0,eth1,eth0:0,eth0:1

If the interface list item lo is omitted from the list of names, it will still be listened to. This is because
CMDaemon must always be able to talk to itself on the loopback interface.

DisableInotifyInterface directive
Syntax: AdvancedConfig = {"DisableInotifyInterface =0|1"}

Default: 0

DisableInotifyInterface is a parameter of the AdvancedConfig (page 858) directive.
When set to 1 CMDaemon ignores inotify events from all interfaces.
When set to 0 CMDaemon does not ignore inotify events from all interfaces.

IgnoreInotifyInterface directive
Syntax: AdvancedConfig = {"IgnoreInotifyInterface =<interfaces>", ...}

Syntax: GlobalConfig = {"IgnoreInotifyInterface =<interfaces>", ...}

Default: veth*,lxc*,fg-*,qg-*,qr-*,sg-*,tbr-*,qbr*,qvb*,qvo*,cali*,flannel*,ecu_*,chassis_*,
enx*,az*,tap*,rdma*,cni0,/[a-f0-9]12_[hc]/

/var/log/cmdaemon

862 CMDaemon Configuration File Directives

In the preceding lines showing the value for Default, the line ending with chassis_*, must be concatenated
to the line starting with enx*,

IgnoreInotifyInterface is a parameter of the AdvancedConfig (page 858) directive, as well as the
GlobalConfig (page 859) directive.

IgnoreInotifyInterface is active if DisableInotifyInterface is 0.
By default, the directive has CMDaemon ignore the normally harmless messages that are typically

generated by Kubernetes as Calico creates and removes interfaces.
CMDaemon ignores events from the interfaces listed in <interfaces>. The form of <interfaces> is a

comma-separated list of interface device names, with some globbing allowed.

CookieCooldownTime directive
Syntax: AdvancedConfig = {"CookieCooldownTime=number from 60 to 86400", ...}

Default: 900

CookieCooldownTime is a parameter of the AdvancedConfig (page 858) directive.
It defines the number of seconds until the Base View connection to CMDaemon times out, if there is

no user activity at the Base View client side.

DHCPMaxleaseTime directive
Syntax: AdvancedConfig = {"DHCPMaxleaseTime=number", ...}

Default: client default

DHCPMaxleaseTime is a parameter of the AdvancedConfig (page 858) directive.
DHCPMaxleaseTime sets max-lease-time in DHCPOFFER. This is the maximum lease time, in sec-

onds, that the DHCP server on the head node allows to the DHCP client on the node.

SlurmDisableAccountingParsing directive
Syntax: AdvancedConfig = {"SlurmDisableAccountingParsing=0|1", ...}

Default: 0

SlurmDisableAccountingParsing is a parameter of the AdvancedConfig (page 858) directive. If set to
1, it disables collection of accounting information for the Slurm workload manager.

SlurmStraightExtraTopology directive
Syntax: AdvancedConfig = {"SlurmStraightExtraTopology=0|1", ...}

Default: 1

SlurmStraightExtraTopology is a parameter of the AdvancedConfig (page 858) directive. If set to 0,
then the order of switches is reversed when setting extra values for SlurmTopology (page 375).

SlurmConcatTopologySwitchName directive
Syntax: AdvancedConfig = {"SlurmConcatTopologySwitchName=0|1", ...}

Default: 0

SlurmConcatTopologySwitchName is a parameter of the AdvancedConfig (page 858) directive. If set to
1, then it allows concatenation of the switch names in the topology defined via the SlurmTopology extra
values (page 375).

863

JobsSamplingMetricsInterval directive
Syntax: AdvancedConfig = {"JobsSamplingMetricsInterval=<number>", ...}

Default: 60

JobsSamplingMetricsInterval is a parameter of the AdvancedConfig (page 858) directive. Its value
is a time period, in seconds, and it applies only to metrics associated with job queues. Such metric
sampling is carried out with this time period if job queues are added, or if job queues are re-created
after disappearing.

MembershipQueryInterval directive
Syntax: AdvancedConfig = {"MembershipQueryInterval=<number>", ...}

Default: 4
MembershipQueryInterval is a parameter of the AdvancedConfig (page 858) directive. Its value is a
time period, in seconds. This time period value elapses between the checks that CMDaemon makes to
determine the node states (section 5.5) in a cluster. If the network is very congested, then a larger value
can be used to reduce the network load caused by these checks.

AddUserScript directive
Syntax: AdvancedConfig = {"AddUserScript=<path>", ...}

Default: none

AddUserScript is a parameter of the AdvancedConfig (page 858) directive. If this parameter is set to a
path leading to a script, and if a new user is added using cmsh or Base View, then the script is automati-
cally run by CMDaemon, with the username of the new user automatically passed as the first argument
to the script. The script has a default timeout of 5 seconds.

AddUserScriptPasswordInEnvironment directive
Syntax: AdvancedConfig = {"AddUserScriptPasswordInEnvironment=0|1", ...}

Default: 0

AddUserScriptPasswordInEnvironment is a parameter of the AdvancedConfig (page 858) directive. If
this parameter is set to 1, then CMDaemon passes the CMD_USER_PASSWORD environment variable to the
script defined by the AddUserScript directive.

RemoveUserScript directive
Syntax: AdvancedConfig = {"RemoveUserScript=<path>", ...}

Default: none

RemoveUserScript is a parameter of the AdvancedConfig (page 858) directive. If this parameter is set to
a path leading to a script, and if an existing user is removed using cmsh or Base View, then the script is
automatically run by CMDaemon. The script has a default timeout of 5 seconds.

AddUserScriptTimeout directive
Syntax: AdvancedConfig = {"AddUserScriptTimeout=<number>", ...}

Default: 5

AddUserScriptTimeout is a parameter of the AdvancedConfig (page 858) directive. It sets the timeout

864 CMDaemon Configuration File Directives

value in seconds, for the script set by AddUserScript.

RemoveUserScriptTimeout directive
Syntax: AdvancedConfig = {"RemoveUserScriptTimeout=<number>", ...}

Default: 5

RemoveUserScriptTimeout is a parameter of the AdvancedConfig (page 858) directive. It sets the time-
out value in seconds, for the script set by RemoveUserScript.

AutomaticMountAll directive
Syntax: AutomaticMountAll=0|1
Default: 1

If the AutomaticMountAll directive is set to the default of 1, then a mount -a operation is carried out
when a mount change is carried out by CMDaemon.

The mount -a operation has to do with attempting to mount devices listed in /etc/fstab. It should
not be confused with auto-mounting of filesystems, which has to do with mounting an arbitrary device
to a filesystem automatically.

If the AutomaticMountAll directive is set to 0, then /etc/fstab is written, but the mount -a com-
mand is not run by CMDaemon. However, the administrator should be aware that since mount -a is
run by the distribution during booting, a node reboot implements the mount change.

AllowImageUpdateWithAutoMount directive
Syntax: AdvancedConfig = {"AllowImageUpdateWithAutoMount=0|1|2|3", ...}

Default: 0

The AllowImageUpdateWithAutoMount directive is a parameter of the AdvancedConfig (page 858)
directive. The values it takes decide how an auto-mounted filesystem should be dealt with during
image updates (section 5.6.2) or grab to image (syncing node-to-image, section 9.5.2). It must be set in
cmd.conf per software image or per node where the automount is running, and the changes activated
as usual, as described on page 839.

Value Description

0 If auto-mount is running, abort provisioning (default)

1 If auto-mount is running, warn but continue

2 Do not check auto-mount status. This saves a little time, but it risks data loss,
unless the automounted filesystem has been added to excludelistupdate. If
the automounted filesystem is not added to excludelistupdate, then if the au-
tomounted filesystem happens to be unavailable at the time that an image up-
date is carried out, then the rsync process can end up deleting the automounted
filesystem contents during the rsync, because it assumes that content should not
be there.

3 Pretend auto-mount is running. This prevents an image update

How an auto-mounted filesystem can be configured using the autofs service in BCM is discussed
in section 3.13. The need for adding the automounted filesystem to excludelistupdate is discussed on
page 276.

865

DNS::options_allow-query directive
Syntax: AdvancedConfig = {"DNS::options_allow-query=<subnet1>, <subnet2>, ...", ...}
Default: unset

The DNS::options_allow-query directive is a parameter of the AdvancedConfig (page 858) directive. If
a subnet value is specified, in CIDR notation, then that subnet can query the DNS running on the head
node. Setting a subnet places an entry within the allow-query section of /etc/named.conf.

The standard directive PublicDNS (page 850) simply adds the entry 0.0.0.0/0 to the allow-query

section and can be used if no specific subnet needs to be added.

CipherList directive
Syntax: AdvancedConfig = {"CipherList=<ciphers>", ...}

Default: CipherList=ALL:!aNULL:!eNULL

The CipherList directive is a parameter of the AdvancedConfig (page 858) directive. It sets the cipher
list of the OpenSSL suite that CMDaemon negotiates with clients. Ciphers in the cipher list can be
viewed with:

Example

[root@basecm11 ~]# openssl ciphers -v

ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384

ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384

ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1

...

The columns are: the cipher name, SSL protocol, key exchange used, authentication mechanism,
encryption used, and MAC digest algorithm.

Ciphers can be specified for the CipherList directive according to the specification described in man

ciphers.1. For example, as:

Example

AdvancedConfig = {"CipherList=ALL:!aNULL:!ADH:!eNULL:!LOW:!EXP:RC4+RSA:+HIGH:+MEDIUM"}

An analogous non-CMDaemon directive is found in LDAP client-server negotiation, where
TLSCipherSuite can be set in the slapd.conf file, described in man slapd.conf.5.

SSLServerMethod directive (with TLS masking)
Syntax: AdvancedConfig = {"SSLServerMethod=TLS <versionnumber>", ...}

Syntax: GlobalConfig = {"SSLServerMethod=TLS <versionnumber>", ...}

Masking syntax: AdvancedConfig = {"TLS <versionnumber>=<boolean>", ...}

Masking syntax: GlobalConfig = {"TLS <versionnumber>=<boolean>", ...}

Default: GlobalConfig = { "TLS 1.2=1", "TLS 1.3=1", ... }

The SSLServerMethod directive is a parameter of the AdvancedConfig (page 858) directive, as well as the
GlobalConfig (page 859) directive. It sets the SSL server method for the OpenSSL suite that CMDaemon
negotiates with clients. Possible values for <versionnumber> are:

• 1

866 CMDaemon Configuration File Directives

• 1.1

• 1.2

• 1.3

By default, with no SSLServerMethod directive, TLS versions 1.2 and 1.3 are enabled.
This is because there are still some SSL clients that require a TLS 1.2 cipher and have no TLS 1.3

cipher negotiation ability.
If the SSLServerMethod directive is specified, then only that TLS version is negotiated. For example,

to allow only TLS 1.2 negotiation:

Example

GlobalConfig = { "SSLServerMethod=TLS 1.2", ... }

The SSLServerMethod directive is implied by the TLS masking syntax. The TLS masking syntax al-
lows TLS negotiation methods to be set concurrently. For example, TLS 1 and TLS1.1 could be disabled,
and TLS 1.2 and TLS 1.3 could be enabled, with:

Example

GlobalConfig = { "TLS 1=0", "TLS 1.1=0", "TLS 1.2=1", "TLS 1.3=1", ... }

The GlobalConfig value is the directive that the cluster administrator should set in most cases. It
only needs to be set on cmd.conf on the head node (or head nodes in a high availability configuration),
in order to configure the same TLS negotiation settings for the regular nodes.

The GlobalConfig value is overridden by the AdvancedConfig value. The AdvancedConfig value
needs to be set on cmd.conf on the head node(s), but also needs to be set on the non-head nodes that
are to be disabled. Setting the AdvancedConfig directive allows custom configuration of the TLS nego-
tiations to be carried out per node, and if the negotiations do not match with the other end, then other
settings are tried. This does mean that sometimes nodes with the extra settings end up running extra
processes for no reason. Running the directive as an AdvancedConfig is therefore suboptimal for most
reasonable use cases.

Reverting to the TLS 1.1 fallback cipher availability of earlier versions of CMDaemon is possible by
setting:
AdvancedConfig = { "TLS 1.1=1", "TLS 1.2=1", "TLS 1.3=1" }

Setting this brings with it the risk of allowing cryptographic downgrade attacks. It is therefore not

recommended, and is also why it is disabled by default.

JobInformationDisabled directive
Syntax: AdvancedConfig = {"JobInformationDisabled=0|1", ...}

Syntax: GlobalConfig = {"JobInformationDisabled=0|1", ...}

Default: JobInformationDisabled=0

The JobInformationDisabled directive is a parameter of the AdvancedConfig (page 858) directive, as
well as the GlobalConfig (page 859) directive. If set to 1 it disables job-based monitoring (Chapter 11).
The details of how this is done are discussed shortly.

For a cluster that is running millions of jobs at a time, job-based monitoring can typically consume
significant resources. The monitoring of data for so many small jobs is typically not useful and not of
interest. For such a case, setting this directive improves cluster performance by not having to deal with
the information on the current jobs running on the cluster.

The GlobalConfig value is the directive that the cluster administrator should set in most cases. It
only needs to be set on cmd.conf on the head node (or head nodes in a high availability configuration).

867

Setting it disables the collection of job information by the nodes running the jobs, and no collection of
the job information from those nodes is done by the head (monitoring) node.

The GlobalConfig value is overridden by the AdvancedConfig value. The AdvancedConfig value
needs to be set on cmd.conf on the head node(s), but also needs to be set on the non-head nodes that
are to be disabled. Setting the AdvancedConfig directive still allows job information to be collected by
the nodes running the jobs, but the information is not collected from the nodes by the head (monitoring)
node. This means that nodes are running extra processes for probably no reason. Running the directive
as an AdvancedConfig is therefore suboptimal for most use cases.

JobInformationKeepDuration directive
Syntax: AdvancedConfig = {"JobInformationKeepDuration=<number>", ...}

Default: JobInformationKeepDuration=2419200

The JobInformationKeepDuration directive is a parameter of the AdvancedConfig (page 858) directive.
It takes on a value in seconds. If a job has finished more than that many seconds ago, then it will be
removed along with all its monitoring data from the database. By default it is set to 28 days (24 ×
3600× 28 seconds).

If persistent is set to yes (cmsh:wlm>jobs), then job information is not removed even after
JobInformationKeepDuration has been exceeded.

JobInformationChargeBackKeepDuration directive
Syntax: AdvancedConfig = {"JobInformationChargeBackKeepDuration=<number>", ...}

Default: JobInformationChargeBackKeepDuration=158112000

The JobInformationChargeBackKeepDuration directive is a parameter of the AdvancedConfig

(page 858) directive. It takes on a value in seconds. If a job has finished more than that many sec-
onds ago, then it will be removed along with all its monitoring data from the database. By default it is
set to a little more than 5 years (24× 3600× 366× 5 seconds).

JobInformationKeepCount directive
Syntax: AdvancedConfig = {"JobInformationKeepCount=<number>", ...}

Default: JobInformationKeepCount=8192

The JobInformationKeepCount directive is a parameter of the AdvancedConfig (page 858) directive. If
the total number of jobs is greater than (JobInformationKeepCount + 10%), then the job record and
its data content are discarded, starting from the oldest job first, until the total number of jobs remain-
ing becomes JobInformationKeepCount. If it is set to 0, then none of the job records and content are
removed.

The maximum value for this directive is 1 million.

JobInformationChargeBackKeepCount directive
Syntax: AdvancedConfig = {"JobInformationChargeBackKeepCount=<number>", ...}

Default: JobInformationChargeBackKeepCount=1048576

The JobInformationChargeBackKeepCount directive is a parameter of the AdvancedConfig (page 858)
directive. If the total number of jobs is greater than (JobInformationChargeBackKeepCount + 10%),
then the job record and its data content are discarded, starting from the oldest job first, until the total
number of jobs remaining becomes JobInformationChargeBackKeepCount. If it is set to 0, then none of

868 CMDaemon Configuration File Directives

the job records and content are removed.
The default value of about 1 million corresponds to about 0.5 GB of storage.
The maximum value for this directive is about 1 billion (1,073,741,824), which corresponds to about

500 GB of storage.

JobInformationMinimalJobDuration directive
Syntax: AdvancedConfig = {"JobInformationMinimalJobDuration=<number>", ...}

Default: JobInformationMinimalJobDuration=0

The JobInformationMinimalJobDuration directive is a parameter of the AdvancedConfig (page 858)
directive. If set, then jobs that run for less than this number of seconds are not stored in the cache. Its
default value of 0 seconds means that all jobs are handled.

JobInformationFlushInterval directive
Syntax: AdvancedConfig = {"JobInformationFlushInterval=<number>", ...}

Default: JobInformationFlushInterval=600

The JobInformationFlushInterval directive is a parameter of the AdvancedConfig (page 858) direc-
tive. If this interval, in seconds, is set, then the cache is flushed to the database with that interval. Its
default value is 10 minutes (10× 60 seconds). Values of around 30 seconds or less will conflict with the
default CMDaemon maintenance timeout value of 30 seconds, and will mostly simply add load.

JobInformationChargeBackRemoveInterval directive
Syntax: AdvancedConfig = {"JobInformationChargeBackRemoveInterval=<number>", ...}

Default: JobInformationChargeBackRemoveInterval=600

The JobInformationChargeBackRemoveInterval directive is a parameter of the AdvancedConfig (page 858)
directive. If this interval, in seconds, is set, then the cache is flushed to the database with that interval.
Its default value is 10 minutes (10× 60 seconds). Values of around 30 seconds or less will conflict with
the default CMDaemon maintenance timeout value of 30 seconds, and will mostly simply add load.

The maximum remove interval is 1 day (86400 seconds).

ActionLoggerFile directive
Syntax: AdvancedConfig = {"ActionLoggerFile=filename", ...}

Default: /var/spool/cmd/actions.log

The directive is a parameter of the AdvancedConfig (page 858) directive. Its value overrides the default
path.

The directive needs to be implemented per node or image.

ActionLoggerOnSuccess directive
Syntax: AdvancedConfig = {"ActionLoggerOnSuccess=0|1", ...}

Default: ActionLoggerOnSuccess=0

The directive is a parameter of the AdvancedConfig (page 858) directive.
By default, only failed actions are logged. Successful actions are also logged if setting
ActionLoggerOnSuccess=1

The directive needs to be implemented per node or image.

869

The log file shows timestamped output with one line per run for an action script, with the script
response.

Example

(time) /path/to/action/script [timeout]

(time) /path/to/action/script [failed] (exit code: 1)

(time) /path/to/action/script [success]

The success line only appears if ActionLoggerOnSuccess=1.

FailoverPowerRetries directive
Syntax: AdvancedConfig = {"FailoverPowerRetries=<number>", ...}

Default: FailoverPowerRetries=5

The FailoverPowerRetries directive is a parameter of the AdvancedConfig (page 858) directive.
After a decision to carry out the failover has been made, CMDaemon sends a power off command

to the BMC of the head node that is meant to be powered off. If the power off command fails, then on
getting the fail response, CMDaemon waits for 1 second. After that second, it sends out a power off
command again. The value of FailoverPowerRetries is the number of times that CMDaemon retries
sending the power off command to the BMC of the head node that is intended to be powered off during
the failover, if the response from the power off command remains a fail response.

The power down attempts cease, either when the BMC reports that the head node is OFF, or when
the number of attempts reaches the FailoverPowerRetries value.

FailoverPowerRetries takes a maximum value of 120.
A value of 0 means that 1 attempt to power off is carried out during failover, but no retry is attempted

after the first attempt.
Because CMDaemon waits for a period of 1s before checking for an OFF reponse, it means that the

number of retries is about the same as the number of seconds before CMDaemon decides that powering
off has failed, unless the OFF response also takes some time to get to CMDaemon.

Increasing the value for this directive can be useful for some BMC cards that take longer than about
5s to report their power status, because the power off attempt may otherwise time out.

AddUserDefaultGroupID directive
Syntax: AdvancedConfig = { "AddUserDefaultGroupID = <number>", ...}

Default: none

The AddUserDefaultGroupID directive is a parameter of the AdvancedConfig (page 858) directive.
If the AddUserDefaultGroupID is unset, then the default group ID of a new user is the same as the

User ID.
If the AddUserDefaultGroupID is set, then the set value becomes the default GUID of new users,

when new users are created via the cmsh or Base View front ends to CMDaemon.
The directive is not intended to set a non-default group occasionally during user creation. In that

case, a non-default group ID can be set from the cmsh or Base View front ends, by setting the groupid

value for the user.
To set a default group for a directory, while retaining the default group for the user, it may be possible

to use the setgid bit for a directory.

MaxMeasurablesPerProducer directive
Syntax: AdvancedConfig = { "MaxMeasurablesPerProducer = <number>", ...}

870 CMDaemon Configuration File Directives

Default: 500

The MaxMeasurablesPerProducer directive is a parameter of the AdvancedConfig (page 858) directive.
By default there is a software limit of 500 measurables per data producer. If this limit is exceded,

then the CMDaemon monitoring info logs show complaints about “too many measurables”.
In that case, if the cluster hardware is not too slow, and if the measurables produced are not some

kind of hardware garbage data values, then increasing the value of this directive should allow more
measurables to be dealt with.

HeadNodeCertificateNameAlternatives directive
Syntax: AdvancedConfig = {"HeadNodeCertificateNameAlternatives=<name,. . .>", ...}

Default: none

The HeadNodeCertificateNameAlternatives directive is a key of the AdvancedConfig (page 858) direc-
tive. It takes on a comma-separated list of alternative DNS names as values to add to the SSL certificate
that it generates for CMDaemon.

The old certificates must be removed before the new ones are used.

Example

[root@basecm11 ~]# cm-manipulate-advanced-config.py HeadNodeCertificateNameAlternatives=myname1,myname2

[root@basecm11 ~]# openssl x509 -in /cm/local/apps/cmd/etc/cert.pem -noout -text | grep -o DNS:myname1.*$

[root@basecm11 ~]# rm /cm/local/apps/cmd/etc/cert.pem,key

[root@basecm11 ~]# systemctl restart cmd #new certificates auto-generated

[root@basecm11 ~]# openssl x509 -in /cm/local/apps/cmd/etc/cert.pem -noout -text | grep -o DNS:myname1.*$

DNS:myname1, DNS:myname1:8081, DNS:myname2, DNS:myname2:8081

D
Disk Partitioning And RAID

Configuration
Disk partitioning is initially configured on the head node and regular nodes during installation (section
3.3.16 of the Installation Manual).

For the head node it cannot be changed from within BCM after implementation, and the head node
is therefore not considered further in this section.

For regular nodes, partitioning can be changed after the initial configuration, by specifying a partic-
ular set of values according to the XML partitioning schema described in section D.1.

For example, for regular nodes, changing the value set for the XML tag of:

<xs:element name='filesystem'>

decides which filesystem type out of ext2, ext3, ext4, xfs, and so on, is used. The changes are imple-
mented during the node partitioning stage of the node-installer (section 5.4.6).

Diskless operation can also be implemented by using an appropriate XML file. This is introduced in
section 3.12.1.

Software or hardware RAID configuration can also be set for the regular nodes. The layouts
must be specified following the XML schema files stored on the head node in the directory /cm/

node-installer/scripts/:

• Software RAID configuration is set in the global partitioning XML schema file disks.xsd (sec-
tion D.1).

• Hardware RAID configuration is set in the separate hardware RAID XML schema file raid.xsd

(section D.2).

D.1 Structure Of Partitioning Definition—The Global Partitioning XML
Schema Definition File

In BCM, regular node partitioning setups have their global structure specified using an XML schema def-
inition file, which is installed on the head node in /cm/local/apps/cmd/etc/htdocs/xsd/disks.xsd.

The schema can also be viewed with:

Example

[root@basecm11]# cmsh -c "main xsdschema disks" | less

This schema does not include a hardware RAID definition. The hardware RAID schema is defined
separately in the file raid.xsd (section D.2).

Examples of schemas in use, with and without hardware RAID, are given in sections D.3 and beyond.
An XML file can be validated against an XML schema definition file using the xmllint tool:

/cm/node-installer/scripts/
/cm/node-installer/scripts/

872 Disk Partitioning And RAID Configuration

Example

[root@basecm11]# cd /cm/local/apps/cmd/etc/htdocs/xsd

[root@basecm11 xsd]# xmllint --noout --schema disks.xsd ../disk-setup/x86_64-slave-diskless.xml

../disk-setup/x86_64-slave-diskless.xml validates

[root@basecm11 xsd]#

XML schema for partitioning

<?xml version='1.0'?>

<!--

#

SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: LicenseRef-NvidiaProprietary

#

NVIDIA CORPORATION, its affiliates and licensors retain all intellectual

property and proprietary rights in and to this material, related

documentation and any modifications thereto. Any use, reproduction,

disclosure or distribution of this material and related documentation

without an express license agreement from NVIDIA CORPORATION or

its affiliates is strictly prohibited.

#

This is the XML schema description of the partition layout XML file.

It can be used by software to validate partitioning XML files.

There are however a few things the schema does not check:

- There should be exactly one root mountpoint (/), unless diskless.

- There can only be one partition with a 'max' size on a particular device.

- Something similar applies to logical volumes.

- The 'auto' size can only be used for a swap partition.

- Partitions of type 'linux swap' should not have a filesystem.

- Partitions of type 'linux raid' should not have a filesystem.

- Partitions of type 'linux lvm' should not have a filesystem.

- Partitions of type 'unspecified' should not have a filesystem.

- If a raid is a member of another raid then it can not have a filesystem.

- Partitions, which are listed as raid members, should be of type 'linux raid'.

- If diskless is not set, there should be at least one device.

- The priority tag is only valid for partitions which have type set to

"linux swap".

-->

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' elementFormDefault='qualified'>

<xs:element name='diskSetup'>

<xs:complexType>

<xs:sequence>

<xs:element name='diskless' type='diskless' minOccurs='0' maxOccurs='1'/>

<xs:element name='device' type='device' minOccurs='0' maxOccurs='unbounded'/>

<xs:element name='raid' type='raid' minOccurs='0' maxOccurs='unbounded'/>

<xs:element name='volumeGroup' type='volumeGroup' minOccurs='0' maxOccurs='unbounded'/>

<xs:element name='subVolumes' type='subVolumes' minOccurs='0' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema Definition File 873

<xs:key name='partitionAndRaidIds'>

<xs:selector xpath='.//raid|.//partition'/>

<xs:field xpath='@id'/>

</xs:key>

<xs:keyref name='raidMemberIds' refer='partitionAndRaidIds'>

<xs:selector xpath='.//raid/member'/>

<xs:field xpath='.'/>

</xs:keyref>

<xs:keyref name='volumeGroupPhysicalVolumes' refer='partitionAndRaidIds'>

<xs:selector xpath='.//volumeGroup/physicalVolumes/member'/>

<xs:field xpath='.'/>

</xs:keyref>

<xs:keyref name='subVolumeIds' refer='partitionAndRaidIds'>

<xs:selector xpath='.//subVolumes'/>

<xs:field xpath='@parent'/>

</xs:keyref>

<xs:unique name='raidAndVolumeMembersUnique'>

<xs:selector xpath='.//member'/>

<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='deviceNodesUnique'>

<xs:selector xpath='.//device/blockdev'/>

<xs:field xpath='.'/>

<xs:field xpath='@mode'/>

</xs:unique>

<xs:unique name='mountPointsUnique'>

<xs:selector xpath='.//mountPoint'/>

<xs:field xpath='.'/>

</xs:unique>

<xs:unique name='assertNamesUnique'>

<xs:selector xpath='.//assert'/>

<xs:field xpath='@name'/>

</xs:unique>

</xs:element>

<xs:complexType name='diskless'>

<xs:attribute name='maxMemSize' type='memSize' use='required'/>

<xs:attribute name='mountOptions' type='xs:string'/>

</xs:complexType>

<xs:simpleType name='memSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='([0-9]+[MG])|100%|[0-9][0-9]%|[0-9]%|0'/>

</xs:restriction>

</xs:simpleType>

874 Disk Partitioning And RAID Configuration

<xs:simpleType name='stripeSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='4|8|16|32|64|128|256|512|1024|1K|2048|2K|4096|4K'/>

<xs:pattern value='8192|8K|16384|16K|32768|32K|65536|64K|131072|128K'/>

<xs:pattern value='262144|256K|524288|512K|1048576|1024K|1M'/>

<xs:pattern value='2097152|2048K|2M|4194304|4096K|4M'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='size'>

<xs:restriction base='xs:string'>

<xs:pattern value='max|auto|[0-9]+[MGT]'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='relativeOrAbsoluteSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='max|auto|[0-9]+[MGT]|[0-9]+([.][0-9]+)?%|[0-9]+/[0-9]+'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='extentSize'>

<xs:restriction base='xs:string'>

<xs:pattern value='([0-9])+M'/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name='blockdevName'>

<xs:restriction base='xs:string'>

<xs:pattern value='/dev/.+'/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name='blockdev'>

<xs:simpleContent>

<xs:extension base="blockdevName">

<xs:attribute name="mode" default='normal'>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="normal|cloud|both"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name='device'>

<xs:sequence>

<xs:element name='blockdev' type='blockdev' minOccurs='1' maxOccurs='unbounded'/>

<xs:element name='vendor' type='xs:string' minOccurs='0' maxOccurs='1'/>

<xs:element name='requiredSize' type='size' minOccurs='0' maxOccurs='1'/>

<xs:element name='assert' minOccurs='0' maxOccurs='unbounded'>

<xs:complexType>

<xs:simpleContent>

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema Definition File 875

<xs:extension base='xs:string'>

<xs:attribute name='name' use='required'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:pattern value='[a-zA-Z0-9-_]+'/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name='args' type='xs:string'/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name='alignMiB' type='xs:boolean' minOccurs='0' maxOccurs='1'/>

<xs:element name="partitionTable" minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="gpt|msdos"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='partition' type='partition' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

<xs:attribute name='origin' type='xs:string'/>

</xs:complexType>

<xs:complexType name='partition'>

<xs:sequence>

<xs:element name='size' type='relativeOrAbsoluteSize'/>

<xs:element name='type'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='linux'/>

<xs:enumeration value='linux swap'/>

<xs:enumeration value='linux raid'/>

<xs:enumeration value='linux lvm'/>

<xs:enumeration value='unspecified'/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='encryption' type='encryption' minOccurs='0' maxOccurs='1'/>

<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>

<xs:element name='priority' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="32767"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

<xs:attribute name='id' type='xs:string' use='required'/>

<xs:attribute name='partitiontype' type='xs:string'/>

</xs:complexType>

876 Disk Partitioning And RAID Configuration

<xs:complexType name='encryption' mixed="true">

<xs:sequence>

<xs:element name='type' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='luks2'/>

<xs:enumeration value='luks1'/>

<!-- rest of this enum is intentionally left blank -->

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='cipher' minOccurs='0' maxOccurs='1' type='xs:string'/>

<xs:element name='hash' minOccurs='0' maxOccurs='1' type='xs:string'/>

<xs:element name='keySize' minOccurs='0' maxOccurs='1' type='xs:integer'/>

<xs:element name='name' minOccurs='0' maxOccurs='1' type='xs:string'/>

<xs:element name='allowDiscards' minOccurs='0' maxOccurs='1' type='xs:boolean' default='true'/>

<xs:element name='custom' minOccurs='0' maxOccurs='1' type='xs:string'/>

</xs:sequence>

</xs:complexType>

<xs:group name='filesystem'>

<xs:sequence>

<xs:element name='filesystem'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='ext2'/>

<xs:enumeration value='ext3'/>

<xs:enumeration value='ext4'/>

<xs:enumeration value='xfs'/>

<xs:enumeration value='btrfs'/>

<xs:enumeration value='zfs'/>

<xs:enumeration value='fat32'/>

<xs:enumeration value='fat'/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='mkfsFlags' type='xs:string' minOccurs='0' maxOccurs='1'/>

<xs:element name='mountPoint' type='xs:string' minOccurs='0' maxOccurs='1'/>

<xs:element name='mountOptions' type='xs:string' default='defaults' minOccurs='0'/>

</xs:sequence>

</xs:group>

<xs:complexType name='raid'>

<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='2' maxOccurs='unbounded'/>

<xs:element name='level' type='xs:int'/>

<xs:element name='metaData' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base='xs:string'>

<xs:enumeration value='0'/>

<xs:enumeration value='0.9'/>

<xs:enumeration value='0.90'/>

<xs:enumeration value='1'/>

<xs:enumeration value='1.0'/>

<xs:enumeration value='1.1'/>

D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema Definition File 877

<xs:enumeration value='1.2'/>

<xs:enumeration value='default'/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='encryption' type='encryption' minOccurs='0' maxOccurs='1'/>

<xs:choice minOccurs='0' maxOccurs='1'>

<xs:group ref='filesystem'/>

<xs:sequence>

<xs:element name='swap'><xs:complexType /></xs:element>

<xs:element name='priority' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="32767"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:choice>

</xs:sequence>

<xs:attribute name='id' type='xs:string' use='required'/>

</xs:complexType>

<xs:complexType name='volumeGroup'>

<xs:sequence>

<xs:element name='name' type='xs:string'/>

<xs:element name='extentSize' type='extentSize'/>

<xs:element name='physicalVolumes'>

<xs:complexType>

<xs:sequence>

<xs:element name='member' type='xs:string' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name='logicalVolumes'>

<xs:complexType>

<xs:sequence>

<xs:element name='volume' type='logicalVolume' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name='logicalVolume'>

<xs:sequence>

<xs:element name='name' type='xs:string'/>

<xs:element name='size' type='size'/>

<xs:element name='pool' type='xs:string' minOccurs='0' maxOccurs='1'/>

<xs:element name='stripes' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="32768"/>

878 Disk Partitioning And RAID Configuration

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name='stripeSize' type='stripeSize' minOccurs='0' maxOccurs='1'/>

<xs:element name='encryption' type='encryption' minOccurs='0' maxOccurs='1'/>

<xs:element name='swap' minOccurs='0' maxOccurs='1'/>

<xs:element name='priority' minOccurs='0' maxOccurs='1'>

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="32767"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:group ref='filesystem' minOccurs='0' maxOccurs='1'/>

</xs:sequence>

<xs:attribute name="thinpool">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="1"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="metadatasize">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="([1-9][MGT])|([1-9][0-9]+[MGT])"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

<xs:complexType name='subVolumes'>

<xs:sequence>

<xs:element name='subVolume' type='subVolume' minOccurs='1' maxOccurs='unbounded'/>

</xs:sequence>

<xs:attribute name='parent' type='xs:string' use='required'/>

</xs:complexType>

<xs:complexType name='subVolume'>

<xs:sequence>

<xs:element name='mountPoint' type='xs:string'/>

<xs:element name='mountOptions' type='xs:string'/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Examples Of Element Types In XML Schema

D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema Definition File879

Name Of Type Example Values

size 10G, 128M, 1T, 2.5T, 1/3, 33.333%, auto, max

device /dev/sda, /dev/hda, /dev/cciss/c0d0

partition linux, linux raid, linux swap, unspecified

filesystem ext2, ext3, ext4, xfs

D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML
Schema Definition File

If a hardware RAID has already been created outside of BCM, then no XML definition is needed. This
assumes that required kernel modules for the device load, so that the operating system ends up treating
the RAID as a standard block device, which can therefore have its layout configured as described in
section 3.12.

If, instead, hardware RAID is to be created and managed by BCM, then it can be specified using an
XML schema definition file, stored on the head node in /cm/local/apps/cmd/etc/htdocs/xsd/raid.

xsd.
The schema can also be viewed with cmsh:

Example

[root@basecm11]# cmsh -c "main xsdschema raid" | less

The full schema definition is listed next, while schema examples are listed in section D.4.1.
Configuration using BCM is currently limited to MegaRAID hardware. It may not work for newer

controllers that do not support MegaCLI, or its successor StorCLI. It may also not work for controllers
by vendors that do not use MegaCLI or StorCLI.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!--

#

SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: LicenseRef-NvidiaProprietary

#

NVIDIA CORPORATION, its affiliates and licensors retain all intellectual

property and proprietary rights in and to this material, related

documentation and any modifications thereto. Any use, reproduction,

disclosure or distribution of this material and related documentation

without an express license agreement from NVIDIA CORPORATION or

its affiliates is strictly prohibited.

#

This is the XML schema description of the hardware RAID layout XML file.

It can be used by software to validate partitioning XML files.

There are however a few things the schema does not check:

- All of the spans (drive groups) in an raidArray must have the same number of drives.

- There can only be one volume with a 'max' size on a particular array, and this

must be the last volume in the array.

- If there is only one enclosure defined for a particular RAID controller the actual

enclosureID can be omitted, by using "auto" instead. Otherwise, the actual enclosureID

must be specified.

