
NVIDIA Base Command Manager 10

Developer Manual
Revision: 1a3edea19

Date: Tue Jul 1 2025

©2025 NVIDIA Corporation & affiliates. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of NVIDIA Corporation.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXlm is a registered
trademark of Flexera Software, Inc. PBS Professional, and Green Provisioning are trademarks of Altair
Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. NVIDIA Corporation shall
not be liable for technical or editorial errors or omissions which may occur in this document. NVIDIA
Corporation shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to NVIDIA Corporation
The NVIDIA Base Command Manager product principally consists of free software that is licensed by
the Linux authors free of charge. NVIDIA Corporation shall have no liability nor will NVIDIA Corpo-
ration provide any warranty for the NVIDIA Base Command Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is
without any warranty, either expressed or implied, including, but not limited to, marketability or suit-
ability for a specific purpose. The user of the NVIDIA Base Command Manager product shall accept
the full risk for the quality or performance of the product. Should the product malfunction, the costs for
repair, service, or correction will be borne by the user of the NVIDIA Base Command Manager prod-
uct. No copyright owner or third party who has modified or distributed the program as permitted in
this license shall be held liable for damages, including general or specific damages, damages caused by
side effects or consequential damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing of data, losses that must be
borne by you or others, or the inability of the program to work together with any other program), even
if a copyright owner or third party had been advised about the possibility of such damages unless such
copyright owner or third party has signed a writing to the contrary.

Table of Contents

Table of Contents . i
0.1 About This Manual . iii
0.2 About The Manuals In General . iii
0.3 Getting Administrator-Level Support . iv
0.4 Getting Developer-Level Support . iv
0.5 Getting Professional Services . iv

1 NVIDIA Base Command Manager Python API 1
1.1 Getting Started . 1
1.2 Connecting To A Cluster . 2
1.3 Inspecting Settings . 2
1.4 Modifying Settings . 3
1.5 Inspecting The Entire Cluster . 4
1.6 Performing Operations On Entities . 4
1.7 Monitoring . 4
1.8 Examples . 5

2 Monitoring Data Producers 7
2.1 Measurables . 7
2.2 Measurables Classes . 7
2.3 Metric Monitoring Data Producers . 7
2.4 Health Check Monitoring Data Producers . 8
2.5 Collection Monitoring Data Producers . 9
2.6 Perpetual Monitoring Data Producers . 10
2.7 Prometheus Monitoring Data Producers . 11
2.8 Node Execution Filters . 11
2.9 Execution Multiplexers . 12
2.10 Monitoring Resources . 13
2.11 Collection Monitoring Data Producers With Filter And Multiplexer 13
2.12 Collection Monitoring Data Producers For Standalone Entities 14
2.13 Debugging Standalone Scripts . 16

3 Monitoring Actions 17
3.1 Actions And Triggers . 17
3.2 Time Restrictions . 18

3.2.1 Time Restriction Syntax In BNF Notation . 18
3.3 CMDaemon Environment Variables . 18

3.3.1 Standard Environment Variables Available In Action Scripts 18
3.3.2 Extended Environment Variables Available To Action Scripts 21
3.3.3 Environment Variables Useful For Debugging . 25

ii Table of Contents

4 CMDaemon REST API 27
4.1 Authentication, And Definition Of <curlauth> . 27
4.2 Browsing The API . 27

4.2.1 Returning A Status, Or Generating A Status Message, Using /v1/status 29
4.2.2 Monitoring Using /v1/monitoring . 32
4.2.3 Session Using /v1/session . 39
4.2.4 Version Using /v1/version . 40
4.2.5 License Using /v1/license . 40
4.2.6 Sysinfo Using /v1/sysinfo . 40
4.2.7 Device Information Using /v1/device . 43
4.2.8 WLM Information Using /v1/workload . 44
4.2.9 Event Generation Using /v1/event . 45

5 BCM JSON API 47
5.1 API Services . 48

5.1.1 API Services List . 49
5.2 API Entities . 49

5.2.1 API Entities List . 50
5.3 JSON Examples . 50

Preface

Welcome to the Developer Manual for NVIDIA Base Command Manager 10.

0.1 About This Manual
This manual is aimed at helping developers who would like to program the NVIDIA Base Command
Manager in order to enhance or alter its functionality. It is not intended for end users who simply wish
to submit jobs that run programs to workload managers, which is discussed in the User Manual. The
developer is expected to be reasonably familiar with the parts of the Administrator Manual that is to be
dealt with—primarily CMDaemon, of which cmsh and Base View are the front ends.

This manual discusses the Python API to CMDaemon, and also covers how to program for metric
collections.

0.2 About The Manuals In General
Name Changes From Version 9.2 To 10
The cluster manager software was originally developed by Bright Computing and the name “Bright” featured
previously in the product, repositories, websites, and manuals.

Bright Computing was acquired by NVIDIA in 2022. The corresponding name changes, to be consistent with
NVIDIA branding and products, are a work in progress. There is some catching up to do in places. For now, some
parts of the manual still refer to Bright Computing and Bright Cluster Manager. These remnants will eventually
disappear during updates.

BCM in particular is a convenient abbreviation that happens to have the same letters as the former Bright
Cluster Manager. With the branding change in version 10, Base Command Manager is the official full name for
the product formerly known as Bright Cluster Manager, and BCM is the official abbreviation for Base Command
Manager.

Regularly updated versions of the NVIDIA Base Command Manager 10 manuals are available on
updated clusters by default at /cm/shared/docs/cm. The latest updates are always online at https:
//docs.nvidia.com/base-command-manager.

• The Administrator Manual describes the general management of the cluster.

• The Installation Manual describes installation procedures for a basic cluster.

• The User Manual describes the user environment and how to submit jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

• The Developer Manual has useful information for developers who would like to program with BCM.

• The Edge Manual describes how to deploy BCM Edge with BCM.

• The Machine Learning Manual describes how to install and configure machine learning capabilities
with BCM.

• The Containerization Manual describes how to manage containers with BCM.

https://docs.nvidia.com/base-command-manager
https://docs.nvidia.com/base-command-manager

iv Table of Contents

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

The manuals constantly evolve to keep up with the development of the BCM environment and the
addition of new hardware and/or applications. The manuals also regularly incorporate feedback from
administrators and users, and any comments, suggestions or corrections will be very gratefully accepted
at manuals@brightcomputing.com.

There is also a feedback form available via Base View, via the menu icon, , following the naviga-
tion path:

>Help>Feedback

0.3 Getting Administrator-Level Support
Support for BCM subscriptions from version 10 onwards is available via the NVIDIA Enterprise Support
page at:

https://www.nvidia.com/en-us/support/enterprise/

Section 16.2 of the Administrator Manual has more details on working with support.

0.4 Getting Developer-Level Support
Developer support is given free, within reason. For more extensive support, the BCM support team can
be contacted in order to arrange a support contract.

0.5 Getting Professional Services
The BCM support team normally differentiates between

• regular support (customer has a question or problem that requires an answer or resolution), and

• professional services (customer asks for the team to do something or asks the team to provide
some service).

Professional services can be provided via the NVIDIA Enterprise Services page at:
https://www.nvidia.com/en-us/support/enterprise/services/

manuals@brightcomputing.com
https://www.nvidia.com/en-us/support/enterprise/
https://www.nvidia.com/en-us/support/enterprise/services/

1
NVIDIA Base Command

Manager Python API
This chapter introduces the Python API of NVIDIA Base Command Manager.

The Python API package was completely overhauled in NVIDIA Base Command Manager 8.2.
The cmdaemon-pythoncm package now provides a pure Python connection to the cluster manager,

making it possible for cluster administrators to automate cluster operations via Python.
It also makes it possible to run Python code on any operating system that supports Python 3.5 and

higher.
The BCM Python API uses the following extra modules:

1. pyOpenSSL

2. ply

3. lxml

4. tabulate

5. monotonic

6. humanfriendly

7. pyYAML

8. six

1.1 Getting Started
On the cluster head node itself the python3 module can simply be loaded:

Example

[root@basecm10 ~]# module load python3

To execute or develop the Python code on any other machine usually requires some extra steps:

• Python 3 (3.5, 3.6, 3.7, 3.8 will work) should be installed

• The 8 extra modules listed previously should be installed using Pip

• The /cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm directory should
be copied over to the site-packages directory of the development machine. The version is enforced
in lib/python3.9/site-packages/pythoncm/__init__.py, so version consistency would be required
here.

/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm

2 NVIDIA Base Command Manager Python API

The pythoncm module should then be loaded, to confirm everything was set up correctly:

Example

[alice@desktop ~]# python -c "import pythoncm"

If connecting from outside the cluster, then port 8081 must not be blocked by a firewall.
A certificate is needed by the Python API to identify itself to CMDaemon.
The existence of the certificate on the head node should be checked. It should be copied over to the

development machine, if it is needed there.

Example

[root@basecm10 ~]# ls -al .cm/

-rw------- 1 root root 1708 Dec 11 09:25 admin.key

-rw------- 1 root root 1269 Dec 11 09:25 admin.pem

Example

[alice@basecm10 ~]$ ls -al .cm/

-rw------- 1 root root 1708 Dec 11 09:25 cert.key

-rw------- 1 root root 1269 Dec 11 09:25 cert.pem

The developer many need to contact the cluster administrator to get a certificate.

