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Preface

Welcome to the OpenStack Deployment Manual for Bright Cluster Manager 9.0.

0.1 About This Manual
This manual is aimed at helping cluster administrators install, understand, configure, and manage ba-
sic OpenStack capabilities easily using Bright Cluster Manager. The administrator is expected to be
reasonably familiar with the Administrator Manual.

0.2 About The Manuals In General
Regularly updated versions of the Bright Cluster Manager 9.0 manuals are available on updated clus-
ters by default at /cm/shared/docs/cm. The latest updates are always online at http://support.
brightcomputing.com/manuals.

• The Installation Manual describes installation procedures for a basic cluster.

• The Administrator Manual describes the general management of the cluster.

• The User Manual describes the user environment and how to submit jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

• The Developer Manual has useful information for developers who would like to program with
Bright Cluster Manager.

• The OpenStack Deployment Manual describes how to deploy OpenStack with Bright Cluster Man-
ager.

• The Edge Manual describes how to deploy Bright Edge with Bright Cluster Manager.

• The Machine Learning Manual describes how to install and configure machine learning capabilities
with Bright Cluster Manager.

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

The manuals constantly evolve to keep up with the development of the Bright Cluster Manager envi-
ronment and the addition of new hardware and/or applications. The manuals also regularly incorporate
customer feedback. Administrator and user input is greatly valued at Bright Computing. So any com-
ments, suggestions or corrections will be very gratefully accepted at manuals@brightcomputing.com.

There is also a feedback form available via Bright View, via the Account icon, , following the
clickpath:

Account→Help→Feedback

http://support.brightcomputing.com/manuals
http://support.brightcomputing.com/manuals
manuals@brightcomputing.com
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0.3 Getting Administrator-Level Support
If the reseller from whom Bright Cluster Manager was bought offers direct support, then the reseller
should be contacted.

Otherwise the primary means of support is via the website https://support.brightcomputing.
com. This allows the administrator to submit a support request via a web form, and opens up a trouble
ticket. It is a good idea to try to use a clear subject header, since that is used as part of a reference tag
as the ticket progresses. Also helpful is a good description of the issue. The followup communication
for this ticket goes via standard e-mail. Section 13.2 of the Administrator Manual has more details on
working with support.

0.4 Getting Professional Services
Bright Computing normally differentiates between professional services (customer asks Bright Comput-
ing to do something or asks Bright Computing to provide some service) and support (customer has a
question or problem that requires an answer or resolution). Professional services can be provided after
consulting with the reseller, or the Bright account manager.

https://support.brightcomputing.com
https://support.brightcomputing.com


1
Quickstart Installation Guide

For OpenStack
This quickstart chapter describes, step-by-step, a basic and quick installation of OpenStack for Bright
Cluster Manager on a cluster that is already running Bright Cluster Manager. Unlike in the main instal-
lation chapter (Chapter 3), the quickstart gives very little explanation of the steps, and is more of a recipe
approach. Following these steps should allow a moderately experienced cluster administrator to get an
operational OpenStack cluster up and running in a fairly standard configuration as quickly as possible.
This would be without even having to read the introductory Chapter 2 of this manual, let alone any of
the rest of the manual.

In this quickstart Chapter 1, the sections 1.1-1.3 are about what needs to be done to quickly get
OpenStack up. The last section of this chapter, section 1.4 then covers tasks to check OpenStack-related
functions of the cluster are working as expected.

1.1 Hardware Specifications
The hardware specifications suggested in this quickstart are a minimum configuration. Less powerful
hardware is not guaranteed to work with Bright OpenStack.

The minimum number of nodes required to create an OpenStack cluster is 3:

• one head node

• one controller/network node

• and one hypervisor node.

Page 17 has a more extensive explanation of the required number of nodes.
The minimal hardware specifications for these node types are indicated by the following table:

Node Type CPUs RAM/GB Hard Drive/GB NICs
Head 4 8 40 2 ∗

Controller 4 8 80 2 ∗

Hypervisor 4 8 80 1 ∗∗

* 2 NICs, one of them connected to the switch where the other compute nodes will be connected and
the other is connected to the external world through which it can access the Internet.

** 1 NIC connected to the switch where the other compute nodes will be connected.

© Bright Computing, Inc.



2 Quickstart Installation Guide For OpenStack

1.2 Prerequisites
The starting point of the quickstart installation for Bright OpenStack requires an up and running Bright
Cluster Manager. A quickstart on how to set up Bright Cluster Manager is given in Chapter 1 of the In-
stallation Manual (http://support.brightcomputing.com/manuals/9.0/installation-manual.pdf)

Bright OpenStack is supported for RHEL7 and derivatives only.
The head node must have access to the base distribution repositories and to the Bright repositories.

This is because cm-openstack-setup—a utility used in section 1.3—must be able to install packages
from these repositories. The head node must therefore be connected to the internet, or it must be able to
access a local mirror of both repositories.

1.3 Installing Bright OpenStack Using cm-openstack-setup

The cm-openstack-setup script is run from the head node and deploys an OpenStack instance. An
example session is shown next. This example is based on using node001 as the controller node, and
node002 as the hypervisor node:

[root@bright90 ~]# cm-openstack-setup
Please wait
Connecting to CMDaemon

If all is well, then a deployment screen is seen. The steps are then:

1. Select the Deploy option from the deployment screen (figure 1.1):

Figure 1.1: Deployment Screen

2. Select node001 as the controller node.(figure 1.2):

Figure 1.2: Setting the controller nodes

3. Set a password for the admin user (figure 1.3):

© Bright Computing, Inc.

http://support.brightcomputing.com/manuals/9.0/installation-manual.pdf


1.3 Installing Bright OpenStack Using cm-openstack-setup 3

Figure 1.3: Setting The admin Password

The admin user is an OpenStack user who is to be created and who is to be given administrator
privileges in the OpenStack instance that is being created by the wizard. The admin user can login
to OpenStack Horizon (an administrative dashboard) when OpenStack is running.

4. Set OpenStack users to be stored in Keystone’s MySQL (figure 1.4):

Figure 1.4: Configuring OpenStack users to be stored within Keystone’s MySQL database

5. Set /cm/shared for Glance (images) storage (figure 1.5):

Figure 1.5: Configuring Glance (image) storage

6. Set NFS for Cinder (volume) storage (figure 1.6):

Figure 1.6: Configuring Cinder (volume) storage

7. Select node002 as the hypervisor node (figure 1.7):

© Bright Computing, Inc.
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Figure 1.7: Configuring the hypervisor nodes

8. Set /cm/shared for Nova (virtual machines) storage (figure 1.8):

Figure 1.8: Configuring the Nova virtual machine disk storage

9. Set VXLAN as the network overlay technology (figure 1.9):

Figure 1.9: Setting VXLAN as the network overlay technology

10. Select the <Create new> option to create a new network for virtual networks in the OpenStack
cluster (figure 1.10):

Figure 1.10: Configuring the creation of a new network for virtual networks

The default values for the new network can be accepted.

11. The OpenStack controller node can also be a network node. The controller node node001 is selected
to be a network node as well for this example (figure 1.11):

© Bright Computing, Inc.



1.3 Installing Bright OpenStack Using cm-openstack-setup 5

Figure 1.11: Setting the network nodes

12. Floating IP addresses and sNAT should be selected for the external network (figure 1.12):

Figure 1.12: Configuring floating IP addresses to be used on the external network

13. The IP address range can then be set up. Many ranges are possible. However, for this example,
the range 192.168.200.100-192.168.200.200 is chosen (figure 1.13):

Figure 1.13: Configuring floating IP address range to be used on the external network

14. For the network for virtual networks, vxlanhostnet, that was set up in figure 1.10, the hypervisor
node should have an interface that connects to it. A shared interface can be set up, and will be an
alias for the bridged interface (figure 1.14):

© Bright Computing, Inc.
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Figure 1.14: Configuring the shared interface on the hypervisor (compute) node

15. Similarly, for vxlanhostnet, the network node should also have an interface that connects to it. A
shared interface can be set up, and as before will be an alias for the bridged interface (figure 1.15):

Figure 1.15: Configuring the shared interface on the network node to the virtual networks

16. The head node and the network/controller node are both connected to the external network of
the cluster. For the external network that the network/controller node is attached to, a dedicated
interface is created (figure 1.16). A name is set for the new interface, for example eth1.

© Bright Computing, Inc.
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Figure 1.16: Configuring the dedicated interface on the network node to the external network

17. The Save config & deploy option (figure 1.17) saves a YAML configuration file of the settings:

Figure 1.17: Saving and deploying the YAML configuration file

Deployment can then begin.

A deployment can take some time. Progress is displayed throughout the deployment procedure, and
the session should end with something like:

Took: 35:48 min.
Progress: 100/100
################### Finished execution for ’Bright OpenStack’, status: completed

Bright OpenStack finished!

1.4 Testing OpenStack Deployment
The example tasks that follow can be used to check if OpenStack has been successfully deployed and
is behaving as expected. All the commands are run from Bright head node, and are a handy set of
relatively common OpenStack-related actions. The commands in this testing section mostly avoid using
the Bright Cluster Manager interface so that the direct OpenStack behavior is visible rather than Bright
Cluster Manager behavior. If a command does not work in a similar way to what is shown, then the
behavior should be investigated further.

© Bright Computing, Inc.
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Download a CirrOS image:

[root@bright90 ~]# wget -P /tmp/images http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-\
x86_64-disk.img

Create an OpenStack test project:

[root@bright90 ~]# source .openstackrc #only needed if no login since deployment
[root@bright90 ~]# openstack project create brighttest
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | |
| domain_id | 0e6cd466a0f849ff8743654940b5f8b8 |
| enabled | True |
| id | 4c522f2ce1ad4cd18d67de341d1481ff |
| is_domain | False |
| name | brighttest |
| parent_id | 0e6cd466a0f849ff8743654940b5f8b8 |
+-------------+----------------------------------+

Create an OpenStack test user

[root@bright90 ~]# openstack user create --project brighttest --password Ch@ngeMe --enable \
brightuser

+--------------------+----------------------------------+
| Field | Value |
+--------------------+----------------------------------+
| default_project_id | 4c522f2ce1ad4cd18d67de341d1481ff |
| domain_id | 0e6cd466a0f849ff8743654940b5f8b8 |
| enabled | True |
| id | df27f5f7b7da457984616651c2aaed71 |
| name | brightuser |
+--------------------+----------------------------------+

Assign an OpenStack role (not to be confused with a Bright role) for the test project and test user:

[root@bright90 ~]# openstack role add --project brighttest --user brightuser member

This step can be skipped for a user in the default project, since the user has the member role as a
default profile setting anyway. The purpose of this step is to assign a profile setting to the user, otherwise
the user cannot carry out any OpenStack functions.

Create the test user in Bright:

[root@bright90 ~]# cmsh
[bright90]% user add brightuser
[bright90->user*[brightuser*]]% set password Ch@ngeMe
[bright90->user*[brightuser*]]% commit

By default the authentication for the Bright user is separate from OpenStack authentication. User
authentication integration with OpenStack is described in detail in section 5.1.

© Bright Computing, Inc.
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Check the autogenerated .openstackrc file for the test user:

[root@bright90 ~]# su - brightuser
Last login: Wed Feb 22 15:23:11 CET 2017 on pts/0
Creating ECDSA key for ssh
[brightuser@bright90 ~]$
[brightuser@bright90 ~]$ tail .openstackrc
export OS_PROJECT_DOMAIN_ID="0e6cd466a0f849ff8743654940b5f8b8"
export OS_USER_DOMAIN_ID="0e6cd466a0f849ff8743654940b5f8b8"
# Public Auth URL (used by users)
export OS_AUTH_URL="http://10.2.62.216:5000/v3"

# For keystone v3
export OS_IDENTITY_API_VERSION=3 # for the ’openstack’ utility to work
export OS_CACERT="/etc/keystone/ssl/certs/ca.pem"
# END AUTOGENERATED SECTION -- DO NOT REMOVE
[brightuser@bright90 ~]$

Set up the account so that .openstackrc is sourced on login: This can be done by editing the .bashrc
file for the account that is being logged into. The account is brightuser in this case, and it can be edited
so that the line

. /home/brightuser/.openstackrc

is placed at the end of .bashrc.
A login as brightuser then automatically sets up the environment so that the commands of the

openstack client agent work.
By default, the environment variable OS_PASSWORD is not set in .openstackrc. This can be set to be

sourced during login by placing the line:

export OS_PASSWORD="Ch@ngeMe"

outside the autogenerated section in the file .openstackrc.
The autogenerated section of the .openstackrc file is the section within the tags:

# BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

and

# END AUTOGENERATED SECTION -- DO NOT REMOVE

The .openstackrc and .openstackrc_password files are described further on page 80.

Create a key pair to be used by the test user: From this point onward, using root privileges is not
required to carry out OpenStack tasks. The user has the required privileges to carry out the actions that
follow due to the member role assignment earlier on.

[brightuser@bright90 ~]$ . .openstackrc #if the file has not yet been sourced
[brightuser@bright90 ~]$ openstack keypair create --public-key\
~/.ssh/id_ecdsa.pub brightuser-key

+-------------+-------------------------------------------------+
| Field | Value |
+-------------+-------------------------------------------------+
| fingerprint | c6:50:f6:9b:c8:ac:7f:5c:e7:ff:54:b7:f7:8e:ec:fd |
| name | brightuser-key |
| user_id | 822c81781cf743c3962eae34e97e3cfe |
+-------------+-------------------------------------------------+
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Create an OpenStack network:

[brightuser@bright90 ~]$ openstack network create brightnet
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
| admin_state_up | UP |
| availability_zone_hints | |
| availability_zones | |
| created_at | 2018-06-07T13:08:17Z |
| description | |
| dns_domain | None |
| id | 71267504-e4d5-43b9-b66d-b8c3a1131d7e |
| ipv4_address_scope | None |
| ipv6_address_scope | None |
| is_default | False |
| is_vlan_transparent | None |
| mtu | 1450 |
| name | brightnet |
| port_security_enabled | False |
| project_id | cbd65ea4c62e4ec7b8491ce3194227be |
| provider:network_type | None |
| provider:physical_network | None |
| provider:segmentation_id | None |
| qos_policy_id | None |
| revision_number | 1 |
| router:external | Internal |
| segments | None |
| shared | False |
| status | ACTIVE |
| subnets | |
| tags | |
| updated_at | 2018-06-07T13:08:17Z |
+---------------------------+--------------------------------------+

Create a subnet for the network:

[brightuser@bright90 ~]$ openstack subnet create --subnet-range 192.168.100.0/24\
--network brightnet brightsubnet

+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
| allocation_pools | 192.168.100.2-192.168.100.254 |
| cidr | 192.168.100.0/24 |
| created_at | 2018-06-07T13:08:19Z |
| description | |
| dns_nameservers | |
| enable_dhcp | True |
| gateway_ip | 192.168.100.1 |
| host_routes | |
| id | e0bccea2-9b35-42e8-9357-7a83b2dcba1e |
| ip_version | 4 |
| ipv6_address_mode | None |
| ipv6_ra_mode | None |
| name | brightsubnet |
| network_id | 71267504-e4d5-43b9-b66d-b8c3a1131d7e |
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| project_id | cbd65ea4c62e4ec7b8491ce3194227be |
| revision_number | 0 |
| segment_id | None |
| service_types | |
| subnetpool_id | None |
| tags | |
| updated_at | 2018-06-07T13:08:19Z |
| use_default_subnet_pool | None |
+-------------------------+--------------------------------------+

Create a router:

[brightuser@bright90 ~]$ openstack router create brightrouter
+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
| admin_state_up | UP |
| availability_zone_hints | |
| availability_zones | |
| created_at | 2018-06-07T13:08:21Z |
| description | |
| distributed | False |
| external_gateway_info | None |
| flavor_id | None |
| ha | False |
| id | 4f927596-59c7-46e6-a293-47fb4c7682ac |
| name | brightrouter |
| project_id | cbd65ea4c62e4ec7b8491ce3194227be |
| revision_number | None |
| routes | |
| status | ACTIVE |
| tags | |
| updated_at | 2018-06-07T13:08:21Z |
+-------------------------+--------------------------------------+

Attach the router to the bright-external-flat-externalnet: (this is the flat network which is bridged
with the interface to the outside)

[brightuser@bright90 ~]$ openstack router set brightrouter --external-gateway\
bright-external-flat-externalnet

Attach the router to the subnet created earlier:

[brightuser@bright90 ~]$ openstack router add subnet brightrouter brightsubnet

Import the CirrOS image from the downloaded CirrOS cloud image:

[brightuser@bright90 ~]$ openstack image create --disk-format qcow2 --container-format bare \
--file /tmp/images/cirros-0.4.0-x86_64-disk.img cirros-0.4.0-x86_64

+------------------+--------------------------------------------------------------------+
| Field | Value |
+------------------+--------------------------------------------------------------------+
| checksum | 443b7623e27ecf03dc9e01ee93f67afe |
| container_format | bare |
| created_at | 2018-06-07T13:08:34Z |
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| disk_format | qcow2 |
| file | /v2/images/3f4d7b8e-d827-4a98-a9aa-ec571856a3bc/file |
| id | 3f4d7b8e-d827-4a98-a9aa-ec571856a3bc |
| min_disk | 0 |
| min_ram | 0 |
| name | cirros-0.4.0-x86_64 |
| owner | cbd65ea4c62e4ec7b8491ce3194227be |
| properties | direct_url=’file:///cm/shared/apps/openstack/glance-images/ |
| 3f4d7b8e-d827-4a98-a9aa-ec571856a3bc’ |
| protected | False |
| schema | /v2/schemas/image |
| size | 12716032 |
| status | active |
| tags | |
| updated_at | 2018-06-07T13:08:34Z |
| virtual_size | None |
| visibility | shared |
+------------------+--------------------------------------------------------------------+

Create a CirrOS VM on the network brightnet:

[brightuser@bright90 ~]$ openstack network list
+---------------------+----------------------------------+---------------------+
| ID | Name | Subnets |
+---------------------+----------------------------------+---------------------+
| 11c2e29b-68ef-45... | bright-external-flat-externalnet | 5a21577a-bdb1-4a... |
| 71267504-e4d5-43... | brightnet | e0bccea2-9b35-42... |
+---------------------+----------------------------------+---------------------+

[brightuser@bright90 ~]$ networkidbrightnet=$(openstack network list -c ID --name brightnet\
-f value)

[brightuser@bright90 ~]$ echo $networkidbrightnet
[brightuser@bright90 ~]$ 71267504-e4d5-43b9-b66d-b8c3a1131d7e
[brightuser@bright90 ~]$ openstack server create --image cirros-0.4.0-x86_64 --flavor m1.xs\
mall --key-name brightuser-key --nic net-id=$networkidbrightnet cirrosvm
+-----------------------------+------------------------------------------------------------+
| Field | Value |
+-----------------------------+------------------------------------------------------------+
| OS-DCF:diskConfig | MANUAL |
| OS-EXT-AZ:availability_zone | |
| OS-EXT-STS:power_state | NOSTATE |
| OS-EXT-STS:task_state | scheduling |
| OS-EXT-STS:vm_state | building |
| OS-SRV-USG:launched_at | None |
| OS-SRV-USG:terminated_at | None |
| accessIPv4 | |
| accessIPv6 | |
| addresses | |
| adminPass | amDodTX2u8DU |
| config_drive | |
| created | 2018-06-07T13:09:59Z |
| flavor | m1.xsmall (81b7d8db-2bc6-4745-beb9-5d6f84f15419) |
| hostId | |
| id | 9488aa29-f765-478a-a742-16cfe7481c57 |
| image | cirros-0.4.0-x86_64 (3f4d7b8e-d827-4a98-a9aa-ec571856a3bc) |
| key_name | brightuser-key |
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| name | cirrosvm |
| progress | 0 |
| project_id | cbd65ea4c62e4ec7b8491ce3194227be |
| properties | |
| security_groups | name=’default’ |
| status | BUILD |
| updated | 2018-06-07T13:09:59Z |
| user_id | 822c81781cf743c3962eae34e97e3cfe |
| volumes_attached | |
+-----------------------------+------------------------------------------------------------+

Create a floating IP:

[brightuser@bright90 ~]$ openstack floating ip create bright-external-flat-externalnet
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
| created_at | 2018-06-07T13:10:31Z |
| description | |
| fixed_ip_address | None |
| floating_ip_address | 192.168.200.12 |
| floating_network_id | 11c2e29b-68ef-4512-8fa9-35fe14596c1b |
| id | e4710e3b-8b91-4560-aca2-9bb4c282b3d5 |
| name | 192.168.200.12 |
| port_id | None |
| project_id | cbd65ea4c62e4ec7b8491ce3194227be |
| revision_number | 0 |
| router_id | None |
| status | DOWN |
| updated_at | 2018-06-07T13:10:31Z |
+---------------------+--------------------------------------+

Attach the floating IP to the CirrOS VM:

[brightuser@bright90 ~]$ floatingipflatexternalnet=$(openstack floating ip list -c\
"Floating IP Address" -f value)

[brightuser@bright90 ~]$ echo $floatingipflatexternalnet
192.168.200.12
[brightuser@bright90 ~]$ openstack server add floating ip cirrosvm $floatingipflatexternalnet

Enable ssh port 22 in the default security group:

[brightuser@bright90 ~]$ openstack security group rule create --dst-port 22 default
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
| id | 9f10223b-4cdf-4e7b-aa72-879c85710bb8 |
| ip_protocol | tcp |
| ip_range | 0.0.0.0/0 |
| parent_group_id | 5affac60-34b8-4217-8670-c82a8c8e2d88 |
| port_range | 22:22 |
| remote_security_group | |
+-----------------------+--------------------------------------+
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Test ssh access to the CirrOS VM:
[brightuser@bright90 ~]$ ssh cirros@$floatingipflatexternalnet
Warning: Permanently added ’192.168.200.12’ (RSA) to the list of known hosts.
$ hostname
cirrosvm
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2
Introduction

OpenStack is an open source implementation of cloud services. It is currently (2019) undergoing rapid
development, and its roadmap is promising.

An implementation of OpenStack, based on the OpenStack Stein release (https://www.openstack.
org/software/Stein/) is integrated into the Bright Cluster Manager 9.0 for OpenStack edition. The
integration is supported for RHEL 7.x and CentOS 7.x.

The implementation of OpenStack is usable and stable for regular use in common configurations. In
a complex and rapidly-evolving product such as OpenStack, the number of possible unusual configura-
tion changes is vast. As a result, the experience of Bright Computing is that Bright Cluster Manager can
sometimes run into OpenStack issues while implementing the less common OpenStack configurations.

As one of the supporting organizations of OpenStack, Bright Computing is committed towards
working together with OpenStack developers to help Bright customers resolve any such issue. The
end result after resolving the issue means that there is a selection pressure that helps evolve that as-
pect of OpenStack, so that it becomes convenient and stable for regular use. This process benefits all
participants in the OpenStack software ecosystem.

OpenStack consists of subsystems, developed as upstream software projects1. A software project
provides capabilities to OpenStack via the implementation of a backend service, and thereby provides
an OpenStack service. The OpenStack service can thus be implemented by interchangeable backends,
which projects can provide.

For example, the OpenStack Cinder project provides block storage capabilities to OpenStack via the
implementation of, for example, NFS or Ceph block storage. The OpenStack’s block storage service
can therefore be implemented by the interchangable backends of the NFS or Ceph projects. Indeed,
the entire Cinder project itself can be replaced by a Cinder rewrite from scratch. As far as the user is
concerned the end result is the same.

An analogy to OpenStack interchangable subsystem backends provided by projects, is operating
system interchangeable subsystem backends , as provided by distributions packages:

An operating system distribution consists of subsystems, maintained as packages and their depen-
dencies. Some subsystems provide capabilities to the operating system via the implementation of a
backend service. The service can often be implemented by interchangeable backends for the subsystem.