-->

/cm/local/apps/cmd/etc/htdocs/xsd/raid.xsd
/cm/local/apps/cmd/etc/htdocs/xsd/raid.xsd

880 Disk Partitioning And RAID Configuration

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="raidLevel">

<xs:restriction base="xs:nonNegativeInteger">

<xs:pattern value="0|1|5|10|50"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="volumeSize">

<xs:restriction base="xs:string">

<xs:pattern value="[0-9]{1,5}[MGT]|max"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="stripeSize">

<xs:restriction base="xs:string">

<xs:pattern value="8K|16K|32K|64K|128K|256K|512K|1024K"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="cachePolicy">

<xs:restriction base="xs:string">

<xs:pattern value="Cached|Direct"/>

</xs:restriction>

</xs:simpleType>

<!--

NORA : No Read Ahead

RA : Read Ahead

ADRA : Adaptive Read

-->

<xs:simpleType name="readPolicy">

<xs:restriction base="xs:string">

<xs:pattern value="NORA|RA|ADRA"/>

</xs:restriction>

</xs:simpleType>

<!--

WT : Write Through

WB : Write Back

-->

<xs:simpleType name="writePolicy">

<xs:restriction base="xs:string">

<xs:pattern value="WT|WB"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="enclosureID">

<xs:restriction base="xs:string">

<xs:pattern value="auto|[0-9]{1,4}"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="slotNumber">

<xs:restriction base="xs:nonNegativeInteger">

D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema Definition File881

<xs:pattern value="[0-9]{1,2}"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="raidSetup">

<xs:complexType>

<xs:sequence>

<xs:element name="raidArray" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="level" type="raidLevel"/>

<xs:element name="raidVolume" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="stripeSize" type="stripeSize"/>

<xs:element name="cachePolicy" type="cachePolicy"/>

<xs:element name="readPolicy" type="readPolicy"/>

<xs:element name="writePolicy" type="writePolicy"/>

<xs:element name="size" type="volumeSize"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:choice>

<xs:element name="device" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="enclosureID" type="enclosureID"/>

<xs:element name="slotNumber" type="slotNumber"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="span" minOccurs="2" maxOccurs="8">

<xs:complexType>

<xs:sequence>

<xs:element name="device" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

882 Disk Partitioning And RAID Configuration

<xs:element name="enclosureID" type="enclosureID"/>

<xs:element name="slotNumber" type="slotNumber"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

D.3 Example: Default Node Partitioning
The following example follows the schema definition of section D.1, and shows the default layout used
for regular nodes:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev>/dev/nvme0n1</blockdev>

<blockdev mode="cloud">/dev/sdb</blockdev>

<blockdev mode="cloud">/dev/hdb</blockdev>

<blockdev mode="cloud">/dev/vdb</blockdev>

<blockdev mode="cloud">/dev/xvdb</blockdev>

<!-- the following for paravirtual rhel6: -->

<blockdev mode="cloud">/dev/xvdf</blockdev>

<!-- the following for nvme volumes -->

<blockdev mode="cloud">/dev/nvme1n1</blockdev>

<partition id="a0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

D.3 Example: Default Node Partitioning 883

</partition>

<partition id="a1">

<size>20G</size>

<type>linux</type>

<filesystem>xfs</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a2">

<size>6G</size>

<type>linux</type>

<filesystem>xfs</filesystem>

<mountPoint>/var</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a3">

<size>2G</size>

<type>linux</type>

<filesystem>xfs</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</partition>

<partition id="a4">

<size>12G</size>

<type>linux swap</type>

</partition>

<partition id="a5">

<size>max</size>

<type>linux</type>

<filesystem>xfs</filesystem>

<mountPoint>/local</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

The example assumes a single disk. Another disk can be added by adding another pair of
<device><device> tags and filling in the partitioning specifications for the next disk. Because multi-
ple blockdev tags are used, the node-installer first tries to use /dev/sda, then /dev/hda, then /dev/vda

(virtio disks), then /dev/xvda (xen disks), and so on. Cloud devices can also be accessed using the
mode="cloud" option. Removing block devices from the layout if they are not going to be used does no
harm.

For each partition, a size tag is specified. Sizes can be specified using megabytes (e.g. 500M),
gigabytes (e.g. 50G) or terabytes (e.g. 2T or 4.5T). Relative sizes, without units, can be used in the form
of fractions (e.g. 2/3) or percentages (e.g. 70%), which can be useful for disk sizes that are not known in
advance.

Small differences in size do not trigger a full install for existing relative partitions.
For swap partitions, a size of auto sets a swap partition to twice the node memory size. If there is

more than one swap partition, then the priority tag can be set so that the partition with the higher

884 Disk Partitioning And RAID Configuration

priority is used first.
For a device, the attribute max for a size tag forces the last device in the partition to use all remaining

space, and if needed, adjusts the implementation of the sequence of size tags in the remaining partitions
accordingly. The use of max for a partition is convenient.

In the example, all non-boot filesystems are specified as xfs. One of the valid alternatives is ext4.
The mount man page has more details on mount options. If the mountOptions tag is left empty, its

value defaults to defaults.

D.4 Example: Hardware RAID Configuration
A prerequisite with hardware RAID is that it must be enabled and configured properly in the BIOS.

If it is enabled and configured correctly, then the hardware RAID configuration can be defined or
modified by setting the hardwareraidconfiguration parameter in device or category mode:

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% set hardwareraidconfiguration

This opens up an editor in which the XML file can be specified according to the schema in section D.2.
XML validation is carried out.

D.4.1 RAID level 0 And RAID 10 Example
In the following configuration the node has two RAID arrays, one in a RAID 0 and the other in a RAID
10 configuration:

• The RAID 0 array contains three volumes and is made up of two hard disks, placed in slots 0 and
1. The volumes have different values for the options and policies.

• The RAID 10 array consists of just one volume and has two spans, in slots 2 and 3. Each span has
two hard disks.

Example

<raidSetup>

<raidArray>

<level>0</level>

<raidVolume>

<stripeSize>64K</stripeSize>

<cachePolicy>Direct</cachePolicy>

<readPolicy>NORA</readPolicy>

<writePolicy>WT</writePolicy>

<size>40G</size>

</raidVolume>

<raidVolume>

<stripeSize>128K</stripeSize>

<cachePolicy>Direct</cachePolicy>

<readPolicy>RA</readPolicy>

<writePolicy>WB</writePolicy>

<size>80G</size>

</raidVolume>

<raidVolume>

D.4 Example: Hardware RAID Configuration 885

<stripeSize>256K</stripeSize>

<cachePolicy>Cached</cachePolicy>

<readPolicy>ADRA</readPolicy>

<writePolicy>WT</writePolicy>

<size>100G</size>

</raidVolume>

<device>

<enclosureID>auto</enclosureID>

<slotNumber>0</slotNumber>

</device>

<device>

<enclosureID>32</enclosureID>

<slotNumber>1</slotNumber>

</device>

</raidArray>

<raidArray>

<level>10</level>

<raidVolume>

<stripeSize>64K</stripeSize>

<cachePolicy>Direct</cachePolicy>

<readPolicy>NORA</readPolicy>

<writePolicy>WT</writePolicy>

<size>40G</size>

</raidVolume>

<device>

<enclosureID>auto</enclosureID>

<slotNumber>2</slotNumber>

</device>

<device>

<enclosureID>auto</enclosureID>

<slotNumber>3</slotNumber>

</device>

<device>

<enclosureID>auto</enclosureID>

<slotNumber>4</slotNumber>

</device>

<device>

<enclosureID>auto</enclosureID>

<slotNumber>5</slotNumber>

</device>

</raidArray>

</raidSetup>

886 Disk Partitioning And RAID Configuration

D.5 Example: Software RAID
The following example shows a simple software RAID setup:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>25G</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>25G</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

The level tag specifies the RAID level used. The following are supported:

• 0 (striping without parity)

• 1 (mirroring)

• 4 (striping with dedicated parity drive)

• 5 (striping with distributed parity)

• 6 (striping with distributed double parity)

• 10 (mirroring and striping)

The member tags must refer to an id attribute of a partition tag, or an id attribute of a another raid
tag. The latter can be used to create, for example, a nested RAID 10 (1+0) configuration, instead of a
complex RAID 10 configuration as specified by a <level>10</level> entry. A good explanation of the
difference between complex and nested RAID 10 can be found at https://documentation.suse.com/
sles/15-SP5/html/SLES-all/cha-raid10.html#sec-raid10-complex.

The administrator must ensure that the correct RAID kernel module is loaded (section 5.3.2). Includ-
ing the appropriate module from the following is usually sufficient: raid0, raid1, raid4, raid5, raid6,
raid10.

https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-raid10.html#sec-raid10-complex
https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-raid10.html#sec-raid10-complex

D.6 Example: Software RAID With Swap 887

D.6 Example: Software RAID With Swap
The <swap></swap> tag is used to indicate a swap partition in a RAID device specified in the XML
schema of section D.1. For example, the following marks a 1GB RAID 1 partition as being used for
swap, and the second partition for an ext3 filesystem:

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<swap></swap>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<level>1</level>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

As in section D.5, the appropriate RAID modules must be loaded beforehand.

D.7 Example: Logical Volume Manager
This example shows a simple LVM setup:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

888 Disk Partitioning And RAID Configuration

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev mode="cloud">/dev/sdb</blockdev>

<blockdev mode="cloud">/dev/hdb</blockdev>

<blockdev mode="cloud">/dev/vdb</blockdev>

<blockdev mode="cloud">/dev/xvdb</blockdev>

<blockdev mode="cloud">/dev/xvdf</blockdev>

<partition id="a1">

<size>1G</size>

<type>linux</type>

<filesystem>ext2</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a2">

<size>16G</size>

<type>linux swap</type>

</partition>

<partition id="a3">

<size>max</size>

<type>linux lvm</type>

</partition>

</device>

<volumeGroup>

<name>vg01</name>

<extentSize>8M</extentSize>

<physicalVolumes>

<member>a3</member>

</physicalVolumes>

<logicalVolumes>

<volume>

<name>lv00</name>

<size>max</size>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

<volume>

<name>lv01</name>

<size>8G</size>

<filesystem>ext3</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

</logicalVolumes>

</volumeGroup>

</diskSetup>

The member tags must refer to an id attribute of a partition tag, or an id attribute of a raid tag.
The administrator must ensure that the dm-mod kernel module is loaded when LVM is used.

D.8 Example: Logical Volume Manager With RAID 1 889

D.8 Example: Logical Volume Manager With RAID 1
This example shows an LVM setup, but with the LVM partitions mirrored using RAID 1:

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:no\

NamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<filesystem>ext3</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<level>1</level>

</raid>

<volumeGroup>

<name>vg01</name>

<extentSize>8M</extentSize>

<physicalVolumes>

<member>r2</member>

</physicalVolumes>

<logicalVolumes>

890 Disk Partitioning And RAID Configuration

<volume>

<name>lv00</name>

<size>50G</size>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

<volume>

<name>lv01</name>

<size>25G</size>

<filesystem>ext3</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

<volume>

<name>lv02</name>

<size>25G</size>

<filesystem>ext3</filesystem>

<mountPoint>/var</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</volume>

</logicalVolumes>

</volumeGroup>

</diskSetup>

D.9 Example: Diskless
This example shows a node configured for diskless operation:

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<diskless maxMemSize="90%"></diskless>

</diskSetup>

An example of the implementation of a diskless configuration is given in section 3.12.3.
In diskless mode the software image is transferred by the node-installer to a RAM-based filesystem

on the node called tmpfs.
The obvious advantage of running from RAM is the elimination of the physical disk, cutting power

consumption and reducing the chance of hardware failure. On the other hand, some of the RAM on the
node is then no longer available for user applications.

Special considerations with diskless mode:

• Recommended minimum RAM size: The available RAM per node should be sufficient to run the
OS and the required tasks. At least 4GB is recommended for diskless nodes.

• The tmpfs size limit: The maximum amount of RAM that can be used for a filesystem is set with
the maxMemSize attribute. A value of 100% allows all of the RAM to be used. The default value is
90%. A value of 0, without the % sign, removes all restrictions.

A limit does not however necessarily prevent the node from crashing, as some processes might
not deal properly with a situation when there is no more space left on the filesystem.

D.10 Example: Semi-diskless 891

• Persistence issues: While running as a diskless node, the node is unable to retain any non-shared
data each time it reboots. For example the files in /var/log/*, which are normally preserved by
the exclude list settings for disked nodes, are lost from RAM during diskless mode reboots. The
installmode NOSYNC setting cannot be used with diskless nodes during a node reboot.

• Leftover disk issues: Administrators in charge of sensitive environments should be aware that
the disk of a node that is now running in diskless mode still contains files from the last time the
disk was used, unless the files are explicitly wiped.

• Reducing the software image size in tmpfs on a diskless node: To make more RAM available for
tasks, the software image size held in RAM can be reduced:

– by removing unnecessary software from the image.

– by mounting parts of the filesystem in the image over NFS during normal use. This is espe-
cially worthwhile for less frequently accessed parts of the image (section 3.13.3).

D.10 Example: Semi-diskless
Diskless operation (section D.9) can also be mixed with certain parts of the filesystem on the local physi-
cal disk. This frees up RAM which the node can then put to other use. In this example all data in /local

is on the physical disk, the rest in RAM.

Example

<?xml version="1.0" encoding="UTF-8"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<diskless maxMemSize="0"></diskless>

<device>

<blockdev>/dev/sda</blockdev>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/local</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

When nodes operate in semi-diskless mode the node-installer always uses excludelistfullinstall
(section 5.4.7) when synchronizing the software image to memory and disk.

An alternative to using a local disk for freeing up RAM is to use NFS storage, as is described in
section 3.13.3.

D.11 Example: Preventing Accidental Data Loss
Optional tags, vendor and requiredSize, can be used to prevent accidentally repartitioning the wrong
drive. Such a tag use is shown in the following example.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

892 Disk Partitioning And RAID Configuration

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<vendor>Hitachi</vendor>

<requiredSize>200G</requiredSize>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<vendor>BigRaid</vendor>

<requiredSize>2T</requiredSize>

<partition id="b1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/data</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

If a vendor or a requiredSize element is specified, it is treated as an assertion which is checked
by the node-installer. The node-installer reads the drive vendor string from /sys/block/<drive
name>/device/vendor. For the assertion to succeed, the ratio of actual disk size to the value specified
by requiredSize, should be at least 0.85:1, and at most 1:0.85.

That is: to be able to get past the requiredSize assertion, the actual drive size as seen from fdisk

-l should be 85% to about 118% of the asserted size.
If any assertion fails, no partitioning changes will be made to any of the specified devices.
For assertions with drives that are similar or identical in size, and are from the same vendor, the

requiredSize and vendor elements are not enough to differentiate between the drives. In such cases,
custom assertions (section D.12) can be set for particular drives.

Specifying device assertions is recommended for nodes that contain important data because it pro-
tects against a situation where a drive is assigned to an incorrect block device. This can happen, for
example, when the first drive, for example /dev/sda, in a multi-drive system is not detected (e.g. due to
a hardware failure, or a BIOS update) which could cause the second drive to become known as /dev/sda,
potentially causing much woe.

As an aside, CMDaemon does offer another way, outside of assertions, to avoid wiping out drive
data automatically. This is done in cmsh by setting the boolean value of datanode to yes (section 5.4.4).

D.12 Example: Using Custom Assertions
The following example shows the use of the assert tag, which can be added to a device definition:

Example

/sys/block/
/device/vendor

D.13 Example: Software RAID1 With One Big Partition 893

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema.xsd">

<device>

<blockdev>/dev/sda</blockdev>

<assert name="modelCheck" args="WD800AAJS">

<![CDATA[

#!/bin/bash

if grep -q $1 /sys/block/$ASSERT_DEV/device/model; then

exit 0

else

exit 1

fi

]]>

</assert>

<partition id="a1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<vendor>BigRaid</vendor>

<requiredSize>2T</requiredSize>

<partition id="b1">

<size>max</size>

<type>linux</type>

<filesystem>ext3</filesystem>

<mountPoint>/data</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

The assert tag is similar to the vendor and size tags described in section D.11.
It can be used to define custom assertions. The assertions can be implemented using any script

language.
The script can access the environment variables ASSERT_DEV (eg: sda) and ASSERT_NODE (eg:

/dev/sda) during the node-installer stage.
Each assert needs to be assigned an arbitrary name and can be passed custom parameters. A non-

zero exit code in the assertion causes the node-installer to halt.

D.13 Example: Software RAID1 With One Big Partition
The following example shows a head node hard drive that uses one big partition with software RAID 1.

Example

894 Disk Partitioning And RAID Configuration

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev>/dev/nvme0n1</blockdev>

<partition id="a0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

<size>16G</size>

<type>linux raid</type>

</partition>

<partition id="a3">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<blockdev>/dev/hdb</blockdev>

<blockdev>/dev/vdb</blockdev>

<blockdev>/dev/xvdb</blockdev>

<blockdev>/dev/cciss/c0d1</blockdev>

<blockdev>/dev/nvme1n1</blockdev>

<partition id="b0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>16G</size>

<type>linux raid</type>

</partition>

<partition id="b3">

<size>max</size>

<type>linux raid</type>

</partition>

D.14 Example: Software RAID5 With One Big Partition 895

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<filesystem>ext2</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<level>1</level>

<swap/>

</raid>

<raid id="r3">

<member>a3</member>

<member>b3</member>

<level>1</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

D.14 Example: Software RAID5 With One Big Partition
The following example shows a head node hard drive that uses one big partition with software RAID 5.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev>/dev/nvme0n1</blockdev>

<partition id="a0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

896 Disk Partitioning And RAID Configuration

<size>16G</size>

<type>linux raid</type>

</partition>

<partition id="a3">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<blockdev>/dev/hdb</blockdev>

<blockdev>/dev/vdb</blockdev>

<blockdev>/dev/xvdb</blockdev>

<blockdev>/dev/cciss/c0d1</blockdev>

<blockdev>/dev/nvme1n1</blockdev>

<partition id="b0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>16G</size>

<type>linux raid</type>

</partition>

<partition id="b3">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdc</blockdev>

<blockdev>/dev/hdc</blockdev>

<blockdev>/dev/vdc</blockdev>

<blockdev>/dev/xvdc</blockdev>

<blockdev>/dev/cciss/c0d2</blockdev>

<blockdev>/dev/nvme2n1</blockdev>

<partition id="c0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="c1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="c2">

<size>16G</size>

<type>linux raid</type>

</partition>

D.15 Example: Software RAID1 With Standard Partitioning 897

<partition id="c3">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<member>c1</member>

<level>1</level>

<filesystem>ext2</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<member>c2</member>

<level>5</level>

<swap/>

</raid>

<raid id="r3">

<member>a3</member>

<member>b3</member>

<member>c3</member>

<level>5</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

D.15 Example: Software RAID1 With Standard Partitioning
The following example shows a head node hard drive that uses the standard partitioning with software
RAID 1.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev>/dev/nvme0n1</blockdev>

<partition id="a0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

898 Disk Partitioning And RAID Configuration

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

<size>16G</size>

<type>linux raid</type>

</partition>

<partition id="a3">

<size>8G</size>

<type>linux raid</type>

</partition>

<partition id="a4">

<size>30G</size>

<type>linux raid</type>

</partition>

<partition id="a5">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<blockdev>/dev/hdb</blockdev>

<blockdev>/dev/vdb</blockdev>

<blockdev>/dev/xvdb</blockdev>

<blockdev>/dev/cciss/c0d1</blockdev>

<blockdev>/dev/nvme1n1</blockdev>

<partition id="b0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>16G</size>

<type>linux raid</type>

</partition>

D.15 Example: Software RAID1 With Standard Partitioning 899

<partition id="b3">

<size>8G</size>

<type>linux raid</type>

</partition>

<partition id="b4">

<size>30G</size>

<type>linux raid</type>

</partition>

<partition id="b5">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<level>1</level>

<filesystem>ext2</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<level>1</level>

<swap/>

</raid>

<raid id="r3">

<member>a3</member>

<member>b3</member>

<level>1</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</raid>

<raid id="r4">

<member>a4</member>

<member>b4</member>

<level>1</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/var</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r5">

<member>a5</member>

<member>b5</member>

<level>1</level>

<filesystem>__FSTYPE__</filesystem>

900 Disk Partitioning And RAID Configuration

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

D.16 Example: Software RAID5 With Standard Partitioning
The following example shows a head node hard drive that uses the standard partitioning with software
RAID 5.

Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/sda</blockdev>

<blockdev>/dev/hda</blockdev>

<blockdev>/dev/vda</blockdev>

<blockdev>/dev/xvda</blockdev>

<blockdev>/dev/cciss/c0d0</blockdev>

<blockdev>/dev/nvme0n1</blockdev>

<partition id="a0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="a2">

<size>6G</size>

<type>linux raid</type>

</partition>

<partition id="a3">

<size>8G</size>

<type>linux raid</type>

</partition>

<partition id="a4">

<size>30G</size>

<type>linux raid</type>

</partition>

<partition id="a5">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdb</blockdev>

<blockdev>/dev/hdb</blockdev>

<blockdev>/dev/vdb</blockdev>

<blockdev>/dev/xvdb</blockdev>

D.16 Example: Software RAID5 With Standard Partitioning 901

<blockdev>/dev/cciss/c0d1</blockdev>

<blockdev>/dev/nvme1n1</blockdev>

<partition id="b0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="b1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="b2">

<size>6G</size>

<type>linux raid</type>

</partition>

<partition id="b3">

<size>8G</size>

<type>linux raid</type>

</partition>

<partition id="b4">

<size>30G</size>

<type>linux raid</type>

</partition>

<partition id="b5">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<device>

<blockdev>/dev/sdc</blockdev>

<blockdev>/dev/hdc</blockdev>

<blockdev>/dev/vdc</blockdev>

<blockdev>/dev/xvdc</blockdev>

<blockdev>/dev/cciss/c0d2</blockdev>

<blockdev>/dev/nvme2n1</blockdev>

<partition id="c0" partitiontype="esp">

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

</partition>

<partition id="c1">

<size>1G</size>

<type>linux raid</type>

</partition>

<partition id="c2">

<size>6G</size>

<type>linux raid</type>

</partition>

<partition id="c3">

<size>8G</size>

<type>linux raid</type>

</partition>

<partition id="c4">

<size>30G</size>

<type>linux raid</type>

902 Disk Partitioning And RAID Configuration

</partition>

<partition id="c5">

<size>max</size>

<type>linux raid</type>

</partition>

</device>

<raid id="r1">

<member>a1</member>

<member>b1</member>

<member>c1</member>

<level>1</level>

<filesystem>ext2</filesystem>

<mountPoint>/boot</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r2">

<member>a2</member>

<member>b2</member>

<member>c2</member>

<level>5</level>

<swap/>

</raid>

<raid id="r3">

<member>a3</member>

<member>b3</member>

<member>c3</member>

<level>5</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/tmp</mountPoint>

<mountOptions>defaults,noatime,nodiratime,nosuid,nodev</mountOptions>

</raid>

<raid id="r4">

<member>a4</member>

<member>b4</member>

<member>c4</member>

<level>5</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/var</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

<raid id="r5">

<member>a5</member>

<member>b5</member>

<member>c5</member>

<level>5</level>

<filesystem>__FSTYPE__</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</raid>

</diskSetup>

D.17 Example: LUKS Disk Encryption With Standard Partitioning

D.17 Example: LUKS Disk Encryption With Standard Partitioning 903

D.17.1 Introduction
This section considers XML configuration that uses LUKS to set encrypted partitions on a block device.
Only the non-boot partitions can be encrypted.

Encryption can be configured for head and regular nodes during head node installation (section
3.3.16 of the Installation Manual). For regular nodes it can also be configured later on by modifying the
XML file used to define disk layouts (section D.17.2).

LUKS disk encryption on nodes by default uses a passphrase to decrypt a partition. The passphrase
processing can be handled automatically, or it can be handled by typing it in manually. These options
are explained in greater detail next:

• Automatic passphrase processing: For a node that is configured for encryption, and that is pro-
visioned over the network, the passphrase needs to be used to make the encrypted partition ac-
cessible. The acceptance of the passphrase for the node needs to be confirmed by the cluster
administrator during boot. For security, similar to the familiar case of SSH confirmation for a new
first-time connection, the cluster administrator should only confirm acceptance if sure that there is
no man-in-the-middle attack.

The cluster administrator needs only to confirm the passphrase to make the encrypted partition
accessible. Other than confirmation, the cluster administrator does not need to directly manage
or even know the passphrase, because the passphrase is stored and managed automatically via
CMDaemon.

• Manual passphrase processing: A node that is not provisioned over the network—that is a node
that is configured to boot from its own disk—is called a standalone node. Standalone nodes are
generally discouraged in a BCM cluster because they are harder to manage, but there are use
cases for them. For example, an edge director (section 2.1.7 of the Edge Manual) is configured as a
standalone node by default, because it needs to have a degree of autonomy from the head node.

If a standalone node—such as a head node or an edge director that is functioning autonomously—
boots from its own drive, it may be that it is configured with an encrypted partition, due to security
considerations. With such a configuration, the cluster administrator needs to be able to directly
manage the passphrase to allow access to the encrypted partitions. So, after a node is configured
to be a standalone node, access to an encrypted partition requires a passphrase to be entered from
the console of that node when the node is booting from its drive.

D.17.2 Node Provisioned Over The Network: Encrypted Partition XML Example
XML Specification For An Encrypted Partition
The XML example that follows shows encrypted partitions set for a regular node that uses one big par-
tition and one swap partition. The layout is based on a slightly modified version of the example XML
file at:

/cm/local/apps/cmd/etc/htdocs/disk-setup/x86-64-slave-one-big-encrypted-partition-ext4.xml

with minimal <encryption /> tags added for the root and swap partitions that are to run encrypted:

[basecm11->device[node001]]% get disksetup

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- One swap partition and the rest of the filesystem on 1 partition -->

<diskSetup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<device>

<blockdev>/dev/vdb</blockdev>

<partition id="a0" partitiontype="esp">

/cm/local/apps/cmd/etc/htdocs/disk-setup/x86-64-slave-one-big-encrypted-partition-ext4.xml

904 Disk Partitioning And RAID Configuration

<size>100M</size>

<type>linux</type>

<filesystem>fat</filesystem>

<mountPoint>/boot/efi</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

<partition id="a1">

<size>2G</size>

<type>linux swap</type>

<encryption />

</partition>

<partition id="a2">

<size>max</size>

<type>linux</type>

<encryption />

<filesystem>ext4</filesystem>

<mountPoint>/</mountPoint>

<mountOptions>defaults,noatime,nodiratime</mountOptions>

</partition>

</device>

</diskSetup>

Other XML file examples for encryption can found under /cm/local/apps/cmd/etc/htdocs/disk-setup/,
with file names that start with the text slave-one-big-encrypted-.

Stages During The Provisioning Of An Encrypted Partition
After the configuration has been committed, and the node is rebooted, the node pauses during the boot
process, and waits for approval of the passphrase for that node (figure D.1):

Figure D.1: Node Console Waiting For Disk Encryption Passphrase During Node-installer Run

The passphrase is automatically generated and automatically provided by CMDaemon, and CM-
Daemon at this stage passes on the message that the node is waiting for the disk encryption passphrase.

To confirm approval of the passphrase, the installerinteractions command (section 5.4.4) can be
run. This does not run at a disk level, but at a grouping level (node, category, group, chassis, rack ...).
Thus, for example, for a node with multiple encrypted disks, it only needs to be confirmed once.

If the installerinteractions command is run at node level for a particular node, then it displays
information about the installer status and interactions.

The following shows the output at various stages when a node node001 with the preceding XML
configuration is booting up:

Example

/cm/local/apps/cmd/etc/htdocs/disk-setup/

D.17 Example: LUKS Disk Encryption With Standard Partitioning 905

[basecm11->device[node001]]% installerinteractions

No remote interactions pending.

[basecm11->device[node001]]%

Wed Jun 9 12:32:00 2021 [notice] basecm11: node001 [INSTALLING] (node installer started)

[basecm11->device[node001]]%

Wed Jun 9 12:32:11 2021 [notice] basecm11: node001 [INSTALLING] (waiting for disk encryption passphrase)

[basecm11->device[node001]]% installerinteractions

Hostname Category Type Timestamp Action Status

--------- --------- --------------------------- --------------------------- --------------------- --------

node001 default disk encryption passphrase Wed Jun 9 12:32:09 2021 Waiting for approval pending

To confirm the approval, the installerinteractions command can be run with the --confirm

option and the -w|--write option:

Example

[basecm11->device[node001]]% installerinteractions -w --confirm

[basecm11->device[node001]]% installerinteractions

Hostname Category Type Timestamp Action Status

--------- --------- --------------------------- --------------------------- --------------------- ---------

node001 default disk encryption passphrase Wed Jun 9 12:35:22 2021 Waiting for approval confirmed

[... after some time...]

[basecm11->device[node001]]% installerinteractions

No remote interactions pending.

If the -w|--write option is not used, then the command is a dry-run, which means it only pretends
to write changes.

More options for installerinteractions can be seen by running help installerinteractions.

Allowing Passphrase Confirmation (To Make An Encrypted Partition Accessible) Until A Future Time
The installerinteractions confirmation can be done for a specified time in advance with:

Example

[basecm11->device[node001]]% installerinteractions -w --confirm --for 5m

[basecm11->device[node001]]% installerinteractions

Hostname Category Type Timestamp Action Status

--------- --------- --------------------------- -------------------------------- -------------- ----------

node001 default disk encryption passphrase Thu Jun 10 16:53:46 2021 Future action confirmed

[basecm11->device[node001]]% reboot

Possible units that can be used to specify the time period are:

Unit Meaning

s seconds

m minutes

h hours

d days

w weeks

906 Disk Partitioning And RAID Configuration

Passphrase Change And Provisioning Mode Considerations
If the passphrase is changed, then the node-installer carries out a FULL install (section 5.4.4).

If the confirmation timestamp is set for the future, and

1. if the node passphrase is changed before the time of the timestamp, then the node-installer carries
out a FULL install too.

2. if the node reboots and reaches the passphrase confirmation state after the time of the timestamp,
then the node-installer cannot carry out a FULL install too, until a fresh installerinteractions

confirmation is done.

When the FULL install is carried out, the node-installer arranges that the encrypted partitions are
provisioned as specified by the XML file, and the node eventually gets to a fully running stage. This
happens just as with a regular node, but with the XML encryption tags ensuring that the specified
partitions are encrypted.

Viewing Disk Partitions And Cipher String Used With The diskpartitions Command
Once the node is fully running, information about the partition state can be viewed with the
diskpartitions command:

Example

[basecm11->device[node001]]% diskpartitions

Node Name Major Minor Blocks Cipher string Devices Device mapper

-------- -------- -------- -------- ----------- ---------------- -------- -------------

...

node001 vdb 253 16 52,428,800

node001 vdb1 253 17 102,400

node001 vdb2 253 18 2,097,152 aes-xts-plain64

node001 vdb3 253 19 50,225,152 aes-xts-plain64

LUKS Encryption Defaults
The <encryption /> tag is quite minimal and implies defaults. Its schema is outlined in section D.1. An
expanded example of how LUKS options can be set in the encryption section of the XML file is:

Example

<encryption>

<type>luks2</type>

<cipher>aes-xts-plain64</cipher>

<hash>sha256</hash>

<keySize>256</keySize>

<name>root</name>

<allowDiscards />

<custom>--key-slot=2</custom>

</encryption>

D.17.3 Standalone Node: Encrypted Partition XML Example
Nodes are not managed by CMDaemon while in a standalone state. The automated passing of a
passphrase by CMDaemon to decrypt the LUKS disk encryption can therefore not take place for stan-
dalone nodes. The passphrase must thus be executed directly by the cluster administrator, either at the
console, or after re-establishing CMDaemon connectivity.

A new passphrase can be set for the node while it is still managed by CMDaemon, and automat-
ically overwrites the CMDaemon-managed passphrase. The new passphrase can be defined with the
--passphrase or with the -p|--payload <payload> option of installerinteractions, and needs the
--force option:

D.17 Example: LUKS Disk Encryption With Standard Partitioning 907

Example

Fri Jun 11 23:08:38 2021 [notice] basecm11: node001 [INSTALLING] (waiting for disk encryption passphrase)

[basecm11->device[node001]]% installerinteractions -w -p mysecret --confirm --force

Hostname Category Type Timestamp Action Status

--------- --------- --------------------------- --------------------------- --------------------- ----------

node001 default disk encryption passphrase Fri Jun 11 23:08:36 2021 Waiting for approval pending

[...time passes...]

[basecm11->device[node001]]% installerinteractions

No remote interactions pending.

[basecm11->device[node001]]%

Fri Jun 11 23:09:48 2021 [notice] basecm11: node001 [INSTALLER_CALLINGINIT] (switching to local root)

[basecm11->device[node001]]%

Fri Jun 11 23:10:31 2021 [notice] basecm11: node001 [UP]

[basecm11->device[node001]]%

The reason for the --force option is that changing the passphrase results in the entire disk being
reformatted.

Setting a new passphrase means that the node undergoes a FULL installation (section 5.4.4) during
node provisioning. However for a standalone mode, the provisioning system is bypassed in favor of
booting from the local drive, and the passphrase must be entered manually at the node console.

D.17.4 Changing A Passphrase On An Encrypted Node
Passphrases can be of two types:

• autorandom: An automatically-generated random passphrase, 256 characters in length

• custom: A manually-generated passphrase that is typed in by the cluster administrator. This
passphrase is set up when using the

installerinteractions --confirm -w

command with either the option

-p|--payload <payload>
or the option

--passphrase

If a node with an autorandom passphrase type is confirmed with -p|--payload or --passphrase, then
the passphrase type automatically switches to a custom passphrase type. The passphrase during this
confirmation is set either as the payload (the <payload> part) of the -p|--payload option, or it is set as a
string entered via the prompts that come up when the --passphrase option is used.

If echoing of the passphrase to processes viewing utilities is a risk, then it is recommended to use the
prompting option, --passphrase, instead of the -p|--payload option.

Any passphrase change results in a FULL installation during node-installer provisioning.

Resetting A Passphrase Type To autorandom

To reset a node that is being managed with a custom type passphrase back to the autorandom type
of passphrase, so that the passphrase is managed by CMDaemon management, the --reset option of
installerinteractions can be used:

[basecm11->device[node001]]% installerinteractions -w --reset --confirm

E
Example initialize And

finalize Scripts
The node-installer executes any initialize and finalize scripts at particular stages of its 13-step run
during node-provisioning (section 5.4). They are sometimes useful for troubleshooting or workarounds
during those stages. The scripts are stored in the CMDaemon database, rather than in the filesystem
as plain text files, because they run before the node’s init process takes over and establishes the final
filesystem.

Default iniitialize and finalize scripts are provided with the default category:

[basecm11->category[default]]% show | grep ize

Initialize script <1.46KiB>

Finalize script <3.4KiB>

E.1 When Are They Used?
The iniitialize and finalize scripts are sometimes used as an alternative configuration option out of
a choice of other possible options (section 3.19.1). As a solution it can be a bit of a hack, but sometimes
there is no reasonable alternative other than using an initialize or finalize script.

An initialize script: is used well before the init process starts, to execute custom commands before
partitions and mounting devices are checked. Typically, initialize script commands are related to
partitioning, mounting, or initializing special storage hardware. Often an initialize script is needed
because the commands in it cannot be stored persistently anywhere else.

A finalize script: (also run before init, but shortly before init starts) is used to set a file configu-
ration or to initialize special hardware, sometimes after a hardware check. It is run in order to make
software or hardware work before, or during the later init stage of boot. Thus, often a finalize script
is needed because its commands must be executed before init, and the commands cannot be stored
persistently anywhere else, or it is needed because a choice between (otherwise non-persistent) config-
uration files must be made based on the hardware before init starts.

E.2 Accessing From Base View And cmsh

The initialize and finalize scripts are accessible for viewing and editing:

• In Base View, via the Node Categories or Nodes window, under the Settings window. The navi-
gation paths for these are:

– Grouping > Node categories[default] > Edit > Settings

910 Example initialize And finalize Scripts

– Devices > Nodes[node001] > Edit > Settings

• In cmsh, using the category or device modes. The get command is used for viewing the script,
and the set command to start up the default text editor to edit the script. Output is truncated in
the two following examples at the point where the editor starts up:

Example

[root@basecm11 ~]# cmsh

[basecm11]% category use default

[basecm11->category[default]]% show | grep script

Parameter Value

------------------------------ --

Finalize script <1367 bytes>

Initialize script <0 bytes>

[basecm11->category[default]]% set initializescript

Example

[basecm11]% device use node001

[basecm11->device[node001]]%

[basecm11->device[node001]]% set finalizescript

E.3 Environment Variables Available To initialize And finalize Scripts
When CMDaemon is fully up, the environment variables available to CMDaemon scripts are fully avail-
able and can be listed by the CMDaemon front-ends (page 72).

That full range of environment variables is not available for initialize and finalize scripts, since
only a subset of the full environment is defined during the stages associated with the scripts.

For the initialize and finalize scripts, node-specific customizations can still be made from a
script using the environment variables that are available. For initialize scripts, this is discussed
briefly in section E.5.1.

For finalize scripts, the available environment variables can be listed using the following script as a
finalizescript:

Example

[basecm11->device[node001]]% get finalizescript

#!/bin/bash

#

All cluster manager environment variables are prefixed with CMD_

The root / of the running node is always mounted on /localdisk

#

set | grep CMD_ > /localdisk/var/log/node-installer-finalize.env

After the node comes up, the contents of the saved file on that node are the available variables:

Example

[root@node001 ~]# cat /var/log/node-installer-finalize.env

CMD_ACTIVE_MASTER_IP=10.141.255.254

CMD_CATEGORY=default

CMD_CHASSIS=

CMD_CHASSIS_IP=0.0.0.0

E.3 Environment Variables Available To initialize And finalize Scripts 911

CMD_CHASSIS_PASSWORD=

CMD_CHASSIS_SLOT=

CMD_CHASSIS_USERNAME=

...