1.2 Connecting To A Cluster
The first step when working with the Python API is to establish a connection to the CMDaemon process
on the cluster:

#!/usr/bin/env python

from pythoncm.cluster import Cluster

from pythoncm.settings import Settings

cluster = Cluster()

If working outside the cluster, then the settings for connecting to the cluster must be specified:

settings = Settings(host='<head-node-hostname>',

port=8081,

cert_file='/some/path/cert.pem',

key_file='/some/path/cert.key',

ca_file='.../site-packages/pythoncm/etc/cacert.pem')

if not settings.check_certificate_files():

print('Unable to load certificates')

else:

cluster = Cluster(settings)

1.3 Inspecting Settings
All settings in BCM are stored inside an entity.

Each entity has a type and a unique name among the entities of the same type.
To inspect an entity it should first be found inside the cluster:

node001 = cluster.get_by_name('node001')

If the name node001 was also given a different entity, then the type must be specified to ensure that
the correct entity is returned:

1.4 Modifying Settings 3

node001 = cluster.get_by_name('node001', pythoncm.entity.Node)

node001 = cluster.get_by_name('node001', 'Node')

Once the node entity is found, inspecting the settings is a matter of printing the desired field:

print(node001.hostname)

print(node001.mac)

Complex settings, such as network interfaces, have their own settings:

for interfaces in node001.interfaces:

print(interface.name, interface.ip)

Because many nodes could have a network interface called eth0, such a setting cannot be found from
the cluster: The following code will return None.

eth0 = cluster.get_by_name('eth0')

To find all eth0 interfaces, all nodes need to be found, and then iterated over:

nodes = cluster.get_by_type(pythoncm.entity.Node)

all_eth0 = [interface

for node in nodes

for interface in node.interfaces

if interface.name == 'eth0']

1.4 Modifying Settings
Basic entity settings are exported as Python properties and can simply be changed:

node001.mac = '00:00:00:00:00:00'

node001.category = cluster.get_by_name('gpu', 'Category')

Similarly interfaces settings can be accessed and changed directly:

node001.interfaces[0].ip = '1.2.3.4'

node001.interfaces[0].network = cluster.get_by_name('ib', 'Network')

Removing an interface from a node can be done in various Pythonic ways:

node001.interfaces.remove(0)

del node001.interfaces[0]

node001.interfaces = [interface for interface in node001.interfaces

if interface.name != 'eth0']

To add a new interface, the entity instance needs to be created first, and then added to the node:

eth1 = pythoncm.entity.NetworkPhysicalInterface()

eth1.name = 'eth1'

eth1.ip = '1.2.3.4'

eth1.network = cluster.get_by_name('ib', 'Network')

node001.interfaces.append(eth1)

All changes are made on a local copy of the entity. The cluster has no knowledge of the changes until
they are committed.

It is recommended to make many changes locally, and only commit once at the end.
The return value of the commit operation should always be checked.
Committing a badly-configured node will be blocked by the head node:

commit_result = node001.commit()

if not commit_result.good:

print(commit_result)

4 NVIDIA Base Command Manager Python API

An entity found from via the cluster object is removed differently.
As with commit, the result should always be checked: a removal can fail if a node is UP:

remove_result = node001.remove()

if not remove_result.good:

print(remove_result)

1.5 Inspecting The Entire Cluster
The example directory contains a script to inspect the entire cluster.

Example

[root@basecm10 ~]# cd /cm/local/examples/cmd/pythoncm/

[root@basecm10 pythoncm]# module load python3

[root@basecm10 pythoncm]# ./print-all.py

The example directory also contains a script that prints all metadata for all available entities in BCM:

Example

[root@basecm10 pythoncm]# ./entity_info.py

1.6 Performing Operations On Entities
All Python API functionality is contained in /cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/

pythoncm.
Methods are documented inside the python code itself.

node001 = cluster.get_by_name('node001')

node001.power_on()

When operating on multiple entities, it is possible to iterate over them and do each operation indi-
vidually.

nodes = cluster.get_by_type('Node')

for node in nodes:

node.power_on()

However the same can also be done with a parallel version of the operation. When possible the
parallel version should be used, because it is faster and requires less network traffic.

nodes = cluster.get_by_type('Node')

cluster.parallel.power_on(nodes)

1.7 Monitoring
All monitoring data can be accessed using the Python API.

Monitoring is a set of operations performed on entities.
For example, to get latest data for a single entity:

print(node001.get_latest_monitoring_data())

Monitoring operations on multiple operations should be done using the monitoring module:

data = cluster.monitoring.get_latest_monitoring_data([node001,

node002,

node003])

/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm
/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm

1.8 Examples 5

1.8 Examples
The best way to get going is by looking at the examples. These can be found on the head node, at
/cm/local/examples/cmd/pythoncm:

Example

[root@basecm10 pythoncm]# ls

add-collection.py dump-job-monitoring-data.py power-history.py

add-healthcheck.py dump-monitoring-data.py power-parallel-status.py

add-metric.py entity_info.py power-status.py

add-node-group.py execute.py print-all.py

add-role.py fabric-bindings.py range-expander-test.py

add-user.py fake-file-write.py remove-many-nodes.py

all-background-tasks.py free_port.py remove-node-group.py

all-nodes.py get-all-wlm-jobs.py sample-all-checks.py

arch_os_image_info.py get-status.py sample-now-checks.py

certificate-info.py health-overview.py sample-now-parallel.py

charge-back.py instance_by_name.py select-devices.py

clone-many-nodes.py instant-query.py service.py

clone-node-group.py key_value_pair.py service-status.py

clone-node.py latest-counter-data.py set-node-image.py

cm-job-analytics.py latest-health-data.py test-add-update-remove.py

cm-job-gpu.py monitoring-push.py tftpboot-file-information.py

cm-network-traffic-monitor-setup.py move-to-new-pdu.py total-job-power-usage.py

config-writer.py new-nodes.py up-percentage.py

cookie.py parallel-execute-async.py user-data.py

create-certificate.py parallel-execute-check-status.py wait-for-provisioning.py

create-ramdisk-task.py parallel-execute.py wait-for-up.py

The examples can be tried out after loading the Python environment:

Example

[root@basecm10 ~]# cd /cm/local/examples/cmd/pythoncm/

[root@basecm10 pythoncm]# module load python3

[root@basecm10 pythoncm]# ./power-status.py

INFO (25-May-2020 18:29:25) [cluster.py :207] Follow redirection to active head IP:

10.141.255.254

INFO (25-May-2020 18:29:25) [cluster.py :298] Start event thread for session

42949672967

success: True

[

"uniqueKey": 1125899906842642,

"oldLocalUniqueKey": 0,

"baseType": "PowerStatus",

"childType": "",

"revision": "",

"modified": false,

"toBeRemoved": false,

"readonly": false,

"not_set_fields": [],

"device": 38654705666,

"host": 38654705665,

"powerDistributionUnit": 0,

"gpu": -1,

"prt": 0,

/cm/local/examples/cmd/pythoncm

6 NVIDIA Base Command Manager Python API

"name": "custom",

"state": "ON",

"msg": "",

"extendedMsg": "",

"indexes": [

2

],

"tracker": 0,

"retries": 0

]

INFO (25-May-2020 18:29:28) [entity_change.py : 38] Stop event change watcher

[root@basecm10 pythoncm]#

2
Monitoring Data Producers

This chapter covers how to add a new metrics and health checks scripts with cmsh.
Five different types of Monitoring Data Producers can be added:

• metric: a script which produces a single value.

• health check: a script which produces a PASS, FAIL, UNKNOWN, or no data value.

• collection: a script that produces zero or more metrics, health checks, or a combination of both.

• perpetual a script that is started once over the lifetime of the BCM cmd process. The script pro-
duces zero or more metrics, health checks, or a combination of both on its own timing mechanism.

• prometheus one or more URLs to Prometheus metric exporters.

A monitoring data producer cannot be plotted in cmsh or Base View, because it contains no data. A
producer defines measurables: metrics and/or health checks. It also generates data for these measur-
ables, which can be plotted.

2.1 Measurables
There are three types of measurable:

• metric: a numeric value, or no data.

• health check: PASS/FAIL/UNKNOWN/no data.

• enum metric: one of a set of user-defined string based values, or no data.

2.2 Measurables Classes
All measurables are grouped into classes. A class is a user-defined free string field, with / as delimiters.
Base View uses this class to build a tree for easy search and access.

2.3 Metric Monitoring Data Producers
A metric data producer script generates one data point.

For example, as in the following script:

Example

[root@basecm10 ~]# cat /path/to/my/metric

#!/bin/bash

info_fd=${CMD_INFO_FD:=3} #set CMD_INFO_FD to 3 by default only if nothing set

8 Monitoring Data Producers

CMD_INFO_FD:=3 <--- same as: if [-z "$CMD_INFO_FD"]; then CMD_INFO_FD=3; fi

echo $((RANDOM))

Optionally provide extra information

echo "Extra information" >&$info_fd

The script can be defined as a metric script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add metric my-metric

[...my-metric]% set script /path/to/my/metric

[...my-metric]% set class My/Class

[...my-metric]% set unit B

[...my-metric]% set interval 1m

[...my-metric]% commit

All nodes then execute the script every minute, and produce a random number.

2.4 Health Check Monitoring Data Producers
A health check data producer script generates one data point. The data point can be one of four possible
values expected of it: PASS, FAIL, UNKNOWN, or no data. Other file descriptors can be used to provide
extra information.

For example, as in the following script:

Example

[root@basecm10 ~]# cat /path/to/my/health-check

#!/bin/bash

info_fd=${CMD_INFO_FD:=3} #set CMD_INFO_FD to 3 by default if nothing set

if [$((RANDOM)) -gt 8000]; then

echo "PASS"

else

echo "FAIL"

Optionally provide extra information

echo "Extra information" >&$info_fd

fi

The script can be defined as a health check script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add healthcheck my-health-check

[...my-check]% set script /path/to/my/health-check

[...my-check]% set class My/Class

[...my-check]% set interval 1m

[...my-check]% commit

All nodes then execute the script every minute, and produce data values with roughly 75% PASS and
25% FAIL.

2.5 Collection Monitoring Data Producers 9

2.5 Collection Monitoring Data Producers
A collection data producer script can generate multiple data points in one run. Data points can be a
combination of metrics and health checks. Collection scripts are also allowed to produce no data.

A collection script has two modes: initialize mode and sample mode.

• initialize: defines the measurables that data values are generated for.

• sample: returns the data values for all the measurables defined in initialize mode.

During normal cluster operation the initialize mode is called only once, during boot. Afterwards,
the script is called in sample mode at the desired interval.