A specific example for an operating system distribution would be the mailserver subsystem that
provides mail delivery capabilities to the operating system via the implementation of, for example,
Postfix or Sendmail. The mailserver package and dependencies can therefore be implemented by the
interchangeable backends of the Postfix or Sendmail software. As far as the e-mail user is concerned,
the end result is the same.

The project that implements the backend can also change, if the external functionality of the project
remains the same.

Some of the more common OpenStack projects are listed in the following table:

1The term projects must not be confused with the term used in OpenStack elsewhere, where projects, or sometimes tenants,
are used to refer to a group of users
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Service OpenStack Project Managed By Bright

Compute Nova X

Object Storage Swift depends∗

Block Storage Cinder X

Networking Neutron X

Dashboard Horizon X

Identity Service Keystone X

Orchestration Heat X

Telemetry Ceilometer ×
Database Service Trove ×
Image Service Glance X

* Bright Cluster Manager does not manage the OpenStack reference
implementation for Swift object storage, but does manage a replace-
ment, the API-compatible Ceph RADOS Gateway implementation.

Not all of these projects are integrated, or needed by Bright Cluster Manager for a working Open-
Stack system. For example, Bright Cluster Manager already has an extensive monitoring system and
therefore does not for now implement Ceilometer, while Trove is ignored for now until it becomes
more popular.

Projects that are not yet integrated can in principle be added by administrators on top of what is
deployed by Bright Cluster Manager, even though this is not currently supported or tested by Bright
Computing. Integration of the more popular of such projects, and greater integration in general, is
planned in future versions of Bright Cluster Manager.

This manual explains the installation, configuration, and some basic use examples of the OpenStack
projects that have so far been integrated with Bright Cluster Manager.
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OpenStackRHEL7 And Derivatives Only
Bright OpenStack is supported for RHEL7 and derivatives only.

To Use Ceph, It Must Be Installed Before Deploying OpenStack
If OpenStack is to access Ceph for storage purposes, for any combination of block storage (Cinder), im-
age storage (Glance), ephemeral storage (Nova), or object storage (RADOS Gateway), then the Ceph
components must first be installed with cm-ceph-setup (Chapter 4) before starting the OpenStack in-
stallation procedure covered here.

Hardware Requirement For Running OpenStack
The optimum hardware requirements for OpenStack depend on the intended use. A rule of thumb is
that the number of cores on the compute nodes determines the number of virtual machines.

OpenStack itself can run entirely on one physical machine for limited demonstration purposes.
However, if running OpenStack with Bright Cluster Manager, then a standard reference architecture

used by Bright Computing consists of the following three types of nodes:

• A head node.

• Several regular nodes that can be used as hypervisor hosts. Regular nodes (Bright Cluster Manager
terminology) are also commonly called compute nodes, and are typically multicore. Running
guest VMs is therefore a suitable use for regular nodes.

• 3 nodes that combine OpenStack controller and OpenStack network node functionality.

For a standard reference configuration, minimal hardware specifications for useful demonstration
purposes are:

• Head node: 8GB RAM, 4 cores and two network interfaces. In a standard configuration the head
node does not run OpenStack services, other than the OpenStack-associated Haproxy service.

• Regular nodes: 2GB RAM per core. Each regular node has a network interface.

– In larger clusters, it may be a good idea to separate the OpenStack controller functionality
from networking functionality. If a regular node is configured as a controller, then it must
have at least 8GB RAM.

• 3 OpenStack controller/network nodes: 8GB RAM and two network interfaces. 3 nodes is
the minimum needed to provide OpenStack high availability via Galera cluster for OpenStack
databases.

The controller/network nodes can be separated from each other, but it is usually convenient to
keep them together. Bright Cluster Manager OpenStack edition therefore uses combined con-
troller/network nodes by default.
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The database for the controller nodes cannot run with two OpenStack controllers. If the admin-
istrator would like use something other than the standard reference controller configuration of
3 controllers, then it is possible to run with just one OpenStack controller, without OpenStack
database high availability.

3 controllers allows one to be rebooted while the other two provide quorum. However, rebooting
two at the same time in such a configuration risks data loss.

More than three controllers are also allowed, in a high-availability configuration.

Setting the datanode property of controller nodes to yes (page 185 of the Administrator Manual) is
recommended, so that a FULL install of a controller requires some effort to carry out.

The OpenStack controller/network nodes provide:

– OpenStack API endpoint services for Nova, Cinder, Keystone, Neutron, Glance, and Heat.

– Horizon Dashboard. This is a Django-based web service.

– RabbitMQ nodes, deployed as a RabbitMQ cluster. This is used in the OpenStack back-
end for internal communication within an OpenStack service. For example, such as be-
tween nova-api, nova-conductor, nova-scheduler, nova-compute, or such as between
neutron-server and the Neutron L2 agents.

– If Ceph is used, then Ceph monitor nodes can also be used as the controller nodes, in order
to provide high availability for the Ceph monitor node data. In this case, more than 8GB of
memory is needed for the controller nodes.

An ethernet fabric is used as a terminology to talk about treating the network architecture as being
based on a giant flat logical OSI Layer 2-style network connected to a single switch, with point-to-
point routing, rather than the traditional OSI 2/3 mixture with a hierarchy of access, distribution,
and core routers.

The reference architecture networking runs on an ethernet fabric for the:

– internal network of the cluster, which is also the OpenStack management network.

– V(X)LAN network of the cluster, which is used by OpenStack virtual networks.

If Ceph is also deployed, then an ethernet fabric is assumed for:

– The public Ceph network.

– The Ceph replication network.

– An optional external network that is used to access virtual machines in OpenStack via Float-
ing IPs.

Hard drive requirements for minimal systems can remain as for those required for a regular Bright
Cluster Manager cluster. For production systems, these minimal requirements are however unlikely to
work for very long. Storage requirements should therefore be considered with care according to the use
case. If necessary, Bright Computing can provide advice on this.

Running OpenStack under Bright Cluster Manager with fewer resources than suggested in the pre-
ceding is possible but may cause issues. While such issues can be resolved, they are usually not worth
the time spent analyzing them, due to the great number of possible configurations. It is better to run
with ample resources, and then analyze the resource consumption in the configuration that is used, to
see what issues to be aware of when scaling up to a production system.

Running a Bright Cluster Manager OpenStack cluster that varies greatly from the reference cluster is
also possible. If necessary, Bright Computing can provide advice on this.
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Ways Of Installing OpenStack
The version of OpenStack that is integrated with Bright Cluster Manager can be installed in the follow-
ing two ways:

• Using the web-based Setup wizard menu option in Bright View (section 3.1), accessed via the
OpenStack resource, if OpenStack has not already been installed. This is the recommended instal-
lation method.

• Using the text-based cm-openstack-setup utility (section 3.2). The utility is a part of the standard
cluster-tools package.

The priorities that the package manager uses are expected to be at their default settings, in order for
the installation to work.

By default, deploying OpenStack installs the following projects: Keystone, Nova, Cinder, Glance,
Neutron, Heat and Horizon (the dashboard).

If Ceph is used, then Bright also deploys RADOS Gateway as a Swift-API-compatible object stor-
age system. Using RADOS Gateway instead of the reference Swift object storage is regarded in the
OpenStack community as good practice, and is indeed the only object storage system that Bright Clus-
ter Manager manages for OpenStack. Alternative backend storage is possible at the same time as object
storage, which means, for example, that block and image storage are options that can be used in a cluster
at the same time as object storage.

3.1 Installation Of OpenStack From Bright View
Using Bright View is the preferred way to install OpenStack. A prerequisite for running it is that the head
node should be able to connect to the distribution repositories, or alternatively the head node should
have OpenStack RPMs preinstalled on it. Preinstalled OpenStack RPMs can be configured as part of
the head node installation from the ISO, if the ISO that is used the Bright Cluster Manager OpenStack
edition.

Some suggestions and background notes These are given here to help the administrator understand
what the setup configuration does, and to help simplify deployment. Looking at these notes after a
dry-run with the wizard will probably be helpful.

• A VXLAN (Virtual Extensible LAN) network is similar to a VLAN network in function, but has
features that make it more suited to cloud computing.

– If VXLANs are to be used, then the wizard is able to help create a VXLAN overlay network for
OpenStack tenant networks.
An OpenStack tenant network is a network used by a group of users allocated to a particular
virtual cluster.
A VXLAN overlay network is a Layer 2 network “overlaid” on top of a Layer 3 network.
The VXLAN overlay network is a virtual LAN that runs its frames encapsulated within UDP
packets over the regular TCP/IP network infrastructure. It is very similar to VLAN technol-
ogy, but with some design features that make it more useful for cloud computing needs. One
major improvement is that around 16 million VXLANs can be made to run over the under-
lying Layer 3 network. This is in contrast to the 4,000 or so VLANs that can be made to run
over their underlying Layer 2 network, if the switch port supports that level of simultaneous
capability.
By default, if the VXLAN network and VXLAN network object do not exist, then the wizard
helps the administrator create a vxlanhostnet network and network object (section 3.1.10).
The network is attached to, and the object is associated with, all non-head nodes taking part
in the OpenStack deployment. If a vxlanhostnet network is pre-created beforehand, then the

© Bright Computing, Inc.



20 OpenStack Installation

wizard can guide the administrator to associate a network object with it, and ensure that all
the non-head nodes participating in the OpenStack deployment are attached and associated
accordingly.

– The VXLAN network runs over an IP network. It should therefore have its own IP range,
and each node on that network should have an IP address. By default, a network range of
10.161.0.0/16 is suggested in the VXLAN configuration screen (section 3.1.10, figure 3.12).

– The VXLAN network can run over a dedicated physical network, but it can also run over
an alias interface on top of an existing internal network interface. The choice is up to the
administrator.

– It is possible to deploy OpenStack without VXLAN overlay networks if user instances are
given access to the internal network. Care must then be taken to avoid IP addressing conflicts.

• When allowing for Floating IPs and/or enabling outbound connectivity from the virtual machines
(VMs) to the external network via the network node, the network node can be pre-configured
manually according to how it is connected to the internal and external networks. Otherwise, if
the node is not pre-configured manually, the wizard then carries out a basic configuration on the
network node that

– configures one physical interface of the network node to be connected to the internal network,
so that the network node can route packets for nodes on the internal network.

– configures the other physical interface of the network node to be connected to the external
network so that the network node can route packets from external nodes.

The wizard asks the user several questions on the details of how OpenStack is to be deployed. From
the answers, it generates an YAML document with the intended configuration. Then, in the back-end,
largely hidden from the user, it runs the text-based cm-openstack-setup script (section 3.2) with this
configuration on the active head node. In other words, the wizard can be regarded as a GUI front end
to the cm-openstack-setup utility.

The practicalities of executing the wizard: The explanations given by the wizard during its execution
steps are intended to be verbose enough so that the administrator can follow what is happening.

The wizard is accessed via the OpenStack resource in the navigation pane of Bright View (figure 3.1).
Launching the wizard is only allowed if the Bright Cluster Manager license (Chapter 4 of the Installation
Manual) entitles the license holder to use OpenStack.

Figure 3.1: The Setup wizard Menu Option In Bright View’s OpenStack Resource

The wizard runs through the screens in sections 3.1.1-3.1.14, described next.
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3.1.1 OpenStack Setup Wizard Overview

Figure 3.2: OpenStack Setup Wizard Overview Screen

The main overview screen (figure 3.2) gives an overview of how the wizard runs.
The main overview screen also asks for input on if the wizard should run in step-by-step mode, or

in express mode.

• Step-by-step mode asks for many explicit configuration options, and can be used by the adminis-
trator to become familiar with the configuration options.

• Express mode asks for very few configuration options, and uses mostly default settings. It can be
used by an administrator that would like to try out a relatively standard configuration.

During the wizard procedure, buttons are available at the bottom of the screen. Among other op-
tions, in the main overview screen, the buttons allow a previously-saved configuration to be loaded, or
allow the current configuration to be saved. The configurations are loaded or saved in a YAML format.

On clicking the Next button:

• If the express mode has been chosen, then the wizard goes through the credentials screen (sec-
tion 3.1.2), after which it skips ahead to the Summary screen (section 3.1.14).

• Otherwise, if the step-by-step mode has been chosen, then each time the Next button is clicked,
the wizard goes to the next screen in the series of in-between steps. Each screen allows options to
be configured.

The steps are described in the following sections 3.1.2-3.1.14.
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3.1.2 OpenStack admin User Screen

Figure 3.3: OpenStack admin User Screen

The OpenStack credentials screen (figure 3.3) allows the administrator to set the password for the Open-
Stack admin user. The admin user is how the administrator logs in to the Dashboard URL to manage
OpenStack when it is finally up and running. If express mode has been chosen, then the Next button
has the wizard skip ahead to the Summary screen (section 3.1.14).

3.1.3 OpenStack Software Image Selection

Figure 3.4: OpenStack Software Image Selection Screen

The OpenStack software image selection screen (figure 3.4) lets the administrator select the software
image that is to be modified and used on the nodes that run OpenStack.

The administrator can clone the default-image before running the wizard and modifying the image,
in order to keep an unmodified default-image as a backup.

The administrator should take care not to move a node with OpenStack roles to another category
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that contains a different image without OpenStack roles. OpenStack nodes behave quite differently
from non-OpenStack nodes.

3.1.4 User Management

Figure 3.5: OpenStack User Management Screen

The User Management screen (figure 3.5) allows the administrator to select how OpenStack users are to
be managed. Choices available are:

• Store in a MySQL database managed by Keystone, and by default isolate users from the non-
OpenStack part of the cluster.

Thus, in this case, the OpenStack users are managed by Keystone, and isolated from the LDAP
users managed by Bright Cluster Manager.

• Store in a MySQL database managed by Keystone, and use PAM (NSS). Further details on this can
be found in the background note on page 74.

• Use Bright Cluster Manager LDAPS authentication. Further details on this can be found in the
background note on page 74.

Keystone can also be set to authenticate directly with an external LDAP or AD server, but this re-
quires manual configuration in Bright Cluster Manager. In cmsh this configuration can be done as fol-
lows:

Example

[root@bright90 ~]# cmsh
[bright90]% openstack settings default
[bright90->openstack[default]->settings]% authentication
[bright90->...->settings->authentication]% set custompublicauthhost <external authentication server>
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3.1.5 Glance VM Image Storage

Figure 3.6: OpenStack Glance VM Image Storage Screen

The Glance VM Image Storage screen (figure 3.6) allows the administrator to select where virtual ma-
chine images are stored. Choices are:

• As Ceph-RBD volumes

• Within an NFS image directory, using the internal NFS. This is using a directory under /cm/shared

• Within an NFS image directory, using an external NAS/NFS. The share location, mount point and
mount options are prompted for if this choice is selected.

• Within a GPFS image directory, mounted via /etc/fstab. The share location, mount point, and
mount options are prompted for if this choice is selected.

• Using a remote mount from another network file system. The mount point is prompted for if this
choice is selected.

• As images stored locally on the glance-api nodes.
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3.1.6 Cinder Volume Storage

Figure 3.7: OpenStack Cinder Volume Storage Screen

The Cinder Volume Storage screen (figure 3.7) allows the administrator to choose how Cinder volumes
are to be stored. Options are:

• As Ceph-RBD volumes

• Within an NFS directory, using the internal NFS. This is using a directory under /cm/shared

• Within a GPFS volume. The mount point is prompted for if this choice is selected.

3.1.7 Nova VM Disks Storage

Figure 3.8: OpenStack Nova VM Disks Storage Screen

The Nova VM Disks Storage screen (figure 3.8) allows the administrator to choose how Nova hypervi-
sors store the root and ephemeral disks of VMs. Options are:

• Ceph: Stored locally under /var/lib/nova/instances
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• An NFS directory, using the internal NFS. This is using a directory served from /cm/shared as
/var/lib/nova/instances.

• An NFS directory, using an external NAS/NFS. The share location, and mount options are
prompted for if this choice is selected.

• A GPFS directory, mounted via /etc/fstab. The directory is served as /var/lib/nova/instances

• A remote mount from another network file system. The mount point is prompted for if this choice
is selected.

• A local filesystem on the hypervisor itself, under /var/lib/nova. This is fast, but does not support
live migration.

3.1.8 OpenStack Nodes Selection

Figure 3.9: OpenStack Nodes Selection

The OpenStack Nodes Selection screen allows the administrator to toggle whether a node takes on the
function type of hypervisor node, network node, or controller node.

• A hypervisor node hosts virtual nodes. Typically a hypervisor node has many cores. The more
hypervisors there are, the more VMs can be run.
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• A network node runs DHCP and legacy routing services. At least one is required, and two are
recommended for high availability DHCP and routing for production systems. In the reference
architecture (page 17) the set of network nodes is the same as the set of controller nodes. This
means that in the reference architecture case each of the controller nodes is running on a machine
which is also running a network node within that same machine, which means the resulting hybrid
machine can be called a controller/network node. There are therefore 3 controller/network nodes
in the reference architecture.

• A controller node runs RabbitMQ services. At least one is required, and three are recommended
for high-availability production systems.

Each of these three function types must exist at least once in the cluster. Each node can have multiple
functions types, and each function type can be allocated to many nodes. Combining hypervisor nodes
with controller nodes is however usually not recommended, due to the high CPU load from controller
services.

Within the OpenStack Nodes Selection screen, clicking on the HOSTNAME column makes it possible
to filter the list of nodes that is displayed (figure 3.10) so that it is easier to tick the correct checkboxes in
large clusters.

Figure 3.10: OpenStack Nodes Selection Filtering

When the OpenStack installation wizard completes, and configuration is deployed, the OpenStack
nodes are all set to reboot by default. However, the OpenStack Nodes Selection screen also allows the
rebooting of just the controller nodes, which is often sufficient.

When a node reboots, it can take some time to be provisioned. The time to wait for reboot is config-
urable in the OpenStack Nodes Selection screen.
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3.1.9 OpenStack Internal Network Selection Screen

Figure 3.11: OpenStack Internal Network Selection

The OpenStack Internal Network Selection screen allows the administrator to set the main internal
network of the OpenStack nodes. This network is the network that is used to host Bright-managed
instances and is also the network that user-created instances can connect to.

By default for a default Bright Cluster Manager installation, internalnet is used. A subset of the
network is configured for OpenStack use by setting appropriate IP ranges.
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3.1.10 OpenStack Network Isolation And VLAN/VXLAN Configuration

Figure 3.12: OpenStack Network Isolation And VXLAN Configuration Screen

The OpenStack Network Isolation And VXLAN Configuration screen allows the administrator to de-
cide on the network isolation technology that is to be used for the private network of OpenStack user
instances. The options, selectable by buttons, are either VLANs or VXLANS. Accordingly, VLAN screen
options or closely similar VXLAN screen options, are then displayed. VXLANs are recommended by
default due to their greater ease of use.

VLAN Screen Options
The VLAN range defines the number of user IP networks that can exist at the same time. This must
match the VLAN ID configuration on the switch, and can be up to around 4000.

In the VLAN configuration screen options a network must be selected by:

• either choosing an existing network that has already been configured in Bright Cluster Manager,
but not internalnet

• or it requires specifying the following, in order to create the network:

– A new network Name: default: vlanhostnet
– VLAN Range start: default: 5
– VLAN Range end: default: 100
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VXLAN Screen Options
The VXLAN range defines the number of user IP networks that can exist at the same time. While the
range can be set to be around 16 million, it is best to keep it to a more reasonable size, such as 50,000,
since a larger range slows down Neutron significantly.

An IP network is needed to host the VXLANs and allow the tunneling of traffic between VXLAN
endpoints. This requires

• either choosing an existing network that has already been configured in Bright Cluster Manager,
but not internalnet

• or it requires specifying the following, in order to create the network:

– A new network Name: default: vxlanhostnet

– Base address: default: 10.161.0.0

– Netmask bits: default: 16

In the VXLAN configuration options the following extra options are suggested, with overrideable
defaults as listed:

• VXLAN Range start: default: 1

• VXLAN Range end: default: 50000

VXLAN networking uses a multicast address to handle broadcast traffic in a virtual network. The
default multicast IP address that is set, 224.0.0.1, is unlikely to be used by another application. How-
ever, if there is a conflict, then the address can be changed using the CMDaemon OpenStackVXLANGroup
directive (Appendix C, page 723 of the Administrator Manual).

3.1.11 OpenStack Network Isolation interface For Network And Hypervisor Nodes

Figure 3.13: OpenStack Network Isolation interface For Network And Hypervisor Nodes Screen

The Network Isolation interface For Network And Hypervisor Nodes screen (figure 3.13) sets the
network that will be used for the network nodes and hypervisor nodes. These are classed according to
whether the network will be shared or dedicated, and the nodes can be text-filtered by column, which
is useful when dealing with a large number of nodes.

© Bright Computing, Inc.



3.1 Installation Of OpenStack From Bright View 31

3.1.12 OpenStack Inbound External Traffic

Figure 3.14: OpenStack Inbound External Traffic Screen

The OpenStack Inbound External Traffic screen (figure 3.14) allows the administrator to set float-
ing IP addresses. A floating IP address is an address on the external network that is associated with
an OpenStack instance. The addresses “float” because they are assigned from an available pool of ad-
dresses, to the instance, when the instance requests an address.

3.1.13 OpenStack External Network Interface For Network Node

Figure 3.15: OpenStack External Network Interface For Network Node Screen
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The OpenStack External Network Interface For Network Node screen (figure 3.15) allows the ad-
ministrator to provide routing between the external network and the network nodes. It can be set up on
a dedicated interface. If no spare interface is available on the network node, then if the switch supports
it, a tagged VLAN interface can be configured instead.

The nodes can be text-filtered by column, which is useful when dealing with a large number of
nodes.

3.1.14 Summary

Figure 3.16: Summary Screen

Viewing And Saving The Configuration
The summary screen (figure 3.16) gives a summary of the configuration. The configuration can be
changed in Bright View by clicking on a value displayed in the summary screen. Clicking opens the
screen in the wizard that is associated with setting that value.
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The full configuration is kept in an YAML file, which can be viewed by clicking on the Show Config
button. The resulting editable text is shown in figure 3.17.

Figure 3.17: OpenStack Configuration Screen

The configuration can be saved with the Save button of figure 3.17.

Using A Saved Configuration And Deploying The Configuration
Using a saved YAML file is possible.

• The YAML file can be used as the configuration starting point for the text-based
cm-openstack-setup utility (section 3.2), if run as:

[root@bright90~]# cm-openstack-setup -c <YAML file>

• Alternatively, the YAML file can be deployed as the configuration by launching the Bright View
wizard, and then clicking on the Load config button of the first screen (figure 3.2). After loading
the configuration, a Deploy button appears.

Clicking the Deploy button that appears in figure 3.2 after loading the YAML file, or clicking the
Deploy button of figure 3.16, sets up OpenStack in the background. The direct background progress
is hidden from the administrator, and relies on the text-based cm-openstack-setup script (section 3.2).
Some log excerpts from the script can be displayed within a Show Log section (figure 3.18).
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Figure 3.18: OpenStack Deployment Progress Screen

At the end of its run, the cluster has OpenStack set up and running in an integrated manner with
Bright Cluster Manager.

The administrator can now configure the cluster to suit the particular site requirements.

3.2 Installation Of OpenStack From The Shell
The Bright View OpenStack installation (section 3.1) actually uses the cm-openstack-setup utility dur-
ing deployment, only the utility is normally invisible. The installation can also be done directly with
cm-openstack-setup. The cm-openstack-setup utility is a less-preferred alternative to the installation
of OpenStack from Bright View.