The following table shows the available variables with some example values:

Table E: Environment Variables For The initialize And Finalize Scripts

Variable Example Value

CMD_ACTIVE_MASTER_IP 10.141.255.254

CMD_CATEGORY default

CMD_CHASSIS chassis01

CMD_CHASSIS_IP 10.141.1.1

CMD_CHASSIS_PASSWORD ADMIN

CMD_CHASSIS_SLOT 1

CMD_CHASSIS_USERNAME ADMIN

CMD_CLUSTERNAME BCM HEAD Cluster

CMD_DEVICE_HEIGHT 1

CMD_DEVICE_POSITION 10

CMD_DEVICE_TYPE SlaveNode

CMD_ETHERNETSWITCH switch01:1

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_ALLOWWRITE no

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_HOSTS 10.141.0.0/16

CMD_FSEXPORT__SLASH_cm_SLASH_node-installer_PATH /cm/node-installer

CMD_FSEXPORTS _SLASH_cm_SLASH_node-installer

CMD_FSMOUNT__SLASH_cm_SLASH_shared_DEVICE master:/cm/shared

CMD_FSMOUNT__SLASH_cm_SLASH_shared_FILESYSTEM nfs

CMD_FSMOUNT__SLASH_cm_SLASH_shared_MOUNTPOINT /cm/shared

CMD_FSMOUNT__SLASH_cm_SLASH_shared_OPTIONS rsize=32768,wsize=32768,\
hard,intr,async

CMD_FSMOUNT__SLASH_dev_SLASH_pts_DEVICE none

CMD_FSMOUNT__SLASH_dev_SLASH_pts_FILESYSTEM devpts

CMD_FSMOUNT__SLASH_dev_SLASH_pts_MOUNTPOINT /dev/pts

CMD_FSMOUNT__SLASH_dev_SLASH_pts_OPTIONS gid=5,mode=620

CMD_FSMOUNT__SLASH_dev_SLASH_shm_DEVICE none

CMD_FSMOUNT__SLASH_dev_SLASH_shm_FILESYSTEM tmpfs

CMD_FSMOUNT__SLASH_dev_SLASH_shm_MOUNTPOINT /dev/shm

CMD_FSMOUNT__SLASH_dev_SLASH_shm_OPTIONS defaults

CMD_FSMOUNT__SLASH_home_DEVICE master:/home

CMD_FSMOUNT__SLASH_home_FILESYSTEM nfs

...continues

912 Example initialize And finalize Scripts

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

CMD_FSMOUNT__SLASH_home_MOUNTPOINT home

CMD_FSMOUNT__SLASH_home_OPTIONS rsize=32768,wsize=32768,\
hard,intr,async

CMD_FSMOUNT__SLASH_proc_DEVICE none

CMD_FSMOUNT__SLASH_proc_FILESYSTEM proc

CMD_FSMOUNT__SLASH_proc_MOUNTPOINT /proc

CMD_FSMOUNT__SLASH_proc_OPTIONS defaults,nosuid

CMD_FSMOUNT__SLASH_sys_DEVICE none

CMD_FSMOUNT__SLASH_sys_FILESYSTEM sysfs

CMD_FSMOUNT__SLASH_sys_MOUNTPOINT /sys

CMD_FSMOUNT__SLASH_sys_OPTIONS defaults

CMD_FSMOUNTS ∗ _SLASH_dev_SLASH_pts

_SLASH_proc _SLASH_sys

_SLASH_dev_SLASH_shm

_SLASH_cm_SLASH_shared

_SLASH_home

CMD_GATEWAY 10.141.255.254

CMD_HOSTNAME node001

CMD_INSTALLMODE AUTO

CMD_INTERFACE_eth0_IP ∗∗ 10.141.0.1

CMD_INTERFACE_eth0_MTU ∗∗ 1500

CMD_INTERFACE_eth0_NETMASK ∗∗ 255.255.0.0

CMD_INTERFACE_eth0_TYPE ∗∗ physical

CMD_INTERFACES ∗ eth0 eth1 eth2 ipmi0

CMD_IP 10.141.0.1

CMD_MAC 00:00:00:00:00:01

CMD_PARTITION base

CMD_PASSIVE_MASTER_IP 10.141.255.253

CMD_PDUS

CMD_POWER_CONTROL custom

CMD_RACK rack01

CMD_RACK_HEIGHT 42

CMD_RACK_ROOM serverroom

CMD_ROLES sgeclient storage

CMD_SHARED_MASTER_IP 10.141.255.252

CMD_SOFTWAREIMAGE_PATH /cm/images/default-image

CMD_SOFTWAREIMAGE default-image

CMD_TAG 00000000a000

CMD_USERDEFINED1 var1

CMD_USERDEFINED2 var2

...continues

E.4 Using Environment Variables Stored In Multiple Variables 913

Table E: Environment Variables For The initialize And Finalize Scripts...continued

Variable Example Value

* The value for this variable is a string with spaces, not an array. Eg:

CMD_FSMOUNTS="_SLASH_dev_SLASH_pts _SLASH_proc _SLASH_sys _SLASH_dev_SLASH_shm ..."

** The name of this variable varies according to the interfaces available. So,

eth0 can be replaced by eth1, eth2, ipmi0, and so on.

E.4 Using Environment Variables Stored In Multiple Variables
Some data values, such as those related to interfaces (CMD_INTERFACES_*), mount points
(CMD_FSMOUNT__SLASH_*) and exports (CMD_FSEXPORT__SLASH_cm__SLASH_node-installer_*) are
stored in multiple variables. The following finalize script set for node001 shows how they can be used:

Example

[head->device*[node001*]]% get finalizescript

#!/bin/bash

echo "These are the interfaces:" >> /localdisk/env

CMD_ENV=`env`

function parser {

for s in TYPE IP NETMASK; do

echo $((grep CMD_INTERFACE_${1/:/-}_${s} | grep -Po "[\w.]+$") <<< "${CMD_ENV[@]}")

done

}

for interface in $CMD_INTERFACES

do

read -r type ip mask <<< $(parser $interface)

echo $interface type=$type >> /localdisk/env

echo $interface ip=$ip >> /localdisk/env

echo $interface netmask=$mask >> /localdisk/env

done

The technique of storage of values in a file under the path within the node of /localdisk/ is de-
scribed later on in section E.5.2. When the node boots up and runs the finalize script, then files stored
under /localdisk/, end up under the path of / after the node is fully up.

The detailed workings of the parser function in the preceding bash script are not easy, but the re-
sult is that the parser function returns output so that the interface type, IP address, and netmask are
listed for each interface. The parser works for physical interfaces, VLAN interfaces, and alias interfaces.
For example, if there are two interfaces, eth0 and eth0:1, then the file env might be seen to have the
following data:

Example

[root@head ~]# ssh node001 cat /env

These are the interfaces:

eth0 type=physical

eth0 ip=10.141.0.1

eth0 netmask=255.255.0.0

eth0:1 type=alias

eth0:1 ip=10.141.0.2

eth0:1 netmask=255.255.0.0

914 Example initialize And finalize Scripts

For remotely mounted devices, the name of the environment variables for mount entries have the
following naming convention:

Description Naming Convention

volume CMD_FSMOUNT_<x>_DEVICE

mount point CMD_FSMOUNT_<x>_MOUNTPOINT

filesystem type CMD_FSMOUNT_<x>_FILESYSTEM

mount point options CMD_FSMOUNT_<x>_OPTIONS

For the names, the entries <x> are substituted with the local mount point path, such as
“/cm/shared”, but with the “/” character replaced with the text “_SLASH_”. So, for a local
mount point path “/cm/shared”, the name of the associated volume environment variable becomes
CMD_FSMOUNT__SLASH_cm_SLASH_shared_DEVICE.

A similar naming convention is applicable to the names of the environment variables for the export
entries:

Description Naming Convention

exported system writable? CMD_FSEXPORT_<y>_ALLOWWRITE

allowed hosts or networks CMD_FSEXPORT_<y>_HOSTS

path on exporter CMD_FSMOUNT_<y>_PATH

Here, the entry <y> is replaced by the file path to the exported filesystem on the exporting node. This
is actually the same as the value of “CMD_FSMOUNT_<y>_PATH”, but with the “/” character replaced with
the text “_SLASH_”.

The entries for the local mount values and the export values in the table in section E.3 are the default
values for a newly installed cluster. If the administrator wishes to add more devices and mount entries,
this is done by configuring fsexports on the head node, and fsmounts on the regular nodes, using Base
View or cmsh (section 3.13).

E.5 Storing A Configuration To A Filesystem
E.5.1 Storing With Initialize Scripts
The initialize script (section 5.4.5) runs after the install-mode type and execution have been deter-
mined (section 5.4.4), but before unloading specific drivers and before partitions are checked and filesys-
tems mounted (section 5.4.6). Data output cannot therefore be written to a local drive. It can however be
written by the script to the tmpfs, but data placed there is lost quite soon, namely during the pivot_root
process that runs when the node-installer hands over control to the init process running from the local
drive. However, if needed, the data can be placed on the local drive later by using the finalize script
to copy it over from the tmpfs.

Due to this, and other reasons, a finalize script is easier to use for an administrator than an
initialize script, and the use of the finalize script is therefore preferred.

E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes
Basic Example—Copying A File To The Image
For a finalize script (section 5.4.11), which runs just before switching from using the ramdrive to using
the local hard drive, the local hard drive is mounted under /localdisk. Data can therefore be written to
the local hard drive if needed, but is only persistent until a reboot, when it gets rewritten. For example,
predetermined configuration files can be written from the NFS drive for a particular node, or they can
be written from an image prepared earlier and now running on the node at this stage, overwriting a

E.5 Storing A Configuration To A Filesystem 915

node-installer configuration:

Example

#!/bin/bash

cp /etc/myapp.conf.overwrite /localdisk/etc/myapp.conf

This technique is used in a finalize script example in section 3.19.4, except that an append operation
is used instead of a copy operation, to overcome a network issue by modifying a network configuration
file slightly.

There are three important considerations for most finalize scripts:

1. Running A Finalize Script Without exit 0 Considered Harmful

Failed Finalize Script Logic Flow: For a default configuration without a finalize script, if PXE
boot fails from the network during node provisioning, the node then goes on to attempt booting
from the local drive via iPXE (section 5.1.2).

However, if the configuration has a finalize script, such as in the preceding example, and if the
finalize script fails, then the failure is passed to the node-installer.

Avoiding Remote Node Hang During A Finalize Script: exit 0 Recommended: If the node-
installer fails, then no attempt is made to continue booting, and the node remains hung at that
stage. This is usually undesirable, and can also make remote debugging of a finalize script annoy-
ing.

Adding an exit 0 to the end of the finalize script is therefore recommended, and means that an
error in the script will still allow the node-installer to continue with an attempt to boot from the
local drive.

Debugging Tips When A Node Hangs During A Finalize Script: If there is a need to understand
the failure, then if the node-installer hangs, the administrator can ssh into the node into the node-
installer environment, and run the finalize script manually to debug it. Once the bug has been
understood, the script can be copied over to the appropriate location in the head node, for nodes
or categories.

Additional aid in understanding a failure may be available by looking through the node-
installer logs. The debug mode for the node-installer can be enabled by setting debug=true in-
stead of debug=false in the file /cm/node-installer/scripts/node-installer.conf (for mul-
tiarch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf).

Another way to help debug a failure could be by setting custom event messages in the script, as
explained on page 623.

2. Protecting A Configuration File Change From Provisioning Erasure With excludelistupdate

In the preceding example, the finalize script saves a file /etc/myapp.conf to the destination nodes.

To protect such a configuration file from erasure, its file path must be covered in the second sublist
in the excludelistupdate list (section 5.6.1).

3. Finalize scripts cannot modify /proc, /sys, and /dev filesystems of end result on node directly.

The /proc, /sys, and /dev filesystems are unmounted after the finalize script is run before pivoting
into the root filesystem under the /localdisk directory, which means any changes made to them

/cm/node-installer/scripts/node-installer.conf
/etc/myapp.conf

916 Example initialize And finalize Scripts

are simply discarded. To change values under these filesystems on the node, an rc.local file
inside the software image can be used.

For example, if swappiness is to be set to 20 via the /proc filesystem, one way to do it is to set it in
the rc.local file:

Example

cat /cm/images/<image-name>/etc/rc.local | grep -v �# | grep .

echo 20 > /proc/sys/vm/swappiness

exit 0

chmod 755 /cm/images/<image-name>/etc/rc.d/rc.local # must be made executable

The preceding way of using rc.local set to run a command to modify the image just for illustra-
tion. A better way to get the same result in this case would be to not involve rc.local, but to add
a line within the /cm/images/<image-name>/etc/sysctl.conf file:

vm.swappiness = 20

Copying A File To The Image—Decision Based On Detection
Detection within a basic finalize script is useful extra technique. The finalize script example of
section 3.19.4 does detection too, to decide if a configuration change is to be done on the node or not.

A further variation on a finalize script with detection is a script selecting from a choice of possible
configurations. A symlink is set to one of the possible configurations based on hardware detection or
detection of an environment variable. The environment variable can be a node parameter or similar,
from the table in section E.3. If it is necessary to overwrite different nodes with different configurations,
then the previous finalize script example might become something like:

Example

#!/bin/bash

if [[$CMD_HOSTNAME = node00[1-7]]]

then ln -s /etc/myapp.conf.first /localdisk/etc/myapp.conf

fi

if [[$CMD_HOSTNAME = node01[5-8]]]

then ln -s /etc/myapp.conf.second /localdisk/etc/myapp.conf

fi

if [[$CMD_HOSTNAME = node02[3-6]]]

then ln -s /etc/myapp.conf.third /localdisk/etc/myapp.conf

fi

In the preceding example, the configuration file in the image has several versions:
/etc/myapp.conf.<first|second|third>. Nodes node001 to node007 are configured with the
first version, nodes node015 to node018 with the second version, and nodes node023 to node026 with
the third version. It is convenient to add more versions to the structure of this decision mechanism.

Copying A File To The Image—With Environment Variables Evaluated In The File
Sometimes there can be a need to use the CMDaemon environment variables within a finalize script to
specify a configuration change that depends on the environment.

For example a special service may need a configuration file, test, that requires the hostname myhost,
as a parameter=value pair:

Example

E.5 Storing A Configuration To A Filesystem 917

SPECIALSERVICEPARAMETER=myhost

Ideally the placeholder value myhost would be the hostname of the node rather than the fixed value
myhost. Conveniently, the CMDaemon environment variable CMD_HOSTNAME has the name of the host as
its value.

So, inside the configuration file, after the administrator changes the host name from its placeholder
name to the environment variable:

SPECIALSERVICE=${CMD_HOSTNAME}

then when the node-installer runs the finalize script, the file could be modified in-place by the finalize
script, and ${CMD_HOSTNAME} be substituted by the actual hostname.

A suitable finalize Bash script, which runs an in-line Perl substitution, is the following:

#!/bin/bash

perl -p -i -e 's/\$\{([^}]+)\}/defined $ENV{$1} ? $ENV{$1} : $&/eg' /localdisk/some/directory/file

Here, /some/directory/file means that, if for example the final configuration file path for the node
is to be /var/spool/test then the file name should be set to /localdisk/var/spool/test inside the
finalize script.

The finalize script replaces all lines within the file that have environment variable names of the form:

PARAMETER=${<environment variable name>}

with the value of that environment variable. Thus, if <environment variable name> is CMD_HOSTNAME,
then that variable is replaced by the name of the host.

E.5.3 Restricting The Script To Nodes Or Node Categories
As mentioned in section 2.1.3, node settings can be adjusted within a category. So the configuration
changes to ifcfg-eth0 is best implemented per node by accessing and adjusting the finalize script
per node if only a few nodes in the category are to be set up like this. If all the nodes in a category are to
be set up like this, then the changes are best implemented in a finalize script accessed and adjusted at
the category level. Accessing the scripts at the node and category levels is covered in section E.2.

People used to normal object inheritance behavior should be aware of the following when consider-
ing category level and node level finalize scripts:

With objects, a node item value overrules a category level value. On the other hand, finalize scripts,
while treated in an analogous way to objects, cannot always inherit properties from each other in the
precise way that true objects can. Thus, it is possible that a finalize script run at the node level may not
have anything to do with what is changed by running it at the category level. However, to allow it to
resemble the inheritance behavior of object properties a bit, the node-level finalize script, if it exists, is
always run after the category-level script. This gives it the ability to “overrule” the category level.

F
Workload Managers Quick

Reference
F.1 Slurm
Slurm is a GPL-licensed workload management system and developed largely at Lawrence Livermore
National Laboratory. The name was originally an acronym for Simple Linux Utility for Resource Man-
agement, but the acronym is deprecated because it no longer does justice to the advanced capabilities of
Slurm.

The Slurm service and outputs are normally handled using the Base View or cmsh front end tools for
CMDaemon (section 7.4).

From the command line, direct Slurm commands that may sometimes come in useful include the
following:

• sacct: used to report job or job step accounting information about active or completed jobs.

Example

sacct -j 43 -o jobid,AllocCPUs,NCPUS,NNodes,NTasks,ReqCPUs

JobID AllocCPUS NCPUS NNodes NTasks ReqCPUS

------------ ---------- ---------- -------- -------- --------

43 1 1 1 1

• salloc: used to allocate resources for a job in real time. Typically this is used to allocate resources
and spawn a shell. The shell is then used to execute srun commands to launch parallel tasks.

• sattach used to attach standard input, output, and error plus signal capabilities to a currently
running job or job step. One can attach to and detach from jobs multiple times.

• sbatch: used to submit a job script for later execution. The script typically contains one or more
srun commands to launch parallel tasks.

• sbcast: used to transfer a file from local disk to local disk on the nodes allocated to a job. This can
be used to effectively use diskless compute nodes or provide improved performance relative to a
shared filesystem.

• scancel: used to cancel a pending or running job or job step. It can also be used to send an
arbitrary signal to all processes associated with a running job or job step.

• scontrol: the administrative tool used to view and/or modify Slurm state. Note that many scon-
trol commands can only be executed as user root.

Example

920 Workload Managers Quick Reference

[fred@basecm11 ~]$ scontrol show nodes

NodeName=basecm11 Arch=x86_64 CoresPerSocket=1

CPUAlloc=0 CPUErr=0 CPUTot=1 CPULoad=0.05 Features=(null)

...

If a node, for example node001, is stuck in a CG state (“completing”), and rebooting it is not feasible,
then the following may clear it in some cases:

Example

[fred@basecm11 ~]$ scontrol update nodename=node001 state=down reason=hung

[fred@basecm11 ~]$ scontrol update nodename=node001 state=resume

• sinfo: reports the state of partitions and nodes managed by Slurm. It has a wide variety of filter-
ing, sorting, and formatting options.

Example

basecm11:~ # sinfo -o "%9P %.5a %.10l %.6D %.6t %C %N"

PARTITION AVAIL TIMELIMIT NODES STATE CPUS(A/I/O/T) NODELIST

defq* up infinite 1 alloc 1/0/0/1 basecm11

• smap: reports state information for jobs, partitions, and nodes managed by Slurm, but graphically
displays the information to reflect network topology.

• squeue: reports the state of jobs or job steps. It has a wide variety of filtering, sorting, and format-
ting options. By default, it reports the running jobs in priority order and then the pending jobs in
priority order.

Example

basecm11:~ # squeue -o "%.18i %.9P %.8j %.8u %.2t %.10M %.6D %C %R"

JOBID PARTITION NAME USER ST TIME NODES CPUS NODELIST(REASON)

43 defq bash fred R 16:22 1 1 basecm11

...

• srun: used to submit a job for execution or initiate job steps in real time. srun has a wide variety of
options to specify resource requirements, including: minimum and maximum node count, proces-
sor count, specific nodes to use or not use, and specific node characteristics (so much memory, disk
space, certain required features, etc.). A job can contain multiple job steps executing sequentially
or in parallel on independent or shared nodes within the job’s node allocation.

Auto Scaler dynamic node issues with srun: A concern about srun (https://bugs.schedmd.
com/show_bug.cgi?id=1333) at the time of writing (January 2023) is the following: After an srun

job has been queued, and a new node is added, the slurm.conf file is not read again. This means
that the new node resource is not seen by jobs using srun. Thus, with srun jobs, nodes launched
dynamically by Auto Scaler remain unused, and can fail. Workarounds are to use salloc or
sbatch instead of srun.

• smap: reports state information for jobs, partitions, and nodes managed by Slurm, but graphically
displays the information to reflect network topology.

• strigger: used to set, get or view event triggers. Event triggers include things such as nodes
going down or jobs approaching their time limit.

https://bugs.schedmd.com/show_bug.cgi?id=1333
https://bugs.schedmd.com/show_bug.cgi?id=1333
https://bugs.schedmd.com/show_bug.cgi?id=1333
https://bugs.schedmd.com/show_bug.cgi?id=1333

F.2 PBS Professional 921

• sview: a graphical user interface to get and update state information for jobs, partitions, and nodes
managed by Slurm.

There are man pages for these commands. Full documentation on Slurm is available online at: http:
//slurm.schedmd.com/documentation.html.

F.2 PBS Professional
The following commands can be used in PBS Professional to view queues, jobs, and server status:

qstat query queue status

qstat -a show only queued or running jobs for a destination, or all states for a job ID

qstat -r show only running or suspended jobs for a destination, or all states for a job ID

qstat -q show queue status for destinations

qstat -rn only running or suspended jobs, with list of allocated nodes (exec_host string)

qstat -i information on queued, held, waiting jobs is given for specified destination. Inform-

ation about the job is given if a job ID is specified, regardless of the job status

qstat -B display server status for the specified servers

qstat -u <username> show jobs for a user for the specified destination. Status

information for the job is displayed for a specified job ID.

Other useful commands are:

tracejob <job id> show what happened today to <job id>
tracejob -n <number> <job id> search last <number> days for <job id>

qmgr administrator interface to batch system (man qmgr.8B for more details)

qterm terminates PBS server (but BCM starts pbs_server again)

pbsnodes <node> query status of compute node

pbsnodes -a query status of all compute nodes

The commands of PBS Professional are documented in the man pages, and also in the exten-
sive documentation available via https://community.altair.com/community?id=altair_product_

documentation.

http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/documentation.html
https://community.altair.com/community?id=altair_product_documentation
https://community.altair.com/community?id=altair_product_documentation

G
Metrics, Health Checks,

Enummetrics, And Actions
This appendix describes the metrics (section G.1), health checks (section G.2), enummetrics (sec-
tion 10.2.2), and actions (section G.4), along with their parameters, in a newly-installed cluster. Met-
rics, health checks, enummetrics, and actions can each be standalone scripts, or they can be built-ins.
Standalone scripts can be those supplied with the system, or they can be custom scripts built by the
administrator. Scripts often require environment variables (as described in section 3.3.1 of the Developer
Manual. On success scripts must exit with a status of 0, as is the normal practice.

G.1 Metrics And Their Parameters
A list of metric names can be viewed, for example, for the head node, using cmsh as follows (sec-
tion 10.5.3):

[basecm11 ~]# cmsh -c "monitoring measurable; list metric"

The metrics listed in this section are classed into 10 kinds:

1. regular metrics (section G.1.1)

2. NFS metrics (section G.1.2)

3. InfiniBand metrics (section G.1.3)

4. monitoring system metrics (section G.1.4)

5. GPU metrics (section G.1.6)

6. Job metrics (section G.1.8)

7. IPMI metrics (section G.1.9)

8. Redfish metrics (section G.1.10)

9. SMART metrics (section G.1.11)

10. Prometheus metrics (section G.1.12)

924 Metrics, Health Checks, Enummetrics, And Actions

G.1.1 Regular Metrics
Table G.1.1: List Of Metrics

Metric Description

AlertLevel Indicates the healthiness of a device based on severity of events
(section 10.2.8). The lower it is, the better. There are 3 parameters
it can take:

• count: the number of active triggers

• maximum: the maximum alert level of all active triggers

• sum: the summed alert level of all active triggers

BlockedProcesses Blocked processes waiting for I/O

BufferMemory System memory used for buffering

BytesRecv∗,‡ Bytes/s received

BytesSent∗,‡ Bytes/s sent

CPUGuest∗ CPU time spent in guest mode (Jiffies/s)

CPUIdle ∗ CPU time spent in idle mode (Jiffies/s)

CPUIrq ∗ CPU time spent in servicing IRQ (Jiffies/s)

CPUNice ∗ CPU time spent in nice mode (Jiffies/s)

CPUSoftIrq ∗ CPU time spent in servicing soft IRQ (Jiffies/s)

CPUSteal ∗ CPU time spent in steal mode (Jiffies/s)

CPUSystem ∗ CPU time spent in system mode (Jiffies/s)

CPUUser ∗ CPU time spent in user mode (Jiffies/s)

CPUUsage ∗ Percent of time not spent in idle mode (sum of non-idling per-
centages) (%/s)

CPUWait ∗ CPU time spent in I/O wait mode (Jiffies/s).

CacheMemory System memory used for caching.

Cores Number of cores for a node

CoresDown Number of cores for all nodes marked as DOWN

CoresTotal Total number of known cores for all nodes

CoresUp Number of cores for all nodes marked as UP

CtxtSwitches∗ Context switches/s

DPUNodesClosed Number of DPUs not marked as UP or DOWN

DPUNodesDown Number of DPUs marked as DOWN

DPUNodesTotal Total number of DPUs

DPUNodesUp Number of DPUs not marked as UP or DOWN

DevicesClosed Number of devices not marked as UP or DOWN

DevicesDown Number of devices marked as DOWN

DevicesTotal Total number of devices

...continues

G.1 Metrics And Their Parameters 925

Table G.1.1: List Of Metrics...continued

Metric Description

DevicesUp Number of devices in status UP. A node (head, regular, virtual,
cloud) or GPU Unit is not classed as a device. A device can be an
item such as a switch, PDU, chassis, or rack, if the item is enabled
and configured for management.

DropRecv∗,‡ Packets/s received and dropped

DropSent∗,‡ Packets/s sent and dropped

EC2SpotPrice Amazon EC2 price for spot instances

EccDBitGPU∗∗ Total number of double bit ECC errors/s (file: sample_gpu)

EccSBitGPU∗∗ Total number of single bit ECC errors/s (file: sample_gpu)

ErrorsRecv∗,‡ Packets/s received with error

ErrorsSent∗,‡ Packets/s sent with error

FPGAsDown Number of FPGAs for all nodes marked as DOWN

FPGAsTotal Total number of known FPGAs for all nodes

FPGAsUp Number of FPGAs for all nodes marked as UP

FabricTopologies Number of fabric topologies

FabricTopologyHostUsage Average usage of all topology hosts

FabricTopologyResourceBoxUsage Average usage of all topology resource boxes

Forks∗ Forked processes/s

FrameErrors∗,‡ Packet framing errors/s

FreeFiles§ Free file inodes on the specified mount point

FreeSpace§ Free space for non-root user. Takes mount point as a parameter

GPUUnitsClosed Number of GPU units not marked as UP or DOWN

GPUUnitsDown Number of GPU units marked as DOWN

GPUUnitsTotal Total number of GPU Units

GPUUnitsUp Number of GPU units marked as UP

GPUsTotal Total number of known GPUs for all nodes

GPUsUp Number of GPUs for all nodes marked as UP

GPUsDown Number of GPUs for all nodes marked as DOWN

HardwareCorruptedMemory Hardware corrupted memory detected by ECC

IOInProgress† I/O operations in progress

IOTime∗,† I/O operations time in milliseconds/s

InterfaceState Interface operation state

IpForwDatagrams∗ Input IP datagrams/s to be forwarded/s

IpFragCreates∗ IP datagram fragments/s generated/s

IpFragFails∗ IP datagrams/s which needed to be fragmented but could not

IpFragOKs∗ IP datagrams/s successfully fragmented

IpInAddrErrors∗ Input datagrams/s discarded because the IP address in their
header was not a valid address

IpInDelivers∗ Input IP datagrams/s successfully delivered

IpInDiscards∗ Input IP datagrams/s discarded

...continues

926 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

IpInHdrErrors∗ Input IP datagrams/s discarded due to errors in their IP headers

IpInReceives∗ Input IP datagrams/s, including ones with errors, received from
all interfaces

IpInUnknownProtos∗ Input IP datagrams/s received but discarded due to an unknown
or unsupported protocol

IpOutDiscards∗ Output IP datagrams/s discarded

IpOutNoRoutes∗ Output IP datagrams/s discarded because no route could be
found

IpOutRequests∗ Output IP datagrams/s supplied to IP in requests for transmis-
sion

IpReasmOKs∗ IP datagrams/s successfully re-assembled

IpReasmReqds∗ IP fragments/s received needing re-assembly

JobsRunning Jobs running on the node

LiteNodesClosed Number of lite nodes not marked as UP or DOWN

LiteNodesDown Number of lite nodes marked as DOWN

LiteNodesTotal Total number of lite nodes

LiteNodesUp Number of lite nodes marked as UP

LoadFifteen Load average on 15 minutes

LoadFive Load average on 5 minutes

LoadOne Load average on 1 minute

MajorPageFaults∗ Page faults/s that require I/O

ManagedServicesOk This metric uses the ManagedServicesOk health check (page 967)
for a grouping of nodes, such as the nodes in a category, or the
nodes in a cluster. A parameter is specified for the metric, and a
value is returned, as follows:

• fail: Total number of health checks in a FAIL state

• good: Percentage that are in the PASS state

• pass: Total number that are in the PASS state

• total: Total number of the ManagedServicesOk metrics
being sampled, regardless of state

• unknown: Total number that are in the UNKNOWN state

...continues

G.1 Metrics And Their Parameters 927

Table G.1.1: List Of Metrics...continued

Metric Description

ManagedSwitchesClosed Number of managed switches not marked as UP or DOWN

ManagedSwitchesDown Number of managed switches marked as DOWN

ManagedSwitchesTotal Number of managed switches not marked as UP or DOWN

ManagedSwitchesUp Total number of managed switches

MemoryAvailable Available system memory

MemoryFree Free system memory

MemoryTotal Total system memory

MemoryUsed¶ Used system memory for a process specified as a parameter. Pro-
cesses can be anything that is always running:

Example

• cm-lite-daemon

• cm-mqtt

• cmd

• mysqld

• promtail

• slurmctld

• slurmd

MemoryUtilization Memory utilization

MergedReads∗,† Merged reads/s

MergedWrites∗,† Merged writes/s

NodesClosed Number of nodes not marked as UP or DOWN

NodesDown Number of nodes marked as DOWN

NodesTotal Total number of nodes

NodesUp Number of nodes in status UP

OccupationRate
Cluster occupation rate—a normalized cluster load percentage.
100% means all cores on all nodes are fully loaded.

The calculation is done as follows: LoadOne on each node is
mapped to a value, calibrated so that LoadOne=1 corresponds to
100% per node. The maximum allowed for a node in the map-
ping is 100%. The average of these mappings taken over all nodes
is the OccupationRate.

A high value can indicate the cluster is being used optimally.
However, a value that is 100% most of the time suggests the clus-
ter may need to be expanded.

OOM kill Number of processes killed by OOM killer since boot

PacketsRecv∗,‡ Packets/s received

PacketsSent∗,‡ Packets/s sent

PageFaults∗ Page faults/s

...continues

928 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

PageIn ∗ Number of bytes the system has paged in from disk/s

PageOut ∗ Number of bytes the system has paged out to disk/s

PageSwapIn ∗ Number of bytes the system has swapped in from disk/s

PageSwapOut ∗ Number of bytes the system has swapped out to disk/s

PDUBankLoad Total PDU bank load, in amps

PDULoad Total PDU phase load, in amps

PDUUptime∗ PDU uptime per second. I.e. ideally=1, but in practice has jitter
effects.

PhaseLoad Sum of PDULoad over all power distribution units

ProcessCount Total number of all processes in the OS. These are run-
ning processes (RunningProcesses) and blocked pro-
cesses(BlockedProcesses).

ReadOnly§ Indicates if the specified mount point was mounted as read-only

ReadTime∗,† Read time in milliseconds/s

Reads∗,† Reads/s completed successfully

RunningProcesses Running processes

ReportedSpeed Speed reported by the port of the switch. The parameter name
used is the hardware port name, as specified by the output of
the switchoverview command. For example, for the Cumulus
switch these can be swp0, swp1...

SectorsRead∗,† Sectors/s read successfully/s

SectorsWritten∗,† Sectors/s written successfully

SwapCached Cached swap memory

SwapFree Free swap memory

SwapTotal Total swap memory

SwapUsed Used swap memory

SwapUtilization Swap memory utilization

SystemTime¶ System time used by process specified by a parameter, for exam-
ple: cmd

SwitchBroadcastPackets∗ Total number of good packets received and directed to the broad-
cast address/s

SwitchCollisions∗ Collisions/s on this network segment

SwitchCPUUsage Switch CPU utilization estimation (%)

SwitchDelayDiscardFrames∗ Frames discarded/s due to excessive transit delay through the
bridge

SwitchFilterDiscardFrames∗ Valid frames received/s but discarded by the forwarding process

SwitchMTUDiscardFrames∗ Number of frames discarded/s due to an excessive size

SwitchMulticastPackets∗ Total number of good packets/s received and directed to a mul-
ticast address

SwitchOverSizedPackets∗ Well-received packets/s longer than 1518 octets

SwitchUnderSizedPackets∗ Packets/s received which are less than 64 octets long

...continues

https://linux.die.net/lkmpg/x1052.html
https://linux.die.net/lkmpg/x1052.html
https://linux.die.net/lkmpg/x1052.html

G.1 Metrics And Their Parameters 929

Table G.1.1: List Of Metrics...continued

Metric Description

SwitchUptime∗ Switch uptime per second. Ie, ideally=1, but in practice has jitter
effects

TcpCurrEstab TCP connections that are either ESTABLISHED or CLOSE-WAIT

TcpInErrs∗ Input IP segments/s received in error

TcpRetransSegs∗ Total number of IP segments/s re-transmitted

ThreadsUsed¶ Threads used by process. For example: cmd

TotalBytesRecv Total bytes received on swp interfaces over all managed switches

TotalBytesSent Total bytes sent on swp interfaces over all managed switches

TotalCPUIdle Cluster-wide core usage in idle tasks (sum of all CPUIdle metric
percentages)

TotalCPUPowerUsage Total CPU power usage over all nodes

TotalCPUSystem Cluster-wide core usage in system mode (sum of all CPUSystem
metric percentages)

TotalCPUTemperature Average CPU temperature over all nodes

TotalCPUUser Cluster-wide core usage in user mode (sum of all CPUUser met-
ric percentages)

TotalCPUUtilization Sum of CPUUsage over all nodes

TotalGPUMemoryUtilization Average of GPU memory utilization percentage
gpu_mem_utilization:average (table G.1.6) over all nodes

TotalGPUNvlinkBandwidth Total GPU Nvlink bandwidth using
gpu_nvlink_total_bandwidth:total (table G.1.6) over all
nodes

TotalGPUPowerUsage Total GPU power usage, using gpu_power_usage:total (ta-
ble G.1.6) over all nodes

TotalGPUTemperature Average of average GPU temperature using
gpu_temperature:average (table G.1.6) over all nodes

TotalGPUUtilization Average of GPU utilization using gpu_utilization:average (ta-
ble G.1.6) over all nodes

TotalMemory Sum of MemoryTotal over all nodes

TotalMemoryFree Cluster-wide total of memory free

TotalMemoryUsed Cluster-wide total of memory used

TotalMemoryUtilization Sum of MemoryUtilization over all nodes

TotalNodePowerUsage Total power usage over all nodes

TotalSwap Sum of SwapTotal over all nodes

TotalSwapFree Cluster-wide total swap free

TotalSwapUsed Cluster-wide total swap used

TotalUser Total number of known users

TotalUserLogin Total number of logged in users

UdpInDatagrams∗ Input UDP datagrams/s delivered to UDP users

UdpInErrors∗ Input UDP datagrams/s received that could not be delivered/s
for other reasons (no port excl.)

...continues

930 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Metrics...continued

Metric Description

UdpNoPorts∗ Received UDP datagrams/s for which there was no application
at the destination port

UniqueUserLogin Number of unique users logged in

UnmanagedNodesClosed Number of unmanaged nodes not marked as UP or DOWN

UnmanagedNodesDown Number of unmanaged nodes marked as DOWN

UnmanagedNodesTotal Total number of unmanaged nodes

UnmanagedNodesUp Number of unmanaged nodes marked as UP

Uptime∗ System uptime per second. Ie, ideally=1, but in practice has jitter
effects

UsedFiles§ Used file inodes on the specified parameter as mount point

UsedSpace§ Used space on the specified parameter as mount point

UserTime¶ User time used by specified process. For example: cmd

Utilization¶ Utilization by specified process. For example; cmd

VirtualMemoryUsed¶ Virtual memory used by specified process. For example cmd

WlmSlotsFree The number of WLM slots free

WlmSlotsTotal The total number of WLM slots

WlmSlotsUsed The number of WLM slots in use

WlmSlotsUtilization The percentage of WLM slots in use

wlm_slurm_state_count Number of nodes in the state for a parameter. The possible pa-
rameters are:

• allocated

• completing

• down

• drain

• draining

• fail

• failing

• idle

• maint

• mixed

...continues

G.1 Metrics And Their Parameters 931

Table G.1.1: List Of Metrics...continued

Metric Description

WriteTime∗,† Write time in milliseconds/s (this is a per mille), for the parame-
ter as device

Writes∗,† Writes/s completed successfully for the parameter as device

isilon_node_disk_access_latency Isilon access latency for node disk

isilon_node_disk_iosched_queue Isilon iosched queue for node disk

isilon_node_disk_xfer_size_in Transfer size in for node disk

isilon_node_disk_xfer_size_out Transfer size out for node disk

isilon_node_ip IP address of isilon node

isilon_in_rate Bytes written to NFS client from Isilon

isilon_out_rate Bytes read from Isilon to NFS client

isilon_op_rate I/O rate for NFS client to/from Isilon

node_network_carrier_changes_ Samples total network carrier changes
total

nvidia_licensed_compute_ Total licensed compute resources
resources

nvidia_used_compute_resources Used compute resources, (maximum of nodes used and GPUs
used, but value can only be up to the total licensed compute re-
sources)

nvidia_used_gpu_resources Used GPU resources

nvidia_used_node_resources Used node resources

nvidia_used_node_resources Used node resources

* Cumulative metric. I.e. the metric is derived from cumulative raw measurements taken at two different times, according to:
metrictime2 =

measurement2−measurement1
time2−time1

The metric is a “per second” measurement.
** Standalone scripts, not built-ins.