The following example combines both of the metric and health check examples from earlier on.
However, this time it is written as a single script, using JSON as the output format:

Example

[root@basecm10 ~]# cat /path/to/my/collection

#!/usr/bin/python

import sys

import json

import random

def initialize():

metric = {"metric": "my.collection.metric",

"unit": "B",

"class": "My/Collection"}

check = {"check": "my.collection.check",

"class": "My/Collection"}

return [metric, check]

def sample():

metric = {"metric": "my.collection.metric",

"value": random.randint(0, 32767)}

check = {"check": "my.collection.check",

"info": "random with 25% failure rate",

"value": 'PASS' if random.randint(0, 32767) > 8000 else 'FAIL'}

return [metric, check]

def main():

if len(sys.argv) > 1 and sys.argv[1] == "--initialize":

data = initialize()

else:

data = sample()

print (json.dumps(data, indent=4))

if __name__ == '__main__':

main()

The script can be defined as a collection script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add collection my-collection

[...my-collection]% set script /path/to/my/collection

[...my-collection]% set format JSON

10 Monitoring Data Producers

[...my-collection]% set interval 1m

[...my-collection]% commit

All nodes then execute the script every minute and produce two data points upon each execution.
That is, one metric and one health check per execution.

2.6 Perpetual Monitoring Data Producers
A perpetual data producer script is a special case of a collection data producer script. It is intended to
be used if the script needs permanent memory storage.

Example

[root@basecm10 ~]# cat /path/to/my/perpetual

#!/usr/bin/python

import my_sampler_module

import json

import time

create single instance

sampler = my_sampler_module.MySampler()

load important data into memory

sampler.load()

Infinite loop with its own timing

delay = 0

while True:

time.sleep(delay)

(definitions, values, delay) = sampler.process()

if definitions:

Print new measurables

print (json.dumps(definitions))

Print data

print (json.dumps(values))

The my_sampler_module is the part which does the important work.

Example

[root@basecm10 ~]# cat /path/to/my/my_sampler_module.py

class MySampler:

def __init__(self):

self.initialized = False

self.definitions = None

def load(self):

Do time consuming work here

metric = {"metric": "my.collection.metric",

"unit": "B",

"class": "My/Collection"}

check = {"check": "my.collection.check",

"class": "My/Collection"}

self.definitions = [metric, check]

def process(self):

metric = {"metric": "my.collection.metric",

2.7 Prometheus Monitoring Data Producers 11

"value": random.randint(0, 32767)}

check = {"check" : "my.collection.check",

"value" : 'PASS' if random.randint(0, 32767) > 8000 else 'FAIL'}

values = metric, check

return definitions once, afterwards they never change

but new definitions could be added this way

definitions = self.definitions

self.definitions = None

return definitions, values, 60

The script can be defined as a perpetual script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add perpetual my-perpetual

[...my-perpetual]% set script /path/to/my/perpetual

[...my-perpetual]% set format JSON

[...my-perpetual]% commit

2.7 Prometheus Monitoring Data Producers
Prometheus is a monitoring and alerting toolkit (https://prometheus.io). A Prometheus monitor-
ing data producer script parses data from a Prometheus exporter (https://prometheus.io/docs/
instrumenting/exporters/)

The script can be defined as a Prometheus script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add prometheus my-prometheus-exporter

[...my-prometheus-exporter]% set urls http://my.prometheus.exporter:80

[...my-prometheus-exporter]% set interval 1m

[...my-prometheus-exporter]% commit

If multiple URLs are defined, then only the data values from the first successful HTTP GET are used.

2.8 Node Execution Filters
By default a monitoring data producer script is executed on every node. When this is not desirable, a
node execution filter should be created. A node execution filter defines the nodes on which the producer
script should be executed.

For example, a filter to execute the script only on cloud nodes can be configured as follows:

Example

[basecm10]% monitoring setup use my-check

[...my-check]% nodeexecutionfilters

[...nodeexecutionfilters]% add type Cloud

[...nodeexecutionfilters*[Cloud*]]% set cloudnode yes

[...nodeexecutionfilters*[Cloud*]]% show

Parameter Value

------------------ ----------------------------

Base type MonitoringExecutionFilter

Name Cloud

Type Type

Head node no

https://prometheus.io
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/

12 Monitoring Data Producers

Physical node no

Cloud node yes

Virtual node no

Lite node no

[...nodeexecutionfilters*[Cloud*]]% commit

It is also possible to filter based on the specific resources associated with a node:

Example

[basecm10]% monitoring setup use my-IB-check

[...my-IB-check]% nodeexecutionfilters

[...nodeexecutionfilters]% add resource IB

[...nodeexecutionfilters*[IB*]]% set resources IB

[...nodeexecutionfilters*[IB*]]% commit

Because of high availability, a special resource, active, is defined for the active head node.

Example

[basecm10]% monitoring setup use my-metric

[...my-metric]% nodeexecutionfilters

[...nodeexecutionfilters]% active

Added active resource filter

[...nodeexecutionfilters*]% commit

2.9 Execution Multiplexers
By default a monitoring data producer script is executed once: the node executes the script only for
itself.

However, some scripts, such as BMC samplers, must be sampled from the active head node for all
nodes.

In the following example a BMC script is run on each node that has the ipmi or drac resource:

Example

[basecm10]% monitoring setup use my-ipmi-collection

[...my-ipmi-collection]% executionmultiplexers

[...executionmultiplexers]% add resource ipmi

[...executionmultiplexers*[ipmi*]]% set resources ipmi drac

[...executionmultiplexers*[ipmi*]]% set operator OR

[...executionmultiplexers*[ipmi*]]% commit

If an execution multiplexer <multiplexer> is defined, then there should also be a node execution filter
<filter> associated with it to restrict the number of nodes on which the script runs.

This is because having the script run on many nodes for many other nodes is unlikely to be a desired
configuration.

The combination of the execution filter and the multiplexer should be read as:

for every node that matches filter, run script, for each node that matches multiplexer.

A more specific example, using two of the preceding examples, with a filter based on the resource
IB, and multiplexers based on the IPMI/Drac resources, the combination should be read as:

for every node that matches IB, run script, for each node that matches ipmi or drac.

2.10 Monitoring Resources 13

2.10 Monitoring Resources
Every device in BCM has one or more resources. These resources are automatically calculated from:

• Roles

• Hardware

• Settings

Resources for a specific node can be viewed as follows:

Example

[basecm10]% device use node001

[basecm10]% monitoringresources

CentOS7u5

Ethernet

category:default

It is possible to add one or more custom resources to a device:

Example

[basecm10]% device use node001

[basecm10]% add userdefinedresources MyResource

[basecm10]% append userdefinedresources MyOtherResource

[basecm10]% # wait ~10 seconds for the settings to propagate

[basecm10]% monitoringresources

CentOS7u5

Ethernet

category:default

MyResource

MyOtherResource

Any of these resources can be used to filter and multiplex monitoring data producers.
If a resources changes because of a settings change, then monitoring automatically stops or starts

sampling.

2.11 Collection Monitoring Data Producers With Filter And Multiplexer
If a script has an execution multiplexer set, then it needs to determine for which nodes the script runs:

Example

[root@basecm10~]# cat /path/to/my/collection

#!/usr/bin/python

import sys

import json

import random

def initialize(entity):

metric = {"metric": "my.collection.metric",

"entity": entity,

"unit": "B",

"class": "My/Collection"}

check = {"check": "my.collection.check",

"entity": entity,

14 Monitoring Data Producers

"class": "My/Collection"}

return [metric, check]

def sample(entity):

metric = {"metric": "my.collection.metric",

"entity": entity,

"value": random.randint(0, 32767)}

check = {"check" : "my.collection.check",

"entity": entity,

"value" : 'PASS' if random.randint(0, 32767) > 8000 else 'FAIL'}

return [metric, check]

def main():

try:

determine for which node we are sampling

entity = os.environ['CMD_HOSTNAME']

except:

sys.stderr.write('Target device not specified in environment\n')
return

if len(sys.argv) > 1 and sys.argv[1] == "--initialize":

data = initialize(entity)

else:

data = sample(entity)

print (json.dumps(data, indent=4))

if __name__ == '__main__':

main()

It can be defined with a filter to run on the active head for all nodes in the GPU category:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add collection my-collection

[...my-collection]% set script /path/to/my/collection

[...my-collection]% set format JSON

[...my-collection]% set interval 1m

[...my-collection]% nodeexecutionfilters

[...nodeexecutionfilters]% active

Added active resource filter

[...nodeexecutionfilters]% exit

[...my-collection]% executionmultiplexers

[...executionmultiplexers]% add category

[...executionmultiplexers*[GPU*]% add category GPU

[...executionmultiplexers*[GPU*]% commit

The script is then executed on the head, once for each node in the category of GPU.

2.12 Collection Monitoring Data Producers For Standalone Entities
Sometimes monitoring data does not belong to a BCM entity.

For this reason the standalone monitored entity was added in NVIDIA Base Command Manager 8.0.
This entity can be anything with a name and custom type.
BCM does nothing with this kind of entity, except allow it to store monitoring data.
Each standalone entity which needs to be monitored should be added:

2.12 Collection Monitoring Data Producers For Standalone Entities 15

Example

[basecm10]% monitoring standalone

[basecm10->monitoring->standalone]% add MSD.0

[...standalone*[MSD.0*]]% set type Lustre

[...standalone*[MSD.0*]]% commit

[...standalone*[MSD.0*]]% add MSD.1

[...standalone*[MSD.1*]]% set type Lustre

[...standalone*[MSD.1*]]% commit

A script can be created that produces data for all MSD entities:

Example

[root@basecm10 ~]# cat /path/to/my/collection

#!/usr/bin/python

import sys

import json

def initialize():

msd_0 = {"metric": "lustre.free.space",

"entity": "MSD.0",

"unit": "B",

"class": "Lustre"}

msd_1 = {"metric": "lustre.free.space",

"entity": "MSD.1",

"unit": "B",

"class": "Lustre"}

return [msd_0, msd_1]

def sample():

msd_0 = {"metric": "lustre.free.space",

"entity": "MSD.0",

"value": 12345,

"class": "Lustre"}

msd_1 = {"metric": "lustre.free.space",

"entity": "MSD.1",

"value": 54321}

return [msd_0, msd_1]

def main():

if len(sys.argv) > 1 and sys.argv[1] == "--initialize":

data = initialize()

else:

data = sample()

print (json.dumps(data, indent=4))

if __name__ == '__main__':

main()

It can be defined to run on only the active head node:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setup]% add collection my-collection

16 Monitoring Data Producers

[...my-collection]% set script /path/to/my/collection

[...my-collection]% set format JSON

[...my-collection]% set interval 5m

[...my-collection]% nodeexecutionfilters

[...nodeexecutionfilters]% active

Added active resource filter

[...nodeexecutionfilters]% commit

The script is then executed on the active head every 5 minutes and collects one data point for each
MSD.

