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1
Quickstart Installation Guide

This chapter describes a basic and quick installation of NVIDIA Base Command Manager (BCM) on
“bare metal” cluster hardware as a step-by-step process, and gives very little explanation of the steps.
Following these steps should allow a moderately experienced cluster administrator to get a cluster up
and running in a fairly standard configuration as quickly as possible. This would be without even
having to read the introductory Chapter 2 of this manual, let alone the entire manual. References to
chapters and sections are provided where appropriate.

Some asides, before getting on with the steps themselves:

• If the cluster has already been installed, tested, and configured, but only needs to be configured
now for a new network, then the administrator should only need to look at Chapter 6. Chapter 6
lays out how to carry out the most common configuration changes that usually need to be done to
make the cluster work in the new network.

• For administrators that are very unfamiliar with clusters, reading the introduction (Chapter 2)
and then the more detailed installation walkthrough for a bare metal installation (Chapter 3, sec-
tions 3.1, 3.2, and 3.3) is recommended. Having carried out the head node installation, the ad-
ministrator can then return to this quickstart chapter (Chapter 1), and continue onward with the
quickstart process of regular node installation (section 1.3).

• The configuration and administration of the cluster after it has been installed is covered in the
BCM Administrator Manual. The Administrator Manual should be consulted for further background
information as well as guidance on cluster administration tasks, after the introduction (Chapter 2)
of the Installation Manual has been read.

• If all else fails, administrator-level support is available via https://www.nvidia.com/en-us/

data-center/bright-cluster-manager/support/. Section 16.2 of the Administrator Manual has
further details on how to brief the support team, so that the issue can be resolved as quickly as
possible.

The quickstart steps now follow:

1.1 Installing The Head Node
The head node does not need to be connected to the regular nodes at this point, though it helps to have
the wiring done beforehand so that how things are connected is known.

1. The BIOS of the head node should have the local time set.

2. The head node should be booted from the BCM installation DVD or from a USB flash drive with
the DVD ISO on it.

https://www.nvidia.com/en-us/data-center/bright-cluster-manager/support/
https://www.nvidia.com/en-us/data-center/bright-cluster-manager/support/
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3. The option: Start Base Command Manager Graphical Installer, or Start Base Command

ManagerText Installer, should be selected in the text boot menu. The graphical installation
is recommended, and brings up the GUI installation welcome screen. The text installer provides a
minimal ncurses-based version of the GUI installation.

Only the GUI installation is discussed in the rest of this quickstart for convenience.

4. At the GUI welcome screen, the Start installation button should be clicked.

5. At the EULA screens:

• At the NVIDIA EULA screen, the acceptance checkbox should be ticked. Next should then be
ticked.

• At the Linux base distribution EULA screen, the acceptance checkbox should be ticked. Next
should then be clicked.

6. At the Kernel modules screen, Next should be clicked.

7. At the Hardware info screen, the detected hardware should be reviewed. If additional kernel
modules are required, then the administrator should go back to the Kernel Modules screen. Once
all the relevant hardware (Ethernet interfaces, hard drive and DVD drive) is detected, Next should
be clicked.

8. At the Installation source screen, the DVD drive containing the BCM DVD, or the USB flash
drive containing the DVD ISO, should be selected, then Next clicked.

9. At the General cluster settings screen, one or more nameservers and one or more domains
can be set, if they have not already been automatically filled. The remaining settings can usually
be left as is.

10. At the Workload management screen, an HPC workload manager can be selected. The choice can
be made later on too, after BCM has been installed.

11. For the Network topology screen, a Type 1 network is the most common.

12. For the Head node settings screen, the head is given a name and a password.

13. For the Compute nodes settings screen, the head is given a name and a password.

• The number of racks and regular nodes are specified

• The base name for the regular nodes is set. Accepting the default of node means nodes names
are prefixed with node, for example: node001, node002...

• The number of digits to append to the base name is set. For example, accepting the default of
3 means nodes from node001 to node999 are possible names.

• The correct hardware manufacturer is selected

14. For the BMC configuration screen, the use of IPMI/iLO/DRAC/CIMC/Redfish BMCs is
carried out. Adding an IPMI/iLO/DRAC/CIMC/Redfish network is needed to configure
IPMI/iLO/DRAC/CIMC/Redfish interfaces in a different IP subnet, and is recommended.

15. At the Networks screen, the network parameters for the head node should be entered for the inter-
face facing the network named externalnet:

• If using DHCP on that interface, the parameters for IP Address, Netmask and Gateway as
suggested by the DHCP server on the external network can be accepted.

• If not using DHCP on that interface, static values put in instead.
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The network parameters for externalnet that can be set include the:

• base address (also called the network address)

• netmask

• domain name

The network externalnet corresponds to the site network that the cluster resides in (for example,
a corporate or campus network). The IP address details are therefore the details of the head node
for a type 1 externalnet network (figure 3.10). A domain name should be entered to suit the local
requirements.

16. For the Head node interfaces screen, the head node network interfaces are assigned networks
and IP addresses. The assigned values can be reviewed and changed.

17. At the Compute node interfaces screen, the compute node interfaces are assigned networks and
IP addresses. The assigned values can be reviewed and changed.

18. At the Disk layout screen, a drive should be selected for the head node. The installation will be
done onto this drive, overwriting all its previous content.

19. At the Disk layout Settings screen, the administrator can modify the disk layout for the head
node by selecting a pre-defined layout.

For hard drives that have less than about 500GB space, the XML file
master-one-big-partition.xml in the installer file system is used by default:

Partition Space Mounted At Filesystem Type

1 1G /boot ext2

0 100M /boot/efi fat

2 16G - swap

3 rest / xfs

Default layout for up to 500GB: One big partition.

For hard drives that have about 500GB or more of space, the XML file master-standard.xml is
used by default:

Partition Space Mounted At Filesystem Type

1 1G /boot ext2

0 100M /boot/efi fat

2 16G - swap

3 20G /tmp xfs

4 180G /var xfs

5 rest / xfs

Default layout for more than 500GB: Several partitions.

The layouts indicated by these tables may be fine-tuned by editing the XML partitioning definition
during this stage. The “max” setting in the XML file corresponds to the “rest” entry in these tables,
and means the rest of the drive space is used up for the associated partition, whatever the leftover
space is.

There are layout templates available from a menu, other than the preceding default layouts.

/var/www/htdocs/content/masterdisklayouts/master-one-big-partition.xml
/var/www/htdocs/content/masterdisklayouts/master-standard.xml
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20. At the Additional software screen, extra software options can be chosen for installation if these
were selected for the installation ISO. The extra software options are:

• CUDA

• Ceph

• OFED stack

21. The Summary screen should be reviewed. A wrong entry can still be fixed at this point. The Next

button then starts the installation.

22. The Deployment screen should eventually complete. Clicking on Reboot reboots the head node.

1.2 First Boot
1. The DVD should be removed or the boot-order altered in the BIOS to ensure that the head node

boots from the first hard drive.

2. Once the machine is fully booted, a login should be done as root with the password that was
entered during installation.

3. A check should be done to confirm that the machine is visible on the external network. Also, it
should be checked that the second NIC (i.e. eth1) is physically connected to the external network.

4. If the parent distribution for BCM is RHEL and SUSE then registration (Chapter 5) should usually
be done.

5. The license parameters should be verified to be correct:
cmsh -c "main licenseinfo"

If the license being used is a temporary license (see End Time value), a new license should be
requested well before the temporary license expires. The procedure for requesting and installing
a new license is described in Chapter 4.

6. The head node software should be updated via its package manager (yum, dnf, apt, zypper) so
that it has the latest packages (sections 11.2 -11.3 of the Administrator Manual).

1.3 Booting Regular Nodes
1. A check should be done to make sure the first NIC (i.e. eth0) on the head node is physically

connected to the internal cluster network.

2. The BIOS of regular nodes should be configured to boot from the network. The regular nodes
should then be booted. No operating system is expected to be on the regular nodes already. If
there is an operating system there already, then by default, it is overwritten by a default image
provided by the head node during the next stages.

3. If everything goes well, the node-installer component starts on each regular node and a certificate
request is sent to the head node.

If a regular node does not make it to the node-installer stage, then it is possible that additional
kernel modules are needed. Section 5.8 of the Administrator Manual contains more information on
how to diagnose problems during the regular node booting process.

4. To identify the regular nodes (that is, to assign a host name to each physical node), several options
are available. Which option is most convenient depends mostly on the number of regular nodes
and whether a (configured) managed Ethernet switch is present.
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Rather than identifying nodes based on their MAC address, it is often beneficial (especially in
larger clusters) to identify nodes based on the Ethernet switch port that they are connected to. To
allow nodes to be identified based on Ethernet switch ports, section 3.9 of the Administrator Manual
should be consulted.

If a node is unidentified, then its node console displays an ncurses message to indicate it is an un-
known node, and the net boot keeps retrying its identification attempts. Any one of the following
methods may be used to assign node identities when nodes start up as unidentified nodes:

a. Identifying each node on the node console: To manually identify each node, the “Manually
select node” option is selected for each node. The node is then identified manually by se-
lecting a node-entry from the list, choosing the Accept option. This option is easiest when
there are not many nodes. It requires being able to view the console of each node and key-
board entry to the console.

b. Identifying nodes using cmsh: In cmsh the newnodes command in device mode (page 247,
section 5.4.2 of the Administrator Manual) can be used to assign identities to nodes from the
command line. When called without parameters, the newnodes command can be used to
verify that all nodes have booted into the node-installer and are all waiting to be assigned an
identity.

c. Identifying nodes using Base View: The node identification resource (page 251, section 5.4.2
of the Administrator Manual) in Base View automates the process of assigning identities so
that manual identification of nodes at the console is not required.

Example

To verify that all regular nodes have booted into the node-installer:

[root@mycluster ~]# cmsh

[mycluster]% device newnodes

MAC First appeared Detected on switch port

----------------- ------------------------ -----------------------

00:0C:29:D2:68:8D 05 Sep 2011 13:43:13 PDT [no port detected]

00:0C:29:54:F5:94 05 Sep 2011 13:49:41 PDT [no port detected]

..

[mycluster]% device newnodes | wc -l

MAC First appeared Detected on switch port

----------------- ------------------- -----------------------

32

[mycluster]% exit

[root@mycluster ~]#

Example

Once all regular nodes have been booted in the proper order, the order of their appearance on the
network can be used to assign node identities. To assign identities node001 through node032 to
the first 32 nodes that were booted, the following commands may be used:

[root@mycluster ~]# cmsh

[mycluster]% device newnodes -s -n node001..node032

MAC First appeared Hostname

----------------- ----------------------------- ---------

00:0C:29:D2:68:8D Mon, 05 Sep 2011 13:43:13 PDT node001

00:0C:29:54:F5:94 Mon, 05 Sep 2011 13:49:41 PDT node002

..

[mycluster]% exit

[root@mycluster ~]#
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5. Each regular node is now provisioned and eventually fully boots. In case of problems, section 5.8
of the Administrator Manual should be consulted.

6. Optional: To configure power management, Chapter 4 of the Administrator Manual should be con-
sulted.

7. To update the software on the nodes, a package manager is used to install to the node image
filesystem that is on the head node.

The node image filesystem should be updated via its package manager (yum, dnf, apt, zypper) so
that it has the latest packages (sections 11.4 -11.5 of the Administrator Manual).

1.4 Quickstart For GPUs
This assumes that the head nodes and regular nodes are up and running. Getting GPUs set up right can
be done as follows for a typical installation:

1. GPU Hardware And Sanity Check

If the hardware is not detected, then that must first be fixed. Checking for the hardware can be
done as follows:

(a) NVIDIA GPU hardware should be detected on the nodes that use it. This is true for NVIDIA
GPU units (separate from the nodes) as well as for on-board NVIDIA GPUs. The lspci

command can be used for detection. For example, for a GPU used by node001:

Example

[root@basecm10 ~]# ssh node001 lspci | grep NVIDIA

00:07.0 3D controller: NVIDIA Corporation GK110BGL [Tesla K40c] (rev a1)

(b) AMD CPUs, which have a GPU integrated with the CPU, the CPU chip can similarly be
identified with lscpu:

Example

[root@basecm10 ~]# ssh node001 lscpu | grep "Model name:"

Model name: AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx

The AMD chips can then be checked against the list of AMD chips with AMD GPUs, as listed
at https://www.amd.com/en/support/kb/release-notes/rn-prorad-lin-18-20

2. Installing The Software

(a) Details of AMD GPU software installation are given in section 7.4.

(b) For NVIDIA GPUs, assuming the GPU is on the regular node node001, and that the hardware
is supported by CUDA 12.6, then software installation is carried out at the head node as
follows:

i. The software components are installed for the head node itself with:
[root@basecm10 ~]# yum install cuda12.6-toolkit cuda12.6-sdk cuda12.6-visual-tools

ii. Components are installed into the image used by the nodes that have the GPUs, for ex-
ample the image default-image, with:
[root@basecm10 ~]# cm-chroot-sw-img /cm/images/default-image

... enters chrooted image...

[root@default-image /]# yum install cuda-driver cuda-dcgm

https://www.amd.com/en/support/kb/release-notes/rn-prorad-lin-18-20
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iii. The nodes with GPUs can then simply be rebooted to compile the CUDA drivers as the
node boots, and to start the CUDA driver up:
[root@basecm10 ~]# cmsh -c 'device reboot -n node001..node015'

Further details on the basic installation of CUDA for NVIDIA GPUs are given in Chap-
ter 9.

3. Configuring GPUs For The Cluster Manager

After the GPU software has been installed, the gpusettings submode can be used under device
mode for the nodes that have GPUs. This submode allows the cluster administrator to modify GPU
values. Keeping the default settings in the submode should be fine, which means configuration of
GPU settings can simply be skipped.

However, if needed, then the settings can be modified as described in section 3.16.2 of the Admin-
istrator Manual,

(a) on page 153 for NVIDIA GPUs

(b) on page 156 for AMD GPUs.

4. Configuring GPUs For The Workload Manager

A workload manager can be set up from the head node by running:

[root@basecm10 ~]# cm-wlm-setup

This starts up a TUI configuration. An NVIDIA GPU can be configured via for Slurm using the
Setup (Step by Step) option for Slurm (section 7.3.2 of the Administrator Manual).

After configuring the WLM server, WLM submission and WLM client roles for the nodes of the
cluster, a screen that asks if GPU resources should be configured is displayed (figure 1.1):

Figure 1.1: Slurm With cm-wlm-setup: GPU Configuration Entry Screen

Following through brings up a GPU device settings configuration screen (figure 1.2):

Figure 1.2: Slurm With cm-wlm-setup: GPU Device Settings Configuration Screen

The help text option in the screen gives hints based on the descriptions at https://slurm.schedmd.
com/gres.conf.html, and also as seen in Slurm’s man gres.conf.1.

https://slurm.schedmd.com/gres.conf.html
https://slurm.schedmd.com/gres.conf.html
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Figure 1.2 shows 2 physical GPUs on the node being configured. The type is an arbitrary string for
the GPU, and each CPU core is allocated an alias GPU device.

The next screen (figure 1.3) allows the NVIDIA CUDA MPS (Multi-Process Service) to be config-
ured:

Figure 1.3: Configuring An NVIDIA GPU For Slurm With cm-wlm-setup: MPS Settings Configuration
Screen

The help text for this screen gives hints on how the fields can be filled in. The number of GPU
cores (figure 1.3) for a GPU device can be set.

The rest of the cm-wlm-setup procedure can then be completed.

The regular nodes that had a role change during cm-wlm-setup can then be rebooted to pick up the
workload manager (WLM) services. A check via the cmsh command ds should show what nodes
need a restart.

Example

[root@basecm10 ~]# cmsh -c 'ds'

node001 ... [ UP ], restart required (cm-wlm-setup: compute role assigned)

node002 ... [ UP ], restart required (cm-wlm-setup: compute role assigned)

...

If, for example, the range from node001 to node015 needs to be restarted to get the WLM services
running, then it could be carried out with:

Example

[root@basecm10 ~]# cmsh -c 'device; reboot -n node001..node015'

NVIDIA configuration for Slurm and other workload managers is described in further detail in
section 7.5 of the Administrator Manual

5. Running A GPU Slurm Job

A user can be created with, for example, an unimaginative name such as auser:

[root@basecm10 ~]# cmsh

[basecm10]% user add auser

[basecm10->user*[auser*]]% set password

enter new password:

retype new password:

[basecm10->user*[auser*]]% ..

[basecm10->user*]% commit
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The “Hello World” helloworld.cu script from section 8.5.4 of the User Manual can be saved in
auser’s directory, and then compiled for a GPU with nvcc:

[auser@basecm10 ~]$ module load shared cuda12.3/toolkit

[auser@basecm10 ~]$ nvcc helloworld.cu -o helloworld

A slurmgpuhello.sh batch script can be built as follows:

[auser@basecm10 ~]$ cat slurmgpuhello.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --time=30 #time limit to batch job

#SBATCH --ntasks-per-node=1

#SBATCH -p defq #assuming gpu is in defq

#SBATCH --gpus=1

echo -n "hostname is "; hostname

module clear -f

./helloworld

It can be submitted as a batch job from the head node:

[auser@basecm10 ~]$ module load slurm

[auser@basecm10 ~]$ sbatch slurmgpuhello.sh

Submitted batch job 35

The output from submission to a node with a GPU can then be seen:

[auser@basecm10 ~]$ cat my.stdout

hostname is node001

String for encode/decode: Hello World!

String encoded on CPU as: Uryy|-d|yq.

String decoded on GPU as: Hello World!

[auser@basecm10 ~]$

More about Slurm batch scripts and GPU compilation can be found in Chapter 8 of the User Man-
ual.

1.5 Optional: Upgrading Python
The version of Python provided by the Linux-based OS distributors typically lags significantly behind
the latest upstream version. This is normally a good thing, since the distributors provide integration,
and carry out testing to make sure that it works well with the rest of the OS.

Some BCM tools and packages rely on some of the later features of Python, and by default BCM
installs its own later Python version via a package dependency when needed. So explicit upgrades
to Python are not needed for BCM itself. For example, for Rocky Linux 9.3, the default (distribution)
version of Python at the time of writing (March 2024) is 3.9, while BCM installs and deploys a version
3.11 when needed.

However, some cluster administrators would also like to have various Python versions available on
their cluster for user applications. For example, because users too would like to use later versions for
their nicer features. BCM therefore makes these various versions of Python available for the end user in
an integrated manner, as an optional installation.

For example, for NVIDIA Base Command Manager version 10.0, the Python packages that can be
installed to provide their associated features are:
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• cm-python39, for Python 3.9

• cm-python311, for Python 3.11

Users can use the modules command to switch the environment to the appropriate Python version.
For example, to switch to Python 3.11:

[root@basecm10 ~]# python -V

Python 3.9.18

[root@basecm10 ~]# module load python39

[root@basecm10 ~]# python -V

Python 3.9.10

If the change is carried out correctly, then support is not available for Python-related bugs, but is
available for BCM-related features.

The Jupyter module is an example of a module that automatically loads its own version of Python.
This may cause confusion if the system administrator is not paying attention to which version of Python
is active. For example, in BCM 10.0, if the user has loaded python311, and then loads Jupyter, the active
version of Python is 3.9:

Example

[root@basecm10 ~]# module list

Currently Loaded Modulefiles:

1) shared 2) cmsh 3) cmd 4) cluster-tools/10.0 5) cm-setup/10.0 6) cm-image/10.0

7) openmpi4/gcc/4.1.5 8) python311

[root@basecm10 ~]# python -V

Python 3.11.3

[root@basecm10 ~]# module load jupyter

Loading jupyter/15.3.0

Loading requirement: python39

[root@basecm10 ~]# python -V

Python 3.9.18

1.6 Running Base View
To run the Cluster Management GUI (Base View) on the cluster from a workstation running X11: A
recent web browser should be used, and pointed to

https://<head node address>:8081/base-view/
A suitable web browser is the latest Chrome from Google, but Opera, Firefox, Chromium, and similar
should all also just work. The hardware on which the browser runs must be fast enough, and for a
reasonable experience, should be roughly equivalent to that of a mid- to high-end desktop of 2016.
The cluster should now be ready for running compute jobs.

For more information:

• This manual, the Installation Manual, has more details and background on the installation of
the cluster in the next chapters.

• The Upgrade Manual describes upgrading from earlier versions of NVIDIA Base Command
Manager.

• The Administrator Manual describes the general management of the cluster.

• The User Manual describes the user environment and how to submit jobs for the end user

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

https://support.brightcomputing.com/upgrade-manuals/9.0/upgrade-manual.pdf
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• The Developer Manual has useful information for developers who would like to program with
BCM.

• The Machine Learning Manual describes how to install and configure machine learning capa-
bilities with BCM.

• The Containerization Manual describes how to manage containers with BCM.





2
Introduction

This chapter introduces some features of NVIDIA Base Command Manager and describes a basic cluster
in terms of its hardware.

2.1 What Is NVIDIA Base Command Manager?
NVIDIA Base Command Manager 10 is a cluster management application built on top of major Linux
distributions.

Name Changes From Version 9.2 To 10
The cluster manager software was originally developed by Bright Computing and the name “Bright” featured
previously in the product, repositories, websites, and manuals.

Bright Computing was acquired by NVIDIA in 2022. The corresponding name changes, to be consistent with
NVIDIA branding and products, are a work in progress. There is some catching up to do in places. For now, some
parts of the manual still refer to Bright Computing and Bright Cluster Manager. These remnants will eventually
disappear during updates.

BCM in particular is a convenient abbreviation that happens to have the same letters as the former Bright
Cluster Manager. With the branding change in version 10, Base Command Manager is the official full name for
the product formerly known as Bright Cluster Manager, and BCM is the official abbreviation for Base Command
Manager.

2.1.1 What OS Platforms Is It Available For?
BCM is available for the following OS platforms:

• Red Hat Enterprise Linux Server and some derivatives, such as Rocky Linux

– Versions 8.x

– Versions 9.x.

• SLES versions:

– SUSE Enterprise Server 15

• Ubuntu versions:

– Focal Fossa 20.04

– Jammy Jellyfish 22.04

– Noble Numbat 24.04

– DGX OS 6 (described at https://docs.nvidia.com/dgx/dgx-os-6-user-guide/introduction.
html)

https://docs.nvidia.com/dgx/dgx-os-6-user-guide/introduction.html
https://docs.nvidia.com/dgx/dgx-os-6-user-guide/introduction.html
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Typically BCM is installed either on a head node, or on a pair of head nodes in a high availability
configuration. Images are provisioned to the non-head nodes from the head node(s). The OS for the
images is by default the same as that of the head node(s), but the OS used for the images can be changed
later on (section 11.6 of the Administrator Manual).

At the time of writing of this section in September 2023, the OS platforms listed all support NVIDIA
AI Enterprise (https://docs.nvidia.com/ai-enterprise/index.html), with the exception for now of
RHEL9 and derivatives.

2.1.2 What Architectures Does It Run On?
Within the distributions listed in section 2.1.1, the BCM application runs on the following architectures:

• on the x86_64 architecture that is supported by Intel and AMD 64-bit CPUs

• on the arm64 (AArch64) architecture that is supported by ARMv8 CPUs

2.1.3 What Features Are Supported Per OS And Architecture?
BCM aims to run so that is is independent of the chosen OS and architecture. That is, it aims to work
the same way for each OS or architecture. There are necessarily some limitations to this, and these are
documented in a feature matrix at https://support.brightcomputing.com/feature-matrix/.

2.1.4 What OS Platforms Can It Be Managed From?
While BCM runs directly on the OS platforms listed in section 2.1.1, BCM can be managed from many
more OS platforms, when controlled by these front ends:

• Base View (section 2.4 of the Administrator Manual): a GUI which conveniently runs on modern
desktop web browsers, and therefore on all operating system versions that support a modern
browser. This includes Microsoft Windows, MacOS and iOS, and Linux.

• cmsh (section 2.5 of the Administrator Manual): an interactive shell front end that can be accessed
from any computing device with a secured SSH terminal access.

2.2 Cluster Structure
In its most basic form, a cluster running BCM contains:

• One machine designated as the head node

• Several machines designated as compute nodes

• One or more (possibly managed) Ethernet switches

• One or more power distribution units (Optional)

The head node is the most important machine within a cluster because it controls all other devices,
such as compute nodes, switches and power distribution units. Furthermore, the head node is also the
host that all users (including the administrator) log in to in a default cluster. The head node is typically
the only machine that is connected directly to the external network and is usually the only machine in a
cluster that is equipped with a monitor and keyboard. The head node provides several vital services to
the rest of the cluster, such as central data storage, workload management, user management, DNS and
DHCP service. The head node in a cluster is also frequently referred to as the master node.