If sampling from a head node, the script is in directory: /cm/local/apps/cmd/scripts/metrics/
For regular nodes, the script is in directory: /cm/images/default-image/cm/local/apps/cmd/scripts/metrics/

† Takes block device name (sda, sdc, nvme0n1 and so on) as parameter
‡ Takes interface device name (eth0, eth1, en01, docker0, ib0 and so on) as parameter
§ Takes mount point (for example: /, or /var) as parameter
¶ Takes a process, eg: cmd as a parameter

G.1.2 NFS Metrics
The NFS metrics are all cumulative. They correspond to nfsstat output, and are shown in table G.1.2.

Table G.1.2: NFS Metrics

NFS Metric Description

nfs_client_packet_packets NFS client packets statistics: packets

nfs_client_packet_tcp NFS client package statistics: TCP/IP packets

nfs_client_packet_tcpconn NFS client package statistics: TCP/IP connections

...continues

932 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.2: NFS Metrics

NFS Metric Description

nfs_client_packet_udp NFS client package statistics: UDP packets

nfs_client_rpc_authrefrsh NFS Client RPC statistics: authenticated refreshes to RPC
server

nfs_client_rpc_calls NFS Client RPC statistics: calls

nfs_client_rpc_retrans NFS Client RPC statistics: re-transmissions

nfs_server_file_anon NFS Server file statistics: anonymous access

nfs_server_file_lookup NFS Server file statistics: look-ups

nfs_server_file_ncachedir NFS Server file statistics: ncachedir

nfs_server_file_stale NFS Server file statistics: stale files

nfs_server_packet_packets NFS Server packet statistics: packets

nfs_server_packet_tcp NFS Server packet statistics: TCP/IP packets

nfs_server_packet_tcpconn NFS Server packet statistics: TCP/IP connections

nfs_server_packet_udp NFS Server packet statistics: UDP packets

nfs_server_reply_hits NFS Server reply statistics: hits

nfs_server_reply_misses NFS Server reply statistics: misses

nfs_server_reply_nocache NFS Server reply statistics: no cache

nfs_server_rpc_badauth NFS Server RPC statistics: bad authentication

nfs_server_rpc_badcalls NFS Server RPC statistics:bad RPC requests

nfs_server_rpc_badclnt NFS Server RPC statistics: badclnt

nfs_server_rpc_calls NFS Server RPC statistics: all calls to NFS and NLM

nfs_v3_client_access NFSv3 client statistics: access

nfs_v3_client_create NFSv3 client statistics: create

nfs_v3_client_fsinfo NFSv3 client statistics: static file system information

nfs_v3_client_fsstat NFSv3 client statistics: dynamic file system status

nfs_v3_client_getattr NFSv3 client statistics: file system attributes

nfs_v3_client_lookup NFSv3 client statistics: lookup

nfs_v3_client_pathconf NFSv3 client statistics: configuration path

nfs_v3_client_read NFSv3 client statistics: reads

nfs_v3_client_read_readdirplus NFSv3 client statistics: readdirplus

nfs_v3_client_remove NFSv3 client statistics: removes

nfs_v3_client_settattr NFSv3 client statistics: setattr

nfs_v3_client_total NFSv3 client statistics: total

nfs_v3_client_write NFSv3 client statistics: writes

nfs_v3_server_access NFSv3 server statistics: access

nfs_v3_server_create NFSv3 server statistics: create

nfs_v3_server_fsinfo NFSv3 server statistics: static file system information

nfs_v3_server_fsstat NFSv3 server statistics: dynamic file system information

nfs_v3_server_getattr NFSv3 server statistics: file system attributes gets

nfs_v3_server_lookup NFSv3 server statistics: file name look-ups

...continues

G.1 Metrics And Their Parameters 933

Table G.1.2: NFS Metrics

NFS Metric Description

nfs_v3_server_mkdir NFSv3 server statistics: directory creation

nfs_v3_server_null NFSv3 server statistics: null operations

nfs_v3_server_pathconf NFSv3 server statistics: retrieve POSIX information

nfs_v3_server_read NFSv3 server statistics: reads

nfs_v3_server_readdirplus NFSv3 server statistics: READDIRPLUS procedures

nfs_v3_server_readlink NFSv3 server statistics: Symbolic link reads

nfs_v3_server_setattr NFSv3 server statistics: file system attribute sets

nfs_v3_server_total NFSv3 server statistics: total

nfs_v3_server_write NFSv3 server statistics: writes

nfs_v4_server_compound NFSv4 server statistics: compound operations

nfs_v4_server_null NFSv4 server statistics: null operations

nfs_v4_server_total NFSv4 server statistics: total

nfs_v4_servop_access NFSv4 server statistics: access

nfs_v4_servop_close NFSv4 server statistics: close

nfs_v4_servop_create NFSv4 server statistics: create

nfs_v4_servop_getattr NFSv4 server statistics: file system attributes gets

nfs_v4_servop_getfh NFSv4 server statistics: filehandle gets

nfs_v4_servop_lookup NFSv4 server statistics: file name look-ups

nfs_v4_servop_open NFSv4 server statistics: opens

nfs_v4_servop_putfh NFSv4 server statistics: filehandle puts

nfs_v4_servop_putrootfh NFSv4 server statistics: filehandle puts to root

nfs_v4_servop_read NFSv4 server statistics: reads

nfs_v4_servop_readdirplus NFSv4 server statistics: READDIRPLUS procedures

nfs_v4_servop_readlink NFSv4 server statistics: Symbolic link reads

nfs_v4_servop_rename NFSv4 server statistics: renames

nfs_v4_servop_savefh NFSv4 server statistics: filehandle saves

nfs_v4_servop_setattr NFSv4 server statistics: file system attribute sets

nfs_v4_servop_total NFSv4 server statistics: total

nfs_v4_servop_write NFSv4 server statistics: writes

G.1.3 InfiniBand Metrics
The available InfiniBand metrics are displayed in table G.1.3.

Table G.1.3: InfiniBand Metrics

InfiniBand Metric Description

...continues

934 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.3: InfiniBand Metrics...continued

IB Metric Description

SymbolErrorCount Total number of minor link errors detected on
one or more physical lanes.

LinkErrorRecoveryCount Total number of times the Port Training state ma-
chine has successfully completed the link error
recovery process.

LinkDownedCounter Total number of times the Port Training state ma-
chine has failed the link error recovery process
and downed the link.

PortRcvErrors Total number of packets containing an error that
were received on the port.

PortRcvRemotePhysicalErrors Total number of packets marked with the EBP
delimiter received on the port.

PortRcvSwitchRelayErrors Total number of packets received on the port that
were discarded because they could not be for-
warded by the switch relay.

PortXmitDiscards Total number of outbound packets discarded by
the port because the port is down or congested.

PortXmitConstrainErrors Total number of packets not transmitted from
the switch physical port.

PortRcvConstraintErrors Total number of packets received on the switch
physical port that are discarded.

LocalLinkIntegrityErrors The number of times that the count of local phys-
ical errors exceeded the threshold specified by
LocalPhyErrors.

ExcessiveBufferOverrunError The number of times that OverrunErrors consec-
utive flow control update periods occurred, each
having at least one overrun error

QP1Dropped Drops on the lower priority QP1 interconnect

VL15Dropped Drops in the highest priority virtual lane 15

PortXmitData Total number of data octets, divided by 4 (lanes),
transmitted on all VLs. This is a 64-bit counter.

PortRcvData Total number of data octets, divided by 4 (lanes),
received on all VLs. This is a 64-bit counter.

PortXmitPkts Total number of packets transmitted on all VLs
from this port, including packets with errors,
and excluding link packets.

PortRcvPkts Total number of packets, including packets con-
taining errors, and excluding link packets, re-
ceived from all VLs on this port. This is a 64-bit
counter.

PortXmitWait The number of ticks during which the port had
data to transmit but no data was sent during the
entire tick (either because of insufficient credits
or because of lack of arbitration).

G.1 Metrics And Their Parameters 935

G.1.4 Monitoring System Metrics
Internal metrics for the monitoring system itself are produced by the MonitoringSystem data producer.

The data producer does not run by default on any node, as is seen by running the nodes command
(page 581) for it:

[basecm11->monitoring->setup[MonitoringSystem]]% nodes

Not used

However, for convenience, some monitoring system metrics values are displayed on demand in an
organized way, by running the monitoringinfo command for a device:

Example

[basecm11->device[basecm11]]% monitoringinfo

Service Queued Handled Cache miss Stopped Suspended Last operation

----------------------------- -------- ---------- ---------- --------- ---------- ---------------

Mon::CacheGather 4 910 4 no no Fri Oct 4 ...

Mon::DataConverter 0 0 0 no no -

Mon::DataProcessorEngine 0 155,470 0 no no Fri Oct 4 ...

Mon::DataProcessorKeepLatest 0 155,470 0 no no Fri Oct 4 ...

Mon::DataProcessorKeepRecent 0 0 0 no no -

...

The internal monitoring system metrics can be activated so that their data values are saved. This is
not recommended, except temporarily for debugging purposes. To save the values, the Introspect flag
for the monitoring system data producer should be set to yes:

Example

[basecm11->monitoring->setup[MonitoringSystem]]% set --extra Introspect yes

[basecm11->monitoring->setup*[MonitoringSystem*]]% commit

[basecm11->monitoring->setup[MonitoringSystem]]% nodes

basecm11

[basecm11->monitoring->setup[MonitoringSystem]]% get interval

900

After a time defined by interval, the metrics can be viewed:

Example

[basecm11->device[basecm11]]% latestmetricdata | grep Mon::Storage

Mon::Storage::Engine::elements Internal/Monitoring/Storage 999,549 44.3s

Mon::Storage::Engine::size Internal/Monitoring/Storage 1.00 GiB 44.3s

Mon::Storage::Engine::usage Internal/Monitoring/Storage 9.63% 44.3s

Mon::Storage::Message::elements Internal/Monitoring/Storage 28 44.3s

...

The monitoring system metrics that are saved are shown in table G.1.4.

936 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.4: Monitoring System Metrics

Monitoring System Metric Description

Mon::CacheGather::handled Cache gathers handled/s

Mon::CacheGather::miss Cache gathers missed/s

Mon::DataProcessor::handled Data processors handled/s

Mon::DataProcessor::miss Data processors missed /s

Mon::DataTranslator::handled Data translators handled/s

Mon::DataTranslator::miss Data translators missed/s

Mon::EntityMeasurableCache::handled Measurable cache handled/s

Mon::EntityMeasurableCache::miss Measurable cache missed/s

Mon::MeasurableBroker::handled Measurable broker handled/s

Mon::MeasurableBroker::miss Measurable broker missed/s

Mon::OOB::TaskService::handled Out-of-band task service handled/s

Mon::OOB::TaskService::miss Out-of-band task service missed/s

Mon::Replicate::Collector::handled Replication collection handled/s

Mon::Replicate::Collector::miss Replication collection missed/s

Mon::Replicate::Combiner::handled Replication combiner handled/s

Mon::Replicate::Combiner::miss Replication combiner missed/s

Mon::RepositoryAllocator::handled Repository allocator handled/s

Mon::RepositoryAllocator::miss Repository allocator missed/s

Mon::RepositoryTrim::handled Repository trim handled/s

Mon::RepositoryTrim::miss Repository trim missed/s

Mon::Storage::Engine::elements Storage engine data elements, in total

Mon::Storage::Engine::size Storage engine size, in bytes

Mon::Storage::Engine::usage Storage engine usage

Mon::Storage::Message::elements Storage message data elements, in total

Mon::Storage::Message::size Storage message size in bytes

Mon::Storage::Message::usage Storage message usage

Mon::Storage::RepositoryId::elements Storage repository ID data elements, in total

Mon::Storage::RepositoryId::size Storage repository ID, size, in bytes

Mon::Storage::RepositoryId::usage Repository ID usage

Mon::TaskInitializer::handled Task initializer handled/s

Mon::TaskInitializer::miss Task initializer missed/s

Mon::TaskSampler::handled Task sampler handled/s

Mon::TaskSampler::miss Task sampler missed/s

Mon::Trigger::Actuator::handled Trigger actuators handled/s

Mon::Trigger::Actuator::miss Trigger actuators missed/s

Mon::Trigger::Dispatcher::handled Trigger dispatchers handled/s

...continues

G.1 Metrics And Their Parameters 937

Table G.1.4: Monitoring System Metrics...continued

Monitoring System Metric Description

Mon::Trigger::Dispatcher::miss Trigger dispatchers missed/s

Prometheus::DataTranslator::handled DataTranslator queries handled. The DataTrans-
lator is a translation layer between PromQL for-
mat and BCM format sampling.

Prometheus::DataTranslator::miss DataTranslator misses

G.1.5 CPU Metrics Sampled By The CPUSampler And GPUSampler
Some CPU metrics are sampled by the data producers CPUSampler and GPUSampler (table G.1.5):

Table G.1.5: CPU Metrics Sampled By The CPUSampler And GPUSampler

CPU Metric Parameter Description

cpu_core_clock_speed∗ cpu_core0 CPU0 core clock speed

cpu_power_cap_enabled∗ cpu0 CPU0 power capping enabled

cpu_power_cap_long_term_max_limit∗ cpu0 Long term CPU0 power constraint

cpu_power_cap_long_term_time_window∗ cpu0 Long term CPU0 power constraint time
window

cpu_power_cap_short_term_max_limit∗ cpu0 Short term CPU0 power constraint

cpu_power_cap_short_term_time_window∗ cpu0 Short term CPU0 power constraint time
window

cpu_power_limit∗ cpu0 CPU0 power limit

cpu_power_usage∗ cpu0 CPU0 power usage

cpu_power_usage total Total CPU power usage

cpu_temperature average Average CPU temperature

cpu_temperature∗ cpu0 CPU0 temperature

cpu_utilization average Average CPU utilization

* The number 0 in the parameter column can be replaced by the number associated with the core used. Thus:
cpu_core0 can be replaced by cpu_core1, cup_core2...

and

cpu0 can be replaced by cpu1, cpu2...

G.1.6 GPU Metrics
The data producer (section 10.2.10) for the GPU metrics of this section is GPUSampler.

There were GPU metrics described earlier on in table G.1.1. These were cluster overview metrics
about GPUs, and were provided by the ClusterTotal data producer.

However, the NVIDIA GPU metrics of this section, as the GPUSampler data producer name suggests,
is about gathering the sampled GPU data from the devices themselves.

There is also a separate section about job GPU metrics (section G.1.8, page 946), which uses the
JobSampler data producer, and is about gathering the sampled job data from the GPU devices them-
selves.

The device parameter for the GPU metrics in this section, unless otherwise noted, specifies the device
slot number that the GPU uses. The parameter takes the form gpu0, gpu1, and so on. It is appended to the
metric with a colon character. For example, the gpu_ecc_dbe_agg metric, if used with gpu1, is specified
as:

938 Metrics, Health Checks, Enummetrics, And Actions

Example

gpu_ecc_dbe_agg:gpu1

Available GPU metrics for V100 and A100 GPUs are listed in table G.1.6. The available GPU health
checks for V100 and A100 GPUs are listed in table G.2.2.

If the cluster has been configured with AMD GPUs (section 7.4 of the Installation Manual) then AMD
GPU metrics become available. Metrics in the table that are also valid AMD GPU metrics are noted.
Some metrics have been added and noted that are only valid for AMD GPUs.

Extra GPU measurables for the GB200 GPUs are listed in section 6.6 of the NVIDIA Mission Control
Manual.

Table G.1.6: GPU Metrics

GPU Metric Description

gpu_dec_utilization∗ GPU decoding usage

gpu_ecc_dbe_agg Total double bit aggregate ECC errors

gpu_ecc_dbe_vol Total double bit volatile ECC errors

gpu_ecc_sbe_agg Total single bit aggregate ECC errors

gpu_ecc_sbe_vol Total single bit volatile ECC errors

gpu_enc_utilization∗ GPU encoding usage

gpu_enforced_power_limit GPU-enforced power limit

gpu_mem_clock GPU memory clock (also for AMD GPU)

gpu_mem_copy_utilization∗ Percentage of GPU memory copy used

gpu_mem_free Amount of GPU free memory

gpu_mem_total∗∗ GPU framebuffer size (also for AMD GPU)

gpu_mem_used∗∗ Amount of GPU memory used (also for AMD GPU)

gpu_mem_utilization∗ GPU memory used percentage

gpu_memory_temp∗ GPU memory temperature (Celsius)

gpu_nvlink_total_bandwidth∗∗ Total NVLink bandwidth used

gpu_power_management_limit GPU power management limit

gpu_power_usage∗∗ GPU power usage (also for AMD GPU)

gpu_power_violation∗∗ Throttling duration due to power constraints

gpu_shutdown_temp GPU shutdown temperature (Celsius)

gpu_slowdown_temp GPU slowdown temperature (Celsius)

gpu_sm_clock GPU shader multiprocessor clock (also for AMD GPU)

...continues

G.1 Metrics And Their Parameters 939

Table G.1.6: GPU Metrics...continued

GPU Metric Description

gpu_temperature∗ GPU temperature (Celsius)

gpu_thermal_violation∗∗ Throttling duration due to thermal constraints

gpu_utilization∗ Average GPU utilization percentage

gpu_xid_error The value is the specific XID error

* Specified as average, or specified for a GPU.
For example, for the gpu_dec_utilization metric:
gpu_dec_utilization:average or gpu_dec_utilization:GPU0

** Specified as a total, or specified for a GPU.
For example, for the gpu_mem_total metric:
gpu_mem_total:total or gpu_mem_total:GPU0

G.1.7 GPU Profiling Metrics
The data producer (section 10.2.10) for the GPU profiling metrics of this section is GPUSampler.

The device parameter for the GPU profiling metrics in this section, unless otherwise noted, specifies
the device slot number that the GPU uses. The parameter takes the form gpu0, gpu1, and so on. It is
appended to the metric with a colon character. For example, the gpu_profiling_fp64_active metric, if
used with gpu1, is specified as:

Example

gpu_profiling_fp64_active:gpu1

Available GPU profiling metrics for V100 and A100 GPUs are listed in table G.1.7.
Table G.1.6: GPU Profiling Metrics

GPU Profiling Metric Description

gpu_profiling_dram_active The ratio of cycles the device memory interface is active
sending or receiving data

gpu_profiling_fp16_active Ratio of cycles the fp16 pipe is active

gpu_profiling_fp32_active Ratio of cycles the fp32 pipe is active

gpu_profiling_fp64_active Ratio of cycles the fp64 pipe is active

gpu_profiling_graphics_engine_active Ratio of time the graphics engine is active. The graphics
engine is active if a graphics/compute context is bound
and the graphics pipe or compute pipe is busy

gpu_profiling_nvlink_read The number of bytes of active NvLink rx (read) data
including both header and payload

...continues

940 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.7: GPU Profiling Metrics...continued

GPU Profiling Metric Description

gpu_profiling_nvlink_transmit The number of bytes of active NvLink tx (transmit)
data including both header and payload

gpu_profiling_pcie_read The number of bytes of active PCIe rx (read) data in-
cluding both header and payload

gpu_profiling_pcie_transmit The number of bytes of active PCIe tx (transmit) data
including both header and payload

gpu_profiling_pipe_tensor_active The ratio of cycles the tensor (HMMA) pipe is active

gpu_profiling_sm_active The ratio of cycles an SM has at least 1 warp assigned

gpu_profiling_sm_occupancy The ratio of cycles the tensor (HMMA) pipe is active

G.1.8 Job Metrics
Job metrics are introduced in section 11.1.

Basic Job Metrics
The following table lists some of the most useful job metrics that BCM can monitor and visualize. In the
table, the text <device> denotes a block device name, such as sda.

On virtual machines, block device metrics may be unavailable because of virtualization.

G.1 Metrics And Their Parameters 941

Table G.1.8.1: Basic Job Metrics

Job Metric Description Cgroup Source File

blkio.time:<device> Time job had I/O access to de-
vice

blkio.time_recursive

blkio.sectors:<device> Sectors transferred to or from
specific devices by a cgroup

blkio.sectors_recursive

blkio.io_service_read:<device> Bytes read blkio.io_service_bytes_recursive

blkio.io_service_write:<device> Bytes written blkio.io_service_bytes_recursive

blkio.io_service_sync:<device> Bytes transferred synchronously blkio.io_service_bytes_recursive

blkio.io_service_async:<device> Bytes transferred asyn-
chronously

blkio.io_service_bytes_recursive

blkio.io_wait_time_read:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O read operations

blkio.io_wait_time_recursive

blkio.io_wait_time_write:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O write operations

blkio.io_wait_time_recursive

blkio.io_wait_time_sync:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O synchronous operations

blkio.io_wait_time_recursive

blkio.io_wait_time_async:<device> Total time spent waiting for ser-
vice in the scheduler queues for
I/O asynchronous operations

blkio.io_wait_time_recursive

cpuacct.usage Total CPU time consumed by all
job processes

cpuacct.usage

cpuacct.stat.user User CPU time consumed by all
job processes

cpuacct.stat

...continues

942 Metrics, Health Checks, Enummetrics, And Actions

...continued

Job Metric Description Cgroup Source File

cpuacct.stat.system System CPU time consumed by
all job processes

cpuacct.stat

memory.usage Total current memory usage memory.usage_in_bytes

memory.memsw.usage Sum of current memory plus
swap space usage

memory.memsw.usage_in_bytes

memory.memsw.max_usage Maximum amount of memory
and swap space used

memory.memsw.max_usage_in_bytes

memory.failcnt How often the memory limit
has reached the value set in
memory.limit_in_bytes

memory.failcnt

memory.memsw.failcnt How often the memory
plus swap space limit has
reached the value set in
memory.memsw.limit_in_bytes

memory.memsw.failcnt

memory.swap Total swap usage memory

memory.cache Total page cache, including
tmpfs (shmem)

memory

memory.mapped_file Size of memory-mapped
mapped files, including tmpfs
(shmem)

memory

memory.unevictable Memory that cannot be re-
claimed

memory

The third column in the table shows the precise source file name that is used when the value is
retrieved. These files are all virtual files, and are created as the cgroup controllers are mounted to
the cgroup directory. In this case several controllers are mounted to the same directory, which means
that all the virtual files will show up in that directory, and in its associated subdirectories—job cgroup
directories—when the job runs.

Advanced Job Metrics
The metrics in the preceding table are enabled by default. There are also over 40 other advanced metrics
that can be enabled via the Enable Advanced Metrics property of the jobmetricsettings object:

[basecm11->monitoring->setup[JobSampler]->jobmetricsettings]% show

Parameter Value

-------------------------------- --

Enable Advanced Metrics no

Exclude Devices loop,sr

Exclude Metrics

Include Devices

Include Metrics

Revision

Sampling Type Both

[basecm11->monitoring->setup[JobSampler]->jobmetricsettings]% set enableadvancedmetrics yes

[basecm11->monitoring->setup*[JobSampler*]->jobmetricsettings*]% commit

G.1 Metrics And Their Parameters 943

The advanced job metrics are:

944 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.8.2: Advanced Job Metrics

Advanced Job Metric Description Cgroup Source File

blkio.io_service_time_read:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O read op-
erations

blkio.io_service_time_recursive

blkio.io_service_time_write:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O write op-
erations

blkio.io_service_time_recursive

blkio.io_service_time_sync:<device> Total time between re-
quest dispatch and request
completion according to
CFQ scheduler for I/O
synchronous operations

blkio.io_service_time_recursive

blkio.io_service_time_async:<device> Total time between request
dispatch and request com-
pletion according to CFQ
scheduler for I/O asyn-
chronous operations

blkio.io_service_time_recursive

blkio.io_serviced_read:<device> Read I/O operations blkio.io_serviced_recursive

blkio.io_serviced_write:<device> Write I/O operations blkio.io_serviced_recursive

blkio.io_serviced_sync:<device> Synchronous I/O opera-
tions

blkio.io_serviced_recursive

blkio.io_serviced_async:<device> Asynchronous I/O opera-
tions

blkio.io_serviced_recursive

blkio.io_merged_read:<device> Number of block I/Os
(requests) merged into
requests for I/O read
operations

blkio.io_merged_recursive

blkio.io_merged_write:<device> Number of block I/Os
(requests) merged into
requests for I/O write
operations

blkio.io_merged_recursive

blkio.io_merged_sync:<device> Number of block I/Os
(requests) merged into re-
quests for I/O synchronous
operations

blkio.io_merged_recursive

blkio.io_merged_async:<device> Number of block I/Os
(requests) merged into
requests for I/O asyn-
chronous operations

blkio.io_merged_recursive

...continues

G.1 Metrics And Their Parameters 945

...continued

Advanced Job Metric Description Cgroup Source File

blkio.io_queued_read:<device> Number of requests queued
for I/O read operations

blkio.io_queued_recursive

blkio.io_queued_write:<device> Number of requests queued
for I/O write operations

blkio.io_queued_recursive

blkio.io_queued_sync:<device> Number of requests queued
for I/O synchronous opera-
tions

blkio.io_queued_recursive

blkio.io_queued_async:<device> Number of requests queued
for I/O asynchronous oper-
ations

blkio.io_queued_recursive

memory.rss Anonymous and swap
cache, not including tmpfs
(shmem)

memory

memory.pgpgin Number of pages paged
into memory

memory

memory.pgpgout Number of pages paged out
of memory

memory

memory.active_anon Anonymous and swap
cache on active least-
recently-used (LRU) list,
including tmpfs (shmem)

memory

memory.inactive_anon Anonymous and swap
cache on inactive LRU list,
including tmpfs (shmem)

memory

memory.active_file File-backed memory on ac-
tive LRU list

memory

memory.inactive_file File-backed memory on in-
active LRU list

memory

memory.hierarchical\ Memory limit for the memory

_memory_limit Hierarchy that contains the
memory cgroup of job

memory.hierarchical\ Memory plus swap limit for memory

_memsw_limit Hierarchy that contains the
memory cgroup of job

Job Queue Metrics
Job queue metrics become available after workload manager jobs are run. They are produced by the
JobQueueSampler data producer.

946 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.1: List Of Job Queue Metrics

Metric Description

AvgJobDuration Average job duration of current jobs

AvgJobStartDelay Average job start delay of current jobs

CompletedJobs Successfully completed jobs

CoresInQueue Cores in queue

CoresUPInQueue Active cores in queue

EstimatedDelay Estimated delay time to execute jobs

FailedJobs Failed completed jobs

GPUsInQueue GPUs in queue

GPUsUPInQueue Active GPUs in queue

JobThroughput Average number of Jobs finished

NodesInQueue Number of nodes in the queue

NodesUPInQueue Active nodes in queue

QueuedJobs Queued jobs

RunningJobs Running jobs

RunningJobsMax Maximal running jobs

RunningJobsUtilization Running jobs utilization

Job GPU Metrics
The GPU metrics of section G.1.6 have a GPUSampler data producer (section 10.2.10). As the name
suggests, those metrics are about gathering the sampled GPU data from the devices themselves.

The job GPU metrics of this section have a JobSampler data producer. As the name suggests, these
metrics are about gathering the sampled job data from the GPU devices themselves.

In other words, the job GPU metrics are essentially the same metrics as in the GPU metrics section,
but are valid only for the job. This is reflected in their names, which are identical, except for the job_

prefix. Other differences of job GPU metrics in comparison with GPU metrics are that

• they are sampled only on the node that hosts the GPUs on which the job ran, and do not take
specific GPUs as a parameter.

• the metrics are listed in the monitoring measurable mode of cmsh only after jobs have run on the
GPUs.

Available job GPU metrics for V100 and A100 GPUs are listed in table G.1.8.
If the cluster has been configured with AMD GPUs (section 7.4 of the Installation Manual) then AMD

job GPU metrics become available. Metrics in the table that are also valid AMD job GPU metrics are
noted. Some metrics have been added and noted that are only valid for AMD GPUs.

Table G.1.8: Job GPU Metrics For Node

Job GPU Metric Description For Job On Node

job_gpu_dec_utilization GPU decoding usage

...continues

G.1 Metrics And Their Parameters 947

Table G.1.8: Job GPU Metrics For Node...continued

Job GPU Metric Description For Job On Node

job_gpu_ecc_dbe_agg Total double bit aggregate ECC errors

job_gpu_ecc_dbe_vol Total double bit volatile ECC errors

job_gpu_ecc_sbe_agg Total single bit aggregate ECC errors

job_gpu_ecc_sbe_vol Total single bit volatile ECC errors

job_gpu_enc_utilization GPU encoding usage

job_gpu_enforced_power_limit GPU-enforced power limit

job_gpu_mem_clock GPU memory clock (also for AMD GPU)

job_gpu_mem_copy_utilization Percentage of GPU memory copy used

job_gpu_mem_free Amount of GPU free memory

job_gpu_mem_total GPU framebuffer size (also for AMD GPU)

job_gpu_mem_used Amount of GPU memory used (also for AMD GPU)

job_gpu_mem_utilization GPU memory used percentage

job_gpu_memory_temp GPU memory temperature

job_gpu_nvlink_total_bandwidth Total NVLink bandwidth used

job_gpu_power_management_limit GPU power management limit

job_gpu_power_usage GPU power usage (also for AMD GPU)

job_gpu_power_violation Throttling duration due to power constraints

job_gpu_shutdown_temp GPU shutdown temperature

job_gpu_slowdown_temp GPU slowdown temperature

job_gpu_sm_clock GPU shader multiprocessor clock (also for AMD GPU)

job_gpu_temperature GPU temperature

job_gpu_thermal_violation Throttling duration due to thermal constraints

job_gpu_utilization GPU utilization (section 12.4.1)

job_gpu_wasted GPU wasted (section 12.4.1)

job_gpu_xid_error The value is the specific XID error

G.1.9 IPMI Metrics
The IPMI metrics correspond to metrics provided by the BMC devices. The metrics available depend on
the manufacturer, and are detected by BCM. The metrics listed in the following table are a limited list of
what may be detected on a system.

The data producer (section 10.2.10) for the IPMI metrics is the ipmi data producer.
Table G.1.9: IPMI Metrics

IPMI Metric Description

Current_<number>∗∗ Current seen by BMC sensor <number>, in amps
(file: sample_ipmi)

...continues

948 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.9: IPMI Metrics...continued

IPMI Metric Description

Exhaust_Temp Exhaust temperature, in Celsius

FETDRV_PG PowerEdge voltage sensor on IPMI board

Fan<number>_RPM RPM of Fan<number> as seen by BMC (file:
sample_ipmi)

Fan_Redundancy fan redundancy status

Inlet_Temp∗∗ Inlet Temperature, in Celsius (file: sample_ipmi)

M01_VDDQ_PG PowerEdge CPU voltage sensor
M01_VDDQ_PG

M01_VTT_PG PowerEdge CPU voltage sensor

M23_VDDQ_PG PowerEdge CPU voltage sensor

M23_VTT_PG PowerEdge CPU voltage sensor

NDC_PG PowerEdge system board voltage sensor

PFault_Fail_Safe PowerEdge sensor

PLL_PG PowerEdge sensor

PS1_PG_Fail PowerEdge sensor

PS2_PG_Fail PowerEdge sensor

Pwr_Consumption Power consumed by BMC, in watts (file:
sample_ipmi)

Temp Temperature, in Celsius

VSA_PG PowerEdge voltage sensor

VTT_PG PowerEdge voltage sensor

Voltage_<number>∗∗ Voltage seen by BMC sensor number, in Volts
(file: sample_ipmi)

** Standalone scripts, not built-ins.
If sampling from a head node, the script is in directory: /cm/local/apps/cmd/scripts/metrics/
For regular nodes, the script is in directory: /cm/images/default-image/cm/local/apps/cmd/scripts/metrics/

G.1.10 Redfish Metrics
By default Redfish metrics are sampled only when the BMC interface (section 3.7) starts with rf (e.g.
rf0, rf1 etc). The Redfish metric sampler is enabled by setting userdefinedresources as follows:

Example

[basecm11->device[node001]]% set userdefinedresources redfish

[basecm11->device[node001]]% commit

Redfish Standalone Script Metrics
An example script that samples Redfish metrics is the standalone script /cm/images/default-image/
cm/local/apps/cmd/scripts/metrics/sample_redfish:

https://www.dell.com/support/manuals/nl-nl/dell-opnmang-sw-v8.0.1/eemi_13g-v1/rdu-event-messages?guid=guid-0a608eff-2318-4c32-9395-499fa2b6a15e&lang=en-us
/cm/images/default-image/cm/local/apps/cmd/scripts/metrics/sample_redfish
/cm/images/default-image/cm/local/apps/cmd/scripts/metrics/sample_redfish

G.1 Metrics And Their Parameters 949

Table G.1.10: Redfish Standalone Script Metrics

Redfish Standalone Script Metrics Description

fan_speed Speed of fan (RPM)

psu_power The average power supply unit power (W)

sensor_reading Temperature sensor reading (C)

Redfish Metrics From CMDaemon Built-in Sampling
CMDaemon built-in sampling also samples Redfish metrics from the hardware:

Example

[basecm11->device[node001]]% latestmetricdata | head -2; latestmetricdata | grep ^RF

Measurable Parameter Type Value ...

-- --------- --------------------------------------- ---------

RF_Baseboard_0_PCB_0_Temp_0 reading Environmental/Redfish/Sensor reading 34 C

RF_Baseboard_0_PCB_1_Temp_0 reading Environmental/Redfish/Sensor reading 33.5 C

RF_Baseboard_0_PCB_2_Temp_0 reading Environmental/Redfish/Sensor reading 33 C

RF_Baseboard_0_StandbyHSC_0_Power_0 reading Environmental/Redfish/Sensor reading 34.746 W

RF_Baseboard_0_StandbyHSC_0_Temp_0 reading Environmental/Redfish/Sensor reading 33.4375 C

RF_C2C_0_Resource_MaxSpeed Environmental/Redfish/Port 0 B/s

RF_DIMM_Slot_AllowedSpeeds Environmental/Redfish/Memory no data

RF_DIMM_Slot_Capacity Environmental/Redfish/Memory 0 B

RF_DIMM_Slot_CapacityMiB Environmental/Redfish/Memory 0 B

RF_DIMM_Slot_Nvidia_RowRemappingFailed Environmental/Redfish/Memory 0

RF_GPU_0_DRAM_0_Memory_Metrics_Bandwidth Environmental/Redfish/Memorymetrics 0.0%

RF_GPU_0_DRAM_0_Memory_Metrics_CapacityUtilizat+ Environmental/Redfish/Memorymetrics 0.0%

RF_GPU_0_Processor_Metrics_Bandwidth Environmental/Redfish/Processormetrics 0.0%

RF_GPU_0_Processor_Metrics_LifeTime_Correctable+ Environmental/Redfish/Processormetrics 0

RF_GPU_0_Processor_Metrics_LifeTime_Uncorrectab+ Environmental/Redfish/Processormetrics 0

RF_GPU_0_Processor_Metrics_Nvidia_AccumulatedGP+ Environmental/Redfish/Processormetrics no data

RF_GPU_0_Processor_Metrics_Nvidia_AccumulatedSM+ Environmental/Redfish/Processormetrics no data

RF_GPU_0_Processor_Metrics_Nvidia_DMMAUtilizatio Environmental/Redfish/Processormetrics 0.0%

RF_GPU_0_Processor_Metrics_Nvidia_FP16Activity Environmental/Redfish/Processormetrics 0.0%

The preceding list is a truncated excerpt from an NVIDIA DGX system. The Redfish metrics that are
available depend on the vendor and hardware.

G.1.11 SMART Metrics
The SMART metrics correspond to metrics provided by SMART hard drive implementation. The metrics
available depend on the manufacturer, and are detected by BCM. The metrics listed in the following
table are a limited list of what may be detected on a system.

A SMART metric takes a block device name (sda, sdc, nvme0n1 and so on) as a parameter. Some
reported values, such as “spin up time” and “start/stop count” are not relevant on non-rotational (solid-
state) drives.

The data producer (section 10.2.10) for SMART metrics is the smart data producer.

950 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.11: SMART Metrics

SMART Metric Description

Command_Timeout Command timeout

Current_Pending_Sector Current pending sectors

Hardware_ECC_Recovered Hardware ECC recovered

Offline_Uncorrectable Uncorrectable sectors

Raw_Read_Error_Rate Raw read error rate

Reallocated_Sector_Ct Reallocated sectors count

Reported_Uncorrect Reported uncorrectable errors

UDMA_CRC_Error_Count UDMA CRC errors

G.1.12 Prometheus Metrics
Prometheus metrics are introduced in section 12.2.