Data for a standalone script can be viewed with the same commands as for regular BCM nodes.

Example

[basecm10]% monitoring standalone

[basecm10->monitoring->standalone]% use MSD.0

[...standalone*[MSD.0*]]% latestmetricdata

...

lustre.free.space 12345 3m 47s

2.13 Debugging Standalone Scripts
Page 637 of the Administrator Manual describes how debugging information can be obtained when run-
ning samplenow with the --debug option with the ntp healthcheck script.

Many scripts under /cm/local/apps/cmd/scripts/ can have their debug output inspected with
samplenow --debug.

A recursive grep on the head node, similar to the following, should show which scripts have a
settable debug environment:

grep -r CMD_DEBUG /cm/local/apps/cmd/scripts/

The debug output in the script can be specified along the lines of the following code snippet:

Example

import os

debug = os.environ.get('CMD_DEBUG', '0') == '1'

info_fd = int(os.environ.get('CMD_INFO_FD', '3'))

if debug:

os.write(info_fd, 'debug message')

/cm/local/apps/cmd/scripts/

3
Monitoring Actions

This chapter covers how to manage monitoring-driven actions with cmsh.

3.1 Actions And Triggers
A monitoring action is a script that is executed by CMDaemon. It runs when triggered by the monitored
data.

An action by itself does nothing—it needs a trigger (section 12.4.5 of the Administrator Manual) to be
defined to execute the action.

By default, several actions (section 12.4.4 of the Administrator Manual) are predefined:

• Drain: Drain node (node refuses new WLM jobs)

• Event: Send an event to users with connected client

• ImageUpdate: Update the image on the node

• PowerOff: Power off a device

• PowerOn: Power on a device:

• PowerReset: Power reset a device

• Reboot: Reboot a node

• Send e-mail to administrators: Send e-mail

• Shutdown: Shutdown a node

• Undrain: Undrain node (node accepts new WLM jobs)

• killprocess: /cm/local/apps/cmd/scripts/actions/killprocess.pl

• remount: /cm/local/apps/cmd/scripts/actions/remount

• testaction: /cm/local/apps/cmd/scripts/actions/testaction

A new action script can be created as follows:

Example

[basecm10]% monitoring action

[basecm10->monitoring->action]% add script MyScript

[...MyScript*]% set script /path/to/MyScript

[...MyScript*]% commit

/cm/local/apps/cmd/scripts/actions/killprocess.pl
/cm/local/apps/cmd/scripts/actions/remount
/cm/local/apps/cmd/scripts/actions/testaction

18 Monitoring Actions

3.2 Time Restrictions
It is possible to allow actions to only be executed at certain times, with the allowedtime setting.

Example

[basecm10]% monitoring action

[basecm10->monitoring->action]% add script MyScript

[...MyScript*]% set script /path/to/MyScript

[...MyScript*]% set allowedtime "9:00-17:00"

[...MyScript*]% commit

More complex timing restrictions are possible:

Example

monday-friday{9:00-17:00}

monday-friday{00:00-09:00;17:00-00:00};saturday-sunday

november-march{monday-saturday{13:00-17:00}}

may-september{monday-friday{09:00-18:00};saturday-sunday{13:00-17:00}}

Further examples can be seen in section 12.4.4 of the Administrator Manual, page 608.

3.2.1 Time Restriction Syntax In BNF Notation
The allowed values can be written as a BNF grammar:

Example

<start> =

time_intervals

| ""

<time_intervals> = <time_interval> (; <time_interval>)*

<time_interval> = <inner_time_interval>{<time_intervals}

<inner_time_interval> =

<day_of_week_interval>

| <time_of_day_interval>

| <day_of_month_interval>

| <month_interval>

<day_of_week_interval> =

(<day_of_week>-<day_of_week>)

| (<day_of_week> (, day_of_week)*)

<day_of_week> = sunday | monday | tuesday | wednesday | thursday | friday | saturday

<time_of_day_interval> = <time_of_day>-<time_of_day>

<time_of_day>= \d?\d:\d\d

<month_interval> = (<month>-<month>)

| (<month> (, month)*)

<month> = january | february | march | april | may | june | july | august | september

| october | november | december

<day_of_month_interval> = (<day_of_month>-<day_of_month>)

| (<day_of_month> (, day_of_month)*)

<day_of_month> = \d?\d

3.3 CMDaemon Environment Variables
3.3.1 Standard Environment Variables Available In Action Scripts

3.3 CMDaemon Environment Variables 19

Name Description

CMD_ENTITY_UUID The UUID of the entity that triggered the action.

CMD_ENTITY_NAME The name of the entity that triggered the action.

CMD_ENTITY_TYPE The type of entity that triggered the action.

CMD_MEASURABLE_NAME The name of the measurable that triggered the action.

CMD_MEASURABLE_PARAMETER The parameter of the measurable that triggered the action.

CMD_MEASURABLE_TYPE The type of the measurable.

CMD_VALUE The value that triggered the action.

CMD_RAW_VALUE The raw value.

CMD_VALUE_TIME The time on which the value was measured, in ms elapsed since
Unix epoch.

CMD_INFO_MESSAGE Extra information sampled along with the value.

CMD_PRODUCER_NAME The name of the monitoring data producer that samples the
measurable.

...continues

20 Monitoring Actions

...continued

Name Description

CMD_ACTION_NAME The name of the action that was triggered.

CMD_TRIGGER_NAME The name of the trigger.

CMD_TRIGGER_EXPRESSION The expression that was evaluated.

CMD_VALUE_EVAL The result of the evaluated expression.

CMD_VALUE_COUNT The number of times the expression evaluated to the same value.

CMD_SEVERITY The assigned severity of the trigger.

CMD_STATE_FLAPPING Is the measurable flapping?

CMD_JSON_DATA If set to yes, then a JSON blob is passed on STDIN. The blob con-
tains the information normally in env. CMD_JSON_DATA is used by the
Send e-mail action

CMD_MEASURABLE_UUID The UUID of the measurable used

CMD_MULTI_ACTION Data values from measurables or triggers are dealt with together in
some way if the action is yes

Example

If the value of the parameter mergedmeasurables is set to yes, and if more than one data value is
gathered within a period that is specified by the value of mergedelay, then the data values for a
measurable are dealt with together in some way by the action.
Merge delay, Merge triggers, and Merge measurables are parameters that are available within
some monitoring actions.

[basecm10->monitoring->action]% list -f name:0,mergedelay,mergemeasurables

name (key) mergedelay mergemeasurables

��������������- ���������� ����������

...

Send e-mail to administrators 2s yes

...

The Send e-mail action in this supports CMD_MULTI_ACTION=yes by sending one email with mul-
tiple values, instead of one e-mail per measured or triggered value:

...continues

3.3 CMDaemon Environment Variables 21

...continued

Name Description

CMD_TRIGGER_UUID UUID of the trigger

CMD_SCRIPTTIMEOUT script timeout, in seconds, when CMDaemon runs an action script

All action scripts have the preceding standard environment variables set.
In cmsh, if the action object has its node environment parameter set to the value yes, then scripts

running on a node are enabled with an extended environment that provides many more CMD_* environ-
ment variables. Otherwise they run in the standard environment. There are more environment variables
besides the standard and node environment ones.

A list of the standard or extended environment variables can be dumped by running the system
command env > /tmp/dumpfile within an action script, such as the test example script, and triggering
the script to run.

Many of the environment variables are similar to the ones used by initialize and finalize scripts
(section E.3 of the Administrator Manual) in the node-installer environment.

3.3.2 Extended Environment Variables Available To Action Scripts
If the action object has its node environment parameter set to the value yes, then scripts run in an
extended environment that provides many more CMD_* environment variables. Otherwise they run in
the standard environment of section 3.3.1.

The following table shows the extended as well as the standard environment variables, with some
example values:

22 Monitoring Actions

Table 3.3.2: Environment Variables For Nodes In The Extended Environment

Variable Example Value

CMD_ACTION_NAME myaction

CMD_ACTIVE_HEAD_NODE_IP 10.141.255.254

CMD_CLUSTERNAME basecm10

CMD_DEVICE_TYPE HeadNode

CMD_ENTITY_NAME basecm10

CMD_ENTITY_TYPE HeadNode

CMD_ENTITY_UUID 78d29ab5-b415-486f-ad6a-04c5a983110f

CMD_ENVIRONMENT_CACHE_EPOCH_MILLISECONDS 1733150703765

CMD_ENVIRONMENT_CACHE_UPDATES 15

CMD_EXPORTS /cm/node-installer@internalnet

/cm/node-installer/certificates@internalnet

/var/spool/burn@internalnet

/home@internalnet

/cm/shared@internalnet
CMD_FSEXPORT__SLASH_cm_SLASH_node_DASH_

installer<node-installer values>

where <node-installer values> takes these substitutions:

<node-installer values> example value

_installer_AT_internalnet_ALLOWWRITE false

_AT_internalnet_HOSTS 10.141.0.0/16

_AT_internalnet_PATH /cm/node-installer

_SLASH_certificates_AT_internalnet_ALLOWWRITE true

_SLASH_certificates_AT_internalnet_HOSTS 10.141.0.0/16

_SLASH_certificates_AT_internalnet_PATH /cm/node-installer/certificates

CMD_FSEXPORT__SLASH_<path values>

where <path values> takes these substitutions:

<path values> example value

cm_SLASH_shared_AT_internalnet_ALLOWWRITE true

cm_SLASH_shared_AT_internalnet_HOSTS 10.141.0.0/16

cm_SLASH_shared_AT_internalnet_PATH /cm/shared

home_AT_internalnet_ALLOWWRITE true

home_AT_internalnet_HOSTS 10.141.0.0/16

home_AT_internalnet_PATH /home

var_SLASH_spool_SLASH_burn_AT_internalnet_ALLOWWRITE true

var_SLASH_spool_SLASH_burn_AT_internalnet_HOSTS 10.141.0.0/16

var_SLASH_spool_SLASH_burn_AT_internalnet_PATH /var/spool/burn

CMD_HOSTNAME basecm10

CMD_HTTP_PORT 8080

CMD_INFO_MESSAGE

...continues

3.3 CMDaemon Environment Variables 23

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable Example Value

The interfaces eth0 and eth1 that make up the environment variable names listed next are for a
Type 1 network with ethernet interfaces. The environment variable names change if the interface
names change. For example, with InfiniBand interfaces, the eth0, eth1 strings become ib0, ib1.