Often, the head node is replicated to a second head node, frequently called a passive head node. If
the active head node fails, the passive head node can become active and take over. This is known as a
high availability setup, and is a typical configuration (Chapter 17 of the Administrator Manual) in BCM.

A cluster normally contains a considerable number of non-head, or regular nodes, also referred to
simply as nodes. The head node, not surprisingly, manages these regular nodes over the network.

https://docs.nvidia.com/ai-enterprise/index.html
https://support.brightcomputing.com/feature-matrix/
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Most of the regular nodes are compute nodes. Compute nodes are the machines that will do the heavy
work when a cluster is being used for large computations. In addition to compute nodes, larger clusters
may have other types of nodes as well (e.g. storage nodes and login nodes). Nodes typically install
automatically through the (network bootable) node provisioning system that is included with BCM.
Every time a compute node is started, the software installed on its local hard drive is synchronized
automatically against a software image which resides on the head node. This ensures that a node can
always be brought back to a “known state”. The node provisioning system greatly eases compute node
administration and makes it trivial to replace an entire node in the event of hardware failure. Software
changes need to be carried out only once (in the software image), and can easily be undone. In general,
there will rarely be a need to log on to a compute node directly.

In most cases, a cluster has a private internal network, which is usually built from one or multiple
managed Gigabit Ethernet switches, or made up of an InfiniBand or Omni-Path fabric. The internal net-
work connects all nodes to the head node and to each other. Compute nodes use the internal network for
booting, data storage and interprocess communication. In more advanced cluster setups, there may be
several dedicated networks. It should be noted that the external network—which could be a university
campus network, company network or the Internet—is not normally directly connected to the internal
network. Instead, only the head node is connected to the external network.

Figure 2.1 illustrates a typical cluster network setup.

Figure 2.1: Cluster network

Most clusters are equipped with one or more power distribution units. These units supply power to
all compute nodes and are also connected to the internal cluster network. The head node in a cluster can
use the power control units to switch compute nodes on or off. From the head node, it is straightforward
to power on/off a large number of compute nodes with a single command.





3
Installing NVIDIA Base

Command Manager
This chapter describes in detail the installation of NVIDIA Base Command Manager onto the head node
of a cluster. Sections 3.1 and 3.2 list hardware requirements and supported hardware. Section 3.3 gives
step-by-step instructions on installing BCM from a DVD or USB drive onto a head node that has no
operating system running on it initially, while section 3.4 gives instructions on installing onto a head
node that already has an operating system running on it.

Once the head node is installed, the other, regular, nodes can (network) boot off the head node
and provision themselves from it with a default image, without requiring a Linux distribution DVD
or USB drive themselves. Regular nodes normally have any existing data wiped during the process of
provisioning from the head node, which means that a faulty drive can normally simply be replaced by
taking the regular node offline, replacing its drive, and then bringing the node back online, without
special reconfiguration. The details of the network boot and provisioning process for the regular nodes
are described in Chapter 5 of the Administrator Manual.

The installation of software on an already-configured cluster running BCM is described in Chapter 11
of the Administrator Manual.

3.1 Minimal Hardware Requirements
The following are minimal hardware requirements, suitable for a cluster of one head node and two
regular compute nodes:

3.1.1 Head Node
• x86-64, or ARMv8 CPU

• For running the application software:

– 4GB RAM for the x86 architecture 1

– 16GB RAM for the ARMv8 architecture,

• 80GB diskspace

• 2 Gigabit Ethernet NICs (for the most common Type 1 topology (section 3.3.9))

• DVD drive or USB drive
1The value of 4GB RAM for the x86 head node, while technically correct as a minimum for running the application, is gen-

erally not a practical minimum when carrying out a standard installation. This is because the standard bare-metal installation
(section 3.3) runs best with 8GB RAM.
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3.1.2 Compute Nodes
• x86-64, ARMv8 CPU

• 1GB RAM (at least 4GB is recommended for diskless nodes)

• 1 Gigabit Ethernet NIC

Recommended hardware requirements for larger clusters are discussed in detail in Appendix B.

3.2 Supported Hardware
An NVIDIA-certified for AI enterprise system is a system with NVIDIA GPUs and networking
that has passed a set of certification tests to validate its performance, reliability, and scale for
data centers. Many system builders that have partnered with NVIDIA can provide such certi-
fied hardware. These system builders are listed in https://www.nvidia.com/en-us/data-center/

data-center-gpus/qualified-system-catalog.
The following hardware is also supported, even if it may not be NVIDIA-certified for AI Enterprise:

3.2.1 Compute Nodes
• ASUS

• Atos

• Cisco

• Dell EMC

• Fujitsu

• HPE (Hewlett Packard Enterprise)

• IBM

• Lenovo

• NVIDIA DGX

• Oracle

• Supermicro

Other brands are also expected to work, even if not explicitly supported.

3.2.2 Ethernet Switches
• Cisco

• Dell

• HP Networking Switches

• Netgear

• Supermicro

Other brands are also expected to work, although not explicitly supported.

3.2.3 Power Distribution Units
• APC (American Power Conversion) Switched Rack PDU

Other brands with the same SNMP MIB mappings are also expected to work, although not explicitly
supported.

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog
https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog


3.3 Head Node Installation: Bare Metal Method 19

3.2.4 Management Controllers
• HP iLO

• iDRAC

• IPMI 1.5/2.0

• CIMC

• Redfish v1

3.2.5 InfiniBand And Similar
• NVIDIA (formerly Mellanox) HCAs, and most other InfiniBand HCAs

• NVIDIA (formerly Mellanox), and most other InfiniBand switches

3.2.6 GPUs
• NVIDIA Tesla with latest recommended drivers

• NVIDIA GeForce and other older generations are mostly supported. The BCM support team can
be consulted for details.

• NVIDIA DGX servers and workstations are supported for Ubuntu 22.04 at the time of writing of
this section (October 2024).

• AMD Radeon GPUs, as listed at https://support.amd.com/en-us/kb-articles/Pages/

Radeon-Software-for-Linux-Release-Notes.aspx

The GPUs that are NVIDIA-certified for AI Enterprise are listed in the support matrix at https://docs.
nvidia.com/ai-enterprise/latest/product-support-matrix/index.html#support-matrix.

3.2.7 RAID
Software or hardware RAID are supported. Fake RAID is not regarded as a serious production option
and is supported accordingly.

3.3 Head Node Installation: Bare Metal Method
A bare metal installation, that is, installing the head node onto a machine with no operating system
on it already, is the recommended option. This is because it cannot run into issues from an existing
configuration. An operating system from one of the ones listed in section 2.1 is installed during a bare
metal installation. The alternative to a bare metal installation is the add-on installation of section 3.4.

Just to be clear, a bare metal installation can be a physical machine with nothing running on it, but
it can also a be virtual machine–such as a VMware, VirtualBox, or KVM instance–with nothing running
on it. Virtual instances may need some additional adjustment to ensure virtualization-related settings
are dealt with correctly. Details on installing BCM onto virtual instances can be found in the BCM
Knowledge Base at http://kb.brightcomputing.com.

To start a physical bare metal installation, the time in the BIOS of the head node is set to local time.
The head node is then made to boot from DVD or USB, which can typically be done by appropriate
keystrokes when the head node boots, or via a BIOS configuration.

Special steps for installation from a bootable USB device: If a bootable USB device is to be used, then
the instructions within the BCM ISO, in the file README.BRIGHTUSB should be followed to copy the ISO
image over to the USB device. After copying the ISO image, the MD5 checksum should be validated
to verify that the copied ISO is not corrupt. This is important, because corruption is possible in subtle
ways that may affect operations later on, and in ways that are difficult to uncover.

https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx
https://support.amd.com/en-us/kb-articles/Pages/Radeon-Software-for-Linux-Release-Notes.aspx
https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html#support-matrix
https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html#support-matrix
http://kb.brightcomputing.com
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3.3.1 ISO Boot Menu
If booting from a DVD or USB drive, then a pre-installer menu called the ISO boot menu first loads up
(figure 3.1).

Figure 3.1: Installation: ISO Boot Menu

The ISO Boot menu offers a default option of booting from the hard drive, with a countdown to
starting the hard drive boot. To install BCM, the countdown should be interrupted by selecting the
option of “Start Base Command Manager Graphical Installer” instead.

Selecting the option allows kernel parameter options to be provided to the installer.
Default kernel parameter options are provided so that the administrator can simply press the enter

key to go straight on to start the installer, and bring up the welcome screen (section 3.3.2).

Optional: The netconf Custom Kernel Parameter
A non-default kernel parameter option is netconf. Setting configuration values for this option config-
ures login and network settings for the cluster manager, and also means that SSH and VNC servers
are launched as the welcome screen (section 3.3.2) of the BCM installer starts up. This then allows the
cluster administrator to carry out a remote installation, instead of having to remain at the console.

The netconf option can be set for both the GUI and text installer installation.
The netconf custom kernel parameter requires 3 settings:

1. a setting for the external network interface that is to be used. For example: eth0 or eth1.

2. a setting for the network configuration of the external network, to be explained soon. The network
configuration option can be built either using static IP addressing or with DHCP.

• For static IP addressing, the network configuration format is comma-separated:
static:<IP address>,<gateway address>,<netmask>

• For DHCP addressing, the format is simply specified using the string dhcp.

3. a setting for the password, for example secretpass, for the login to the cluster manager that is
about to be installed.

Example

With static IP addressing:

netconf=eth0:static:10.141.161.253,10.141.255.254,255.255.0.0:secretpass

Example

With DHCP addressing:

netconf=eth0:dhcp:secretpass

A remote installation can alternatively be carried out later on without setting netconf, by using
the text mode installer to set up networking (section 3.5), or by using GUI mode installer Continue

remotely option (figure 3.3).
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3.3.2 Welcome Screen
The welcome screen is shown in figure 3.2.

Figure 3.2: Installation welcome screen for BCM

An administrator who would like to simply start installation can click on the Start installation

button at the left side of the screen.

3.3.3 Software Licenses
The next screen that is displayed asks the user to agree to the NVIDIA AI Product EULA (figure 3.3):
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Figure 3.3: NVIDIA Base Command Manager Software License

The agreement is carried out by ticking the checkbox and clicking on the Next button.
A similar screen after that asks the user to agree to the Base Distribution EULA. This is the end user

license agreement for the distribution (RHEL, Rocky, Ubuntu and so on) that is to be used as the base
upon which BCM is to run.

Options During The Installation Screens
As is seen in figure 3.3, the main screens during installation have the following clickable options along
the bottom of the screen:

• Load config: allows an existing configuration file to be loaded and used by the installation. This
option is available only during the first few screens.

• Show config: allows any already loaded configuration file to be displayed. There is a default con-
figuration loaded by default, with values that may suit the cluster already. However, the defaults
are not expected to be optimal, and may not even work for the actual physical configuration.

• Continue remotely: allows the administrator to leave the console and access the cluster from a
remote location. This can be useful for administrators who, for example, prefer to avoid working
inside a noisy cold data center. If Continue remotely is selected, then addresses are displayed
on the console screen, for use with a web browser or SSH, and the console installation screen is
locked.

• Back: if not grayed out, the Back option allows the administrator to go back a step in the installa-
tion.
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• Next: allows the administrator to proceed to the next screen.

3.3.4 Kernel Modules Configuration
The Kernel Modules screen (figure 3.4) shows the kernel modules recommended for loading based on
a hardware probe:

Figure 3.4: Kernel Modules Recommended For Loading After Probing

Changes to the modules to be loaded can be entered by reordering the loading order of modules, by
removing modules, and adding new modules. Clicking the©+ button opens an input box for adding a
module name and optional module parameters (figure 3.5). The module can be selected from a built-in;
it can be automatically extracted from a .deb or .rpm package; or it can simply be selected by selecting
an available .ko kernel module file from the filesystem.

A module can also be blacklisted, which means it is prevented from being used, by clicking on the
� button. This can be useful when replacing one module with another.
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Figure 3.5: Adding Kernel Modules

Clicking Next then leads to the “Hardware info” overview screen, described next.

3.3.5 Hardware Info
The Hardware Info screen (figure 3.6) provides an overview of detected hardware based on the hard-
ware probe used to load kernel modules. If any hardware is not detected at this stage, then the Back

button can be used to go back to the Kernel Modules screen (figure 3.4) to add the appropriate modules,
and then the Hardware Information screen can be returned to, to see if the hardware has been detected.

Figure 3.6: Hardware Overview Based On Hardware Detection Used For Loading Kernel Modules
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Clicking Next in the Hardware Info screen leads to the Installation source configuration screen,
described next.

3.3.6 Installation Source
The installation source screen (figure 3.7) detects the available DVD-ROM devices.

Figure 3.7: DVD Selection

The administrator must select the correct device to continue the installation.
Optionally, a media integrity check can be set.
Clicking on the Next button starts the media integrity check, if it was set. The media integrity check

can take about a minute to run. If all is well, then the “Cluster settings” setup screen is displayed, as
described next.

3.3.7 Cluster Settings
The General cluster settings screen (figure 3.8) provides an overview of some mandatory and op-
tional settings.
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Figure 3.8: General cluster settings

Settings that can be provided in this screen are:

• Cluster name

• Administrator email: Where mail to the administrator goes. This need not be local.

• Time zone

• Time servers: The defaults are pool.ntp.org servers. A time server is recommended to avoid
problems due to time discrepancies between nodes.

• Nameservers: One or more DNS servers can be set.

• Search domains: One or more domains can be set.

• Environment modules: Traditional Tcl modules are set by default. Lmod is an alternative.

3.3.8 Workload Management Configuration
The “Workload manager” configuration screen (figure 3.9) allows a supported workload manager to be
selected. A workload management system is highly recommended to run multiple compute jobs on a
cluster.
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Figure 3.9: Workload Management Setup

If no workload manager is selected here, then it can be installed later on, after the cluster installation
without the workload manager has been done. Details on installing a workload manager later on are
given in Chapter 7 on workload management of the Administrator Manual.

The default client slot number that is set depends on the workload manager chosen.

• If PBS Professional or OpenPBS is selected as a workload management system, then the number
of client slots defaults to 1. After the installation is completed the administrator should update the
value in the pbsproclient role to the desired number of slots for the compute nodes.

• For all other workload management systems, the number of client slots is determined automati-
cally.

The head node can also be selected for running jobs, thereby acting as an additional compute node.
This can be a sensible choice on small clusters if the head node can spare such resources.

Clicking Next on this screen leads to the Network topology screen.

3.3.9 Network Topology
Regular nodes are always located on an internal network, by default called Internalnet.

The Network Topology screen allows selection of one of three different network topologies (fig-
ures 3.10, 3.11, 3.12):
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Figure 3.10: Networks Topology: Type 1 network selection

A type 1 network: has its nodes connected on a private internal network. This is the default net-
work setup. In this topology, a network packet from a head or regular node destined for any
external network that the cluster is attached to, by default called Externalnet, can only reach the
external network by being routed and forwarded at the head node itself. The packet routing for
Externalnet is configured at the head node.

A type 1 network is the most common and simple way to run the cluster. It means that the head
node provides DHCP and PXE services (during pre-init stage node booting only) to a secondary,
isolated network for the worker nodes, segregating the cluster traffic. The external (typically a
corporate) network is then only used to provide access to the head node(s) for management.

One limitation is that broader network access must be provided through routing or via a proxy,
should anyone outside of the cluster network need to access a node.
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Figure 3.11: Networks Topology: Type 2 network selection

A type 2 network: has its nodes connected via a router to a public network. In this topology,
a network packet from a regular node destined for outside the cluster does not go via the head
node, but uses the router to reach a public network.

Packets between the regular nodes and the head node however still normally go directly to each
other, including the DHCP/PXE-related packets during pre-init stage node booting, since in a
normal configuration the regular nodes and head node are on the same network.

Any routing for beyond the router is configured on the router, and not on the cluster or its parts.
Care should be taken to avoid conflicts between the DHCP server on the head node and any
existing DHCP server on the internal network, if the cluster is being placed within an existing
corporate network that is also part of Internalnet (there is no Externalnet in this topology).
Typically, in the case where the cluster becomes part of an existing network, there is another router
configured and placed between the regular corporate machines and the cluster nodes to shield
them from effects on each other.

A type 2 network does not isolate the worker nodes from the network above it. Instead, each node
remains reachable through the main data plane. This is useful for clusters hosting services, such
as a web portal, avoiding the use of proxies.
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Figure 3.12: Networks Topology: Type 3 network selection

A type 3 network: has its nodes connected on a routed public network. In this topology, a network
packet from a regular node, destined for another network, uses a router to get to it. The head node,
being on another network, can only be reached via a router too. The network the regular nodes are
on is called Internalnet by default, and the network the head node is on is called Managementnet

by default. Any routing configuration for beyond the routers that are attached to the Internalnet
and Managementnet networks is configured on the routers, and not on the clusters or its parts.

A consequence of using a router in the type 3 configuration is that the communication between
the head node and the regular nodes is via OSI layer 3. So, OSI layer 2 used by DHCP is not
directly supported. However, DHCP/PXE packets still need to be exchanged between the head
and regular nodes during pre-init node boot. The usual way to relay the packets is using a DHCP
relay agent. Configuration of a DHCP relay agent is outside the scope of BCM configuration, and
is typically done by the network administrator or the router vendor.

For a type 2 network, a DHCP relay agent may also be needed if the regular nodes are spread
across several subnets.

Selecting the network topology helps decide the predefined networks on the Networks settings
screen later (figure 3.16). Clicking Next here leads to the Head node settings screen, described next.

3.3.10 Head Node Settings
The head node settings screen (figure 3.13) can be used to set, for the head node:

• the hostname
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• the password

• the hardware manufacturer

Figure 3.13: Head node settings

Clicking Next leads to the Compute node settings screen, described next.

3.3.11 Compute Nodes Settings
The compute nodes settings screen (figure 3.14) can be used to set, for the compute nodes:

• the number of racks used to host the nodes

• the number of nodes

• the naming format for the nodes. This consists of:

– the node base name (default: node)

– the node start number (default: 1)

– the node digits (default: 3)

By default therefore, the first compute node takes the name node001, the second compute node
takes the name node002, and so on.

• the hardware manufacturer
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Figure 3.14: Compute node settings

Clicking Next leads to the BMC configuration screen, described next.

3.3.12 BMC Configuration
The BMC (Baseboard Management Controller) screen (figure 3.15) configures BMCs compatible with
IPMI, iDRAC, iLO, or CIMC.

The BMCs can be configured for the head or compute nodes.
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Figure 3.15: BMC configuration

If the administrator confirms that the nodes are to use BMCs (Baseboard Management Controllers)
that are compatible with IPMI, iLO, CIMC, iDRAC, or Redfish, then the BMC network options appear.

By default, for the compute nodes, the BMC is automatically configured.
For a Type 1 network, the head node BMC is often connected to an ethernet segment that has the

external network running on it, while the BMCs on the compute nodes are normally connected to an
ethernet segment that has the internal network on it.

Once a network associated with the ethernet segment is chosen, it means that further BMC-related
networking values can be set for the BMCs.

A new Layer 3 IP subnet can be created for BMC interfaces.
The BMC interface can be configured as a shared physical interface with an already existing network

interface. However this can in some cases cause problems during early system BIOS checks. A dedicated
physical BMC interface is therefore recommended.

If a BMC is configured, then the BMC password is set to a random value. Retrieving and changing a
BMC password is covered in section 3.7.2 of the Administrator Manual. BMC configuration is discussed
further in section 3.7 of the Administrator Manual.

Clicking Next leads to the Networks screen, described next.

3.3.13 Networks
The Networks configuration screen (figure 3.16) displays the predefined list of networks, based on the
selection of network topology and BMC networks made in the earlier screens.
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Figure 3.16: Networks configuration, internalnet tab

The Networks configuration screen allows the parameters of the network interfaces to be configured
via tabs for each network. In addition to any BMC networks:

For a type 1 setup, an external network and an internal network are always defined.

For a type 2 setup, an internal network is defined but no external network is defined.

For a type 3 setup, an internal network and a management network are defined.

Thus, for a type 1 network, for example, the networking details:

• for externalnet correspond to the details of the head node external network interface.

• for internalnet correspond to the details of how the compute nodes are configured.

• for a BMC network correspond to the details of how the BMC is connected

Additional custom networks can be added in the Networks configuration screen by clicking on the
©+ button.

Clicking Next in this screen validates all network settings. Invalid settings for any of the defined
networks cause an alert to be displayed, explaining the error. A correction is then needed to proceed
further. Settings may of course be valid, but incorrect—the validation is merely a sanity check. It may
be wise for the cluster administrator to check with the network specialist that the networks that have
been configured are set up as really intended.

If all settings are valid, then the Next button brings the installation on to the Head node interfaces

screen, described next.
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3.3.14 Head node interfaces
The Head node interfaces screen (figure 3.17) allows a review of the head node network interfaces
and their proposed settings.

Figure 3.17: Head node interfaces configuration

If a BMC network is to be shared with a regular network, then an alias interface is shown too. In
figure 3.17 an alias interface, ens3:ipmi, is shown.

Interfaces can be created or removed.
Dropdown selection allows the proposed values to be changed. It is possible to swap network inter-

faces with dropdown selection.
Clicking the Next button brings the installation on to the Compute node interfaces screen, de-

scribed next.

3.3.15 Compute node interfaces
The Compute node interfaces screen (figure 3.18) allows a review of the compute node network inter-
faces and their proposed settings.
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Figure 3.18: Compute node interfaces configuration

The boot interface BOOTIF is used to pick up the image for the node via node provisioning.
The IP offset is used to calculate the IP address assigned to a regular node interface. The nodes are

conveniently numbered in a sequence, so their interfaces are typically also given a network IP address
that is in a sequence on a selected network. In BCM, interfaces by default have their IP addresses
assigned to them sequentially, in steps of 1, starting after the network base address.

The default IP offset is 0.0.0.0, which means that the node interfaces by default start their range at
the usual default values in their network.

With a modified IP offset, the point at which addressing starts is altered. For example, a different
offset might be desirable when no IPMI network has been defined, but the nodes of the cluster do have
IPMI interfaces in addition to the regular network interfaces. If a modified IP offset is not set for one of
the interfaces, then the BOOTIF and ipmi0 interfaces get IP addresses assigned on the same network by
default, which could be confusing.

However, if an offset is entered for the ipmi0 interface, then the assigned IPMI IP addresses start
from the IP address specified by the offset. That is, each modified IPMI address takes the value:

address that would be assigned by de f ault + IP o f f set

Example

Taking the case where BOOTIF and IPMI interfaces would have IP addresses on the same network with
the default IP offset:

Then, on a cluster of 10 nodes, a modified IPMI IP offset of 0.0.0.20 means:

• the BOOTIF interfaces stay on 10.141.0.1,...,10.141.0.10 while
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• the IPMI interfaces range from 10.141.0.21,...,10.141.0.30

Clicking the Next button brings the installation on to the Disk layout screen, described next.

3.3.16 Disk Layout
In the Disk layout configuration screen (figure 3.19) the administrator must select the drive on the head
node where the BCM software is to be installed.

Figure 3.19: Disk layout screen

3.3.17 Disk Layout Settings
The next screen is the Disk layout settings configuration screen (figure 3.20).
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Figure 3.20: Disk layout settings screen

It is used to set the partitioning layouts. The partitioning layout XML schema is described in detail
in Appendix D of the Administrator Manual.

The administrator must set the disk partitioning layout for the head node and regular nodes with
the two options: Head node disk layout and Compute nodes disk layout.

• – The head node by default uses

* one big partition if it has a drive size smaller than about 500GB

* several partitions if it has a drive size greater than or equal to about 500GB.

– The compute node by default uses several partitions, using the Default Standard Layout.

A partitioning layout other than the default can be selected for installation from the drop-down
options for the head node and regular nodes. Possible partitioning options include RAID, failover,
STIG-compliant, and LUKS schemes.

• The icon can be clicked to allow a custom partitioning layout specification to be added:

– as a file

– from the default template, for use as a starting point for a specification

• Partitioning layouts can be edited with the icon. This brings up a screen (figure 3.21) that
allows the administrator to view and change layout values within the layout’s configuration XML
file:

https://www.stigviewer.com/
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Figure 3.21: Edit Disk Partitioning

The XML schema is described in Appendix D.1 of the Administrator Manual.