The data producers for Prometheus metrics are JobSampler, JobMetadataSampler, and some others.
Table G.1.12: Prometheus Metrics

Prometheus Metric Description (for a job, unless asterisked)

job_blkio_io_merged Number of block I/Os (requests) merged into re-
quests for I/O operations by a cgroup

job_blkio_io_queued Number of requests queued for I/O operations
by a cgroup

job_blkio_io_service_bytes Reports the number of bytes transferred to or
from specific devices by a cgroup as seen by the
CFQ scheduler

job_blkio_io_service_bytes_total Reports the number of bytes transferred to or
from specific devices by a cgroup as seen by the
CFQ scheduler (for all jobs)∗

job_blkio_io_service_time_seconds Reports the total time in seconds between re-
quest dispatch and request completion for I/O
operations on specific devices by a cgroup as
seen by the CFQ scheduler

job_blkio_io_serviced Reports the number of I/O operations per-
formed on specific devices by a cgroup as seen
by the CFQ scheduler

job_blkio_io_wait_time_seconds Reports the total time I/O operations on specific
devices by a cgroup spent waiting for service in
the scheduler queues

...continues

G.1 Metrics And Their Parameters 951

Table G.1.12: Prometheus Metrics...continued

Prometheus Metric Description (for a job, unless asterisked)

job_blkio_sectors Reports the number of sectors transferred to or
from specific devices by a cgroup

job_blkio_time_seconds Reports the time that a cgroup had I/O access to
specific devices

job_cpuacct_stat_system System CPU time consumed by processes

job_cpuacct_stat_user User CPU time consumed by processes

job_cpuacct_usage_seconds CPU usage time consumed

job_memory_active_anon_bytes Anonymous and swap cache on active least-
recently-used (LRU) list, including tmpfs
(shmem), in bytes

job_memory_active_file_bytes File-backed memory on active LRU list, in bytes

job_memory_cache_bytes Page cache, including tmpfs (shmem), in bytes

job_memory_failcnt Reports the number of times that the mem-
ory limit has reached the value set in mem-
ory.limit_in_bytes

job_memory_hierarchical_memory_limit_bytes Memory limit for the hierarchy that contains the
memory cgroup, in bytes

job_memory_hierarchical_memsw_limit_bytes Memory plus swap limit for the hierarchy that
contains the memory cgroup, in bytes

job_memory_inactive_anon_bytes Anonymous and swap cache on inactive LRU
list, including tmpfs (shmem), in bytes

job_memory_inactive_file_bytes File-backed memory on inactive LRU list, in
bytes

job_memory_mapped_file_bytes Size of memory-mapped mapped files, includ-
ing tmpfs (shmem), in bytes

job_memory_memsw_failcnt Reports the number of times that the memory
plus swap space limit has reached the value set
in memory.memsw.limit_in_bytes

job_memory_memsw_max_usage_bytes Reports the maximum amount of memory and
swap space used by processes in the cgroup, in
bytes

job_memory_memsw_usage_bytes Reports the sum of current memory usage plus
swap space used by processes in the cgroup, in
bytes

job_memory_pgpgin_bytes Number of pages paged into memory

job_memory_pgpgout_bytes Number of pages paged out of memory

...continues

952 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.12: Prometheus Metrics...continued

Prometheus Metric Description (for a job, unless asterisked)

job_memory_rss_bytes Anonymous and swap cache, not including
tmpfs (shmem), in bytes

job_memory_swap_bytes Swap usage, in bytes

job_memory_unevictable_bytes Memory that cannot be reclaimed, in bytes,

job_memory_usage_bytes Reports the total current memory usage by pro-
cesses in the cgroup, in bytes

job_memory_usage_bytes_total Reports the total current memory usage by pro-
cesses in the cgroup, in bytes (for all jobs)∗

job_metadata_allocated_cpu_cores CPU cores used by a job by the user

job_metadata_allocated_gpus GPUs used by a job by the user

job_metadata_is_running Returns 1 if the job metadata sampler is running
a job

job_metadata_is_waiting Returns 1 if the job metadata sampler is waiting

job_metadata_num_cpus Number of CPUs that the job runs on

job_metadata_num_nodes Number of nodes that the job runs on

job_metadata_pending_jobs Number of pending jobs for the user

job_metadata_running_jobs Number of running jobs for the user

job_metadata_running_seconds Time the job has run

job_metadata_waiting_seconds Time the job has been waiting to run

users_job_effective_cpu_seconds:1w CPU seconds used by users over the past week∗

users_job_running_count:1w Number of jobs run by users over the past week∗

users_job_waiting_seconds:1w Time users have been waiting for jobs to run over
the past week∗

users_job_wall_clock_seconds:1w Time the jobs runs for users according to wall
time over the past week∗

users_job_wasted_cpu_seconds:1w CPU time wasted during users jobs over the past
week∗

∗ total in the past 7x24x60x60 seconds, as measured at the time of sampling

G.1.13 NetQ Metrics
NetQ metrics (table G.1.13) are metrics sourced from NetQ. Configuring NetQ with BCM is described
in section 3.11.

The data producer (section 10.2.10) for NetQ metrics is the netq data producer.

Table G.1.13: NetQ Metrics

NetQ Metric Description

NetQ_node_fan_speed Fan speed (RPM)

...continues

G.1 Metrics And Their Parameters 953

Table G.1.13: NetQ Metrics...continued

NetQ Metric Description

NetQ_node_nvlink_rx_all_flits NVLink packets received, control and data
(FLITs/s)

NetQ_node_nvlink_rx_data_flits NVLink packets received, data (FLITs/s)

NetQ_node_nvlink_tx_all_flits NVLink packets sent, control and data (FLITs/s)

NetQ_node_nvlink_tx_data_flits NVLink packets sent, data (FLITs/s)

NetQ_node_PSU_power_input Power supply power input (W)

NetQ_node_PSU_power_output Power supply power output (W)

NetQ_node_PSU_voltage_input Power supply voltage input (V)

NetQ_node_PSU_voltage_output Power supply voltage output (V)

NetQ_node_Temp_sensor Temperature sensor value (C)

NetQ health checks are covered in section G.2.4.

G.1.14 Kubernetes Metrics
Configuring Kubernetes with BCM is described in Chapter 4 of the Containerization Manual.

There were cluster Kubernetes metrics described earlier on in table G.1.1. Those were overview
metrics about Kubernetes.

The Kubernetes metrics in the following table G.1.14 are state metrics sourced from Kubernetes itself.
The data producer (section 10.2.10) for the Kubernetes metrics of this section is kubestatemetrics.

The metrics that are not tagged as [STABLE] are experimental, and may change in behavior during
Kubernetes updates.

Table G.1.6: Kubernetes Metrics

Kubernetes Metric Description

kube_configmap_annotations Kubernetes annotations converted to
Prometheus labels.

kube_configmap_created [STABLE] Unix creation timestamp

kube_configmap_info [STABLE] Information about configmap.

kube_configmap_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_configmap_metadata_resource_version Resource version representing a specific version
of the configmap.

kube_cronjob_annotations Kubernetes annotations converted to
Prometheus labels.

kube_cronjob_created [STABLE] Unix creation timestamp

kube_cronjob_info [STABLE] Info about cronjob.

...continues

https://handwiki.org/wiki/FLITs

954 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_cronjob_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_cronjob_metadata_resource_version [STABLE] Resource version representing a spe-
cific version of the cronjob.

kube_cronjob_next_schedule_time [STABLE] Next time the cronjob should be
scheduled. The time after lastScheduleTime, or
after the cron job’s creation time if it’s never been
scheduled. Use this to determine if the job is de-
layed.

kube_cronjob_spec_failed_job_history_limit Failed job history limit tells the controller how
many failed jobs should be preserved.

kube_cronjob_spec_successful_job_history_

limit

Successful job history limit tells the controller
how many completed jobs should be preserved.

kube_cronjob_spec_suspend [STABLE] Suspend flag tells the controller to sus-
pend subsequent executions.

kube_cronjob_status_active [STABLE] Active holds pointers to currently run-
ning jobs.

kube_cronjob_status_last_schedule_time [STABLE] LastScheduleTime keeps information
of when was the last time the job was success-
fully scheduled.

kube_cronjob_status_last_successful_time LastSuccessfulTime keeps information of when
was the last time the job was completed success-
fully.

kube_daemonset_annotations Kubernetes annotations converted to
Prometheus labels.

kube_daemonset_created [STABLE] Unix creation timestamp

kube_daemonset_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_daemonset_metadata_generation [STABLE] Sequence number representing a spe-
cific generation of the desired state.

kube_daemonset_status_current_number_

scheduled

[STABLE] The number of nodes running at least
one daemon pod and are supposed to.

kube_daemonset_status_desired_number_

scheduled

[STABLE] The number of nodes that should be
running the daemon pod.

kube_daemonset_status_number_available [STABLE] The number of nodes that should be
running the daemon pod and have one or more
of the daemon pod running and available

...continues

G.1 Metrics And Their Parameters 955

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_daemonset_status_number_misscheduled [STABLE] The number of nodes running a dae-
mon pod but are not supposed to.

kube_daemonset_status_number_ready [STABLE] The number of nodes that should be
running the daemon pod and have one or more
of the daemon pod running and ready.

kube_daemonset_status_number_unavailable [STABLE] The number of nodes that should be
running the daemon pod and have none of the
daemon pod running and available

kube_daemonset_status_observed_generation [STABLE] The most recent generation observed
by the daemon set controller.

kube_daemonset_status_updated_number_

scheduled

[STABLE] The total number of nodes that are
running updated daemon pod

kube_deployment_annotations Kubernetes annotations converted to
Prometheus labels.

kube_deployment_created [STABLE] Unix creation timestamp

kube_deployment_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_deployment_metadata_generation [STABLE] Sequence number representing a spe-
cific generation of the desired state.

kube_deployment_spec_paused [STABLE] Whether the deployment is paused
and will not be processed by the deployment
controller.

kube_deployment_spec_replicas [STABLE] Number of desired pods for a deploy-
ment.

kube_deployment_spec_strategy_

rollingupdate_max_surge

[STABLE] Maximum number of replicas that can
be scheduled above the desired number of repli-
cas during a rolling update of a deployment.

kube_deployment_spec_strategy_

rollingupdate_max_unavailable

[STABLE] Maximum number of unavailable
replicas during a rolling update of a deployment.

kube_deployment_status_condition [STABLE] The current status conditions of a de-
ployment.

kube_deployment_status_observed_generation [STABLE] The generation observed by the de-
ployment controller.

kube_deployment_status_replicas [STABLE] The number of replicas per deploy-
ment.

kube_deployment_status_replicas_available [STABLE] The number of available replicas per
deployment.

...continues

956 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_deployment_status_replicas_ready [STABLE] The number of ready replicas per de-
ployment.

kube_deployment_status_replicas_unavailable[STABLE] The number of unavailable replicas
per deployment.

kube_deployment_status_replicas_updated [STABLE] The number of updated replicas per
deployment.

kube_endpoint_address [STABLE] Information about Endpoint available
and non available addresses.

kube_endpoint_address_available (Deprecated since v2.6.0) Number of addresses
available in endpoint.

kube_endpoint_address_not_ready (Deprecated since v2.6.0) Number of addresses
not ready in endpoint.

kube_endpoint_annotations Kubernetes annotations converted to
Prometheus labels.

kube_endpoint_created [STABLE] Unix creation timestamp

kube_endpoint_info [STABLE] Information about endpoint.

kube_endpoint_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_endpoint_ports [STABLE] Information about the Endpoint ports.

kube_ingress_annotations Kubernetes annotations converted to
Prometheus labels.

kube_ingress_created [STABLE] Unix creation timestamp

kube_ingress_info [STABLE] Information about ingress.

kube_ingress_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_ingress_metadata_resource_version Resource version representing a specific version
of ingress.

kube_ingress_path [STABLE] Ingress host, paths and backend ser-
vice information.

kube_job_annotations Kubernetes annotations converted to
Prometheus labels.

kube_job_complete [STABLE] The job has completed its execution.

kube_job_created [STABLE] Unix creation timestamp

kube_job_info [STABLE] Information about job.

kube_job_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

...continues

G.1 Metrics And Their Parameters 957

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_job_owner [STABLE] Information about the Job’s owner.

kube_job_spec_completions [STABLE] The desired number of successfully
finished pods the job should be run with.

kube_job_spec_parallelism [STABLE] The maximum desired number of
pods the job should run at any given time.

kube_job_status_active
[STABLE] The number of actively running pods.

kube_job_status_completion_time [STABLE] CompletionTime represents time
when the job was completed.

kube_job_status_failed [STABLE] The number of pods which reached
Phase Failed and the reason for failure.

kube_job_status_start_time [STABLE] StartTime represents time when the
job was acknowledged by the Job Manager.

kube_job_status_succeeded [STABLE] The number of pods which reached
Phase Succeeded.

kube_lease_owner Information about the Lease’s owner.

kube_lease_renew_time Kube lease renew time.

kube_mutatingwebhookconfiguration_created Unix creation timestamp.

kube_mutatingwebhookconfiguration_info Information about the MutatingWebhookCon-
figuration.

kube_mutatingwebhookconfiguration_

metadata_resource_version

Resource version representing a specific version
of the MutatingWebhookConfiguration.

kube_mutatingwebhookconfiguration_

webhook_clientconfig_service

Service used by the apiserver to connect to a mu-
tating webhook.

kube_namespace_annotations Kubernetes annotations converted to
Prometheus labels.

kube_namespace_created [STABLE] Unix creation timestamp

kube_namespace_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

kube_namespace_status_condition The condition of a namespace.

kube_namespace_status_phase [STABLE] kubernetes namespace status phase.

kube_node_annotations Kubernetes annotations converted to
Prometheus labels.

kube_node_created [STABLE] Unix creation timestamp

kube_node_info [STABLE] Information about a cluster node.

kube_node_labels [STABLE] Kubernetes labels converted to
Prometheus labels.

...continues

958 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_node_role The role of a cluster node.

kube_node_spec_taint [STABLE] The taint of a cluster node.

kube_node_spec_unschedulable [STABLE] Whether a node can schedule new
pods.

kube_node_status_allocatable [STABLE] The allocatable for different resources
of a node that are available for scheduling.

kube_node_status_capacity [STABLE] The capacity for different resources of
a node.

kube_node_status_condition [STABLE] The condition of a cluster node.

kube_pod_completion_time [STABLE] Completion time in unix timestamp
for a pod.

kube_pod_container_info [STABLE] Information about a container in a
pod.

kube_pod_container_resource_limits The number of requested limit resource by
a container. It is recommended to use the
kube_pod_resource_limits metric exposed by
kube-scheduler instead, as it is more precise.

kube_pod_container_resource_requests The number of requested request resource by
a container. It is recommended to use the
kube_pod_resource_requests metric exposed by
kube-scheduler instead, as it is more precise.

kube_pod_container_state_started [STABLE] Start time in unix timestamp for a pod
container.

kube_pod_container_status_last_terminated_

exitcode

Describes the exit code for the last container in
terminated state.

kube_pod_container_status_last_terminated_

reason

Describes the last reason the container was in ter-
minated state.

kube_pod_container_status_ready [STABLE] Describes whether the containers
readiness check succeeded.

kube_pod_container_status_restarts_total [STABLE] The number of container restarts per
container.

kube_pod_container_status_running [STABLE] Describes whether the container is
currently in running state.

kube_pod_container_status_terminated [STABLE] Describes whether the container is
currently in terminated state.

kube_pod_container_status_terminated_

reason

Describes the reason the container is currently in
terminated state.

...continues

G.1 Metrics And Their Parameters 959

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_pod_container_status_waiting [STABLE] Describes whether the container is
currently in waiting state.

kube_pod_container_status_waiting_

reason

[STABLE] Describes the reason the container is
currently in waiting state.

kube_pod_created [STABLE] Unix creation timestamp

kube_pod_deletion_timestamp Unix deletion timestamp

kube_pod_info [STABLE] Information about pod.

kube_pod_init_container_info [STABLE] Information about an init container in
a pod.

kube_pod_init_container_resource_limits The number of requested limit resource by an
init container.

kube_pod_init_container_resource_requests The number of requested request resource by an
init container.

kube_pod_init_container_status_last_

terminated_reason

Describes the last reason the init container was
in terminated state.

kube_pod_init_container_status_ready [STABLE] Describes whether the init containers
readiness check succeeded.

kube_pod_init_container_status_restarts_

total

[STABLE] The number of restarts for the init con-
tainer.

kube_pod_init_container_status_running [STABLE] Describes whether the init container is
currently in running state.

kube_pod_init_container_status_terminated [STABLE] Describes whether the init container is
currently in terminated state.

kube_pod_init_container_status_terminated_

reason

Describes the reason the init container is cur-
rently in terminated state.

kube_pod_init_container_status_waiting [STABLE] Describes whether the init container is
currently in waiting state.

kube_pod_init_container_status_waiting_

reason

Describes the reason the init container is cur-
rently in waiting state.

kube_pod_ips Pod IP addresses

kube_pod_owner [STABLE] Information about the Pod’s owner.

kube_pod_restart_policy [STABLE] Describes the restart policy in use by
this pod.

kube_pod_service_account The service account for a pod.

kube_pod_start_time [STABLE] Start time in unix timestamp for a pod.

kube_pod_status_container_ready_time Readiness achieved time in unix timestamp for a
pod containers.

...continues

960 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_pod_status_initialized_time Initialized time in unix timestamp for a pod.

kube_pod_status_phase [STABLE] The pods current phase.

kube_pod_status_qos_class The pods current qosClass.

kube_pod_status_ready [STABLE] Describes whether the pod is ready to
serve requests.

kube_pod_status_ready_time Readiness achieved time in unix timestamp for a
pod.

kube_pod_status_reason The pod status reasons

kube_pod_status_scheduled [STABLE] Describes the status of the scheduling
process for the pod.

kube_pod_status_scheduled_time [STABLE] Unix timestamp when pod moved
into scheduled status

kube_pod_tolerations Information about the pod tolerations

kube_poddisruptionbudget_annotations Kubernetes annotations converted to
Prometheus labels.

kube_poddisruptionbudget_created [STABLE] Unix creation timestamp

kube_poddisruptionbudget_labels Kubernetes labels converted to Prometheus la-
bels.

kube_poddisruptionbudget_status_current_

healthy

[STABLE] Current number of healthy pods

kube_poddisruptionbudget_status_desired_

healthy

[STABLE] Minimum desired number of healthy
pods

kube_poddisruptionbudget_status_expected_

pods

[STABLE] Total number of pods counted by this
disruption budget

kube_poddisruptionbudget_status_observed_

generation

[STABLE] Most recent generation observed
when updating this PDB status

kube_poddisruptionbudget_status_pod_

disruptions_allowed

[STABLE] Number of pod disruptions that are
currently allowed

kube_replicaset_created [STABLE] Unix creation timestamp

kube_replicaset_metadata_generation [STABLE] Sequence number representing a spe-
cific generation of the desired state.

kube_replicaset_owner [STABLE] Information about the ReplicaSet’s
owner.

kube_replicaset_spec_replicas [STABLE] Number of desired pods for a Repli-
caSet.

...continues

G.1 Metrics And Their Parameters 961

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_replicaset_status_fully_labeled_

replicas

[STABLE] The number of fully labeled replicas
per ReplicaSet.

kube_replicaset_status_observed_generation [STABLE] The generation observed by the Repli-
caSet controller.

kube_replicaset_status_ready_replicas [STABLE] The number of ready replicas per
ReplicaSet.

kube_replicaset_status_replicas [STABLE] The number of replicas per ReplicaSet.

kube_replicationcontroller_created [STABLE] Unix creation timestamp

kube_replicationcontroller_metadata_

generation

[STABLE] Sequence number representing a spe-
cific generation of the desired state.

kube_replicationcontroller_owner Information about the ReplicationController’s
owner.

kube_replicationcontroller_spec_replicas [STABLE] Number of desired pods for a Replica-
tionController.

kube_replicationcontroller_status_

available_replicas

[STABLE] The number of available replicas per
ReplicationController.

kube_replicationcontroller_status_fully_

labeled_replicas

[STABLE] The number of fully labeled replicas
per ReplicationController.

kube_replicationcontroller_status_

observed_generation

[STABLE] The generation observed by the Repli-
cationController controller.

kube_replicationcontroller_status_ready_

replicas

[STABLE] The number of ready replicas per
ReplicationController.

kube_replicationcontroller_status_replicas [STABLE] The number of replicas per Replica-
tionController.

kube_resourcequota [STABLE] Information about resource quota.

kube_resourcequota_created [STABLE] Unix creation timestamp

kube_secret_created [STABLE] Unix creation timestamp

kube_secret_info [STABLE] Information about secret.

kube_secret_metadata_resource_version Resource version representing a specific version
of secret.

kube_secret_type [STABLE] Type about secret.

kube_service_created [STABLE] Unix creation timestamp

kube_service_info [STABLE] Information about service.

kube_service_spec_type [STABLE] Type about service.

kube_statefulset_created [STABLE] Unix creation timestamp

...continues

962 Metrics, Health Checks, Enummetrics, And Actions

Table G.1.6: Kubernetes Metrics...continued

Kubernetes Metric Description

kube_statefulset_metadata_generation [STABLE] Sequence number representing a spe-
cific generation of the desired state for the State-
fulSet.

kube_statefulset_persistentvolumeclaim_

retention_policy

Count of retention policy for StatefulSet tem-
plate PVCs

kube_statefulset_replicas [STABLE] Number of desired pods for a State-
fulSet.

kube_statefulset_status_current_revision [STABLE] Indicates the version of the StatefulSet
used to generate Pods in the sequence [0,curren-
tReplicas).

kube_statefulset_status_observed_

generation

[STABLE] The generation observed by the State-
fulSet controller.

kube_statefulset_status_replicas [STABLE] The number of replicas per State-
fulSet.

kube_statefulset_status_replicas_available The number of available replicas per StatefulSet.

kube_statefulset_status_replicas_current [STABLE] The number of current replicas per
StatefulSet.

kube_statefulset_status_replicas_ready [STABLE] The number of ready replicas per
StatefulSet.

kube_statefulset_status_replicas_updated [STABLE] The number of updated replicas per
StatefulSet.

kube_statefulset_status_update_revision [STABLE] Indicates the version of the StatefulSet
used to generate Pods in the sequence [replicas-
updatedReplicas,replicas)

kube_storageclass_created [STABLE] Unix creation timestamp

kube_storageclass_info [STABLE] Information about storageclass.

kube_validatingwebhookconfiguration_createdUnix creation timestamp.

kube_validatingwebhookconfiguration_info Information about the ValidatingWebhookCon-
figuration.

kube_validatingwebhookconfiguration_

metadata_resource_version

Resource version representing a specific version
of the ValidatingWebhookConfiguration.

kube_validatingwebhookconfiguration_

webhook_clientconfig_service

Service used by the apiserver to connect to a val-
idating webhook.

G.1 Metrics And Their Parameters 963

G.1.15 Parameters For Metrics
Metrics have the parameters indicated by the left column in the following example:

Example

[basecm11->monitoring->measurable[CPUUser]]% show

Parameter Value

----------------------- ----------------------------

Class CPU

Consolidator default (ProcStat)

Cumulative yes

Description CPU time spent in user mode

Disabled no (ProcStat)

Gap 0 (ProcStat)

Maximal age 0s (ProcStat)

Maximal samples 4,096 (ProcStat)

Maximum 0

Minimum 0

Name CPUUser

Parameter

Producer ProcStat

Revision

Type Metric

Unit Jiffies/s

If the value is inherited from the producer, then it is shown in parentheses next to the value. An
inherited value can be overwritten by setting it directly for the parameter of a measurable.

The meanings of the parameters are:

Class: A choice assigned to a metric. It can be an internal type, or it can be a standalone class type. A
slash (/) is used to separate class levels. A partial list of the class values is:

• CPU: CPU-related

• Disk: Disk-related

• Disk/Smart: SMART Disk-related

• Fabric: Fabric-related

• GPU: GPU-related

• Internal: An internal metric

• Job: Job metric

• License: License-related

• Memory: Memory-related

• Network: Network-related

• OS: Operating-system-related

• Process: Process-related

• Prometheus: Prometheus-related

• Total: Total cluster-wide-related

• Workload: Workload-related

• Environmental: Environmental-related

Consolidator: This is described in detail in sections 10.4.3 and 10.5.2

964 Metrics, Health Checks, Enummetrics, And Actions

Cumulative: If set to no, then the raw value is treated as not cumulative (for example, CoresUp), and
the raw value is presented as the metric value.

If set to yes, then the metric is treated as being cumulative, which means that a rate (per second)
value is presented.

More explicitly: When set to yes, it means that the raw sample used to calculate the metric is
expected to be cumulative, like, for example, the bytes-received counter for an Ethernet interface.
This in turn means that the metric is calculated from the raw value by taking the difference in raw
sample measurement values, and dividing it by the time period over which the raw values are
sampled. Thus, for example:

• The bytes-received raw measurements, which accumulate as the packets are received, and are
in bytes, and have Cumulative set to yes, and then have a corresponding metric, BytesRecv,
with a value in bytes/second.

• The system uptime raw measurements, which accumulate at the rate of 1 second per second,
and are in seconds, have Cumulative set to yes, and have a corresponding metric, Uptime,
with a value that uses no units. Ideally, the metric has a value of 1, but in practice the mea-
sured value varies a little due to jitter.

Description: Description of the raw measurement used by the metric. Empty by default.

Disabled: If set to no (default) then the metric runs.

Gap: The number of samples that are allowed to be missed before a value of NaN is set for the value of
the metric.

Maximal age: the maximum age of RLE samples that are kept. If Maximal age is set to 0 then the
sample age is not considered. Units can be w, d, h, m, s (weeks, days, hours, minutes, seconds),
with s as the default.

Maximal samples: the maximum number of RLE samples that are kept. If Maximal samples is set to 0

then the number of sample age is not considered.

Maximum: the value that the y-axis maximum takes in graphs plotted in Base View by default. If the
maximum of the y-values is more than the default y-axis maximum value, then the maximum of
the y-values becomes the y-axis maximum.1

Minimum: the value that the y-axis minimum takes in graphs plotted in Base View by default. If the
minimum of the y-values is less than the default y-axis minimum value, then the minimum of the
y-values becomes the y-axis minimum.1

Name: The name given to the metric.

Parameter: Parameter used for this metric. For example, eth0 with the metric BytesRecv

Producer: The data producer that produces the metric

Revision: User-definable revision number for the object

Type: This can be one of metric, healthcheck, or enummetric
1To clarify the concept, a case can be considered where minimum=0, maximum=3 are set. If a data point with a y-value of 2 is

plotted on a graph, then the y-axis spans the range from 0 to 3 by default.
However

• if the data point has a y-value of 4 instead, then it means the y-axis maximum of 3 is re-sized from its default of 3 to the
value of 4, so that the y-axis now spans from 0 to 4.

• if the data point has a y-value of -1 instead, then it means the y-axis minimum of 0 is re-sized from its default of 0 to the
value of -1, so that the y-axis now spans from -1 to 3.

G.1 Metrics And Their Parameters 965

Unit: A unit for the metric. For example: B/s (bytes/second) for BytesRecv metric, or unit-less for the
Uptime metric. A percent is indicated with %

966 Metrics, Health Checks, Enummetrics, And Actions

G.2 Health Checks And Their Parameters
A list of health checks can be viewed, for example, for the head node, using cmsh as follows (sec-
tion 10.5.3):

[basecm11 ~]# cmsh -c "monitoring measurable; list healthcheck"

The health checks listed in this section are classed into 4 kinds:

1. Regular health checks (section 10.2.4) are listed and described in section G.2.1.

2. GPU health checks (section G.2.2)

3. Redfish health checks (section G.2.3)

4. NetQ health checks (section G.2.4)

G.2 Health Checks And Their Parameters 967

G.2.1 Regular Health Checks
Table G.2.1: List Of Health Checks

Name Query (script response is PASS/FAIL)

ManagedServicesOk∗ Are CMDaemon-monitored services all OK?
If the response is FAIL, then at least one of the services
being monitored is failing. The latesthealtdata -v com-
mand (section 10.6.3) should show which one(s). After cor-
recting the problem with the service, a reset of the service
is normally carried out (section 3.14, page 166).
There is also a related ManagedServicesOk metric on
page 926.

Mon::Storage Is space available for the monitoring system metrics (sec-
tion G.1.4)?

chrootprocess Are there daemon processes running using chroot in soft-
ware images? Here: yes = FAIL. On failure, kill cron dae-
mon processes running in the software images.

cm-chroot-sw-img Are there dangling mounts left behind of images created
by cm-chroot-sw-img? Here: yes = FAIL. The cluster ad-
ministrator is expected to inspect and unmount the dan-
gling mounts.

cmha-status Are both head nodes up and running?

cmsh ∗ Is cmsh available?

cuda-dcgm Is cuda-dcgm available?

defaultgateway Is there a default gateway available?

dellnss If running, is the Dell NFS Storage Solution healthy?

diskspace Is there less local disk space available to non-root users
than any of the space parameters specified?
The space parameters can be specified as MB, GB, TB, or as per-
centages with %. The default severity of notices from this check
is 10, when one space parameter is used. For more than one
space parameter, the severity decreases by 10 for each space pa-
rameter, sequentially, down to 10 for the last space parameter.
By default a space parameter of 10% is assumed. Another, also
optional, non-space parameter, the filesystem mount point pa-
rameter, can be specified after the last space parameter to track
filesystem space, instead of disk space. A metric-based alterna-
tive to tracking filesystem space changes is to use the built-in
metric freespace (page 925) instead.

...continued

968 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

Examples:

• diskspace 10%

less than 10% space = FAIL, severity 10

• diskspace 10% 20% 30%

less than 30% space = FAIL, with severity levels as
indicated:

space left severity

10% 30

20% 20

30% 10

• diskspace 10GB 20GB

less than 20GB space = FAIL, severity 10

less than 10GB space = FAIL, severity 20

• diskspace 10% 20% /var

For the filesystem /var:

less than 20% space = FAIL, severity 10

less than 10% space = FAIL, severity 20

...continued

G.2 Health Checks And Their Parameters 969

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

dmesg Is dmesg output OK?
Regexes to parse the output can be constructed in the
configuration file at /cm/ local/ apps/ cmd/ scripts/

healthchecks/ configfiles/ dmesg. py

docker Is Docker running OK? Checks for Docker server availabil-
ity and corruption, dead containers, proper endpoints

dockerregistry Is the Docker registry running OK? Checks registry end-
point and registry availability

exports Are all filesystems as defined by the cluster management
system exported?

etcd Are the core etcd processes of Kubernetes running OK?
Checks endpoints and interfaces

failedprejob Are there failed prejob health checks (section 7.8.2)? Here:
yes = FAIL.
By default, the job ID is saved under /cm/local/

apps/<scheduler>/var/:

• On FAIL, in failedprejobs.

• On PASS, in allprejobs

The maximum number of IDs stored is 1000 by default.
The maximum period for which the IDs are stored is 30
days by default. Both these maxima can be set with the
failedprejob health check script.

failover Is the failover status OK?

hpraid Are the HP Smart Array controllers OK?

ib Is the InfiniBand Host Channel Adapter working prop-
erly?
A configuration file for this health check is at
/cm/ local/ apps/ cmd/ scripts/ healthchecks/

configfiles/ ib. py

...continued

/cm/local/apps/cmd/scripts/healthchecks/configfiles/dmesg.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/dmesg.py
/cm/local/apps/
/cm/local/apps/
/var/
/cm/local/apps/cmd/scripts/healthchecks/configfiles/ib.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/ib.py

970 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

interfaces Are the interfaces up and running at full speed?

ipmihealth Is the BMC (IPMI or iLO) health OK? Uses the script
sample_ipmi.

kubernetescertsexpiration Are Kubernetes certificates valid for at least the next 30
days?

kuberneteschildnode Are all Kubernetes child nodes up?

kubernetescomponentsstatus Are all expected agents and services up and running for
active nodes?

kubernetesnodesstatus Is the status for all Kubernetes nodes OK?

kubernetespodsstatus Is the status for all pods OK?

ldap Can the ID of the user be looked up with LDAP?

lustre Is the Lustre filesystem running OK?

megaraid Are the MegaRAID controllers OK?
Either the proprietary MegaCLI software, or its successor, the
proprietary StorCLI software is needed for this health check. The
MegaCLI software was originally provided by LSI Logic, but LSI
is now part of Broadcom.
Both the MegaCLI software and the StorCLI software are now
available from the Broadcom website (http://www.broadcom.
com).
For BCM 10 and onwards, the healthcheck first checks for Stor-
CLI, and then for MegaCLI, and uses the first binary that is
detected. For BCM versions prior to version 10, the healthcheck
first checks for MegaCLI, and then StorCLI, and uses the first
binary that is detected.

...continued

http://www.broadcom.com
http://www.broadcom.com

G.2 Health Checks And Their Parameters 971

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

mounts Are all mounts defined in the fstab OK?

mysql Is the status and configuration of MySQL correct?

node-hardware-profile Is the specified node’s hardware configuration during
health check use unchanged?

The options to this script are described using the “-h” help
option. Before this script is used for health checks, the
specified hardware profile is usually first saved with the -s

option. Eg: “node-hardware-profile -n node001 -s

hardwarenode001”

ntp∗ Is NTP synchronization happening?

oomkiller Has the oomkiller process run? Yes=FAIL. The oomkiller

health check checks if the oomkiller process has run.
The configuration file /cm/local/apps/cmd/scripts/

healthchecks/configfiles/oomkiller.conf for the
oomkiller health check can be configured to re-
set the response to PASS after one FAIL is logged,
until the next oomkiller process runs. The pro-
cesses killed by the oomkiller process are logged in
/var/spool/cmd/save-oomkilleraction.
A consideration of the causes and consequences of the killed pro-
cesses is strongly recommended. A reset of the node is generally
recommended.

opalinkhealth Are the quality and the integrity of the Intel OPA HFI link
OK?

Overall_Health:<sda> Overall disk health status (SMART response) for specified
device, in this case <sda>.

SMART_Health:<sda> Overall SMART health as reported by the exit code, for a
specified device, in this case <sda>.

rogueprocess Are the processes that are running legitimate (ie, not
’rogue’)? Besides the FAIL/PASS/UNKNOWN response to
CMDaemon, also returns a list of rogue process IDs to file
descriptor 3 (InfoMessages), which the killprocess ac-
tion (page 978) can then go ahead and kill.
Illegitimate processes are processes that should not be run-
ning on the node. An illegitimate process is at least one of
the following, by default:

• not part of the workload manager service or its jobs

• not a root- or system-owned process

• in the state Z, T, W, or X. States are described in the
ps man pages in the section on “PROCESS STATE
CODES”

...continued

/cm/local/apps/cmd/scripts/healthchecks/configfiles/oomkiller.conf
/cm/local/apps/cmd/scripts/healthchecks/configfiles/oomkiller.conf
/var/spool/cmd/save-oomkilleraction

972 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

Rogue process criteria can be configured in the
file /cm/local/apps/cmd/scripts/healthchecks/

configfiles/rogueprocess.py within the software
image. To implement a changed criteria configuration,
the software image used by systems on which the health
check is run should be updated (section 5.6). For example,
using: cmsh -c "device; imageupdate -c default -w"

for the default category of nodes.

schedulers Are the queue instances of all schedulers on a node healthy
?

smart Is the SMART response healthy? The severities can
be configured in the file /cm/local/apps/cmd/scripts/

healthchecks/configfiles/smart.conf.
By default, if a drive does not support the SMART com-
mands and results in a "Smart command failed" info mes-
sage for that drive, then the healthcheck is configured to
give a PASS response. This is because the mere fact that
the drive is a non-SMART drive should not be a reason to
conclude that the drive is unhealthy.
The info messages can be suppressed by setting an al-
lowed list of the disks to be checked within /cm/local/

apps/cmd/scripts/healthchecks/smart.

ssh2node Is passwordless ssh root login, from head to a node that is
up, working?
Some details of its behavior are:

• The health check fails on the head node if root ssh
login to the head node has been disabled.

• The health check fails if ssh certificate-based access,
to a non-head node that is in the UP state, fails, even if
login (key-based) access is still available. The UP state
is determined by whether CMDaemon is running on
that node.

• If the regular node is in a DOWN state—which could
be due to CMDaemon being down, or the node hav-
ing been powered off gracefully, or the node suffer-
ing a sudden power failure—then the health check
responds with a PASS. The idea here is to check key
or certificate access, and decouple it from the node
state.

...continued

/cm/local/apps/cmd/scripts/healthchecks/configfiles/rogueprocess.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/rogueprocess.py
/cm/local/apps/cmd/scripts/healthchecks/configfiles/smart.conf
/cm/local/apps/cmd/scripts/healthchecks/configfiles/smart.conf
/cm/local/apps/cmd/scripts/healthchecks/smart
/cm/local/apps/cmd/scripts/healthchecks/smart

G.2 Health Checks And Their Parameters 973

Table G.2.1: List Of Health Checks...continued

Name Query (response is PASS/FAIL)

swraid Are the software RAID arrays healthy?

testhealthcheck A health check script example for creating scripts, or setting a
mix of PASS/FAIL/UNKNOWN responses. The source includes
examples of environment variables that can be used, as well as
configuration suggestions.

* built-ins, not standalone scripts.
If sampling from a head node, a standalone script is in directory:
/cm/local/apps/cmd/scripts/healthchecks/

If sampling from a regular node, a standalone script is in directory:
/cm/images/default-image/cm/local/apps/cmd/scripts/healthchecks/

G.2.2 GPU Health Checks
The data producer (section 10.2.10) for the GPU health checks of this section is GPUSampler.

The NVIDIA GPU health checks of this section, as the GPUSampler data producer name suggests, is
about gathering the sampled GPU data from the devices themselves.

The device parameter for the GPU health checks in this section, unless otherwise noted, requires as
a parameter the device slot number that the GPU uses. The parameter takes the form gpu0, gpu1, and
so on. It is appended to the metric with a colon character. For example, the gpu_health_inforom health
check, if used with gpu1, is specified as:

Example

gpu_health_inforom:gpu1

Available GPU health checks for V100 and A100 GPUs are listed in table G.2.2. The available GPU
metrics are displayed in table G.1.6.

Table G.2.2: List Of GPU Health Checks

Name Query (script response is PASS/FAIL)

gpu_health_driver Is the driver-related subsystem OK?

gpu_health_hostengine∗ Is the host engine status, for all GPU devices on that node,
OK?

gpu_health_inforom Is the Inforom OK?

gpu_health_mcu Is the microcontroller unit OK?

gpu_health_mem Is the memory subsystem OK?

gpu_health_nvlink Is the NVLINK system OK?

gpu_health_nvswitch_fatal Is the NVSwitch showing no fatal errors?