CMD_INTERFACE_eth0_IP 10.141.255.254

CMD_INTERFACE_eth0_MAC 00:00:00:00:00:00

CMD_INTERFACE_eth0_MASK_BITS 16

CMD_INTERFACE_eth0_MTU 1500

CMD_INTERFACE_eth0_SPEED

CMD_INTERFACE_eth0_STARTIF ALWAYS

CMD_INTERFACE_eth0_TYPE NetworkPhysicalInterface

CMD_INTERFACE_eth1_GATEWAY 192.168.255.254

CMD_INTERFACE_eth1_IP 192.168.244.169

CMD_INTERFACE_eth1_MAC 00:00:00:00:00:00

CMD_INTERFACE_eth1_MASK_BITS 20

CMD_INTERFACE_eth1_MTU 1500

CMD_INTERFACE_eth1_SPEED

CMD_INTERFACE_eth1_STARTIF ALWAYS

CMD_INTERFACE_eth1_TYPE NetworkPhysicalInterface

CMD_INTERFACES eth0 eth1

CMD_IP 10.141.255.254

CMD_JSON_DATA no

CMD_MAC FA:16:3E:33:8E:10

CMD_MANAGEMENT_IP 10.141.255.254

CMD_MEASURABLE_NAME PageOut

CMD_MEASURABLE_PARAMETER

CMD_MEASURABLE_TYPE MonitoringMeasurableMetric

CMD_MEASURABLE_UUID 24321ec1-275c-4fd2-92eb-2ad7494216a8

...continues

24 Monitoring Actions

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable Example Value

CMD_MULTI_ACTION no

CMD_MYSQL_SOCKET /var/run/mysqld/mysqld.sock

CMD_NODEGROUPS

CMD_NODE_INSTALLER_PATH /cm/node-installer

CMD_PARTITION base

CMD_PASSIVE_HEAD_NODE_IP

CMD_PORT 8081

CMD_PRIMARY_HEAD_NODE basecm10

CMD_PRODUCER_NAME ProcVMStat

CMD_PROTOCOL https

CMD_RAW_VALUE 103603.200000

CMD_ROLES SlurmServer Storage Backup

Boot Provisioning Monitoring

SlurmAccounting Firewall HeadNode

SlurmSubmit

CMD_SCRIPTTIMEOUT 5

CMD_SEVERITY 10

CMD_SHARED_HEAD_NODE_IP

CMD_STATE_FLAPPING no

CMD_STATUS_BURNING NO

CMD_STATUS_CLOSED NO

CMD_STATUS_HEALTHCHECK_FAILED YES

CMD_STATUS_HEALTHCHECK_UNKNOWN NO

CMD_STATUS_MESSAGE

CMD_STATUS_MUTED NO

CMD_STATUS_RESTART_REQUIRED NO

CMD_STATUS_STATEFLAPPING NO

CMD_STATUS_TERMINATED NO

CMD_STATUS_TOOLMESSAGE

CMD_STATUS UP

CMD_STATUS_UPDATE_INDEX 4

...continues

3.3 CMDaemon Environment Variables 25

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable Example Value

CMD_STATUS_USERMESSAGE

CMD_SYSINFO_SYSTEM_MANUFACTURER OpenStack Foundation

CMD_SYSINFO_SYSTEM_NAME OpenStack Nova

CMD_TRIGGER_EXPRESSION (basecm10, *, *) > 50

CMD_TRIGGER_NAME killallyestrigger

CMD_TRIGGER_UUID 1b784150-3f4f-4cb2-af37-993bbbe3dea4

CMD_UPDATE_EPOCH_MILLISECONDS 1733150703765

CMD_USERDEFINED1

CMD_USERDEFINED2

CMD_UUID 78d29ab5-b415-486f-ad6a-04c5a983110f

CMD_VALUE 101 KiB/s

CMD_VALUE_COUNT 1

CMD_VALUE_EVAL true

CMD_VALUE_TIME 1733151851527

3.3.3 Environment Variables Useful For Debugging
The following environmental variables can be handy for debugging:

Table 3.3.2: Environment Variables For Nodes In The Extended Environment

Variable Description

CMD_INFO_FD Set file descriptor used by CMDaemon for collecting information (default value: 3)

CMD_DEBUG Setting this to a value of 1 often gives more debug output (default value: 0)

Examples of their use are given in sections 2.3, 2.4, and 2.13.

4
CMDaemon REST API

Some data from CMDaemon can be accessed via its REST API.
The REST API typically allows data only to be retrieved for most calls. Exceptions are:

• the Status call, which can generate status notifications (section 4.2.1), and

• the Event call, which can generate events (section 4.2.9),

and which can take POST input to specify their calls.

4.1 Authentication, And Definition Of <curlauth>
Two forms of authentication are supported:

• Basic: HTTP authentication (--basic option of curl)

• Certificate: Certificate-based authentication (--cert option of curl). Certificate-based authentica-
tion is covered in section 6.4.2 of the Administrator Manual.

The following two commands give identical results:

[alice@basecm10 ~]$ curl -k --basic --user "alice:password" "https://master:8081/rest"

[alice@basecm10 ~]$ curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081/rest"

For security, it is best to use the certificate key-based version.
For convenience, the command and authority parts of the preceding two commands—that is the

string in the line that includes the text from curl to 8081 in the two curl commands—is designated by
<curlauth> in this chapter. Thus, each of the commands can be represented by:

Example

[alice@basecm10 ~]$ <curlauth>/rest"

This allows the reader to focus on the path segment and variables part of the API.

4.2 Browsing The API
A summary diagram of the REST API is shown in figure 4.1:

28 CMDaemon REST API

https://master:8081/rest/v1

/sysinfo

/event
generate CMDaemon event

/workload/jobs

/device

/version

/license

/check

returns a response for testing purposes

/session

returns cluster manager sessions

/chargeback
returns chargeback-related data

/monitoring

/dump

?epoch=1 (unix epoch time)

?intervals=0 (default, = raw data)

?end=now (default)

?start=-1h (default)
?start=-30m

?measurable=loadone

?entity=node001

returns monitoring data over period (last 1hr by default)

/latest

?entity=node001&measurable=loadone

?measurable=loadone

?entity=node001..node004

?entity=node001

returns latest monitoring data for all (entity, measurable) pairs

/usage

?measurable=loadone

?entity=node001

?type=node

?name=node001

?name=node001..node002

returns list of (entity, measurable) pairs

/measurable

?like=load

?name=loadone

returns list of measurables

/entity

?like=node

?like=node0*1

?type=node

?name=node001

?name=node001..node004

returns list of monitored entities

/status

?name=node001&verbose=1

?name=node001

?name=node001..node004

returns status

generates status messages(section 4.2.3)

(section
4.2.1)

(section 4.2.2)

(page 32)

(page 34)

(page 35)

(page 36)

(page 38)

(section 4.2.5)

(section 4.2.7)

(section 4.2.4)

(section 4.2.6)

(section 4.2.8)

(section 4.2.9)

Figure 4.1: REST API summary tree

The remainder of this section elaborates upon the diagram.
The API directory structure is documented within the directory itself.

4.2 Browsing The API 29

A GET operation on the main /rest entry point can list all subdirectories:

Example

[alice@basecm10 ~]$ <curlauth>/rest"
["v1"]

New lines are not part of the output by default. Setting a parameter of 1, 2, or more, for the indent

variable uses newlines and an indentation of one, two, or more spaces. This makes the API output more
readable for all API resource paths:

Example

[alice@basecm10 ~]$ <curlauth>/rest?indent=1"
[

"v1"

]

Appending /v1 to the URL gives the functionality available in the first version of the REST API.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1?indent=1"
[

"monitoring",

"chargeback",

"status",

"session",

"check",

"version",

"license",

"sysinfo",

"device",

"workload",

"event"

]

Appending /monitoring to the URL lists the subdirectory functionality available for monitoring.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring?indent=1"
[

"entity",

"measurable",

"latest",

"dump",

"usage"

]

4.2.1 Returning A Status, Or Generating A Status Message, Using /v1/status

Returning A Status Using /v1/status

The status resource path returns the UP/DOWN status for all devices:

Example

30 CMDaemon REST API

[alice@basecm10 ~]$ <curlauth>/rest/v1/status?indent=2"
[

{

"hostname": "basecm10",

"status": "UP"

},

{

"hostname": "node001",

"status": "UP"

},

{

"hostname": "node002",

"status": "DOWN"

}

]

The status can also be requested for a single device:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/status?name=node001&indent=2"
[

{

"hostname": "node001",

"status": "UP"

}

]

The “two dots” list specification format (section 2.5.5 of the Administrator Manual) used in Base View
and cmsh can also be used in the API:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/status?name=node001..node002&indent=2"
[

{

"hostname": "node001",

"status": "UP"

},

{

"hostname": "node002",

"status": "DOWN"

}

]

For more detailed information, the verbose parameter can be added (output truncated):

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/status?verbose=1&indent=2"
[

{

"health_check_failed": true,

"health_check_unknown": false,

"hostname": "basecm10",

"provisioning_failed": false,

"restart_required": false,

4.2 Browsing The API 31

"status": "UP"

},

{

"health_check_failed": true,

"health_check_unknown": false,

"hostname": "node001",

"provisioning_failed": false,

...

Generating A Status Message Using /v1/status

A message can be associated with the status. An input can be as in the following rest.in file:

Example

[alice@basecm10 ~]$ cat /tmp/rest.in

[

{

"hostname": "node001",

"user": "user message1",

"info": "info message1",

"tool": tool message1"

},

{

"hostname": "node002",

"user": "user message2",

"info": "info message2",

"tool": tool message2"

}

]

The usual curl authentication string used so far, <curlauth> (section 4.1) is slightly modified from its
value of:

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081

to

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k --data "@/tmp/rest.in" "https://master:8081

This modified version allows POST data to be entered. The modified version can be called <curlau-
thpost>, and can be used as follows, returning a vector with the components having an integer value of
0, up to 3:

Example

[alice@basecm10 ~]$ <curlauthpost>/rest/v1/status"
[

0,

3

]

The dimension of the vector is in the current example is 2, and corresponds to the number of host-
names. Thus, the first component is associated with the hostname node001, and the second component
is associated with hostname node002.