• The head node partitioning layout is the only installation setting that cannot easily be changed
after the completion (section 3.3.20) of installation. It should therefore be decided upon with care.

• By default, BCM mounts filesystems on the head node with ACLs set and extended attributes set.

• The XML schema allows the definition of a great variety of layouts in the layout’s configuration
XML file:

Example

1. for a large cluster or for a cluster that is generating a lot of monitoring or burn data, the
default partition layout partition size for /var may fill up with log messages because log
messages are usually stored under /var/log/. If /var is in a partition of its own, as in the
default head node partitioning layout presented when the hard drive is about 500GB or more,
then providing a larger size of partition than the default for /var allows more logging to take
place before /var is full. Modifying the value found within the <size></size> tags associated
with that partition in the XML file modifies the size of the partition that is to be installed. This
can be conveniently done from the front end shown in figure 3.21.

2. the administrator could specify the layout for multiple non-RAID drives on the head node
using one <blockdev></blockdev> tag pair within an enclosing <device></device> tag pair for
each drive.

3. For non-boot partitions, it is possible to set up LUKS encrypted disk partitions on head and
regular nodes. Scrolling through the Partition Properties column of figure 3.21, and tick-
ing the Enable encryption checkbox, makes the LUKS configuration parameters available
(figure 3.22):
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Figure 3.22: Disk Encryption Configuration

The parameters can be left at their default values to set up an encrypted partition.
If setting parameters, then there are some existing fields to set the more common parame-
ters. Settings for less-common parameters that have no existing fields can be specified and
appended to the field with the Additional Parameters: setting.
The settings are automatically stored in the XML specification for the disk layout and can be
viewed there by selecting the XML Output tab.
How a cluster administrator applies this configured disk encryption to a node that is booting
up is covered in Appendix D.17 of the Administrator Manual.

Clicking Next on the Disk layout screen leads to the Additional software screen, described next.

3.3.18 Additional Software
The Additional software screen (figure 3.23) displays software that can be added to the cluster if it was
provided with the installer. The software is only provided to the installer if selected when generating
the installer ISO. Ceph, CUDA, and OFED are possible additional softwares.

If NVIDIA AI Enterprise is to be used, then these options must not be selected.
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Figure 3.23: Additional software screen

Clicking Next on the Additional software screen leads to the Summary screen, described next.

3.3.19 Summary
The Summary screen (figure 3.24), summarizes some of the installation settings and parameters config-
ured during the previous stages.
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Figure 3.24: Summary of Installation Settings

Going back to correct values is still possible at this stage.
Clicking on the Next button leads to the “Deployment” screen, described next.

3.3.20 Deployment
The Deployment screen (figure 3.25) shows the progress of the deployment. It is not possible to navigate
back to previous screens once the installation has begun. The installation log can be viewed in detail by
clicking on Install log.

The Reboot button restarts the machine. Alternatively, the head node can be set to automatically
reboot when deployment is complete.

During the reboot, the BIOS boot order may need changing, or the DVD may need to be removed, in
order to boot from the hard drive on which BCM has been installed.



3.4 Head Node Installation: Ansible Add-On Method 43

Figure 3.25: Deployment completed

After rebooting, the system starts and presents a login prompt. The cluster administrator can log in
as root using the password that was set during the installation procedure.

The cluster should then be updated with the latest packages (Chapter 11 of the Administrator Manual).
After the latest updates have been installed, the system is ready to be configured.

3.3.21 Licensing And Further Configuration
The administrator with no interest in the add-on method of installation can skip on to installing the
license (Chapter 4). After that, the administrator can look through the Administrator Manual, where
tools and concepts used with BCM are introduced, so that further cluster configuration can be carried
out.

3.4 Head Node Installation: Ansible Add-On Method
An add-on installation, in contrast to the bare metal installation (section 3.3), is an installation that is
done onto a machine that is already running one of the supported distributions of section 2.1. The
installation of the distribution can therefore be skipped for this case. The add-on is not recommended
for inexperienced cluster administrators. This is because of the following reasons:

• The installation configuration may conflict with what has already been installed. The problems
that arise can always be resolved, but an administrator that is not familiar with BCM should be
prepared for troubleshooting.

• Additional repositories typically need to be added
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• Dependency and deprecated issues may need workarounds.

With the release of BCM version 9.2, using the head node installer Ansible collection is the method
for performing add-on installations.

Aside: Ansible can also be used with BCM once NVIDIA Base Command Manager is installed. This
integration is described in section 16.10 of the Administrator Manual.

3.4.1 An Overview Of Ansible
Ansible is a popular automated configuration management software.

The BCM administrator is expected to have some experience already with Ansible. The basic con-
cepts are covered in the official Ansible documentation at https://docs.ansible.com/ansible/latest/
user_guide/basic_concepts.html, and further details are accessible from that site too.

As a reminder:

• Ansible is designed to administer groups of machines from an inventory of machines.

• An Ansible module is code, usually in Python, that is executed by Ansible to carry out Ansible
tasks, usually on a remote node. The module returns values.

• An Ansible playbook is a YAML file. The file declares a configuration that is to be executed (“the
playbook is followed”) on selected machines. The execution is usually carried out over SSH, by
placing modules on the remote machine.

• Traditionally, official Ansible content was obtained as a part of milestone releases of Ansible En-
gine, (the Red Hat version of Ansible for the enterprise).

• Since Ansible version 2.10, the official way to distribute content is via Ansible content collections.
Collections are composed of Ansible playbooks, modules, module utilities and plugins. The col-
lection is a formatted set of tools used to achieve automation with Ansible.

• The official Ansible list of collections is at https://docs.ansible.com/ansible/latest/

collections/index.html#list-of-collections. At the time of writing of this section (March
2022) there were 100 collections.

• Community-supported collections are also available, at galaxy.ansible.com.

3.4.2 The Head Node Add-on Installer And Ansible
The head node installer is shipped as an Ansible collection. If the correct parameters are defined in the
user’s playbooks and roles, then the collection defines brightcomputing.installer.head_node. The
brightcomputing.installer.head_node deploys the BCM head node onto the supported distribution,

The head node installation also includes deployment of the default software image and node-
installer image components, which is required for provisioning compute nodes. Using the head node
installer collection requires practical knowledge of Ansible and BCM. Add-on deployment is supported
on both bare-metal and public cloud (AWS and Azure).

Locations For The Head Node Add-on Installer
• https://galaxy.ansible.com/ui/repo/published/brightcomputing/installer100/ is the of-

ficial Ansible Galaxy location for detailed documentation about the head node installer collection
and its usage.

• https://github.com/Bright-Computing/bright-installer-ansible/tree/main/playbooks

contains additional documentation and example playbooks.

https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#inventory
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#modules
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#tasks
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#tasks
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/basic_concepts.html#collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
https://docs.ansible.com/ansible/latest/collections/index.html#list-of-collections
galaxy.ansible.com
https://galaxy.ansible.com/ui/repo/published/brightcomputing/installer100/
https://galaxy.ansible.com/ui/repo/published/brightcomputing/installer100/
https://galaxy.ansible.com/ui/repo/published/brightcomputing/installer100/
https://galaxy.ansible.com/ui/repo/published/brightcomputing/installer100/
https://github.com/Bright-Computing/bright-installer-ansible/tree/main/playbooks
https://github.com/Bright-Computing/bright-installer-ansible/tree/main/playbooks
https://github.com/Bright-Computing/bright-installer-ansible/tree/main/playbooks
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3.5 Enabling Remote Browser-Based Installation Via The Text Mode Installer
When carrying out an installation as in section 3.3, the installer is normally run on the machine that is to
be the head node of the cluster. A text mode installer is presented as an alternative to the GUI installer
(figure 3.1).

The text mode installer is a very minimal installer compared with the GUI installer. The GUI instal-
lation is therefore usually preferred.

However, in some cases the GUI installation can fail to start. For example, if X is not working cor-
rectly for some reason on the head node.

A way to still run a GUI installation is then to first run the text mode installer, and use it to run the
Remote Install option from its main menu (figure 3.26):

Figure 3.26: ncurses Remote Installation Option

This then sets up network connectivity, and provides the cluster administrator with a remote URL
(figure 3.27):

Figure 3.27: ncurses Remote Installation Remote URL Displayed

A browser that is on a machine with connectivity to the head node can then use the provided remote
URL. This then brings up the GUI installer within the browser.

An alternative to running the text mode installer to obtain the remote URL is to use the netconf

kernel parameter instead. Details on configuring this are given in section 3.3.1.





4
Licensing NVIDIA Base

Command Manager
This chapter explains how an NVIDIA Base Command Manager license is viewed, verified, requested,
and installed. The use of a product key to activate the license is also explained.

Typically, for a new cluster that is purchased from a reseller, the cluster has BCM already set up on
it.

• BCM can be run with a temporary, or evaluation license, which allows the administrator to try it
out. This typically has some restrictions on the period of validity for the license, or the number of
nodes or GPUs in the cluster.

– The default evaluation license comes with the online ISO download. The ISO is available
for product key owners via http://customer.brightcomputing.com/Download. The license
that is shipped with the ISO allows up to two nodes to be used. It can be used for a head node
and up to one compute node, or it can be used with two head nodes. Clusters that run with
this license do not qualify for support beyond the basic installation of Chapter 3. The idea
behind this license is that the installed BCM software then allows installation of an evaluation
license with greater privileges, or another full license.

– A custom evaluation license can be set up by the NVIDIA sales team and configured for
an agreed-upon number of GPUs and an agreed-upon validity period, typically from 1 to 3
months.

• In contrast to an evaluation license, there is the full license. A full license is almost always a sub-
scription license. Installing a full license allows BCM to function without the restrictions of an
evaluation license. The administrator therefore usually requests a full license, and installs it. This
normally only requires the administrator to:

– Have the product key at hand

– Run the request-license script on the head node

The preceding takes care of the licensing needs for most administrators, and the rest of this chapter
can then usually conveniently be skipped.

Administrators who would like a better background understanding on how licensing is installed
and used in BCM can go on to read the rest of this chapter.

CMDaemon can run only with an unexpired evaluation or unexpired full license. CMDaemon is the
engine that runs BCM, and is what is normally recommended for further configuration of the cluster.
Basic CMDaemon-based cluster configuration is covered in Chapter 3 of the Administrator Manual.

Any BCM installation requires a license file to be present on the head node. The license file details the
attributes under which a particular BCM installation has been licensed.

http://customer.brightcomputing.com/Download
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Example

• the “Licensee” details, which include the name of the organization, is an attribute of the license
file that specifies the condition that only the specified organization may use the software

• the “Licensed tokens” attribute specifies the maximum number of GPUs that the cluster manager
may manage. This is also the maximum number of nodes that the license covers. Head nodes are
also regarded as nodes for this attribute.

• the “Expiration date” of the license is an attribute that sets when the license expires. It is some-
times set to a date in the near future so that the cluster owner effectively has a trial period. A
new license with a longer period can be requested (section 4.3) after the owner decides to continue
using the cluster with BCM

A license file can only be used on the machine for which it has been generated and cannot be changed
once it has been issued. This means that to change licensing conditions, a new license file must be issued.

The license file is sometimes referred to as the cluster certificate, or head node certificate, because it is
the X509v3 certificate of the head node, and is used throughout cluster operations. Its components are
located under /cm/local/apps/cmd/etc/. Section 2.3 of the Administrator Manual has more information
on certificate-based authentication.

4.1 Displaying License Attributes
Before starting the configuration of a cluster, it is important to verify that the attributes included in the
license file have been assigned the correct values. The license file is installed in the following location:

/cm/local/apps/cmd/etc/cluster.pem

and the associated private key file is in:

/cm/local/apps/cmd/etc/cluster.key

4.1.1 Displaying License Attributes Within Base View
If using Base View1, then to verify that the attributes of the license have been assigned the correct values,
the license details can be displayed using the navigation path Cluster > License info (figure 4.1):

4.1.2 Displaying License Attributes Within cmsh

Alternatively the licenseinfo command within the main mode of cmsh may be used:

Example

[root@basecm10 ~]# cmsh

[basecm10]% main licenseinfo

License Information

--------------------------------- -------------------------------------------

Licensee /C=US/ST=California/L=San Jose/O=BCM

/OU=Temporary Licensing/CN=003040

Serial number 2072238

Start time Thu Sep 29 01:00:00 2022

End time Sat Jan 1 00:59:00 2039

Version 7.0 and above

Edition Advanced

Type Commercial

Licensed nodes 2/131072

Licensed accelerators 1/131072

1Base View is typically accessed via a “home” URL in the form of https://<head node address>:8081/base-view/
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Figure 4.1: License information

Accelerators details 1 * 1 gpu

Allow edge sites Yes

MAC address / Cloud ID FA:16:3E:F4:28:26

[basecm10]%

The license shown in the preceding example allows 131072 nodes and 131072 GPUs to be used.
The license is tied to a specific MAC address, so it cannot simply be used elsewhere. For convenience,

the Used tokens field in the output of licenseinfo shows the current number of nodes used.

4.2 Verifying A License—The verify-license Utility
4.2.1 The verify-license Utility Can Be Used When licenseinfo Cannot Be Used
Unlike the licenseinfo command in cmsh (section 4.1), the verify-license utility can check licenses
even if the cluster management daemon is not running.

When an invalid license is used, the cluster management daemon cannot start. The license problem
is logged in the cluster management daemon log file:

Example

[root@basecm10 ~]# service cmd start

Waiting for CMDaemon to start...

CMDaemon failed to start please see log file.

[root@basecm10 ~]# tail -1 /var/log/cmdaemon

Dec 30 15:57:02 basecm10 CMDaemon: Fatal: License has expired

but further information cannot be obtained using Base View or cmsh, because these clients themselves
obtain their information from the cluster management daemon.

In such a case, the verify-license utility allows the troubleshooting of license issues.

4.2.2 Using The verify-license Utility To Troubleshoot License Issues
There are four ways in which the verify-license utility can be used:
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1. Using verify-license with no options: simply displays a usage text:

Example

[root@basecm10 ~]# verify-license

Usage: verify-license <path to certificate> <path to keyfile> <verify|info|monthsleft[=12]>

verify-license <verify|info|monthsleft[=12]> (uses /cm/local/apps/cmd/etc/cluster.pem,key)

2. Using verify-license with the info option: prints license details:

Example

[root@basecm10 ~]# verify-license info

============ Certificate Information ================

Version: 7.1

Edition: Advanced

Common name: basecm10

Organization: BCM

Organizational unit: Development

Locality: San Jose

State: California

Country: US

Serial: 1768388

Starting date: 29/Sep/2022

Expiration date: 31/Dec/2038

MAC address / Cloud ID: FA:16:3E:F4:28:26

Licensed tokens: 131072

Accounting & Reporting: Yes

Allow edge sites: Yes

License type: Commercial

=====================================================

3. Using verify-license with the verify option: checks the validity of the license:

• If the license is valid, then no output is produced and the utility exits with exit-code 0.

• If the license is invalid, then output is produced indicating what is wrong. Messages such as these
are then displayed:

– If the license is old:

Example

[root@basecm10 ~]# verify-license verify

License has expired

License verification failed.

– If the certificate is not from Bright Computing:

Example

[root@basecm10 ~]# verify-license verify

Invalid license: This certificate was not signed by a correct signing authority

License verification failed.
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4. Using verify-license with the monthsleft[=<value>] option:

• If a number value is set for monthsleft, then

– if the license is due to expire in more than that number of months, then the verify-license

command returns nothing.

– if the license is due to expire in less than that number of months, then the verify-license

command returns the date of expiry

• If a number value is not set for monthsleft, then the value is set to 12 by default. In other words,
the default value means that if the license is due to expire in less than 12 months, then the date of
expiry of the license is displayed.

Example

[root@basecm10 etc]# date

Tue Sep 19 14:55:16 CET 2023

[root@basecm10 etc]# verify-license monthsleft

Cluster Manager License expiration date: 31/Dec/2023

[root@basecm10 etc]# verify-license monthsleft=3

[root@basecm10 etc]# verify-license monthsleft=4

Cluster Manager License expiration date: 31/Dec/2023, time remaining 14w 5d

4.2.3 Using The versioninfo Command To Verify The BCM Software Version
The license version should not be confused with the BCM software version. The license version is a
license format version that rarely changes between cluster manager version releases. Thus a cluster
can have a license with version 7.0, which was the license format introduced during NVIDIA Base
Command Manager 7.0 (also known as Bright Cluster Manager 7.0), and have a software version 8.1.

The version of a cluster can be viewed with using the versioninfo command, which can be run from
the main mode of cmsh as follows:

Example

root@basecm10 ~]# cmsh

[basecm10]% main

[basecm10->main]% versioninfo

Version Information

------------------------ ----------------------------------------------------

Cluster Manager 10.0

CMDaemon 3.0

CMDaemon Build Index 156921

CMDaemon Build Hash 5d3db827b4

Database Version 36294

In the preceding example, the version of the cluster manager is 10.0.

4.3 Requesting And Installing A License Using A Product Key
The license file is introduced at the start of this chapter (Chapter 4). As stated there, most administrators
that have installed a new cluster, and who need to install a license on the cluster in order to make their
BCM fully functional, only need to do the following:

• Have their product key at hand

• Run the install-license script on the head node

The details of this section are therefore usually only of interest if a more explicit understanding of
the process is required for some reason.
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4.3.1 Is A License Needed?—Verifying License Attributes
Before installing a license, the license attributes should be verified (section 4.2) to check if installation is
actually needed. If the attributes of the license are correct, the remaining parts of this section (4.3) may
safely be skipped. Otherwise the product key (page 52) is used to install a license.

Incorrect license attributes will cause cluster configuration to fail or may lead to a misconfigured
cluster. A misconfigured cluster may, for example, not have the ability to handle the full number of
GPUs or nodes. In particular, the license date should be checked to make sure that the license has not
expired. If the license is invalid, and it should be valid according to the administrator, then the BCM
reseller that provided the software should be contacted with details to correct matters.

If BCM is already running with a regular license, and if the license is due to expire, then reminders
are sent to the administrator e-mail address (page 65 of the Administrator Manual).

4.3.2 The Product Key
A product key is issued by an account manager for BCM. The product key allows a license to be obtained
to run BCM.

An account manager is the person from BCM who checks that the product key user has the right
entitlements to use the key before it is issued. The customer is informed who the account manager
is when BCM is purchased. Purchasing and licensing period queries are normally dealt with by the
account manager, while other technical queries that cannot be answered by existing documentation can
be dealt with by BCM technical support (section 16.2 of the Administrator Manual).

The following product key types are possible:

• Evaluation product key: An evaluation license is a temporary license that can be installed via an
evaluation product key. The evaluation product key is valid for a maximum of 3 months from a
specified date, unless the account manager approves a further extension.

If a cluster has BCM installed on it, then a temporary license to run the cluster can be installed with
an evaluation product key. Such a key allows to the cluster to run with defined attributes, such
as a certain number of nodes and features enabled, depending on what was agreed upon with the
account manager. The temporary license is valid until the product key expires, unless the account
manager has approved further extension of the product key, and the license has been re-installed.

Evaluation ISO downloads of BCM from the BCM website come with a built-in license that over-
rides any product key attributes. The license is temporary. An evaluation ISO product key allows
the user to download the ISO with a temporary built-in license. The temporary built-in license
then allows 2-node clusters to be tried out. Such a cluster can comprise 1 head node and 1 com-
pute node, or it can comprise 2 head nodes. A 2-node cluster is a very limited cluster, and support
for this is given accordingly.

• Subscription product key: A subscription license is a license that can be installed with a subscrip-
tion product key. The subscription product key has some attributes that decide the subscription
length and other settings for the license. The length can be set to any value.

If a cluster has BCM installed on it, then a subscription license to run the cluster can be installed
with a subscription product key. Such a key allows the cluster to run with defined attributes, such
as a certain number of nodes and features enabled, depending on what was agreed upon with the
account manager. The subscription license is valid until the subscription product key expires.

• Hardware lifetime product key: This is a legacy product key that is supported for the hardware
lifetime. It is no longer issued.

The product key looks like: the following pattern of digits:

000354-515786-112224-207441-186713
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If the product key has been used on the cluster already: then it can be retrieved from the CSR file
(page 54) with the command:

cm-get-product-key

The product key allows: the administrator to obtain and activate a license, which allows the cluster
manager to function.

The following terminology is used: when talking about product keys, locking, licenses, installation,
and registration:

• activating a license: A product key is obtained from any BCM (re)seller. It is used to obtain and
activate a license file. Activation means that NVIDIA records that the product key has been used
to obtain a license file. The license obtained by product key activation permits the cluster to work
with particular settings. For example, the subscription period, and the number of nodes. The
subscription start and end date cannot be altered for the license file associated with the key, so an
administrator normally activates the license file as soon as possible after the starting date in order
to not waste the subscription period.

• locking a product key: The administrator is normally allowed to use a product key to activate a
license only once. This is because a product key is locked on activation of the license. A locked state
means that product key cannot activate a new license—it is “used up”.

An activated license only works on the hardware that the product key was used with. This could
obviously be a problem if the administrator wants to move BCM to new hardware. In such a case,
the product key must be unlocked. Unlocking is possible for a subscription license via https:

//customer.brightcomputing.com/unlock.

Unlocking an evaluation license, or a hardware lifetime license, is possible by sending a request to
the account manager at NVIDIA to unlock the product key.

Once the product key is unlocked, then it can be used once again to activate a new license.

• license installation: License installation occurs on the cluster after the license is activated and is-
sued. The installation is done automatically if possible. Sometimes installation needs to be done
manually, as explained in the section on the request-license script (page 53). The license can
only work on the hardware it was specified for. After installation is complete, the cluster runs
with the activated license.

4.3.3 Requesting A License With The request-license Script
If the license has expired, or if the license attributes are otherwise not correct, a new license file must be
requested.

The request for a new license file is made using a product key (page 52) with the request-license

command.
The request-license command is used to request and activate a license, and works most conve-

niently with a cluster that is able to access the internet. The request can also be made regardless of
cluster connectivity to outside networks.

There are three options to use the product key to get the license:

1. Direct WWW access: If the cluster has access to the WWW port, then a successful completion of
the request-license command obtains and activates the license. It also locks the product key.

https://customer.brightcomputing.com/unlock
https://customer.brightcomputing.com/unlock
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• Proxy WWW access: If the cluster uses a web-proxy, then the environment variable
http_proxy must be set before the request-license command is run. From a bash prompt
this is set with:
export http_proxy=<proxy>

where <proxy> is the hostname or IP address of the proxy. An equivalent alternative is that
the ScriptEnvironment directive (page 905 of the Administrator Manual), which is a CMDae-
mon directive, can be set and activated (page 885 of the Administrator Manual).

2. Off-cluster WWW access: If the cluster does not have access to the WWW port,
but the administrator does have off-cluster web-browser access, then the point at
which the request-license command prompts “Submit certificate request to

http://licensing.brightcomputing.com/licensing/index.cgi ?” should be answered
negatively. CSR (Certificate Sign Request) data generated is then conveniently displayed
on the screen as well as saved in the file /cm/local/apps/cmd/etc/cluster.csr.new. The
cluster.csr.new file may be taken off-cluster and processed with an off-cluster browser.

The CSR file should not be confused with the private key file, cluster.key.new, created shortly
beforehand by the request-license command. In order to maintain cluster security, the private
key file must, in principle, never leave the cluster.

At the off-cluster web-browser, the administrator may enter the cluster.csr.new content in a
web form at:

http://licensing.brightcomputing.com/licensing

A signed license text is returned. At NVIDIA the license is noted as having been activated, and
the product key is locked.

The signed license text received by the administrator is in the form of a plain text certificate. As
the web form response explains, it can be saved directly from most browsers. Cutting and pasting
the text into an editor and then saving it is possible too, since the response is plain text. The saved
signed license file, <signedlicense>, should then be put on the head node. If there is a copy of
the file on the off-cluster machine, the administrator should consider wiping that copy in order to
reduce information leakage.

The command:

install-license <signedlicense>

installs the signed license on the head node, and is described further on page 55. Installation
means the cluster now runs with the activated certificate.