...continued

974 Metrics, Health Checks, Enummetrics, And Actions

Table G.2.2: List Of GPU Health Checks...continued

Name Query (response is PASS/FAIL)

gpu_health_nvswitch_non_fatal Is the NVSwitch showing no non-fatal errors?

gpu_health_overall∗∗ Is the overall GPU health OK?

gpu_health_pcie Is the PCIe system OK?

gpu_health_pmu Is the power management unit OK?

gpu_health_power Is the power OK?

gpu_health_sm Is the streaming multiprocessor OK?

gpu_health_thermal Is the temperature OK?

* Specified without a GPU because the check is a check for all GPUs.
** If specified without a GPU, then the check is a check for all GPUs.

For example, for the gpu_health_overall health check:
gpu_health_overall is for all the GPUs

gpu_health_overall:gpu0 is just for GPU0

G.2.3 Redfish Health Checks
The available Redfish health checks are displayed in table G.2.3.

Table G.2.3: Redfish health checks

Redfish Health Check Description

chassis_health Health status of chassis

cpu_health Health status of processor

memory_health Health status of memory

storage_health Health status of storage

device_health Health status of storage device

drive_health Health status of storage drive

volume_health Health status of storage volume

psu_health Health status of power supply

fan_health Health status of a fan

sensor_health Health status of a sensor

pcie_health Health status of PCIe device

manager_health Health status of manager (e.g.: HPE iLO)

G.2.4 NetQ Health Checks
NetQ health checks (table G.1.13) are healtcheck measurables sourced from NetQ. Configuring NetQ
with BCM is described in section 3.11.

The data producer (section 10.2.10) for NetQ measurables is the netq data producer.

G.2 Health Checks And Their Parameters 975

Table G.1.13: NetQ Health Checks

NetQ Health Check Query (Response is PASS/FAIL)

NetQ_node_fan_status Is the fan working?

NetQ_node_NVLink_status Is NVLink up?

NetQ_node_PSU_status Is the power supply unit working?

NetQ_node_Temp_status Is the temperature sensor working?

G.2.5 Parameters For Health Checks
Health checks have the parameters indicated by the left column in the example below:

Example

[myheadnode->monitoring->measurable]% show cmsh

Parameter Value

-------------------------------- --

Class Internal

Consolidator - (cmsh)

Description Checks whether cmsh is available, i.e. can we

use cmsh for the default cluster?

Disabled no (cmsh)

Gap 0 (cmsh)

Maximal age 0s (cmsh)

Maximal samples 4,096 (cmsh)

Name cmsh

Parameter

Producer cmsh

Revision

Type HealthCheck

If the value is inherited from the producer, then it is shown in parentheses next to the value. An inherited
value can be overwritten by setting it directly for the parameter of a measurable.
The parameters are a subset of the parameters for metrics described in section G.1.15.

976 Metrics, Health Checks, Enummetrics, And Actions

G.3 Enummetrics
Table G.3: List Of Enummetrics

Name Query

DeviceStatus What is the status of the device? Possible values are:

• up

• down

• closed

• installing

• installer_failed

• installer_rebooting,

• installer_callinginit

• installer_unreachable

• installer_burning

• burning

• unknown

• opening

• going_down

• pending

• no data

...continued

G.3 Enummetrics 977

Table G.3: List Of Enummetrics...continued

Name Query

wlm_slurm_state What is the status of the device allocated to Slurm? Possible values are:

• allocated

• completing

• down

• drain

• draining

• fail

• failing

• idle

• maint

• mixed

978 Metrics, Health Checks, Enummetrics, And Actions

G.4 Actions And Their Parameters
G.4.1 Actions

Table G.4.1: List Of Actions

Name Description

Drain Allows no new processes on a compute node from the workload manager.
This means that already running jobs are permitted to complete. Usage
Tip: Plan for undrain from another node becoming active

Send e-mail to

administrators

Sends mail using the mailserver that was set up during server configura-
tion. Default destination is root@localhost. The e-mail address that it is
otherwise sent to is specified by the recipient parameter for this action.

Event Send an event to users with a connected client

ImageUpdate Update the image on the node

PowerOff Powers off, hard

PowerOn Powers on, hard

PowerReset Power reset, hard

Reboot Reboot via the system, trying to shut everything down cleanly, and then
start up again

killprocess∗ Kills processes seen by CMDaemon with the KILL (-9) signal. The PIDs
are passed via the CMD_INFO_MESSAGE environmental variable. Syntax:
killprocess <PID1[,<PID2>,...]>
This action is designed to work with rogueprocess (page 971)

remount∗ remounts all defined mounts

testaction∗ An action script example for users who would like to create their own
scripts. The source has helpful remarks about the environment variables
that can be used as well as tips on configuring it generally

Shutdown Power off via system, trying to shut everything down cleanly

Undrain node Allow processes to run on the node from the workload manager

* standalone scripts, not built-ins.
If running from a head node, the script is in directory: /cm/local/apps/cmd/scripts/actions/
If running from a regular node, the script is in directory: /cm/images/default-image/cm/local/apps/
cmd/scripts/actions/

G.4.2 Parameters For A Monitoring Action
The default monitoring actions are listed in section 10.4.4.

All actions have in common the parameters shown by the left column, illustrated by the example
below for the drain action:

Example

[myheadnode->monitoring->action]% show drain

Parameter Value

------------------ -----------------------

Action Drain node from all WLM

Allowed time

Disable no

Name Drain

Revision

Run on Active

Type DrainAction

/cm/images/default-image/cm/local/apps/

G.4 Actions And Their Parameters 979

Out of the full list of default actions, the actions with only the common parameter settings are:

• Poweron: Powers off the node

• PowerOff: Powers off the node

• PowerReset: Hard resets the node

• Drain: Drains the node (does not allow new jobs on that node)

• Undrain: Undrains the node (allows new jobs on that node)

• Reboot: Reboots node via the operating system.

• Shutdown: Shuts the node down via the operating system.

• ImageUpdate: Updates the node from the software image

• Event: Sends an event to users connected with cmsh or Base View

Extra Parameters For Some Actions
The following actions have extra parameters:

Action of the type ScriptAction:

• killprocess: A script that kills a specified process

• testaction: A test script

• remount: A script to remount all devices

The extra parameters for an action of type ScriptAction are:

– Arguments: List of arguments that are taken by the script

– Node environment: Does the script run in the node environment?

– Script: The script path

– timeout: Time within which the script must run before giving up

Action of the type EmailAction:

• Send e-mail to administrators: Sends an e-mail out, by default to the administrators

The extra parameters for an action of type EmailAction are:

– All administrators: sends the e-mail to the list of users in the Administrator e-mail set-
ting in partition[base] mode

– Info: the body of the e-mail message

– Recipients: a list of recipients

H
Workload Manager

Configuration Files Updated By
CMDaemon

This appendix lists workload manager configuration files changed by CMDaemon, events causing such
change, and the file or property changed.

H.1 Slurm
File/Property Updates What? Updated During

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes, hostname

<Slurm instance name>/slurm.conf change

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes, hostname

<Slurm instance name>/slurmdbd.conf change

/cm/shared/apps/slurm/var/etc/ all nodes Add/Remove/Update nodes

<Slurm instance name>/gres.conf

/cm/shared/apps/slurm/var/etc/ head node Add/Remove/Update nodes

<Slurm instance name>/topology.conf

H.2 PBS Professional/OpenPBS

File/Property Updates What? Updated During

$PBS_CONF_FILE head node, software image hostname/domain change, failover

/cm/local/apps/<openpbs or pbspro>/ head node hostname change, failover

var/spool/mom_priv/config

The default value of $PBS_CONF_FILE in BCM
is /cm/local/apps/<openpbs or pbspro>/var/etc/pbs.conf

H.3 LSF

/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/
/cm/shared/apps/slurm/var/etc/

982 Workload Manager Configuration Files Updated By CMDaemon

File/Property Updates What? Updated During

$LSF_ENVDIR/lsf.conf head node hostname/domain change, failover

$LSF_ENVDIR/lsf.cluster.<clustername> head node add/remove/update nodes

$LSF_ENVDIR/lsf.sudoers head node hostname/domain change, failover

$LSF_ENVDIR/hosts cloud-director add/remove/update cloud nodes

$LSF_ENVDIR/lsbatch/<clustername>/ head node add/remove/update queues

configdir/lsb.queues

$LSF_ENVDIR/lsbatch/<clustername>/ head node add/remove/update nodes

configdir/lsb.hosts

The default value of $LSF_ENVDIR in BCM
is /cm/shared/apps/lsf/var/conf/<clustername>

On each node where the lsfd service runs, CMDaemon creates a symlink /etc/lsf.conf that points
to $LSF_ENVDIR/lsf.conf. This is required by LSF daemons.

/lsf.conf
/lsf.cluster.
/lsf.sudoers
/hosts
/lsbatch/
configdir/lsb.queues
/lsbatch/
configdir/lsb.hosts
/cm/shared/apps/lsf/var/conf/
/etc/lsf.conf
/lsf.conf

I
Changing The LDAP Password

The administrator may wish to change the LDAP root password. This procedure has two steps:

• setting a new password for the LDAP server (section I.1), and

• setting the new password in cmd.conf (section I.2).

It is also a good idea to do some checking afterwards (section I.3).

I.1 Setting A New Password For The LDAP Server
An encrypted password string can be generated as follows:

[root@basecm11 ~]# module load openldap

[root@basecm11 ~]# slappasswd

New password:

Re-enter new password:

SSHAJ/3wyO+IqyAwhh8Q4obL8489CWJlHpLg

The input is the plain text password, and the output is the encrypted password. The encrypted
password is set as a value for the rootpw tag in the slapd.conf file on the head node:

[root@basecm11 ~]# grep ^rootpw /cm/local/apps/openldap/etc/slapd.conf

rootpw SSHAJ/3wyO+IqyAwhh8Q4obL8489CWJlHpLg

The password can also be saved in plain text instead of as an SSHA hash generated with slappasswd,
but this is considered insecure.

After setting the value for rootpw, the LDAP server is restarted:

[root@basecm11 ~]# systemctl restart slapd

I.2 Setting The New Password In cmd.conf

The new LDAP password (the plain text password that generated the encrypted password after entering
the slappasswd command in section I.1) is set in cmd.conf. It is kept as clear text for the entry for the
LDAPPass directive (Appendix C):

[root@basecm11 ~]# grep LDAPPass /cm/local/apps/cmd/etc/cmd.conf

LDAPPass = "Mysecret1dappassw0rd"

CMDaemon is then restarted:

[root@basecm11 ~]# systemctl restart cmd

984 Changing The LDAP Password

I.3 Checking LDAP Access
For a default configuration with user cmsupport and domain cm.cluster, the following checks can be
run from the head node (some output truncated):

• anonymous access:

[root@basecm11 ~]# ldapsearch -x

extended LDIF

#

LDAPv3

base <dc=cm,dc=cluster> (default) with scope subtree

...

• root cn without a password (this should fail):

[root@basecm11 ~]# ldapsearch -x -D 'cn=root,dc=cm,dc=cluster'

ldap_bind: Server is unwilling to perform (53)

additional info: unauthenticated bind (DN with no password) disallowed

[root@basecm11 ~]#

• root cn with a password (this should work):

[root@basecm11 ~]# ldapsearch -x -D 'cn=root,dc=cm,dc=cluster' -w Mysecret1dappassw0rd

extended LDIF

#

LDAPv3

base <dc=cm,dc=cluster> (default) with scope subtree

...

J
Tokens

This appendix describes authorization tokens available for profiles. Profiles are introduced in Sec-
tion 6.4:

Useful for listing services and tokens are the following cmsh commands, available within the profile
mode:

• allservices

• alltokens

• showservices

Example

[root@basecm11 ~]# cmsh

[basecm11]% profile

[basecm11->profile]% allservices

auth

cert

cloud

device

etcd

gui

job

kube

main

mon

net

part

proc

prov

serv

session

status

test

user

Similarly, the output from showservices displays the tokens for the services as indicated in the
following table:

986 Tokens

Table J: List Of Tokens

Service and token name User can...

Service: CMAuth

ADD_PROFILE_TOKEN Add a new profile

GET_CMSERVICES_TOKEN Get a list of available CMDaemon services

GET_PROFILE_TOKEN Retrieve list of profiles and profile properties

UPDATE_PROFILE_TOKEN Update profile

Service: CMCert

GET_CERTIFICATE_INFORMATION_TOKEN Get certificate information

GET_CERTIFICATE_INFO_TOKEN Get certificate information

GET_CERTIFICATE_REQUEST_TOKEN List pending certificate requests

GET_CERTIFICATE_TOKEN Get certificate

INVALIDATE_COMPONENT_CA_TOKEN Invalidate component CA

TOKEN

ISSUE_CERTIFICATE_TOKEN Accept certificate request and issue signed certificate

RECREATE_COMPONENT_CERTIFICATE_ Recreate component certificate
TOKEN

REMOVE_CERTIFICATE_REQUEST_TOKEN Cancel certificate request

REMOVE_CERTIFICATE_TOKEN Remove a certificate

REVOKE_CERTIFICATE_TOKEN Revoke a certificate

UNREVOKE_CERTIFICATE_TOKEN Unrevoke a revoked certificate

Service: CMCloud

ADD_CLOUD_JOB_DESCRIPTION_TOKEN Add cloud job description

ADD_CLOUD_PROVIDER_TOKEN Add a new cloud provider

ADD_OCI_INSTANCE_POOL_TOKEN Add OCI instance pool

AZURE_ACCESS_STRING_TOKEN Get/set Azure access string

CANCEL_ANY_CLOUD_JOB_TOKEN Cancel any cloud job

CLOUD_DIRECTOR_NEW_IP_TOKEN Set the new External IP of the cloud director

DELETE_ANY_ANF_VOLUME_TOKEN Delete any ANF volume

DELETE_ANY_FSX_INSTANCE_TOKEN Delete any FSX instance

EC2_ACCESS_STRING_TOKEN Get/set Amazon EC2 access string

FORGE_ACCESS_STRING_TOKEN Forge an access string

GET_ALL_CLOUD_JOB_DESCRIPTION_TOKEN Get all cloud job description

GET_CLOUD_AMI_TOKEN Access Amazon EC2 AMI

...continues

987

Table J: List Of Tokens...continued

Service and token name User can...

GET_CLOUD_JOB_DESCRIPTION_TOKEN Get cloud job description

GET_CLOUD_PROVIDER_TOKEN Get cloud provider information

GET_CLOUD_REGION_TOKEN Access Amazon EC2 region

GET_CLOUD_TYPE_TOKEN Access Amazon instance type

GET_CONSOLE_OUTPUT_TOKEN Retrieve the console output of the cloud director for de-
bugging purposes

GET_KERNEL_INITRD_MD5SUM_TOKEN Retrieve MD5 sum of initial ramdisk

GET_OCI_INSTANCE_POOL_TOKEN Get OCI instance pool

LIST_ALL_ANF_VOLUMES_TOKEN List all ANF volumes

LIST_ALL_FSX_INSTANCES_TOKEN List all FSX instances

OCI_ACCESS_STRING_TOKEN OCI access string

ON_DEMAND_ANF_TOKEN On demand ANF

ON_DEMAND_FSX_TOKEN On demand FSX

OSCLOUD_ACCESS_STRING_TOKEN Get/set OpenStack access string

PUT_USERDATA_TOKEN Set AWS user data in AWS

SEND_CLOUD_STORAGE_ACTION_TOKEN Send cloud storage action

SET_CLOUDERRORS_TOKEN Set cloud errors

SHARE_ANF_VOLUME_TOKEN Share own ANF volumes

SHARE_FSX_INSTANCE_TOKEN Share own FSX instances

SUBMIT_CLOUD_JOB_DESCRIPTION_TOKEN Submit cloud job description

TERMINATE_NODE_TOKEN Terminate cloud nodes

UPDATE_CLOUD_JOB_DESCRIPTION_TOKEN Update cloud job description

UPDATE_CLOUD_PROVIDER_TOKEN Update cloud provider settings

UPDATE_OCI_INSTANCE_POOL_TOKEN Update OCI instance pool

USER_MANAGED_ANF_TOKEN Manage ANF volume

USER_MANAGED_FSX_TOKEN Manage FSX volume

Service: CMDevice

ACCESS_SETTINGS_TOKEN Access settings

ADD_CATEGORY_TOKEN Create new category

ADD_CONFIGURATIONOVERLAY_TOKEN Create new configuration overlay

ADD_DEVICE_TOKEN Add a new device

ADD_FILE_WRITE_INFO_TOKEN Add filewriteinfo

ADD_LITENODE_TOKEN Add lite node

ADD_NODEGROUP_TOKEN Add a new nodegroup

ADD_NODE_HIERARCHY_RULE_TOKEN Add node hierarchy rule

ADD_REMOTE_NODE_INSTALLER_ Add a node-installer
INTERACTION_TOKEN interaction (Used by CMDaemon)

ADD_REPORT_QUERY_TOKEN Add report query

ADD_GPU_WORKLOAD_QUERY_ Add GPU workload query performance
...continues

988 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

PERFORMANCE_PROFILE_TOKEN profile

APPLY_DEVICE_COMMANDS_TOKEN Apply device commands token

APPLY_PTM_TOPOLOGY_TOKEN Apply PTM Topology

BIOS_APPLY_TOKEN BIOS apply token

BIOS_FETCH_TOKEN BIOS fetch token

BMC_USERNAME_PASSWORD_TOKEN View/set BMC (e.g. HP ilo4, IPMI) username and pass-
word

BURN_STATUS_TOKEN Get burn status

CANCEL_BURN_TOKEN Cancel burn token

CHANGED_NVDOMAIN_INFO_TOKEN Changed NVIDIA domain info

CHASSIS_USER_PASSWORD_TOKEN Get/set chassis username and password

CHECK_REMOTE_MOUNT_TOKEN Check remount mount

CLEAR_DISK_ENCRYPTION_PASSPHRASE_TOKEN Clear disk encryption passphrase

COMPLETE_BURN_TOKEN Complete burn

CREATE_PORT_FORWARD_BURN_TOKEN Complete port forwarding

DIFF_DEVICE_COMMANDS_TOKEN Diff device commands

DIRTY_GPU_WORKLOAD_PERFORMANCE_ Dirty GPU workload performance
PROFILE_CACHE_TOKEN profile cache

FETCH_NVDOMAIN_INFO_TOKEN Fetch NVIDIA domain info

FIRMWARE_FLASH_TOKEN Flash firmware

FIRMWARE_INFO_TOKEN Get firmware information

FIRMWARE_UPLOAD_TOKEN Upload firmware

FORCE_RECONNECT_TOKEN Force reconnect

GET_BACKUP_DEVICE_COMMANDS_TOKEN Get backup device commands

GET_BACKUP_INFO_TOKEN Get backup information

GET_BURN_LOG_TOKEN Retrieve burn log

GET_BURN_TOKEN Get burn token

GET_CATEGORY_TOKEN Get list of categories

GET_CONFIGURATIONOVERLAY_TOKEN Get list of configuration overlays

GET_DEVICE_BY_PORT_TOKEN View list of devices according to the ethernet switch port
that they are connected to

GET_DEVICE_COMMANDS_TOKEN Get device commands

GET_DEVICE_LEAK_INFO_TOKEN Get device leak info

GET_DEVICE_TOKEN View all device properties

GET_DEVICE_UUID_TOKEN View device UUID

GET_DHCPD_LEASES_TOKEN View device DHCPD leases

GET_DISKSETUP_TOKEN Get disksetup

GET_DPU_TOKEN Get DPU

GET_EXCLUDE_LIST_TOKEN Retrieve the various exclude lists

GET_FILE_WRITE_INFO_TOKEN Get filewriteinfo

...continues

989

Table J: List Of Tokens...continued

Service and token name User can...

GET_FINALIZE_SCRIPTS_TOKEN Get finalize scripts

GET_FREE_PORTS_TOKEN Get free ports info

GET_GPU_MIG_TOKEN Get GPU MIG

GET_GPU_PROFILING_METRIC_ Get GPU profiling metric info
INFO_TOKEN

GET_GPU_PROFILING_STATE_TOKEN Get GPU profiling state

GET_GPU_WORKLOAD_PERFORMANCE_ View GPU workload performance
PROFILE_TOKEN profile

GET_IBSWITCH_TOKEN View IB switch properties

GET_IMEX_CTL_TOKEN View IMEX_CTL properties

GET_INITIALIZE_SCRIPTS_TOKEN Get initialize scripts

GET_MINIMAL_CONFIG_TOKEN View minimum configuration

GET_NETWORK_TOPOLOGY_TOKEN Get network topology

GET_NODEGROUP_TOKEN Get list of nodegroups

GET_NODE_ACCELERATOR_TOKEN Get node accelerator count

GET_NODE_ARCH_OS_TOKEN Get architecture and OS

GET_NODE_HIERARCHY_RULE_TOKEN Get node hierarchy rule

GET_NVDOMAIN_INFO_TOKEN Get NVIDIA domain info

GET_NVLINK_INFO_TOKEN Get NVIDIA link info

GET_PORT_BY_MAC_TOKEN Determine to which switch port a given MAC is connected
to.

GET_PTM_TOPOLOGY_TOKEN Get PTM Topology

GET_REMOTE_NODE_INSTALLER_ Get list of pending
INTERACTIONS_TOKEN installer interactions

GET_REPORT_QUERY_TOKEN Get report query

GET_SCRIPT_ENVIRONMENT_TOKEN Get script environment

GET_SWITCH_COMMAND_TEMPLATES_TOKEN Get switch command templates

GET_SWITCH_FIRMWARES_TOKEN Get switch firmwares

GET_SWITCH_IMAGES_TOKEN Get switch images

GET_SWITCH_ZTP_TEMPLATES_TOKEN Get switch ZTP templates

GET_SYNC_INFO_TOKEN Get rsync information

GET_SYNC_LOG_TOKEN Get rsync provisioning log

GET_SYSINFO_COLLECTOR_TOKEN Get information about a node (executes dmidecode)

GET_TFTPBOOT_FILE_INFORMATION_TOKEN Get tftpboot firmware information

GET_USED_PORTS_TOKEN Get used ports info

GET_WIREGUARD_INFO_TOKEN Get wireguard info

LIST_DEVICE_COMMANDS_TOKEN List device commands

LIST_DPU_BFB_TOKEN List DPU BFB

LIST_IBSWITCH_TOKEN List IB switches

LIST_PORT_FORWARD_TOKEN List port forwarding

...continues

990 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

MALLOC_TRIM_TOKEN malloc trim

NEW_NODE_TOKEN New node

NODE_GET_MOUNTPOINTS_TOKEN Get list of mountpoints defined for a node

NODE_IDENTIFY_TOKEN Identify a node (RPC API, used by node installer)

NVSM_ALERTS_TOKEN View NVSM alerts

NVSM_HEALTH_TOKEN View NVSM health

NVSM_INFO_TOKEN View NVSM info

NVSM_VERSIONS_TOKEN View NVSM versions

NV_FABRIC_INFO_TOKEN View NVIDIA fabric info

NV_FABRIC_START_STOP_TOKEN Carry out NVIDIA fabric start and stop

NV_FABRIC_START_TOKEN Carry out NVIDIA fabric start

NV_FABRIC_STATUS_TOKEN View NVIDIA fabric status

NV_FABRIC_STOP_TOKEN Carry out NVIDIA fabric stop

PMC_USERNAME_PASSWORD_TOKEN View/set Power management controller username and
password

POWER_CANCEL_TOKEN Power cancel operation

POWER_CYCLE_TOKEN Power reset a device

POWER_OFF_TOKEN Power off a device

POWER_ON_TOKEN Power on a device using BMC or PDU power control

POWER_STATUS_TOKEN Get power status e.g on or off

PPING_TOKEN Run parallel ping

PREPARE_POWER_OFF_TOKEN Prepare to power off a device

PROXY_SETTINGS_TOKEN Proxy settings

PUSH_DPU_BFB_TOKEN Push DPU BPB

PUT_SYSINFO_COLLECTOR_TOKEN Put information about a node

REBOOT_NODE_TOKEN Reboot a remote a node

REDFISH_EVENT_TOKEN Redfish event

REFRESH_NVDOMAIN_INFO_TOKEN Refresh NVIDIA domain info

REMOVE_BACKUP_TOKEN Remove backup information

REMOVE_REMOTE_NODE_ Remove a node installer
INSTALLER_INTERACTION_TOKEN interaction

REMOVE_SYSINFO_COLLECTOR_TOKEN Remove information about a node

REPORT_POWER_STATUS_TOKEN Report power operation history

REPORT_QUERY_TOKEN Show report query

REQUEST_BURN_TOKEN Request burn

RESET_GPU_TOKEN Reset GPU

RUN_POST_CHANGE_ACTIONS_TOKEN Run POST change actions

SET_BACKUP_INFO_TOKEN Set backup information

SET_DEVICE_LEAK_INFO_TOKEN Set device leak info

SET_POWER_CONFIG_TOKEN Set device power configuration

...continues

991

Table J: List Of Tokens...continued

Service and token name User can...

SET_DEVICE_STATUS_TOKEN Set device status (only via RPC API calls)

SET_DPU_TOKEN Set DPU

SET_GPU_MIG_TOKEN Set GPU MIG

SET_GPU_WORKLOAD_PERFORMANCE_ Set GPU workload performance
PROFILE_TOKEN profile

SET_NODE_ACCELERATOR_TOKEN Set node accelerator

SET_NODE_ARCH_OS_TOKEN Set architecture and OS

SET_NVDOMAIN_INFO_TOKEN Set NVIDIA domain info

SHOW_DEVICE_COMMANDS_TOKEN Show device commands

SHUTDOWN_NODE_TOKEN Shutdown a remote node managed by CMDaemon

SNMP_SETTINGS_TOKEN Manage SNMP settings

START_BURN_TOKEN Start burn

STOP_BURN_TOKEN Stop burn

SYSINFO_COLLECTOR_TOKEN Manage information about a node

TAKE_BACKUP_DEVICE_COMMANDS_TOKEN Take backup device commands

UPDATE_CATEGORY_TOKEN Update a category property

UPDATE_CONFIGURATIONOVERLAY_TOKEN Update a configuration overlay property

UPDATE_DEVICE_TOKEN Update device properties

UPDATE_GPU_PROFILING_METRIC_ Update GPU profiling metric info
INFO_TOKEN

UPDATE_GPU_PROFILING_STATE_TOKEN Update GPU profiling state

UPDATE_LITENODE_TOKEN Update lite node

UPDATE_NODEGROUP_TOKEN Update nodegroup properties (e.g. add a new member
node)

UPDATE_NODE_HIERARCHY_RULE_TOKEN Update node hierarchy rule

UPDATE_REMOTE_NODE_INSTALLER_ Update installer
INTERACTIONS_TOKEN interactions (e.g. confirm full provisioning)

UPDATE_REPORT_QUERY_TOKEN Update report query

UPDATE_STATUS_TOKEN Update status

UPDATE_SWITCH_TOKEN Update switch

UPDATE_SYSINFO_COLLECTOR_TOKEN Update information about a node

UPGRADE_IBSWITCH_TOKEN Carry out IB switch upgrade

Service: CMEtcd

ADD_ETCD_TOKEN Add etcd

GET_ETCD_TOKEN Get etcd

UPDATE_ETCD_TOKEN Update etcd

Service: CMGui

EXPAND_COLLAPSE_TOKEN Get cluster overview

...continues

992 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

GET_CDU_OVERVIEW_TOKEN Get CDU overview

GET_CLUSTER_OVERVIEW_TOKEN Get cluster overview

GET_KUBE_OVERVIEW_TOKEN Get kube cluster overview

GET_NODE_OVERVIEW_TOKEN Get node overview

GET_NODE_STATUS_TOKEN Get node status

GET_PDU_OVERVIEW_TOKEN Get PDU overview

GET_POWER_CIRCUIT_OVERVIEW_TOKEN Get power circuit overview

GET_POWER_SHELF_OVERVIEW_TOKEN Get power shelf overview

GET_RACK_OVERVIEW_TOKEN Get rack overview

GET_SWITCH_OVERVIEW_TOKEN Get switch overview

Service: CMJob

ADD_CHARGE_BACK_REQUEST_TOKEN Add chargeback request

ADD_JOBQUEUE_TOKEN Add a new job queue

ADD_WLM_CLUSTER_TOKEN Add WLM cluster

CHARGE_BACK_BY_KEY_TOKEN Show chargeback by key

CHARGE_BACK_TOKEN Show chargeback

CHECK_NODE_ALLOCATION_TOKEN Check node allocation

DRAIN_OVERVIEW_TOKEN Obtain list of drained nodes

DRAIN_TOKEN Drain a node

FLUSH_JOB_INFO_TOKEN Flush job info

GET_CHARGE_BACK_REQUEST_TOKEN Get chargeback request

GET_JOBINFO_TOKEN Get job information

GET_JOBQUEUE_TOKEN Retrieve list of job queues and properties

GET_JOB_PID_GPUS_INFO_TOKEN Get job PID GPUs info

GET_JOB_TOKEN Get list of jobs that are currently running

GET_OWN_JOBINFO_TOKEN Get own job information

GET_OWN_JOB_TOKEN Get list of own jobs that are currently running

GET_PE_TOKEN Get list of SGE parallel environments

GET_TOPOLOGY_TOKEN Get topology

GET_TRACKED_JOBS_TOKEN Get tracked jobs

GET_WLM_CLUSTER_TOKEN Get WLM cluster

GET_WLM_POWER_SAVING_TOKEN Get WLM power saving status

HOLD_JOB_TOKEN Place a job on hold

HOLD_OWN_JOB_TOKEN Place own job on hold

JOB_NODE_GRID_TOKEN Show job node grid

JOB_STARTED_ENDED_TOKEN Show job started/ended

NOTIFY_JOB_END_TOKEN Notify job end

RELEASE_JOB_TOKEN Release a held job

...continues

993

Table J: List Of Tokens...continued

Service and token name User can...

RELEASE_OWN_JOB_TOKEN Release own job

REMOVE_JOBINFO_TOKEN Remove job information

REQUEUE_JOB_TOKEN Requeue a job

REQUEUE_OWN_JOB_TOKEN Requeue own job

RESUME_JOB_TOKEN Resume suspended job

RESUME_OWN_JOB_TOKEN Resume own job

SET_PERSISTENT_JOBINFO_TOKEN Set persistent job information

SUBMIT_JOB_TOKEN Submit a job using JSON

SUSPEND_JOB_TOKEN Suspend a job

SUSPEND_OWN_JOB_TOKEN Suspend own job

UPDATE_CHARGE_BACK_REQUEST_TOKEN Update chargeback request

UPDATE_JOBQUEUE_TOKEN Modify job queues

UPDATE_JOB_TOKEN Update job run-timer parameters

UPDATE_OWN_JOB_TOKEN Update own job

UPDATE_TOPOLOGY_TOKEN Update topology

UPDATE_WLM_CLUSTER_SERVER_TOKEN Update WLM cluster server

UPDATE_WLM_CLUSTER_TOKEN Update WLM cluster

Service: CMKube

ADD_KUBE_TOKEN Add Kube

DRAIN_KUBE_OVERVIEW_TOKEN Drain Kube overview

DRAIN_KUBE_TOKEN Drain Kube

GET_CAPI_IMAGE_VERSIONS_TOKEN Get CAPI image versions

GET_CAPI_TOKEN Get CAPI

GET_KUBE_JOIN_TOKEN Get Kube join

GET_KUBE_TOKEN Get Kube

KUBE_MANAGED_LABELS_TOKEN Get Kube managed labels response

UPDATE_CAPI_IMAGE_VERSIONS_TOKEN Update CAPI image versions

UPDATE_CAPI_TOKEN Update CAPI

UPDATE_KUBE_TOKEN Update Kube

Service: CMMain

CANCEL_BACKGROUND_TASKS_TOKEN Cancel background tasks

CMDAEMON_FAILOVER_TOKEN Set CMDaemon failover condition achieved

CM_SETUP_EXECUTE_TOKEN Execute

CM_SETUP_GET_EXECUTION_TOKEN Get execution

CM_SETUP_REMOVE_EXECUTION_TOKEN Remove execution

GENERIC_CALL_TOKEN Make a generic call

GET_ALL_ACTIVE_PASSIVE_UP_KEYS_TOKEN Get keys for all active and passive nodes that are up

...continues

994 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

GET_BACKGROUND_TASKS_TOKEN Get background tasks

GET_CLUSTER_SETUP_TOKEN Get cluster configuration

GET_CONFIG_TOKEN Get configuration

GET_FROZEN_FILES_TOKEN Get frozen files

GET_HARDWARE_OVERVIEW_TOKEN Get frozen files

GET_LICENSE_INFO_TOKEN Retrieve information about BCM license

GET_SERVER_STATUS_TOKEN Head node status (e.g. ACTIVE, BECOMEACTIVE etc.)

GET_SERVICESTATE_TOKEN Get the state of a service

GET_VERSION_TOKEN Get CMDaemon version and revision

GET_XSD_SCHEMA_TOKEN Get XSD schema

IMPORT_ENTITY_TOKEN Import an entity

PING_TOKEN TCP SYN ping managed devices

REPORT_CRITICAL_ERROR_TOKEN View critical error report

SAVE_FILE_TOKEN Save a file on a remote node

SET_SERVICESTATE_TOKEN Set the state of a service

START_REQUEST_REMOTE_ASSISTANCE_TOKEN Start request-remote-assistance

STATUS_REQUEST_REMOTE_ASSISTANCE_TOKEN See status of request-remote-assistance

STOP_REQUEST_REMOTE_ASSISTANCE_TOKEN Stop request-remote-assistance

STORE_CONFIG_FILE_VERSION_TOKEN Store config file version

STORE_LDAP_CERTIFICATES_TOKEN Store LDAP certificates

STORE_PRS_CERTIFICATES_TOKEN Store PRS certificates

Service: CMMon

ADD_ENTITY_MEASURABLE_TOKEN Add entity measurable

ADD_LABELED_ENTITY_TOKEN Add labeled entity

ADD_MONITORING_ACTION_TOKEN Add monitoring action

ADD_MONITORING_DATA_PRODUCER_TOKEN Add monitoring data producer

ADD_MONITORING_MEASURABLE_TOKEN Add monitoring measurable

ADD_MONITORING_STANDALONE_TOKEN Add monitoring standalone

ADD_MONITORING_TRIGGER_TOKEN Add monitoring trigger

ADD_PROMETHEUS_QUERY_TOKEN Add Prometheus query

BACKUP_INFORMATION_TOKEN Show backup information

CREATE_MONITORING_MEASURABLE_TOKEN Create monitoring measurable

DROP_MONITORING_DATA_TOKEN Drop monitoring data

EXECUTE_QUERY_BY_KEY_TOKEN Execute Prometheus query by key

EXECUTE_QUERY_TOKEN Execute Prometheus query

FETCH_CACHE_TOKEN Fetch the cache

GET_DYNAMIC_RESOURCES_TOKEN Get a dynamic resource

GET_ENTITY_MEASURABLE_TOKEN Get entity measurable

...continues

995

Table J: List Of Tokens...continued

Service and token name User can...

GET_INFO_MESSAGE_TOKEN Get info message

GET_LABELED_ENTITY_TOKEN Get labeled entity

GET_MONITORING_ACTION_TOKEN Get monitoring action

GET_MONITORING_CONSOLIDATOR_TOKEN Get monitoring consolidator

GET_MONITORING_DATA_PRODUCER_TOKEN Get monitoring data producer

GET_MONITORING_MEASURABLE_TOKEN Get monitoring measurable

GET_MONITORING_STANDALONE_TOKEN Get monitoring standalone

GET_MONITORING_TRIGGER_TOKEN Get monitoring trigger

GET_PICKUP_INTERVAL_TOKEN Get pickup interval

GET_PROMETHEUS_JOB_EXTRA_LABEL_ Get Prometheus extra label cache
CACHE_TOKEN

GET_PROMETHEUS_QUERY_TOKEN Get Prometheus query

GET_TRIGGER_DATA_TOKEN Get monitoring trigger evaluation data

HEALTH_CHECK_WLM_JOB_TOKEN Manage health checks for WLM job

INTERNAL_DROP_MONITORING_DATA_TOKEN Internal dropmonitoringdata

INTERNAL_RUN_ACTION_TOKEN Internal run action

INTERNAL_SAMPLE_NOW_TOKEN Internal samplenow

MONITORING_CLEANUP_TOKEN Monitoring cleanup

MONITORING_INFO_TOKEN Monitoring info

MONITORING_LITE_TOKEN Monitoring lite node

MONITORING_MANAGE_TOKEN Manage monitoring configuration settings

MONITORING_PREPARE_CONTINUE_BACKUP_TOKEN Monitor prepare continue backup

MONITORING_PUSH_TOKEN Monitoring push

MONITORING_TREE_DEFAULT_SHOW_TOKEN Monitoring tree default show

NEW_LABELED_ENTITY_TOKEN Use new labeled entity

NEW_MEASURABLE_TOKEN New measurable token

OFFLOAD_INFORMATION_TOKEN Get offload information

PLOT_TOKEN Request plot

PRIVATE_MONITORING_TOKEN Private monitoring

PROMETHEUS_EXPORTER_TOKEN Show Prometheus exporter

PROMETHEUS_METRIC_TOKEN Show Prometheus metric

PUT_OFFLOAD_INFORMATION_TOKEN Put offload information

REINITIALIZE_TOKEN Reinitialize data producers

REQUEST_PICKUP_INTERVAL_TOKEN Request monitoring pickup interval

SAMPLE_NOW_TOKEN Sample now

STATE_TRANSITION_TOKEN State transition

UPDATE_DYNAMIC_RESOURCES_TOKEN Update a dynamic resource

UPDATE_LABELED_ENTITY_TOKEN Update labeled entity

UPDATE_MONITORING_ACTION_TOKEN Update monitoring action

...continues

996 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

UPDATE_MONITORING_CONSOLIDATOR_TOKEN Update monitoring consolidator

UPDATE_MONITORING_DATA_PRODUCER_TOKEN Update monitoring data producer

UPDATE_MONITORING_MEASURABLE_TOKEN Update monitoring measurable

UPDATE_MONITORING_STANDALONE_TOKEN Update monitoring standalone

UPDATE_MONITORING_TRIGGER_TOKEN Update monitoring trigger

UPDATE_PROMETHEUS_JOB_EXTRA_ Update Prometheus job extra label cache

LABEL_CACHE_TOKEN

UPDATE_PROMETHEUS_QUERY_TOKEN Update Prometheus query

Service: CMNet

ADD_NETWORK_TOKEN Add network settings

GET_NETWORK_TOKEN Get network settings

UPDATE_NETWORK_TOKEN Update network settings

Service: CMPart

ADD_EDGE_SITE_TOKEN Add edge site

ADD_PARTITION_TOKEN Add partition settings

ADD_POWER_CIRCUIT_TOKEN Add power circuit

ADD_RACK_TOKEN Add rack settings

ADD_SOFTWAREIMAGE_FILE_SELECTION_TOKEN Add softwareimage file selection

ADD_SOFTWAREIMAGE_TOKEN Add softwareimage settings

CMDAEMON_CLEAN_STOP_TOKEN Obtain cleanliness status of stop

CMDAEMON_FAILOVER_SLAVE_RESULT_TOKEN Obtain status of slave result

CMDAEMON_FAILOVER_SLAVE_TOKEN Obtain status of slave

CMDAEMON_FAILOVER_STATUS_TOKEN Obtain status of failover

CMDAEMON_FAILOVER_TOKEN Set CMDaemon failover condition achieved

CMDAEMON_QUORUM_TOKEN Set CMDaemon quorum achieved

CMDAEMON_RESOURCE_MIGRATE_TOKEN Obtain status of resource migration

CMDAEMON_RESOURCE_STATUS_TOKEN Obtain status of resource

CREATE_RAMDISK_TOKEN Create ramdisk

EDGE_SITE_SECRET_TOKEN Show edge site secret

FORGET_RACK_ISOLATION_REQUEST_ Forget rack isolation request info
INFO_TOKEN

GET_EDGE_SITE_TOKEN Get edge site

GET_GNSS_LOCATION_TOKEN Get GNSS location

GET_NODE_ARCH_OS_TOKEN Get architecture and OS

GET_PARTITION_TOKEN Get partition settings

GET_POWER_CIRCUIT_TOKEN Get power circuit

GET_PRS_STATUS_TOKEN Get PRS status

...continues

997

Table J: List Of Tokens...continued

Service and token name User can...