The cm-openstack-setup utility is a part of the standard cluster-tools package. Details on its use
are given in its manual page (man (8) cm-openstack-setup). When run, the regular nodes that are to
run OpenStack instances are rebooted by default at the end of the dialogs, in order to deploy them.

A prerequisite for running cm-openstack-setup is that the head node should be connected to the
distribution repositories.
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A sample cm-openstack-setup wizard session is described next, starting from section 3.2.1. The ses-
sion runs on a cluster consisting of one head node and one regular node. The wizard can be interrupted
gracefully with a <ctrl-c>.

3.2.1 Start Screen

Figure 3.19: Start Screen

The start screen (figure 3.19) lets the administrator:

• deploy Bright Cluster Manager OpenStack.

• remove Bright Cluster Manager’s OpenStack if it is already on the cluster.

• exit the installation.

Removal removes OpenStack-related database entries, roles, networks, virtual nodes, and interfaces.
Images and categories related to OpenStack are however not removed.

A shortcut to carry out a removal from the shell prompt is to run cm-openstack-setup --remove.
The preventremoval setting can be set to no for this to work:

Example

[root@bright90 ~]# cmsh
[bright90]% openstack
[bright90->openstack[default]]% set preventremoval no; commit; quit
[root@bright90 ~]# cm-openstack-setup --remove
Please wait...
Connecting to CMDaemon
###### WARNING: Setup will attempt to remove the following objects:
...

3.2.2 Controller Node Selection

Figure 3.20: Controller Nodes Selection

The controller nodes selection screen (figure 3.20) allows the selection of nodes on which the following
services are to run:
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• the OpenStack database service

• Heat (orchestration)

• Nova (compute)

• Neutron (networking)

• Swift (object storage)—not deployed by default in Bright Cluster Manager OpenStack edition

• Cinder (block storage)

• Keystone (identity)

• Glance (image service)

Each controller node is required to have a minimum of 2 cores, and a minimum of 8GB of RAM.

3.2.3 Setting The Cloud admin Password

Figure 3.21: Cloud admin Password Screen

The OpenStack cloud admin password screen (figure 3.21) prompts for a password to be entered, and
then re-entered, for the soon-to-be-created admin user of OpenStack. The admin user is mandatory. The
password can be changed after deployment.

3.2.4 User Management Configuration Of OpenStack Users

Figure 3.22: User Management Configuration Of OpenStack Users Screen

The user management configuration of OpenStack users screen (figure 3.22) allows the administrator to
choose how OpenStack users are to be managed. Options are:

• Managing via Keystone MySQL (default domain)

• Managing via PAM(NSS)

• Using LDAPS as provided by Bright Cluster Manager
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Managing via Keystone’s MySQL means that OpenStack users, in the default OpenStack domain,
are independent of the pre-existing Bright Cluster Manager users.

Managing via PAM(NSS) additionally allows Keystone to use PAM as an identity backend for addi-
tional domains. For external identity authentication, PAM(NSS) can be run in a read-only mode.

Managing via Bright Cluster Manager’s LDAPS means that OpenStack users, stored in the default
OpenStack domain, and independent of the pre-existing Bright Cluster Manager users, are used, and
Bright Cluster Manager users are also visible to Keystone, via a read-only access.

3.2.5 Storage Options, Including Ceph
This section (3.2.5) covers the Ncurses cm-openstack-setup wizard configuration of storage options,
including Ceph.

Glance VM Image Storage

Figure 3.23: Image Storage Options

The image storage screen (figure 3.23) can be used to set the virtual machine storage used.
The storage options are:

• Ceph - This is only available as an image storage option, if set up as in Chapter 4.

• /cm/shared - The standard Bright Cluster Manager shared NFS directory

• NFS/NAS - An external NAS NFS directory

• GPFS - A GPFS mount as defined in the /etc/fstab configuration.

• Remote mount - An existing remote network mount

• Local - Images are stored locally on Glance API nodes.

• Other - to be configured later (skips this screen)

• More - Other backends that are not listed in this menu
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Cinder Volume Storage

Figure 3.24: Volume Storage Options

The OpenStack Cinder volume storage screen (figure 3.24) allows the setting of persistent block volume
read and write storage.

The storage options are:

• Ceph - This is only available as a volume storage option, if set up as in Chapter 4. If set, it uses
Ceph’s RBD volume driver, and configures a “volume backup” driver to use Ceph.

• NFS - Storage is done on /cm/shared using the Cinder reference driver. This is not recommended
for large-scale production use.

• None - to be configured later (skips this screen)

Root And Ephemeral Device Storage With Ceph

Figure 3.25: Root And Ephemeral Device Storage

Data storage to a root or ephemeral device with Ceph can be enabled by the administrator by using the
OpenStack root and ephemeral device storage screen (figure 3.25).
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Ceph Object Gateway (Ceph RADOS Gateway)

Figure 3.26: Root And Ephemeral Device Storage With Ceph

The Ceph RADOS gateway screen (figure 3.26) lets the administrator set the Ceph RADOS gateway
service to run when deployment completes.

3.2.6 Hypervisor Nodes Selection For OpenStack

Figure 3.27: Hypervisors To Be Used For OpenStack

The hypervisor nodes selection screen (figure 3.27) lets the administrator set the nodes that will be
hypervisors. These are the machines that host the compute nodes, and which are assigned the
OpenStackNovaCompute role. The set of nodes can be changed on a cluster later on, by managing the
node list of the OpenStackHyperVisors configuration overlay.

3.2.7 VM Root/Ephemeral Disk Storage

Figure 3.28: Setting Root/Ephemeral VM Disk Storage Location
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The VM root/ephemeral disk storage screen (figure 3.28) allows the administrator to tell Nova where to
store the root/ephemeral disks. The options are

• Ceph: This option is available if Ceph has been configured. By default, /var/lib/nova/instances
is used.

• /cm/shared: The disks can be stored on the hypervisor nodes under the NFS shared directory in
/var/lib/nova/instances

• NFS/NAS: An external NFS/NAS host can be used

• GPFS: The disks can be stored on the hypervisor nodes via a GPFS directory specified for /var/
lib/nova/instances in /etc/fstab

• Local: The disks can be stored on the local filesystem of the hypervisor. This is avoids network
lag, but also does not permit migration.

• Remote mount: A path to an existing remount mount point.

• Other: Skip (configure later maybe)

• More: Suggests alternatives

3.2.8 Network Overlay Technology Used For OpenStack

Figure 3.29: Network Overlay Used For OpenStack

The network overlay technology screen (figure 3.29) allows the administrator to choose what kind of
network isolation type should be set for the user networks.

3.2.9 Setting The Virtual Network Name

Figure 3.30: Creating The Virtual Network

The virtual network is the hosting network for OpenStack end user networks. The virtual networks
screen (figure 3.30) allows the administrator to configure a virtual network to host the end user net-
works. By default, if needed, the network to be created is named vlanhostnet for a VLAN network,
and vxlanhostnet for a VXLAN network. An existing VXLAN or VLAN network can be selected.
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3.2.10 Setting The Network Details For The Virtual Network

Figure 3.31: Setting The Network Details Of The Virtual Network

The virtual network is the hosting network for end user networks. If it does not have its details config-
ured as yet, then the network details screen (figure 3.31) allows the administrator to set the base address
and netmask bits for the virtual network.

3.2.11 Setting The Network Nodes

Figure 3.32: Setting The Network Nodes

The network node selection screen (figure 3.32) allows the administrator to set network nodes. The
network nodes run OpenStack networking components from OpenStack neutron. A reasonable rule-of-
thumb is to have 1 network node per 10 hypervisor nodes. Network nodes and compute nodes can be
combined.

To use Floating IPs or sNAT, network nodes must be connected to the external network.
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3.2.12 Floating IPs And sNAT

Figure 3.33: Floating IPs

The floating IPs screen (figure 3.33) lets the administrator allow floating IPs to be configured on the
external network. This allows instances within OpenStack to be accessed from the external network.
Floating IPs can also be configured after OpenStack has been set up.

A note is shown in the dialog if the network node does not have an external network interface.
Creating the external network interface is possible at this point or later, using cmsh for example.

3.2.13 External Network Floating IP Range

Figure 3.34: External Network: Floating IP Range

If floating IPs are to be configured by the wizard, then the floating IP range screen figure 3.34 allows the
administrator to specify the floating IP address range on the external network.
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3.2.14 External Network Interface Creation

Figure 3.35: External Network: Interface Creation

If floating IPs are to be configured by the wizard, then the external network interface creation screen
(figure 3.35) allows the administrator to create a network interface. The interface is created on each
network node that is missing an interface to the external network.

The interface can be

• a shared interface: this uses the internal network for virtual networking

• a dedicated interface: this uses a dedicated network with its associated dedicated interface. The
device must exist on the network node in order for the interface to be created.

The interface creation step can be skipped and carried out after OpenStack deployment, but Open-
Stack may not run properly because of this. Alternatively, if each network node has special needs, then
each interface can be set up before running the wizard.

3.2.15 Saving The Configuration

Figure 3.36: Viewing And Saving The Configuration

The screen for saving the configuration (figure 3.36) allows the administrator to view the configuration
with the Show option. The configuration that has been prepared by the wizard can be seen with the Show
config option, and using the <Page Up> and <Page Down> keys to scroll up and down.

The configuration options can also be saved with the various save options:
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• Save config & deploy: Saves, and after saving carries out the text-based deployment stage of the
installation.

• Save: Saves, and stays within the Ncurses dialog. The deployment can be carried out later from a
saved configuration.

• Save config & exit: Saves, and then exits the Ncurses dialog. The deployment can be carried
out later from a saved configuration.

Saving saves the configration as a YAML configuration file, by default cm-openstack-setup.conf,
in the directory under which the wizard is running. This file can be used as the input configuration file
for the cm-openstack-setup utility using the -c option.

Most administrators run Save config & deploy, and the deployment run takes place (sec-
tion 3.2.16). Some administrators may however wish to modify some OpenStack component settings.

The OpenStack Components Advanced Settings Screens

Figure 3.37: Advanced Options

The advanced settings screen (figure 3.37) allows an administrator to set up OpenStack components with
some advanced options. For example, values for the passwords and ports used by various OpenStack
services can be modified. These values can also be altered from within cmsh after deployment.

The components that can be dealt with in the advanced settings screen are core, rabbitmq, keystone,
glance, cinder, nova, and neutron (figures 3.38– 3.44).

Figure 3.38: Advanced Options: Core
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Figure 3.39: Advanced Options: RabbitMQ

Figure 3.40: Advanced Options: Keystone

Figure 3.41: Advanced Options: Glance
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Figure 3.42: Advanced Options: Cinder

Figure 3.43: Advanced Options: Nova

Figure 3.44: Advanced Options: Neutron
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3.2.16 The Deployment Run—An Overview
The deployment displays a lengthy text run. An elided version follows:

Checking overlay names OpenStackControllers
Checking overlay names GaleraNodes
Checking overlay names OpenStackHypervisors
Checking overlay names OpenStackControllers
Checking overlay names OpenStackNetworkNodes
...
Executing 264 stages
################### Starting execution for ’Bright OpenStack’

- core
- galera
- rabbitmq
- keystone
- glance
- cinder
- nova
- neutron
- horizon
- heat
- radosgw

## Progress: 0
#### stage: core: Resolve Special Hostnames In Config
#### stage: core: Precheck System
Checking system configuration
## Progress: 1
#### stage: core: Precheck OpenStack
#### stage: core: Check Networking
#### stage: core: Precheck License
...
Initializing Heat certificate
## Progress: 43
#### stage: heat: Init certificate in software image: ’/cm/images/default-image’
#### stage: core: Set Deployment Phase
#### stage: AggregatedStages: Reboot Nodes
All affected nodes: [’node003’, ’node002’, ’node001’, ’node005’, ’node004’]
All nodes to be rebooted: node003, node002, node001, node005, node004
Node has been rebooted node003
Node has been rebooted node002
Node has been rebooted node001
Node has been rebooted node005
Node has been rebooted node004
Press ctrl+c to abort waiting and continue with deployment
Waiting for nodes to start reboot
Going to wait up to 60 minutes for the nodes to come back up.
Waiting for 5 nodes to come back up
Waiting for 4 nodes to come back up
Waiting for 1 node to come back up
All 5 nodes came back up.
## Progress: 44
#### stage: core: Set Deployment Phase
#### stage: core: Determine Public Host Deployment
...
## Progress: 93
#### stage: heat: Add OpenStack User
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#### stage: heat: Open Shorewall Port On Headnode
Opening port 8004 in Shorewall for OpenStack Heat
Restarting shorewall
#### stage: heat: Create Service And Endpoint
Creating service heat
Creating endpoint: ’http://oshaproxy:8004/v1/$(tenant_id)s’
Creating endpoint: ’http://oshaproxy:8004/v1/$(tenant_id)s’
Creating endpoint: ’http://10.2.61.198:8004/v1/$(tenant_id)s’
## Progress: 94
#### stage: heat: Create Api Objects
#### stage: heat: Assign Nodes Roles To Overlay
Assigning role OpenStackOrchestrationApiRole to overlay
Assigning role OpenStackOrchestrationRole to overlay
## Progress: 95
#### stage: core: Set Deployment Phase
#### stage: core: Add Image
#### stage: core: Add Image
## Progress: 96
#### stage: core: Add Image
#### stage: core: Add Image
#### stage: core: Add Image
## Progress: 97
#### stage: core: Get Image UUID
#### stage: core: Finalize OpenStack
## Progress: 98
#### stage: core: Configure Sec Groups
#### stage: keystone: Configure CMDaemon Post Deployment
#### stage: keystone: Enable keystone token flush timer
## Progress: 99
#### stage: nova: Wait For Service To Be Operational
Waiting for nova
#### stage: nova: Patch Flavors
## Progress: 100
#### stage: nova: Running: ’nova-manage --config-file /etc/nova/nova.conf cell_v2
discover_hosts --verbose’

Took: 26:40 min.
Progress: 100/100
################### Finished execution for ’Bright OpenStack’, status: completed

Bright OpenStack finished!
[root@bright90 ~]#

3.2.17 The State After Running cm-openstack-setup
At this point, the head node has OpenStack installed on it.

However, a regular node that has been configured with the OpenStack compute host role, ends up
with OpenStack deployed on it only after the operating system running on the node is updated with the
installed OpenStack software, and the newly-configured interfaces are set up according to the specified
configuration.

For simplicity, the update is done on the regular nodes by a reboot action by default, as shown in the
preceding output, in the text that follows “All nodes to be rebooted”.

Trying to do it without a reboot by using imageupdate (section 5.6 of the Administrator Manual) is not
recommended, because interfaces typically do change along with the updates, except for some specially
configured cases. In the case of these special configurations, the setup wizard can be set to reboot only
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the controler node using Bright View (figure 3.4)
The administrator can further configure the cluster to suit requirements. Setting up a secondary node

for high availability is discussed in section 3.3, while the rest of the manual describes other configura-
tions.

3.3 Adding A Secondary Node To An Existing OpenStack Cluster For High
Availability

On an existing OpenStack Bright cluster, the public endpoints point to the public IP address of the head
node.

If a secondary head node is added to the cluster to provide high availability (Chapter 14 of the
Administrator Manual), then some downtime is required. This is because after the secondary head node
is synced from the primary and finalized, the public endpoints need to be changed to point to the shared
public IP address, instead of the public IP address of the primary head node, and the OpenStack services
then need to be restarted.

The endpoints can viewed and changed from cmsh, with a session similar to the following:

Example

[bright90->openstack[default]->endpoints]% list -f name:20,service:10,url:40,interface:10
name (key) service url interface
-------------------- ---------- ---------------------------------------- ----------
volume:adminv1 cinder (8+ http://oshaproxy:8776/v1/$(tenant_id)s Admin
volume:internalv1 cinder (8+ http://oshaproxy:8776/v1/$(tenant_id)s Internal
volume:publicv1 cinder (8+ http://10.2.61.198:8776/v1/$(tenant_id)s Public
volume:adminv2 cinderv2 + http://oshaproxy:8776/v2/$(tenant_id)s Admin
volume:internalv2 cinderv2 + http://oshaproxy:8776/v2/$(tenant_id)s Internal
volume:publicv2 cinderv2 + http://10.2.61.198:8776/v2/$(tenant_id)s Public
volume:adminv3 cinderv3 + http://oshaproxy:8776/v3/$(tenant_id)s Admin
volume:internalv3 cinderv3 + http://oshaproxy:8776/v3/$(tenant_id)s Internal
volume:publicv3 cinderv3 + http://10.2.61.198:8776/v3/$(tenant_id)s Public
glance:admin glance (6+ http://oshaproxy:9292 Admin
glance:internal glance (6+ http://oshaproxy:9292 Internal
glance:public glance (6+ http://10.2.61.198:9292 Public
heat:admin heat (831+ http://oshaproxy:8004/v1/$(tenant_id)s Admin
heat:internal heat (831+ http://oshaproxy:8004/v1/$(tenant_id)s Internal
heat:public heat (831+ http://10.2.61.198:8004/v1/$(tenant_id)s Public
keystone:admin keystone + http://oshaproxy:35357/v3 Admin
keystone:internal keystone + http://oshaproxy:5000/v3 Internal
keystone:public keystone + http://10.2.61.198:5000/v3 Public
networking:admin neutron (+ http://oshaproxy:9696/ Admin
networking:internal neutron (+ http://oshaproxy:9696/ Internal
networking:public neutron (+ http://10.2.61.198:9696/ Public
placement:admin nova (38f+ http://oshaproxy:8778 Admin
placement:internal nova (38f+ http://oshaproxy:8778 Internal
placement:public nova (38f+ http://10.2.61.198:8778 Public
compute:admin nova (f7a+ http://oshaproxy:8774/v2/$(tenant_id)s Admin
compute:internal nova (f7a+ http://oshaproxy:8774/v2/$(tenant_id)s Internal
compute:public nova (f7a+ http://10.2.61.198:8774/v2/$(tenant_id)s Public
[bright90->openstack[default]->endpoints]% use volume:publicv1
[bright90...endpoints[volume:publicv1]]% set url "http://<shared external IP>:8776/v2/$(tenant_id)s"
[bright90->openstack[default]->endpoints*[volume:publicv1*]]% commit

In the preceding example, the -f option is used with the list command (page 31 of the Administrator
Manual) to reduce the list output format to something easier to look over. Also in the example, when
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setting the publicv1 URL, the text <shared external IP> should be replaced with the actual value of the
shared public external IP address.
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Ceph Installation

4.1 Ceph Introduction
Ceph, at the time of writing, is the recommended storage software for OpenStack for serious use. The
Ceph RADOS Gateway is a drop-in replacement for Swift, with a compatible API. Ceph is the recom-
mended backend driver for Cinder, Glance and Nova. Bright Cluster Manager version 9.0 comes with
the 14.2 release series of Ceph (Nautilus).

The current chapter discusses

• The concepts and required hardware for Ceph (section 4.1)

• Ceph installation and management (section 4.2)

• RADOS GW installation and management (section 4.4)

4.1.1 Ceph Object And Block Storage
Ceph is a distributed storage software. It is based on an object store layer called RADOS (Reliable
Autonomic Distributed Object Store), which consists of Ceph components called OSDs (Object Storage
Daemons) and MONs (Monitoring Servers). These components feature heavily in Ceph. OSDs deal with
storing the objects to a device, while MONs deal with mapping the cluster. OSDs and MONs, together
carry out object storage and block storage within the object store layer. The Ceph Manager daemon
(MGR) runs alongside monitor daemons, to provide additional monitoring and interfaces to external
monitoring and management systems. The stack diagram of figure 4.1 illustrates these concepts.
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RADOS

OS/Hardware

MGRMON

RBD RADOS GW

OSD

MDS

CephFS

Figure 4.1: Ceph Concepts

On top of the object store layer are 3 kinds of access layers:

1. Block device access: RADOS Block Device (RBD) access can be carried out in two slightly different
ways:

(i) via a Linux kernel module based interface to RADOS. The module presents itself as a block
device to the machine running that kernel. The machine can then use the RADOS storage,
that is typically provided elsewhere.

(ii) via the librbd library, used by virtual machines based on qemu or KVM. A block device that
uses the library on the virtual machine then accesses the RADOS storage, which is typically
located elsewhere.

2. Gateway API access: RADOS Gateway (RADOS GW) access provides an HTTP REST gateway
to RADOS. Applications can talk to RADOS GW to access object storage in a high level manner,
instead of talking to RADOS directly at a lower level. The RADOS GW API is compatible with the
APIs of Swift and Amazon S3.

3. Ceph Filesystem access: CephFS provides a filesystem access layer. A component called MDS
(Metadata Server) is used to manage the filesystem with RADOS. MDS is used in addition to the
OSD and MON components used by the block and object storage forms when CephFS talks to
RADOS.

4.1.2 Ceph Storage Backends
OSDs have a choice of two storage backends for managing their data. These are BlueStore and FileStore.

BlueStore
BlueStore is a special-purpose storage backend designed specifically for managing data on disk for
Ceph OSD workloads. It is the default, and recommended, backend for the Ceph version 13.2.x series
onwards.

© Bright Computing, Inc.



4.1 Ceph Introduction 53

BlueStore consumes raw block devices or partitions. In contrast to the legacy FileStore approach,
BlueStore avoids any intervening layers of abstraction that may limit performance or add complex-
ity. BlueStore does however, by its design, in contrast to FileStore, require at least an extra volume on
the node the OSD runs on. Ceph BlueStore in Bright Cluster Manager versions previous to 8.2 used
ceph-disk to manage BlueStore devices, while versions 8.2 and beyond use ceph-volume, although
existing devices managed by ceph-disk will continue to work.

FileStore
FileStore is the legacy approach to storing objects in Ceph. It relies on a standard file system, which
is normally XFS. FileStore is well-tested and widely used in production. However it does suffer from
many performance deficiencies due to its overall design and reliance on a traditional file system for
storing object data.

Though it is technically possible to store Ceph data alongside other data when using FileStore, it is
preferred that dedicated block devices (disks) are used.

Bright Cluster Manager supports both storage backends. In the following sections the storage back-
ends are described in some more detail.

Additional information can be found at http://docs.ceph.com/docs/nautilus/rados/
configuration/storage-devices/.

4.1.3 Ceph Software Considerations Before Use
Recommended Filesystem For Legacy FileStore
BlueStore is the recommended storage backend for Ceph. BlueStore requires dedicated block devices
(disks) that are fully managed by ceph-volume (ceph-disk in Bright Cluster Manager prior to version
8.2). The legacy FileStore backend, on the other hand, stores the data directly on a regular file system.

If using FileStore, then recommended file system is XFS, due to its stability, ability to handle extreme
storage sizes, and its intrinsic ability to deal with the significant sizes of the extended attributes required
by Ceph.

The nodes that run OSDs are typically regular nodes. Within the nodes, the storage devices used
by FileStore OSDs automatically have their filesystems configured to be of the XFS type during the
installation of Ceph with Bright Cluster Manager.

Use Of datanode For The Protection Of Ceph Data
OSD nodes store the actual data contents of the Ceph cluster. Ceph Monitor nodes also store some data
content that is essential for the operation of the Ceph cluster. The devices of these nodes that store such
content need protection from being wiped during the reprovisioning that takes place during a reboot of
regular nodes.

The recommended way to protect storage devices from being wiped is to set the datanode property
of their node to yes (page 185 of the Administrator Manual).

The datanode property is automatically set for Monitor and OSD nodes during installation of Ceph
with Bright Cluster Manager.