3. Fax or physical delivery: If no internet access is available at all to the administrator, the CSR data
may be faxed or sent as a physical delivery (postal mail print out, USB flash drive/floppy disk) to
any BCM reseller. A certificate will be faxed or sent back in response, the license will be noted by
NVIDIA as having been activated, and the associated product key will be noted as being locked.
The certificate can then be handled further as described in option 2.

Example

[root@basecm10 ~]# request-license

Product Key (XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX):

000354-515786-112224-207440-186713

Country Name (2 letter code): US

State or Province Name (full name): California

Locality Name (e.g. city): San Jose

Organization Name (e.g. company): ACME Inc.

Organizational Unit Name (e.g. department): Development

http://licensing.brightcomputing.com/licensing


4.3 Requesting And Installing A License Using A Product Key 55

Cluster Name: basecm10

Private key data saved to /cm/local/apps/cmd/etc/cluster.key.new

MAC Address of primary head node (basecm10) for eth0 [00:0C:29:87:B8:B3]:

Will this cluster use a high-availability setup with 2 head nodes? [y/N] n

Certificate request data saved to /cm/local/apps/cmd/etc/cluster.csr.new

Submit certificate request to http://licensing.brightcomputing.com/licensing/ ? [Y/n] y

Contacting http://licensing.brightcomputing.com/licensing/...

License granted.

License data was saved to /cm/local/apps/cmd/etc/cluster.pem.new

Install license ? [Y/n] n

Use "install-license /cm/local/apps/cmd/etc/cluster.pem.new" to install the license.

4.3.4 Installing A License With The install-license Script
Referring to the preceding request-license example output:

The administrator is prompted to enter the MAC address for eth0.
After the certificate request is sent to NVIDIA and approved, the license is granted.
If the prompt “Install license?” is answered with a “Y” (the default), the install-license script

is run automatically by the request-license script.
If the prompt is answered with an “n” then the install-license script must be run explicitly later

on by the administrator in order to complete installation of the license. This is typically needed for
clusters that have no direct or proxy web access (page 53).

The decision that is made at the prompt also has consequences for the reboot requirements of nodes.
These consequences are explained in detail in section 4.3.7.

The install-license script takes the temporary location of the new license file generated by
request-license as its argument, and installs related files on the head node. Running it completes
the license installation on the head node.

Example

Assuming the new certificate is saved as cluster.pem.new:

[root@basecm10 ~]# install-license /cm/local/apps/cmd/etc/cluster.pem.new

========= Certificate Information ========

Version: 10.0

Edition: Advanced

Common name: basecm10

Organization: ACME Inc.

Organizational unit: Development

Locality: San Jose

State: California

Country: US

Serial: 9463

Starting date: 23 Dec 2012

Expiration date: 31 Dec 2013

MAC address: 08:0A:27:BA:B9:43

Pre-paid nodes: 10

==========================================

Is the license information correct ? [Y/n] y

Installed new license

Restarting Cluster Manager Daemon to use new license: OK

cluster.pem.new
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4.3.5 Re-Installing A License After Replacing The Hardware
If a new head node is to be run on new hardware then:

• If the old head node is not able to run normally, then the new head node can have the head node
data placed on it from the old head node data backup.

• If the old head node is still running normally, then the new head node can have data placed on it
by a cloning action run from the old head node (section 17.4.8 of the Administrator Manual).

If the head node hardware has changed, then:

• a user with a subscription license can unlock the product key directly via https://customer.

brightcomputing.com/unlock.

• a user with a hardware license almost always has the license under the condition that it expires
when the hardware expires. Therefore, a user with a hardware license who is replacing the hard-
ware is almost always restricted from a license reinstallation. Users without this restriction may
request the account manager at NVIDIA to unlock the product key.

Using the product key with the request-license script then allows a new license to be requested,
which can then be installed by running the install-license script. The install-license script may
not actually be needed, but it does no harm to run it just in case afterwards.

4.3.6 Re-Installing A License After Wiping Or Replacing The Hard Drive
If the head node hardware has otherwise not changed:

• The full drive image can be copied on to a blank drive and the system will work as before.

• Alternatively, if a new installation from scratch is done

– then after the installation is done, a license can be requested and installed once more using
the same product key, using the request-license command. Because the product key is
normally locked when the previous license request was done, a request to unlock the product
key usually needs to be sent to the account manager at NVIDIA before the license request can
be executed.

– If the administrator wants to avoid using the request-license command and having to type
in a product key, then some certificate key pairs must be placed on the new drive from the
old drive, in the same locations. The procedure that can be followed is:

1. in the directory /cm/local/apps/cmd/etc/, the following key pair is copied over:

* cluster.key

* cluster.pem

Copying these across means that request-license does not need to be used.
2. The admin.{pem|key} key pair files can then be placed in the directory /root/.cm/cmsh/.

Two options are:

* the following key pair can be copied over:
· admin.key

· admin.pem

or

* a fresh admin.{pem|key} key pair can be generated instead via a cmd -b option:
Example

https://customer.brightcomputing.com/unlock
https://customer.brightcomputing.com/unlock
/cm/local/apps/cmd/etc/
cluster.key
cluster.pem
/root/.cm/cmsh/
admin.key
admin.pem
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[root@basecm10 ~]# service cmd stop

[root@basecm10 ~]# cmd -b

[root@basecm10 ~]# [...]

Tue Jan 21 11:47:54 [ CMD ] Info: Created certificate in admin.pem

Tue Jan 21 11:47:54 [ CMD ] Info: Created certificate in admin.key

[root@basecm10 ~]# [...]

[root@basecm10 ~]# chmod 600 admin.*

[root@basecm10 ~]# mv admin.* /root/.cm/cmsh/

[root@basecm10 ~]# service cmd start

It is recommended for security reasons that the administrator ensure that unnecessary extra
certificate key pair copies no longer exist after installation on the new drive.

4.3.7 Rebooting Nodes After An Install
The first time a product key is used: After using a product key with the command request-license

during a cluster installation for the first time, and then running install-license, a reboot is required of
all nodes in order for them to pick up and install their new certificates (section 5.4.1 of the Administrator
Manual). The install-license script has at this point already renewed the administrator certificates
on the head node that are for use with cmsh and Base View. The parallel execution command pdsh -g

computenode reboot suggested towards the end of the install-license script output is what can be
used to reboot all other nodes. Since such a command is best done by an administrator manually, pdsh
-g computenode reboot is not scripted.

The subsequent times that the same product key, or another product key, is used: If a license has
become invalid, a new license may be requested. On running the command request-license for the
cluster, with the same product key, or another product key, the administrator is prompted on whether
to re-use the existing keys and settings from the existing license:

Example

[root@basecm10 ~]# request-license

Product Key (XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX): 061792-900914-800220-270420-077926

Existing license was found:

Country: US

State: None

Locality: None

Organization: None

Organizational Unit: None

Cluster Name: basecm10

You can choose whether to re-use private key and settings from existing license.

If you answer NO, existing certificates will be invalidated and nodes will have to be rebooted.

...

• If the existing keys are kept, a pdsh -g computenode reboot is not required. This is because these
keys are X509v3 certificates issued from the head node. For these:

– Any node certificates (section 5.4.1 of the Administrator Manual) that were generated using the
old certificate are therefore still valid and so regenerating them for nodes via a reboot is not
required, allowing users to continue working uninterrupted. On reboot new node certificates
are generated and used if needed.

– User certificates (section 6.4 of the Administrator Manual) become invalid during certificate
regeneration when CMDaemon restarts itself. It is therefore advised to install a permanent
license as soon as possible, or alternatively, to not bother creating user certificates until a
permanent license has been set up for the cluster.
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• If the existing keys are not re-used, then node communication ceases until the nodes are rebooted.
If there are jobs running on BCM nodes, they cannot then complete.

After the license is installed, verifying the license attribute values is a good idea. This can be done
using the licenseinfo command in cmsh, or by selecting the License info menu option from within
the Partition base window in Base View’s Cluster resource (section 4.1).

The License Log File
License installation and changes are logged in

/var/spool/cmd/license.log

to help debug issues.

4.3.8 Getting Help With Licensing Issues
The customer portal at https://enterprise-support.nvidia.com/s/create-case allows support tick-
ets to be submitted for licensing issues. Further details on this are in section 16.2.1 of the Administrator
Manual.

https://enterprise-support.nvidia.com/s/create-case


5
Linux Distributions That Use

Registration
This chapter describes setting up registered access for the NVIDIA Base Command Manager with the
Red Hat and SUSE distributions.

The head node and regular node images can be set up with registered access to the enterprise Linux
distributions of Red Hat and SUSE so that updates from their repositories can take place on the cluster
correctly. This allows the distributions to continue to provide support and security updates. Regis-
tered access can also set up in order to create an up-to-date custom software image (section 11.6 of the
Administrator Manual) if using Red Hat or SUSE as the base distribution.

Registered access can be avoided for the head node and regular node images by moving the reg-
istration requirement to outside the cluster. This can be done by configuring registration to run from
a local mirror to the enterprise Linux distributions. The head node and regular node images are then
configured to access the local mirror repository. This configuration has the benefit of reducing the traf-
fic between the local network and the internet. However it should be noted that the traffic from node
updates scales according to the number of regular node images, rather than according to the number of
nodes in the cluster. In most cases, therefore, the added complication of running a separate repository
mirror, is unlikely to be worth implementing.

5.1 Registering A Red Hat Enterprise Linux Based Cluster
To register a Red Hat Enterprise Linux (RHEL) system, Red Hat subscriptions are needed as described
at https://www.redhat.com/. Registration with the Red Hat Network is needed to install new RHEL
packages or receive RHEL package updates, as well as carry out some other tasks.

5.1.1 Registering A Head Node With RHEL
An RHEL head node can be registered from the command line with the subscription-manager com-
mand. This uses the Red Hat subscription service username and password as shown:

[root@basecm10 ~]# subscription-manager register --username <username> --password <password> \
--auto-attach

The --auto-attach option allows a system to update its subscription automatically, so that the sys-
tem ends up with a valid subscription state.

If the head node has no direct connection to the internet, then an HTTP proxy can be configured as
a command line option. The subscription-manager man pages give details on configuring the proxy
from the command line.

After registration, the yum subscription-manager plugin is enabled. This means that yum can now
be used to install and update from the Red Hat Network repositories.

The list of enabled and disabled repositories can be seen with:

https://www.redhat.com/
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[root@basecm10 ~]# yum repolist all

5.1.2 Registering A Software Image With RHEL
The subscription-manager command can be used to register an RHEL software image. If the head
node, on which the software image resides, has no direct connection to the internet, then an HTTP
proxy can be configured as a command line option. The subscription-manager man pages give details
on configuring the proxy from the command line.

The default software image, default-image, can be registered by mounting some parts of the filesys-
tem image, and then carrying out the registration within the image by using the Red Hat subscription
service username and password. This can be carried out on the head node, with the help of the BCM
cm-chroot-sw-img tool (page 553 of the Administrator Manual) as follows:

[root@basecm10 ~]# cm-chroot-sw-img /cm/images/default-image subscription-manager register --username \
<username> --password <password> --auto-attach

After registration, the yum subscription-manager plugin is enabled within the software image. This
means that yum can now be used to install and update the software image from the Red Hat Network
repositories.

The list of enabled repositories in the image can be seen with:

[root@basecm10 ~]# cm-chroot-sw-img /cm/images/default-image yum repolist

repo id repo name

AppStream AppStream Packages Red Hat Enterprise Linux 9

BaseOS BaseOS Packages Red Hat Enterprise Linux 9

...

5.2 Registering A SUSE Linux Enterprise Server Based Cluster
To register a SUSE Linux Enterprise Server system, SUSE Linux Enterprise Server subscriptions are
needed as described at http://www.suse.com/. Registration with SUSE helps with installing new SLES
packages or receiving SLES package updates, as well as to carry out some other tasks.

5.2.1 Registering A Head Node With SUSE
The suseconnect command can be used to register a SUSE 15 head node. If the head node has no direct
connection to the internet, then the HTTP_PROXY and HTTPS_PROXY environment variables can be set,
to access the internet via a proxy. Running the registration command with the help option, “--help”,
provides further information about the command and its options.

The head node can be registered as follows:

[root@basecm10�]# suseconnect -e <e-mail address> -r <registration code> -u https://scc.suse.com

The e-mail address used is the address that was used to register the subscription with SUSE. When
logged in on the SUSE site, the registration code can be found at the products overview page after
selecting “SUSE Linux Enterprise Server”.

After registering, the SLES repositories are automatically added to the repository list and enabled.
The defined repositories can be listed with:

[root@basecm10 ~]# zypper lr

and the head node can be updated with:

[root@basecm10 ~]# zypper refresh

[root@basecm10 ~]# zypper update

http://www.suse.com/
https://www.suse.com/support/kb/doc/?id=000018564
https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-register-sle.html
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5.2.2 Registering A Software Image With SUSE
The SUSEConnect command can be used to register a SUSE 15 software image. If the head node on
which the software image resides has no direct connection to the internet, then the HTTP_PROXY and
HTTPS_PROXY environment variables can be set to access the internet via a proxy. Running the command
with the help option, “--help”, provides further information about the command and its options.

The default software image default-image can be registered by running the following on the head
node:

[root@basecm10�]# cm-chroot-sw-img /cm/images/default-image \
suseconnect -e <-mail address> -r regcode-sles= \
<activation code> -u https://scc.suse.com

The e-mail address is the address used to register the subscription with SUSE. When logged in on
the SUSE site, the activation code or registration code can be found at the products overview page after
selecting “SUSE Linux Enterprise Server”.

When running the registration command, warnings about the /sys or /proc filesystems can be ig-
nored. The command tries to query hardware information via these filesystems, but these are empty
filesystems in a software image, and only fill up on the node itself after the image is provisioned to the
node.

Instead of registering the software image, the SLES repositories can be enabled for the
default-image software image with:

[root@basecm10 ~]# cp /etc/zypp/repos.d/* /cm/images/default-image/etc/zypp/repos.d/

[root@basecm10 ~]# cp /etc/zypp/credentials.d/* /cm/images/default-image/etc/zypp/credentials.d/

[root@basecm10 ~]# cp /etc/zypp/service.d/* /cm/images/default-image/etc/zypp/service.d/

The copied files should be reviewed. Any unwanted repositories, unwanted service files, and un-
wanted credential files, must be removed.

The repository list of the default-image software image can be viewed with the chroot option, -R,
as follows:

[root@basecm10 ~]# zypper -R /cm/images/default-image lr

and the software image can be updated with:

[root@basecm10 ~]# export PBL_SKIP_BOOT_TEST=1

[root@basecm10 ~]# zypper -R /cm/images/default-image refresh

[root@basecm10 ~]# zypper -R /cm/images/default-image update

[root@basecm10 ~]# zypper -R /cm/images/default-image clean --all





6
Changing The Network

Parameters Of The Head Node
6.1 Introduction
After a cluster physically arrives at its site, the administrator often has to change the network settings
to suit the site. Details on this are given in section 3.2.1 of the Administrator Manual. However, it relies
on understanding the material leading up to that section.

This chapter is therefore a quickstart document—conveniently a mere 3 pages—explaining how to
change basic IPv4 network settings while assuming no prior knowledge of NVIDIA Base Command
Manager and its network configuration interface.

6.2 Method
A cluster consists of a head node, say basecm10 and one or more regular nodes. The head node of the
cluster is assumed to face the internal network (the network of regular nodes) on one interface, say eth0.
The external network leading to the internet is then on another interface, say eth1. This is referred to as
a type 1 configuration in this manual (section 3.3.9).

Typically, an administrator gives the head node a static external IP address before actually connect-
ing it up to the external network. This requires logging into the physical head node with the vendor-
supplied root password. The original network parameters of the head node can then be viewed and set.
For example for eth1:

# cmsh -c "device interfaces basecm10; get eth1 dhcp"

yes

Here, yes means the interface accepts DHCP server-supplied values.
Disabling DHCP acceptance allows a static IP address, for example 192.168.1.176, to be set:

# cmsh -c "device interfaces basecm10; set eth1 dhcp no"

# cmsh -c "device interfaces basecm10; set eth1 ip 192.168.1.176; commit"

# cmsh -c "device interfaces basecm10; get eth1 ip"

192.168.1.176

Other external network parameters can be viewed and set in a similar way, as shown in table 6.1. A
reboot implements the networking changes.

6.3 Terminology
A reminder about the less well-known terminology in the table:

• netmaskbits is the netmask size, or prefix-length, in bits. In IPv4’s 32-bit addressing, this can be up
to 31 bits, so it is a number between 1 and 31. For example: networks with 256 (28) addresses (i.e.
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with host addresses specified with the last 8 bits) have a netmask size of 24 bits. They are written
in CIDR notation with a trailing “/24”, and are commonly spoken of as “slash 24” networks.

• baseaddress is the IP address of the network the head node is on, rather than the IP address of
the head node itself. The baseaddress is specified by taking netmaskbits number of bits from the
IP address of the head node. Examples:

– A network with 256 (28) host addresses: This implies the first 24 bits of the head node’s
IP address are the network address, and the remaining 8 bits are zeroed. This is specified
by using “0” as the last value in the dotted-quad notation (i.e. zeroing the last 8 bits). For
example: 192.168.3.0

– A network with 128 (27) host addresses: Here netmaskbits is 25 bits in size, and only the
last 7 bits are zeroed. In dotted-quad notation this implies “128” as the last quad value (i.e.
zeroing the last 7 bits). For example: 192.168.3.128.

When in doubt, or if the preceding terminology is not understood, then the values to use can be calcu-
lated using the head node’s sipcalc utility. To use it, the IP address in CIDR format for the head node
must be known.

When run using a CIDR address value of 192.168.3.130/25, the output is (some output removed for
clarity):

# sipcalc 192.168.3.130/25

Host address - 192.168.3.130

Network address - 192.168.3.128

Network mask - 255.255.255.128

Network mask (bits) - 25

Broadcast address - 192.168.3.255

Addresses in network - 128

Network range - 192.168.3.128 - 192.168.3.255

Running it with the -b (binary) option may aid comprehension:

# sipcalc -b 192.168.3.130/25

Host address - 11000000.10101000.00000011.10000010

Network address - 11000000.10101000.00000011.10000000

Network mask - 11111111.11111111.11111111.10000000

Broadcast address - 11000000.10101000.00000011.11111111

Network range - 11000000.10101000.00000011.10000000 -

11000000.10101000.00000011.11111111
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Third Party Software

In this chapter, several third party software packages included in the BCM repository are described
briefly. For all packages, references to the complete documentation are provided.

The packages dashboard at https://support.brightcomputing.com/packages-dashboard/ lists
the available supported package versions per BCM version, architecture, and distribution.

7.1 Modules Environment
RHEL and derivatives, and SLES BCM package name: env-modules
Ubuntu package name: cm-modules

The modules environment package is installed by default on the head node. The home page for the
software is at http://modules.sourceforge.net/). The software allows a user of a cluster to modify
the shell environment for a particular application, or even for a particular version of an application.
Typically, a module file defines additions to environment variables such as PATH, LD_LIBRARY_PATH, and
MANPATH.

Cluster users use the module command to load or remove modules from their environment. The
module(1) man page has more details about the command, and aspects of the modules environment that
are relevant for administrators are discussed in section 2.2 of the Administrator Manual. Also discussed
there is Lmod, the Lua-based alternative to the Tcl-based traditional modules environment package.

The modules environment from a user’s perspective is covered in section 2.3 of the User Manual.

7.2 Shorewall
Package name: shorewall

7.2.1 The Shorewall Service Paradigm
BCM provides the Shoreline Firewall (more commonly known as “Shorewall”) package from the BCM
repository. The package provides firewall and gateway functionality on the head node of a cluster.

Shorewall is a flexible and powerful high-level interface for the netfilter packet filtering framework.
Netfilter is a standard part of Linux kernels. As its building blocks, Shorewall uses iptables and
iptables6 commands to configure netfilter. All aspects of firewall and gateway configuration are han-
dled through the configuration files located under /etc/shorewall/.

Shorewall IPv4 configuration is managed with the shorewall command, while IPv6 configuration
is managed via the shorewall6 command. IPv4 filtering and IPv6 filtering are treated as separate ser-
vices in Shorewall. For convenience, only IPv4 Shorewall is described from here onward, because IPv6
management is largely similar.

After modifying Shorewall configuration files, Shorewall must be restarted to have the new config-
uration take effect. From the shell prompt, this can be carried out with:

https://support.brightcomputing.com/packages-dashboard/
http://modules.sourceforge.net/
/etc/shorewall/
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service shorewall restart

In NVIDIA Base Command Manager 10, Shorewall is managed by CMDaemon, in order to han-
dle the automation of cloud node access. Restarting Shorewall can thus also be carried out within the
services submode (section 3.14 of the Administrator Manual) of cmsh on the head node. For example,
on a head node basecm10 a restart of shorewall can be carried out with:

[basecm10->device[basecm10]->services[shorewall]]% restart

restart Successfully restarted service shorewall on: basecm10

System administrators may sometimes need to be aware that Shorewall does not really run as a dae-
mon process. That is, the command to restart the service does not stop and start a shorewall daemon.
Instead the command configures netfilter using the iptables settings specified in the shorewall configu-
ration files, and then exits. It exits without leaving a shorewall process up and running, even though
service shorewall status implies that such a service is running.

7.2.2 Shorewall Zones, Policies, And Rules
In the default setup, Shorewall provides gateway functionality to the internal cluster network on the first
network interface (eth0). This network is known as the nat zone to Shorewall. The external network
(i.e. the connection to the outside world) is assumed to be on the second network interface (eth1). This
network is known as the net zone in Shorewall.

Letting BCM take care of the network interfaces settings is recommended for all interfaces on the
head node (section 3.2 of the Administrator Manual). The file /etc/shorewall/interfaces is generated
by the cluster management daemon, and any extra instructions that cannot be added via Base View or
cmsh can be added outside of the file section clearly demarcated as being maintained by CMDaemon.

Shorewall is configured by default (through /etc/shorewall/policy) to deny all incoming traffic
from the net zone, except for the traffic that has been explicitly allowed in /etc/shorewall/rules. Pro-
viding (a subset of) the outside world with access to a service running on a cluster, can be accomplished
by creating appropriate rules in /etc/shorewall/rules. By default, the cluster responds to ICMP ping
packets. Also, during cluster installation, the following ports are open by default, but can be set to be
blocked by the administrator:

• SSH

• HTTP

• HTTPS

• port 8081, which allows access to the cluster management daemon.

The cm-cmd-ports Utility
Port 8081 is the default port that CMDaemon listens to when using the HTTPS protocol to manage the
nodes. If, for example, a new software needs that port, then cm-cmd-ports utility can be used to set the
HTTPS protocol port that CMDaemon listens on to another port, such as 8082.

Example

[root@basecm10 ~]# cm-cmd-ports --https 8082

A restart of CMDaemon has the change take effect, and takes care of opening the firewall on port
8082 for CMDaemon, by adding a line to the rules file of Shorewall. The original port 8081 remains
open, but CMDaemon no longer listens to it.

The status of ports used by the cluster manager can be listed with:

/etc/shorewall/interfaces
/etc/shorewall/policy
/etc/shorewall/rules
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[root@basecm10 ~]# cm-cmd-ports -l

type http https firewall rule path

-------------- ------ ------- --------------- -------------------------------------------------------

image 8080 8082 /cm/images/default-image/cm/local/apps/cmd/etc/cmd.conf

image 8080 8082 True /cm/local/apps/cmd/etc/cmd.conf

node-installer 8082 /cm/node-installer/scripts/node-installer.conf

7.2.3 Clear And Stop Behavior In service Options, bash Shell Command, And cmsh Shell
To remove all rules, for example for testing purposes, the clear option should be used from the Unix
shell. This then allows all network traffic through:

shorewall clear

Administrators should be aware that in the Linux distributions supported by BCM, the service

shorewall stop command corresponds to the unix shell shorewall stop command, and not to the
unix shell shorewall clear command. The stop option for the service and shell blocks network traffic
but allows a pre-defined minimal safe set of connections, and is not the same as completely remov-
ing Shorewall from consideration. The stop options discussed so far should not be confused with the
equivalent stop option in the cmsh shell under services mode underdevice mode.

This situation is indicated in the following table:
Correspondence of stop, clear, and restart in Shorewall vs cmsh

iptables rules Service Unix Shell cmsh shell

keep a safe set: service shorewall stop shorewall stop no equivalent

clear all rules: no equivalent shorewall clear stop shorewall

start with stored rules: service shorewall restart shorewall restart restart shorewall

7.2.4 Adding To Shorewall Configuration Via A Role In cmsh

This section, about adding to Shorewall configuration via a role in cmsh, requires some familiarity with
BCM and Shorewall, and can be skipped at a first reading of the manuals. For convenience, cross-
references are provided within this section to the material that the administrator should have some
familiarity with before configuring Shorewall via a role.