GET_RACK_ISOLATION_REQUEST_ Get rack isolation request info
INFO_TOKEN

GET_RACK_TOKEN Get rack settings

GET_RAW_NMX_TOKEN Get raw NMX settings

GET_SOFTWAREIMAGE_FILE_SELECTION_TOKEN Get softwareimage file selection

GET_SOFTWAREIMAGE_TOKEN Get softwareimage settings

HANDLE_RACK_ISOLATION_REQUEST_ Handle rack isolation request info
INFO_TOKEN

KERNEL_CONFIG_HASH_TOKEN Kernel config hash

NETQ_SETTINGS_TOKEN Show NETQ settings

NMXM_SETTINGS_TOKEN Show NMX Management settings

REQUEST_RACK_ELECTRICAL_ISOLATION_ Request rack electrical isolation
TOKEN

REQUEST_RACK_LIQUID_ISOLATION_TOKEN Request rack liquid isolation

SET_GNSS_LOCATION_TOKEN Set GNSS location

START_PRS_DOMAIN_TOKEN Set PRS domain

STOP_PRS_DOMAIN_TOKEN Stop PRS domain

UFM_SETTINGS_TOKEN Show UFM settings

UPDATE_EDGE_SITE_TOKEN Update edge site

UPDATE_GNSS_LOCATION_TOKEN Update GNSS location

UPDATE_PARTITION_TOKEN Update partition settings

UPDATE_POWER_CIRCUIT_TOKEN Update power circuit settings

UPDATE_RACK_TOKEN Update rack settings

UPDATE_RAW_NMX_TOKEN Update raw NMX settings

UPDATE_SOFTWAREIMAGE_FILE_SELECTION_TOKEN Update softwareimage file selection

UPDATE_SOFTWAREIMAGE_TOKEN Update softwareimage settings

Service: CMProc

CLEAN_IPC_TOKEN Clear IPC state

EXEC_COMMAND_TOKEN Execute a command on a head node

EXEC_INTERNAL_COMMAND_TOKEN Execute internal command (defined in the source code,
RPC API, internal)

GET_ALL_PROCESSES_TOKEN Retrieve list of all processes that are currently running on
a device managed by CMDaemon

GET_MSGQUEUE_TOKEN Get message queue status

GET_PROCESS_TOKEN Retrieve list of processes that are currently running on a
device managed by CMDaemon

GET_SEMAPHORE_TOKEN Get semaphore

GET_SHARED_MEM_TOKEN Get shared memory

SEND_SIGNAL_TOKEN Send signal to a process

START_SHELL_TOKEN Start SSH session

...continues

998 Tokens

Table J: List Of Tokens...continued

Service and token name User can...

Service: CMProv

ADD_FSPART_TOKEN Set FSPart (internal)

CANCEL_PROVISIONING_REQUEST_TOKEN Cancel provisioning request

FSPART_BACKUP_TOKEN Show FSPart backup

GET_FSPART_ASSOCIATION_TOKEN Get FSPart association

GET_FSPART_TOKEN Get FSPart (internal)

GET_LAST_PROVISIONING_NODE_TOKEN Get last provisioning node

GRAB_IMAGEUPDATE_TOKEN Grab changes from node to software image and vice versa

IMAGEUPDATE_TOKEN Send image changes to nodes

LOCK_FSPART_TOKEN Lock FSPart

MANAGE_RSYNC_DAEMON_TOKEN Manage the rsync process (CMDaemon)

PROVISIONERS_STATUS_TOKEN Check status of provisioners e.g. images are in sync

REQUEST_PROVISIONING_TOKEN Request provisioning (nodes with a provisioning role)

RUN_FSPART_SYNC_SCRIPT_TOKEN RUN FSPart sync script

RUN_PROVISIONINGPROCESSORJOB_ Start and run a
TOKEN provisioning job (nodes with a provisioning role)

UPDATEPROVISIONERS_TOKEN Synchronize software images across provisioning systems
(requires at least two provisioners)

UPDATE_CONFIG_FILES_AFTER_IMAGE_ Update config files after image update

UPDATE_TOKEN

UPDATE_FSPART_ASSOCIATION_TOKEN Update FSPart association

UPDATE_FSPART_TOKEN Update FSPart (internal)

UPDATE_PROVISIONINGPROCESSORJOB_ Update status of running
TOKEN provisioning jobs (CMDaemon)

Service: CMServ

CALLINIT_OSSERVICE_TOKEN Call init (useful for the node-installer itself)

GET_OSSERVICE_TOKEN Get system service information

RELOAD_OSSERVICE_TOKEN Reload system services

RESET_OSSERVICE_TOKEN Reset system services

RESTART_OSSERVICE_TOKEN Restart system services

RESTART_WLM_OSSERVICE_TOKEN Restart WLM systemservices

START_OSSERVICE_TOKEN Start system services (service foo start)

STOP_OSSERVICE_TOKEN Stop system services

UPDATE_OSSERVICE_TOKEN Update system services

Service: CMSession

CLIENT_USER_DATA_TOKEN Show client user data

END_SESSION_TOKEN Terminate sessions

...continues

999

Table J: List Of Tokens...continued

Service and token name User can...

GET_BROADCAST_EVENTS_TOKEN Receive broadcast events

GET_SESSION_TOKEN Retrieve session information

HANDLE_EVENT_TOKEN Handle events

LIST_CLIENT_USER_DATA_TOKEN List client user data

REGISTER_LITENODE_SESSION_TOKEN Register lite node

REGISTER_NODE_SESSION_TOKEN Register new nodes in a special CMDaemon session (node-
installer)

Service: CMStatus

GET_DEVICE_STATUS_TOKEN Get device status

INTERNAL_STATUS_TOKEN Show internal status information

SET_DEVICE_STATUS_TOKEN Set device status

STATUS_INFO_TOKEN Show status information

STATUS_MANAGE_TOKEN Show managed status

Service: CMTest

GET_MANAGERS_STATE_TOKEN Get managers state

Service: CMUser

ADD_GROUP_TOKEN Add a new LDAP group

ADD_USER_TOKEN Add a new LDAP user

CHECK_ACCESS_TOKEN Check project manager access

CREATE_MISSING_HOME_DIRECTORIES_TOKEN Create missing home directories

GET_DISABLED_PASSWORD_SSH_TOKEN Get disabled ssh password

GET_GROUP_TOKEN Retrieve group information

GET_USER_TOKEN Retrieve user information

REGENERATE_USER_CERTIFICATES_TOKEN Regenerate user certificates

SET_DISABLED_PASSWORD_SSH_TOKEN Disable password for SSH

SET_USER_CLOUD_JOB_TOKEN Set user cloud job

SET_USER_PROFILE__TOKEN Set user profile

UPDATE_GROUP_TOKEN Modify an existing LDAP group

UPDATE_USER_TOKEN Modify an existing LDAP user

K
Understanding Consolidation

K.1 Introduction
Consolidation is discussed in the sections on using consolidation in the Monitoring chapter (sec-
tions 10.4.3 and 10.5.2).

However, it may be confusing to have the concept of consolidation discussed in the same place as
the use of consolidation. Also, the algebra that appears in that discussion (page 560) may not appeal
to people. There are many who would like an explanation that may be more intuitive, even if it is less
rigorous.

Therefore, in this section a more informal and visual approach is taken to explain consolidation.

K.2 What Is Consolidation?
Consolidation is the compression of data, for data values that have been measured over a fixed interval.

The compression is nothing particularly sophisticated. It is carried out by using some simple math-
ematical functions to the data points: the average, the maximum, or the minimum.

K.3 Raw Data And Consolidation
Suppose raw data is sampled every 2 minutes.

And the raw data values are consolidated every 10 minutes.
A visual representation of the data values available to the system is:

--- time --->

raw: | | | | | | | | | | | | | | | | |

consolidated: | | | | |

Here, every “|”" indicates a data point, so that the visual shows 5 times as many raw data points as
consolidated data values.

In the preceding visual it makes no sense to use consolidated data since the data values for raw data
and consolidated data overlap. I.e., the more accurate raw data values exist for the entire period.

As time passes, the intention is to start dropping old raw data, to save space on the disk.
For example, for the first 20 minutes in the following visual, there are no longer raw data values

available:

Example

--- time --->

raw: | | | | | | | | | | | | | |

consolidated: | | | | | |

1002 Understanding Consolidation

But the consolidated data points for this period are still available to the system.
When the data values are plotted in Base View graphs, periods without raw data values automati-

cally have consolidated data values used.
So a combination of both data sources is used, which can be visually represented with:

Example

--- time --->

plot: | | | | | | | | | | | | | | | |

That behavior holds true for cmsh too.
The behavior illustrated in the last visual assumes that the cluster has been UP for long enough that

raw data is being dropped.
In this case, “long enough” means at least 7 days.
However, because RLE (Run Length Encoding) is used to compress the sampled monitoring data

values on disk, this minimal “long enough” time can be (much) longer than 7 days. It depends on how
much the measurable that is being sampled is changing as each sample is taken. if it is not changing,
then RLE can compress over a longer time period.

For example, if a node has been up and reachable without issues for 1000 days, then the ssh2node

health check raw data values would be PASS over that 1000 days. For the period from now to 7 days
ago, the raw data values of PASS are kept as they are for now. However, for the period from 7 days ago
to 1000 days ago, consolidation on the unchanging raw values means that only two values, namely the
PASS value of 1000 days and the PASS value of 7 days ago, need to be retained, in order to have a totally
accurate record of what the values were in that period.

On the other hand, the forks metric changes very quickly, and thus can do little RLE compression.
That makes it a good choice for demonstrating the kind of output that the preceding visuals imply.

K.4 A Demonstration Of The Output
So, as a demonstration, the last 7 days for forks are now shown, with the data values in the middle
elided:

Example

[basecm11->device[basecm11]]% dumpmonitoringdata -7d now forks

Timestamp Value Info

-------------------------- -------------------- ----------

2018/10/17 10:30:00 2.76243 processes/s

2018/10/17 11:30:00 2.52528 processes/s

2018/10/17 12:30:00 2.53972 processes/s

...

2018/10/24 10:42:00 2.66669 processes/s

2018/10/24 10:44:00 2.63333 processes/s

2018/10/24 10:46:00 2.64167 processes/s

The first part of the output shows samples listed every hour. These are the consolidated data values.
The last part of the output shows samples listed every 2 minutes. These are the raw data value

values.
I.e.: consolidated data values are used beyond a certain time in the past.
If the administrator would like to explore this further, then displaying only consolidation values is

possible in cmsh by using the --consolidationinterval option of the dumpmonitoringdata command:

Example

K.4 A Demonstration Of The Output 1003

[basecm11->device[basecm11]]% dumpmonitoringdata --consolidationinterval 1h -7d now forks

Timestamp Value Info

-------------------------- -------------------- ----------

2019/01/07 11:39:06 2.65704 processes/s

2019/01/07 12:30:00 2.60111 processes/s

2019/01/07 13:30:00 2.58328 processes/s

...

[basecm11->device[basecm11]]% dumpmonitoringdata --consolidationinterval 1d -7d now forks

Timestamp Value Info

-------------------------- -------------------- ----------

2019/01/07 18:09:06 2.59586 processes/s

2019/01/08 13:00:00 2.58953 processes/s

2019/01/09 06:06:06 2.58854 processes/s

[basecm11->device[basecm11]]% dumpmonitoringdata --consolidationinterval 1w -7d now forks

Timestamp Value Info

-------------------------- -------------------- ----------

2019/01/08 11:15:12.194 2.59113 processes/s

L
Node Execution Filters And

Execution Multiplexers
Node execution filters and execution multiplexers define where data producers are executed on the
nodes of a cluster, and what nodes are targeted to obtain the data.

This appendix explains how node execution filters and execution multiplexers work with the help of
some explicit basic examples. The aim is to have the cluster administrator understand how they work
and how to use them.

The reference cluster in this section is a 5-node cluster, made up of a head node (basecm11) and 4
regular nodes (node001..node004). The commands run in this appendix are carried out during a cmsh

session that continues on from the point that it left off earlier.
The terms “node execution filters” and “execution multiplexers” are commonly abbreviated to filters

and multiplexers in this appendix.
A simple custom data producer script is created and used to explain some of the more-involved

concepts of filters and multiplexers more clearly. The custom script is:

[root@basecm11 ~]# cat /cm/shared/fm.sh

#!/bin/bash

echo $((RANDOM%100))

echo "Sampled on $(hostname) for $CMD_HOSTNAME" >&3

It should be made executable, for example, with chmod a+x. When run, the script outputs a random
number, it outputs the host it is being run on ($(hostname)), and also the host the metric is targeting
($CMD_HOSTNAME). The hosts that it is run on can be defined by filters, while the hosts that are targeted
by the metric can be defined by multiplexers.

The Term Multiplex: The word “multiplex” can be confusing to system administrators. In electronics,
the term multiplex implies that signals are being gathered from various inputs, and going into a main
input.

Here the idea is applicable to the signals (samples) from the execution multiplexers (nodes where the
samples are). The samples are multiplexed (gathered) from those nodes, to the node (or nodes) where
the data producer is executing.

• The execution of the data producer is on the node (or nodes) defined by nodeexecutionfilter.
The data producer execution nodes are the ones listed using the nodes command of cmsh.

• The nodes where the samples are obtained from are defined by the executionmultiplexer set-
ting. Those muliplexer nodes can have their samples displayed as output using the samplenow

command (section 10.6.2, page 589) of cmsh.

1006 Node Execution Filters And Execution Multiplexers

L.1 Data Producers: Default Configuration For Running And Sampling
If there is no configuration defined for the data producer in the filters or multiplexers for that data
producer, then each node runs a data producer on itself, and that data producer targets the node that it
is running on.

For example, the existing dmesg data producer comprises the dmesg health check (section G.2.1) and
by default has no filter or multiplexer defined for it. If an attempt is made to list any filter or multiplexer
for dmesg, then by default there is no content under the table headings:

[root@basecm11 ~]# cmsh

[basecm11]% monitoring setup

[basecm11->monitoring->setup]% nodeexecutionfilters dmesg; list; ..;..

Type Name (key) Filter Filter operation

------------ ------------------------ ------------------------ ----------------

[basecm11->monitoring->setup]% executionmultiplexers dmesg; list; ..;..

Name (key)

Another way of seeing that no such filters or multiplexers have been defined for dmesg could be by
seeing that none are defined in its submodes:

[basecm11->monitoring->setup]% show dmesg | grep submode

Execution multiplexer <0 in submode>

Node execution filters <0 in submode>

Most existing data producers have filters and multiplexers defined. The number of filters and multi-
plexers set per data producer can conveniently be viewed via list formatting:

Example

[basecm11->monitoring->setup]% list -f name,nodeexecutionfilters,executionmultiplexer | more

name (key) nodeexecutionfilters executionmultiplexer

-------------------- -------------------- --------------------

AggregateNode <1 in submode> <1 in submode>

AggregatePDU <1 in submode> <1 in submode>

AlertLevel <1 in submode> <1 in submode>

CMDaemonState <0 in submode> <0 in submode>

Cassandra <1 in submode> <0 in submode>

ClusterTotal <1 in submode> <0 in submode>

DeviceState <1 in submode> <0 in submode>

...

L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command
The nodes command shows which nodes the data producer runs on. By default, the data producer runs
on all nodes, when nothing has been set explicitly, because each node runs the data producer for itself:

[basecm11->monitoring->setup]% nodes dmesg

node001..node004,basecm11

L.1.2 Nodes That Data Producers Target By Default—The samplenow Command
Nodes where samples are being obtained at can be seen using the samplenow command for the specified
nodes.

Again, by default, each node is a target, because the target is same node that the dmesg data producer
runs on:

L.2 Data Producers: Configuration For Running And Targeting 1007

[basecm11->monitoring->setup]% device samplenow -t node dmesg

Entity Measurable Type Value Age Info

------------ ------------ ------------ ---------- ---------- ----------

node001 dmesg OS PASS 0.093s

node002 dmesg OS PASS 0.087s

node003 dmesg OS PASS 0.088s

node004 dmesg OS PASS 0.09s

basecm11 dmesg OS PASS 0.179s

In the outputs to samplenow displayed in this appendix, some columns are omitted for the sake of
clarity.

The -t node option to samplenow expands to -n node001..node004,basecm11 for this reference
cluster.

L.2 Data Producers: Configuration For Running And Targeting
Filters and multiplexers define which nodes run the data producers, and which nodes are the targets for
measurables.

The fm.sh script introduced on page 1005 can be used to define several custom metrics according to
what nodes run the script and what nodes are targeted by the script.

L.2.1 Custom Metrics From The fm.sh Custom Script
Custom data producers of type metric are created in this section. These data producers comprise cus-
tom metrics, which are now set up with varying filtering and multiplexing definitions, to illustrate how
the definitions work.

The Metric all_for_self

The metric from the data producer all_for_self can be set up with no filtering or multiplexing defined,
as follows:

[basecm11->monitoring->setup]% add metric all_for_self

[basecm11->monitoring->setup*[all_for_self*]]% set consolidator none

[basecm11->monitoring->setup*[all_for_self*]]% set script /cm/shared/fm.sh

[basecm11->monitoring->setup*[all_for_self*]]% set class Test

[basecm11->monitoring->setup*[all_for_self*]]% commit

The value for class is mandatory but arbitrary. It is an arbitrary grouping mechanism, which can be
useful in Base View for grouping folders in trees.

Sampling results for the metric all_for_self: With no filtering or multiplexing, the metric just runs
everywhere by default, with the target of the running metric being itself too. The Info field output from
samplenow shows this behavior in the script output:

[basecm11->monitoring->setup[all_for_self]]% exit

[basecm11->monitoring->setup]% device samplenow -t node all_for_self

Entity Measurable Type Value Age Info

------------ ------------- ----- ------ ------ -----------------------------------

node001 all_for_self Test 2 0.08s Sampled on node001 for node001

node002 all_for_self Test 13 0.084s Sampled on node002 for node002

node003 all_for_self Test 97 0.08s Sampled on node003 for node003

node004 all_for_self Test 18 0.084s Sampled on node004 for node004

basecm11 all_for_self Test 63 0.144s Sampled on basecm11 for basecm11

1008 Node Execution Filters And Execution Multiplexers

The Metric some_for_self

The metric some_for_self can be set up with filtering set up for some nodes, and no multiplexing set
up, as follows:

on node001,node002 for itself

[basecm11->monitoring->setup]% add metric some_for_self

[basecm11->monitoring->setup*[some_for_self*]]% set consolidator none

[basecm11->monitoring->setup*[some_for_self*]]% set class Test

[basecm11->monitoring->setup*[some_for_self*]]% set script /cm/shared/fm.sh

[basecm11->...*[some_for_self*]]% nodeexecutionfilters

[basecm11->...*[some_for_self*]->nodeexecutionfilters]% add node some_nodes

[basecm11->...->nodeexecutionfilters*[some_nodes*]]% set nodes node001 node002

[basecm11->...->nodeexecutionfilters*[some_nodes*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name some_nodes

Nodes node001,node002

Revision

Type Node

[basecm11->...->nodeexecutionfilters*[some_nodes*]]% commit

Sampling results for the metric some_for_self: Only some filtering defined, and no multiplexing
defined at all, means that the metric just runs on the filtered nodes, and targets only the nodes defined
in filter too:

[basecm11->...->nodeexecutionfilters[some_nodes]]% ..; ..; ..

[basecm11->monitoring->setup]% device samplenow -t node some_for_self

Entity Measurable Type Value Age Info

------------ -------------- ----- ------ ------ -------------------------------

node001 some_for_self Test 88 0.094s Sampled on node001 for node001

node002 some_for_self Test 98 0.075s Sampled on node002 for node002

The Metric from head_for_some_others

The metric from_head_for_some_others can be set up with filtering defined for the head node, and
multiplexing defined for some other regular nodes (other than node001 and node002 here), as follows:

on active head for node003,node004

[basecm11->monitoring->setup]% add metric from_head_for_some_others

[basecm11->monitoring->setup*[from_head_for_some_others*]]% set consolidator none

[basecm11->monitoring->setup*[from_head_for_some_others*]]% set script /cm/shared/fm.sh

[basecm11->monitoring->setup*[from_head_for_some_others*]]% set class Test

[basecm11->...*[from_head_for_some_others*]]% nodeexecutionfilters

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters]% active

Added active resource filter

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters]% show active head node

Parameter Value

-------------------------------- --

Filter operation Include

Name Active head node

Operator OR

Resources Active

Revision

Type Resource

[basecm11->monitoring->setup*[from_head_for_some_others*]->nodeexecutionfilters]% ..

[basecm11->...*[from_head_for_some_others*]]% executionmultiplexers

L.3 Replacing A Resource With An Explicit Node Specification 1009

[basecm11->...*[from_head_for_some_others*]->executionmultiplexers]% add node other_nodes

[basecm11->..._for_some_others*]->executionmultiplexers*[other_nodes*]]% set nodes node003 node004

[basecm11->...*[from_head_for_some_others*]->executionmultiplexers*[other_nodes*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name other_nodes

Nodes node003,node004

Revision

Type Node

[basecm11->..._for_some_others*]->executionmultiplexers*[other_nodes*]]% commit; ..; ..;..

[basecm11->monitoring->setup]%

The filter is given a resource, Active, which is a way to set the filter for the active node only. Available
resources for a node can be seen by running the command monitoringresources for a device:

Example

[basecm11->monitoring->setup]% device monitoringresources basecm11

Active

Ethernet

RDO

backup

boot

...

Sampling results for the metric from head_for_some_others: With filtering defined for the active
head node, and multiplexing defined for those other nodes, it means that the metric targets those other
nodes, and the metric runs on the head node. That is, the other nodes are targeted by the head node that
is running the metric:

[basecm11->monitoring->setup]% device samplenow -t node from_head_for_some_others

Entity Measurable Type Value Age Info

------------ ------------------------- ----- ----- ----- ---------------------------------

node003 from_head_for_some_others Test 20 0.084s Sampled on basecm11 for node003

node004 from_head_for_some_others Test 44 0.067s Sampled on basecm11 for node004

The nodes command confirms that the head node, basecm11 is the filtered node, that is, the only
node(s) running the metric:

[basecm11->monitoring->setup]% nodes from_head_for_some_others

basecm11

L.3 Replacing A Resource With An Explicit Node Specification
Within the filter Active head node, associated with the metric from_head_for_some_others, the re-
source object Active can be replaced with a node object instead, if the node is defined as being basecm11.
Doing this on a high-availability cluster where there is one active and one passive head node, would be
unwise. However, doing this on the reference cluster for teaching purposes is of course absolutely fine
because it helps make things a bit more concrete for the reader. The replacement can be carried out for
the session as follows:

[basecm11->monitoring->setup]% nodeexecutionfilters from_head_for_some_others

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters]% list

Type Name (key) Filter Filter operation

------------ ------------------------ ------------------------ ----------------

1010 Node Execution Filters And Execution Multiplexers

Resource Active head node Active Include

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters]% remove active head node

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters*]% add node head

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% set nodes basecm11

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% show

Parameter Value

-------------------------------- --

Filter operation Include

Name head

Nodes basecm11

Revision

Type Node

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters*[head*]]% commit

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters*[head]]% ..;..;..

The sample results are the same kind of output, and the filter node used is the same. The target
sample outputs are the same kind of output as before the replacement. The filter node on which the
metric runs is also seen to be the same:

[basecm11->monitoring->setup]% device samplenow -t node from_head_for_some_others

Entity Measurable Type Value Age Info

------------ -------------------------- ----- ----- ------ -----------------------------------

node003 from_head_for_some_others Test 11 0.081s Sampled on basecm11 for node003

node004 from_head_for_some_others Test 12 0.07s Sampled on basecm11 for node004

[basecm11->monitoring->setup]% nodes

basecm11

L.4 Excessive Sampling
If another node is appended to the node in the filter, then a warning comes up.

[basecm11->monitoring->setup]% nodeexecutionfilters from_head_for_some_others

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters]% append head nodes node003

[basecm11->...*[from_head_for_some_others*]->nodeexecutionfilters*]% commit

========================== from_head_for_some_others ===========================

Field Message

------------------------ ---

executionMultiplexers Warning: Execution filters/multiplexers are set to run

on multiple nodes for the same target. This likely

means they are badly configured

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters]% show head

Parameter Value

------------------------ ---

Filter operation Include

Name head

Nodes node003,basecm11

Revision

Type Node

The warning is there because the node execution filters are doing the same thing from different
nodes for an execution multiplexer target, and duplicating monitoring execution is typically a waste of
resources, and thus typically a mistake.

L.5 Not Just For Nodes 1011

However, the warnings are merely warnings, and not errors. So BCM just goes ahead with set-
ting up the filter/muliplex system according to what the administrator has specified. The nodes and
samplingnow commands now show:

[basecm11->...[from_head_for_some_others]->nodeexecutionfilters]% ..;..

[basecm11->monitoring->setup]% device samplenow -t node from_head_for_some_others

Entity Measurable Type Value Age Info

------------ -------------------------- ----- ----- ------ ---------------------------------

node003 from_head_for_some_others Test 3 0.151s Sampled on basecm11 for node003

node003 from_head_for_some_others Test 76 0.08s Sampled on node003 for node003

node004 from_head_for_some_others Test 25 0.08s Sampled on node003 for node004

node004 from_head_for_some_others Test 88 0.151s Sampled on basecm11 for node004

[basecm11->monitoring->setup]% nodes from_head_for_some_others

node003,basecm11

The node node003 is now doing what the head node is, sampling the same targets, which is typically
a bad idea. However the behavior is indeed as expected for this particular configuration.

Whether running a particular configuration is actually wise, is up to the administrator—but in any
case the filter/multiplex system allows plenty of abuse of this kind.

L.5 Not Just For Nodes
Nodes are what node execution filters and execution multiplexers run on. However, sometimes it is
more convenient to execute based on other types.

The possible types can be listed with tab-completion suggestions when adding a node execution
filter or an execution multiplier:

[basecm11->monitoring->setup[dmesg]->nodeexecutionfilters]% add<TAB><TAB>
category lua node overlay resource type

L.6 Lua Node Execution Filters
Lua (https://www.lua.org/) is a lightweight scripting language embedded into CMDaemon. It allows
more advanced node execution filters to be written using a Lua filter file.

Example

[basecm11->monitoring->setup[<data producer>]->nodeexecutionfilters]% add lua lua-filter

[basecm11->...nodeexecutionfilters*[lua-filter*]]% set code <Lua filter file name>

In the preceding example session, the name lua-filter is an arbitrary name, that is added to the
object that is associated with the Lua filter file <Lua filter file name>.

The self Lua table is passed by CMDaemon, and contains the entity for which the filter is evaluated.
Only devices have a self table that is not nil. All other entities have a self table that is nil.

For example, a filter can be created based on a regex match of the hostname:

Example

if self == nil then

return false

else

return self.hostname:match("^node[0-9]+") ~= nil)

end

The Lua filter is evaluated for all nodes:

Example

https://www.lua.org/

1012 Node Execution Filters And Execution Multiplexers

[basecm11->monitoring->setup[dmesg]]% nodes

node001..node004

Development of Lua filters is best done outside of CMDaemon. Doing so requires the cluster admin-
istrator to create node environments to be evaluated by hand:

Example

[root@basecm11 ~]# cat node001.lua

self = {}

self.hostname = "node001"

self.category = "default"

[root@basecm11 ~]# cat basecm11.lua

self = {}

self.hostname = "basecm11"

This is in addition to the original filter script:

Example

[root@basecm11 ~]# cat filter.lua

if self == nil then

return false

else

return self.hostname:match("^node[0-9]+") ~= nil

end

Both nodes can then be run through the filter using the lua interpreter:

Example

[root@basecm11 ~]# lua

Lua 5.1.4 Copyright (C) 1994-2015 Lua.org, PUC-Rio

> dofile('basecm11.lua')

> print(dofile('filter.lua'))

false

> dofile('node001.lua')

> print(dofile('filter.lua'))

true

The Lua self exported by CMDaemon contains the following:

• self: The main table object, nil for non-devices.

• self.hostname: The hostname of the device.

• self.partition: The name of the partition to which the device belongs.

• self.category: The name of the category to which the compute node belongs.

• self.nodegroups: An array with the name of node groups the node belongs to.

• self.mac: The MAC address of the device.

• self.ip: The IP of the device, only available for non-node devices.

• self.network: The IP address of the device, only available for non-node devices.

• self.interfaces: The array of interface of a node.

L.6 Lua Node Execution Filters 1013

• self.interfaces[1].name: The name of the first interface.

• self.interfaces[1].ip: The IP address of the first interface.

• self.interfaces[1].network: The name of the network of the first interface.

• self.roles: The array of roles of a node.

• self.roles[1].name: The name of the first role.

• self.roles[1].type: The type of the first role.

• self.status.status: The status of the device.

• self.status.user_message: The user message set for the device.

• self.status.info_message: The information message set for the device.

• self.status.closed: A boolean marking the node as closed.

• self.status.restart_required: A boolean marking the node needs to be rebooted.

• self.status.healthcheck_failed: A boolean marking at least one health check has returned
FAIL.

• self.status.healthcheck_unknown: A boolean marking at least one health check has returned
UNKNOWN.

• self.status.state_flapping: A boolean marking the node status transitioning often in a short
time span

• self.system.name: The name of the system.

• self.system.manufacturer: The manufacturer of the system.

• self.system.motherboard.name: The name of the motherboard.

• self.system.motherboard.manufacturer: The manufacturer of the motherboard.

• self.system.bios.version: The BIOS version.

• self.system.bios.vendor: The BIOS vendor name.

• self.system.bios.date: The BIOS date.

• self.system.os.name: The OS name.

• self.system.os.version: The OS version.

• self.system.os.flavor: The OS flavor.

Using the self environment, complex filters can easily be created. For example, the following filter
can be built to include only the nodes on the IB network, which also have a Slurm client role:

Example

[root@basecm11 ~]# cat ib-slurm-filter.lua

if self == nil then

return false

end

on_ib_network = false

1014 Node Execution Filters And Execution Multiplexers

for index, interface in ipair(self.interface) do

on_ib_network = on_ib_network or (interface.network == "ibnet")

done

slurm_client = false

for index, role in ipair(self.roles) do

slurm_client = slurm_client or (role.name == "SlurmCLient")

done

return on_ib_network and slurm_client

It is also possible to use external sources, like the file system, to determine the filter for a node.

Example

[root@basecm11 ~]# cat file-check-filter.lua

if self == nil then

return false

end

function file_exists(name)

local f = io.open(name, "r")

if f ~= nil then

io.close(f)

return true

else

return false

end

end

return file_exists(string.format('/opt/filter/%s', self.hostname))

It is important to understand that this Lua script is evaluated for all nodes, on the active head node.
The Lua script should therefore be fast, and return within a few milliseconds.

M
A Tree View Of cmsh

M.1 Modes
A 3-level tree of the modes in cmsh is:

|-- category

| |-- biossettings

| |-- bmcsettings

| |-- dpusettings

| | `-- keyvaluesettings

| |-- fsexports

| |-- fsmounts

| |-- gpusettings

| |-- kernelmodules

| |-- roles

| | |-- advancedsettings

| | |-- commsettings

| | |-- configs

| | |-- configurations

| | |-- connectionsettings

| | |-- domains

| | |-- engines

| | |-- environments

| | |-- excludelistsnippets

| | |-- genericresources

| | |-- interfaces

| | |-- logsettings

| | |-- momsettings

| | |-- nginxreverseproxy

| | |-- nodecustomizations

| | |-- openports

| | |-- policies

| | |-- powerprofiles

| | |-- resourceproviders

| | |-- routes

| | |-- servers

| | |-- spawner

| | |-- storagedrivers

| | |-- storagebackends

| | `-- zones

| |-- selinuxsettings

| | `-- keyvaluesettings

| |-- services

1016 A Tree View Of cmsh

| |-- staticroutes

| `-- ztpsettings

|-- cert

|-- cloud

| |-- extensions

| |-- instancepools

| |-- ocigpumemoryclusters

| |-- regions

| |-- types

| `-- vpcs

|-- configurationoverlay

| |-- customizations

| `-- roles

| |-- advancedsettings

| |-- commsettings

| |-- configs

| |-- configurations

| |-- connectionsettings

| |-- domains

| |-- engines

| |-- environments

| |-- excludelistsnippets

| |-- genericresources

| |-- interfaces

| |-- logsettings

| |-- momsettings

| |-- nginxreverseproxy

| |-- nodecustomizations

| |-- openports

| |-- policies

| |-- powerprofiles

| |-- resourceproviders

| |-- routes

| |-- servers

| |-- spawner

| |-- storagedrivers

| |-- storagebackends

| `-- zones

|-- device

| |-- accesssettings

| |-- biosettings

| |-- bmcsettings

| |-- chassisposition

| |-- cloudsettings

| | |-- disks

| | |-- platformconfig

| | `-- storage

| |-- dpusettings

| | `-- keyvaluesettings

| |-- fsexports

| |-- fsmounts

| |-- gpusettings

| |-- interfaces

| |-- kernelmodules

| |-- nvconfiguration

M.1 Modes 1017

| |-- prometheusmetricforwarders

| |-- rackposition

| |-- roles

| | |-- advancedsettings

| | |-- commsettings

| | |-- configs

| | |-- configurations

| | |-- connectionsettings

| | |-- domains

| | |-- engines

| | |-- environments

| | |-- excludelistsnippets

| | |-- genericresources

| | |-- interfaces

| | |-- logsettings

| | |-- momsettings

| | |-- nginxreverseproxy

| | |-- nodecustomizations

| | |-- openports

| | |-- policies

| | |-- powerprofiles

| | |-- resourceproviders

| | |-- routes

| | |-- servers

| | |-- spawner

| | |-- storagedrivers

| | |-- storagebackends

| | `-- zones

| |-- selinuxsettings

| | `-- keyvaluesettings

| |-- services

| |-- snmpsettings

| |-- staticroutes

| `-- ztpsettings

| `-- keyvaluesettings

|-- edgesite

|-- etcd

|-- fspart

| `-- excludelistsnippets

|-- group

|-- hierarchy

| |-- sources

| `-- targets

|-- kubernetes

| |-- appgroups

| | `-- applications

| |-- labelsets

| `-- users

|-- main

|-- monitoring

| |-- action

| |-- consolidator

| | `-- consolidators

| |-- labeledentity

| |-- measurable

1018 A Tree View Of cmsh

| |-- query

| | `-- drilldown

| |-- report

| |-- setup

| | |-- dpusettings

| | |-- executionmultiplexers

| | |-- jobmetricsettings

| | `-- nodeexecutionfilters

| |-- standalone

| `-- trigger

| `-- expression

|-- network

|-- nodegroup

|-- partition

| |-- accesssettings

| |-- archos

| |-- bmcsettings

| |-- burnconfigs

| |-- dpusettings

| | `-- keyvaluesettings

| |-- failover

| |-- failovergroups

| |-- leakactionpolicies

| | `-- rules

| |-- netqsettings

| | `-- prometheusmetricforwarders

| |-- nmxmsettings

| | `-- prometheusmetricforwarders

| |-- prometheusmetricforwarders

| |-- provisioningsettings

| |-- resourcepools

| |-- selinuxsettings

| | `-- keyvaluesettings

| |-- snmpsettings

| |-- ufmsettings

| |-- wlmjobpowerusagesettings

| |-- ztpnewswitchsettings

| | `-- keyvaluesettings

| `-- ztpsettings

| `-- keyvaluesettings

|-- powercircuit

|-- process

|-- profile

|-- rack

|-- session

|-- softwareimage

| |-- kernelmodules

| `-- selection

|-- task

|-- user

| `-- projectmanager

`-- wlm

|-- accounting

|-- cgroups

|-- chargeback

M.1 Modes 1019

|-- jobqueue

|-- jobs

|-- licenses

|-- ocisettings

|-- pelogs

|-- placeholders

|-- prssettings

`-- topologysettings

|-- blocksettings

|-- parameters

|-- topographsettings

`-- treesettings

N
Base Command Manager

Essentials And NVIDIA AI
Enterprise

Base Command Manager Essentials (BCME) is the NVIDIA AI Enterprise (https://docs.nvidia.com/
ai-enterprise/index.html) edition of Base Command Manager.