Use Of Slurm On OSD Nodes
Ceph can be quite demanding of the network and I/O. Running Slurm jobs on an OSD node is therefore
not recommended. In addition, if Slurm roles are to be assigned to nodes that have OSD roles, then the
default ports 6817 and 6818 used by Slurm can conflict with the default range 6800-7300 used by the
Ceph OSD daemons. If there is a need to run Slurm on an OSD node then it is necessary to arrange it
so that the ports used do not conflict with each other. During installation, a warning is given when this
conflict is present.

4.1.4 Hardware For Ceph Use
An absolute minimum installation: can be carried out on two nodes, where:
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• 1 node, the head node, runs one Ceph Monitor and the first OSD.

• 1 node, the regular node, runs the second OSD.

This is however not recommended, or even supported by Bright Cluster Manager. Reasons for why
this is not recommended are:

• If the Ceph monitor crashes, and there is no other Ceph monitor running, then Ceph cannot func-
tion, and data could be lost.

• The first OSD on the head node requires its own Ceph-compatible filesystem. If that filesystem is
not provided, then Ceph on the cluster will run, but in a degraded state.

• Running a monitor service on the same host as an OSD may impair performance due to fsync
issues with the kernel.

Using such a system to try to get familiar with how Ceph behaves in a production environment with
Bright Cluster Manager is unlikely to be worthwhile.

A more useful minimum: if there is a node to spare, then it is possible to install Ceph over 3 nodes as
follows:

• 1 node, the head node, runs one Ceph Monitor.

• 1 node, the regular node, runs the first OSD.

• 1 more node, also a regular node, runs the second OSD.

In this case the OSD pool default size should be set to 2 in the Global OSD Settings (figure 4.9).
Although useful for some testing purposes, this is again not a production system, due to the possible

loss of data as well as loss of service if the single Ceph Monitor has issues. This can therefore also not
be regarded as a good test cluster.

For production use: a redundant number of Ceph Monitor servers is recommended. This is because
Ceph Monitors are crucial to Ceph operations. Since the number of Ceph Monitoring servers must
be odd, then at least 3 Ceph Monitor servers, with each on a separate node, are recommended for
production purposes. The recommended minimum of nodes for production purposes is then 5:

• 2 regular nodes running OSDs.

• 2 regular nodes running Ceph Monitors.

• 1 head node running a Ceph Monitor.

Drives usable by Ceph: Ceph OSDs can use any type of disk that presents itself as a block device in
Linux. This means that a variety of drives can be used.

4.2 Ceph Installation With cm-ceph-setup

Ceph installation for Bright Cluster Manager can be carried out with the Ncurses-based cm-ceph-setup
utility. It is part of the cm-setup package that comes with Bright Cluster Manager. If the Ceph packages
are not already installed, then the utility is able to install them for the head and regular nodes, assuming
the repositories are accessible, and that the package manager priorities are at their defaults.
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4.2.1 Ceph Installation: The Configuration Stage
The cm-ceph-setup utility can be run as root from the head node, and opens up an Ncurses screen
(figure 4.2):

Figure 4.2: Ceph Installation Welcome

Here the administrator may choose to

• Deploy Ceph

• Uninstall Ceph if it is already installed.

Ceph public network selection: If the deploy option is chosen, then a screen opens up that allows the
selection of the Ceph network used to connect Monitor, OSD and client nodes (figure 4.3):

Figure 4.3: Ceph Installation: Public Network Selection

For a cluster that is configured in a standard default Bright Cluster Manager Type 1 architecture,
the network that is chosen is internalnet. In Ceph terminology this is called the public, or front-side,
network. This should not be confused with the informal terminology a Bright Cluster Manager admin-
istrator may sometimes use for a Type 1 architecture, where externalnet is sometimes called the public
network.

Network architecture types for cluster are discussed in section 3.3.9 of the Installation Manual.

Ceph cluster network selection: The next screen allows the Ceph cluster, or back-side, network to be
selected (figure 4.4):
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Figure 4.4: Ceph Installation: Ceph Cluster Network Selection

The OSDs use this network to rebalance storage.
In a Type 1 architecture this is also typically internalnet.
Ceph documentation suggests just using a single public network. In the Type 1 architecture case

this is achieved by using the same network, internalnet, for the Ceph cluster network as for the Ceph
public network.

Ceph Monitor role assignment to categories: The OK button in figure 4.3 then brings up a screen that
allows the Ceph Monitor role to be assigned to categories (figure 4.5).

Figure 4.5: Ceph Installation: Monitors Assignment To Categories

Ceph Monitor role assignment to nodes: The next screen is similar, and allows Ceph Monitors to be
assigned to nodes (figure 4.6):

Figure 4.6: Ceph Installation: Monitors Assignment To Nodes

Ceph OSD role assignment to categories: OSD Roles can then be assigned to categories (figure 4.7):
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Figure 4.7: Ceph Installation: OSDs Assignment To Categories

Ceph OSD role assignment to nodes: If there are any nodes that have not yet been assigned the OSD
role, then the next screen (figure 4.8) is similar, and allows the OSD role to be assigned to nodes:

Figure 4.8: Ceph Installation: OSDs Assignment To Nodes

Global Ceph OSD settings: After OSD role assignment is completed, the next screen displayed is the
Global Ceph OSD settings screen, (figure 4.9) which allows the OSD pool default size to be set. The OSD
pool default size is the default number of replicas for objects in the pool. It should be less than or equal
to the number of OSD nodes. If unsure the administrator can just leave it at the default value.

Figure 4.9: Ceph Installation OSD Global Settings: OSD Pool Default Size

BlueStore device settings: The next screen is the BlueStore configuration screen, which requires that
block devices be specifed for the OSDs (figure 4.10).

Figure 4.10: Ceph Installation: Block Devices For BlueStore

Typically, the administrator would have prepared the nodes that will be taking care of file storage
with one or more block devices for BlueStore to use. If these are not there during deployment, then
deployment will fail.
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BlueStore device settings: The next screen asks if Ceph is to be allowed to remove OSD pools (fig-
ure 4.11):

Figure 4.11: Ceph Installation: Option To Have Ceph Do Removal Of OSD Pools

Summary screen: The summary screen (figure 4.12) allows the configuration to be viewed, saved, or
deployed in various combinations.

Figure 4.12: Ceph Installation: Save Configuration Options

If a save option is chosen, then by default, the configuration is saved to /root/cm-ceph-setup.conf.
To deploy, the administrator should choose the Save config & deploy option:

4.2.2 Ceph Installation: The Deployment Stage
Deployment session output: If deployment is carried out, then the Ncurse screen ends, and session
ouput similar to the following appears:

Executing 35 stages
################### Starting execution for ’Ceph Setup’

- ceph
## Progress: 0
#### stage: ceph: Networks is available and allowed types.
Connecting to CMDaemon
## Progress: 2
#### stage: ceph: Monitor categories and nodes is available.
## Progress: 5
#### stage: ceph: OSD categories and nodes is available.
## Progress: 8
#### stage: ceph: Default pool size is correct for selected amount of nodes
## Progress: 11
#### stage: ceph: Check and normalize device paths to ’/dev/<device>’ form.
## Progress: 14
#### stage: ceph: BlueStore configurations is correct and points to devices
## Progress: 17
#### stage: ceph: FileStore configurations is technically correct.
## Progress: 20
#### stage: ceph: Collection Nodes Online
## Progress: 22

© Bright Computing, Inc.

/root/cm-ceph-setup.conf


4.2 Ceph Installation With cm-ceph-setup 59

#### stage: ceph: Get Software Image Paths
## Progress: 25
#### stage: ceph: Collection Package Manager Repos Add
## Progress: 28
#### stage: ceph: Collection Package Manager Repos Enable
## Progress: 31
#### stage: ceph: Collection Packages Installer
## Progress: 37
#### stage: ceph: Mark block devices "ClearedOnNextBoot" and "restart_required"
## Progress: 42
#### stage: ceph: Collection Nodes Reboot
All nodes to be rebooted: mon002, mon003, osd001, osd002, mon001
Node has been rebooted mon002
Node has been rebooted mon003
Node has been rebooted osd001
Node has been rebooted osd002
Node has been rebooted mon001
Press ctrl+c to abort waiting and continue with deployment
Waiting for nodes to start reboot
Going to wait up to 30 minutes for the nodes to come back up.
Waiting for 5 nodes to come back up
Waiting for 5 nodes to come back up
Waiting for 3 nodes to come back up
All 5 nodes came back up.
## Progress: 45
#### stage: ceph: Mark monitors nodes as DataNode
## Progress: 48
#### stage: ceph: Mark osd nodes as DataNode
## Progress: 54
#### stage: ceph: Create Ceph cluster object
## Progress: 57
#### stage: ceph: Bootstrap Monitors
## Progress: 60
#### stage: ceph: Assign Monitor Role
Assigning CephMonitorRole role
## Progress: 62
#### stage: ceph: Wait Monitors Majority Up
## Progress: 65
#### stage: ceph: Assign Ceph Mgr Role
Assigning CephMGRRole role
## Progress: 68
#### stage: ceph: Mark OSD nodes with FileStore: restart_required
## Progress: 71
#### stage: ceph: Assign Ceph OSD Role
Assigning CephOSDRole role
## Progress: 74
#### stage: ceph: Wait Osd Id File Store Assigned
## Progress: 80
#### stage: ceph: Configure Prometheus module
Prometheus interface set up correctly
## Progress: 82
#### stage: ceph: Load Dashboard module
## Progress: 85
#### stage: ceph: Open Shorewall Port On Headnode
Opening port 8443 in Shorewall for ceph dashboard rev. proxy
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Restarting shorewall
## Progress: 88
#### stage: ceph: Assign Generic Role
## Progress: 91
#### stage: ceph: Make the Dashboard visible to Bright View
## Progress: 94
#### stage: ceph: Check Installation
Ceph monitors started
Ceph-manager started
All services started
## Progress: 97
#### stage: ceph: Wait for CEPH OSD is full functional (all OSDs up)
## Progress: 100

Took: 09:21 min.
Progress: 100/100
################### Finished execution for ’Ceph Setup’, status: completed

Ceph Setup finished!

[root@myhost ~]#

A log of the session is kept at /var/log/cm-ceph-setup.log as well as other relevant logs of instal-
lation process.

4.3 Checking And Getting Familiar With Ceph Items After cm-ceph-setup
4.3.1 Checking On Ceph And Ceph-related Files From The Shell
After deployment, the OSD and Monitor services take some time be created and to start up. When all
is up and running, the status of a healthy system, according to the output of the ceph -s command,
should look something like the following:

Example

[root@myhost ~]# ceph -s
cluster:

id: b4e9fd96-800d-4f66-87f1-79febb102ef5
health: HEALTH_OK

services:
mon: 3 daemons, quorum mon001,mon002,mon003
mgr: mon003(active), standbys: mon001, mon002
osd: 2 osds: 2 up, 2 in

data:
pools: 0 pools, 0 pgs
objects: 0 objects, 0 B
usage: 2.0 GiB used, 118 GiB / 120 GiB avail
pgs:

The -h option to ceph lists many options. Users of Bright Cluster Manager should usually not need
to use these, and should find it more convenient to use the Bright View or cmsh front ends instead.

Generated YAML Configuration File
A YAML configuration file, by default cm-ceph-setup.conf, is generated after a run by the
cm-ceph-setup utility.
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Using A YAML Configuration File
The -c option to cm-ceph-setup allows an existing YAML configuration file to be used.

Example

[root@bright90 ~]# cm-ceph-setup -c /root/cm-ceph-setup.conf

A Sample YAML Configuration File
Example

#######################################################################
## This config file should be used with cm-ceph-setup tool
## Example:
## cm-ceph-setup -c <filename>
##
## Generated by:
## cm-ceph-setup
## cluster-tools-8.2-112402_cm8.2_5c7d79cc2f
## cmdline: /cm/local/apps/cm-setup/bin/cm-ceph-setup
## Generate on host:
## bright90
## Date of generation:
## Tue Feb 12 17:43:22 2019
## MD5 checksum of everything after the closing comment:
## 2fc239700ef9f639d5aeb7cb9103091a
## to compare: grep -v ’^##’ <this_file> | md5sum
#######################################################################
meta:

command_line: /cm/local/apps/cm-setup/bin/cm-ceph-setup
date: Tue Feb 12 17:43:22 2019
generated_with: Ceph Setup
hostname: bright90
package_name: cluster-tools-8.2-112402_cm8.2_5c7d79cc2f
package_version: ’112402’

modules:
ceph:

dashboard:
external_port: 8443
internal_port: 8444
password: ceph
username: ceph

head_node:
external_repos:
- https://openresty.org/package/centos/openresty.repo
packages:
- openresty

monitors:
allow_pool_delete: true
categories: {}
nodes:

mon001: {}
mon002: {}
mon003: {}

networks:
cluster: ’’
public: ’’
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osd:
FileStore:

journal_size: 5120
categories: {}
nodes:

osd001:
BlueStore:

configurations:
osd0:

device: /dev/vdc
FileStore:

configurations: {}
shared_journal:

device: ’’
osd002:

BlueStore:
configurations:

osd0:
device: /dev/vdc

FileStore:
configurations: {}
shared_journal:

device: ’’
pool_default_size: 2

packages:
- ceph
- cm-config-ceph-radosgw-systemd
- cm-config-ceph-systemd
prometheus:

description: Prometheus Ceph plugin
filter: Prometheus4CephFilter
name: Prometheus4Ceph
port: 9283

repos:
- epel
- Ceph
- Ceph-noarch
roles:

ceph_dashboard_reverse_proxy:
configurations:
- content: ceph/templates/nginx.service

kind: static
name: service
path: /usr/lib/systemd/system/ceph-dashboard-reverse-proxy.service

- kind: template
name: lua-script
path: /cm/local/apps/ceph/dashboard/nginx/nginx.lua
template: ceph/templates/lua.template

- kind: template
name: config
path: /cm/local/apps/ceph/dashboard/nginx/nginx.conf
template: ceph/templates/config.template

env:
ext_port: 8443
int_port: 8444
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kind: generic
nodes:
- active
packages:
- openresty
services:
- ceph-dashboard-reverse-proxy

For legacy FileStore configurations, the partitioning of Ceph OSD storage devices is done using the
disk setup functionality as described in section 3.9.3 of the Administrator Manual. For BlueStore, the cor-
responding devices are listed in the CephOSDBlueStoreConfig of the CephOSDRole only, and no entries
are added to the XML disk layout.

Installation Logs
Installation logs to Ceph are kept at:

/var/log/cm-ceph-setup.log

4.3.2 Ceph Management With Bright View And cmsh
Only one instance of Ceph is supported at a time. Its name is ceph.

Ceph Overview And General Properties
From within cmsh, ceph mode can be accessed:

Example

[root@bright90 ~]# cmsh
[bright90]% ceph
[bright90->ceph]%

From within ceph mode, the overview command lists an overview of Ceph OSDs, MONs, and place-
ment groups for the ceph instance:

Example

[bright90->ceph]% overview ceph
Parameter Value
-------------------------------- ----------------------------
Status HEALTH_OK
Number of OSDs 2
Number of OSDs up 2
Number of OSDs in 2
Number of mons 1
Number of placements groups 192
Placement groups data size 0B
Placement groups used size 10.07GB
Placement groups available size 9.91GB
Placement groups total size 19.98GB

The Bright View equivalent of the overview command is the Ceph Overview window, accessed via
the clickpath Storage→Ceph→Ceph Settings→Overview.

Some of the major Ceph configuration parameters can be viewed and their values managed by CM-
Daemon from ceph mode. The show command shows parameters and their values for the ceph instance:

Example
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[bright90->ceph]% show ceph
Parameter Value
------------------------------------ ------------------------------------------------
Admin keyring path /etc/ceph/ceph.client.admin.keyring
Auto Adjust CRUSH Map no
Bootstrapped yes
Client admin key AQCI7klcHwWIBxAAMUSzd7eYYQiskZELGiaEaA==
Cluster networks
Config file path /etc/ceph/ceph.conf
Creation time Thu, 24 Jan 2019 17:57:43 CET
Extra config parameters osd journal size = 5120
Monitor daemon port 6789
Monitor key AQCI7klc2bSyAxAAa5p6p+ljWin75ucxR3gy+Q==
Monitor keyring path /etc/ceph/ceph.mon.keyring
Public networks
Revision
auth client required cephx yes
auth cluster required cephx yes
auth service required cephx yes
filestore xattr use omap no
fsid b4e9fd96-800d-4f66-87f1-79febb102ef5
mon allow pool delete yes
mon max osd 10000
mon osd full ratio 0.950000
mon osd nearfull ratio 0.850000
name ceph
osd pool default min size 0
osd pool default pg num 8
osd pool default pgp num 8
osd pool default size 2
rbd cache yes
rbd cache max dirty 25165824
rbd cache max dirty age 1.000000
rbd cache size 33554432
rbd cache target dirty 16777216
rbd cache writethrough until flush yes
rbd readahead disable after bytes 52428800
rbd readahead max bytes 524288
rbd readahead trigger requests 10
version 13.2.4
[bright90->ceph]%

The Bright View equivalent of these settings is in the Settings window, accessed via a clickpath of
Storage→Ceph→Ceph Settings→Overview→Settings.

Ceph extraconfigparameters setting: The Extra config parameters property of a ceph mode ob-
ject can be used to customize the Ceph configuration file. The Ceph configuration file is typically in
/etc/ceph.conf, and using extraconfiparameters settings, Ceph can be configured with changes that
CMDaemon would otherwise not manage. After the changes have been set, CMDaemon manages them
further.

Thus, the following configuration section in the Ceph configuration file:

[mds.2]
host=rabbit

could be placed in the file via cmsh with:
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Example

[root@bright90 ~]# cmsh
[bright90]% ceph
[bright90->ceph[ceph]]% append extraconfigparameters "[mds.2] host=rabbit"
[bright90->ceph*[ceph*]]% commit

If a section name, enclosed in square brackets, [], is used, then the section is recognized at the start
of an appended line by CMDaemon.

If a section that is specified in the square brackets does not already exist in /etc/ceph.conf, then it
will be created. The \n is interpreted as a new line at its position. After the commit, the extra configura-
tion parameter setting is maintained by the cluster manager.

If the section already exists in /etc/ceph.conf, then the associated key=value pair is appended. For
example, the following appends host2=bunny to an existing mds.2 section:

[bright90->ceph[ceph]]% append extraconfigparameters "[mds.2] host2=bunny"
[bright90->ceph*[ceph*]]% commit

If no section name is used, then the key=value entry is appended to the [global] section.

[bright90->ceph[ceph]]% append extraconfigparameters "osd journal size = 128"
[bright90->ceph*[ceph*]]% commit

The /etc/ceph.conf file has the changes written into it about a minute after the commit, and may
then look like (some lines removed for clarity):

[global]
auth client required = cephx
osd journal size=128

[mds.2]
host=rabbit
host2=bunny

As usual in cmsh operations (section 2.5.3 of the Administrator Manual):

• The set command clears extraconfigparameters before setting its value

• The removefrom command operates as the opposite of the append command, by removing key=value
pairs from the specified section.

There are similar extraconfigparameters for Ceph OSD filesystem associations (page 66) and for
Ceph monitoring (page 67).

Ceph OSD Properties
From within ceph mode, the osdinfo command for the Ceph instance displays the nodes that are pro-
viding OSDs along with their OSD IDs:

Example

[bright90->ceph]% osdinfo ceph
OSD id Node OSD name
------------ ---------------------- ------------
0 node001 osd0
1 node002 osd0

Within a device or category mode, the roles submode allows parameters of an assigned cephosd
role to be configured and managed.
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Example

[bright90->device[node001]->roles]% show cephosd
Parameter Value
--------------------------- ------------------------------
Add services yes
Name cephosd
OSD configurations <1 in submode>
Provisioning associations <0 internally used>
Revision
Type CephOSDRole

Within the cephosd role the templates for OSD filesystem configurations, osdconfigurations, can
be set or modified:

Example

[bright90->device[node001]->roles]% use cephosd
[bright90...[node001]->roles[cephosd]]% osdconfigurations
[bright90...osd]->osdconfigurations]% show osd0
Parameter Value
-------------------------------- --------------------------------------
Automatically adjust weight off
Extra config parameters
Initial weight 0.1
Journal data /var/lib/ceph/osd/$cluster-$id/journal
Journal size 0 MiB
Name osd0
OSD data /var/lib/ceph/osd/$cluster-$id
Production weight 1
Revision
Type CephOSDLegacyConfig
Weight adjust interval 5
Weight adjust rate 0.1
Weight interpretation scale

The Bright View equivalent to access the preceding cmsh OSD configuration settings is via the role
for a particular node or category. The clickpath that brings up these configuration options for node
node001 is, for example:

Devices→Physical Nodes→node001→Edit→Settings→Roles→cephosd→Edit→osd0→Edit

OSD filesystem association extraconfigparameters setting: Extra configuration parameters can be
set for an OSD filesystem association such as ods0 by setting values for its extraconfigparameters
option. This is similar to how it can be done for Ceph general configuration (page 64):

Example

[bright90...osd]->osdconfigurations]% use osd0
[bright90...osdconfigurations[ods0]]% show
Parameter Value
-------------------------------- --------------------------------------
...
Automatically adjust weight off
Extra config parameters
...
[bright90...osdconfigurations[osd0]]% set extraconfigparameters "a=b"
...
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Ceph Monitoring Properties
Similarly to Ceph OSD properties, the parameters of the cephmonitor role can be configured and man-
aged from within the node or category that runs Ceph monitoring.

Example

[bright90]% device use bright90
[bright90->device[bright90]]% roles ; use cephmonitor
[ceph->device[bright90]->roles[cephmonitor]]% show
Parameter Value
-------------------------------- ------------------------------------
...
Extra config parameters
Monitor data /var/lib/ceph/mon/$cluster-$hostname
Name cephmonitor
Provisioning associations <0 internally used>
Revision
Type CephMonitorRole

Ceph monitoring extraconfigparameters setting: Ceph monitoring can also have extra configura-
tions set via the extraconfigparameters option, in a similar way to how it is done for Ceph general
configuration (page 64).

The Bright View equivalent to access the preceding cmsh Monitor configuration setting is via the
role for a particular node or category. The clickpath that brings up these configuration options for node
node004 is, for example:

Devices→Physical Nodes→node004→Edit→Settings→Roles→cephmonitor→Edit

Ceph bootstrap
For completeness, the bootstrap command within ceph mode can be used by the administrator to ini-
tialize Ceph Monitors on specified nodes if they are not already initialized. Administrators are however
not expected to use it, because they are expected to use the cm-ceph-setup installer utility when in-
stalling Ceph in the first place. The installer utility carries out the bootstrap initialization as part of
its tasks. The bootstrap command is therefore only intended for use in the unusual case where the
administrator would like to set up Ceph storage without using the cm-ceph-setup utility.

4.4 RADOS GW Installation, Initialization, And Properties
4.4.1 RADOS GW Installation And Initialization
If Ceph has been installed using cm-ceph-setup, then RADOS is installed and initialized so that it pro-
vides a REST API, called the RADOS GW service.

4.4.2 Setting RADOS GW Properties
RADOS GW Properties In cmsh
RADOS GW properties can be managed in cmsh by selecting the device, then assigning the
radosgateway role to the device. The properties of the role can then be seen and altered:

[bright90]% device use node004
[bright90->device[node004]]% roles
[bright90->device[node004]->roles]% assign radosgateway; commit
[bright90->device[node004]->roles[radosgateway]]% show
Parameter Value
-------------------------------- --------------------------------
Name radosgateway
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Provisioning associations <0 internally used>
Revision
Type RadosGatewayRole
Server Port 7480
Enable Keystone Authentication yes
Keystone Accepted Roles
Keystone Revocation Interval 600
Keystone Tokens Cache Size 500
NSS DB Path /var/lib/ceph/nss

The role properties can also be accessed in via category roles and configuration overlay roles.
Keystone authentication can be disabled or enabled using cmsh to set the

enablekeystoneauthentication property.
For example, setting enablekeystoneauthentication to no on a RADOS GW node, and committing

it makes RADOS GW services unavailable to that node.