The command line front end manager to BCM is cmsh (section 2.5 of the Administrator Manual).
Within cmsh, services are often implemented as roles (section 2.1.5 of the Administrator Manual).

Administrators that have become familiar with using roles within cmsh can carry out some Shorewall
configuration within the firewall role of the head node, via modes (section 2.5.2 of the Administrator
Manual) under the firewall role. Firewall modes were introduced in BCM version 9.1.

Shorewall configuration can go far beyond just what can be done within the modes of firewall.
These modes are just the BCM way to add changes to some Shorewall firewall configurations, and are
aimed at making firewall management for the cluster easier.

BCM provides modes for modifying Shorewall files as indicated by the following table:
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mode used for modifying: Shorewall file man pages

policies policies in /etc/shorewall/policy https://shorewall.org/manpages/

shorewall-policy.html

routes routes /etc/shorewall/routes https://shorewall.org/manpages/

shorewall-routes.html (not present
in Ubuntu clusters by default)

interfaces interfaces in /etc/shorewall/interfaces https://shorewall.org/manpages/

shorewall-interfaces.html

zones zones in /etc/shorewall/zones https://shorewall.org/manpages/

shorewall-zones.html

openports ports in /etc/shorewall/rules https://shorewall.org/manpages/

shorewall-rules.html

For example, to add a policy to the BCM-managed section of the /etc/shorewall/policy file on the
head node, a cmsh session can be run as follows:

Example

[root@head ~]# cmsh

[head]% device use head; roles

[head->device[head]->roles]% use firewall

[head->device[head]->roles[firewall]]% show

Parameter Value

-------------------------------- ------------------------------------------------

Name firewall

Revision

Type FirewallRole

Add services yes

Shorewall no

Open ports <0 in submode>

Zones <0 in submode>

Interfaces <0 in submode>

Policies <0 in submode>

Routes <0 in submode>

[head->device[head]->roles[firewall]]% policies

[head->device[head]->roles[firewall]->policies]% list

Index Source Dest Policy Log Options

------ ------ ------ ------------ --------- ------------

The preceding output shows no additional policies are currently managed by BCM in that mode. To add
some BCM-managed policies, the administrator can check how to do it by typing in the add command
(section 2.5.3 of the Administrator Manual) without any arguments:

[head->device[head]->roles[firewall]->policies]% add

Name:

Create a new firewallpolicy with specified policy

Usage:

add <policy>

add <source>

add <source> <dest>

add <source> <dest> <policy>

add <source> <dest> <policy> <log>

add <source> <dest> <policy> <log> <options>

/etc/shorewall/policy
https://shorewall.org/manpages/shorewall-policy.html
https://shorewall.org/manpages/shorewall-policy.html
/etc/shorewall/routes
https://shorewall.org/manpages/shorewall-routes.html
https://shorewall.org/manpages/shorewall-routes.html
/etc/shorewall/interfaces
https://shorewall.org/manpages/shorewall-interfaces.html
https://shorewall.org/manpages/shorewall-interfaces.html
/etc/shorewall/zones
https://shorewall.org/manpages/shorewall-zones.html
https://shorewall.org/manpages/shorewall-zones.html
/etc/shorewall/rules
https://shorewall.org/manpages/shorewall-rules.html
https://shorewall.org/manpages/shorewall-rules.html


7.2 Shorewall 71

Examples:

add loc net ACCEPT

add loc net ACCEPT info

Based on the lookup and some familiarity with Shorewall’s policy file, the administrator can now com-
pose suitable arguments for the add command, and commit (section 2.5.3 of the Administrator Manual)
the changes:

Example

[head->device[head]->roles[firewall]->policies]% add net fw ACCEPT info

[head->device*[head*]->roles*[firewall*]->policies[0]]% #preceding means accept all traffic from other subnets

[head->device*[head*]->roles*[firewall*]->policies[0]]% list

Index Source Dest Policy Log Options

------ ------ ------ ------------ --------- ------------

0 net fw ACCEPT info

[head->device*[head*]->roles*[firewall*]->policies[0]]% #next lines show how policy section changes on commit

[head->device*[head*]->roles*[firewall*]->policies[0]]% !head -4 /etc/shorewall/policy

# This section of this file was automatically generated by cmd. Do not edit manually!

# BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

# END AUTOGENERATED SECTION -- DO NOT REMOVE

[head->device*[head*]->roles*[firewall*]->policies[0]]% commit

[head->device[head]->roles[firewall]->policies]% !head -4 /etc/shorewall/policy

# This section of this file was automatically generated by cmd. Do not edit manually!

# BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

net fw ACCEPT info

# END AUTOGENERATED SECTION -- DO NOT REMOVE

After the commit command is run, the additional policy is placed and becomes active in the policy file.

7.2.5 Further Shorewall Quirks
Shorewall Is Normally Only On The Head Node
Shorewall always runs on the head node.

Shorewall can also run on the regular nodes, but does not run on them by default.
In a type 1 network topology (section 3.3.9), running Shorewall on the regular nodes makes no real

sense from a security point of view. This is because the head node controls all the regular nodes, and
access to the regular nodes is through the head node firewall.

For type 2 and type 3 topologies, turning Shorewall on for the regular nodes must be considered. It
can be turned on by setting the shorewall attribute in the firewall role for the node from off to on.

Example

[basecm10->device*[node001*]->roles*[firewall*]]% get shorewall

no

[basecm10->device*[node001*]->roles*[firewall*]]% !ssh node001 systemctl status shorewall.service

...

Active: inactive (dead)

...

[basecm10->device*[node001*]->roles*[firewall*]]% set shorewall on

[basecm10->device*[node001*]->roles*[firewall*]]% commit ; show

Parameter Value

-------------------------------- ------------------------------------------------

Name firewall

Revision
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Type FirewallRole

Add services yes

Shorewall yes

...

[basecm10->device[node001]->roles[firewall]]% !systemctl status shorewall.service

ssh: connect to host node001 port 22: Connection refused

Standard Distribution Firewall Should Be Disabled
Administrators should also be aware that RHEL and its derivatives run their own set of high-level
iptables setup scripts if the standard distribution firewall is enabled. To avoid conflict, the standard
distribution firewall, Firewalld, must stay disabled in RHEL8 and 9 and their derivatives. This is be-
cause BCM requires Shorewall for regular functioning. Shorewall can be configured to set up whatever
iptables rules are installed by the standard distribution script instead.

Shorewall Stopped Outside Of BCM Considered Harmful
System administrators wishing to stop Shorewall should note that BCM by default has the autostart

setting (section 3.14 of the Administrator Manual) set to on. With such a value, CMDaemon attempts to
restart a stopped Shorewall if the service has been stopped from outside of cmsh or Base View.

Stopping Shorewall outside of cmsh or Base View is considered harmful, because it can trigger a
failover. This is because stopping Shorewall blocks the failover prevention monitoring tests. These tests
are the status ping and backup ping (both based on ICMP packet connections), and the CMDaemon
status (based on REST calls) (section 17.4.2 of the Administrator Manual). In most cases, with default
settings, Shorewall is not restarted in time, even when autostart is on, so that a failover then takes
place.

A failover procedure is quite a sensible option when Shorewall is stopped from outside of cmsh or
Base View, because besides the failover monitoring tests failing, other failures also make the head node
pretty useless. The blocking of ports means that, amongst others, workload managers and NFS shares
are also unable to connect. Ideally, therefore, Shorewall should not be stopped outside cmsh or Base
View in the first place.

Full documentation on the specifics of Shorewall is available at http://www.shorewall.net.

7.3 The GCC Compiler
The GCC compiler may be installed through yum, zypper, or apt (section 11.2 of the Administrator Man-
ual).

The package names are

• gcc-recent for RHEL and derivatives, and SLES

• cm-gcc for Ubuntu

The GCC suite that the distribution provides is also present by default.
An alternative to the GCC compiler is the Intel compiler, which is part of the oneAPI toolkit, available

from https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html. Earlier
versions of BCM had the Intel compiler components available from the BCM repositories; this is no
longer the case for 10.0 and onward.

7.4 AMD GPU Driver Installation
AMD GPUs require drivers to be installed in order to work. The DKMS system, which is used to compile
kernel modules that are not part of the mainline kernel, is used for creating AMD GPU kernel modules
on the image to be used by the nodes that have GPUs.

http://www.shorewall.net
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
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7.4.1 AMD GPU Hardware Check
A hardware check to see if the node has an AMD GPU is:

Example

[root@node001 ~]# lspci | grep AMD

00:06.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Vega 10\
[Instinct MI25/MI25x2/V340/V320]

If the kernel has detected the AMD GPU, then a grep amdgpu of the dmesg output shows all sorts of
messages that indicate that:

Example

[root@node001 ~]# dmesg | grep amdgpu

[ 157.942430] [drm] amdgpu kernel modesetting enabled.

[ 157.945225] amdgpu: CRAT table not found

[ 157.945241] amdgpu: Virtual CRAT table created for CPU

[ 157.945265] amdgpu: Topology: Add CPU node

[ 158.211025] amdgpu 0000:00:06.0: amdgpu: Fetched VBIOS from ROM

[ 158.211065] amdgpu: ATOM BIOS: 113-D0513600-109

[ 158.226062] amdgpu 0000:00:06.0: amdgpu: Trusted Memory Zone (TMZ) feature not supported

[ 159.253402] amdgpu 0000:00:06.0: amdgpu: MEM ECC is active.

[ 159.253418] amdgpu 0000:00:06.0: amdgpu: SRAM ECC is not presented.

[ 159.253465] amdgpu 0000:00:06.0: amdgpu: VRAM: 16368M 0x000000F400000000 - 0x000000F7FEFFFFFF (16368M used)

...

7.4.2 AMD GPU Driver Installation Per Supported Distribution
Across the distributions—RHEL and derivatives, Ubuntu, and SLES—the procedure to install the GPU
drivers is very similar.

Cloning An Image For AMD GPU Nodes
In all distributions, the default-image can first be cloned to an image that is to be the AMD GPU image,
for example am:

Example

[root@basecm10:~]# cmsh

[basecm10]% softwareimage

[basecm10->softwareimage]% clone default-image am

[basecm10->softwareimage*[am*]]% commit

[basecm10->softwareimage[am]]%

[notice] basecm10: Started to copy: /cm/images/default-image -> /cm/images/am (4117)

...

[notice] basecm10: Initial ramdisk for image am was generated successfully

[basecm10->softwareimage[am]]% quit

AMD Instructions For Installing The Driver Packages On AMD GPU Nodes
Instructions from AMD describe how to install the driver packages. At the time of writing (February
2024) the instructions are at:

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.

html

The instructions describe two ways of installing the driver:

1. configuring the AMD driver repository for the package manager, and then installing the driver via
standard package manager commands and OS changes

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
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2. installing an AMDGPU installer that takes care of the installation

In either case, the instructions that are followed must be the ones for the OS release version of the
software image that is on the AMD GPU nodes. The release version can be found with:

Example

root@basecm10:~# grep PRETTY /etc/os-release

PRETTY_NAME="Rocky Linux 9.2 (Blue Onyx)"

Installing The Driver Packages On AMD GPU Nodes On The Node Images Via Chroot
The installation must be done in the image. This is done using a chroot into the image, and using a
bind mount to have some special filesystem directories (/proc, /sys, and similar) be available during
the package installation. This is needed for the DKMS installation.

Bind mounting the filesystems and then chrooting is a little tedious, so the cm-chroot-sw-img utility
(page 553 of the Administrator Manual) is used to automate the job.

The following session output illustrates (with much text elided) the procedure for the second of the
two ways of installing the driver. That is, installing and running the AMDGPU installer on a software
image:

The chrooted image created earlier (am) is first entered:

Example

[root@basecm10 ~]# cm-chroot-sw-img /cm/images/am/

mounted /cm/images/default-image/dev

mounted /cm/images/default-image/dev/pts

...

The amdgpu-install package can then be installed, as per the AMD instructions. The package pro-
vides the AMDGPU installer (amdgpu-install), which is run in a chrooted image to install the ROCm
stack. Installation takes a while, with much of the time taken up by the compilation steps that are carried
out for the DKMS parts.

• For RHEL 9.2 and derivatives the procedure looks like:

Example

[root@am /]# urldomain=https://repo.radeon.com

[root@am /]# urlpath=/amdgpu-install/6.0.2/rhel/9.2/amdgpu-install-6.0.60002-1.el9.noarch.rpm

[root@am /]# yum install $urldomain$urlpath

...

[root@am /]# amdgpu-install --usecase=graphics,rocm

...

The exact path depends on which version is used.

• For Ubuntu 22.04 (Jammy Jellyfish) the procedure looks like:

Example

root@am:/# urldomain=https://repo.radeon.com

root@am:/# urlpath=/amdgpu-install/6.0.2/ubuntu/jammy/amdgpu-install_6.0.60002-1_all.deb

root@am:/# wget $urldomain$urlpath

...

root@am:/# apt install ./amdgpu-install_6.0.60002-1_all.deb

...

root@am:/# amdgpu-install --usecase=rocm

...

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-amdgpu-quick
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If the node is using Ubuntu 20.04 (Focal Fossa) then the urlpath needs to be changed from jammy

to focal.

• For SLES15 the procedure for SLES15sp5 looks like:

Example

am:/ # urldomain=https://repo.radeon.com

am:/ # urlpath=/amdgpu-install/latest/sle/15.5/amdgpu-install-6.0.60000-1.noarch.rpm

am:/ # zypper --no-gpg-checks install $urldomain$urlpath

...

am:/ # amdgpu-install --usecase=graphics,rocm

...

The exact path depends on which service pack (sp) version is in use on the node.

Replacing The rocm-smi Package With A Package From BCM On The AMD GPU Nodes Image
Running the AMDGPU installer installs the rocm-smi command, which is used for some monitoring
tasks related to AMD GPUs. BCM requires its own version of this command to collect AMD GPU
statistics. If such statistics are needed, then the BCM cm-rocm-smi package should be installed in the
image too, to provide the BCM version:

[root@am /]# yum install cm-rocm-smi for RHEL and derivatives

For Ubuntu, the equivalent installation command is apt install cm-rocm-smi, while for SLES it is
zypper install cm-rocm-smi.

The chroot for the prepared image can now be exited, which automatically unmounts the bind
mounts:

Example

[root@am /]# exit

umounted /cm/images/am/dev/pts

umounted /cm/images/am/dev

umounted /cm/images/am/proc

umounted /cm/images/am/sys

umounted /cm/images/am/run

Using The Image For The AMD GPU Nodes
The nodes that are to use the driver should then be set to use the new image, and should be rebooted:

Example

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% set softwareimage am

[basecm10->device*[node001*]]% commit

[basecm10->device[node001]]% reboot node001

Normal nodes without the AMD GPU also boot up without crashing if they are set to use this image,
but will not be able to run OpenCL programs.

After the configuration file has been placed, the ldconfig command is run, still within chroot, to
link the library in the image(s).
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The NVIDIA HPC software development kit (https://developer.nvidia.com/hpc-sdk) is a suite of
compilers, libraries, and other tools for HPC.

Features include:

• The NVIDIA HPC SDK C, C++, and Fortran compilers that support GPU acceleration of HPC
modeling and simulation applications with standard C++ and Fortran, OpenACC directives, and
CUDA.

• GPU-accelerated math libraries that maximize performance on common HPC algorithms, and op-
timized communications libraries enable standards-based multi-GPU and scalable systems pro-
gramming.

• Performance profiling and debugging tools that simplify porting and optimization of HPC appli-
cations

• Containerization tools that enable easy deployment on-premises or in the cloud.

• Support for ARM, OpenPOWER, x86-64 CPUs, as well as NVIDIA GPUs, running Linux

8.1 Packages And Versions
The main NVIDIA HPC SDK package is available as a package cm-nvhpc. The cm-nvhpc package, in
turn, depends on a package with the naming format cm-nvhpc-cuda<number>. Here, <number> is a
CUDA version number.

The latest CUDA version number that is compatible with the cm-nvhpc package version at the time
of release is set as the package dependency. Older CUDA packages are optional but can also be installed.

A command line way to check the release versions and availability is as indicated by the following
outputs for a Rocky Linux 9.3 cluster:

Example

[root@basecm10 ~]# yum info cm-nvhpc | grep ^Version

Version : 24.1

[root@basecm10 ~]# yum install cm-nvhpc

...

Installing dependencies:

cm-nvhpc-cuda12.3

..

[root@basecm10 ~]# yum search cm-nvhpc-cuda*

...

cm-nvhpc-cuda11.0.x86_64 : NVIDIA HPC SDK

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
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cm-nvhpc-cuda11.8.x86_64 : NVIDIA HPC SDK

cm-nvhpc-cuda12.0.x86_64 : NVIDIA HPC SDK

cm-nvhpc-cuda12.3.x86_64 : NVIDIA HPC SDK

The preceding output is what was available at the time of writing (March 2024). The output can be
expected to change.

A browser-based way to check the cm-nvhpc versions and CUDA availability situation for BCM
versions, distributions and architecture is to use cm-nvhpc as a string in the distributed packages list for
BCM at https://support.brightcomputing.com/packages-dashboard

8.2 Compiler Modules
The cm-nvhpc package makes several environment modules available for compiling:

[root@basecm10 ~]# module avail | grep -o -P 'nvhpc.*?/'

nvhpc-hpcx-cuda12/

nvhpc-hpcx/

nvhpc-nompi/

nvhpc-openmpi3/

nvhpc/

nvhpc-byo-compiler/

nvhpc-hpcx-cuda11/

The nvhpc-hpcx-cuda11 or nvhpc-hpc-cuda12 environment module sets up the HPC-X library en-
vironment with the selected CUDA version.

The nvhpc-hpcx environment module sets up the HPC-X library environment. This is an alternative
to the OpenMPI 3.x library.

The nompi tag implies that paths to the MPI binaries and MPI libraries that come with cm-nvhpc are
not set, so that no MPI library is used from the package. An external MPI library can then be used with
the nvhpc-nompi compiler.

The nvhpc-openmpi3 module provides an OPENMPI 3.x library.
The nvhpc environment module is the standard HPC SDK.
The byo tag is an abbreviation for ’bring-your-own’, and means that the general compiler environ-

ment for C, C++ and Fortran are not set.

8.3 Viewing Installed Available CUDA Versions, And The Running CUDA
Version

The installed available CUDA versions for nvhpc can be viewed with:

Example

[root@basecm10] ~# module load shared nvhpc

[root@basecm10] ~# basename -a $(ls -1d $NVHPC_ROOT/cuda/[0-9]*)

11.8

12.3

The running CUDA version for nvhpc can be viewed with:

Example

[root@basecm10] ~# nvcc --version #

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2023 NVIDIA Corporation

Built on Fri_Sep__8_19:17:24_PDT_2023

Cuda compilation tools, release 12.3, V12.3.52

Build cuda_12.3.r12.3/compiler.33281558_0

https://support.brightcomputing.com/packages-dashboard
https://support.brightcomputing.com/packages-dashboard
https://support.brightcomputing.com/packages-dashboard
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8.4 Changing The Running CUDA Version
In the preceding example, CUDA version 12.3 is the default version, while CUDA version 11.8 is also
seen to be available.

The CUDA version that is used can be changed on the nodes where nvhpc and the CUDA versions
have been installed.

For example, the version can be changed to version 11.8, as follows, for:

• nvhpc cluster-wide:

[root basecm10] # makelocalrc ${NVHPC_ROOT}/compilers/bin -cuda 11.8 -x

• nvhpc on a specific head or compute node, as specified by hostname -s:

[root basecm10] # makelocalrc ${NVHPC_ROOT}/compilers/bin -cuda 11.8 -o > \
${NVHPC_ROOT}/compilers/bin/localrc.$(hostname -s)

• nvhpc for a specific user on a specific head or compute node, as specified by hostname -s:

[root basecm10] # makelocalrc ${NVHPC_ROOT}/compilers/bin -cuda 11.8 -o > \
${HOME}/localrc.$(hostname -s)

If the nvhpc compiler is run then:

1. the ${NVHPC_ROOT}/compilers/bin/localrc configuration file is read,

2. followed by a second configuration file, which—if they exist—is either:

• the ${NVHPC_ROOT}/compilers/bin/localrc.$(hostname -s) configuration file
or

• the ${HOME}/localrc.$(hostname -s) configuration file

The second configuration file overwrites any settings set with ${NVHPC_ROOT}/compilers/bin/localrc

If the ${NVHPC_ROOT}/compilers/bin/localrc.$(hostname -s) configuration file exists, then a
${HOME}/localrc.$(hostname -s) is ignored.
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The optional CUDA packages should be deployed in order to take advantage of the computational
capabilities of NVIDIA GPUs. The packages may already be in place, and ready for deployment on the
cluster, depending on the particular BCM software that was obtained. If the CUDA packages are not in
place, then they can be picked up from the BCM repositories, or a local mirror.

9.1 Installing CUDA
9.1.1 CUDA Packages Available
At the time of writing of this section (November 2024), the CUDA 12.6 package is the most recent version
available in the BCM YUM, zypper, and APT repositories. The available versions are updated typically
in the next subversion release of NVIDIA Base Command Manager after the upstream changes are made
available. An up-to-date list of packages available for a particular distribution and architecture can be
viewed at https://support.brightcomputing.com/packages-dashboard/.

Thus, for example, at the time of writing, Rocky Linux 9.3 has many CUDA versions available,
in the range from CUDA 11.7 to CUDA 12.6 for the x86_64 architecture, while Ubuntu 24.04 just has
CUDA 12.5 and CUDA 12.6 for aarch64.

Example: CUDA Packages Available For Rocky Linux 9.3
At the time of writing of this section (November 2024), a cluster administrator can manage these pack-
ages for Rocky Linux 9.3:

https://support.brightcomputing.com/packages-dashboard/
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Package Type Description

cuda11.7-toolkit


shared CUDA math libraries and utilities

cuda11.8-toolkit

cuda12.0-toolkit

cuda12.1-toolkit

cuda12.2-toolkit

cuda12.3-toolkit

cuda12.4-toolkit

cuda12.5-toolkit

cuda12.6-toolkit

cuda11.7-visual-tools


shared CUDA visual toolkit

cuda11.8-visual-tools

cuda12.0-visual-tools

cuda12.1-visual-tools

cuda12.2-visual-tools

cuda12.3-visual-tools

cuda12.4-visual-tools

cuda12.5-visual-tools

cuda12.6-visual-tools

cuda11.7-sdk


shared CUDA software development kit

cuda11.8-sdk

cuda12.0-sdk

cuda12.1-sdk

cuda12.2-sdk

cuda12.3-sdk

cuda12.4-sdk

cuda12.5-sdk

cuda12.6-sdk

cuda-driver local CUDA GPU driver and libraries.

cuda-dcgm local CUDA Data Center GPU Manager (DCGM).

This includes the dcgmi CLI tool.

cuda-fabric-manager∗
}

local Fabric Manager tools
cuda-fabric-manager-development∗

* optional, intended only for hardware containing an NVSwitch, such as a DGX system

The packages of type shared in the preceding table should be installed on the head nodes of a cluster
using CUDA-compatible GPUs. The packages of type local should be installed to all nodes that access
the GPUs. In most cases this means that the cuda-driver and cuda-dcgm packages should be installed
in a software image (section 2.1.2 of the Administrator Manual).

If a head node also accesses GPUs, then the cuda-driver and cuda-dcgm packages should be in-
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stalled on it, too.
For packages of type shared, the particular CUDA version that is run on the node can be selected

via a modules environment command:

Example

module add shared cuda12.1

Release notes and features list for the CUDA packages:

• Release notes for the NVIDIA toolkit can be found at https://docs.nvidia.com/cuda/

cuda-toolkit-release-notes/index.html.

• The features list for the NVIDIA toolkit can be found at https://docs.nvidia.com/cuda/

cuda-features-archive/index.html.

CUDA packages that the cluster administrator normally does not manage: As an aside, there are
also the additional CUDA DCGM packages:

Package Type Description Installation on GPU node

cuda-dcgm-libs local NVIDIA DCGM libraries installed by default

cuda-dcgm-devel local NVIDIA DCGM development files not installed by default

cuda-dcgm-nvvs local NVIDIA DCGM validation suite installed by default

At the time of writing of this paragraph (November 2024) the DCGM version supported was 3.3.6.1. A
yum info cuda-dcgm-nvvs or apt show cuda-dcgm-nvvs should reveal the currently available version
for the cluster.