N.1 Scope Of BCME
BCME:

• provisions clusters. This includes:

– operating system installation

– networking setup

– security configuration

– DNS configuration

while ensuring cluster integrity

• automates server management and updates, preventing server drift

• manages AI workloads with:

– Kubernetes

– automated scaling

– a tightly integrated Run:ai

• can install and manage Slurm workload manager

• enables a streamlined Jupyter setup with NGC containers

• provides comprehensive management for cluster control and job monitoring. This includes man-
aging and monitoring for

– GPU metrics

– resource allocation

– access control

– chargeback options

https://docs.nvidia.com/ai-enterprise/index.html
https://docs.nvidia.com/ai-enterprise/index.html

1022 Base Command Manager Essentials And NVIDIA AI Enterprise

N.2 BCME And Support For NVIDIA AI Enterprise
N.2.1 Certified Features Of BCME For NVIDIA AI Enterprise
Some features of BCME are certified for NVIDIA AI Enterprise.

The BCM Feature Matrix at:

https://support.brightcomputing.com/feature-matrix/

has a complete list of the features of BCME that are certified for NVIDIA AI Enterprise.

N.2.2 NVIDIA AI Enterprise Compatible Servers
BCME must be deployed on NVIDIA AI Enterprise compatible servers.

The NVIDIA Qualified System Catalog at:

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/

displays a complete list of NVIDIA AI Enterprise compatible servers, if the options

• AI Enterprise Bare Metal and

• AI Enterprise vSphere

are ticked in the NVIDIA Cert. Type filter menu dropdown.

N.2.3 NVIDIA Software Versions Supported
NVIDIA AI Enterprise supports specific versions of NVIDIA software, including

• NVIDIA drivers

• NVIDIA containers

• the NVIDIA Container Toolkit

• the NVIDIA GPU Operator

• the NVIDIA Network Operator

The NVIDIA AI Enterprise Catalog On NGC at:

https://catalog.ngc.nvidia.com/enterprise

lists the specific versions of software included in a release.

N.2.4 NVIDIA AI Enterprise Product Support Matrix
The NVIDIA AI Enterprise Product Support Matrix at:

https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html

lists the platforms that are supported.

https://support.brightcomputing.com/feature-matrix/
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/?start=0&count=400&pageNumber=1&searchTerm=&filters=eyJmaWx0ZXJzIjpbXSwic3ViRmlsdGVycyI6e30sImNlcnRpZmllZEZpbHRlcnMiOnsiYmFyZU1ldGFsIjp0cnVlLCJ2U3BoZXJlIjp0cnVlfSwicGF5bG9hZCI6W119
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/?start=0&count=400&pageNumber=1&searchTerm=&filters=eyJmaWx0ZXJzIjpbXSwic3ViRmlsdGVycyI6e30sImNlcnRpZmllZEZpbHRlcnMiOnsiYmFyZU1ldGFsIjp0cnVlLCJ2U3BoZXJlIjp0cnVlfSwicGF5bG9hZCI6W119
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/?start=0&count=400&pageNumber=1&searchTerm=&filters=eyJmaWx0ZXJzIjpbXSwic3ViRmlsdGVycyI6e30sImNlcnRpZmllZEZpbHRlcnMiOnsiYmFyZU1ldGFsIjp0cnVlLCJ2U3BoZXJlIjp0cnVlfSwicGF5bG9hZCI6W119
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/?start=0&count=400&pageNumber=1&searchTerm=&filters=eyJmaWx0ZXJzIjpbXSwic3ViRmlsdGVycyI6e30sImNlcnRpZmllZEZpbHRlcnMiOnsiYmFyZU1ldGFsIjp0cnVlLCJ2U3BoZXJlIjp0cnVlfSwicGF5bG9hZCI6W119
https://catalog.ngc.nvidia.com/enterprise
https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html

	Table of Contents
	0.1 Quickstart
	0.2 About This Manual
	0.3 About The Manuals In General
	0.4 Getting Administrator-Level Support
	0.5 Getting Professional Services
	1 Introduction
	1.1 NVIDIA Base Command Manager Functions And Aims
	1.2 The Scope Of The Administrator Manual (This Manual)
	1.2.1 Installation
	1.2.2 Configuration, Management, And Monitoring Via BCM Tools And Applications

	1.3 Outside The Direct Scope Of The Administrator Manual

	2 Cluster Management With NVIDIA Base Command Manager
	2.1 Concepts
	2.1.1 Devices
	2.1.2 Software Images
	2.1.3 Node Categories
	2.1.4 Node Groups
	2.1.5 Roles
	2.1.6 Configuration Overlay

	2.2 Modules Environment
	2.2.1 Adding And Removing Modules
	2.2.2 Using Local And Shared Modules
	2.2.3 Setting Up A Default Environment For All Users
	2.2.4 Creating A Modules Environment Module
	2.2.5 Lua Modules Environment (LMod)

	2.3 Authentication
	2.3.1 Changing Administrative Passwords On The Cluster
	2.3.2 Logins Using ssh
	2.3.3 Certificates
	2.3.4 Profiles

	2.4 Base View GUI
	2.4.1 Installing The Cluster Management GUI Service
	2.4.2 Navigating The Cluster With Base View

	2.5 Cluster Management Shell
	2.5.1 Invoking cmsh
	2.5.2 Levels, Modes, Help, And Commands Syntax In cmsh
	2.5.3 Working With Objects
	2.5.4 Accessing Cluster Settings
	2.5.5 Advanced cmsh Features

	2.6 Cluster Management Daemon
	2.6.1 Managing And Inspecting The Cluster Management Daemon
	2.6.2 Configuring The Cluster Management Daemon
	2.6.3 CMDaemon Versions
	2.6.4 Configuring The Cluster Management Daemon Logging Facilities
	2.6.5 Configuration File Modification, And The FrozenFile Directive
	2.6.6 Configuration File Conflicts Between The Standard Distribution And BCM For Generated And Non-Generated Files
	2.6.7 CMDaemon Lite

	3 Configuring The Cluster
	3.1 Main Cluster Configuration Settings
	3.1.1 Cluster Configuration: Various Name-Related Settings
	3.1.2 Cluster Configuration: Some Network-Related Settings
	3.1.3 Miscellaneous Settings
	3.1.4 Limiting The Maximum Number Of Open Files

	3.2 Network Settings
	3.2.1 Configuring Networks
	3.2.2 Adding Networks
	3.2.3 Changing Network Parameters
	3.2.4 Tools For Viewing Cluster Connections And Connectivity

	3.3 Configuring Bridge Interfaces
	3.4 Configuring VLAN interfaces
	3.4.1 Configuring A VLAN Interface Using cmsh
	3.4.2 Configuring A VLAN Interface Using Base View

	3.5 Configuring Bonded Interfaces
	3.5.1 Adding A Bonded Interface
	3.5.2 Single Bonded Interface On A Regular Node
	3.5.3 Multiple Bonded Interface On A Regular Node
	3.5.4 Bonded Interfaces On Head Nodes And HA Head Nodes
	3.5.5 Tagged VLAN On Top Of a Bonded Interface
	3.5.6 Association Of MAC Address With A Bonded Interface
	3.5.7 Further Notes On Bonding

	3.6 Configuring InfiniBand Interfaces
	3.6.1 Installing Software Packages
	3.6.2 Subnet Managers
	3.6.3 InfiniBand Network Settings
	3.6.4 Verifying Connectivity

	3.7 Configuring BMC (IPMI/iLO/DRAC/CIMC/Redfish) Interfaces
	3.7.1 BMC Network Settings
	3.7.2 BMC Authentication
	3.7.3 Interfaces Settings
	3.7.4 Identification With A BMC

	3.8 Configuring BlueField DPUs
	3.8.1 Assumptions And Limitations
	3.8.2 Preparation
	3.8.3 Installation
	3.8.4 Managing DPU Settings

	3.9 Configuring Switches And PDUs
	3.9.1 Configuring With The Manufacturer's Configuration Interface
	3.9.2 Configuring SNMP

	3.10 Configuring Cumulus Switches
	3.10.1 Cumulus Switches Access Configuration, Initialization And Network Device Discovery
	3.10.2 Custom Service Setups For Cumulus Linux
	3.10.3 Uplink Ports
	3.10.4 The showport MAC Address to Port Matching Tool
	3.10.5 Disabling Port Detection
	3.10.6 The switchoverview Command

	3.11 Configuring NetQ Network Management System
	3.12 Disk Layouts: Disked, Semi-Diskless, And Diskless Node Configuration
	3.12.1 Disk Layouts
	3.12.2 Disk Layout Assertions
	3.12.3 Changing Disk Layouts
	3.12.4 Changing A Disk Layout From Disked To Diskless

	3.13 Configuring NFS Volume Exports And Mounts
	3.13.1 Exporting A Filesystem Using Base View And cmsh
	3.13.2 Mounting A Filesystem Using Base View And cmsh
	3.13.3 Mounting A Filesystem Subtree For A Diskless Node Over NFS
	3.13.4 Configuring NFS Volume Exports And Mounts Over RDMA With OFED Drivers

	3.14 Managing And Configuring Services
	3.14.1 Why Use The Cluster Manager For Services?
	3.14.2 Managing And Configuring Services—Examples

	3.15 Managing And Configuring A Rack
	3.15.1 Racks
	3.15.2 Assigning Devices To A Rack
	3.15.3 Assigning Devices To A Chassis

	3.16 Configuring GPU Settings
	3.16.1 GPUs And GPU Units
	3.16.2 Configuring GPU Settings
	3.16.3 MIG Configuration

	3.17 Configuring Sampling From A Prometheus Exporter
	3.18 Configuring Custom Scripts
	3.18.1 custompowerscript
	3.18.2 custompingscript
	3.18.3 customremoteconsolescript
	3.18.4 sysinfo Custom Scripts

	3.19 Cluster Configuration Without Execution By CMDaemon
	3.19.1 Cluster Configuration: The Bigger Picture
	3.19.2 Making Nodes Function Differently By Image
	3.19.3 Making All Nodes Function Differently From Normal Cluster Behavior With FrozenFile
	3.19.4 Adding Functionality To Nodes Via An initialize Or finalize Script
	3.19.5 Examples Of Configuring Nodes With Or Without CMDaemon

	3.20 Saving A Backup Of Configuration Files With versionconfigfiles

	4 Power Management
	4.1 Configuring Power Parameters
	4.1.1 PDU-based Power Control
	4.1.2 IPMI-Based Power Control
	4.1.3 Combining PDU- and IPMI-Based Power Control
	4.1.4 Custom Power Control
	4.1.5 Hewlett Packard iLO-Based Power Control
	4.1.6 Dell drac-based Power Control
	4.1.7 Redfish-Based and CIMC-Based Power Control

	4.2 Power Operations
	4.2.1 Power Operations Overview
	4.2.2 Power Operations With Base View
	4.2.3 Power Operations Through cmsh

	4.3 Monitoring Power
	4.4 Switch Configuration To Survive Power Downs

	5 Node Provisioning
	5.1 Before The Kernel Loads
	5.1.1 PXE Booting
	5.1.2 iPXE Booting From A Disk Drive
	5.1.3 iPXE Booting Using InfiniBand
	5.1.4 Using PXE To Boot From The Drive
	5.1.5 Network Booting Without PXE On The ARMv8 Architecture
	5.1.6 Network Booting Protocol
	5.1.7 The Boot Role

	5.2 Provisioning Nodes
	5.2.1 Provisioning Nodes: Configuration Settings
	5.2.2 Provisioning Nodes: Role Setup With cmsh
	5.2.3 Provisioning Nodes: Role Setup With Base View
	5.2.4 Provisioning Nodes: Housekeeping

	5.3 The Kernel Image, Ramdisk And Kernel Modules
	5.3.1 Booting To A ``Good State'' Software Image
	5.3.2 Selecting Kernel Driver Modules To Load Onto Nodes
	5.3.3 InfiniBand Provisioning
	5.3.4 VLAN Provisioning

	5.4 Node-Installer
	5.4.1 Requesting A Node Certificate
	5.4.2 Deciding Or Selecting Node Configuration
	5.4.3 Starting Up All Network Interfaces
	5.4.4 Determining Install-mode Type And Execution Mode
	5.4.5 Running Initialize Scripts
	5.4.6 Checking Partitions, RAID Configuration, Mounting Filesystems
	5.4.7 Synchronizing The Local Drive With The Software Image
	5.4.8 Writing Network Configuration Files
	5.4.9 Creating A Local /etc/fstab File
	5.4.10 Booting From The Local Hard Drive
	5.4.11 Running Finalize Scripts
	5.4.12 Unloading Specific Drivers
	5.4.13 Switching To The Local init Process

	5.5 Node States
	5.5.1 Node States Icons In Base View
	5.5.2 Node States Shown In cmsh
	5.5.3 Node States Indicating Regular Start Up
	5.5.4 Node States That May Indicate Problems

	5.6 Updating Running Nodes
	5.6.1 Updating Running Nodes: Configuration With excludelistupdate
	5.6.2 Updating Running Nodes: With cmsh Using imageupdate
	5.6.3 Updating Running Nodes: With Base View Using the Update node Option
	5.6.4 Updating Running Nodes: Considerations

	5.7 Adding New Nodes
	5.7.1 Adding New Nodes With cmsh And Base View Add Functions
	5.7.2 Adding New Nodes With The Node Creation Wizard

	5.8 Troubleshooting The Node Boot Process
	5.8.1 Node Fails To PXE Boot
	5.8.2 Node-installer Logging
	5.8.3 Provisioning Logging
	5.8.4 Ramdisk Fails During Loading Or Sometime Later
	5.8.5 Ramdisk Cannot Start Network
	5.8.6 Node-Installer Cannot Create Disk Layout
	5.8.7 Node-Installer Cannot Start BMC (IPMI/iLO) Interface

	6 User Management
	6.1 Managing Users And Groups With Base View
	6.2 Managing Users And Groups With cmsh
	6.2.1 Adding A User
	6.2.2 Saving The Modified State
	6.2.3 Editing Properties Of Users And Groups
	6.2.4 Reverting To The Unmodified State
	6.2.5 Removing A User

	6.3 Using An External LDAP Server
	6.3.1 External LDAP Server Replication
	6.3.2 High Availability

	6.4 Tokens And Profiles
	6.4.1 Modifying Profiles
	6.4.2 Creation Of Custom Certificates With Profiles, For Users Managed By BCM's Internal LDAP
	6.4.3 Creation Of Custom Certificates With Profiles, For Users Managed By An External LDAP
	6.4.4 Logging The Actions Of CMDaemon Users
	6.4.5 Creation Of Certificates For Nodes With cm-component-certificate

	7 Workload Management
	7.1 Workload Managers Choices
	7.2 Forcing Jobs To Run In A Workload Management System
	7.2.1 Disallowing User Logins To Regular Nodes Via cmsh
	7.2.2 Disallowing User Logins To Regular Nodes Via Base View
	7.2.3 Disallowing Other User Processes Outside Of Workload Manager User Processes
	7.2.4 High Availability By Workload Managers

	7.3 Installation Of Workload Managers
	7.3.1 Running cm-wlm-setup In CLI Mode
	7.3.2 Running cm-wlm-setup As A TUI
	7.3.3 Installation And Configuration Of Enroot And Pyxis With Slurm To Run Containerized Jobs
	7.3.4 Prolog And Epilog Scripts

	7.4 Enabling, Disabling, And Monitoring Workload Managers
	7.4.1 Enabling And Disabling A WLM With Base View
	7.4.2 Enabling And Disabling A Workload Manager With cmsh
	7.4.3 Monitoring The Workload Manager Services

	7.5 Configuring And Running Individual Workload Managers
	7.5.1 Configuring And Running Slurm
	7.5.2 Configuring And Running PBS
	7.5.3 Installing, Configuring, And Running LSF

	7.6 Using Base View With Workload Management
	7.6.1 Jobs Display And Handling In Base View
	7.6.2 Queues Display And Handling In Base View

	7.7 Using cmsh With Workload Management
	7.7.1 The jobs Submode In cmsh
	7.7.2 Job Queue Display And Handling In cmsh: jobqueue Mode
	7.7.3 Nodes Drainage Status And Handling In cmsh

	7.8 Examples Of Workload Management Assignment
	7.8.1 Setting Up A New Category And A New Queue For It
	7.8.2 Setting Up A Prejob Or Postjob Check

	7.9 Power Saving With cm-scale
	7.10 Cgroups
	7.10.1 Cgroups Settings For Workload Managers

	7.11 Custom Node Parameters
	7.11.1 Other PBS Professional Customizations Examples

	8 NVIDIA Base Command Manager Auto Scaler
	8.1 Introduction
	8.1.1 Use Cases
	8.1.2 Resource Constraints
	8.1.3 Setup
	8.1.4 Workload Roles Assignment Limitations Per Node With cm-scale

	8.2 Configuration
	8.2.1 The ScaleServer Role
	8.2.2 Resource Providers
	8.2.3 Time Quanta Optimization
	8.2.4 Fairsharing Priority Calculation And Node Management
	8.2.5 Engines
	8.2.6 Trackers

	8.3 Examples Of cm-scale Use
	8.3.1 Simple Static Node Provider Usage Example
	8.3.2 Simple Dynamic Node Provider Usage Example

	8.4 Further cm-scale Configuration And Examples
	8.4.1 Dynamic Nodes Re-purposing
	8.4.2 Pending Reasons
	8.4.3 Locations
	8.4.4 Azure Storage Accounts Assignment
	8.4.5 Uptake of HPC Jobs By Particular Types Of Nodes
	8.4.6 How To Exclude Unused Nodes From Being Stopped
	8.4.7 Prolog And Epilog Scripts With Auto Scaler
	8.4.8 Queue Node Placeholders
	8.4.9 Auto Scaling A Job On-premises To A Workload Manager And Kubernetes
	8.4.10 AWS Spot Instances And Availability Zones
	8.4.11 Auto Scaler Statistics

	9 Post-installation Software Management
	9.1 NVIDIA Base Command Manager Packages, Their Naming Convention And Version
	9.1.1 The packages Command
	9.1.2 BCM Package Point Release Versions And The cm-package-release-info Command

	9.2 Managing Packages On The Head Node
	9.2.1 Managing RPM Or .deb Packages On The Head Node
	9.2.2 Installation Of Packages On The Head Node That Are Not .deb And Not .rpm Packages

	9.3 Kernel Management On A Head Node Or Image
	9.3.1 Installing A Standard Distribution Kernel Into An Image Or On A Head Node
	9.3.2 Excluding Kernels And Other Packages From Updates
	9.3.3 Updating A Kernel In A Software Image
	9.3.4 Setting Kernel Options For Software Images
	9.3.5 Kernel Driver Modules

	9.4 Managing A Package In A Software Image And Running It On Nodes
	9.4.1 Installing From Head Into The Image: Changing The Root Directory Into Which The Packages Are Deployed
	9.4.2 Installing From Head Into The Image: Updating The Node
	9.4.3 Installing From Head Into The Image: Possible Issues When Using rpm --root, yum --installroot Or chroot
	9.4.4 Managing A Package In The Node-Installer Image

	9.5 Managing Non-RPM Software In A Software Image And Running It On Nodes
	9.5.1 Managing The Software Directly On An Image
	9.5.2 Managing The Software Directly On A Node, Then Syncing Node-To-Image

	9.6 Creating A Custom Software Image
	9.6.1 Creating A Base Distribution Archive From A Base Host
	9.6.2 Creating The Software Image With cm-create-image
	9.6.3 Configuring Local Repositories For Linux Distributions, And For The BCM Package Repository, For A Software Image
	9.6.4 Creating A Custom Image From The Local Repository

	9.7 Creating Images For Other Distributions And Architectures (Multidistro And Multiarch)
	9.7.1 The cm-image Tool
	9.7.2 Multidistro Examples: Provisioning From Rocky 8 Head Node To Ubuntu 24.04 Regular Nodes
	9.7.3 Multiarch Example: Creating An Image From A Centos 8 Head Node For ARMv8 Architecture Regular Nodes

	10 Monitoring: Monitoring Cluster Devices
	10.1 A Basic Monitoring Example And Action
	10.1.1 Synopsis Of Basic Monitoring Example
	10.1.2 Before Using The Basic Monitoring Example—Setting Up The Pieces
	10.1.3 Using The Basic Monitoring Example

	10.2 Monitoring Concepts And Definitions
	10.2.1 Measurables
	10.2.2 Enummetrics
	10.2.3 Metrics
	10.2.4 Health Check
	10.2.5 Trigger
	10.2.6 Action
	10.2.7 Severity
	10.2.8 AlertLevel
	10.2.9 Flapping
	10.2.10 Data Producer
	10.2.11 Conceptual Overview: The Main Monitoring Interfaces Of Base View

	10.3 Monitoring Visualization With Base View
	10.3.1 The Monitoring Window

	10.4 Monitoring Configuration With Base View
	10.4.1 Monitoring Configuration: Data Producers
	10.4.2 Monitoring Configuration: Measurables
	10.4.3 Monitoring Configuration: Consolidators
	10.4.4 Monitoring Configuration: Actions
	10.4.5 Monitoring Configuration: Triggers
	10.4.6 Monitoring Configuration: Health status
	10.4.7 Monitoring Configuration: All Health Checks
	10.4.8 Monitoring Configuration: Standalone Monitored Entities
	10.4.9 Monitoring Configuration: PromQL Queries
	10.4.10 Monitoring Configuration: Resources
	10.4.11 Monitoring Configuration: Types

	10.5 The monitoring Mode Of cmsh
	10.5.1 The action Submode
	10.5.2 The consolidator Submode
	10.5.3 The measurable Submode
	10.5.4 The setup Submode
	10.5.5 The standalone Submode
	10.5.6 The trigger Submode

	10.6 Obtaining Monitoring Data Values
	10.6.1 Getting The List Of Measurables For An Entity: The measurables, metrics, healthchecks And enummetrics Commands
	10.6.2 On-Demand Metric Sampling And Health Checks
	10.6.3 The Latest Data And Counter Values—The latest*data And latestmetriccounters Commands
	10.6.4 Data Values Over A Period—The dumpmonitoringdata Command
	10.6.5 Monitoring Data Health Overview–The healthoverview Command
	10.6.6 Monitoring Data About The Monitoring System—The monitoringinfo Command
	10.6.7 Dropping Monitoring Data With The monitoringdrop Command
	10.6.8 Monitoring Suspension And Resumption—The monitoringsuspend And monitoringresume Commands
	10.6.9 Monitoring Pickup Intervals

	10.7 Offloaded Monitoring
	10.7.1 Why Offloaded Monitoring?
	10.7.2 Implementing Offloaded Monitoring
	10.7.3 Background Details
	10.7.4 Examining Offloaded Monitoring With monitoringoffloadinformation

	10.8 The User Portal
	10.8.1 Accessing The User Portal
	10.8.2 Setting A Common Username/Password For The User Portal
	10.8.3 User Portal Access
	10.8.4 User Portal Home Page

	10.9 Cloud Job Tagging
	10.10 Event Viewer
	10.10.1 Viewing Events In Base View
	10.10.2 Viewing Events In cmsh
	10.10.3 Using The Event Bucket From The Shell For Events And For Tagging Device States
	10.10.4 InfoMessages

	10.11 Monitoring Location With GNSS
	10.12 Monitoring Report Queries
	10.12.1 Monitoring Report Queries In cmsh

	10.13 Monitoring With nvsm

	11 Monitoring: Job Monitoring
	11.1 Job Metrics Introduction
	11.2 Job Metrics With Cgroups
	11.3 Job Information Retention
	11.4 Job Metrics Sampling Configuration
	11.4.1 The Job Metrics Collection Processing Mechanism

	11.5 Job Monitoring In cmsh

	12 Monitoring: Job Accounting
	12.1 Introduction
	12.2 Labeled Entities
	12.2.1 Dataproducers For Labeled Entities
	12.2.2 PromQL And Labeled Entities
	12.2.3 Job IDs And Labeled Entities
	12.2.4 Measurables And Labeled Entities

	12.3 PromQL Queries
	12.3.1 The Default PromQL Queries...
	12.3.2 ...And A Short Description Of Them
	12.3.3 Modifying The Default PromQL Query Properties
	12.3.4 An Example PromQL Query, Properties, And Disassembly
	12.3.5 Aside: Getting Raw Values For A Prometheus Class Metric
	12.3.6 ...An Example PromQL Query, Properties, And Disassembly (Continued)

	12.4 Parameterized PromQL Queries
	12.4.1 Two Job GPU Metrics Used In PromQL Queries

	12.5 Job Accounting In Base View
	12.5.1 Management And Use Of The Accounting Panel

	12.6 PromQL Query Modes And Specification In Base View
	12.7 Access Control For Workload Accounting And Reporting
	12.7.1 Defining Project Managers Using Internal User Management
	12.7.2 Defining Project Managers Using External User Management

	12.8 Drilldown Queries For Workload Accounting And Reporting
	12.8.1 The drilldownoverview Command

	12.9 The grid Command For Job Accounting
	12.9.1 The grid Command Help Text
	12.9.2 Some grid Command Examples
	12.9.3 The grid Command Time Specification

	13 Monitoring: Job Chargeback
	13.1 Introduction
	13.1.1 The Word ``Chargeback''
	13.1.2 Comparison Of Job Chargeback Monitoring Measurement With Other Monitoring Measurements

	13.2 Job Chargeback Measurement
	13.2.1 Predefined Job Chargebacks
	13.2.2 Setting A Custom Job Chargeback
	13.2.3 The report And request Commands

	13.3 Job Chargeback Background Information

	14 Day-to-day Administration
	14.1 Parallel Shells: pdsh And pexec
	14.1.1 pdsh In The OS Shell
	14.1.2 pexec In cmsh
	14.1.3 pexec In Base View
	14.1.4 Using The -j|--join Option Of pexec In cmsh
	14.1.5 Other Parallel Commands

	14.2 Getting Support With BCM Issues, And Notifications For Release Updates
	14.2.1 The Support Portal For BCM
	14.2.2 Reporting Cluster Manager Diagnostics With cm-diagnose
	14.2.3 Requesting Remote Support With request-remote-assistance
	14.2.4 Getting Notified About Updates

	14.3 Backups
	14.3.1 Cluster Installation Backup
	14.3.2 Local Database And Data Backups And Restoration

	14.4 Revision Control For Images
	14.4.1 Btrfs: The Concept And Why It Works Well In Revision Control For Images
	14.4.2 Btrfs Availability And Distribution Support
	14.4.3 Installing Btrfs To Work With Revision Control Of Images In BCM
	14.4.4 Using cmsh For Revision Control Of Images

	14.5 BIOS And Firmware Management
	14.5.1 Introduction
	14.5.2 BIOS Management With BCM JSON Configuration Templates In Redfish
	14.5.3 Updating BIOS And Firmware Versions

	14.6 Hardware Match Check With The hardware-profile Data Producer
	14.7 Serial Over LAN Console Access
	14.7.1 Background Notes On Serial Console And SOL
	14.7.2 SOL Console Configuration With Base View
	14.7.3 SOL Console Configuration And Access With cmsh
	14.7.4 The conman Serial Console Logger And Viewer

	14.8 Managing Raw Monitoring Data
	14.8.1 Monitoring Subsystem Disk Usage With The monitoringinfo --storage Option
	14.8.2 Estimating The Required Size Of The Storage Device
	14.8.3 Moving Monitoring Data Elsewhere
	14.8.4 Reducing Monitoring Data By Reducing Samples
	14.8.5 Deleting All Monitoring Data

	14.9 Node Replacement
	14.10 Ansible And NVIDIA Base Command Manager
	14.10.1 An Overview Of Ansible
	14.10.2 A Simple Playbook Example
	14.10.3 An Intermediate Playbook Example: Setting Up A Cluster For Demonstration Purposes
	14.10.4 A More Complicated Playbook Example: Creating An Edge Site And Related Properties

	15 High Availability
	15.0 Introduction
	15.0.1 Why Have High Availability?
	15.0.2 High Availability—For What Nodes?
	15.0.3 High Availability Usually Uses Shared Storage
	15.0.4 Organization Of This Chapter

	15.1 HA Concepts
	15.1.1 Primary, Secondary, Active, Passive
	15.1.2 Monitoring The Active Head Node, Initiating Failover
	15.1.3 Services In BCM HA Setups
	15.1.4 Failover Network Topology
	15.1.5 Shared Storage
	15.1.6 Guaranteeing One Active Head At All Times
	15.1.7 Automatic Vs Manual Failover
	15.1.8 HA And Cloud Nodes
	15.1.9 HA Using Virtual Head Nodes

	15.2 HA Setup Procedure Using cmha-setup
	15.2.1 Preparation
	15.2.2 Failover Cloning (Replacing A Passive Head)
	15.2.3 Shared Storage Setup
	15.2.4 Automated Failover And Relevant Testing

	15.3 Running cmha-setup Without ncurses, Using An XML Specification
	15.3.1 Why Run It Without ncurses?
	15.3.2 The Syntax Of cmha-setup Without ncurses
	15.3.3 Example cmha-setup Run Without ncurses

	15.4 Managing HA
	15.4.1 Changing An Existing Failover Configuration
	15.4.2 cmha Utility
	15.4.3 States
	15.4.4 Failover Action Decisions
	15.4.5 Keeping Head Nodes In Sync
	15.4.6 High Availability Parameters
	15.4.7 Viewing Failover Via Base View
	15.4.8 Re-cloning A Head Node

	15.5 HA For Regular Nodes And Edge Director Nodes
	15.5.1 Why Have HA On Non-Head Nodes?
	15.5.2 Comparing HA For Head Nodes, Regular Nodes And Edge Director Nodes
	15.5.3 Setting Up A Regular Node HA Service
	15.5.4 The Sequence Of Events When Making Another HA Regular Node Active

	15.6 HA And Workload Manager Jobs

	16 The Jupyter Notebook Environment Integration
	16.1 Introduction
	16.2 Jupyter Environment Installation
	16.2.1 Jupyter Setup
	16.2.2 Jupyter Architecture
	16.2.3 Verifying Jupyter Installation
	16.2.4 Login Configuration
	16.2.5 JupyterHub Screen After Login

	16.3 Jupyter Notebook Examples
	16.4 Jupyter Kernels
	16.4.1 Jupyter Kernel Provisioning Kernels
	16.4.2 Tunables For Kernel Provisioners

	16.5 Jupyter Kernel Creator Extension
	16.5.1 BCM Predefined Kernel Templates
	16.5.2 Jupyter Kernel Starter
	16.5.3 Running Jupyter Kernels With Two Factor Authentication
	16.5.4 Running Jupyter Kernels With Kubernetes
	16.5.5 Running Jupyter Kernels Based On NGC Containers
	16.5.6 Running Jupyter Kernels With Workload Managers

	16.6 Jupyter Kernel Creator Extension Customization
	16.6.1 Kernel Template Parameters Definition
	16.6.2 Kernel Template Parameters Usage
	16.6.3 Filtering Out Irrelevant Templates From The Interface For Users

	16.7 Jupyter VNC Extension
	16.7.1 What Is Jupyter VNC Extension About?
	16.7.2 Enabling User Lingering
	16.7.3 Starting A VNC Session With The Jupyter VNC Extension
	16.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC Extension

	16.8 Jupyter WLM Magic Extension
	16.9 Jupyter Kubernetes Operators Manager
	16.9.1 Overview Tab
	16.9.2 Jupyter Kernel Overview Tab
	16.9.3 Jobs Tab
	16.9.4 Pods Tab
	16.9.5 PVCs Tab
	16.9.6 PSQL Tab
	16.9.7 Spark Tab
	16.9.8 Events Tab

	16.10 Jupyter Environment Removal

	A Generated Files
	A.1 System Configuration Files Created Or Modified By CMDeamon On Head Nodes
	A.2 System Configuration Files Created Or Modified Directly On The Node
	A.2.1 Options To filewriteinfo
	A.2.2 Files Created On Regular Nodes By CMDaemon
	A.2.3 Files Created On Regular Nodes By The Node-Installer

	A.3 Files Not Generated, But Installed In RHEL And Derivatives

	B Bright Computing Public Key
	C CMDaemon Configuration File Directives
	D Disk Partitioning And RAID Configuration
	D.1 Structure Of Partitioning Definition—The Global Partitioning XML Schema Definition File
	D.2 Structure Of Hardware RAID Definition—The Hardware RAID XML Schema Definition File
	D.3 Example: Default Node Partitioning
	D.4 Example: Hardware RAID Configuration
	D.4.1 RAID level 0 And RAID 10 Example

	D.5 Example: Software RAID
	D.6 Example: Software RAID With Swap
	D.7 Example: Logical Volume Manager
	D.8 Example: Logical Volume Manager With RAID 1
	D.9 Example: Diskless
	D.10 Example: Semi-diskless
	D.11 Example: Preventing Accidental Data Loss
	D.12 Example: Using Custom Assertions
	D.13 Example: Software RAID1 With One Big Partition
	D.14 Example: Software RAID5 With One Big Partition
	D.15 Example: Software RAID1 With Standard Partitioning
	D.16 Example: Software RAID5 With Standard Partitioning
	D.17 Example: LUKS Disk Encryption With Standard Partitioning
	D.17.1 Introduction
	D.17.2 Node Provisioned Over The Network: Encrypted Partition XML Example
	D.17.3 Standalone Node: Encrypted Partition XML Example
	D.17.4 Changing A Passphrase On An Encrypted Node

	E Example initialize And finalize Scripts
	E.1 When Are They Used?
	E.2 Accessing From Base View And cmsh
	E.3 Environment Variables Available To initialize And finalize Scripts
	E.4 Using Environment Variables Stored In Multiple Variables
	E.5 Storing A Configuration To A Filesystem
	E.5.1 Storing With Initialize Scripts
	E.5.2 Ways Of Writing A Finalize Script To Configure The Destination Nodes
	E.5.3 Restricting The Script To Nodes Or Node Categories

	F Workload Managers Quick Reference
	F.1 Slurm
	F.2 PBS Professional

	G Metrics, Health Checks, Enummetrics, And Actions
	G.1 Metrics And Their Parameters
	G.1.1 Regular Metrics
	G.1.2 NFS Metrics
	G.1.3 InfiniBand Metrics
	G.1.4 Monitoring System Metrics
	G.1.5 CPU Metrics Sampled By The CPUSampler And GPUSampler
	G.1.6 GPU Metrics
	G.1.7 GPU Profiling Metrics
	G.1.8 Job Metrics
	G.1.9 IPMI Metrics
	G.1.10 Redfish Metrics
	G.1.11 SMART Metrics
	G.1.12 Prometheus Metrics
	G.1.13 NetQ Metrics
	G.1.14 Kubernetes Metrics
	G.1.15 Parameters For Metrics

	G.2 Health Checks And Their Parameters
	G.2.1 Regular Health Checks
	G.2.2 GPU Health Checks
	G.2.3 Redfish Health Checks
	G.2.4 NetQ Health Checks
	G.2.5 Parameters For Health Checks

	G.3 Enummetrics
	G.4 Actions And Their Parameters
	G.4.1 Actions
	G.4.2 Parameters For A Monitoring Action

	H Workload Manager Configuration Files Updated By CMDaemon
	H.1 Slurm
	H.2 PBS Professional/OpenPBS
	H.3 LSF

	I Changing The LDAP Password
	I.1 Setting A New Password For The LDAP Server
	I.2 Setting The New Password In cmd.conf
	I.3 Checking LDAP Access

	J Tokens
	K Understanding Consolidation
	K.1 Introduction
	K.2 What Is Consolidation?
	K.3 Raw Data And Consolidation
	K.4 A Demonstration Of The Output

	L Node Execution Filters And Execution Multiplexers
	L.1 Data Producers: Default Configuration For Running And Sampling
	L.1.1 Nodes That Data Producers Are Running On By Default—The nodes Command
	L.1.2 Nodes That Data Producers Target By Default—The samplenow Command

	L.2 Data Producers: Configuration For Running And Targeting
	L.2.1 Custom Metrics From The fm.sh Custom Script

	L.3 Replacing A Resource With An Explicit Node Specification
	L.4 Excessive Sampling
	L.5 Not Just For Nodes
	L.6 Lua Node Execution Filters

	M A Tree View Of cmsh
	M.1 Modes

	N Base Command Manager Essentials And NVIDIA AI Enterprise
	N.1 Scope Of BCME
	N.2 BCME And Support For NVIDIA AI Enterprise
	N.2.1 Certified Features Of BCME For NVIDIA AI Enterprise
	N.2.2 NVIDIA AI Enterprise Compatible Servers
	N.2.3 NVIDIA Software Versions Supported
	N.2.4 NVIDIA AI Enterprise Product Support Matrix