Example

[bright90->device[node004]->roles[radosgateway]]% set enablekeystoneauthentication no
[bright90->device*[node004*]->roles*[radosgateway*]]% commit

RADOS GW Properties In Bright View
RADOS GW properties can be accessed in Bright View via:

• via the node clickpath:
Devices→Nodes→Settings→Roles→Rados Gateway Role

• via the node category clickpath:
Grouping→Node Categories→Settings→Roles→Add→Rados Gateway Role

• or via the configuration overlay clickpath:
Configuration Overlays→Edit→Roles→radosgateway

4.5 Installation Of Ceph From Bright View
Ceph can be installed from Bright Cluster Manager in the following two ways:

• Using the text-based cm-ceph-setup utility (section 4.2). The utility is a part of the standard
cluster-tools package.

• Using the Bright View Ceph Wizard (this section). This is the recommended installation method.

4.5.1 Bright View Ceph Install: Main Details Screen
The clickpath Storage→Ceph→Ceph Wizard brings the browser to the Ceph main details screen, (fig-
ure 4.13), if Ceph has not yet been installed by Bright Cluster Manager. This screen is beginning of
the Ceph installation process, and the page displayed asks for details of the main Ceph configuration
settings:
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Figure 4.13: Ceph Wizard Installation: General Cluster Settings

The GUI screen of figure 4.13 is a combination of the Ncurses Ceph Installation General Cluster Set-
tings screen figure 4.3 (page 55), together with the Ncurses OSD journal settings of figure 4.9, (page 57).
The settings of the Bright View screen are explained in the texts in the section for figures 4.3 and 4.9.

4.5.2 Bright View Ceph Install: Nodes Selection Screen
The next screen is the Ceph Nodes selection screen (figure 4.14). This allows items to be selected for use
as Ceph Monitors and OSDs. The items to be selected can be categories or nodes:
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Figure 4.14: Ceph Wizard Installation: Ceph Nodes Selection Screen

For every selected OSD category or node, the corresponding block devices need to be configured.
Clicking on the small settings icon next to the checkbox opens the block device selection dialog (fig-
ure 4.15):

Figure 4.15: Ceph Wizard Installation: Ceph Block Devices Selection Screen
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4.5.3 Bright View Ceph Install: Summary Screen
The next screen is the Summary screen (figure 4.16). This summarizes the choices that have been made.
The Show config button displays the underlying raw YAML configuration in a popup window.

Figure 4.16: Ceph Wizard Installation: Configuration Summary

In figure 4.16 after the Ready for deployment checkbox is checked, the Deploy button proceeds with
deploying Ceph according to the configuration specified in the wizard.

4.5.4 Bright View Ceph Install: Deployment Screen
During the deployment process, the progress is displayed (figure 4.17).
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Figure 4.17: Ceph Wizard Installation: Deployment Progress

The event viewer in Bright View also shows the changes taking place. When deployment is complete,
the Finish button ends the wizard.

The state of the deployed system can be checked as shown in section 4.3.1.
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5
User Management And Getting

OpenStack Instances Up
In this chapter:

• Section 5.1 describes Bright Cluster Manager’s user management integration with OpenStack.

• Section 5.2 describes how a user instance can be run with OpenStack under Bright Cluster Man-
ager. A user instance is an instance that is not a tightly-integrated Bright-managed instance. A
Bright-managed instance is a special case of an user instance. Bright-managed nodes are treated
by Bright Cluster Manager very much like a regular nodes.

• Section 5.3 describes how a Bright-managed instance is managed in Bright Cluster Manager

5.1 Bright Cluster Manager Integration Of User Management In OpenStack
User management in Bright Cluster Manager without OpenStack is covered in Chapter 6 of the Admin-
istrator Manual. Users managed in this way are called Bright users.

OpenStack allows a separate set of users to be created within its projects. By default, these OpenStack
users are set up to be independent of the Bright users.

OpenStack user accounts are of two kinds:

• regular users: these are end users who get to use an OpenStack user instance or a Bright-managed
OpenStack instance. These can be managed by Bright Cluster Manager’s LDAP, or can also simply
be managed within OpenStack, depending on the Keystone backend driver used.

• service users: these user accounts are used to run the OpenStack service components. They are
associated with the service project and admin role. Thus, the Nova service has a nova user, the
Cinder service has a cinder user, and so on, and these are all assigned an admin role. The list of
service user names can be listed in the default installation as follows:

[bright90->openstack[default]->roleassignments]% list -f name:25 | grep service
admin:service:admin
cinder:service:admin
cmdaemon:service:admin
glance:service:admin
heat:service:admin
keystone:service:admin
neutron:service:admin
nova:service:admin
radosgw:service:admin
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The OpenStack service users are stored in the Keystone database, managed by the OpenStack
MariaDB running on the controller nodes.

In cmsh the role assignment name field is in the form of:

<OpenStack user name>:<project>:<role>

The background note on page 79 has some further details on role assignment in Bright Cluster
Manager OpenStack edition.

The service user radosgw is created only if the RADOS GW is installed (section 4.4).

Regular OpenStack users can be created in several ways, including:

• using cmsh, from within openstack mode

• using Bright View, via the clickpath OpenStack→Identity→Users

• using the OpenStack Horizon dashboard, where clicking on the Identity sidebar resource leads
to the Users management window

• using the openstack command line utility that comes with OpenStack.

• using the Keystone Python API, which is an option that is more likely to be of interest to developers
rather than system administrators

The details of how this is carried out depends on user database backend configuration. OpenStack
users and Bright users can be given the same name and password in several ways, depending on the
database driver used by Keystone (section 3.1.4), and how the administrator configures the users using
the initialization and migration scripts (section 5.1.2).

Having the OpenStack service users not be in the Bright Cluster Manager LDAP and thus not be the
same as Bright users has some advantages.

Having OpenStack regular users be the same as Bright users is also something that administrators
may want.

Background Note: The User Database Drivers, User Migration And Initialization
This section on database drivers is offered as background material to provide a deeper understanding
of user management in Bright Cluster Manager with OpenStack. It can be skipped by administrators
who have no need to understand how the configuration can be customized, or who have been provided
with a customized configuration already.

It should be understood that Bright users are not OpenStack users by default when OpenStack setup
is carried out. To make a Bright user able to use OpenStack under the same user name, some configu-
ration must be carried out. The exact configuration depends upon the use case. The main configuration
involves the type of backend user database driver used, and can additionally include the option of ini-
tialization and migration scripts.

Initialization and migration scripts are scripts that can be used to initialize and migrate Bright users
to become OpenStack users, after OpenStack setup has been carried out.

In this background note, two kinds of Bright users are defined:

1. legacy users: These are Bright users created from before the OpenStack initialization and migra-
tion scripts are working.

2. fresh users: These are Bright users created after the OpenStack initialization and migration scripts
are working.

The following table displays the driver configuration options that allow the Bright Cluster Manager
user to use OpenStack.
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Keystone Driver Legacy BrightUser And Fresh Bright Use To Create New OpenStack

User Access To OpenStack? Users In OpenStack?

MySQL No, but migrating Bright users to be-
come regular OpenStack users often
makes sense, and can be done for fresh
users automatically by configuring ini-
tialization and migration scripts.

Yes, OpenStack does it in a self-
contained manner within the
members project without hav-
ing to configure OpenStack user
initialization or user migration
scripts. When the initialization
and migration scripts are con-
figured, then creating a fresh
Bright user can still create a new
OpenStack user with the same
name.

MySQL + PAM/NSS
(Hybrid)

Yes, via pam domain, and using role
and project assignments.

Not recommended. Typically
set up PAM users instead

Bright LDAP Yes, via ldap domain, and some Open-
Stack project and OpenStack role as-
signment

No.

The first Keystone driver, MySQL: has Keystone use only Galera’s MySQL database for OpenStack
users, that is for both the service OpenStack and the regular OpenStack users. It means that Bright
Cluster Manager’s regular LDAP user database remains in use as another, independent database for
Bright users, and these users cannot be used for OpenStack functionality unless the users are duplicated
across from Bright Cluster Manager’s regular LDAP into the OpenStack domain. Thus, without that
duplication, the regular OpenStack users are created by OpenStack actions and are stored in the Galera
MySQL database, in the default domain associated with a default OpenStack installation.

Not having unified user databases—having the OpenStack MySQL user database distinct from Bright
Cluster Manager’s regular LDAP user database—means that using the Keystone MySQL driver is typ-
ically used for proof-of-concept deployments, or small deployments, rather than larger scale deploy-
ments.

User duplication from the Bright Cluster Manager user names to the OpenStack users can be useful
for this driver: If a migration script and an initialization script are configured to run on the Bright
Cluster Manager user name in CMDaemon (section 5.1.2), then fresh Bright users, when created, have
their names duplicated as OpenStack user names, and these names are stored in Galera as well as in the
regular LDAP user database. Legacy Bright users are not migrated or initialized by this configuration.
The databases remain independent, which means that passwords for a duplicated user name are not
matched. The passwords can of course be matched manually by the end user.

The second driver, MySQL + PAM/NSS (Hybrid): has Keystone using Galera’s MySQL and also
Bright Cluster Manager’s PAM/NSS, and is called a hybrid driver. The driver handles the admin,
cmdaemon, and OpenStack service users via Galera’s MySQL in the OpenStack domain called default.
On the other hand, all other users—Bright PAM/NSS authenticated users, and any other PAM/NSS au-
thenticated users—are authenticated via PAM/NSS through this driver, and access OpenStack via the
special OpenStack domain pam. The Bright Cluster Manager administrator is therefore normally only
concerned with the PAM/NSS part of the driver when it concerns managing users.

A convenience with this driver is that there is only one password per user, so that this driver is
typically used for larger deployments. It is also a cleaner deployment, having normal users placed in the
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pam domain and handling them there. Also, if using Bright Cluster Manager for user management, then
the administrator can manage passwords and other properties in the standard Bright Cluster Manager
way from the top-level cmsh user mode.

With this driver, Bright users that are authenticated with LDAP, can be authenticated by Keystone via
PAM/NSS. The driver assigns the user the OpenStack pam domain. Within the OpenStack pam domain,
an assignment must be carried out by the administrator for the OpenStack role and for the OpenStack
project. Without these role and project assignments within the pam domain, the users are merely authen-
ticated, but disallowed the use of OpenStack services. Typically, therefore, to manage the PAM users
in the pam domain of OpenStack, an administrative user, for example, pamadmin, can be created within
the pam domain, and given the OpenStack admin role. Such a pamadmin administrator is a separate user
from the admin created by default in the default domain. This pamadmin can then assign an appropriate
OpenStack role and OpenStack project to the user in the pam domain.

User duplication from the Bright user names to the OpenStack users, using a migration script and
an initialization script, is typically not useful for this driver, since it works against the clean placement
described earlier. If a migration script and an initialization script are configured to run on the Bright user
name in CMDaemon (section 5.1.2), then fresh Bright users, when created, have their names duplicated
as OpenStack user names, and these names are stored in Galera together with the service OpenStack
users, as well as in the regular LDAP user database. Legacy Bright users are not migrated or initialized
by this configuration. The databases remain independent, which means that passwords for a duplicated
user name are not matched. The passwords can of course be matched manually by the end user.

The third driver, Bright LDAP: has Keystone using Bright Cluster Manager’s own LDAP database,
and does not use the OpenStack user database for regular users. That is, Keystone, when using this
driver, handles Bright LDAP users only, ignores any NSS/PAM users, and ignores any regular Open-
Stack users in Galera. The admin, cmdaemon, and service OpenStack users, on the other hand, are still
used by Keystone from Galera in OpenStack.

Creation of a fresh user via OpenStack actions will fail, because the LDAPS access from OpenStack
is read-only. There is no account ldapadmin that can be created analogous to pamadmin that has the
same abilities that pamadmin had with the second driver. That is, there is no account ldapadmin to assign
projects and roles to LDAP users. Current LDAP users can be created via a CMDaemon front-end,
such as the top-level user mode of cmsh in Bright, and automatically go to the domain associated with
OpenStack called ldap. OpenStack projects and OpenStack roles can be assigned to a user from the
OpenStack command line. The convenience of a single password for users, the simple architecture, and
having everything is contained within Bright Cluster Manager, means that this driver is typically useful
for small or medium organizations that are using Bright Cluster Manager as is, without authenticating
it to an external database via PAM/NSS.

An aside on duplication when using this driver: Duplication is mentioned here for completeness. It
is available, but typically pointless for this driver. If a migration script and an initialization script are
configured to run on the Bright user name in CMDaemon (section 5.1.2), then a fresh LDAP user name
is duplicated during creation, as an OpenStack user name, and also stored in Galera, but not used from
Galera. The databases remain independent, which means that passwords for a duplicated user name
are not matched. The passwords can of course be matched manually by the end user. Legacy users are
not migrated or initialized by this configuration.

Normally one of the three driver types is chosen in the user management screen during the wizard
installation (section 3.1.4) or Ncurses installation (section 3.2.4).

However, the driver type can be added or removed after OpenStack installation, within cmsh by
using the authbackends submode. For example, adding a name to the chosen driver type adds the
driver while assigning it a name in CMDaemon:

Example
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[bright90->openstack[default]->settings->authentication->authbackends]% add<TAB><TAB>
hybrid ldap sql
[bright90->...authbackends]]% add sql sql |#choosing sql as name for type sql backend

Further configuration to suit needs can be quite involved. It is therefore recommended to select the
appropriate driver during a wizard or Ncurses installation to begin with.

5.1.1 Managing OpenStack Users As Bright Cluster Manager Users
Most administrators should find that the most convenient way to set up Bright Cluster Manager and
OpenStack users is using cmsh. Bright Cluster Manager users can be set up from the main user mode,
while OpenStack users can be set up from within the users submodes, under OpenStack mode, in the
cmsh hierarchy.

Background Note: Avoiding Confusion About User(s) And (Sub)Modes
The administrator should understand that there is a difference between:

• OpenStack->users submode: OpenStack users are managed from this submode

• OpenStack->settings->users submode: the settings for OpenStack users are managed from this
submode

• Bright Cluster Manager user mode: Bright Cluster Manager users are managed from this mode

The following treeview illustrates these user(s) (sub)modes in the cmsh hierarchy:

[cmsh]
|-- ...
|-- openstack
| |-- ...
| |-- settings
| | |--...
| | ‘-- users
| |-- ...
| ‘-- users
|-- ...
‘-- user

5.1.2 Synchronizing Users With The OpenStack Initialization And Migration Scripts
Setting the initialization and migration scripts: Bright Cluster Manager provides initialization and
migration scripts that can be called after creating a Bright user. When applied to a Bright Cluster Man-
ager user, the OpenStack user of the same name is created as follows:

• The migration script, /cm/local/apps/cluster-tools/bin/cm-user-migration, copies a Bright
Cluster Manager user name from the LDAP records over to the OpenStack Keystone records, and
by default sets a random password for the OpenStack user.

• The initialization script, /cm/local/apps/cluster-tools/bin/cm-user-init, creates an Open-
Stack project for the OpenStack user with the same name, if it does not already exist. The user is
also assigned the member role. Role assignment here means that the OpenStack user is associated
with a project and assigned a role for the purposes of the OpenStack utility (page 79, Background
Note: Automated Role Assignment In OpenStack).

The cmsh parameters userinitscript and migrationscript can be set to these initialization and
migration script paths. The parameters are initially blank by default. They can be set from within the
OpenStack settings submode of cmsh for users as follows:
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Example

[root@bright90 ~]# cmsh
[bright90]% openstack
[bright90->openstack[default]]% settings ; users
[...settings->users]% set userinitscript /cm/local/apps/cluster-tools/bin/cm-user-init
[...settings*->users*]% set migrationscript /cm/local/apps/cluster-tools/bin/cm-user-migration
[...settings*->users*]% commit

If Bright View is used, then the path parameters can be accessed via the clickpath:

OpenStack→Settings→Users

If the default scripts are set as in the preceding example, then they are automatically executed for the
user when creating a regular Bright Cluster Manager user.

The administrator can customize the scripts, according to need, for example by copying them, then
modifying the copies and assigning the modified copies to the userinitscript and migrationscript
parameters.

Automated OpenStack user creation: With the initialization and migration scripts set, OpenStack user
creation now automatically takes place during regular user creation:

Example

[...settings->users]% user
[bright90->user]% add fred
[bright90->user*[fred*]]% set password secret123; commit

If Keystone uses the MySQL driver, then the password of the Bright Cluster Manager user and the
password for the OpenStack user of the same name are independent. By default, the OpenStack user
has a password that is random, and which the migration script places in ˜/.openstackrc_password.

To check that user fred can login as an OpenStack user, a login can be attempted via http://<load
balancer IP address>:10080 using the password defined in his .openstackrc_password file (figure 5.1):

Figure 5.1: Login With Horizon At http://<load balancer IP address>:10080

If all is well, then the login for the end user succeeds and leads to an overview screen for the user
(figure 5.2):

© Bright Computing, Inc.



5.1 Bright Cluster Manager Integration Of User Management In OpenStack 79

Figure 5.2: Successful Login With Horizon At http://<load balancer IP address>:10080

In an unmodified cluster there should be no instances running yet.
At this point, some background notes to help understand what is going on can be read by simply

continuing with reading this chapter sequentially. Alternatively, if an administrator has a sufficiently
deep understanding of and familiarity with Bright Cluster Manager and OpenStack, then it is possible
to skip ahead to section 5.2, where getting an OpenStack instance up and running is described.

Background Note: Automated Role Assignment In OpenStack
If the default scripts for migration and initialization are in place, then the creation of a Bright user auto-
matically creates an OpenStack user, with a default role assignment in the form of:

<OpenStack user name>:<project>:<role>

For example, creating the LDAP user fred in Bright Cluster Manager, automatically:

• creates an OpenStack user fred

• assigns the OpenStack user fred the default project fred, creating the project if needed

• assigns the OpenStack user fred the default role member

• assigns the OpenStack user fred a key fred:fred:member that can be used by the OpenStack
utility

Example

[bright90->user[fred]]% openstack users
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[bright90->openstack[default]->users]% list -f name
name (key)
--------------------
admin
cinder
cmdaemon
fred
glance
heat
keystone
neutron
nova
[bright90->openstack[default]->users]% projects
[bright90->openstack[default]->projects]% list
Name (key) UUID (key) Domain Enabled MOTD
------------ --------------------------------- ------------------ ------- ------
bright 83b48ea2016c4658b3b1e01a910011d9 Default (default) yes
fred b48cd2f6da4645a8886b494ad5f459c6 Default (default) yes
service aa239b1f054a470cbe40f74984a9331d Default (default) yes
[bright90->openstack[default]->projects]% roleassignments; list -f name,user,project,role
name (key) user project role
-------------------- -------------------- -------------------- --------------------
admin:bright:admin admin (bfd7fd66b1ab+ bright (83b48ea2016+ admin (c7b7e8f8c885+
admin:service:admin admin (bfd7fd66b1ab+ service (aa239b1f05+ admin (c7b7e8f8c885+
cinder:service:admin cinder (e173c5545c8+ service (aa239b1f05+ admin (c7b7e8f8c885+
cmdaemon:bright:adm+ cmdaemon (fae4250c3+ bright (83b48ea2016+ admin (c7b7e8f8c885+
cmdaemon:service:ad+ cmdaemon (fae4250c3+ service (aa239b1f05+ admin (c7b7e8f8c885+
fred:fred:member fred (80e16841e3df2+ fred (b48cd2f6da464+ member (6cb5e5359b6+
glance:service:admin glance (2a0d739783d+ service (aa239b1f05+ admin (c7b7e8f8c885+
heat:service:admin heat (7acdc31888534+ service (aa239b1f05+ admin (c7b7e8f8c885+
keystone:service:ad+ keystone (1048db4a5+ service (aa239b1f05+ admin (c7b7e8f8c885+
neutron:service:adm+ neutron (e1b01d92e9+ service (aa239b1f05+ admin (c7b7e8f8c885+
nova:service:admin nova (634f35b3ee0e4+ service (aa239b1f05+ admin (c7b7e8f8c885+
[bright90->openstack[default]->roleassignments]%

Background Note: Automated Writing Out Of The .openstackrc* Files
Bright OpenStack users have a .openstackrc file and a .openstackrc_password file associated with
them. The .openstackrc file provides the OpenStack environment, while the .openstackrc_password
file provides the OpenStack password. This environment can be used by openstack, the OpenStack
utility that an OpenStack user can run to manage instances.

The .openstackrc* files are generated only when adding an OpenStack user by using the cmsh or
Bright View front ends to CMDaemon. Using the OpenStack client (/usr/bin/openstack) directly to
add a user does not create the .openstackrc* files.

Within the settings submode of OpenStack there is a users submode. Within that users submode
the administrator can set the following parameters to configure the .openstackrc* files:

• Write out OpenStack RC for users: This parameter configures how the .openstackrc file is
written for an OpenStack user:

– matchinghomedirectories: writes the file only to home directories that match OpenStack
user names

– allhomedirectories: writes the file to all home directories. That is, even if no OpenStack
user matches that name

– off: does not write out a file
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• Write out .openstackrc_password: This parameter can take yes or no as its value. The value
decides if the .openstackrc_password file is written for an OpenStack user. This feature only
operates when the user is created. So if this option is made active after user creation, then no
password file is written out.

Example

[root@bright90 ~]# cmsh
[bright90]% openstack
[bright90->openstack[default]]% settings; users
[...settings->users]% set writeoutopenstackrcforusers matchinghomedirectories
[...settings->users*]% set writeout.openstackrc_password yes
[...settings->users*]% commit

With the preceding configuration for the .openstackrc* files, if an OpenStack user fred is created
as in the example on page 78, then the home directory for fred would look something like:

Example

[root@bright90 ~]# ls -a /home/fred/
. .. .bash_logout .bash_profile .bashrc .mozilla .openstackrc .openstackrc_password

The .openstackrc* file contents are similar to the following output (some output elided):

Example

[root@bright90 ~]# cat /home/fred/.openstackrc_password
export OS_PASSWORD="LMlr6oRENZoIp0iqaI4304JGNn632P"

[root@bright90 ~]# cat /home/fred/.openstackrc
# This section of this file was automatically generated by cmd. Do not edit manually!
# BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE
# This file has been generated by the CMDaemon and is meant
# to be sourced from within the ~/.bashrc
unset OS_AUTH_TYPE
unset OS_AUTH_URL
...
unset OS_USER_ID
unset OS_VOLUME_API_VERSION
# could not find default tenant name for this user
# export OS_TENANT_NAME=""
export OS_USERNAME="fred"
export OS_PROJECT_DOMAIN_ID="84d9325c8ff341838cb02a78b76df8ce"
export OS_USER_DOMAIN_ID="84d9325c8ff341838cb02a78b76df8ce"
# Public Auth URL (used by users)
export OS_AUTH_URL="http://<load balancer IP address>:5000/v3"

# For keystone v3
export OS_IDENTITY_API_VERSION=3 # for the ’openstack’ utility to work
export OS_CACERT="/etc/keystone/ssl/certs/ca.pem"
# END AUTOGENERATED SECTION -- DO NOT REMOVE

The value of <load balancer IP address> in the .openstackrc output is a dotted quad value or a resolv-
able host name, and is the address or name of the HAProxy load balancer that Bright Cluster Manager
uses for its OpenStack deployment. The load balancer address is normally the IP address of the head
node on the external network on a smaller cluster.
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Background Note: Changing The End User OpenStack Password
The end user is given a password for OpenStack user access by the initialization script. This password,
stored in ˜/.openstackrc_password, is long, and somewhat random. Most users would therefore like
to change it to something that is easier for them to remember. This can be done in the dashboard by,
for example, user fred, by clicking on the name fred in the top right hand corner, then selecting the
Settings option, and then selecting the Change Password option.