• Release notes for the DCGM versions are available at https://docs.nvidia.com/datacenter/
dcgm/latest/release-notes/changelog.html.

CUDA Package That The Cluster Administrator May Wish To Install For CUDA Programming
CUB is a CUDA programming library that developers may wish to access. It is provided by the package
cm-cub-cuda, from the Machine Learning (cm-ml) repository.

CUDA Package Installation Basic Sanity Check
• The NVIDIA GPU hardware should be detectable by the kernel, otherwise the GPUs cannot be

used by the drivers. Running the lspci command on the device with the GPU before the CUDA
package driver installation is a quick check that should make it clear if the NVIDIA hardware is
detected in the first place:

Example

running lspci on node001 which is where the GPU should be:

[root@node001]# lspci | grep NVIDIA

00:06.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev a1)

If the hardware is not detected by the kernel already, then the administrator should reassess the
situation.

• Only after CUDA package installation has taken place, and after rebooting the node with the GPU,
and allowing CMDaemon some time (a few minutes) to detect the change, are GPU details visible
using the sysinfo command:

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-features-archive/index.html
https://docs.nvidia.com/cuda/cuda-features-archive/index.html
https://docs.nvidia.com/datacenter/dcgm/latest/release-notes/changelog.html
https://docs.nvidia.com/datacenter/dcgm/latest/release-notes/changelog.html
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Example

running sysinfo on node001, which is where the GPU is, via cmsh on the head node, while cuda-dcgm is
not yet ready:

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% sysinfo | grep GPU

Example

running sysinfo on node001, which is where the GPU is, via cmsh on the head node, after cuda-dcgm is
ready:

[basecm10->device[node001]]% sysinfo | grep GPU

Number of GPUs 1

GPU0 Name NVIDIA Tesla V100-SXM3-32GB

GPU0 Power Limit 350 W

GPU0 BIOS 88.00.6B.00.01

GPU Driver Version 530.23.08

GPU0 nvlink 0 up, 6 down

CUDA Package Installation Guidelines For Compilation With Login Nodes
• CUDA compilation should take place on a node that uses NVIDIA GPUs during compilation.

– Using a workload manager to allocate this task to GPU nodes is recommended.

• Cross compilation of CUDA software is generally not a best practice due to resource consumption,
which can even lead to crashes.

– If, despite this, cross compilation with a CPU is done, then the cuda-driver package should
be installed on the node on which the compilation is done, and the GPU-related services on
the node, such as:

* cuda-driver.service

* nvidia-persistenced.service

* cuda-dcgm.service

should be disabled.

9.1.2 CUDA Package Dependencies
The CUDA packages require access to the BCM repositories and to the distribution repositories.

In particular, the freeglut, freeglut-devel, and xorg-x11-util-macros packages are required.
The installation ISO/DVD that Red Hat provides contains packages from the main repository, and does
not contain these packages. For convenience, these packages are provided with a BCM installation
ISO/DVD for Red Hat. Updates must however come from a subscription to the Red Hat supplemen-
tary/optional channels. Packages that are needed for a working BCM cluster, and which are provided
by the BCM installation ISO/DVD, but which are not provided in the Red Hat installation DVD, are
discussed in general in section 11.6.2 of the Administrator Manual, where the problems that such pack-
age dependencies can cause when creating a software image for a cluster with cm-create-image are
discussed.

As a separate issue:

yum -q deplist cuda-driver | grep freeglut-devel

dependency: freeglut-devel

provider: freeglut-devel-3.0.0-8.el8.i686

provider: freeglut-devel-3.0.0-8.el8.x86_64
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shows that one of the dependencies of the cuda-driver package in RHEL8 (not in RHEL9) is the
freeglut-devel package, so for RHEL8 and derivatives it should be installed on a node that accesses
a GPU. If the CUDA SDK source is to be compiled on the head node (with the head node not access-
ing a GPU, and with the cuda-driver package not installed) then the freeglut, freeglut-devel, and
libXi-devel packages should be installed on the head node.

The cuda-driver package is used to compile the kernel drivers which manage the GPU. Therefore,
when installing cuda-driver with yum, several other X11-related packages are installed too, due to pack-
age dependencies.

The cuda*-sdk packages can be used to compile libraries and tools that are not part of the CUDA
toolkit, but used by CUDA software developers, such as the deviceQuery binary (section 9.3).

The cuda-xorg package is optional, and contains the driver and libraries for an X server

Example

For example, on a cluster where (some of) the nodes access GPUs, but the head node does not access a
GPU, the following commands can be issued on the head node to install the CUDA 12.2 packages using
YUM:

[root@mycluster ~]# yum install cuda12.2-toolkit cuda12.2-sdk cuda12.2-visual-tools

[root@mycluster ~]# yum --installroot=/cm/images/default-image install cuda-driver cuda-dcgm

The --installroot command installs to the image used by the nodes. Here the image used by the
nodes is assumed to be default-image. To ensure the software is installed from the image to the nodes,
the imageupdate command can be run from within cmsh for the appropriate nodes.

[root@mycluster ~]# cmsh

[mycluster]% device

[mycluster->device]% imageupdate -n node0[01-10] -w

Compiling And Loading CUDA Drivers On The Fly
The cuda-driver package provides a systemd script that is executed at boot-time to load the CUDA
driver. Because the CUDA driver depends on the running kernel, the script compiles the CUDA driver
on the fly, and subsequently loads the module into the running kernel, and creates the nvidia* devices
(/dev/nvidia0, /dev/nvidia1...).

The actions of compiling the cuda-driver, loading the module, and creating the nvidia* devices,
can also be carried out during normal running by manually running the script:

Example

[root@mycluster ~]# systemctl start cuda-driver

The status of the driver and some event messages can be seen with:

Example

[root@node001 ~]# systemctl status cuda-driver

* cuda-driver.service - build, install and load the nvidia kernel modules

Loaded: loaded (/usr/lib/systemd/system/cuda-driver.service; enabled; vendor preset: disabled)

Active: active (exited) since Sun 2023-05-28 07:06:12 CEST; 4h 32min ago

Main PID: 1816 (code=exited, status=0/SUCCESS)

CPU: 3min 29.287s

May 24 07:04:01 node001 systemd[1]: Starting build, install and load the nvidia kernel modules...

May 24 07:04:15 node001 cuda-driver[1816]: compile nvidia kernel modules

May 24 07:06:09 node001 cuda-driver[1816]: loading kernel modules

May 24 07:06:12 node001 cuda-driver[1816]: create devices

May 24 07:06:12 node001 cuda-driver[1816]: [ OK ]

May 24 07:06:12 node001 systemd[1]: Finished build, install and load the nvidia kernel modules.
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If there is a failure in compiling the CUDA module, it is usually indicated by a message saying
“Could not make module”, “NVRM: API mismatch:”, or “Cannot determine kernel version”. Such
a failure typically occurs because compilation is not possible due to missing the correct kernel develop-
ment package from the distribution. Section 9.2 explains how to check for, and install, the appropriate
missing package.

9.2 Installing Kernel Development Packages
This section can be skipped if there is no CUDA compilation problem.

Typically, a CUDA compilation problem (section 9.1) is due to a missing or mismatched kernel

package and kernel-devel package.
To check the head node and software images for the installation status of the kernel-devel package,

the BCM utility kernel-devel-check is used (section 11.3.5 of the Administrator Manual).
Alternatively, if a standard kernel is in use by the image, then simply upgrading CUDA, the standard

kernel, and kernel-devel, to their latest versions may be a good tactic to fix a CUDA compilation
problem, because the kernel and kernel-devel package versions become synchronized during such an
upgrade.

9.3 Verifying CUDA
An extensive method to verify that CUDA is working is to run the verify_cuda<version>.sh script,
located in the CUDA SDK directory. The value of <version> is 12.2, for example.

This script first copies the CUDA SDK source to a local directory under /tmp or /local. It then
builds CUDA test binaries and runs them. It is possible to select which of the CUDA test binaries are
run. These binaries clutter up the disk and are not intended for use as regular tools, so the administrator
is urged to remove them after they are built and run.

A help text showing available script options is displayed when “verify_cudaX.sh -h” is run.
The script can be run as follows on the head or regular node (some output elided):

Example

[root@node001 ~]# module load shared cuda12.1/toolkit

[root@node001 ~]# cd $CUDA_SDK

[root@node001 12.1.0]# ./verify_cuda12.1.sh

Copy cuda12.1 sdk files to "/tmp/cuda12.1" directory.

make clean

make (may take a while)

Run all tests? (y/N)? y

Executing: /tmp/cuda12.1/bin/x86_64/linux/release/alignedTypes

[/tmp/cuda12.1/bin/x86_64/linux/release/alignedTypes] - Starting...

GPU Device 0: "Volta" with compute capability 7.0

[Tesla V100-PCIE-32GB] has 80 MP(s) x 64 (Cores/MP) = 5120 (Cores)

> Compute scaling value = 1.00

> Memory Size = 49999872

Allocating memory...

Generating host input data array...

Uploading input data to GPU memory...

Testing misaligned types...

uint8...
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Avg. time: 1.234375 ms / Copy throughput: 37.724362 GB/s.

TEST OK

uint16...

...

...

All cuda12.1 just compiled test programs can be found in the

"/tmp/cuda12.1/bin/x86_64/linux/release/" directory

They can be executed from the "/tmp/cuda12.1" directory.

The "/tmp/cuda12.1" directory may take up a lot of diskspace.

Use "rm -rf /tmp/cuda12.1" to remove the data.

Another method to verify that CUDA is working, is to build and use the deviceQuery command on
a node accessing one or more GPUs. The deviceQuery command lists all CUDA-capable GPUs that a
device can access, along with several of their properties (some output elided):

Example

[root@node001 ~]# module load shared cuda12.2/toolkit

[root@node001 ~]# cd $CUDA_SDK

[root@node001 12.2.2]# cd Samples/1_Utilities/deviceQuery

[root@node001 deviceQuery ]# make

...

mkdir -p ../../bin/x86_64/linux/release

cp deviceQuery ../../bin/x86_64/linux/release

[root@node001 deviceQuery ]# ./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla V100-PCIE-32GB"

CUDA Driver Version / Runtime Version 12.2 / 12.2

CUDA Capability Major/Minor version number: 7.0

Total amount of global memory: 32510 MBytes (34089730048 bytes)

(80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores

GPU Max Clock rate: 1380 MHz (1.38 GHz)

Memory Clock rate: 877 Mhz

...

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.2, CUDA Runtime Version = 12.2, NumDevs

= 1

Result = PASS

The CUDA user manual has further information on how to run compute jobs using CUDA.

Further Information On CUDA Verification
More on verification can be found in the NVIDIA CUDA INSTALLATION GUIDE FOR LINUX at https:
//docs.nvidia.com/cuda/pdf/CUDA_Installation_Guide_Linux.pdf.

9.4 Verifying OpenCL
CUDA also contains an OpenCL compatible interface. To verify that OpenCL is working, or failing, the
verify_opencl.sh script can be run on the node with the GPU (some output elided):

Example

https://docs.nvidia.com/cuda/pdf/CUDA_Installation_Guide_Linux.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Installation_Guide_Linux.pdf
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[root@cuda-test ~]# module load shared cuda12.1/toolkit

[root@cuda-test ~]# cd $CUDA_SDK

[root@cuda-test 12.1.0]# ./verify_opencl.sh

Copy opencl files to "/tmp/opencl" directory.

make clean

make (may take a while)

Run all tests? (y/N)? y

Executing: /tmp/opencl/OpenCL/bin/linux/release/oclBandwidthTest

[oclBandwidthTest] starting...

/tmp/opencl/OpenCL/bin/linux/release/oclBandwidthTest Starting...

Running on...

Tesla V100-SXM3-32GB

Quick Mode

Host to Device Bandwidth, 1 Device(s), Paged memory, direct access

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 3480.5

Device to Host Bandwidth, 1 Device(s), Paged memory, direct access

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 3386.6

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 691078.1

[oclBandwidthTest] test results...

PASSED

> exiting in 3 seconds: 3...2...1...done!

...many more tests, all of which should end with PASSED...

All opencl just compiled test programs can be found in the

"/tmp/opencl/OpenCL/bin/linux/release/" directory

They can be executed from the "/tmp/opencl/OpenCL" directory.

The "/tmp/opencl" directory may take up a lot of diskspace.

Use "rm -rf /tmp/opencl" to remove the data.

9.5 Configuring The X Server For SLES15
To support the X server, X.org, in SLES15, the cuda-driver, and cuda-xorg packages need to be in-
stalled.

The default configuration file for X.org is /etc/X11/xorg.conf. If there is no xorg.conf file, then a
template can be generated with the help of Xorg -configure.

The following file pathname lines may need to be added to the Files section of the X configuration
file:
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ModulePath "/usr/lib64/xorg/modules/extensions/nvidia"

ModulePath "/usr/lib64/xorg/modules/extensions"

ModulePath "/usr/lib64/xorg/modules"

The following dynamic module loading line may need to be added to the Module section of the X con-
figuration:

Load "glx"

The following graphics device description lines need to be replaced in the Device section of the X con-
figuration:

Driver "nvidia"

The BusID line may need to be replaced with the ID shown for the GPU by the lspci command.

Example

Section "ServerLayout"

Identifier "Default Layout"

Screen 0 "Screen0" 0 0

InputDevice "Keyboard0" "CoreKeyboard"

EndSection

Section "Files"

ModulePath "/usr/lib64/xorg/modules/extensions/nvidia"

ModulePath "/usr/lib64/xorg/modules/extensions"

ModulePath "/usr/lib64/xorg/modules"

EndSection

Section "Module"

Load "glx"

EndSection

Section "InputDevice"

Identifier "Keyboard0"

Driver "kbd"

Option "XkbModel" "pc105"

Option "XkbLayout" "us"

EndSection

Section "Device"

Identifier "Videocard0"

Driver "nvidia"

BusID "PCI:14:0:0"

EndSection

Section "Screen"

Identifier "Screen0"

Device "Videocard0"

DefaultDepth 24

SubSection "Display"

Viewport 0 0

Depth 24

EndSubSection

EndSection

Using GPUs for an X server as well as for general computing with CUDA can have some is-
sues. These are considered in https://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/

using-cuda-and-x.

https://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x
https://nvidia.custhelp.com/app/answers/detail/a_id/3029/~/using-cuda-and-x
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9.6 NVIDIA Validation Suite (Package: cuda-dcgm-nvvs)
The NVIDIA Validation Suite (NVVS) runs diagnostics to validate the NVIDIA software components.
Running the nvvs binary directly is now deprecated. The diagnostics are now run instead as part of the
dcgmi diag command.

The package for NVVS is not installed by default.
If the package is not installed, then an attempt to run the dcgmi utility fails:

Example

[root@basecm10 ~] module load cuda-dcgm

[root@basecm10 ~]# dcgmi diag -r 1

Error: Diagnostic could not be run because the Tesla recommended driver is not being used.

The package can be installed with:

Example

[root@basecm10 ~] module load cuda-dcgm

[root@basecm10 ~] yum install cuda-dcgm-nvvs

After it is installed, the node on which the installation is done must be rebooted.
Running the diagnostic after the reboot should display output similar to:

Example

[root@basecm10 ~] module load cuda-dcgm

[root@basecm10 ~]# dcgmi diag -r 3

Successfully ran diagnostic for group.

+---------------------------+------------------------------------------------+

| Diagnostic | Result |

+===========================+================================================+

|----- Deployment --------+------------------------------------------------|

| Blacklist | Pass |

| NVML Library | Pass |

| CUDA Main Library | Pass |

| Permissions and OS Blocks | Pass |

| Persistence Mode | Pass |

| Environment Variables | Pass |

| Page Retirement | Pass |

| Graphics Processes | Pass |

| Inforom | Pass |

+----- Integration -------+------------------------------------------------+

| PCIe | Pass - All |

+----- Hardware ----------+------------------------------------------------+

| GPU Memory | Pass - All |

| Diagnostic | Pass - All |

+----- Stress ------------+------------------------------------------------+

| SM Stress | Pass - All |

| Targeted Stress | Pass - All |

| Targeted Power | Pass - All |

| Memory Bandwidth | Pass - All |

+---------------------------+------------------------------------------------+

9.7 Further NVIDIA Configuration Via The Cluster Manager
After the installation and verification has been carried out for CUDA drivers, further configuration as
part of CMDaemon management can be carried out, as explained in section 3.16.2 of the Administrator
Manual.



10
OFED Software Stack

This section explains how OFED (OpenFabrics Enterprise Distribution) packages are installed so that
BCM can use InfiniBand for data transfer during regular use—that is for computation runs, rather than
for booting up or provisioning. The configuration of PXE booting over InfiniBand is described in sec-
tion 5.1.3 of the Administrator Manual. The configuration of node provisioning over InfiniBand is de-
scribed in section 5.3.3 of the Administrator Manual.

10.1 Choosing A Distribution Version, Or A Vendor Version, Ensuring The
Kernel Matches, And Logging The Installation

By default, the Linux distribution OFED packages are matched to the distribution kernel version and
installed on the cluster. This is the safest option in most cases, and also allows NFS over RDMA.

BCM also packages NVIDIA’s Mellanox OFED (sometimes called MOFED) software. Such vendor
OFED packages can be more recent than the distribution packages, which means that they can provide
support for more recent hardware and firmware, as well as more features.

For the vendor OFED packages to work, the OFED firmware as provided by the manufacturer should
in general be recent, to ensure software driver compatibility.

If NVIDIA AI Enterprise is to be used, then a matching, supported, version of OFED must be se-
lected. A matching, supported OFED version can be found by contacting support via the BCM sub-
scription at the NVIDIA Enterprise Support page at:

https://www.nvidia.com/en-us/support/enterprise/

BCM vendor OFED packages can be selected and installed during the initial cluster installation (fig-
ure 3.23), replacing the default distribution OFED stack. The stack can also be installed later on, after
the cluster is set up.

If there is no prebuilt OFED kernel modules package available for the kernel in use, then using a
supported kernel is recommended.

When updating kernels on the head or the regular nodes, the updated BCM OFED software stack
must be reinstalled.

If the BCM OFED software stack is installed during the cluster installation procedure itself (sec-
tion 3.3.18), then some basic information is logged to /var/log/cmfirstboot.log, which is the general
first boot log.

If the BCM OFED software stack is not installed during the cluster installation procedure itself, then
it can be installed later when the cluster is up and running.

A successful installation of the BCM OFED software stack (section 10.2) onto a running cluster con-
sists of the BCM OFED package installation, as well as then running an installation script. The vendor
and version number installed can then be found in /etc/cm-ofed. Further installation details can be
found in /var/log/cm-ofed.log.

https://www.nvidia.com/en-us/support/enterprise/
/var/log/cmfirstboot.log
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10.2 Mellanox OFED Stack Installation Using The BCM Package Repository
Package names: mlnx-ofed54, mlnx-ofed56, mlnx-ofed57, mlnx-ofed58, mlnx-ofed59-dgx-h100,
mlnx-ofed59, mlnx-ofed23.04, mlnx-ofed23.07, mlnx-ofed23.10, mlnx-ofed24.01, mlnx-ofed24.04,
mlnx-ofed24.07

The Mellanox stacks are installed and configured by BCM in an identical way as far as the adminis-
trator is concerned. In this section (section 10.2):

<vendor-ofedVersion>
is used to indicate where the administrator must carry out a substitution. For Mellanox, the substitution
is one of the following:

• mlnx-ofed54 for the Mellanox version 5.4 stack

• mlnx-ofed56 for the Mellanox version 5.6 stack

• mlnx-ofed57 for the Mellanox version 5.7 stack

• mlnx-ofed58 for the Mellanox version 5.8 stack

• mlnx-ofed59 for the Mellanox version 5.9 stack

• mlnx-ofed59-dgx-h100 for the Mellanox version 5.9 stack for DGX H100 hardware

• mlnx-ofed23.04 for the Mellanox stack release of April 2023

• mlnx-ofed23.07 for the Mellanox stack release of July 2023

• mlnx-ofed23.10 for the Mellanox stack release of October 2023

• mlnx-ofed24.01 for the Mellanox stack release of January 2024

• mlnx-ofed24.04 for the Mellanox stack release of April 2024

• mlnx-ofed24.07 for the Mellanox stack release of July 2024

• mlnx-ofed24.10 for the Mellanox stack release of October 2024

These stacks are currently supported by the NVIDIA Base Command Manager 10-supported distri-
butions (RHEL and derivatives, SLES, and Ubuntu), as determined by the compatibility matrices in the
downloads pages accessible from https://network.nvidia.com/support/mlnx-ofed-matrix/.

For most use cases it usually makes sense to get the most recent supported stack.

• The mlnx-ofed49 stack is an LTS release, aimed mainly at supporting older legacy hardware. The
stack may be useful for one of the following:

– ConnectX-3 Pro cards

– ConnectX-3 cards

– Connect-IB cards

– RDMA experimental verbs library (mlnx_lib)

More recent distributions, such as RHEL9, Ubuntu 22.04, SLES15sp4, no longer support the
mlnx-ofed49 stack.

• Other LTS releases exist. At the time of writing of this paragraph (October 2024), there is a spe-
cific mlnx-ofed58 LTS version release aimed at ConnectX-4 cards and beyond, and there is also
a specific mlnx-ofed23.10 LTS version. Updated details of the LTS version releases are given at
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/.

https://network.nvidia.com/support/mlnx-ofed-matrix/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
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Each stack version needs to be matched to a firmware version associated with the OFED device
used. OFED devices used, ConnectX, BlueField, and others, must also be matched along with their
firmware version via the downloads pages accessible from the URL https://network.nvidia.com/

support/mlnx-ofed-matrix/. Deviating from compatible versions is not supported.
Details on the compatibility of older stack versions can also be found via that URL.

Returning back to the subject of OFED package installation via the package manager: For example,
a yum install command indicated by:

yum install <vendor-ofedVersion>
means that the installation of the BCM OFED package is executed with one of these corresponding yum

install commands, for example:
yum install mlnx-ofed59

10.2.1 Installing The OFED Stack Provided By The BCM Repository Vendor Package
Running the package manager command associated with the distribution (yum install, zypper up,
apt install), unpacks and installs or updates several packages and scripts. For example:

yum install <vendor-ofedVersion>
However, it does not carry out the installation and configuration of the driver itself due to the funda-
mental nature of the changes it would carry out. The script:

<vendor-ofedVersion>-install.sh
can be used after the package manager installation to carry out the installation and configuration of the
driver itself. Running it without options displays a usage help text.

Head And Software Image Installation With Prebuilt Drivers
The script can be run on the nodes as follows:

• On the head node, the default distribution OFED software stack can be replaced with the vendor
OFED software stack made available from the BCM repository, by using the script’s head option,
-h:

[root@basecm10~]# /cm/local/apps/<vendor-ofedVersion>/current/bin/<vendor-ofedVersion>-install.sh -h

A reboot is recommended after the script completes the install, to help ensure the new image is
cleanly used by the head node.

• For a software image, for example default-image, used by the regular nodes, the default distri-
bution OFED software stack can be replaced with the vendor OFED software stack made available
from the BCM repository, by using the script’s software image option, -s:

[root@basecm10~]# /cm/local/apps/<vendor-ofedVersion>/current/bin/<vendor-ofedVersion>-install.sh -s \
default-image

A reboot updates the software image used on the regular node.

If the distribution kernel is updated on any of these head or regular nodes after the vendor OFED
stack has been installed, then the vendor OFED kernel modules made available from the BCM repository
must be reinstalled. This can be done by running the installation scripts again, which replaces the kernel
modules again, along with all the other OFED packages.

The OFED Stack provided by BCM can be removed by appending the -r option to the appropriate
-h or -s option. Removing the packages from a head node or software image can lead to package
dependency breakage, and software not working any more. So using the “-r” option should be done
with caution.

https://network.nvidia.com/support/mlnx-ofed-matrix/
https://network.nvidia.com/support/mlnx-ofed-matrix/
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10.2.2 Upgrading Kernels When The OFED Stack Has Been Provided By The BCM
Repository Vendor Package—Reinstallation Of The OFED Stack

For all distributions, as explained in the preceding text, a vendor OFED stack is installed and configured
via the script <vendor-ofedVersion>-install.sh.