The value of each component returns the number of fields in the POST file that were modified by the
API call. The fields that are evaluated are the optional fields user, info, and tool.

The event is logged in the event logger, by default at /var/spool/cmd/events.log, as:

/var/spool/cmd/events.log

32 CMDaemon REST API

Example

Mon Jun 17 18:15:50 2024 [notice] basecm10: node001, status: UP, reported: UP, time: 1718113341752,

info message: info node1, user message: user node1, tool message: tool node1 (index: 27, display: 1)

Mon Jun 17 18:20:30 2024 [notice] basecm10: node002, status: UP, reported: UP, time: 1718113666566,

info message: info node2, user message: user node2, tool message: tool node2 (index: 28, display: 1)

An entry is also made in /var/log/cmdaemon:

Example

Jun 17 18:51:57 basecm10 cmd[2586]: [CMD] Info: [Service::post_v1_status], update node001, changes: 1

Jun 17 18:51:57 basecm10 cmd[2586]: [CMD] Info: [Service::post_v1_status], update node002, changes: 1

With the default settings of cmsh, a window running cmsh shows:

Example

[root@basecm10 ~]# cmsh

[basecm10]%

Mon Jun 17 18:51:58 2024 [notice] basecm10: node001 [UP] (info node1) (user node1) (tool node1)

Mon Jun 17 18:51:58 2024 [notice] basecm10: node002 [UP] (info node2) (user node2) (tool node2)

Messaging via the REST API is somewhat similar to the event bucket InfoMessages feature (sec-
tion 12.10.4 of the Administrator Manual) but developers should find the REST API version cleaner.

4.2.2 Monitoring Using /v1/monitoring

Entities Via /v1/monitoring/entity

The entity resource returns information about the entities that are known to the monitoring system. It
is possible for an entity known to the monitoring system to have no data.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?indent=1"
{

"entities": [

{

"key": 12884901889,

"name": "default",

"type": "Category"

},

{

"key": 17179869185,

"name": "globalnet",

"type": "Network"

},

{

"key": 17179869186,

"name": "internalnet",

"type": "Network"

},

...

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?name=node001&indent=1"
{

"entities": [

{

"key": 38654705666,

/var/log/cmdaemon

4.2 Browsing The API 33

"name": "node001",

"type": "PhysicalNode"

}

]

}

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?type=node&indent=1"
{

"entities": [

{

"key": 38654705665,

"name": "basecm10",

"type": "HeadNode"

},

{

"key": 38654705666,

"name": "node001",

"type": "PhysicalNode"

},

{

"key": 38654705667,

"name": "node002",

"type": "PhysicalNode"

}

]

}

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?name=node001..node002&indent=1"
{

"entities": [

{

"key": 38654705666,

"name": "node001",

"type": "PhysicalNode"

},

{

"key": 38654705667,

"name": "node002",

"type": "PhysicalNode"

}

]

}

A regex matcher can be used to find entities based on a name match:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?like=lobal&indent=1"
{

"entities": [

{

"key": 17179869185,

"name": "globalnet",

"type": "Network"

}

]

}

34 CMDaemon REST API

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/entity?like=nod.0*1&indent=1"
{

"entities": [

{

"key": 38654705666,

"name": "node001",

"type": "PhysicalNode"

}

]

}

Regexes are based on the ECMAScript specification (https://en.cppreference.com/w/cpp/regex/
ecmascript).

Measurables Via /v1/monitoring/measurable

This entry returns information about the defined measurables.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/measurable?indent=1"
{

"measurables": [

{

"key": 261993005057,

"name": "IpForwDatagrams",

"type": "metric"

},

{

"key": 261993005058,

"name": "IpFragCreates",

"type": "metric"

},

{

"key": 261993005059,

"name": "IpFragFails",

"type": "metric"

},

...typically hundreds more lines...

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/measurable?name=loadone&indent=1"
{

"measurables": [

{

"key": 261993005138,

"name": "LoadOne",

"type": "metric"

}

]

}

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/measurable?like=load&indent=1"
{

"measurables": [

{

"key": 261993005136,

"name": "LoadFifteen",

"type": "metric"

https://en.cppreference.com/w/cpp/regex/ecmascript
https://en.cppreference.com/w/cpp/regex/ecmascript

4.2 Browsing The API 35

},

{

"key": 261993005137,

"name": "LoadFive",

"type": "metric"

},

{

"key": 261993005138,

"name": "LoadOne",

"type": "metric"

}

]

}

Data Usage Via /v1/monitoring/usage

The usage resource is intended to show which (entity, measurable) pairs have data. For example, nodes
with only 1 disk do not have data, if their associated measurables have the string sdb in their name.

To get the complete usage:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/usage?indent=1"
{

"data": [

{

"entity": "default",

"measurable": "CoresTotal"

},

{

"entity": "default",

"measurable": "CoresUp"

},

...typically hundreds more lines...

It is also possible to get all the measurables for which a specific entity, such as node001, has data.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/usage?entity=node001&indent=1"
{

"data": [

{

"entity": "node001",

"measurable": "IpForwDatagrams"

},

{

"entity": "node001",

"measurable": "IpFragCreates"

},

{

"entity": "node001",

"measurable": "IpFragFails"

},

...typically hundreds more lines...

36 CMDaemon REST API

Or all entities which have data for a specific measurable such as loadone:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/usage?measurable=loadone&indent=1"
{

"data": [

{

"entity": "basecm10",

"measurable": "LoadOne"

},

{

"entity": "node001",

"measurable": "LoadOne"

}

]

}

The Latest Monitoring Data Via /v1/monitoring/latest

The latest resource can be used to retrieve the last known sampled data points.
It is possible to get the latest monitoring data for all (entity, measurable) pairs.
This may result in a lot of information: about 125 bytes per (entity, measurable) pair.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/latest?indent=1"
{

"data": [

{

"age": 47.868,

"entity": "default",

"measurable": "CoresTotal",

"raw": 1.0,

"time": 1540476088861,

"value": "1"

},

{

"age": 47.868,

"entity": "default",

"measurable": "CoresUp",

"raw": 1.0,

"time": 1540476088861,

"value": "1"

},

{

"age": 47.868,

"entity": "default",

"measurable": "NodesClosed",

"raw": 0.0,

"time": 1540476088861,

"value": "0"

},

{

"age": 47.868,

"entity": "default",

"measurable": "NodesDown",

"raw": 0.0,

4.2 Browsing The API 37

"time": 1540476088861,

"value": "0"

},

...typically thousands more lines...

The latest data can be requested for a selection of entities and measurables.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/latest?entity=node001&indent=1"
{

"data": [

{

"age": 138.625,

"entity": "node001",

"measurable": "IpForwDatagrams",

"raw": 0.0,

"time": 1540476100389,

"value": "0/s"

},

{

"age": 138.625,

"entity": "node001",

"measurable": "IpFragCreates",

"raw": 0.0,

"time": 1540476100389,

"value": "0/s"

},

{

"age": 138.625,

"entity": "node001",

"measurable": "IpFragFails",

"raw": 0.0,

"time": 1540476100389,

"value": "0/s"

},

...typically hundreds more lines...

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/latest?entity=node001..node004&indent=1"
...as for previous output but for the range of nodes001..node004...

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/latest?measurable=LoadOne&indent=1"
{

"data": [

{

"age": 114.099,

"entity": "basecm10",

"measurable": "LoadOne",

"raw": 0.03,

"time": 1540476351361,

"value": "0.03"

},

{

"age": 155.07,

"entity": "node001",

38 CMDaemon REST API

"measurable": "LoadOne",

"raw": 0.0,

"time": 1540476310390,

"value": "0"

}

]

}

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/latest?entity=node001&measurable=LoadOne&indent=1"
{

"data": [

{

"age": 106.706,

"entity": "node001",

"measurable": "LoadOne",

"raw": 0.0,

"time": 1540476790390,

"value": "0"

}

]

}

Historic Data Dump Via /v1/monitoring/dump

Dumping historic data can be done using the entry point:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/dump?<options>"

The dump resource has several options:

• entity: name or range of entities

• measurable: name of the measurable

• start: time to be plotted (default: -1h)

• end: end to be plotted (default: now)

• intervals: number of interpolation intervals (default: 0, raw data)

• epoch: display timestamps as unix epoch (default: 0)

The time specification format is the same one used for the dumpmonitoringdata command (sec-
tion 12.6.4 of the Administrator Manual).

To prevent gigabytes of data being retrieved when no options are specified, entity and measurable

must be specified.
If there is a need to dump all the monitoring data, then it can be done by specifying empty strings for

both entity and measurable. For example, the following command dumps all raw data for the default
last hour:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/monitoring/dump?entity=&measurable=?indent=1"
{

"data": [

{

"entity": "default",

"measurable": "CoresTotal",

4.2 Browsing The API 39

"raw": 1.0,

"time": "2018/10/25 13:15:28",

"value": "1"

},

{

"entity": "default",

"measurable": "CoresTotal",

"raw": 1.0,

"time": "2018/10/25 16:35:28",

"value": "1"

},

{

"entity": "default",

"measurable": "CoresUp",

"raw": 1.0,

"time": "2018/10/25 13:49:28",

"value": "1"

},

...typically thousands more lines...

4.2.3 Session Using /v1/session

The response to the sessions method is similar to the output from listing in session mode of cmsh
(cmsh -c "session list")

The method lists the sessions that the cluster manager is involved with.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/session?indent=1"
[

{

"address": "127.0.0.1",

"group": "admin",

"node": "basecm10",

"type": "node",

"username": ""

},

{

"address": "10.141.255.254",

"group": "admin",

"type": "node",

"username": ""

},

{

"address": "10.141.0.1",

"group": "node",

"node": "node001",

"type": "node",

"username": ""

},

{

"address": "10.141.0.2",

"group": "node",

"node": "node002",

"type": "node",

"username": ""

}

40 CMDaemon REST API

4.2.4 Version Using /v1/version

The version method returns version parameters.