The OpenStack APL CLI client openstack can be set to use the .openstackrc and
.openstackrc_password files, which were initialized by the cm-user-init and cm-user-migration
scripts earlier on (page 77). The end user can, if required, update the ˜/.openstackrc_password file
by hand after a password change is made by the dashboard.

5.2 Getting A User Instance Up
By default, after creating a user as in the example where user fred is created (page 78) the user can log
in as an OpenStack user. However, unless something extra has been prepared, a user that logs in at this
point has no instances up yet. End users typically want an OpenStack system with running instances.

In this section, getting an instance up and running is used to illustrate the management of OpenStack
in Bright Cluster Manager.

5.2.1 Making An Image Available In OpenStack
A handy source of available images is at http://docs.openstack.org/image-guide/obtain-images.
html. There is also a guide for creating images manually, from an ISO, at https://docs.openstack.
org/image-guide/create-images-manually.html. Both of the URIs are for major, and some minor
distributions, and they also include guidance for versions of Microsoft Windows.

Cirros is one of the distributions listed there. It is a distribution that aims at providing a small, but
reasonably functional cloud instance. The Cirros image listed there can therefore be used for setting up
a small standalone instance, suitable for an m1.xtiny flavor, which is useful for basic testing purposes.

Installing The Image Using The openstack Utility
If the qcow2 image file cirros-0.4.0-x86_64-disk.img, 12MB in size, is picked up from the site and
placed in the local directory, then an image cirros040 can be set up and made publicly available by the
administrator or user by using the openstack image create command as follows:

Example

[fred@bright90 ~]$ wget http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

To run an openstack command, as is done shortly, the OpenStack environment should be in place.
If the .openstackrc file has been generated, then it can be sourced to provide the environment. The
.openstackrc file is generated by setting the Write out OpenStack RC for users option (page 80),
and it can be sourced with:

Example

[fred@bright90 ~]$ . .openstackrc

Sourcing in this case means that running the file sets the environment variables in the file, so that
after returning to the shell the shell now has these environment variables.

The openstack command to create the Cirros image can now be run:

Example

[fred@bright90 ~]$ openstack image create --disk-format qcow2 --file cirros-0.4.0\
-x86_64-disk.img cirros040
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If all goes well, then the image is installed and can be seen by the user or administrator, via Open-
Stack Horizon, by navigation to the Images pane, or using the URI http://<load balancer hostname, or IP
address>:10080/project/images/ directly (figure 5.3).

Figure 5.3: Images Pane In Horizon

Installing The Image Using Horizon
Alternatively, instead of using the openstack utility, the image can also be installed by the user or ad-
ministrator using OpenStack Horizon directly. The Horizon procedure to do this is described next:

Clicking on the Create Image button of the Images pane launches a pop-up dialog. Within the
dialog, a name for the image for OpenStack users can be set, the disk format of the image can be selected,
the HTTP URL from where the image can be picked up can be specified, and the image can be made
public (figure 5.4).

Figure 5.4: Images Pane—Create Image Dialog

The State Of The Installed Image
After the image has been installed by user fred, then it is available for launching instances by fred. If
the checkbox for Public was ticked in the previous dialog, then other OpenStack users can also use it to
launch their instances.

It should however be pointed out that although the image is available, it is not yet ready for launch.
The reasons for this are explained shortly in section 5.2.2.

The image properties can be viewed as follows:

• by the authorized OpenStack users with OpenStack Horizon, by clicking through for Image
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Details

• by cmsh, from within the images submode of openstack mode.

• using Bright View, via the clickpath OpenStack→Compute→Images

5.2.2 Creating The Networking Components For The OpenStack Image To Be Launched
Launching an image that is installed as in section 5.2.1 needs networking components to be configured
with it, so that it can work within OpenStack, and so that it can be managed by OpenStack. An instance
that is up, but has no networking set up for it, cannot launch an image to get a virtual machine up and
running.

Why Use A New Network For An End User?
If it is the OpenStack administrator, admin that is preparing to launch the instance, as a bright project,
then the OpenStack launch dialog by default allows the instance to use the default flat internal network
of the cluster, bright-internal-flat-internalnet. As instances are run with root privileges, this
means that all the internal network traffic can be read by whoever is running the instance. This is a
security risk and would be a bad practice.

By default, therefore, the non-admin end user cannot launch the instance using the flat internal net-
work of the cluster. The end user therefore typically has to create a new network, one that is isolated
from the internal network of the cluster, in order to launch an instance.

This is thus the case for the end user fred, who earlier on had logged into the OpenStack dashboard
and created an image by the end of section 5.2.1. User fred cannot run the image in the instance until a
network exists for the future virtual machine.

Creating The Network With Horizon
For the sake of this example and clarity, a network can be created in OpenStack Horizon, using the
Network part of the navigation menu, then selecting Networks. Clicking on the Create Network button
on the right hand side opens up the Create Network dialog box.

In the first screen of the dialog, the network for fred can be given the unimaginative name of frednet
(figure 5.5):

Figure 5.5: End User Network Creation

Similarly, in the next screen a subnet called fredsubnet can be configured, along with a gateway
address for the subnet (figure 5.6):
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Figure 5.6: End User Subnet Creation

In the next screen (figure 5.7):

• a range of addresses on the subnet is earmarked for DHCP assignment to devices on the subnet

• a DNS address is set

• special routes for hosts can be set
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Figure 5.7: End User DHCP, DNS, And Routes

At the end of a successful network creation, when the dialog box has closed, the screen should look
similar to figure 5.8:

Figure 5.8: End User Node Network Configuration Result

The State Of The Image With Its Network Configured
At this point, the image can be launched, for example using Horizon’s Compute resource in the naviga-
tion panel, then choosing the Instances pane, and then clicking on the Launch Instance button. On
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launching, the image will run. However, it will only be accessible via the OpenStack console, which has
some quirks, such as only working well in fullscreen mode in some browsers.

It is more pleasant and practical to login via a terminal client such as ssh. How to configure this is
described next.

5.2.3 Accessing The Instance Remotely With A Floating IP Address
For remote access from outside the cluster, this is possible if a floating IP address, that is from the external
network, has been configured for instances on the OpenStack network. The floating IP address is taken
from the pool of addresses specified earlier during OpenStack installation (section 3.1.12). The subnet
for these addresses needs to be accessible via a router. The configuration of such a router is described in
the next subsection.

For remote access from within the cluster, an alternative method to creating a floating IP address, is
for the administrator to configure the Bright Cluster Manager internal network to be a shared external
network from the point of view of the instance. Sharing the internal network in this way is a security
risk due to the reasons given earlier on on page 84. However, it may be appropriate in an isolated cluster
with no external network, and with trusted users, in which case the administrator can mark the Bright
Cluster Manager internal network from OpenStack Horizon as shared.

Remote access from outside the cluster with a floating IP address can be configured as follows:

Router Configuration For A Floating IP Address
Router configuration for a floating IP address with Horizon: A router can be configured from the
Network part of the navigation menu, then selecting Routers. Clicking on the Create Router button on
the right hand side opens up the Create Router dialog box (figure 5.9):

Figure 5.9: End User Router Creation

The router can be given a name, and connected to the external network that provides the floating IP
addresses of the cluster.

Next, an extra interface for connecting to the network of the instance can be added by clicking on
the router name, which brings up the Router Details page. Within the Interfaces subtab, the Add
Interface button on the right hand side opens up the Add Interface dialog box (figure 5.10):
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Figure 5.10: End User Router Interfaces Creation

After connecting the network of the instance, the router interface IP address should be the gateway
of the network that the instance is running on (figure 5.11):

Figure 5.11: End User Router Interface Screen After Router Configuration

The state of the router after floating IP address configuration: To check the router is reachable from
the head node, the IP address of the router interface connected to the cluster external network should
show a ping response.

The IP address can be seen in the Overview subtab of the router (figure 5.12):
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Figure 5.12: End User Router Details After Router Configuration

A ping behaves as normal for the interface on the external network:

Example

[fred@bright90 ~]$ ping -c1 192.168.100.13
PING 192.168.100.13 (192.168.100.13) 56(84) bytes of data.
64 bytes from 192.168.100.13: icmp_seq=1 ttl=64 time=0.383 ms

--- 192.168.100.13 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.383/0.383/0.383/0.000 ms

Security group rules to allow a floating IP address to access the instance: The internal interface to
the instance is still not reachable via the floating IP address. That is because by default there are security
group rules that set up iptables to restrict ingress of packets across the hypervisor.

The rules can be managed by accessing the Compute resource, then selecting the Access & Security
page. Within the Security Groups subtab there is a Manage Rules button. Clicking the button brings
up the Manage Security Group Rules table (figure 5.13):
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Figure 5.13: Security Group Rules Management

Clicking on the Add Rule button brings up a dialog. To let incoming pings work, the rule All ICMP
can be added. Further restrictions for the rule can be set in the other fields of the dialog for the rule
(figure 5.14).

Figure 5.14: Security Group Rules Management—Adding A Rule
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Floating IP address association with the instance: The floating IP address can now be associated
with the instance. One way to do this is to select the Compute resource in the navigation window, and
select Instances. In the Instances window, the button for the instance in the Actions column allows
an IP address from the floating IP address pool to be associated with the IP address of the instance
(figure 5.15).

Figure 5.15: Associating A Floating IP Address To An Instance

After association, the instance is pingable from the external network of the head node.

Example

[fred@bright90 ]$ ping -c1 192.168.100.10
PING 192.168.100.10 (192.168.100.10) 56(84) bytes of data.
64 bytes from 192.168.100.10: icmp_seq=1 ttl=63 time=1.54 ms

--- 192.168.100.10 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.544/1.544/1.544/0.000 ms

If SSH is allowed in the security group rules instead of ICMP, then fred can run ssh and log into the
instance, using the default username/password cirros/cubswin:)

Example

[fred@bright90 ~]$ ssh cirros@192.168.100.10
cirros@192.168.100.10’s password:
$

Setting up SSH keys: Setting up SSH key pairs for a user fred allows a login to be done using key
authentication instead of passwords. The standard OpenStack way of setting up key pairs is to either
import an existing public key, or to generate a new public and private key. This can be carried out from
the Compute resource in the navigation window, then selecting the Access & Security page. Within the
Key Pairs subtab there are the Import Key Pair button and the Create Key Pair button.

• importing a key option: For example, user fred created in Bright Cluster Manager as in this
chapter has his public key in /home/fred/.ssh/id_dsa.pub on the head node. Pasting the text of
the key into the import dialog, and then saving it, means that the user fred can now login as the
user cirros without being prompted for a password from the head node. This is true for images
that are cloud instances, of which the cirros instance is an example.
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• creating a key pair option: Here a pair of keys is generated for a user. A PEM container file
with just the private key <PEM file>, is made available for download to the user, and should be
placed in a directory accessible to the user, on any host machine that is to be used to access the
instance. The corresponding public key is stored in Keystone, and the private key discarded by the
generating machine. The downloaded private key should be stored where it can be accessed by
ssh, and should be kept read and write only. If its permissions have changed, then running chmod
600 <PEM file> on it will make it compliant. The user can then login to the instance using, for
example, ssh -i <PEM file> cirros@192.168.100.10, without being prompted for a password.

The openstack keypair options are the CLI API equivalent for the preceding Horizon operations.
Setting up SSH key pairs in this way relies on a properly functioning cloud-init. cloud-init is

a set of initialization utilities that is part of the image available for the VMs that run under OpenStack
(section 5.2.1). It is cloud-init that gets the VMs contact the OpenStack metadata server to pick up the
public key and place it in the proper location on the VMs.

5.3 Running A Bright-managed Instance
A Bright-managed instance is a special case of the user instance in section 5.2. A Bright-managed in-
stance is a virtual machine that is treated very similarly to a regular node by Bright Cluster Manager,
and runs by default as a vnode. For example, it runs with the default names of vnode001, vnode002...
rather than a node001, node002 and so on. The default number of vnodes that is set, if Bright-managed
instances are enabled, is 5, altough this number can be altered during OpenStack installation. The num-
ber of vnodes can be modified after installation in several ways, including:

• by adding a vnode as a node of type virtualnode, in the device mode of cmsh, or via Bright
View’s clickpath of OpenStack→Virtual Nodes

• by cloning an existing vnode and modifying it if needed

Since Bright Cluster Manager is integrated tightly with vnodes, getting a Bright-managed instance
running is much easier than the procedure for user instances described earlier in sections 5.1 and 5.2.
It is also a cluster administrator that typically creates Bright-managed instances, which run under the
bright project, whereas it is end users that typically create regular VM instances, which typically run
under a non-bright project name.

To get a default vnode up, it can be powered up from cmsh:

Example

[root@bright90 ~]# cmsh -c "device power on vnode001"

or it can be powered up from Bright View via the clickpath Openstack→Virtual Nodes→Power
Most settings for vnodes are like those for regular nodes.
The main exceptions are accessible via the vnode Virtual node settings option. This option is

available via the clickpath Openstack→Virtual Nodes→Edit→Virtual node settings. It brings up
a window that allows, among others, a Flavor to be set.

The end user typically notices very little difference between vnodes and regular nodes.
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Cluster-On-Demand For

OpenStack
6.1 Introduction
If Bright OpenStack is running on a cluster, then ordinary users of the cluster can run a Cluster On
Demand (COD) within it. A COD is a complete cluster that is managed by Bright Cluster Manager,
which means that a regular user can become a cluster administrator of a virtual cluster running under
the hosting cluster. This kind of setup is a case of running a cluster within a cloud service, with the cloud
in this case being the Bright OpenStack. Analogous setups where the cloud service is provided by AWS
or Azure can also be managed with Bright Cluster Manager (Chapter 2 of the Cloudbursting Manual). In
Bright jargon these setups are conveniently called COD-OS, COD-AWS, and COD-Azure.

Bright provides a client, cm-cod-os, to launch a COD within a Bright OpenStack cluster. The client
can run on the head node of the cluster itself, or from a remote location.

Some possible uses for a Bright OpenStack COD are:

• a staging environment to test the production configuration of a software running on a Bright clus-
ter

• a way to do batch job processing using whatever workload manager the user would like, instead
of being limited to one due to the possiblity of the workload managers interfering with each other.

• a way to run virtual Bright clusters to try things out on, so that a user can become familiar with
administrating Bright cluster, without breaking a production system.

The cm-cod-os client is provided by the cm-cluster-on-demand-openstack package:

Example

[root@bright90 ~]# yum install cm-cluster-on-demand-openstack

The cm-cod-os client is a Python script that can be run with configuration files (section 6.3) and
expects some environment variable settings. If arguments are used by the script, then the arguments
override the corresponding configuration file values.

The cm-cod-os client is usually run by an ordinary user, and not the administrator, of the host cluster.
The ordinary user then typically becomes the owner and administrator of the COD. The COD is thus a
virtual cluster that is hosted by the host cluster. This is called a nested cluster.

6.2 The cm-cod-os Arguments
6.2.1 The cm-cod-os Top Level Arguments
Options to cm-cod-os can be viewed with the help option, -h|--help:
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Example

[fred@bright90 ~]$
usage: cm-cod-os [-h] [--config CONFIG] [--no-system-config] [-v]

[--show-configuration]
cluster,c,cluster create,cc,cluster list,cl,cluster
delete,cd,cremove,node,n,image,i,image list,il,image
delete,id,vnc,v,vnc list,vl,flavor,config ...

Cluster-on-demand by Bright Computing

positional arguments:
cluster,c,cluster create,cc,cluster list,cl,cluster delete,cd,cremove,node,n,image,i,\

image list,il,image delete,id,vnc,v,vnc list,vl,flavor,config
cluster (c) Cluster operations
cluster create (cc)

Create cluster
cluster list (cl) List clusters
cluster delete (cd,cremove)

Delete all resources in a cluster
node (n) Node operations
image (i) Image subcommands
image list (il) Lists cluster images
image delete (id) Deletes image from glance
vnc (v) VNC subcommands
vnc list (vl) List VNC ports
flavor Flavor subcommands
config Configuration operations

optional arguments:
-h, --help show this help message and exit
--config CONFIG, -c CONFIG
--no-system-config
-v, -vv, -vvv
--show-configuration

6.2.2 The cm-cod-os Context Tree
cm-cod-os has a hierarchy of options. Some special positional subcommand options allow particular
hierarchies to be accessed. The context of such a special positional subcommand option decides the
hierarchy available.

In Bright terminology, such a “special positional subcommand option” is therefore more conve-
niently called a “context”. If the context is one level deeper in the hierarchy, then it is called a “sub-
context” for precision. However, in more loose usage, the word “context” is generally just assumed to
include the idea of “subcontext”.

The syntax is indicated by:

cm-cod-os [context [subcontext]] options

The cm-cod-os tree has its context and subcontext branches organized as follows:

cod
+ cluster

+create
+list
+delete
+description
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+shelve
+show
+start
+stop
+tag

+ config
+dump

+ node
+create

+ image
+list
+stats
+repo-list
+install
+download
+repo-download
+delete
+show
+update
+usage

+ vnc
+list

+ flavor
+list

6.2.3 The cm-cod-os Contexts And Optional Arguments Help Text
Most contexts and subcontexts, like at the top level of cm-cod-os, have around 10 contexts and argument
options or less. For example, the cm-cod-os→cluster help text has the following contexts and options
(some output ellipsized):

Example

[fred@bright90 ~]$ cm-cod-os cluster -h
usage: cm-cod-os cluster [-h]

{create,c,list,l,delete,d,remove,description,shelve,show,start,stop,tag}
...

positional arguments:
{create,c,list,l,delete,d,remove,description,shelve,show,start,stop,tag}

create (c) Create cluster
list (l) List clusters
delete (d,remove) Delete all resources in a cluster
description View/change cluster description
shelve This command shelves all instances in a cluster. It

performs a clean shutdown first.
show This command shows details for a (list of) cluster(s)

and all related objects.
start Start/unshelve cluster(s)
stop Stop cluster(s)
tag Set tags on a heat stack to turn it into a cluster

optional arguments:
-h, --help show this help message and exit
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The cm-cod-os cluster create Options Help Text
Probably the most used path in the cm-cod-os command hierarchy for a user is
cm-cod-os→cluster→create. This can be used to create a cluster in many different ways, so
naturally it has the most options.

Example

[fred@bright90 ~]$ cm-cod-os cluster create -h
usage: cm-cod-os cluster create [options]

Create cluster

cluster create parameters:
-n NODES, --nodes NODES

Number of compute nodes to be created according to one
of the following formats (several space separated
groups can be specified): node_number
node_number:node_flavor node_number:node_template_path
node_number:node_template_path:node_flavor You find an
example of what node templates look like in:
/cm/local/apps/python3/lib/python3.7/site-
packages/clusterondemandopenstack/static/cod-os-node-
template.yml.

--wlm {dont-configure, sge, pbspro-ce, pbspro, slurm}
Workload Manager of choice. This can also be configured
later. Note that this list is a subset of the WLM
systems supported across different versions of Bright.
Therefore, some WLM systems are only configurable later
on, after the cluster has been created. Defaults to
’dont-configure’. dont-configure - do not configure any
(can be configured later).

--copy-file SRC_PATH[:DST_PATH] [SRC_PATH_2:[DST_PATH_2] ... ]
Colon separated source path and destination path. If
only the source path is specified, it will be used as
the destination path. Note: -Using a tilde (~) will be
expanded to the user home. Note: The source path can
be an HTTP URL. Note: The keyword {COD_BRIGHT_VERSION},
if present, will be replaced with the value of COD
Bright Versions. Example1: /etc/file.conf Example2:
/home/user/custom-file.conf:/etc/file.conf
Example3: http://localhost/path1:/destination/path1
/source/path2:/destination/path2.

--copy-file-with-env COPY_FILE_WITH_ENV
Same as --copy-file but replaces instances of
${ENV_VAR} inside of the file being copied with the
content of the environment variable ’ENV_VAR’ as well
as {COD_BRIGHT_VERSION} by the bright version in the
file path.

--name NAME (default: auto) Name of the cluster to createBy default
the name is generated from version, distro, label.

--timezone TIMEZONE Timezone of the cluster.
--store-head-node-ip PATH_TO_FILE

Once the cluster has been created, store the IP of the
head node in a file. Useful for automation.
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--ask-to-confirm-cluster-creation {TRUE,FALSE}
Ask for confirmation when creating a new cluster. Use
-y to skip this question.

--run-cm-bright-setup {TRUE,FALSE}
Whether or not to initialize the cluster by running cm-
bright-setup (activate license, etc).

-m HEAD_NODE_TYPE, --head-node-type HEAD_NODE_TYPE
Flavor for the head node. Use flavor name from ’cm-cod-
os flavor list’.

--secondary-head-node-type SECONDARY_HEAD_NODE_TYPE
Flavor for the secondary head node. Use flavor name
from ’cm-cod-os flavor list’.

--nas-node-type NAS_NODE_TYPE
Flavor for the NAS node. This node is created in HA
clusters to provide shared storage, based on NFS, to
both head nodes. Use flavor name from ’cm-cod-os flavor
list’.

--ha Setup HA for the cluster head nodes.
--head-node-az HEAD_NODE_AVAILABILITY_ZONE, --head-node-availability-zone

HEAD_NODE_AVAILABILITY_ZONE
Name of the availability zone to create the head node
on. If not specified, OpenStack’s scheduler will
decide. This argument can also be used to force the
head node onto a specific hypervisor. To do so, specify
"<availability_zone>:<hypervisor>", e.g.
"default:hyper01".

--ssh-key-pair SSH_KEY_PAIR
Name of the key pair used to access the head node.

--internal-cidr INTERNAL_CIDR
CIDR of the cluster’s internal network.

--failover-cidr FAILOVER_CIDR
CIDR of the cluster’s failover network.

--internal-mtu NUMBER
MTU of the cluster’s internal network.

--ingress-icmp INGRESS_ICMP
CIDR from which to allow ingress ICMP traffic to the
head node.Specify ’None’ to disable ICMP all together.

--wait-ssh SECONDS Wait up to that many seconds for SSH to come up.
--wait-cmdaemon SECONDS

Wait up to that many seconds for CMDaemon to come up.
--prebs COMMAND Command(s) executed by cloud-init before cm-bright-

setup (before CMDaemon starts). Useful for package
update. Multiple arguments are allowed.

--postbs COMMAND Command(s) executed by cloud-init post cm-bright-setup
(Once CMDaemon starts).

--append-to-root-bashrc ENV=VAR
Lines to append to the /root/.bashrc file on the head
node.

--admin-email ADMIN_EMAIL
Admin email address to set in CMDaemon.

--inbound-rule INBOUND_RULE
One or several inbound traffic rules for the cluster’s
head node in the following format:
[src_cidr[:src_port],]dst_port[:protocol]. Where port
can be a single port or a dash separated range and
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supported protocols are: tcp, udp. A wildcard value
will be assumed for every optional non-provided
parameter (e.g. all ports, all protocols, all IPs)
Examples: ’80’ ’21:udp’ ’11.0.0.0/24,20-23:TCP’
’12.0.0.0/32:6000-6500,443’.

--send-email-first-boot
Send an email on the first boot to the cluster
administrator.

-d, --dry-run Dry run - do not actually create the cluster. Useful
with --template.

--description DESCRIPTION
Cluster description.

-t OUTPUT_FILE, --template OUTPUT_FILE
Generate resulting heat template to the file. Use ’-’
as the file name to output the template to stdout.
Useful with --dry-run.

-y, --yes Do not ask for confirmation when creating a new
cluster.