OFED reinstallation may be needed if the kernel is upgraded.

Kernel Upgrades—Blocking And Unblocking
If the OFED stack is installed from the vendor OFED packages, then the script customizes the vendor
OFED stack for the existing kernel, and replaces the distribution stack. However, updating the kernel
afterwards, without updating the stack along with it, could lead to unexpected behavior due to the
customization. Kernel and kernel development updates are therefore prevented from taking place by
a package management system block. The block is set up when the <vendor-ofedVersion>-install.sh
script is run.

Updating the kernel, kernel development, and OFED stack in such a configuration therefore requires
that the administrator manually overrides the block so that the OFED stack can be handled with consid-
eration.

The following procedure can thus be followed to update and install the kernel packages and OFED
stack:

1. Overriding the block:

• In Red Hat-based systems, the /etc/yum.conf file must be edited. In that file, in the line that
starts with exclude, the kernel and kernel-devel packages need to be removed, so that they
are no longer excluded from updates.

• In SUSE, the kernel-default and kernel-default-devel packages must be unlocked. The
command:

zypper removelock kernel-default kernel-default-devel

unlocks them so that they can take part in updates again.

• In Ubuntu, the packages that are blocking the update can be checked with the apt-mark

showhold command.

Example

apt-mark showhold

linux-generic

linux-headers-generic

linux-image-generic

The apt-mark unhold command is used to unblock them:

Example

apt-mark unhold linux-generic linux-headers-generic linux-image-generic

2. Updating the kernel and kernel development packages:

• The packages can be updated on the head node with:

– yum update for the RHEL family
– zypper up for SLES
– apt update; apt upgrade for Ubuntu

• To update the packages on the regular nodes the procedure outlined in section 11.3.3 of the
Administrator Manual is followed:



10.2 Mellanox OFED Stack Installation Using The BCM Package Repository 95

– The packages on the regular node image (for example, default-image) are updated ac-
cording to distribution:

* in Red Hat-based systems as follows:
yum --installroot=/cm/images/default-image update

* or in SLES as follows:
zypper --root=/cm/images/default-image up

* or in Ubuntu as follows, using the cm-chroot-sw-img tool (page 553 of the Adminis-
trator Manual):
root@basecm10:~# cm-chroot-sw-img /cm/images/default-image

root@basecm10:~# apt update; apt upgrade #upgrade takes place in image

...

root@basecm10:~# exit #get out of chroot

– The kernelversion setting for the regular node image, which in this example is the de-
fault default-image, can be updated as follows:

Example
[root@basecm10 ~]# cmsh

[basecm10]% softwareimage

[basecm10->softwareimage]% use default-image

[basecm10->softwareimage[default-image]]% set kernelversion 5.15.0-113-generic

[basecm10->softwareimage[default-image*]]% commit

This ensures that the updated kernel is used after reboot. Tab-completion in the set

kernelversion line prompts for the right kernel from available options.

3. A reboot of the head and regular nodes installs the new kernel.

4. Configuring and installing the vendor OFED stack driver for the new kernel is done by running
the script <vendor-ofedVersion>-install.sh as before, as follows:

• For a stack that is on the head node, the compilation should be done together with the -h

option:

[root@basecm10~]# /cm/local/apps/<vendor-ofedVersion>/current/bin/<vendor-ofedVersion>-ins\
tall.sh -h

• For a software image used by the regular nodes, for example default-image, the compilation
should be done together with the -s option:

[root@basecm10~]# /cm/local/apps/<vendor-ofedVersion>/current/bin/<vendor-ofedVersion>-ins\
tall.sh -s default-image
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Burning Nodes

The burn framework is a component of NVIDIA Base Command Manager 10 that can automatically run
test scripts on specified nodes within a cluster. The framework is designed to stress test newly built
machines and to detect components that may fail under load. Nodes undergoing a burn session with
the default burn configuration, lose their filesystem and partition data for all attached drives, and revert
to their software image on provisioning after a reboot.

11.1 Test Scripts Deployment
The framework requires power management to be running and working properly so that the node can
be power cycled by the scripts used. In modern clusters power management is typically achieved by
enabling a baseboard management controller such as IPMI, iLO, or Redfish. Details on power manage-
ment are given in Chapter 4 of the Administrator Manual.

The framework can run any executable script. The default test scripts are mostly bash

shell scripts and Perl scripts. Each test script has a directory in /cm/shared/apps/cmburn con-
taining the script. The directory and test script must have the same name. For example:
/cm/shared/apps/cmburn/disktest/disktest is the default script used for testing a disk. More on
the contents of a test script is given in section 11.3.2.

11.2 Burn Configurations
11.2.1 Burn Configuration Simple XML Example
A burn configuration is an XML file stored in the CMDaemon database that specifies the burn tests and the
order in which they run. Within the burn configuration the tests are normally grouped into sequences,
and several sequences typically make up a phase. Phases in turn are grouped in either a pre-install
section or post-install section. A simple example of such a burn configuration could therefore look like:

Example

<?xml version="1.0"?>

<burnconfig>

<mail>

<address>root@master</address>

<address>some@other.address</address>

</mail>

<pre-install>

<phase name="01-hwinfo">

<test name="hwinfo"/>

/cm/shared/apps/cmburn
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<test name="hwdiff"/>

<test name="sleep" args="10"/>

</phase>

<phase name="02-disks">

<test name="disktest" args="30"/>

<test name="mce_check" endless="1"/>

</phase>

</pre-install>

<post-install>

<phase name="03-hpl">

<test name="hpl"/>

<test name="mce_check" endless="1"/>

</phase>

<phase name="04-compile">

<test name="compile" args="6"/>

<test name="mce_check" endless="1"/>

</phase>

</post-install>

</burnconfig>

Mail Tag
The optional <mail> tag pair can add a sequence of e-mail addresses, with each address enclosed in
an <address> tag pair. These addresses receive burn failure and warning messages, as well as a notice
when the burn run has completed.

Pre-install And Post-install
The pre-install part of a burn configuration is configured with the <pre-install> tag pair, and run from
inside a node-installer environment. This environment is a limited Linux environment and allows some
simpler tests to run before loading up the full Linux node environment.

Similarly, the post-install part of a burn configuration uses the <post-install> tag pair to run from
inside the full Linux node environment. This environment allows more complex tests to run.

Post-burn Install Mode
The optional <post-burn-install> tag pair allows the administrator to specify the install mode (sec-
tion 5.4.4 of the Administrator Manual) after burn. The tag pair can enclose a setting of AUTO, FULL,
MAIN, or NOSYNC. The default setting is the install mode that was set before burn started.

Phases
The phases sections must exist. If there is no content for the phases, the phases tags must still be in place
(“must exist”). Each phase must have a unique name and must be written in the burn configuration file
in alphanumerical order. By default, numbers are used as prefixes. The phases are executed in sequence.

Tests
Each phase consists of one or more test tags. The tests can optionally be passed arguments using the args
property of the burn configuration file (section 11.2). If multiple arguments are required, they should be
a space separated list, with the (single) list being the args property.

Tests in the same phase are run simultaneously.
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Most tests test something and then end. For example, the disk test tests the performance of all drives
and then quits.

Tests which are designed to end automatically are known as non-endless tests.
Tests designed to monitor continuously are known as endless tests. Endless tests are not really endless.

They end once all the non-endless tests in the same phase are ended, thus bringing an end to the phase.
Endless tests typically test for errors caused by the load induced by the non-endless tests. For example
the mce_check test continuously keeps an eye out for Machine Check Exceptions while the non-endless
tests in the same phase are run.

A special test is the final test, memtest86, which is part of the default burn run, as configured in the
XML configuration default-destructive. It does run endlessly if left to run. To end it, the adminis-
trator can deal with its output at the node console or can power reset the node. It is usually convenient
to remove memtest86 from the default XML configuration in larger clusters, and to rely on the HPL and
memtester tests instead, for uncovering memory hardware errors.

11.2.2 Burn Configuration XML Schema Definition
In BCM, burn configuration setups such as in section 11.2.1 have their global structure defined using an
XML schema definition, which is installed on the head node in /cm/local/apps/cmd/etc/htdocs/xsd/

burnconfig.xsd.
The XML schema definition can also be viewed with:

Example

[root@basecm10 ]# cmsh -c "main xsdschema burnconfig" | less

11.3 Running A Burn Configuration
Burn configurations can be viewed and executed from cmsh.

11.3.1 Burn Configuration And Execution In cmsh

Burn Configuration File Settings
From cmsh, the burn configurations can be accessed from partition mode as follows:

Example

[basecm10]% partition use base

[basecm10->partition[base]]% burnconfigs

[basecm10->partition[base]->burnconfigs]% list

Name (key) Description XML

------------------- ------------------------ -------------

default-destructive Standard burn test. <2614 bytes>

long-hpl Run HPL test for a long+ <829 bytes>

The values of a particular burn configuration (default-destructive in the following example) can
be viewed as follows:

Example

[basecm10->partition[base]->burnconfigs]% use default-destructive

[basecm10->partition[base]->burnconfigs[default-destructive]]% show

Parameter Value

---------------------- --------------------------------------------------------

Description Standard destructive burn test. Beware, wipes the disks!

Name default-destructive

Revision

XML <2614 bytes>

/cm/local/apps/cmd/etc/htdocs/xsd/burnconfig.xsd
/cm/local/apps/cmd/etc/htdocs/xsd/burnconfig.xsd
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The set command can be used to modify existing values of the burn configuration, that is:
Description, Name, and XML. XML is the burn configuration file itself. The get xml command can be
used to view the file, while using set xml opens up the default text editor, thus allowing the burn
configuration to be modified.

A new burn configuration can also be added with the add command. The new burn configuration
can be created from scratch with the set command. However, an XML file can also be imported to the
new burn configuration by specifying the full path of the XML file to be imported:

Example

[basecm10->partition[base]->burnconfigs]% add boxburn

[basecm10->partition[base]->burnconfigs*[boxburn*]]% set xml /tmp/im.xml

The burn configuration can also be edited when carrying out burn execution with the burn com-
mand.

Executing A Burn
A burn as specified by the burn configuration file can be executed in cmsh using the burn command of
device mode.

Burn commands: The burn commands can modify these properties, as well as execute other burn-
related operations.

The burn commands are executed within device mode, and are:

• burn start

• burn stop

• burn status

• burn log

The burn help text that follows lists the detailed options. Next, operations with the burn commands
illustrate how the options may be used along with some features.

[head1->device[node005]]% burn

Name: burn - Node burn control

Usage: burn [OPTIONS] status

burn [OPTIONS] start

burn [OPTIONS] stop

burn [OPTIONS] log

Options: -n, --nodes <node>

List of nodes, e.g. node001..node015,node020..node028,node030

or ^/some/file/containing/hostnames

-g, --group <group>

Include all nodes that belong to the node group, e.g. testnodes or test01,test03

-c, --category <category>

Include all nodes that belong to the category, e.g. default or default,gpu

-r, --rack <rack>

Include all nodes that are located in the given rack, e.g rack01

or rack01..rack04
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-h, --chassis <chassis>

Include all nodes that are located in the given chassis, e.g chassis01

or chassis03..chassis05

-e, --overlay <overlay>

Include all nodes that are part of the given overlay, e.g overlay1

or overlayA,overlayC

-m, --image <image>

Include all nodes that have the given image, e.g default-image or

default-image,gpu-image

-t, --type <type>

Type of devices, e.g node or virtualnode,cloudnode

-i, --intersection

Calculate the intersection of the above selections

-u, --union

Calculate the union of the above selections

-l, --role role

Filter all nodes that have the given role

-s, --status <status>

Only run command on nodes with specified status, e.g. UP, "CLOSED|DOWN",

"INST.*"

--config <name>

Burn with the specified burn configuration. See in partition burn configurations

for a list of valid names

--file <path>

Burn with the specified file instead of burn configuration

--later

Do not reboot nodes now, wait until manual reboot

--edit

Open editor for last minute changes

--no-drain

Do not drain the node from WLM before starting to burn

--no-undrain

Do not undrain the node from WLM after burn is complete

-p, --path

Show path to the burn log files. Of the form: /var/spool/burn/<mac>.

-v, --verbose

Show verbose output (only for burn status)

--sort <field1>[,<field2>,...]
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Override default sort order (only for burn status)

-d, --delimiter <string>

Set default row separator (only for burn status)

-d, --delay <seconds>

Wait <seconds> between executing two sequential power commands. This option is

ignored for the status command

Examples:

burn --config default-destructive start -n node001

Burn command operations: Burn commands allow the following operations, and have the following
features:

• start, stop, status, log: The basic burn operations allow a burn to be started or stopped, and the
status of a burn to be viewed and logged.

– The “burn start” command always needs a configuration file name. In the following it is
boxburn. The command also always needs to be given the nodes it operates on:

[basecm10->device]% burn --config boxburn -n node007 start

Power reset nodes

[basecm10->device]%

ipmi0 .................... [ RESET ] node007

Fri Nov 3 ... [notice] basecm10: node007 [ DOWN ]

[basecm10->device]%

Fri Nov 3 ... [notice] basecm10: node007 [ INSTALLING ] (node installer started)

[basecm10->device]%

Fri Nov 3 ... [notice] basecm10: node007 [ INSTALLING ] (running burn in tests)

...

– The “burn stop” command only needs to be given the nodes it operates on, for example:

[basecm10->device]% burn -n node007 stop

– The “burn status” command:

* may be given the nodes for which the status is to be found, for example:
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[basecm10->device]% burn status -n node005..node007

Hostname Burn name Status New burn on PXE Phase ...

-------- --------- ------------------------- --------------- -------- ...

node005 no burn results available no ...

node006 currently not burning no ...

node007 boxburn Burning yes 02-disks ...

each line of output is quite long, so each line has been rendered truncated and ellipsized.
The ellipsis marks in the 5 preceding output lines align with the lines that follow.
That is, the lines that follow are the endings of the preceding 5 lines:

...Warnings Tests

...--------- --------------------------------------------------------------

...0

...0

...0 /var/spool/burn/c8-1f-66-f2-61-c0/02-disks/disktest (S,171),\
/var/spool/burn/c8-1f-66-f2-61-c0/02-disks/kmon (S),\
/var/spool/bu+

– The “burn log” command displays the burn log for specified node groupings. Each node
with a boot MAC address of <mac> has an associated burn log file.

• Advanced options include the following:

– -n|--nodes, -g|--group, -c|--category, -r|--rack, -h|--chassis, -e|--overlay,
-t|--type, -i|--intersection, -u|--union, -r|--role, -s|--status: These options allow
burn commands to be executed over various node groupings.

– --config <burn configuration>, --file <path>: The burn configuration file can be set as one
of the XML burn configurations listed in partition mode, or it can be set as the path of the
XML file from the file system

– -l|--later: This option disables the immediate power reset that occurs on running the “burn
start” or “burn stop” command on a node. This allows the administrator to power down
manually, when preferred.

– -e|--edit: The burn configuration file can be edited with the -e option for the “burn start”
command. This is an alternative to editing the burn configuration file in partition mode.

– --no-drain, --no-undrain: The node is not drained before burning, or not undrained after
burning

– -p|--path: This shows the burn log path, by default (section 11.4) on the head node under a
directory named after the mac address /var/spool/burn/<mac>.

Example

[basecm10->device]% burn -p -n node001..node003 log

node001: /var/spool/burn/fa-16-3e-60-1d-c7

node002: /var/spool/burn/fa-16-3e-8a-d8-0e

node003: /var/spool/burn/fa-16-3e-af-38-cd

Burn command output examples: The burn status command has a compact one-line output per
node:

Example

[basecm10->device]% burn -n node001 status

node001 (00000000a000) - W(0) phase 02-disks 00:02:58 (D:H:M) FAILED, mce_check (SP),\
disktest (SF,61), kmon (SP)
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The fields in the preceding output example are:

Description Value Meaning Here

The node name node001

The node tag (00000000a000)

Warnings since start of burn (0)

The current phase name 02-disks Burn configuration phase being

run is 02-disks

Time since phase started 00:02:58 (D:H:M) 2 hours 58 minutes

State of current phase FAILED Failed in 02-disks

burn test for MCE mce_check (SP) Started and Passed

burn test for disks disktest (SF,61) Started and Failed

61 is the speed, and is custom

information

burn test kernel log monitor kmon (SP) Started and Passed

Each test in a phase uses these letters to display its status:

Letter Meaning

S started

W warning

F failed

P passed

The “burn log” command output looks like the following (some output elided):

[basecm10->device]% burn -n node001 log

Thu ... 2012: node001 - burn-control: burn framework initializing

Thu ... 2012: node001 - burn-control: e-mail will be sent to: root@master

Thu ... 2012: node001 - burn-control: finding next pre-install phase

Thu ... 2012: node001 - burn-control: starting phase 01-hwinfo

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/hwinfo

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/sleep

Thu ... 2012: node001 - sleep: sleeping for 10 seconds

Thu ... 2012: node001 - hwinfo: hardware information

Thu ... 2012: node001 - hwinfo: CPU1: vendor_id = AuthenticAMD

...

Thu ... 2012: node001 - burn-control: test hwinfo has ended, test passed

Thu ... 2012: node001 - burn-control: test sleep has ended, test passed

Thu ... 2012: node001 - burn-control: all non-endless test are done, terminating endless tests

Thu ... 2012: node001 - burn-control: phase 01-hwinfo passed

Thu ... 2012: node001 - burn-control: finding next pre-install phase
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Thu ... 2012: node001 - burn-control: starting phase 02-disks

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/disktest

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/mce_check

Thu ... 2012: node001 - burn-control: starting test /cm/shared/apps/cmburn/kmon

Thu ... 2012: node001 - disktest: starting, threshold = 30 MB/s

Thu ... 2012: node001 - mce_check: checking for MCE's every minute

Thu ... 2012: node001 - kmon: kernel log monitor started

Thu ... 2012: node001 - disktest: detected 1 drives: sda

...

Thu ... 2012: node001 - disktest: drive sda wrote 81920 MB in 1278.13

Thu ... 2012: node001 - disktest: speed for drive sda was 64 MB/s -> disk passed

Thu ... 2012: node001 - burn-control: test disktest has ended, test FAILED

Thu ... 2012: node001 - burn-control: all non-endless test are done, terminating endless tests

Thu ... 2012: node001 - burn-control: asking test /cm/shared/apps/cmburn/kmon/kmon t o terminate

Thu ... 2012: node001 - kmon: kernel log monitor terminated

Thu ... 2012: node001 - burn-control: test kmon has ended, test passed

Thu ... 2012: node001 - burn-control: asking test /cm/shared/apps/cmburn/mce_check/mce_check\
to terminate

Thu ... 2012: node001 - mce_check: terminating

Thu ... 2012: node001 - mce_check: waiting for mce_check to stop

Thu ... 2012: node001 - mce_check: no MCE's found

Thu ... 2012: node001 - mce_check: terminated

Thu ... 2012: node001 - burn-control: test mce_check has ended, test passed

Thu ... 2012: node001 - burn-control: phase 02-disks FAILED

Thu ... 2012: node001 - burn-control: burn will terminate

The output of the burn log command is actually the messages file in the burn directory, for the node
associated with a MAC-address directory <mac>. The burn directory is at /var/spool/burn/ and the
messages file is thus located at:

/var/spool/burn/<mac>/messages

The tests have their log files in their own directories under the MAC-address directory, using their
phase name. For example, the pre-install section has a phase named 01-hwinfo. The output logs of this
test are then stored under:

/var/spool/burn/<mac>/01-hwinfo/

11.3.2 Writing A Test Script
This section describes a sample test script for use within the burn framework. The script is typically a
shell or Perl script. The sample that follows is a Bash script, while the hpl script is an example in Perl.

Section 11.1 describes how to deploy the script.

Non-endless Tests
The following example test script is not a working test script, but can be used as a template for a non-
endless test:

Example

#!/bin/bash

# We need to know our own test name, amongst other things for logging.

me=`basename $0`
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# This first argument passed to a test script by the burn framework is a

# path to a spool directory. The directory is created by the framework.

# Inside the spool directory a sub-directory with the same name as the

# test is also created. This directory ($spooldir/$me) should be used

# for any output files etc. Note that the script should possibly remove

# any previous output files before starting.

spooldir=$1

# In case of success, the script should touch $passedfile before exiting.

passedfile=$spooldir/$me.passed

# In case of failure, the script should touch $failedfile before exiting.

# Note that the framework will create this file if a script exits without

# creating $passedfile. The file should contain a summary of the failure.

failedfile=$spooldir/$me.failed

# In case a test detects trouble but does not want the entire burn to be

# halted $warningfile _and_ $passedfile should be created. Any warnings

# should be written to this file.

warningfile=$spooldir/$me.warning

# Some short status info can be written to this file. For instance, the

# stresscpu test outputs something like 13/60 to this file to indicate

# time remaining.

# Keep the content on one line and as short as possible!

statusfile=$spooldir/$me.status

# A test script can be passed arguments from the burn configuration. It

# is recommended to supply default values and test if any values have

# been overridden from the config file. Set some defaults:

option1=40

option2=some_other_value

# Test if option1 and/or option2 was specified (note that $1 was to

# spooldir parameter):

if [ ! x$2 = "x" ]; then

option1=$2

fi

if [ ! x$3 = "x" ]; then

option2=$3

fi

# Some scripts may require some cleanup. For instance a test might fail

# and be

# restarted after hardware fixes.

rm -f $spooldir/$me/*.out &>/dev/null

# Send a message to the burn log file, syslog and the screen.

# Always prefix with $me!

blog "$me: starting, option1 = $option1 option2 = $option2"

# Run your test here:

run-my-test

if [ its_all_good ]; then

blog "$me: wOOt, it's all good! my-test passed."
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touch $passedfile

exit 0

elif [ was_a_problem ]; then

blog "$me: WARNING, it did not make sense to run this test. You don't have special device X."

echo "some warning" >> $warningfile # note the append!

touch $passedfile

exit 0

else

blog "$me: Aiii, we're all gonna die! my-test FAILED!"

echo "Failure message." > $failedfile

exit 0

fi

Endless Tests
The following example test script is not a working test, but can be used as a template for an endless test.

Example

#!/bin/bash

# We need to know our own test name, amongst other things for logging.

me=`basename $0`

# This first argument passed to a test script by the burn framework is a

# path to a spool directory. The directory is created by the framework.

# Inside the spool directory a sub-directory with the same name as the

# test is also created. This directory ($spooldir/$me) should be used

# for any output files etc. Note that the script should possibly remove

# any previous output files before starting.

spooldir=$1

# In case of success, the script should touch $passedfile before exiting.

passedfile=$spooldir/$me.passed

# In case of failure, the script should touch $failedfile before exiting.

# Note that the framework will create this file if a script exits without

# creating $passedfile. The file should contain a summary of the failure.

failedfile=$spooldir/$me.failed

# In case a test detects trouble but does not want the entire burn to be

# halted $warningfile _and_ $passedfile should be created. Any warnings

# should be written to this file.

warningfile=$spooldir/$me.warning

# Some short status info can be written to this file. For instance, the

# stresscpu test outputs something like 13/60 to this file to indicate

# time remaining.

# Keep the content on one line and as short as possible!

statusfile=$spooldir/$me.status

# Since this in an endless test the framework needs a way of stopping it

# once all non-endless test in the same phase are done. It does this by

# calling the script once more and passing a "-terminate" argument.

if [ "$2" == "-terminate" ]; then

blog "$me: terminating"
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# remove the lock file the main loop is checking for

rm $spooldir/$me/running

blog "$me: waiting for $me to stop"

# wait for the main loop to die

while [ -d /proc/`cat $spooldir/$me/pid` ]

do

sleep 1

done

blog "$me: terminated"

else

blog "$me: starting test, checking every minute"

# Some scripts may require some cleanup. For instance a test might fail

# and be restarted after hardware fixes.

rm -f $spooldir/$me/*.out &>/dev/null

# create internal lock file, the script will remove this if it is

# requested to end

touch $spooldir/$me/running

# save our process id

echo $$ > "$spooldir/$me/pid"

while [ -e "$spooldir/$me/running" ]

do

run-some-check

if [ was_a_problem ]; then

blog "$me: WARNING, something unexpected happened."

echo "some warning" >> $warningfile # note the append!

elif [ failure ]; then

blog "$me: Aiii, we're all gonna die! my-test FAILED!"

echo "Failure message." > $failedfile

fi

sleep 60

done

# This part is only reached when the test is terminating.

if [ ! -e "$failedfile" ]; then

blog "$me: no problem detected"

touch $passedfile

else

blog "$me: test ended with a failure"

fi

fi

11.3.3 Burn Failures
Whenever the burn process fails, the output of the burn log command shows the phase that has failed
and that the burn terminates.