[alice@basecm10 ~]$ <curlauth>/rest/v1/version?indent=1"
{

"build_hash": "daf30669f1",

"build_index": 152175,

"cm_version": "9.2",

"cmd_version": "2.2",

"database_version": 36280

}

4.2.5 License Using /v1/license

The license method returns license parameters.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/license?indent=1"
{

"acceleratorNodeCount": 0,

"accountingAndReporting": true,

"baseType": "LicenseInfo",

"burstNodeCount": 0,

"childType": "",

"edgeSites": true,

"edition": "Advanced",

"endTime": 2177449140,

"licenseType": "Commercial",

"licensedAcceleratorNodes": 80,

"licensedBurstNodes": 1000,

"licensedNodes": 100,

"licensee": "/C=US/ST=None/L=None/O=None/OU=None/CN=basecm10",

"macAddress": "FA:16:3E:3B:94:98",

"message": "",

"modified": false,

"nodeCount": 3,

"oldLocalUniqueKey": 0,

"refPartitionUniqueKey": 21474836481,

"revision": "",

"serial": 1017214,

"startTime": 1508108400,

"toBeRemoved": false,

"uniqueKey": 281474976710653,

"version": "7.0 and above"

}

4.2.6 Sysinfo Using /v1/sysinfo

The sysinfo method is similar to the sysinfo command in the device mode of cmsh. It returns infor-
mation about some basic system hardware parameters.

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/sysinfo?indent=1"
{

"node001": {

"baseType": "SysInfoCollector",

4.2 Browsing The API 41

"biosDate": "04/01/2014",

"biosVendor": "SeaBIOS",

"biosVersion": "1.13.0-1ubuntu1.1",

"bootIf": "ens3",

"childType": "",

"clusterRandomNumber": 6332472641088672013,

"diskCount": 2,

"diskTotalSpace": 10745806848,

"disks": [

{

"baseType": "DiskInfo",

"childType": "",

"ioScheduler": "[mq-deadline] kyber bfq none",

"model": "virtio",

"modified": false,

"name": "vda",

"oldLocalUniqueKey": 0,

"rev": "",

"revision": "",

"size": 8388608,

"toBeRemoved": false,

"uniqueKey": 281474976710948,

"vendor": ""

},

{

"baseType": "DiskInfo",

"childType": "",

"ioScheduler": "[mq-deadline] kyber bfq none",

"model": "virtio",

"modified": false,

"name": "vdb",

"oldLocalUniqueKey": 0,

"rev": "",

"revision": "",

"size": 10737418240,

"toBeRemoved": false,

"uniqueKey": 281474976710949,

"vendor": ""

}

],

"extra": null,

"fabric": false,

"fips": false,

"fpgas": [],

"gpus": [],

"ibGUIDs": [],

"interconnects": [],

"memory": [

{

"IDs": [

"0/0"

],

"baseType": "MemoryInfo",

"childType": "",

"description": "DIMM RAM",

42 CMDaemon REST API

"locations": [

"DIMM 0"

],

"modified": false,

"oldLocalUniqueKey": 0,

"revision": "",

"size": 1073741824,

"speed": 0,

"toBeRemoved": false,

"uniqueKey": 281474976710950

}

],

"memorySwap": 0,

"memoryTotal": 1016152064,

"modified": false,

"motherboardManufacturer": "",

"motherboardName": "",

"nics": [

"ens3"

],

"oldLocalUniqueKey": 0,

"osFlavor": "Rocky8u5",

"osName": "Linux",

"osVersion": "4.18.0-348.el8.0.2.x86_64",

"parentUniqueKey": 85899345921,

"processors": [

{

"IDs": [

0

],

"baseType": "Processor",

"bogomips": 4190.15,

"cacheSize": 16777216,

"childType": "",

"coreIDs": [

0

],

"cores": 1,

"model": "Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz",

"modified": false,

"oldLocalUniqueKey": 0,

"physicalIDs": [

0

],

"revision": "",

"speed": 2095078000.0,

"toBeRemoved": false,

"uniqueKey": 281474976710947,

"vendor": "GenuineIntel"

}

],

"raidControllers": [],

"refDeviceUniqueKey": 38654705666,

"revision": "",

"seLinux": false,

4.2 Browsing The API 43

"systemManufacturer": "OpenStack Foundation",

"systemName": "OpenStack Nova",

"timestamp": 1651158566,

"toBeRemoved": false,

"uniqueKey": 85899345921,

"updateCount": 5,

"vendorTag": "5bf2a543-542d-4391-946c-abb648a09158",

"virtualCluster": true

},

"node002": {

"baseType": "SysInfoCollector",

"biosDate": "04/01/2014",

...

}

4.2.7 Device Information Using /v1/device

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/device?indent=1"
[

{

"cluster": "basecm10",

"hostname": "basecm10",

"ip": "10.141.255.254",

"mac": "FA:16:3E:EF:71:05",

"network": "internalnet",

"roles": [

"backup",

"storage",

"firewall",

"headnode",

"monitoring",

"provisioning",

"boot"

],

"type": "HeadNode"

},

{

"category": "default",

"cluster": "basecm10",

"hostname": "node001",

"ip": "10.141.0.1",

"mac": "FA:16:3E:2B:A4:31",

"network": "internalnet",

"type": "PhysicalNode"

},

{

"category": "default",

"cluster": "basecm10",

"hostname": "node002",

"ip": "10.141.0.2",

"mac": "FA:16:3E:D4:C8:5A",

"network": "internalnet",

"type": "PhysicalNode"

}

]

44 CMDaemon REST API

4.2.8 WLM Information Using /v1/workload

The workkoad path has the following endpoints:

• jobs

• drain

These return information related to the endpoints.
The workload jobs path returns running jobs:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/workload/jobs?indent=1"
[

{

"account": "projecty",

"group": "alice",

"job_id": "2301",

"job_name": "iozone",

"nodes": [

"node001"

],

"queue": "defq",

"run_time": "4m 39s",

"start_time": "2023/06/08 14:24:53",

"state": "RUNNING",

"sumbit_time": "2023/06/08 14:24:53",

"user": "alice"

},

{

"account": "projectx",

"group": "charlie",

"job_id": "2306",

"job_name": "sleep",

"nodes": [

"node001"

],

"queue": "defq",

"run_time": "3m 34s",

"start_time": "2023/06/08 14:25:58",

"state": "RUNNING",

"sumbit_time": "2023/06/08 14:25:57",

"user": "charlie"

},

{

"account": "projecty",

"group": "alice",

"job_id": "2307",

"job_name": "iozone",

...

The workload drain path returns node drain status information:

Example

[alice@basecm10 ~]$ <curlauth>/rest/v1/workload/drain?indent=1"
[

4.2 Browsing The API 45

{

"hostname": "node001",

"queue": "defq",

"reason": "",

"status": "UNDRAINED"

},

{

"hostname": "node002",

"queue": "defq",

"reason": "",

"status": "UNDRAINED"

},

...

4.2.9 Event Generation Using /v1/event

An event (section 12.10 of the Administrator Manual) can be generated in CMDaemon from a JSON format
input used with the event endpoint.

An input can be as in the following rest.in file:

Example

[alice@basecm10 ~]$ cat /tmp/rest.in

{

"message": "hello world",

"details": "send via rest",

"severity": "notice"

}

The usual curl authentication string used so far, <curlauth> (section 4.1) is slightly modified from its
value of:

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081

to

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k --data "@/tmp/rest.in" "https://master:8081

This modified version allows POST data to be entered. The modified version can be called <curlau-
thpost>, and can be used as follows, returning true:

Example

[alice@basecm10 ~]$ <curlauthpost>/rest/v1/event"
true

The event is logged in the event logger, by default at /var/spool/cmd/events.log, as:

Example

Tues Jun 4 11:09:21 2024 [notice] basecm10: hello world

send via rest

With the default settings of cmsh, a window running cmsh shows:

Example

[root@basecm10 ~]# cmsh

[basecm10]%

Tue Jun 4 11:09:21 2024 [notice] basecm10: hello world

For details type: events details 1

/var/spool/cmd/events.log

46 CMDaemon REST API

and, if as suggested, events details 1 is typed, the value of details from the input is seen:

[basecm10]% events details 1

send via rest

5
BCM JSON API

This chapter documents the JSON API services and entities available for NVIDIA Base Command Man-
ager.

The BCM head node landing page (section 2.4.1 of the Administrator Manual) links via the CM API

Docs tile (the second tile in figure 5.1) to the API reference documentation for all available services and
entities:

Figure 5.1: Head node hostname or IP address landing page at https://<host name or IP address>

It can also be accessed via the user portal of the cluster by clicking on the JSON API documentation

link in the documentation section of the home page (Section 12.8.4 of the Administrator Manual).
By default, the direct API URL takes the form:

https://<head node address name or IP address>:8081/api

At that URL:

• the Search page can be used to list services, entities, events, and RPCs

• the Inheritance page can be used to display the entities hierarchy

Within the search page (figure 5.2),

48 BCM JSON API

Figure 5.2: Search page for API documentation

• if the Type option is set to Service, then the drop-down list for Search presents the list of services

• if the Type option is set to Entity, then the drop-down list for Search presents the list of entities

5.1 API Services
If a service is selected from the drop-down list for Search, then its RPCs are displayed. Each RPC shows
the tokens required for its use. Each RPC in turn can be expanded to display its request format (call and
arguments) and response format (figure 5.3):

Figure 5.3: Example of an API documentation search page display result for the expanded view of the
getProfile RPC of the CMAuth service

5.2 API Entities 49

5.1.1 API Services List
The list of services are:

CMAuth

CMBeeGFS

CMCeph

CMCert

CMCloud

CMDevice

CMEtcd

CMGui

CMJob

CMKube

CMMain

CMMon

CMNet

CMPart

CMProc

CMProv

CMServ

CMSession

CMStatus

CMTest

CMUser

5.2 API Entities
If an entity is selected from the drop-down list for Search, then its properties are displayed. (figure 5.4):

50 BCM JSON API

Figure 5.4: Example of an API documentation search page display result for the SlurmJobQueue entity

Each entity parameter typically has hovertext that describes it. For example, in figure 5.4 the terse
allocNodes parameter of the SlurmJobQueue entity has a helpful associated hovertext description of
Comma-separated list of nodes from which users can submit jobs into the system.