--wait-for-nodes SECONDS
Wait for up to that many seconds for the compute nodes
to come up.

--power-control Enable support for power control.
(76 additional parameters can be displayed with the --advanced-help argument)

image selection parameters:
--version VERSION Bright Cluster Manager version.
--distro DISTRO Linux distribution name.
--package-groups PACKAGE_GROUPS

Package group.
--image IMAGE_SPEC Single image selector statement. See cm-cod-os image

list --help. Overrides filter arguments such as
--version, --distro, etc.

--head-node-image UUID|IMAGE-NAME|IMAGE-SET
Single image selector statement for the head node
image. Can either be a Glance image UUID, the name of
that Glance image or the name of the image set.
Overrides the head node image selected by --image and
all other image filter arguments.

--node-image NODE_IMAGE
Single image selector statement for node image (as in
advanced mode) ’--node-image none’ will force the
cluster to not use a node image at all. Overrides the
head node image selected by --image and all other image
filter arguments.

--tags TAGS Single image selector statement. See cm-cod-os image
list --help.

--ha-tags HA_TAGS Overrides --tags, but only when --ha is used.
--status STATUS Glance status of the image.
--cmd-revision-min NUMBER

Minimum CMDaemon revision required.
--cmd-revision-max NUMBER

Maximum CMDaemon revision.
--revision NUMBER Select clusters with specified revision.

(9 additional parameters can be displayed with the --advanced-help argument)

© Bright Computing, Inc.



6.2 The cm-cod-os Arguments 99

root login method to the head node:
--log-cluster-password

Log cluster password to the screen and log files. This
option is mandatory if no custom password, nor SSH
keypairs, were specified.

--cluster-password CLUSTER_PASSWORD
The root user password to the cluster. If not
specified, a random one will be generated (use --log-
cluster-password to see it). This is also the root user
SQL password on the head node. Upon cluster creation
the password is stored in the
/cm/local/apps/cmd/etc/cmd.conf on the head node.

--ssh-password-authentication {TRUE,FALSE}
If set to true, it will be possible to SSH to the head
node using a password. This option should NOT be used
in untrusted environments as it exposes the head node
to brute force login attacks.

--access-validation Causes the cluster creation process to abort early if
it won’t be able to guarantee that the SSH access to
the cluster will be possible. Disabling it is useful
when e.g. the public SSH key is being delivered to the
image in some other way, than the usual command line
argument. Note, that access validation does not attempt
to actually connect to the cluster. Instead, it merely
tries to predict whether the cluster will be accessible
to the user, given the specified argument combination.

--ssh-pub-key-path PATH_TO_FILE
Path to the public key.

(4 additional parameters can be displayed with the --advanced-help argument)

node volume parameters:
--node-root-volume-size SIZE_IN_GB

Root volume size in GB.
--node-root-volume-type NODE_ROOT_VOLUME_TYPE

Compute node root disk volume type. Allows for
specifying a special volume type with different Quality
of Service policy (more IOPS etc).

--head-node-root-volume-size SIZE_IN_GB
Head node root disk size in GB. Should be bigger than
the Image size.

--head-node-root-volume-type HEAD_NODE_ROOT_VOLUME_TYPE
Head node root disk volume type. Allows for specifying
a special volume type with different Quality of Service
policy (more IOPS etc).

--head-node-extra-volume-type HEAD_NODE_EXTRA_VOLUME_TYPE
Head node extra disk volume type. Allows for specifying
a special volume type with different Quality of Service
policy (more IOPS etc).

--head-node-extra-volume-size SIZE_IN_GB
Second volume for the extra.

(1 additional parameters can be displayed with the --advanced-help argument)
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Bright Cluster Manager licensing information:
--license-unit LICENSE_UNIT

License unit.
--license-locality LICENSE_LOCALITY

License locality.
--license-country LICENSE_COUNTRY

Two characters.
--license-product-key LICENSE_PRODUCT_KEY

Bright Cluster Manager Product Key.
--license-organization LICENSE_ORGANIZATION

Name of your organization.
--license-state LICENSE_STATE

Name of your state or province.
(3 additional parameters can be displayed with the --advanced-help argument)

SSH local configuration:
--update-ssh-config Updates the contents of ~/.ssh/config, this is used to

maintain the local ssh configuration access with ssh,
scp and related tools.

--ssh-config-alias-prefix SSH_CONFIG_ALIAS_PREFIX
Prefix to be used when populating host entries for the
cluster head nodes in the COD section of ~/.ssh/config.
Default is ’’.

(1 additional parameters can be displayed with the --advanced-help argument)

common parameters:
-h, --help Show this message and exit.
--advanced-help Don’t omit advanced configuration parameters from the

help output. Implies --help.
--explain EXPLAIN Show detailed information about the immediately

following parameter. Which can be a name, a regular
expression, ENV VAR or another flag.

-v, -vv, -vvv, --verbose
Verbosity level.

(11 additional parameters can be displayed with the --advanced-help argument)

configuration parameters:
-c CONFIG, --config CONFIG

Extra config files.
(8 additional parameters can be displayed with the --advanced-help argument)

node definition parameters:
--node-disk-setup-path PATH_TO_XML

Path to the XML file with the disk setup which is to be
used for the nodes.

--node-disk-setup NODE_DISK_SETUP

--node-az DEFAULT_NODE_AVAILABILITY_ZONE, --default-node-az DEFAULT_NODE_AVAILABILITY_ZONE,
--node-

availability-zone DEFAULT_NODE_AVAILABILITY_ZONE, --default-node-
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availability-zone DEFAULT_NODE_AVAILABILITY_ZONE
Default name of the availability zone to create the
compute nodes on. Will not override the availability
zone that is specified in the node template. If not
specified, OpenStack’s scheduler will decide. This
argument can also be used to force the compute node
onto a specific hypervisor. To do so, specify
"<availability_zone>:<hypervisor>", e.g.
"default:hyper01".

(4 additional parameters can be displayed with the --advanced-help argument)

openstack authentication parameters:
--os-auth-url URL OpenStack Authentication URL. This should typically be

the public Keystone API endpoint (v3), e.g. ’http://my-
example-cloud:5000/v3’. This can also be set with
OS_AUTH_URL environment variable.

--os-username USERNAME
Username of the OpenStack user which is to be used for
authentication with keystone (--os-auth-url). The user
should have a OpenStack role assigned in the project
specified with --os-project-name. This can also be set
with OS_USERNAME environment variable.

--os-password PASSWORD
OpenStack password for the OpenStack user specified
with --os-username. This can also be set with
OS_PASSWORD environment variable. Avoid setting the
password via the command line, it’s unsafe. If no
password is provided beforehand, the user will be
presented with an interactive prompt, and asked to
provide it at runtime.

--os-project-name PROJECT_NAME
The name of the OpenStack project (a.k.a. tenant). The
OpenStack user (--os-username) which is used for
authentication should have a OpenStack role assigned in
this project. This can also be set with OS_PROJECT_NAME
environment variable.

(6 additional parameters can be displayed with the --advanced-help argument)

Some sections were omitted
6 sections with a total of 19 parameters can be displayed with the --advanced-help argument

6.3 The cm-cod-os Configuration Files
6.3.1 The cm-cod-os Configuration Files Locations
By default, configuration files for setting up the COD are searched for in the following locations, and in
the following sequence. Settings found earlier in the sequence are overwritten by settings later on in the
sequence.

• /etc/cm-cluster-on-demand.ini

• /etc/cm-cluster-on-demand.conf

• /etc/cm-cluster-on-demand.d/*

• ~/cm-cluster-on-demand.ini
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• ~/cm-cluster-on-demand.conf

• ~/cm-cluster-on-demand.d/*

• a file location specified on the command line. For example, a file mycodsettings can be accessed
using the --config option of cm-cod-os:

Example

[fred@bright90 ~]$ cm-cod-os --config mycodsettings

Typically, the administrator sets up configuration options in one of the first 3 locations, and the
regular user modifies the options or adds other options in one of the last 4 locations.

6.3.2 Viewing The cm-cod-os Configuration File Options
A dump of the existing configuration can be viewed using cm-cod-os config dump

To check what options have been applied, and their sequence, the log to STDOUT can be viewed if
the -v|--verbose option has been applied.

A list of configuration options for the cm-cod-os cluster create command can be seen with the
--show-configuration option (output truncated):

Example

[fred@bright90 ~]$ cm-cod-os cluster create --show-configuration
+-------------------------------------------+------------------------------------------+
| option | value |
+-------------------------------------------+------------------------------------------+
| advanced_help | False (default) |
| append_to_root_bashrc | [] (default) |
| ask_to_confirm_cluster_creation | True (default) |
| cluster_password | None (default) |
| cmd_revision_max | None (default) |
...

Arguments to cm-cod-os override the equivalent configuration file settings. This means that the con-
figuration file settings of a working configuration can be used as a default template, and modifications
to the template can conveniently be carried out via command line.

6.3.3 Setting The cm-cod-os Configuration File Options And Corresponding Arguments
The configuration options can be placed under sections that are associated with the corresponding
cm-cod-os contexts and subcontexts of the tree in section 6.2.2.

For example, the path to the subcontext cm-cod-os cluster create has a large number of possible
options (the options listed starting on page 96). The configuration file for the options can then have a
section that begins with:

[openstack.cluster.create]

The section and options that can be placed in a configuration file can be worked out from the help
text output of the cm-cod-os for the associated context or subcontext.

For example, the help text for cm-cod-os cluster create -h has the excerpt:

--ask-to-confirm-cluster-creation {TRUE,FALSE}
Ask for confirmation when creating a new cluster. Use
-y to skip this question.

© Bright Computing, Inc.

~/cm-cluster-on-demand.conf
~/cm-cluster-on-demand.d/*


6.4 The cm-cod-os Environment Variables 103

The configuration option for this option then takes the form:

openstack.cluster.create.ask_to_confirm_cluster_creation

The options are placed in a key=value format under the associated section.
Thus, the option that can be set to ask for confirmation before creating a new cluster is then

ask_to_confirm_cluster_creation. It can be placed under the section [openstack.cluster.create] in
key=value format as follows:

[openstack.cluster.create]
ask_to_confirm_cluster_creation=yes

6.4 The cm-cod-os Environment Variables
The environment in which cm-cod-os runs also provides the script with information via OpenStack
environment variables.

These OpenStack variables are typically exported in the .bashrc or .openstackrc file (page 80) for
the COD owner using the Bright OpenStack cluster. The environment variables, which are prefixed with
OS_, then typically exist in the environment of the OpenStack COD owner.

Example

[fred@bright90 ~]$ grep OS_ .bashrc
export OS_AUTH_URL="http://master:5000/v3"
export OS_PROJECT_NAME="${USER}-project"
export OS_USERNAME="${USER}"
export OS_TENANT_NAME="${USER}-project"
export OS_PROJECT_DOMAIN_ID="9b9d86bb35934072b7c2a5c73ce75d43"
export OS_USER_DOMAIN_ID="9b9d86bb35934072b7c2a5c73ce75d43"
export OS_IDENTITY_API_VERSION=3
export OS_CACERT="/etc/keystone/ssl/certs/ca.pem"
export OS_INITIALS=$COD_PREFIX
[fred@bright90 ~]$

So, when the cm-cod-os script runs, it works for the COD owner with the local Bright OpenStack
cluster by default.

To have cm-cod-os work with other clusters requires appropriate changes in these environment
variables, as well as in the cm-cod-os configuration options.

6.5 Launching A COD
This section consists of example sessions, to show how the material in the preceding sections of this
Chapter can be used to launch a nested COD. Some administrative preparation is first carried out on
the host cluster (subsection 6.5.1). Once the host cluster is ready, the nested cluster can be launched and
configured (subsection 6.5.2).

6.5.1 Administrative Preparation Of The Host Cluster
It is assumed that the host cluster is configured with Bright OpenStack already. For example, with Bright
View OpenStack wizard (section 3.1), or with cm-openstack-setup (section 3.2).

Installing cm-cod-os
On the head node, the cm-cod-os utility should be present. If it is missing, then it should be installed
with:

Example

[root@bright90 ~]# yum install cm-cluster-on-demand-openstack
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Setting The OpenStack Port Security Extension Driver
The OpenStack port security plugin (https://wiki.openstack.org/wiki/Neutron/
ML2PortSecurityExtensionDriver) should be enabled to allow the toggling of packet filtering
for the hosted devices, so that the hosted nodes can be served DHCP leases.

[root@bright90 ~]# cmsh
[bright90]% openstack
[bright90->openstack[default]]% settings
[bright90->openstack[default]->settings]% networking
[...settings->networking]% set enableml2portsecurityplugin yes
[...settings*->networking*]% commit

Viewing The Existing Flavors
If the OpenStack credentials and environment are in place, then the standard flavor list provided by
Bright OpenStack can be seen by using the OpenStack CLI client. The root user can see these with:

Example

[root@bright90 ~]# source .openstackrc; source .openstackrc_password
[root@bright90 ~]# openstack flavor list
+------------------------------+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |
+------------------------------+-----------+-------+------+-----------+-------+-----------+
| 0f57527b-4fb2-452d-9b52-13c2 | m1.large | 8192 | 20 | 80 | 4 | True |
| 5309e46d-5c2d-47a0-9ad8-dae9 | m1.xtiny | 256 | 1 | 0 | 1 | True |
| 9b711a53-282c-4901-8bef-20ac | m1.xlarge | 16384 | 40 | 160 | 8 | True |
| ccbad1b4-bdb2-40fe-b948-1819 | m1.tiny | 512 | 5 | 5 | 1 | True |
| e6408d86-a9ca-4694-9066-f8a8 | m1.medium | 4096 | 20 | 40 | 2 | True |
| ebf16a3f-c3ee-41e7-952d-2643 | m1.xsmall | 1024 | 10 | 10 | 1 | True |
| f66090cd-b020-49a2-808c-393b | m1.small | 2048 | 10 | 20 | 2 | True |
+------------------------------+-----------+-------+------+-----------+-------+-----------+

Alternatively, without having to explicitly source the credentials and the environment, the Bright
Cluster Manager cmsh equivalent can be run:

Example

cmsh -c "openstack; flavors; list"

Adding COD Flavors
Some arbitrary COD flavors can be defined by the hosting administrator according to the possible re-
quirements. A convenient set could be:

Example

[root@bright90 ~]# openstack flavor create --ram 1024 --vcpus 1 cod.xsmall
[root@bright90 ~]# openstack flavor create --ram 2048 --vcpus 2 cod.small
[root@bright90 ~]# openstack flavor create --ram 4096 --vcpus 2 cod.medium
[root@bright90 ~]# openstack flavor create --ram 8192 --vcpus 4 cod.large
[root@bright90 ~]# openstack flavor create --ram 16384 --vcpus 8 cod.xlarge

Alternatively, if using cmsh, then the flavors can be set within the flavors submode of openstack
mode. For example, the preceding cod.xsmall flavor can be set with:

Example

cmsh -c "openstack flavors; add cod.xsmall; set ram 1GiB; set vcpus 1; commit"
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Creating A Volume Type
A volume is a block storage that can be used for persistent storage and attached to instances. A simple
volume type with default properties can be created by the root user, and given the unimaginative name
of default, with:

Example

[root@bright90 ~]# openstack volume type create default
+-------------+--------------------------------------+
| Field | Value |
+-------------+--------------------------------------+
| description | None |
| id | 6486cff8-c2bf-4a3d-a32e-3a67b94ca564 |
| is_public | True |
| name | default |
+-------------+--------------------------------------+

If the user has access to cmsh, then another way to set this would be:
cmsh -c "openstack; volumetypes; add default; commit"

At this stage in the session, the following points may help orient the reader:

OpenStack client commands typically have cmsh or Bright View equivalents: As the preceding ex-
amples illustrate, the more useful of the OpenStack client commands can be carried out with a cmsh or
Bright View equivalent. Whatever is used is a matter of preference and convenience.

Non-root methods to carry out the OpenStack client commands: So far in this section (6.5.1) the
preparation to launch a COD has been carried out as a root user. However a non-root user can run these
tasks too, with the right credentials.

If using the OpenStack client, then the appropriate credentials for a user are created when an Open-
Stack user with the same name as the Bright user is created (section 5.1.2). Thus, for example, if a
non-root user who is the Bright user fred is created as an OpenStack user too, then fred becomes able
to view the flavor list too, as follows:

Example

[fred@bright90 ~]$ source .openstackrc; source .openstackrc_password
[fred@bright90 ~]$ openstack flavor list

OpenStack flavors are a superset of COD flavors. To view only COD flavors—flavors that are used
by COD instances only—the following command can be run, as root or as the regular user:

Example

cod flavor list

It should be noted that the cmsh or Bright View equivalents for commands in this section ( 6.5.1)
can always be run by a non-root user. However, to be able to run them, the non-root user must have
sufficient privileges. Such privileges can be set by the host cluster administrator modifying the profile
settings (section 6.4 of the Administrator Manual) for the non-root user.

Generally, the preparation in this section (6.5.1) is done as a root user. In the following section (6.5.2),
the non-root end user gets to launch and configure the cluster.
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6.5.2 Launching And Configuring The Nested Cluster As A User
Typically, the administrator is expected to have configured a global default configuration file already
(section 6.3).

If the user would like to generate and modify one for themselves, then the steps in this section can be
followed. The steps here are also useful for an administrator who is setting up and trying out a global
default configuration file for users.

Generating And Modifying A Configuration File For cm-cod-os
A .ini configuration file can be generated for the user with

[fred@bright90 ~]$ cm-cod-os config dump > ~/cm-cod-os.ini

To launch the nested cluster, the settings that must be modified within this file are the following:

• license_product_key=<the product key>

• cluster_password=<a password>

• floating_ip_network_uuid=<network UID>

If the Bright flat external net is used for floating IP addresses, then the network UID can be ob-
tained from the OpenStack client:

Example

[fred@bright90 ~]$ openstack network show bright-external-flat-externalnet -f value -c id
9a41d19c-7d04-441e-85e8-ee4f15c3cb7f

The following settings in the .ini file are assumed to have been defined, but can be modified:

• node_boot_image=<image name>

By default, the boot image name is iPXE-plain-eth0.

• head_node_type=<image name>

By default, the head node image name is cod.medium.

• default_node_type=<image name>

By default, the regular node image name is cod.xsmall.

• internal_mtu=<MTU size of the hosting internal network>

By default, the hosted network MTU size is set to a standard size of 1500. This allows hosted
nodes to PXE boot because PXE booting does not accept MTU options in the DHCP server. For
VXLAN-based network isolation this means that the hosting internal network must have a larger
MTU value than 1500 to accomodate the hosted network MTU size.

If the MTU value of the hosting internal network must remain at a value of 1500, then VLAN-based
network isolation can be used instead.

The arguments to the preceding options take the form --license-product-key,
--cluster-password, --floating-ip-network-uuid, and so on, as listed within the section on
the cm-cod-os cluster create options help text (page 96).
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Viewing And Picking Up An Image To Be Used For cm-cod-os
The image IDs that are available from the Bright Computing repositories, and their properties can be
listed:

Example

[fred@bright90 ~]$ cm-cod-os image repo-list
+---------------------+----------+----------+-----------+----------+-------------+
| ImageID:Revision | Head(GB) | Node(GB) | Distro | CMD Rev. | BCM Version |
+---------------------+----------+----------+-----------+----------+-------------+
| centos7u5-8.1:9 | 3.72 | 1.4 | centos7u5 | 131439 | 8.1 |
| centos7u2-8.0:7 | 3.65 | 1.25 | centos7u2 | 127928 | 8.0 |
| centos7u2-7.3:14 | 3.38 | 1.04 | centos7u2 | 35931 | 7.3 |
+---------------------+----------+----------+-----------+----------+-------------+

A suitable image ID value can then be chosen. Each image ID has one head image and one regular
node image associated with it. These images are then both installed:

Example

[fred@bright90 ~]$ cm-cod-os image install --is-public yes <ImageID:Revision>

The installation can take some time (minutes between each stage). A session run displays output similar
to the following:

Example

[fred@bright90 ~]$ cm-cod-os image install centos7u5-8.1:9
+------------------+----------+----------+-----------+----------+-------------+
| ImageID:Revision | Head(GB) | Node(GB) | Distro | CMD Rev. | BCM Version |
+------------------+----------+----------+-----------+----------+-------------+
| centos7u5-8.1:9 | 3.72 | 1.4 | centos7u5 | 131439 | 8.1 |
+------------------+----------+----------+-----------+----------+-------------+
About to install these images
Proceed? [yes/no] yes
INFO: Downloading bcmn-centos7u5-8.1-9 to /home/fred/bcmn-centos7u5-8.1-9.img.gz...
INFO: Creating manifest file /home/fred/bcmn-centos7u5-8.1-9.img.gz.manifest
INFO: Downloading https://s3-eu-west-1.amazonaws.com/cod-os-images.support.brightcomputing.com/

bcmn-centos7u5-8.1-9.img.gz
INFO: Checking MD5 sum of /home/fred/bcmn-centos7u5-8.1-9.img.gz
INFO: Uploading /home/fred/bcmn-centos7u5-8.1-9.img.gz to glance...
INFO: Upload operation finished successfully.
INFO: Downloading bcmh-centos7u5-8.1-9 to /home/fred/bcmh-centos7u5-8.1-9.img.gz...
INFO: Creating manifest file /home/fred/bcmh-centos7u5-8.1-9.img.gz.manifest
INFO: Downloading https://s3-eu-west-1.amazonaws.com/cod-os-images.support.brightcomputing.com/

bcmh-centos7u5-8.1-9.img.gz
INFO: Checking MD5 sum of /home/fred/bcmh-centos7u5-8.1-9.img.gz
INFO: Uploading /home/fred/bcmh-centos7u5-8.1-9.img.gz to glance...
INFO: Upload operation finished successfully.
[fred@bright90 ~]$

The image ID for the installed images installed by cm-cod-os locally can then be seen with:

Example
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[fred@bright90 ~]$ cm-cod-os image list
+------------------+----------+----------+-----------+----------+-------------+
| ImageID:Revision | Head(GB) | Node(GB) | Distro | CMD Rev. | BCM Version |
+------------------+----------+----------+-----------+----------+-------------+
| centos7u5-8.1:9 | 12.46 | 3.93 | centos7u5 | 131439 | 8.1 |
+------------------+----------+----------+-----------+----------+-------------+

A more extensive images list can be seen with:

Example

[fred@bright90 ~]$ openstack image list
+--------------------------------------+--------------------------------+--------+
| ID | Name | Status |
+--------------------------------------+--------------------------------+--------+
| 43797ed5-0cdf-40f6-bbcd-1bdb11bfbc74 | Bright-COD-headnode-bootloader | active |
| 71568b33-1ef7-4099-aa10-f9690e52aaf1 | Bright-Managed-VM-iPXE-eth0 | active |
| 61856733-8f1f-4df7-a68b-d5ca27873f85 | Bright-Managed-VM-iPXE-eth1 | active |
| c34cbb10-3bfc-4d5f-b320-d446f7ded267 | bcmh-centos7u5-8.1-9 | active |
| ca519e84-5fac-4c03-8050-299400e822d2 | bcmn-centos7u5-8.1-9 | active |
| 953f9337-d5a1-4170-9edd-21d9149bbe4a | iPXE-plain-eth0 | active |
| 0d94b9a9-3d06-4a6a-b446-bc3cea7dfdd9 | iPXE-plain-eth1 | active |
+--------------------------------------+--------------------------------+--------+
[fred@bright90 ~]$

Using cm-cod-os
The user can now start creating clusters. A basic command using the .ini configuration file would be:

[fred@bright90 ~]$ cm-cod-os -c cm-cod-os.ini cluster create
11:15:09: INFO: Please wait...
11:15:10: INFO: --------------------------------------------------------
11:15:10: INFO: Cluster: c-09-05-8.1-c7u5
11:15:10: INFO: --------------------------------------------------------
11:15:10: INFO: Image name: bcmh-centos7u5-8.1-9(centos7u5-8.1:9)
11:15:10: INFO: Node image: bcmn-centos7u5-8.1-9(centos7u5-8.1:9)
11:15:10: INFO: Image date: 2018-08-17 10:48 (19d 0h ago)
11:15:10: INFO: Package groups: none
11:15:10: INFO: CMD rev.: 131439
11:15:10: INFO: Version: 8.1
11:15:10: INFO: Distro: centos7u5
11:15:10: INFO: Head node: 1 cod.medium: 4096 RAM, 2 vCPUs
11:15:10: INFO: Nodes: 5 cod.xsmall: 1024 RAM, 1 vCPUs
11:15:10: INFO: Disk: 10 GiB (type: default)
11:15:10: INFO: --------------------------------------------------------
Press ENTER to continue and create the cluster.
Press ctrl+c (or type ’a’) to abort. Type ’i’ for more info.