Example
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Thu ... 2012: node001 - burn-control: phase 02-disks FAILED

Thu ... 2012: node001 - burn-control: burn will terminate

Here, burn-control, which is the parent of the disk testing process, keeps track of the tests that pass
and fail. On failure of a test, burn-control terminates all tests.

The node that has failed then requires intervention from the administrator in order to change state.
The node does not restart by default. The administrator should be aware that the state reported by the
node to CMDaemon remains burning at this point, even though it is not actually doing anything.

To change the state, the burn must be stopped with the burn stop command in cmsh. If the node is
restarted without explicitly stopping the burn, then it simply retries the phase at which it failed.

Under the burn log directory, the log of the particular test that failed for a particular node can some-
times suggest a reason for the failure. For retries, old logs are not overwritten, but moved to a directory
with the same name, and a number appended indicating the try number. Thus:

Example

First try, and failing at 02-disks tests:

cd /var/spool/burn/48:5b:39:19:ff:b3

ls -ld 02-disks*/

drwxr-xr-x 6 root root 4096 Jan 10 16:26 02-disks

2nd try, after failing again:

ls -ld 02-disks*/

drwxr-xr-x 6 root root 4096 Jan 10 16:49 02-disks

drwxr-xr-x 6 root root 4096 Jan 10 16:26 02-disks.1

3rd try, after failing again:

ls -ld 02-disks*/

drwxr-xr-x 6 root root 4096 Jan 10 16:59 02-disks

drwxr-xr-x 6 root root 4096 Jan 10 16:49 02-disks.1

drwxr-xr-x 6 root root 4096 Jan 10 16:26 02-disks.2

11.4 Relocating The Burn Logs
A burn run can append substantial amounts of log data to the default burn spool at /var/spool/burn.
To avoid filling up the head node with such logs, they can be appended elsewhere.

11.4.1 Configuring The Relocation
The 3-part procedure that can be followed is:

1. The BurnSpoolDir setting can be set in the CMDaemon configuration file on the head node, at
/cm/local/apps/cmd/etc/cmd.conf. The BurnSpoolDir setting tells CMDaemon where to look
for burn data when the burn status is requested through cmsh.

• BurnSpoolDir="/var/spool/burn"

CMDaemon should be restarted after the configuration has been set. This can be done with:

service cmd restart

2. The burnSpoolHost setting, which matches the host, and burnSpoolPath setting,
which matches the location, can be changed in the node-installer configuration file
on the head node, at /cm/node-installer/scripts/node-installer.conf (for multi-
arch/multidistro configurations the path takes the form: /cm/node-installer-<distribution>-
<architecture>/scripts/node-installer.conf). These have the following values by default:

/var/spool/burn
/cm/local/apps/cmd/etc/cmd.conf
burnSpoolHost
burnSpoolPath
/cm/node-installer/scripts/node-installer.conf
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• burnSpoolHost = master

• burnSpoolPath = /var/spool/burn

These values define the NFS-mounted spool directory.

The burnSpoolHost value should be set to the new DNS host name, or to an IP address. The
burnSpoolPath value should be set to the new path for the data.

3. Part 3 of the procedure adds a new location to export the burn log. This is only relevant if the
spool directory is being relocated within the head node. If the spool is on an external fileserver,
the existing burn log export may as well be removed.

The new location can be added to the head node as a path value, from a writable filesystem export
name. The writable filesystem export name can most easily be added using Base View, via the
navigation path:

Devices > Head Nodes > Edit > Settings > Filesystem exports > Add

Adding a new name like this is recommended, instead of just modifying the path value in an
existing Filesystem exports name. This is because changing things back if the configuration is
done incorrectly is then easy. By default, the existing Filesystem exports for the burn directory
has the name:

• /var/spool/burn@internalnet

and has a path associated with it with a default value of:

• /var/spool/burn

When the new name is set in Filesystem exports, the associated path value can be set in agree-
ment with the values set earlier in parts 1 and 2.

If using cmsh instead of Base View, then the change can be carried out from within the fsexports

submode. Section 3.13.1 of the Administrator Manual gives more detail on similar examples of how
to add such filesystem exports.

11.4.2 Testing The Relocation
To test the changes, it is wise to first try a single node with a short burn configuration. This allows
the administrator to check that install and post-install tests can access the spool directories. Otherwise
there is a risk of waiting hours for the pre-install tests to complete, only to have the burn abort on the
post-install tests. The following short burn configuration can be used:

Example

<burnconfig>

<pre-install>

<phase name="01-hwinfo">

<test name="hwinfo"/>

<test name="sleep" args="10"/>

</phase>

</pre-install>

<post-install>

<phase name="02-mprime">

<test name="mprime" args="2"/>

<test name="mce_check" endless="1"/>

<test name="kmon" endless="1"/>

</phase>

</post-install>

</burnconfig>

/var/spool/burn
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To burn a single node with this configuration, the following could be run from the device mode of
cmsh:

Example

[basecm10->device]% burn start --config default-destructive --edit -n node001

This makes an editor pop up containing the default burn configuration. The content can be replaced
with the short burn configuration. Saving and quitting the editor causes the node to power cycle and
start its burn.

The example burn configuration typically completes in less then 10 minutes or so, depending mostly
on how fast the node can be provisioned. It runs the mprime test for about two minutes.
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Installing And Configuring

SELinux
12.1 Introduction
Security-Enhanced Linux (SELinux) can be enabled on selected nodes. If SELinux is enabled on a stan-
dard Linux operating system, then it is typically initialized in the kernel when booting from a hard
drive. However, in the case of nodes provisioned by NVIDIA Base Command Manager, via PXE boot,
the SELinux initialization occurs at the very end of the node installer phase.

SELinux is disabled by default because its security policies are typically customized to the needs
of the organization using it. The administrator must therefore decide on appropriate access control
security policies. When creating such custom policies, special care should be taken that the cmd process
is executed in, ideally, an unconfined context.

Before enabling SELinux on a cluster, the administrator is advised to first check that the Linux distri-
bution used offers enterprise support for SELinux-enabled systems. This is because support for SELinux
should be provided by the distribution in case of issues.

Enabling SELinux is only advised for BCM if the internal security policies of the organization ab-
solutely require it. This is because it requires custom changes from the administrator. If something is
not working right, then the effect of these custom changes on the installation must also be taken into
consideration, which can sometimes be difficult.

SELinux is partially managed by BCM and can run on the head and regular nodes. The SELinux
settings managed by CMDaemon (via cmsh or Base View) should not be managed by directly dealing
with the node outside of CMDaemon management, as that can lead to an inconsistent knowledge of the
SELinux settings by CMDaemon.

When first configuring SELinux to run with BCM on regular nodes, the nodes should be configured
with permissive mode to ensure that the nodes work with applications. Troubleshooting permissive
mode so that enforcing mode can be enabled is outside the scope of BCM support, unless the issue is
demonstrably a BCM-related issue.

12.2 Enabling SELinux On RHEL8, Rocky 9
12.2.1 Setting SELinux Parameters
The selinuxsettings mode is available at node, category, or partition level.

Example

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% selinuxsettings

[basecm10->device[node001]->selinuxsettings]% show

Parameter Value
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-------------------------------- ------------------------------------------------

Initialize yes

Revision

Reboot after context restore no

Allow NFS home directories yes

Context action auto install always

Context action full install always

Context action nosync install always

Mode permissive

Policy targeted

Key value settings <submode>

The Mode can be set to permissive, enforcing or disabled. When starting the use of SELinux and
establishing policies, it should be set to permissive to begin with, so that troubleshooting issues to do
with running applications with enforcing mode can be examined.

The default SELinux configuration parameters are in /cm/node-installer/scripts/

node-installer.conf, and that file remains unchanged by cmsh settings changes. The values of
SELinux configuration parameters used from that file are however overridden by the corresponding
cmsh settings.

For multiarch/multidistro configurations the node-installer path in the preceding session takes
the form: /cm/node-installer-<distribution>-<architecture>/scripts/node-installer.conf. The val-
ues for <distribution> and <architecture> can take the values outlined on (page 570 of the Administrator
Manual).

12.2.2 Setting Up On The Head Node
The following procedure can be run on both head nodes to configure SELinux on Rocky 9, so that the
SELinux enforcing mode is enabled:

[root@basecm10 ~]# cmsh

[basecm10]% device use master

[basecm10->device[basecm10]]% selinuxsettings

[basecm10->device[basecm10]->selinuxsettings]% set mode enforcing

[basecm10->device*[basecm10*]->selinuxsettings*]% commit

[basecm10->device[basecm10]->selinuxsettings]% quit

[root@basecm10 ~]# touch /.autorelabel

[root@basecm10 ~]# reboot

...

[root@basecm10 ~]# getenforce

Enforcing

12.2.3 Setting Up On The Regular Nodes
A similar pattern can be repeated on the regular nodes.

Configuring The SELinux Settings
The SELinux settings can be configured at partition, category, or node level.

Nodes that are to use SELinux can be placed in a category, secategory. The secategory category
can be created by cloning it from the default category that comes with a newly-installed cluster:

Example

[root@basecm10 ~]# cmsh

[basecm10]% category

[basecm10->category]% list

Name (key) Software image Nodes

/cm/node-installer/scripts/node-installer.conf
/cm/node-installer/scripts/node-installer.conf
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------------------------ ------------------------ --------

default default-image 4

[basecm10->category]% clone default secategory; commit

The SELinux settings can then be configured for the newly-cloned category.

Example

[basecm10->category]% use secategory; selinuxsettings

[basecm10->category[secategory]->selinuxsettings]% keyvaluesettings

[basecm10->category*[secategory*]->selinuxsettings*->keyvaluesettings*]% set domain_can_mmap_files 1

[basecm10->category*[secategory*]->selinuxsettings*->keyvaluesettings*]% exit

[basecm10->category*[secategory*]->selinuxsettings*]% set mode<tab><tab>
disabled enforcing permissive

[basecm10->category*[secategory*]->selinuxsettings*]% set mode permissive #for now, to debug apps

[basecm10->category*[secategory*]->selinuxsettings*]% commit

The domain_can_mmap_files boolean setting is needed to allow SELinux policies to revalidate some
kinds of file access in memory.

Configuring The SELinux Image To Be Used
The problem with SELinux file contexts on the node when again provisioning an image: If the image
that is used to provision the node still has the old file attributes, and if the provisioning mode is FULL
or AUTO (section 5.4.4 of the Administrator Manual), then image sync during node-installer provisioning
results in reverting the SELinux file contexts that have been set up on the running node back to the old
state.

Thus, for FULL or AUTO provisioning modes, if default-image has no SELinux file security con-
texts, then the SELinux file security contexts vanish after the node comes back up after a reboot.

Creating a new image and using setfiles to set up SELinux file contexts on the new image: One
good way to have a node come up with SELinux file contexts, is to set up the image that is provisioned
so that the image has the contexts already.

This can be configured by first cloning the image, with:

Example

[basecm10->category[secategory]->selinuxsettings]% softwareimage

[basecm10->softwareimage]% list

Name (key) Path Kernel version Nodes

-------------------- ----------------------------- ----------------------------- --------

default-image /cm/images/default-image 5.14.0-284.11.1.el9_2.x86_64 5

[basecm10->softwareimage]% clone default-image selinux-image; commit

...

...[notice] basecm10: Initial ramdisk for image selinux-image was generated successfully

Then, after selinux-image has been generated, the contexts can be set up in the new image with the
SELinux setfiles command, using the -r option to set the root path:

Example

[basecm10->softwareimage]% quit

[root@basecm10 ~]# setfiles -r /cm/images/selinux-image \
/etc/selinux/targeted/contexts/files/file_contexts /cm/images/selinux-image/

[root@basecm10 ~]# setfiles -r /cm/images/selinux-image \
/etc/selinux/targeted/contexts/files/file_contexts.local /cm/images/selinux-image/

If the image is updated in the future with new packages, or new files, then the setfiles commands
in the preceding example must be run again to set the file contexts.
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Organizing the nodes and setting them up with the newly-created SELinux image: Nodes in the
category can be listed with:

[basecm10->category[secategory]]% listnodes

...lists the nodes in that category...

Nodes can be placed in the category from device mode. For example, node001, node002, and
node003 can be configured with:

[basecm10->category[secategory]]% device

[basecm10->device]% foreach -n node001..node003 (set category secategory)

If the nodes in the category secategory are to run file systems with SELinux file contexts, then the
image generated for this earlier on, selinux-image, can be committed to that category with:

Example

[basecm10->category[secategory]]% set softwareimage selinux-image

[basecm10->category*[secategory*]]% commit

Booting The Image For SELinux On The Regular Node
The category can then be rebooted to check that all is working correctly.

Example

[basecm10->category[secategory]]% device reboot -c secategory

Reboot in progress for: node001..node003

...

... reboot takes place...
[basecm10->category[secategory]]% !ssh node001 "getenforce"

Permissive

[basecm10->category[secategory]]% !ssh node001 "ls -Z"

system_u:object_r:admin_home_t:s0 original-ks.cfg

system_u:object_r:admin_home_t:s0 rpmbuild



A
Other Licenses, Subscriptions,

Or Support Vendors
NVIDIA Base Command Manager comes with enough software to allow it to work with no additional
commercial requirements other than its own. However, BCM integrates with some other products that
that have their own separate commercial requirements. The following table lists commercial software
that requires a separate license, subscription, or support vendor, and an associated URL where more
information can be found.

Software URL

Workload managers

PBS Professional http://www.altair.com

MOAB http://www.adaptivecomputing.com

LSF http://www.ibm.com/systems/platformcomputing/products/lsf/

GE http://www.altair.com

Distributions

Suse http://www.suse.com

Red Hat http://www.redhat.com

Compilers

Intel https://software.intel.com/en-us/intel-sdp-home

Miscellaneous

Amazon AWS http://aws.amazon.com

http://www.altair.com
http://www.adaptivecomputing.com
http://www.ibm.com/systems/platformcomputing/products/lsf/
http://www.altair.com
http://www.suse.com
http://www.redhat.com
https://software.intel.com/en-us/intel-sdp-home
http://aws.amazon.com
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Hardware Recommendations

The hardware suggestions in section 3.1 are for a minimal cluster, and are inadequate for larger clusters.
For larger clusters, hardware suggestions and examples are given in this section.
The memory used depends significantly on CMDaemon, which is the main NVIDIA Base Command

Manager service component, and on the number of processes running on the head node or regular node.
The number of processes mostly depends on the number of metrics and health checks that are run.

Hard drive storage mostly depends on the number of metrics and health checks that are managed
by CMDaemon.

B.1 Heuristics For Requirements
Normal system processes run on the head and regular node if the cluster manager is not running, and
take up their own RAM and drive space.

B.1.1 Heuristics For Requirements For A Regular Node
A calculation of typical regular node requirements can be made as follows:

Regular Node Disk Size
For disked nodes, a disk size of around 25 GB is the minimum needed. 256GB should always be fine
at the time of writing of this section (October 2023). The disk size should be large enough to hold the
entire regular node image that the head node supplies to it, which typically is around 6GB, along with
swap, log files and other local overhead for the jobs that will run on the regular node.

Regular Node Memory Size
The total RAM required is roughly the sum of:
RAM used for non− BCM system processes+ 50MB+ (number of nodes× 10kB).

B.1.2 Heuristics For Requirements For A Head Node
A calculation of typical head node requirements can be made as follows:

Head Node Disk Size
The disk size required is roughly the sum of:
space needed by operating system without cluster manager + 5GB per regular node image +
(100kB× number of metrics and health checks× number of devices)

A device means any item seen as a device by CMDaemon. A list of devices can be seen by cmsh under
its device node. Examples of devices are: regular nodes, cloud nodes, switches, head nodes, GPU units,
and PDUs.
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Head Node Memory Size
The total RAM required is roughly the sum of:
RAM used for normal system process+ 100MB+ (number of nodes× 1.8MB)

This assumes less than 100 metrics and health checks are being measured, which is a default for
systems that are just head nodes and regular nodes. Beyond the first 100 metrics and health checks, each
further 100 extra take about 1MB extra per device.

B.2 Observed Head Node Resources Use, And Suggested Specification
B.2.1 Observed Head Node Example CMDaemon And MySQL Resources Use
CMDaemon and MySQL have the following approximate default resource usage on the head node as
the number of nodes increases:

Number of nodes CMDaemon + MySQL RAM/GB CMDaemon RAM/GB Disk Use/GB

1000 16 2 10

2000 32 4 20

5000 64 10 50

B.2.2 Suggested Head Node Specification For Clusters Beyond 1000 Nodes
For clusters with more than 1000 nodes, a head node is recommended with at least the following speci-
fications:

• 24 cores

• 128 GB RAM

• 512 GB SSD

The extra RAM is useful for caching the filesystem, so scrimping on it makes little sense.
Handy for speedy retrievals is to place the monitoring data files, which are by default located under

/var/spool/cmd/monitoring/, on an SSD.
A dedicated /var or /var/lib/mysql partition for clusters with greater than 2500 nodes is also a

good idea.

/var/spool/cmd/monitoring/
/var
/var/lib/mysql


C
Base Command Manager

Essentials And NVIDIA AI
Enterprise

Base Command Manager Essentials (BCME) is a product version of BCM for the NVIDIA AI Enterprise
(https://docs.nvidia.com/ai-enterprise/index.html) edition of Base Command Manager.

C.1 Scope Of BCME
BCME:

• provisions clusters. This includes:

– operating system installation

– networking setup

– security configuration

– DNS configuration

while ensuring cluster integrity

• automates server management and updates, preventing server drift

• manages AI workloads with:

– Kubernetes

– automated scaling

– a tightly integrated Run:ai

• can install and manage Slurm workload manager

• enables a streamlined Jupyter setup with NGC containers

• provides comprehensive management for cluster control and job monitoring. This includes man-
aging and monitoring for

– GPU metrics

– resource allocation

– access control

– chargeback options

https://docs.nvidia.com/ai-enterprise/index.html
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C.2 BCME And Support For NVIDIA AI Enterprise
C.2.1 Certified Features Of BCME For NVIDIA AI Enterprise
Some features of BCME are certified for NVIDIA AI Enterprise.

C.2.2 NVIDIA AI Enterprise Compatible Servers
BCME must be deployed on NVIDIA AI Enterprise compatible servers.

The NVIDIA Qualified System Catalog at:

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/

displays a complete list of NVIDIA AI Enterprise compatible servers if the NVAIE Compatible option
is selected.

C.2.3 NVIDIA Software Versions Supported
NVIDIA AI Enterprise supports specific versions of NVIDIA software, including

• NVIDIA drivers

• NVIDIA containers

• the NVIDIA Container Toolkit

• the NVIDIA GPU Operator

• the NVIDIA Network Operator

The NVIDIA AI Enterprise Catalog On NGC at:

https://catalog.ngc.nvidia.com/enterprise

lists the specific versions of software included in a release.

C.2.4 NVIDIA AI Enterprise Product Support Matrix
The NVIDIA AI Enterprise Product Support Matrix at:

https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html

lists the platforms that are supported.

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/
https://catalog.ngc.nvidia.com/enterprise
https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html
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NVIDIA BCM Scope Of Support

D.1 Included In BCM Support
NVIDIA Base Command Manager (BCM) technical support has a standard scope of coverage that in-
cludes the following:

D.1.1 Support For Cluster Installation
The BCM support team will help install BCM on a supported Linux base distribution, using any of the
documented BCM features.

If the add-on installation method is used (as opposed to the bare-metal installation method), then
installation on top of a default minimal installation of the base Linux distribution is supported. A default
minimal installation of the Linux base distribution means selecting a minimal set of packages during the
installation and leaving all settings at their defaults.

D.1.2 Support For Cluster Configuration
The BCM support team can help create configurations to meet the specific needs of a customer using
any of the documented BCM features.

If Security-Enhanced Linux (SELinux) is enabled on the head node or compute nodes and a problem
arises, then a customer may be asked to demonstrate that the problem also exists when SELinux is
disabled, in order to confirm that the problem is not caused by an SELinux policy configuration.

D.1.3 Support For Integration Of Cluster In Site Infrastructure
Site infrastructures vary greatly, and so support is not provided for the third-party hardware and soft-
ware that may be involved. Nevertheless, the BCM support team will do its best to provide support on
matters related to cluster integration within a site’s infrastructure.

Information on how to accomplish many integration tasks is provided in the BCM product manuals
and knowledge base, and is often all that is needed to get the job done. If not, then the BCM support
team may be able to help. The BCM support team will ask that the customer demonstrate how to
accomplish the aspect of integration on an ordinary machine running the same Linux distribution as
the cluster. Once the BCM support team has that information, it can provide instructions on how to
accomplish the same task using BCM.

D.1.4 Support For Integration With Microsoft Active Directory
NVIDIA provides documentation that describes how to integrate the BCM cluster with Active Directory;
however, that integration requires help from the Windows Server administrators. It is the responsibility
of the BCM administrator to communicate with the Windows Server administrators to get the required
information for the chosen integration method.

Debugging Active Directory integration issues is beyond the scope of standard support.
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D.1.5 Support For First-Party Hardware Only
The BCM support team does not provide support for third-party hardware issues. When it is unclear
whether an issue is due to hardware or software problems, the BCM support team will work with a
customer to determine the source of the problem.

D.1.6 Support For Software Upgrades
Supported customers receive access to all new software releases, and the BCM support team manages
any issues that arise as a result of an upgrade.

To identify versions of its software, BCM uses pairs of numbers (e.g., 8.0 or 9.2). The first number
denotes the major version of the software and the second number denotes the minor version.

An upgrade within the major version (e.g., from 9.1 to 9.2) is called a minor upgrade. An upgrade
from one major version to the next (e.g., from 8.2 to 9.0) is called a major upgrade.

Minor upgrades and recent major upgrades can be done in place. The BCM support team will enable
smooth transitions during software upgrades.

D.2 Excluded From BCM Support
Support coverage for BCM excludes the following:

D.2.1 Help With Third-Party Software
Third-party software is all software not developed by NVIDIA, even though it may be packaged or inte-
grated with BCM. Examples include, but may not be limited to, the Linux kernel, all software belonging
to the Linux base distribution (e.g., Red Hat), Open MPI, ScaleMP, and workload management systems
such as Slurm, SGE, LSF, Torque, PBS Pro, and UGE.

An exception will be made if a customer demonstrates that NVIDIA packaged an application incor-
rectly, or if the customer demonstrates that the integration in the stock user environment is incorrect.

D.2.2 Help With User Applications
No support can be provided on issues related to compiling or running user applications, i.e., applica-
tions that are not packaged as part of BCM and which are installed onto a cluster by a customer or other
individual.

If a customer suspects the issue relates to an NVIDIA product, then the problem must be demon-
strated using a small application that will allow NVIDIA engineers to reproduce the problem.

D.2.3 Help With Workload Management
No support will be provided on issues relating to the workload management system. The only exception
is during the initial installation and configuration and in cases where a customer demonstrates that an
issue is caused by incorrect integration between BCM and the workload manager.

D.2.4 Help With Performance Issues
No support will be provided to trace performance issues in the cluster. The only exceptions are perfor-
mance issues related to software components developed by NVIDIA.

D.2.5 Root-Cause Analysis
The NVIDIA support engineers will do their best to determine the cause of a failure, but cannot guaran-
tee that all issues can be traced down to a root cause.

D.2.6 Phone Support
Phone support is not provided by the BCM support team. This is because support via a written ticket
system is generally more efficient, as it usually allows better tracking, more precision in conveying



D.3 Support Outside Of The Standard Scope—Getting Professional Services 125

meaning, easier information gathering, and a more optimal saving of information for later internal ref-
erence and search queries.

D.3 Support Outside Of The Standard Scope—Getting Professional Services
Support for items outside of the standard scope are considered professional services.

The BCM support team normally differentiates between

• regular support (customer has a question or problem that requires an answer or resolution), and

• professional services (customer asks for the team to do something or asks the team to provide
some service).

Professional services outside of the standard scope of support can be purchased via the NVIDIA
Enterprise Services page at:

https://www.nvidia.com/en-us/support/enterprise/services/

https://www.nvidia.com/en-us/support/enterprise/services/
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