5.2.1 API Entities List
The list of API entities can be viewed in the search page display (figure 5.2).

By default the Inheritance page for API entities is located at

https://<head node address name or IP address>:8081/api/inheritance

The list of API entities can also conveniently be viewed there in a hierarchy:

Entity

|-- ANFVolume

|-- AccessSettings

|-- ArchOSInfo

| '-- ArchOS

|-- AzureDisk

| |-- AzureDataDisk

| '-- AzureOSDisk

...

5.3 JSON Examples
complete.sh
#!/bin/bash

5.3 JSON Examples 51

URL=https://localhost:8081/json/

user=root

pass=secretrootpassword

echo "========== login ==========="

curl -c curl.cookiest.txt -i -k -X POST -d \

'{"service":"login", "username":"root", "password":"'$pass'"}' $URL; echo

echo "========= master =========="

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"cmdevice","call":"getNode", "arg":"master"}' $URL; echo

echo "========== logout =========="

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"logout"}' $URL; echo

echo "========== denied =========="

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"cmdevice","call":"getNode", "arg":"master"}' $URL; echo

rm -f curl.cookiest.txt

echo "=========== cert =========="

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d \

'{"service":"cmdevice","call":"getNode","arg":"master"}' $URL; echo

curl.sh
#!/bin/bash

URL=https://localhost:8081/json/

if [-z "$1"]; then

read -p "pass: " -s pass

else

pass=$1

fi

curl -c curl.cookiest.txt -i -k -X POST -d \

'{"service":"login", "username":"root", "password":"'$pass'"}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"cmsession","call":"getLastEvents","args":[0,256]}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"cmmain","call":"getProfile"}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -d \

'{"service":"cmmain","call":"getSubjectName"}' $URL

devices.sh
#!/bin/bash

URL=https://localhost:8081/json/

52 BCM JSON API

if ["$1" == "gzip"]; then

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \

--header='Accept-Encoding: gzip' \

--no-check-certificate --server-response -qO- $URL \

--post-data='{"service":"cmdevice","call":"getDevices"}'

else

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key --no-check-certificate \

--server-response -qO- $URL --post-data='{"service":"cmdevice","call":"getDevices"}'

fi

Tip: run as ./devices.sh | python -mjson.tool.

loadone.sh
#!/bin/bash

URL=https://localhost:8081/json/

not perfect but gets the job done

function jsonval {

temp=$(echo $json | sed 's/\\\\\//\//g' | sed 's/[{}]//g' |

awk -v k="text" '{n=split($0,a,","); for (i=1; i<=n; i++) print a[i]}' |

sed 's/\"\:\"/\|/g' | sed 's/[\,]/ /g' | sed 's/\"//g' | grep -w $prop)

r=$(echo ${temp##*|} | tr ']' ' ' | tr ' ' '\n' | cut -d: -f2 | sort -n)

echo $(echo $r | cut -d' ' -f 1)

}

prop='uuid'

node=master

json=$(2>/dev/null wget --certificate=$HOME/.cm/admin.pem \

--private-key=$HOME/.cm/admin.key \

--no-check-certificate \

--server-response \

-qO- $URL \

--post-data='{"service":"cmdevice","call":"getDevice","arg":"'$node'"}')

nkey=$(jsonval)

if [-z "$nkey"]; then

echo "$json"

exit 1

fi

echo "$node.uuid = $nkey"

json=$(2>/dev/null wget --certificate=$HOME/.cm/admin.pem \

--private-key=$HOME/.cm/admin.key \

--no-check-certificate \

--server-response \

-qO- $URL \

--post-data='{"service":"cmmon","call":"getMonitoringMeasurable","name":"LoadOne"}')

mkey=$(jsonval)

echo "loadone.uuid = $mkey"

now=$(date +%s)

day=$((now-86400))

echo "now is $now"

echo "day is $day"

5.3 JSON Examples 53

cat <<EOF > /tmp/plot.json

{ "service" : "cmmon",

"call" : "plot",

"request" : { "entities" : ["$nkey"],

"measurables" : ["$mkey"],

"intervals" : 25,

"rangeStart" : $((day*1000)),

"rangeEnd" : $((now*1000))

}

}

EOF

2>/dev/null wget --certificate=$HOME/.cm/admin.pem \

--private-key=$HOME/.cm/admin.key \

--no-check-certificate \

-qO- $URL \

--post-file=/tmp/plot.json | \

python -mjson.tool

login.sh
#!/bin/bash

URL=https://localhost:8081/json/

user=$USER

pass=secretpassword

wget --keep-session-cookies --save-cookies cookie.txt --no-check-certificate \

--server-response -qO- $URL --post-data='{"service":"login","username":"'$user'","password":"'$pass'"}'

echo

logout.sh
#!/bin/bash

URL=https://localhost:8081/json/

wget --load-cookies cookie.txt --no-check-certificate --server-response -qO- $URL \

--post-data='{"service":"logout"}'

rm cookie.txt

echo

node001.sh
#!/bin/bash

URL=https://localhost:8081/json/

if [-z "$1"]; then

node=node001

else

node=$1

fi

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \

--no-check-certificate --server-response -qO- $URL \

--post-data='{"service":"cmdevice","call":"getDevice","arg":"'$node'"}' | python -mjson.tool

54 BCM JSON API

basic_information.sh
#!/bin/bash

URL=https://localhost:8081/json/

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \

--no-check-certificate --server-response -qO- $URL \

--post-data='{"service":"cmpart","call":"getBasicEntityInformation"}'

push_to_CMDaemon.sh
In the following example, the health check ManagedServicesOK, is pushed to CMDaemon with a FAIL

value.

Example

[root@basecm10 ~]# cat push_to_CMDaemon.sh

#!/bin/bash

URL='https://master:8081/monitoring/push/ManagedServicesOk?info=brol&class=Push/Single&healthcheck=yes'

value='FAIL'

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d "$value" $URL; echo

Its behavior can be verified by checking the latest value for ManagedServicesOK before and after the
push_to_CMDaemon.sh script is run:

Example

[root@basecm10 ~]# curl --cert ~/.cm/admin.pem --key ~/.cm/admin.key -k

"https://master:8081/rest/v1/monitoring/latest?measurable=ManagedServicesOK&entity=basecm10&indent=1"

{

"data": [

{

"age": 89.735,

"entity": "basecm10",

"measurable": "ManagedServicesOk",

"raw": 0.0,

"time": 1586450030968,

"value": "PASS"

}

]

}

[root@basecm10 ~]#./push_to_CMDaemon.sh

HTTP/1.1 200 OK

Content-Length: 55

Content-Type: application/json

{

"values": {

"added": 1,

"provided": 1

}

}

[root@basecm10 ~]# curl --cert ~/.cm/admin.pem --key ~/.cm/admin.key -k

"https://master:8081/rest/v1/monitoring/latest?measurable=ManagedServicesOK&entity=basecm10&indent=1"

{

"data": [

{

5.3 JSON Examples 55

"age": 3.357,

"entity": "basecm10",

"info": "brol",

"measurable": "ManagedServicesOk",

"raw": 2.0,

"time": 1586450124437,

"value": "FAIL"

}

]

}

A metric version of the push, using the measurable push-test-02 might look like:

#!/bin/bash

URL='https://localhost:8081/monitoring/push/push-test-02?info=brol&class=Push/Single&unit=s'

value=$(date +%s)

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d "$value" $URL; echo

A collection can be pushed as follows: To initialize (once):

#!/bin/bash

URL='https://localhost:8081/monitoring/initialize'

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d \

'[

{"metric":"push-collection-01","class":"Push/Collection"},

{"metric":"push-collection-02","class":"Push/Collection"}

]' $URL; echo

After initializing, sampling can be done with:

#!/bin/bash

URL='https://localhost:8081/monitoring/push'

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d \

'[

{"metric":"push-collection-01","value":31},

{"metric":"push-collection-02","value":32,"info":"Some message"}

]' $URL; echo

	Table of Contents
	0.1 About This Manual
	0.2 About The Manuals In General
	0.3 Getting Administrator-Level Support
	0.4 Getting Developer-Level Support
	0.5 Getting Professional Services
	1 NVIDIA Base Command Manager Python API
	1.1 Getting Started
	1.2 Connecting To A Cluster
	1.3 Inspecting Settings
	1.4 Modifying Settings
	1.5 Inspecting The Entire Cluster
	1.6 Performing Operations On Entities
	1.7 Monitoring
	1.8 Examples

	2 Monitoring Data Producers
	2.1 Measurables
	2.2 Measurables Classes
	2.3 Metric Monitoring Data Producers
	2.4 Health Check Monitoring Data Producers
	2.5 Collection Monitoring Data Producers
	2.6 Perpetual Monitoring Data Producers
	2.7 Prometheus Monitoring Data Producers
	2.8 Node Execution Filters
	2.9 Execution Multiplexers
	2.10 Monitoring Resources
	2.11 Collection Monitoring Data Producers With Filter And Multiplexer
	2.12 Collection Monitoring Data Producers For Standalone Entities
	2.13 Debugging Standalone Scripts

	3 Monitoring Actions
	3.1 Actions And Triggers
	3.2 Time Restrictions
	3.2.1 Time Restriction Syntax In BNF Notation

	3.3 CMDaemon Environment Variables
	3.3.1 Standard Environment Variables Available In Action Scripts
	3.3.2 Extended Environment Variables Available To Action Scripts
	3.3.3 Environment Variables Useful For Debugging

	4 CMDaemon REST API
	4.1 Authentication, And Definition Of <curlauth>
	4.2 Browsing The API
	4.2.1 Returning A Status, Or Generating A Status Message, Using /v1/status
	4.2.2 Monitoring Using /v1/monitoring
	4.2.3 Session Using /v1/session
	4.2.4 Version Using /v1/version
	4.2.5 License Using /v1/license
	4.2.6 Sysinfo Using /v1/sysinfo
	4.2.7 Device Information Using /v1/device
	4.2.8 WLM Information Using /v1/workload
	4.2.9 Event Generation Using /v1/event

	5 BCM JSON API
	5.1 API Services
	5.1.1 API Services List

	5.2 API Entities
	5.2.1 API Entities List

	5.3 JSON Examples