Ideally, if the administrator of the host cluster has set things up conveniently for the end user, the
command needs no configuration file, and is run simply as cm-cod-os cluster create.

After a cluster has been created, it can be listed with:

[fred@bright90 ~]$ cm-cod-os cluster list
+----------------------+---------------+-------------+----------------------+----------+
| Cluster (stack) name | IP | Head Status | Head Image | CMD rev. |
+----------------------+---------------+-------------+----------------------+----------+
| c-09-05-b8.1-c7u5 | 192.168.200.8 | ACTIVE | bcmh-centos7u5-8.1-9 | 131439 |
+----------------------+---------------+-------------+----------------------+----------+
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Inactive clusters can additionally be listed by appending the -a|--all option to the list subcontext,
as: cm-cod-os cluster list -a

Cluster removal is possible by specifying the cluster name to be deleted with the delete|d|remove
option:

Example

[fred@bright90 ~]$ cm-cod-os cluster delete c-09-05-b8.1-c7u5
a list of resources that are to be removed is shown
You are about to delete all of the above resources.
Proceed? [yes/no] yes
...
14:18:25: INFO: Done. Stack ’c-09-05-b81-c7u5’ deleted.

A less drastic way to conserve resources than the delete option, can be to use the shelve option.
Shelving a cluster means that it is made inactive and stored. It can then be resumed with the start
option.

The help options for the COD contexts can be seen by appending --help to them

Example

[fred@bright90 ~]$ cm-cod-os cluster --help

Example

cm-cod-os cluster create --help
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A
Storage Considerations For

OpenStack
This chapter describes issues that should be considered when selecting a storage subsystem for Open-
Stack.

A.1 Introduction
OpenStack, to function properly, requires two types of storage:

• Some form of storage on the controller nodes (controller services), typically a Directly Attached
Storage (DAS), for example an HDD or SSD.

– Here, the Bright head node cannot be an OpenStack controller node

• Some form of Network Attached Storage (NAS) for Glance, Nova, and Cinder (for example, Ceph,
NFS, GPFS, NetApp, and so on)

– In a very special case, this storage for Glance and Nova can actually be directly attached, not
on the Network.

NAS solutions for Glance, Nova, and Cinder are the focus of this chapter. DAS, and storage for other
controller services, are covered here only very briefly.

Configuring QoS for OpenStack-managed block devices (for Nova and Cinder) is also discussed in
this chapter.

A.2 DAS On The OpenStack Controller Nodes
• DAS is typically used for storage of RabbitMQ queue data and Galera MariaDB databases.

• It is convenient for storing the OpenStack configuration files for controller services, such as con-
figuration files for Nova (nova-api, nova-scheduler, nova-conductor) (/etc/nova/nova.conf)
and other openstack controller services or processes (glance-api, glance-registry, cinder-api,
cinder-volume, and so on).

• This storage is present typically a locally attached HDD or SSD.

• As a special case, this storage need not be local, but can be a network mount to a persistent NAS.
This adds latency for accessing, for example, the databases, but on the other hand it allows con-
troller nodes to be run in a diskless manner if needed.

• Using SSDs is generally recommended for the controllers. For the databases it lowers the latency
and boosts the performance of the cloud, compared with using traditional spinning disks.
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A.3 NAS Storage For Glance/Nova/Cinder
OpenStack Glance, Nova, and Cinder services all require a persistent storage system. In most cases this
should be a networked or clustered NAS system, such as Ceph, GPFS, or an NFS appliance.

A.3.0 Overview: Native OpenStack Access Versus Non-native OpenStack Access
There are two ways of accessing external NAS storage in OpenStack:

1. Relying on a built-in driver for a given OpenStack component. For example, an “NFS driver for
Cinder” or a “Ceph driver for Glance”.

• Supported types of shared storage: Bright OpenStack supports most of types of Storage sys-
tems supported by upstream OpenStack. Many can be configured during OpenStack de-
ployment. Those that cannot, can be configured manually after deploying Bright OpenStack,
for example: by using Configuration Overlays, which make it easy to apply configuration
changes to OpenStack services.
For such post-installation manual storage configuration cases, the option to configure it later
should be selected during the deployment of OpenStack, at the point when the deployment
asks for a storage system for Glance (figures 3.23 and 3.6), Cinder (figures 3.24 and 3.7), or
Nova (figures 3.28 and 3.8).

• Cinder has the widest variety of native drivers (70+) as shown in the support matrix at https:
//wiki.openstack.org/wiki/CinderSupportMatrix. Compared with Cinder, the Nova and
Glance services offer relatively fewer drivers as of OpenStack Newton.

– Glance, however, can be made to use Cinder as the back end.
– Nova’s ephemeral disks can either not be used at all with a given OpenStack deployment,

or can use a local DAS for storing data. In the case of using a local DAS for storage, a
dedicated driver is not needed.

2. By mounting the NAS locally on the nodes which require access to it, and configuring a given
OpenStack component to use that “local” mount for storing data. This is not possible with all
NASes. For example, Nova’s “localdisk” driver requires file-locking functionality on the filesys-
tem used for storing ephemeral disks.

Some clusters use a combination of the two access types at the same time within the same cloud. For
example, Cinder can access a NAS via a dedicated driver, whereas Nova and Glance can be configured
to access (the same, or different) NAS via local file system mounts.

Network Considerations
Network equipment and bandwidth should be considered when using a Network/Clustered storage
solution for any of the following components.

Using a high latency or low bandwidth network slows down the cloud, and could lead to a distur-
bance in function.

A.3.1 Glance
Glance uses shared storage to store images of the VMs. By storing images on a shared, network-attached,
storage, accessible by all OpenStack Glance services, Glance can run in active/active HA mode. In the
simplest case this can be a local NFS mount. In a more advanced case Glance can store images directly
in Ceph.

Even though in theory Glance can make use of a locally attached storage (a DAS), it is recommended
to use some sort of a NAS such as Ceph instead for it, especially when OpenStack is deployed with
multiple controller nodes.

Glance can also be configured with an additional auxiliary HTTP store. That is, the images can be
added to Glance as a reference to by an already-existing HTTP server somewhere on the network. The
images are then downloaded from the web server via HTTP whenever needed.

© Bright Computing, Inc.

https://wiki.openstack.org/wiki/CinderSupportMatrix
https://wiki.openstack.org/wiki/CinderSupportMatrix


A.3 NAS Storage For Glance/Nova/Cinder 113

Glance can also be configured to store images in Cinder, as volumes. In this case it will rely on
whatever storage is configured for Cinder.

A.3.2 Nova
Nova requires persistent storage for storing disks of VMs, that is “ephemeral” block devices. Those
block devices are bound to a VM, and their size is determined by the flavor of the VM. They are always
removed when the VM is removed, which is why they are ephemeral.

There are 3 types of ephemeral disks defined (or not defined) by a Nova VM Flavor. The storage can
be composed of any combination of these:

• Root disk (also called the root ephemeral disk)

– Provisioned with the VM image (unless a Cinder volume is used for that instead)

• Ephemeral disk (used for scratch space)

• Swap disk (Linux swap partition)

• As a special case, a flavor can define all three of those to be 0 GB, in which case a Cinder Volume
can be used as the root volume hosting the VM image.

By using a shared storage for Nova, VM migration is carried out more easily. This is because the
ephemeral block devices associated with the VM do not have to be copied from one hypervisor to an-
other during the migration process. It also allows the hypervisor to be run in a purely diskless configu-
ration.

Using a locally-attached DAS storage for Nova is also possible, and in some cases desirable. By
having Nova use local DAS for storing the ephemeral block devices, the access latency and throughput
to this device can in some cases be much better than a comparable NAS, simply because no network
access is involved.

Whether DAS or a NAS should be used for Nova is entirely up to the architect of the OpenStack
cloud. Both approaches have different advantages and disadvantages.

Nova with DAS
Nova with DAS typically has:

• Lower latency

• Low resilience, unless RAID is used. But even with RAID, if a hypervisor goes down then data in
ephemeral storage is lost.

• A different I/O profile compared with a Cinder volume

Nova with NAS
Nova with NAS typically has:

• Typically higher latency than local storage

• High resilience of data in the case of hypervisor failure

• Easier VM migration

One of the possible architectural designs is to use Cinder Volumes—which are always accessed via
the network—for the Root filesystem of the VM, and then use the “ephemeral” (scratch) disk in Nova.
This then provides a low-latency (attached-to-hypervisor) scratch space.

Another architecture could be to not use Nova’s ephemeral storage at all, and instead rely entirely
on Cinder volumes for root filesystem disks, as well as for any auxiliary storage.
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Yet another architecture would be to not use Cinder, and rely entirely on Nova disks for all the block
storage, via DAS or NAS.

Using a mixture of the above is also possible. Thus, some VMs could only use Nova, some only
Cinder, some a combination of the two.

A.3.3 Cinder
Cinder requires persistent storage for storage volumes, that is: auxiliary block devices. Cinder volumes
function like the “disks” managed by Nova (as in, they are block devices), but unlike them, their life
cycle does not have to be bound to a specific VM. That is, a Cinder volume can be created, attached to any
VM, used, detached, and then attached to another VM. Cinder volumes can be made to be automatically
removed by OpenStack whenever the VM that they are attached to is removed.

Cinder is deployed by default by Bright OpenStack. However, in theory it does not need to be used
or configured as part of Bright OpenStack. It is entirely possible to run a fully functional OpenStack
cloud without an operational Cinder. Given that both Nova and Glance can operate without a shared
storage, i.e. using only locally attached storage, then in theory it is possible to have a fully functional
OpenStack cloud without any sort of persistent NAS. However it is typically not recommended to do
so.

Cinder can expose different types of volumes to the end users. Typically, if more than one type of
volume is used, then all of those types are backed by the same NAS system, but with different QoS
characteristics. It is however possible to configure Cinder in such a way that each volume type would
be mapped to a completely different NAS system. For example, there could be a “Fast NFS volume”,
a “Slow NFS Volume”, and several “Ceph Volumes”, (these could be mapped to different Ceph stor-
age pools, with different replication/performance characteristics), and several types of say, “NetApp
volumes”. All of these volumes could be in a single OpenStack deployment, and visible to all, or only
selected projects.

A.3.4 Considerations For NAS For OpenStack
Shared storage that performs well is a critical part of an OpenStack cloud that performs well. No matter
which shared storage system is used for OpenStack, it makes sense to spend some time making sure
that it suits the OpenStack cloud well.

To give hardware suggestions or software configuration for shared storage is not easy. These sugges-
tions always depend on the types of NAS used, as well as on the expected performance characteristics
of the OpenStack cloud. For example, how many VMs will use the cloud and how often, and how much
and how fast the storage should be.

Several generic rules-of-thumb are outlined next. These can be applied to most types of shared
storage for OpenStack. There are also several other guidelines which are specific to Ceph. Even if Ceph
is not going to be run, it is wise to read through the Ceph guidelines too, as some of the suggestions are
appropriate for some other types of NAS systems.

General Rules-of-thumb
• Using the same NAS for Glance, Cinder, and Nova makes things easier from an operational per-

spective.

– Unless configured otherwise, these 3 services can be configured to dynamically consume the
amount of storage required by them at any given time from within the same pool.

– In some cases this allows copy-on-write (COW1) semantic filesystems to be used to thinly
and quickly provision new block devices from an image. So, when creating a new VM from

1A COW design for a filesystem follows the principle that, when blocks of old data are to be modified, then the new data blocks
are written in a new location (the COW action), leaving the old, now superseded, copy of the data blocks still in place. Metadata
is written to keep track of the event so that, for example, the new data blocks can be used seamlessly with the contiguous old data
blocks that have not been superseded. This is in contrast to the simple overwriting of old data that a non-COW filesystem such as
Ext3fs carries out.

© Bright Computing, Inc.



A.3 NAS Storage For Glance/Nova/Cinder 115

a Glance image, the image does not have to be copied to the block storage system, but in-
stead a copy-on-write copy can be made instantaneously. Some of the NASes which support
this include Ceph and GPFS. NFS does not support copy-on-write, and can therefore be a
suboptimal choice for many OpenStack use cases.

• Unless storing a lot of VM images in Glance is planned, Glance typically consumes the smallest
portion of raw storage, when compared to Nova ephemeral disks, or Cinder Volumes

• By default all Bright clusters come with an NFS export in the form of /cm/shared. When deploy-
ing Bright OpenStack, /cm/shared can be selected to be used with Glance, or Cinder, or Nova.
Selecting any of these means that NFS is to be used as the NAS system for OpenStack.

If the solution is to be used only for a small OpenStack cluster, and typically just for a proof-of-
concept system, then hosting the NFS export on the head node, as is the default, is acceptable. For
production use, the NFS export should be backed by a dedicated high-performance NAS appli-
ance.

• If using NFS for Cinder, it should be borne in mind that Volume Snapshots are not available. This
is because the default Cinder NFS driver does not support them.

Ceph Rules-of-thumb
It should be emphasized that the text in this section is merely a rough guide. Designing a high-
performance Ceph cluster is far from trivial, and following these guidelines cannot give the best perfor-
mance for every single use case.

These guidelines are, however, a good place to start when starting from scratch, and should typically
result in a much better performance than just running Ceph on a random collection of storage nodes.

• With Ceph, if Glance, Nova, or Cinder share the same Ceph cluster—even if they are configured
in different storage pools—then copy-on-write works just fine between Glance and Nova, and
between Glance and Cinder. Cinder can also do copy-on-write between volumes and snapshots.

• When Ceph is used, then Bright OpenStack by default configures Glance, or Nova, or Cinder, with
each service having its own storage pool

– By default, Bright configures the pools with a replication factor of 3. That is, each object is
stored on 3 separate Ceph OSD nodes.

– It is possible to reduce that to 2 in order to save raw space. This also increases the overall
performance of Ceph because before a write operation to Ceph returns back to the client, the
object first needs to be stored in all the replicas.

• Ceph OSDs, which are the nodes that store the raw data, can be deployed as standalone nodes.
Alternatively, they can be converged with the hypervisor nodes, in which case the hypervisor node
will be running the 2 VMs, as well as being responsible for managing Ceph storage

– This does not mean that VMs will be accessing the Ceph storage locally. As a very simple
example case of 10 identical converged hypervisor/OSD nodes, there is only a 1 in 10 chance
that the block of data accessed by a VM will happen to be hosted by the local OSD. The
remaining 9 will be accessed via the network.

– Combining Ceph OSDs with hypervisors means that VM processes may affect the perfor-
mance of Ceph OSD processes, unless both are configured to be pinned only to specific sets
of CPU cores.

– For the best possible performance, OSDs should not be converged on Hypervisors. For the
best possible value, convergence should be considered.
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• For the best possible performance Ceph data should be stored directly on the SSDs. For the best
possible performance:value ratio at the time of writing (July 2017), the data should be stored on
HDDs (ideally using a high-spinning SAS ), with an SSD journal in front.

• The sustained write speed of the SSD should be roughly equivalent to the sum of the sustained
write speeds of the HDDs which are configured behind that SSD. For example: 1 SSD with 400
MB/s writes configured for 4 HDDs with 100 MB/s each.

• Using multiple SSDs for journaling in one Ceph OSD is also possible.

• Ceph OSD can run multiple Ceph OSD service (one service per backing disk)

– 0.5-1 CPU cores should be assumed to be required to be available and dedicated for each OSD
service

– 500-1000 MB of RAM should be assumed to be required for each OSD service for each 1 TB of
data managed by that service.

• There should be at least 3 Ceph monitor nodes. In most cases that will be enough. In OpenStack
environments, Ceph monitor nodes are typically converged with OpenStack controller nodes, of
which also typically 3 are used.

• The total sum of sustained write speeds for Ceph journaling SSDs should not exceed the network
bandwidth available for delivering the data to the SSD. For example: 1 single SSD with 400 MB/s
(or 3200 Mbps), already exceeds the typical 1 Gbps link. This means that even an average SSD
will not be fully utilized in a 1 Gbps networking environment. Using 10 Gbps links for Ceph is
therefore recommended.

• Networking

– A dedicated, 10 Gbps, network the “Ceph cluster network”, is strongly advised. This is the
network that Ceph uses to replicate data between the OSDs.

– In most cases, the Ceph public network—the network used by Ceph clients to access Ceph—
should also be at least 10 Gbps. 1 Gbps should only be used if each Ceph OSD does not have
more than 2-3 HDDs for storing raw data, and also has no SSD journals. With more disks than
that, the disk throughput will be underutilized when writing to Ceph over a 1 Gbps public
network.

– To get the best performance, 3 network fabrics should be considered:

* On hypervisor nodes:
· 10+ Gbps for inter-VM communication (VLAN/VXLAN)
· 10+ Gbps for accessing Ceph (Ceph public network)

* On Ceph OSD nodes:
· 10+ Gbps for Ceph public network
· 10+ Gbps for Ceph private network (replication)

* It is, however, possible to use only a single, or only two, physical network fabrics for all
three of those logical networks. Performance, however, might suffer.

· E.g. 1 fabric for VLANS/VXLANs (1Gbps or 10 Gbps)
· 1 fabric for both the Ceph public network, and the Ceph private network (ideally

10Gbps or more).

• When selecting Ceph OSDs it is possible to use either smaller, “thin nodes”, or bigger, “thick
nodes”. An example of a thin node is 1 socket machine, with 7-12 disks. An example of a thick
node is a multi-socket machine with more than 12 disks.
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– Thick nodes are often more compelling in terms of costs and rack space

– But thick nodes are harder to configure properly. For example, the limited throughput of
the inter-socket QPI bus has to be kept in mind. There are also many other places where
bottlenecks can occur in such a dense environment, and these can be hard to troubleshoot.

– Thin nodes are typically easier to configure and set up for maximum performance.

• All other things, such as total raw storage, being equal, a typical Ceph cluster made up of thin
nodes will end up having more nodes than a Ceph cluster of the same capacity made up of thick
nodes.

– More nodes in a Ceph cluster mean less impact on Ceph’s overall performance if one of the
nodes fails. That is, a smaller percentage of the entire cluster goes down. This is because if
a thick node fails, then all the copies of data stored on the thick node need to be replicated
from the remaining Ceph nodes across the remainder of the Ceph cluster.

– Thin Ceph OSDs nodes therefore typically trade a higher upfront cost for a lower long-term
maintenance effort and a lower complexity.

Questions To Answer When Selecting Hardware For Ceph
• Probably the most important: how fast is the network? 1 Gbps, 10 Gbps?

– How many VMs will be running? Under peak VM disk I/O loads how much bandwidth
needs to be available for each VM?

• Will Ceph run on SSD only or HDD only? Or on HDD with a journaling SSD? The number of
either SSDs, or HDDs, or Journaling SSDs, should be selected such that their cumulative sustained
write speed is about the same as the inbound network bandwidth available for delivering data to
Ceph. This depends on the network speed, and on the disk capacity in the hardware enclosures
used for Ceph OSDs.

• An example to illustrate the balancing out of data and network flow: one possible scenario in a 10
Gbps network environment is to have 3 x 400 MB/s in journaling SSDs (9.6 Gbps sustained write),
with 4 x 100 MB/s HDDs behind each one of those SSDs.

• Balancing out the flow helps ensure that both the network, as well as the disks, are fully utilized. In
a hyperconverged architecture (combining OSDs with VMs), which also uses the same networking
fabric for the Ceph Public network, as well as for the VLAN/VXLAN network for inter-VM com-
munication), oversaturating the network with Ceph traffic is best avoided, so that some network
throughput for inter-VM communication is possible.

Using GPFS for OpenStack
• Glance does not have a native GPFS driver. However, GPFS for Glance can be used by mounting

it locally on a controller node, and using a localdisk driver for Glance

• Cinder supports GPFS via a native driver. It can be made aware that Glance is also using GPFS,
and can be made to use copy-on-write, from Glance to its volumes

• Nova does not support GPFS natively for ephemeral disks, but it can still be used with a localdisk
driver, pointed to a local GPFS mount, similarly to Glance. Copy-on-write from Glance is not
possible. But since Nova uses Cinder, Nova can issue copy-on-write requests from Glance, for
creating Cinder volumes.
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Using Lustre FS with OpenStack
• Nova: A Lustre filesystem can be used as a back end for ephemeral disks only when it is mounted

to allow exclusive file locking with the flock option. Another requirement is to disable Lustre
striping on the LFS folder within which the ephemeral disks will be mounted. This is to avoid
Lustre being slow when transferring small files to/from the VM.

# cmsh
% configurationoverlay
% openstackhypervisors
% roles
% use openstack::compute
% fsmounts
% show /var/lib/nova/instances
Parameter Value
-----------------------------------------------------------------------------------------
Device 10.149.0.254@o2ib0:/lustre/cm/shared/apps/openstack/nova
Dump no
Filesystem lustre
Filesystem Check NONE
Mount options defaults,_netdev,flock
Mountpoint /var/lib/nova/instances
RDMA no

• Glance: It is possible to configure Lustre for Glance in a similar way to that Nova. The only
difference being that the “flock” option is not needed.

• Cinder: Current status for OpenStack Newton needs to be investigated.

A.3.5 Throttling IOPS
In order to prevent out-of-control VMs from consuming too large a portion of the overall bandwidth
to the storage system (be it DAS or NAS), and thus starving out the other VMs, it is recommended to
configure a QoS for disk I/O.

This can be done on the OpenStack layer via Nova (for the ephemeral disks), or via Cinder (for
volumes). But, depending on the NAS used, it can also be done in the NAS system itself, in which case
doing so is specific to the given NAS system.

When configuring QoS via OpenStack the read/write bandwidth, as well as read/write IOPS, can
be regulated.

Configuring QoS For Nova
This is based on the description at https://wiki.openstack.org/wiki/InstanceResourceQuota at the
time of writing (July 2017):

To configure QoS for Nova, it can be configured on a per-flavor basis. The QoS will be applied to
ephemeral disks of the VMs. Nova allows certain VM types only to be exposed to specific Projects
(tenants/users). This allows higher-performance flavors to be accessed only by specified OpenStack
users.

Configuring QoS For Cinder
QoS for Cinder can be configured with Cinder’s “QoS” functionality. In Cinder, the QoS values are
bound to a volume types. It is therefore possible to create different Volumes Types with different QoS
performance characteristics. And, for example, to have multiple volumes, each with different QoS val-
ues, attached to a single VM.

Cinder Volume Types can be made hidden (not-public), and then shared with specific projects within
OpenStack (i.e. with users which need to have access to to them). This can done using the cinder CLI.
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Not all storage drivers for Nova/Cinder support QoS. The driver documentation for the driver be-
ing considered for use should be consulted for details. Ceph (RBD) drivers for Nova and Cinder, for
example, have a very good QoS support.
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